SYNTHETIC ORGANIC CHEMISTRY

ROMEO B. WAGNER

Former Assistant Professor of Chemistry The Pennsylvania State College

HARRY D. ZOOK

Assistant Professor of Chemistry The Pennsylvania State College

NEW YORK JOHN WILEY & SONS, INC. LONDON - CHAPMAN & HALL, LIMITED

Preface

Synthetic Organic Chemistry is designed to summarize in a single volume methods of organic syntheses most frequently employed in the preparation of mono- and di-functional compounds. The methods are collected in chapters each of which is devoted to the formation of compounds containing a particular functional group or related groups. In order to present a wide coverage of organic chemistry, detailed discussions were omitted; however, frequent references to the original literature as well as to other books and review articles are given. An effort has been made to include among these references examples of the better preparative procedures. Tables supplement the text in recording additional references and other examples. Moreover, the tabular material stands alone as a handy index to the literature for the preparation of starting materials of relatively simple structure.

In the selection of compounds for the tables, the original literature was read for clarity of directions along with statements of yield and physical constants. With few exceptions, a compound is listed in the tables only if its preparation appears adequately described. Also, the compound had to fit into an arbitrarily chosen scheme of structure simplicity. The reader will find that this scheme is quite liberal. Some compounds and their preparations serve as models in testing the generality of a particular method; hence, these substances are included even though they may be available commercially.

The following books and journals from 1919 to 1950 inclusive have been reviewed page by page:

Annalen der Chemie Annales de chimie Archiv der Pharmazie Berichte der deutschen chemischen Gesellschaft Bulletin de la sociëte chimique de France Chemical Reviews Chemische Berichte Helvetica Chimica Acta Industrial and Engineering Chemistry Journal of Biological Chemistry Journal of Chemical Education Journal of the Chemical Society of London Journal of Organic Chemistry Journal für praktische Chemie Journal of the Society of Chemical Industry (London) Monatshe/te für Chemie Organic Reactions Organic Syntheses

Copyright, 1953 By JOHN WILEY & SONS, INC.

All Rights Reserved This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

Library of Congress Catalog Card Number: 52-12249

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

Journal of the American Chemical Society Recueil des travaux cbimiques

Numerous other books and articles have also been examined. Although the survey is not complete, an attempt has been made to include those journals most readily accessible and most frequently consulted.

Because the methods and compounds have been arranged in a systematic manner already familiar to chemists, information concerning the formation of a particular functional compound may be found rapidly by consulting the table of contents, the individual chapter contents, or the tables. The index has been prepared with particular emphasis on the reactions of organic compounds. In the interest of economy the compounds listed in the tables are not repeated in the index.

We acknowledge with gratitude the assistance of Dr. James A. Moore, who has read the entire manuscript and has given many helpful suggestions. We are grateful to Elizabeth F. Wagner and Margaret H. Zook for their valuable assistance in the preparation of the manuscript.

Hercules Powder Company Wilmington, Delaware ROMEO B. WAGNER

The Pennsylvania State College State College, Pennsylvania HARRY D. ZOOK

January, 1953

Contents

CHAPTER	PAGE
1. Paraffinic, Naphthenic, and Aromatic Hydrocarbons	. 1
2. Olefinic Compounds	31
3. Acetylenic Compounds	78
4. Halides	. 88
5. Hydroxy Compounds	148
6. Ethera	226
7. Oxides	253
8. Acetals and Ketals	261
9. Aldehydes	279
10. Kerones	316
11. Quinones	398
12. Ketenes and Ketene Dimers	404
13. Carborylic Acids	411
14. Carborylic Esters	479
15. Lactones	533
16. Ortho Esters	542
17. Acyl Halides	546
18. Anhydrides	558
19. Amides, Imides, Hydrazides, Hydroxamic Acids, and Azides	565
20. Cyanides	590
21. Imino Estera (Imino Ethers) and Amidines	634
22. Isocyanates	640
23. Carbamates (Urethanes), Semicarbazides, and Ureas	645
24. Amines	653
25. Imines	728
26. Hydrazines	733
27. Oximes and Nitroso Compounds	739
28. Nitro Compounds	746
29. Azo and Azory Compounds	764
30. Diazo and Diazonium Compounda	769
31. Mercaptans	778
32. Sulfides	787
33. Disulfides	797
34. Sulfoxides and Sulfones	801
35. Sulfinic Acida	807
36. Sulfonic Acids	811
37. Derivatives of Sulfonic Acids	821
38. Thioanalogs of Other Oxygenated Compounds	827
39. Heterocyclic Compounds	832
Index	861

vi

LIST OF TABLES

ix

List of Tables

TABLE	PAGE
1. Paraffinic, Naphthenic, and Aromatic Hydrocarbons	17
2. Olefins	58
3. Diolefins	63
4. Acetylenes	83
5 Diacetylenes	84
6. Olefinic Acetylenes	84
7 Halides	111
8. Dihalides	120
9 Olefinic Halides	125
10. Acetylenic Halides	129
11 Hydroxy Compounds	182
12 Dibydroxy Compounds	192
12. Siny wony component	197
14 Hudrovy Acetylenes	201
15. Hudroxy Halides	202
16 Ethers	235
17 Diethere	238
19. Olefinie Ethere	238
10. A conversion Ethers	240
20 Uala Ethera	240
20. Halo Effets	246
21. Hydroxy Ellers	257
22. Oxides	268
2). Acetais	273
	298
2). Aldehydes	303
26. Dialdehydes	303
27. Olefinic Aldehydes	305
28. Acetylenic Aldehydes	305
29. Halo Aldehydes	306
30. Hydroxy Aldehydes	307
31. Aldo Ethers	. 357
32. Monoketones	363
33. Diketones	· 505
34. Olefinic Ketones	· 300
35. Acetylenic Ketones	· 370
36. Halo Ketones	375
37. Hydroxy Ketones	. 179
38. Keto Ethers	. 578
39. Keto Aldehydes	. Joi 402
40. Quinones	·
41. Ketenes	· 409
42. Monocarboxylic Acids	·
43. Dicarboxylic Acids	1-1/

TABLE	PAGE
44. Olefinic Acids	451
45. Acetylenic Acids	455
46. Halo Acids	455
47. Hydroxy Acids	458
48. Alkoxy and Aryloxy Acids	460
49. Aldo and Keto Acids	462
50. Monocarboxylic Esters	500
51. Dicarboxylic Esters	503
52. Olefinic Esters	506
53. Halo Esters	509
54. Hydroxy Esters	513
55. Alkoxy and Arvloxy Esters	516
56. Aldo Esters	517
57. Keto Esters	517
58. Carboxy Esters	522
59. Lactones	538
60. Ortho Esters	544
61. Acyl Halides	550
62. Anhydrides	561
63. Amides	578
64 Imides	593
65. Hudrazides and Azides	584
66 Cvanides	610
67 Dicuanides	614
68 Olefinic Cranider	615
60. Acetulenic Cuanides	617
70 Halo Cuanidea	617
70, Halo Cyandes	610
71. Hydroxy Cyandes	610
72. Cyano Ellers and Ketonen	621
73. Cyano Andenydes and Retoiles	622
74. Cyano Retas	622
76 Ining Esters (Ining Esters)	627
70. Imino Esters (Imino Etners)	629
77. Amidines	642
70. Contact (Hard to co)	640
90 Semicarbaridae and Hanne	640
01. Arian	203
82 Diamines	601
92. Olatinines	604
84. A secularia Ariana	694
o4. Acetylenic Amines	(09)
o). Halo Amines	(00)
97 Aring Ethang	300
89 Amino Aldobudoo	702
80 Amino Keropea	704
90 Amino Acida	703
91 Amino Actus	700
97 Amino Cuanidas	710
93 Imines	711
/J. IUMICS	/ 51

TABLE	PAGE
94. Hydrazines	736
95. Oximes (Isonitroso Compounds)	743
96. Nitroso Compounds	744
97, Nitro Compounds	752
98. Dinitro Compounds	753
99. Nitro Olefins	754
100. Nitro Halides	754
101. Nitro Alcohols and Nitro Phenols	755
102. Nitro Ethers	756
103. Nitro Aldehydes and Ketones	757
104. Nitro Acids	757
105. Nitro Esters	758
106. Nitro Cyanides	759
107. Nitro Amines	759
108. Azo and Azoxy Compounds	767
109. Diazo and Diazonium Compounds	774
110. Mercaptans	782
111. Sulfides	791
112. Disulfides	799
113. Sulfoxides and Sulfones	804
114. Sulfinic Acids	809
115. Sulfonic Acids	815
116. Derivatives of Sulfonic Acids	824
117. Sulfur Analogs of Other Oxygenated Organic Compounds	828
118. Heterocyclic Compounds	849

Explanation of Tables

Arrangement. The compounds are classified according to functional groups and are arranged with respect to their carbon content. For convenience, the larger classes are subdivided into aliphatic, alicyclic, aromatic, and heterocyclic series.

Nomenclature. For the most part, compounds are listed under the name used in the original literature; hence, they can readily be found in the articles cited and the inconvenience of seeking a compound under a new name is avoided. Since common names are used to a large extent in the literature, the compounds can be found in the tables under the appropriate series arranged according to the carbon content.

Method. Each number listed under this heading refers to a particular method which is discussed in the accompanying text and is described in the reference cited. The methods are numbered consecutively throughout the text. Certain methods, not general enough to warrant description, are designated as miscellaneous by a dash.

Yield. The yield is stated for a single-step process (final step) unless a dagger (\dagger) is attached; then it is based on a multiple-step process.

Re/erence. The references are listed as superscripts to the number of the chapter in which they appear. The page on which the description of the compound appears is cited, unless more than one compound is selected from the article, in which case the initial page of the article is cited.

Physical Constants. The data are taken from the literature reference cited unless an asterisk (*) is attached; the asterisk indicates that they have been obtained from another source. Boiling points (B.p./mm.) are given in °C and are at "atmospheric pressure" unless the investigator has been specific in recording the actual pressure (millimeters of mercury). Melting points (M.p.) are given in °C and are enclosed in parentheses to set them off from boiling points. Decomposition points are indicated by the abbreviation "d." Indices of refraction (n_D) are for sodium light and at 20°C unless a superscript denotes another temperature.

Derivatives. Melting-point data for the derivatives are taken from the cited reference unless marked by an asterisk (*), which indicates that

cellent works on this subject.²⁵⁵ A review of the properties of alkylbenzenes is worthy of mention.⁵

1. Alkylation of Hydrocarbons (Friedel-Crafts)

$$ArH + RX \xrightarrow{AICI_3} ArR + HX$$

Alkylation of aromatic hydrocarbons has been accomplished by a variety of reagents including alkyl halides, alcohols, olefins, ethers,^{9,24,46} esters,^{22,30} and alkyl sulfates.^{10,27} Catalysts for the reaction are those which tend to produce carbonium ions (R⁺) from the alkylating agents.⁴⁷ Isomerization frequently occurs within the alkyl group.^{1,33} Thus, s-alkyl derivatives are obtained when *n*-alkyl halides or primary alcohols are employed as alkylating agents. Similarly, isobutyl halides give *t*-butyl compounds. The reaction, therefore, cannot be used to prepare pure *n*-alkylsubstituted aromatic hydrocarbons containing more than two carbon atoms in the side chain. An exception is the formation of *n*-propylbenzene from cyclopropane, benzene, and aluminum chloride.^{33,35,50} Racemization of the *s*-butyl radical occurs to the extent of 95% in the boron trifluoridecatalyzed alkylation of benzene by optically active *s*-butyl alcohol.^{26,47}

Alkyl halides are common alkylating agents in this reaction. Benzene is converted to toluene at atmospheric pressure by methyl chloride in the presence of aluminum chloride.¹⁵ Nitroparaffins have been used as solvents for the aluminum chloride catalyst.⁵⁰ An amalgamated aluminum catalyst is more effective than aluminum chloride in certain alkylations by alkyl chlorides.³⁸ Boron trifluoride must be accompanied by water, alcohol, or some other polar compound in order to be effective in similar alkylations.¹⁴ Hydrogen chloride,³⁹ hydrogen fluoride,⁴⁴ ferric chloride,⁴¹ and beryllium chloride⁴² also have been used as catalysts.

Alkylation of benzene by an olefin occurs when the olefin is stirred with a cold mixture of benzene and sulfuric acid.⁴ The type of product formed depends upon the concentration of sulfuric acid; high concentrations (90–96%) are required for alkylations.²⁸ Alkylation by olefins is also catalyzed by aluminum chloride,^{32,50} ferric chloride,⁴⁵ silicophosphoric acid,²⁴⁸ and hydrogen fluoride.^{23,24,44} The last catalyst is the best of four studied for the preparation of phenylcycloheptane from benzene and cycloheptene.⁴³

Acetylene adds two molecules of benzene or other aromatic hydrocarbon in the presence of sulfuric acid and a little mercuric sulfate to give 1,1diarylethanes.⁵²

Benzene has been alkylated by several series of secondary and tertiary alcohols in the presence of aluminum chloride.^{2,11} Ferric chloride is recommended over aluminum chloride for alkylation by t-butyl alcohol.²⁰

METHOD 2

n- and *s*-Butyl alcohols are not condensed with benzene by this catalyst. Primary alcohols serve as alkylating agents when boron trifluoride is used with "assistants" such as phosphorus pentoxide or sulfuric acid.¹⁹ The products, however, are secondary-alkyl benzenes formed by isomerization of the alkyl radical. Benzylation of aromatic compounds may be accomplished by refluxing with benzyl alcohol and *p*-toluenesulfonic acid in an apparatus equipped with a water separator.⁹

The alkylations are reversible. Alkyl groups can be transferred from one position to another on the aromatic nucleus^{21,36,37,48} or from one molecule to another.^{3,29} *t*-Butylbenzene is formed in 85% yield from benzene and *p*-di-*t*-butylbenzene in the presence of ferric chloride.³¹

Many di- and poly-alkylated benzenes have been prepared by the Friedel-Crafts reaction. Alkyl groups on the nucleus do not exert a strong directive influence upon the orientation, nor do they greatly affect the rate of further alkylation.¹⁸ The composition of the alkylated product varies widely, depending upon the conditions of the reaction. Appreciable quantities of *m*-dialkylated^{48,49} and *sym*-trialkylated²⁵ products are obtained under vigorous conditions. The composition of many products is in doubt, as has been shown by later, more accurate analyses.⁴⁰ Methylation of xylene gives 1,2,4,5-tetramethylbenzene (durene), pentamethylbenzene, and hexamethylbenzene.⁷

Alkylation of naphthalene gives both a- and β -monoalkyl products, the β -compound usually predominating.^{13,17}

Excellent reviews of the alkylation of aromatic hydrocarbons have been published.^{17,18,34,47} The production of paraffins by the alkylation of isoparaffins by olefins is important industrially^{50,51} but is not common on a laboratory scale for the preparation of pure hydrocarbons.

Alkylation of aryl halides (method 76) and phenols (method 106) is discussed elsewhere as is the application of the Friedel-Crafts reaction to the synthesis of ketones (method 178) and carboxylic acids (method 273). Nitro and alkoxy groups also have been present on the aromatic nucleus during alkylations.²⁴

2. Aromatic Hydrocarbons by Dehydrogenation

Saturated and partially saturated alicyclic compounds having sixmembered rings are readily converted to the corresponding aromatic compounds by several dehydrogenation procedures. The more nearly saturated compounds are the most difficult to dehydrogenate. Alicyclic rings con-

taining more than six carbon atoms undergo ring contraction to sixmembered aromatic rings.²⁴² Compounds containing quaternary carbon atoms in the ring such as compounds with angular methyl groups or gemdialkyl groups are aromatized with difficulty. The reaction proceeds, however, at high temperatures by elimination or migration of an alkyl group.^{60,67,72} Other carbon-skeleton changes are described in a critical review of the dehydrogenation techniques.²⁴³

The usual hydrogenation catalysts may be used to effect dehydrogenation. The reaction is carried out in the liquid phase by heating the substance with the catalyst until evolution of hydrogen ceases or in the vapor phase by passing the substance through the catalyst heated to a suitable temperature. Mechanical disturbances caused by boiling (ebullition) are desirable.⁷³ Benzene is an effective hydrogen acceptor for liquid-phase dehydrogenation.^{62,64} Platinum and palladium catalysts have been widely used for the preparation of alkylbenzenes from cyclohexanes⁷⁴ and alkylnaphthalenes from di-, tetra-, octa-, and deca-hydro derivatives. 58, 59, 65, 67, 2 51 Nickel catalysts have also been used.63 Thiophene or diphenyl sulfide are necessary promoters for nickel catalysts.⁶² A comparison of platinum and nickel catalysts on various supports has been made; the most active is nickel on chromium oxide.⁶⁴ Ten metallic oxide catalysts have been studied in the dehydrogenation of acenaphthene to acenaphthylene (90%). The use of steam as a diluent in the acenaphthene vapor is beneficial. Chromia-alumina catalysts at 450-470° have proved valuable in the preparation of large quantities of pure di- and tri-alkylbenzenes from the corresponding cyclohexenes.⁵⁴ At higher temperatures (600-650°) alkylbenzenes are dehydrogenated to styrenes⁵³ and polynuclear hydrocarbons²⁴⁴ over catalysts of this type.

Among the better non-catalytic procedures are dehydrogenations by sulfur or selenium. The hydrogen is removed as hydrogen sulfide or hydrogen selenide. Dehydrogenation by heating a mixture of the alicyclic hydrocarbon and sulfur to $210-270^{\circ}$ is described for 1-phenylnaphthalene (94%)^{\$7} and 2-ethylbiphenyl (42%).⁵⁵ Sulfur dehydrogenation is superior to dehydrogenation over a palladium catalyst for the conversion of 1,3-dimethyltetralin to 1,3-dimethylnaphthalene (98%).⁶⁵ Isoamyl disulfide dehydrogenates tetralin to naphthalene at $250-260^{\circ}$.⁶⁶ Higher temperatures ($300-350^{\circ}$) are required when selenium is used in place of sulfur. Phenanthrene has been synthesized from 3,4-dihydronaphthalene-1,2-dicarboxylic anhydride and butadiene by a Diels-Alder reaction followed by decarboxylation and finally dehydrogenation of the resulting hydrophenanthrenes by selenium.⁶⁹

Low-temperature-dehydrogenation techniques have been described. Biphenyl and terphenyl compounds have been made by dehydrogenations

METHOD 3

with chloroanil in refluxing xylene.⁵⁶ Bromination-dehydrobromination with N-bromosuccinimide in boiling carbon tetrachloride has been used successfully to make naphthalene, anthracene, and phenanthrene.⁶¹

Cyclic nuclei containing hydroxyl, alkoxyl, keto, carboxyl, and ester groups have been dehydrogenated.^{63,64,70,71,73} Secondary and tertiary hydroxyl groups are often eliminated as water.^{245,246} Cyclic ketones are converted to phenols (method 108).

3. Reduction of Aldehydes and Ketones

$RCOR' \xrightarrow{(H)} RCH_2R'$

Three common procedures are available for the transformation of aldehydes and ketones to hydrocarbons: (1) reduction by zinc and hydrochloric acid (Clemmensen), (2) reduction by hydrazine in the presence of a base (Wolff-Kishner), and (3) catalytic hydrogenation. In view of the complicated mixtures obtained by the polyalkylation of benzene by the Friedel-Crafts reaction (method 1), reduction of alkyl aryl ketones is the most reliable method for the preparation of di- and poly-alkylbenzenes.

The Clemmensen reduction is carried out by refluxing the carbonyl compound for a long period of time with a large excess of amalgamated zinc and hydrochloric acid. Solvents both miscible and immiscible with the aqueous phase have been used to advantage. Many of the yields recorded in Table 1 have been obtained by Clemmensen's original procedure¹³⁶ and very likely could be improved by the use of solvents.¹⁵⁴ The yields of paraffins and alicyclic hydrocarbons are poor, and the products are frequently contaminated with olefins.^{141,144,135,137} Acyl derivatives of benzene,^{151,247} toluene,¹⁵⁰ naphthalene,^{154,155} tetralin,⁵⁹ and polyalkylated aromatic hydrocarbons are reduced in somewhat better yields (40-90%). Benzophenone and p-halo derivatives undergo bimolecular reduction to pinacols, whereas the p-methyl and p-hydroxy derivatives are reduced normally to the corresponding diarylmethanes.¹² The method has been used extensively in the preparation of polynuclear hydrocarbons by reduction of cyclic ketones obtained by internal Friedel-Crafts reactions of γ arylbutyryl chlorides.^{58,152} A review of the Clemmensen reduction with 476 references has been published.135

It has been known for some time that hydrazones or semicarbazones of aldehydes and ketones are decomposed by alkali to give nitrogen gas and hydrocarbons corresponding to the carbonyl compounds.

$$RR'C \longrightarrow NNH_2 \xrightarrow{KOH} RCH_2R' + N_2$$

Several modified procedures have been described whereby excellent yields of paraffins, alkylbenzenes, and alicyclic hydrocarbons have been

METHOD 5

PARAFFINIC, NAPHTHENIC, AROMATIC HYDROCARBONS Ch. 1

obtained.^{138-140,158} In one improved procedure the carbonyl compound is merely refluxed with 85% aqueous hydrazine hydrate and potassium hydroxide in triethylene glycol solution, distilling excess water and hydrazine hydrate to a temperature of 180-200°.¹³⁶ The reaction has been reviewed.²⁵⁶

Catalytic hydrogenation of alkyl aryl ketones and diaryl ketones to hydrocarbons is most convenient provided that high-pressure apparatus is available. Copper-alumina and copper-chromium oxide catalysts have been used. At 100-130° alcohols are formed, but at 180-250° excellent yields of the corresponding hydrocarbons are obtained.¹⁴⁵⁻¹⁴⁹

Various groups on the aromatic nucleus including halo,^{135,157,159} hydroxyl,^{135,157,160} alkoxyl,¹³⁵ and amino¹⁵⁷ groups are stable during reduction of the carbonyl group by one or more of the above procedures. The Clemmensen reduction of keto acids is treated in method 269.

4. Reduction of the Aromatic Nucleus

6

 $+ 3H_2 \xrightarrow{Ni}_{125^0}$

Benzene and alkylbenzenes are quantitatively converted to cyclohexanes by catalytic hydrogenation. Modern procedures employ liquidphase hydrogenation over nickel catalysts at $100-200^{\circ 76,78,81}$ or over platinum catalysts at room temperature.^{75,81} Nickel catalysts are poisoned by traces of thiophene and water.⁷⁹ Small quantities of hydrogen halide increase the effectiveness of platinum catalysts.²⁴¹ Isomerization occurs during the reduction of benzene over nickel at 170° ; the cyclohexane formed is probably contaminated with methylcyclopentane.⁷⁷ Partial reduction of benzene to 1,4-dihydrobenzene is accomplished by sodium in liquid ammonia at -45° .⁸⁰

Naphthalene is reduced to 1,4-dihydronaphthalene by sodium and alcohol.⁴³ Isomerization of this product to 3,4-dihydronaphthalene occurs with sodamide in liquid ammonia. Tetrahydronaphthalene (tetralin) is formed from naphthalene by sodium in amyl alcohol or by reduction with nickel-aluminum alloy and aqueous alkali.⁵² Catalytic hydrogenation of naphthalene can be stopped at the tetralin stage over copper chromite,⁶³ Raney nickel,⁶³ or alkali metal ⁸⁴ catalysts. *cis*-Decahydronaphthalene is produced by high-pressure hydrogenation of tetralin over Adams catalyst, whereas a mixture of *cis*- and *trans*-decalins is obtained from naphthalene under the same conditions.^{75,85}

Anthracene and phenanthrene may be partly or completely reduced by the above procedures. Sodium in either amyl alcohol⁸⁸ or ammonia⁹⁰ converts anthracene to its 9,10-dihydro derivative. Catalytic hydrogenation over copper chromite catalyst can be stopped at the dihydro or tetrahydro stages.⁸⁸ Octahydroanthracene is formed over nickel catalysts.⁸⁷ Copper chromite catalyst is best for the preparation of 9,10-dihydrophenanthrene.^{86,89} Raney nickel is preferred for further reduction to the tetrahydro, octahydro, and dodecahydro derivatives.^{86,91}

Reductions of aromatic nuclei containing hydroxyl (method 86), carboxyl (method 270), ester (method 304), and amino (method 430) groups are discussed elsewhere. Hydrogenation of 2-methoxynaphthalene over Raney nickel occurs in the ring containing the methoxyl group.⁹³

5. Reduction of Olefinic Compounds

$RCH = CHR + H_2 \xrightarrow{Pt \text{ or } Ni} RCH_2CH_2R$

Most paraffin hydrocarbons are best prepared by catalytic hydrogenation of olefins. The preparation of catalysts and the procedure for hydrogenation are well described.⁸¹ Platinum oxide catalyst effects hydrogenation at room temperature and low pressure.^{194,195} Nickel-on-kieselguhr^{192,196} or Raney nickel catalysts are less expensive but require high-pressure equipment. Temperatures required for hydrogenation with these catalysts vary from 25° to 250°. In general the yields are quantitative, although a second hydrogenation over fresh catalyst is sometimes required to remove last traces of olefin. Simultaneous dehydration and hydrogenation of alcohols over activated alumina and nickel oxide has been described¹⁹⁴ (method 6).

This reaction is valuable for the preparation of certain pure alkylbenzenes which cannot be made by direct alkylation (method 1). Thus, p-s-butyltoluene is obtained from p-bromotoluene and methyl ethyl ketone via the Grignard reagent, tertiary carbinol, and olefin.¹⁴⁷ Other examples of the introduction of an alkyl group into the benzene ring by this procedure include the preparations of various alkylbiphenyls²⁴⁹ and alkylbromobenzenes.²⁰² In the selective hydrogenation of the double bond of 11phenyl-10-heneicosene, it is necessary to purify the olefin by passage through silica gel and to use a very active Raney nickel catalyst.¹⁹⁸

Studies have been made on the influence of various groups on the rate of hydrogenation of the double bond.¹⁹⁷ Reductions of olefinic alcohols (method 85), olefinic aldehydes (method 161), olefinic ketones (method 196), olefinic acids (method 267), olefinic esters (method 303), olefinic cyanides (method 394), and olefinic amines (method 460) are treated separately.

6. Reduction of Alcohols and Phenols

$$(CH_3)_2CHC(CH_3)_2CH_2CH \xrightarrow[Catalyst]{H_2} (CH_3)_2CHC(CH_3)_3$$

This method shows much promise for the direct conversion of alcohols to hydrocarbons. In the above example, triptane is prepared without rearrangement from an alcohol which would undergo carbon-skeleton change by the ordinary dehydration-hydrogenation route (method 19). The hydrogenolysis is effected at 300° over a cobalt-on-alumina catalyst.¹⁷⁷ Similar reductions have been carried out over vanadium pentoxide-aluminum oxide catalyst.¹⁷⁹ Hydrogenation over nickel catalysts converts straightchain primary alcohols to paraffins having one less carbon atom.¹⁷⁸

Hydroxyl groups *alpha* to the aromatic nucleus are reduced by sodium in liquid ammonia¹⁸¹ or by catalytic hydrogenation as in the reduction of 2,3-dimethylbenzyl alcohol to hemimellitene (92%).¹⁷⁴ 6-Isopropyltetralin is prepared in a similar manner from the corresponding tertiary carbinol.⁵⁹ Phosphorus and iodine have been used for reduction of alkylarylcarbinols and diarylcarbinols containing stable nuclear halogen atoms.^{185, 202}

The reduction of phenols by dry distillation with zinc dust is illustrated by the conversion of 9-phenanthrol to phenanthrene (72%).¹⁸² The reaction is seldom of preparative value.

7. Reduction of Halides

$$RX \xrightarrow{(H)} RH$$

Most reducing agents which yield nascent hydrogen have been used to effect elimination of halogen from organic halides. Zinc is probably the most common metal employed. It is used with acetic acid saturated with hydrogen chloride in the reduction of cetyl iodide,¹⁸⁷ with hydrogen chloride alone in the reduction of tertiary aliphatic iodides,¹⁰⁴ and with aqueous sodium hydroxide for the preparation of durene from the corresponding chloromethyl compound.¹⁸⁴ 5-Chloromethylindane is reduced catalytically over palladium to 5-methylindane (90%).¹⁹¹ Lithium aluminum hydride readily reduces alkyl bromides in refluxing tetrahydrofuran solution.²⁵⁷

$$4RX + LiAlH_{\bullet} \rightarrow 4RH + LiAlX_{\bullet}$$

Lithium hydride can be substituted for most of the lithium aluminum hydride.¹⁸⁶ Aryl halogen atoms have been successfully removed in certain cases by magnesium and methanol,¹⁸⁹ sodium and amyl alcohol,¹⁸⁸ and nickel-aluminum alloy in aqueous alkali.¹⁹⁰ METHODS 8-9

8. Hydrolysis of Organometallic Compounds

 $RMgX \xrightarrow{H_2O}_{H^4} RH$

This method furnishes an indirect route for the conversion of an organic halide to a hydrocarbon. The reaction is general, and the yields of hydrocarbons are usually excellent. The chloromethylation of naphthalene followed by the formation and hydrolysis of 1-naphthylcarbinylmagnesium chloride gives 1-methylnaphthalene (80%).²⁰¹ An aryl bromine atom is removed in the preparation of *p*-cymene (73%).¹⁹⁹ The Grignard reagent is prepared in dibutyl ether when the products are low-boiling hydrocarbons such as *n*-pentane²⁰⁰ or cyclobutane.¹⁰⁰ *n*-Butyl alcohol has been used to decompose the Grignard reagent in the case of cyclobutane. *n*-Octane prepared from *n*-octyl bromide by this procedure contains some octene formed by elimination of hydrogen bromide from the halide during the formation of the Grignard reagent. Pure *n*-octane may be obtained by hydrogenation of the crude product.

9. Coupling of Organometallic Compounds with Halides

 $R_1CX + R'M \rightarrow R_1CR' + MX$

This reaction is valuable in the preparation of certain monoalkyl aromatic hydrocarbons and aliphatic hydrocarbons having quaternary carbon atoms. The organometallic reagents most frequently used are Grignard reagents, zinc alkyls, and alkali-metal alkyls.

Primary Grignard reagents couple with tertiary alkyl halides in low yields (30-50%)." This reaction represents the best laboratory preparation for highly branched hydrocarbons such as neopentane, 99 neohexane, 103 and hexamethylethane.¹⁰¹ The yields of paraffins are no better when dialkylzinc compounds are substituted for the Grignard reagents."5,98,105 Dimethylzinc is superior to methylmagnesium iodide, however, for the conversion of 1-chloro-1,3-dimethylcyclopentane to 1,1,3-trimethylcyclopentane (35%).⁹⁴ Aryl Grignard reagents such as 9-anthryl- and 9-phenanthryl-magnesium bromides couple in moderate yields with primary alkyl halides to give the corresponding 9-alkyl derivatives.^{90,109,111} Benzyl halides are extremely active in the coupling reaction. Benzyl chloride117 and α -phenylethyl chloride¹⁰⁷ are readily converted to the corresponding Grignard reagents which couple with the original halide in each case to give the symmetrical diphenylethane. Highly substituted benzenes are made from chloromethylpolyalkylbenzenes by this method. Alkyl groups in the ortho position to the chloromethyl radical do not hinder the coupling.119

METHOD 10

10 PARAFFINIC, NAPHTHENIC, AROMATIC HYDROCARBONS Cb. 1

The Wurtz or Wurtz-Fittig synthesis is usually thought of as a coupling reaction of two molecules of a halide or different halides by metallic sodium. In the liquid phase, as the reaction is generally carried out, alkylsodium compounds are intermediates and the coupling stage or second step is comparable to the reactions discussed above.¹¹⁰

 $RX + 2Na \rightarrow RNa + NaX$ $RX + RNa \rightarrow RR + NaX$

Olefins and paraffins corresponding to the alkyl halide are formed as by-products by dehydrohalogenation of the halide by the basic organosodium compounds.^{110,123} The synthesis has little value as a preparative method and has been used infrequently. The factors influencing the yield of *n*-octane from *n*-butyl bromide have been studied.¹⁰² Although preparations of several alkylbenzenes from mixtures of alkyl halides and phenyl bromide are described,^{106,114,247} good yields of pure products are difficult to obtain.⁶ The reaction has been used with some success to prepare α, ω -diphenylparaffins from α, ω -dibromides, phenyl bromide, and sodium.¹¹⁸ With ethylene bromide, only ethylene and biphenyl are formed. Arylalkali compounds have been used in the preparation of polyphenylparaffins. Potassium triphenylmethide reacts with methyl iodide to give 1,1,1-triphenylethane (94%).¹¹³ The formation of tetraphenylmethane from this potassium alkyl and phenyl chloride is catalyzed by alkali amides.¹¹²

 $(C_6H_5)_8CK + C_6H_5Cl \xrightarrow{KNH_2} (C_6H_5)_4C + KCl$

Halogen-metal interconversion sometimes occurs prior to the coupling reaction.²⁵⁸ Thus, phenyllithium and benzyl bromide react to give bromobenzene and bibenzyl rather than diphenylmethane.¹¹⁵

The action of metals on 1,3-dihalides is an important method of ring closure for cyclopropanes. Cyclopropane is made by the action of zinc dust at 125° on an acetamide solution of 1,3-dichloropropane. A small amount of sodium iodide is used as a catalyst, and sodium carbonate is added to regenerate iodide ions from the precipitated zinc iodide.¹¹⁴ Zinc dust in aqueous ethanol is employed in the preparation of 1,1-dialkylcyclopropanes from the corresponding 1,3-dibromides⁹⁶ and spiropentane from pentaerythrityl tetrabromide.¹³³

The closing of a six-membered ring by this process is possible when favored by structural rigidity of the molecule as in the preparation of 9,10-dihydrophenanthrene from phenyllithium and 2,2'-di-(bromomethyl)-biphenyl.¹²⁰

Under the proper conditions, two molecules of 1,6-dibromohexane are coupled by magnesium to give 1,12-dibromododecane.¹²¹

Few functional groups are stable during the above coupling reactions. Ether linkages are occasional exceptions.^{110,122}

10. Action of Organometallic Compounds on Alkyl Sulfates and Sulfonates

$$RMgX + R'_{2}SO_{4} \rightarrow RR' + R'(MgX)SO_{4}$$

Dimethyl and diethyl sulfates have been widely employed in the synthesis of alkylbenzenes^{126,192} and alkylnaphthalenes^{127,131} from aryl- and benzyl-type organometallic reagents. The final methyl groups of isodurene¹²⁵ and pseudocumene¹³² are introduced in this manner. The reaction is superior to the Wurtz synthesis (method 9) for the preparation of o- and p-diethylbenzenes.¹⁰⁸ n-Propylbenzene obtained from benzylmagnesium chloride and diethyl sulfate¹³⁰ is contaminated with a "rearranged" product, p-ethyltoluene.¹²⁹

Alkyl esters of arylsulfonic acids react similarly with Grignard reagents to give hydrocarbons.¹²⁸ Some of the arylsulfonic ester is converted to an alkyl halide by a simultaneous reaction.

 $RMgX + ArSO_{3}R' \longrightarrow RR' + ArSO_{3}MgX$ $ArSO_{3}MgX + ArSO_{3}R' \longrightarrow R'X + (ArSO_{3})_{2}Mg$

Accordingly, the yield of hydrocarbon is increased when two moles of ester are used for each mole of organometallic compound. Alkyl esters of *p*-toluenesulfonic acid are generally employed. The yield of *n*-amyl-benzene from benzylmagnesium chloride and *n*-butyl *p*-toluenesulfonate is 59%.¹²⁴ For the preparation of alkylbenzenes, the phenyl group must be a part of the Grignard reagent since aryl esters of sulfonic acids give sulfones and phenols by this reaction.

11. Coupling of Aryl Halides

 $2ArMgX + CuX_2 \rightarrow Ar - Ar + 2MgX_2 + Cu$

The coupling of two aryl radicals is effected by treating an arylmagnesium halide with an equimolar quantity of cupric chloride,^{120,164} silver bromide,¹⁶² or other metallic halide.¹⁷² Certain halides, e.g., cobalt and nickel chlorides, are required in catalytic amounts only, provided that a quantity of an organic bromide equivalent to the Grignard reagent is present. In these reactions, organocobalt compounds are formed which decompose to biaryls, and the bromide serves to regenerate the catalyst.¹⁶³

$$2A_{r}CoCl \rightarrow A_{r} - A_{r} + 2CoCl$$
$$CoCl \cdot + RBr \rightarrow CoClBr + R \cdot$$

The fate of the free radical, R, depends upon its nature. It is frequently stabilized by coupling, disproportionation, or reaction with the solvent.

A related reaction is the coupling of two molecules of aryl halide by metallic copper at temperatures above 100° (Ullmann). Activated copper bronze or freshly precipitated copper is used. The order of activity of the aryl halides is I > Br > Cl. Both symmetrically and unsymmetrically substituted biaryls may be prepared in fair yields. An excellent review of the literature to 1945 has been made. Most functional groups do not interfere; hydroxyl, carboxyl, amino, and acetamino groups are exceptions.¹⁶⁶

Additional procedures which produce biaryls from aryl halides include catalytic hydrogenation,¹⁶⁷ the action of the binary mixture magnesiummagnesium iodide,¹⁶⁵ and the use of powdered iron in hydroxylated media.¹⁶¹

12. Biaryls by Coupling of Diazo Compounds with Aromatic Nuclei

$$ArN_2^+X^- + Ar'H + NaOH \rightarrow ArAr' + N_2 + NaX + H_2O$$

Biaryls are produced in low yields by several related coupling reactions. When benzenediazonium chloride is treated with aqueous sodium hydroxide in the presence of benzene, nitrogen is eliminated and biphenyl is formed in 22% yield.²¹⁵ Better results are sometimes obtained when the sodium hydroxide is replaced by sodium acetate²²¹ or when stabilized diazonium salts are employed.²¹⁶ In the former modification the aryldiazoacetate, $ArN \approx NOCOCH_{s}$, is an intermediate product. The tautomeric forms of the aryldiazoacetates are N-nitrosoamides, $ArN(NO)COCH_{s}$, which are obtained by the action of nitrous fumes or nitrosyl chloride on acetyl derivatives of arylamines. The nitroso compounds couple in a similar manner with aromatic compounds to produce biaryls.^{217,222}

 $ArN(NO)COCH_3 + Ar'H \rightarrow ArAr' + N_2 + CH_3CO_2H$

METHOD 13

The two coupling reactions appear to have a common free-radical intermediate. Functional groups already in the aromatic compound, Ar'H, orient ortho-para regardless of their nature. The reactions are most valuable for the preparation of biaryls of unequivocal structure when the hydrocarbon, Ar'H, is unsubstituted. Good directions are given for the synthesis of p-bromobiphenyl (35%),²¹² and the literature of the reaction has been reviewed.²¹¹ Among the hydrocarbons prepared in this way are a- and β -phenylnaphthalenes,^{216,217} o-, m-, and p-methylbiphenyls²¹⁴ and m- and p-terphenyls.^{220,222} Thiophene and pyridine nuclei also have been arylated.^{211,219}

A related reaction for the production of symmetrical biaryls in low yields involves reduction of the diazonium salt with various metals, metallic ions, or simple organic compounds.^{213,218}

Intramolecular arylation is an important step in the Pschorr synthesis of phenanthrene from *cis-o*-aminostilbene.²²³

13. Decarboxylation of Carboxylic Acids

$$ArCO_2H \xrightarrow{Cu} ArH + CO_2$$

Several polynuclear aromatic hydrocarbons may be synthesized by procedures involving decarboxylation.^{69,237} The dry distillation of 3-phenanthrylacetic acid and powdered soda lime furnishes the best method of synthesis of 3-methylphenanthrene (84%).²³⁵ Heating aryl carboxylic acids with copper powder or copper oxide in quinoline or quinaldine is also an effective method of decarboxylation.^{238,239}

The decarboxylation of simple aliphatic acids by fusion of their sodium salts with sodium hydroxide does not give pure hydrocarbons.²³⁴ By heating the barium salts of 1-phenylcycloalkane-1-carboxylic acids with dry sodium methoxide, 1-phenylcycloalkanes are obtained in 6-64% yields, the yield increasing with the size of the alicyclic ring.²³⁶ The coupling of the

organic radicals sometimes occurs during the electrolysis of alkali salts of carboxylic acids (Kolbe, cf. method 317).^{240,230}

$$2RCO_2 \rightarrow R - R + 2CO_2 + 2e$$

However, the reaction is not general.

14

14. Replacement of the Diazonium Group by Hydrogen

 $A_{r}N_{2}^{+}X^{-} + H_{3}PO_{2} + H_{2}O \rightarrow A_{r}H + H_{3}PO_{3} + HX + N_{2}$

The successful removal of the diazonium group from the aromatic nucleus is an important step in many indirect syntheses of aromatic compounds which cannot be made by direct substitution reactions. Substituents are introduced into the nucleus under the directive influence of an acetamido or ammonium grouping. The former orients to the ortho and para positions, whereas the latter is strongly meta directing. Both groups are readily formed from and reconverted to the amino group. Since diazotization of most arylamines can be effected in excellent yield, there remains the problem of removal of the diazonium group from the ring.

The classical reagent for this reduction is ethyl alcohol, which is oxidized to acetaldehyde in the reaction. This reagent is unsatisfactory for the preparation of hydrocarbons; a simultaneous reaction occurs to give ethyl aryl ethers.

 $A_{1}N_{2}^{+}X^{-} + C_{2}H_{3}OH \rightarrow A_{1}OC_{2}H_{3} + N_{2} + HX$

Satisfactory procedures are described, however, for the deamination when halo, nitro, or carboxyl groups are on the nucleus.²²⁵ Metals or metallic oxides are sometimes added as catalysts.^{228,230}

The best general reagent for the reductive elimination of the diazonium group is hypophosphorus acid.^{224,227} Reduction proceeds readily at $0-5^{\circ}$ with an aqueous solution of the reagent. The yields of hydrocarbons are in the range of 60-85%. Hydrochloric acid is recommended for the diazotization except in certain cases in which nuclear halogenation occurs as a side reaction when this acid is used.

Several other reducing agents have been employed in this reaction. Alkaline formaldehyde converts aromatic diazonium salts to the corresponding hydrocarbons in 60-80% yields.²²⁶ The preparation of *p*-xylene from *p*-xylidene by reduction of the corresponding diazonium chloride by sodium stannite is described in 67% over-all yield.²²⁹ These procedures involving alkaline media suffer from the danger of hydrolytic cleavage of halo, nitro, alkoxyl, and sulfonic acid groups if these substituents are present on the aromatic nucleus.²²⁴ Aromatic amino groups are selectively diazotized below a *p*H of 3 in the presence of aliphatic amino groups. Reduction of the aminodiazonium salt by hypophosphorus acid then completes the selective removal of the aryl amino group.²³¹ The amino group can also be removed from an aromatic ring containing a dimethylamino group.²³²

METHODS 15-17

15. Replacement of the Sulfonic Acid Group by Hydrogen

$$ArSO_3H + H_2O \rightleftharpoons H^+$$
 $ArH + H_2SO_4$

Sulfonation of the aromatic nucleus (method 540) is a reversible reaction. The removal of a sulfonic acid group is important in the preparation of alkylated benzenes by the Jacobsen reaction (method 16).¹⁶⁸ Orthodisubstituted benzenes are sometimes prepared by using the sulfonic acid group to block the *para* position.²³³ The removal of the sulfonic acid group is usually effected by heating the arylsulfonic acid with aqueous sulfuric acid.

16. Rearrangements of Polyalkylarylsulfonic Acids (Jacobsen)

The formation of prehnitene from durene (above) illustrates the general tendency of alkyl groups to rearrange to vicinal orientation when polymethyl- and polyethyl-benzenes are heated with concentrated sulfuric acid. Intermolecular migration also occurs leading to 1,2,4-trimethyl-, pentamethyl-, and hexamethyl-benzenes. sym-Octahydroanthracene rearranges to sym-octahydrophenanthrene.¹⁷³ To date the reaction is important for the syntheses of vicinal derivatives of benzene where only methyl, ethyl, and halo groups are rearranged.^{170,171} Detailed reviews of the reaction have been made¹⁶⁸ as well as a study of its extension to the rearrangement of 6,7-dialkyltetralins.⁵⁹

17. Cyclodehydration of Aromatic Alcohols and Ketones

Certain phenylated alcohols are dehydrated with ring closure to alkyltetralins. Considerable variation in the structure of the reacting alcohols is possible. Thus, 1-methyltetralin is formed from 2-, 3-, 4-, or 5-hydroxy-1-phenylpentane as well as from 5-phenyl-1-pentene.²⁰⁶ Branching on the third carbon from the phenyl group leads partly to indane formation (fivemembered ring closure). Phosphorus pentoxide is used for the cyclodehydration of 2- β -phenylethylcyclohexanol and related alcohols to *as*octahydrophenanthrenes. An angular methyl group has been introduced into the phenanthrene nucleus at position 12 by this reaction.²¹⁰

Many completely aromatic polynuclear hydrocarbons are readily formed by cyclization of aryl-substituted aldehydes, ketones, or related compounds. The simplest case is the formation of naphthalene by refluxing β -styrylacetaldehyde, C₆H₅CH=CHCH₂CHO, with hydrobromic acidacetic acid mixture.²⁰⁴ The ring closure has found extensive use in the synthesis of 9-alkyl- and 9-aryl-anthracenes and phenanthrenes.^{207,209}

Cyclodehydration of diaryl ketones through an *ortho* methyl or methylene group by pyrolysis at 400-450° gives low yields of certain substituted anthracenes and their benzologs (Elbs reaction).²⁰⁸

18. 9-Alkylfluorenes by Alkylation of 9-Formylfluorene²⁵⁴

C ₆ H ₄	C ₆ H ₄	, R	C₀H₄∖	`
CHCHO KOH;	$\cdot \rangle c \langle$		1	$CHR + HCO_2K$
RX RX	1 / \	\	/	/
C ₆ H ₄	C₅H₄	СНО	C ₆ H ₄	

TABLE 1. HYDROCARBONS

TABLE 1. PARAFFINIC, NAPHTHENIC, AND AROMATIC HYDROCARBONS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Aliphat	ic Hydro	ocarbons	
C1	Methane	7	100	1 186	-161*
C5	<i>n</i> -Pentane	8	53	1 200	36, 1.3576*
	Tetramethylmethane (neopentane)	9	50	1 99	9/760
C 6	<i>n</i> -Hexane	5	50 t	1 192	69/760, 1.3748
	2-Methylpentane	5		1194	60, 1.3718
	2,2-Dimethylbutane	5	••••	1 194	50, 1.3692
	(neohexane)	9	45	1 95	50, 1.3675
		9	39	1 103	50/740, 1.3688
	2,3-Dimethylbutane	5	••••	1 194	58, 1.3750
c,	n-Heptane	3	54	1 140	98, 1,3877
		3	72	1 136	96/741
		6	64	1178	96. 1.3854 ²⁵
		7	92	1 186	
	2-Methylhexane	5	65 t	1 192	90/760, 1,3850
		7	24	1 104	90/760, 1.3851
	3-Methylhexane	5	50 t	1 192	92/760, 1.3888
	2,2-Dimethylpentane	9	40	195	81, 1, 3828
		9	20	1 97	79/760, 1,3822
		5	40 †	1 192	79/760, 1.3822
	3,3-Dimethylpentane	9	51	195	87, 1, 3908
		9	31	197	86/760. 1.3910
	3-Ethylpentane	5	60 t	1 192	93/760, 1,3938
	2,2,3-Trimethylbutane (triptane)	6	56	1177	82, 1.3895 *
28	<i>n</i> -Octane	3	75	1 139	125, 1.40121
		5	60 t	1 192	126/760, 1.3975
		7	96	1 186	125, 1.3975
		9	70	1 102	125, 1.3961
	2, 2-Dimethylbexane	9	36	1 ⁹⁵	107, 1.3931
	3,3-Dimethylbexane	9	24	195	112, 1.3998
	2,3,3-Trimethylpentane	3	72	1 140	113, 1.4074
	3-Methyl-3-ethylpentane	9	31	198	118/760, 1.4081
	Hexamethylethane	9	38	1 101	106/760, (101)
29	2,4-Dimethylheptane	3	36	1 140	80, 1.3815
16	<i>n</i> -Hexadecane	7	85	1 187	157/14, (17)
20	n-Eicosane	3	73	1 158	153/1.8, (37.5)
21	n-Heneicosane	3	30	1 ¹³⁷	172/3, (41)
		Alicycli	: Hydrod	carbons	
3	Cyclopropane	9	80	1134	-33
-4	Cyclobutane	8	83	1 100	11/760

For explanations and symbols see pages xi-xii.

the second s

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n _D , (M.p.), Deriv.
		Alicyclic	Hydroc	arbons (conti	nued)
	Cyclopentage	3	50	1141	51, 1.4064 *
C 5	1 1-Dimethylcyclo-	9	96	196	21/760, 1.3668
	propane				
	Fthylcyclopropane	3	60	1 140	36, 1.3784
		3	72	1142	36, 1.3786
	Spiropentane	9	26	1 133	39/760, 1.4122
c	Cucloberane	3	80	1 138	81, 1.4245 ²⁵
6	Cyclonexalle	4	95	. 175	79/752, 1.4242
		4	85	1 77	1.4264
	Methylcyclopentane	3	60	1 141	72*, 1.4098*
c	Mathulauslahavana	3	60	1 144	100/750, 1.4232
C,	Mempicycionexane	4	92	1 75	100/742, 1.4198
	1.2.Dimethylevelopentage	5	60 t	1 192	91/760, 1.4095
	Fabulauslopestane	Ś	75	1 ¹⁹⁵	104/760, 1.4196
	1, 1-Diethylcyclopropane	9	92	1%	89/760, 1.4042
~	Tab. Lauralahamana	4	93	1 78	131/740, 1.4332*
C.8	cis- and trans-1,3-Di-	4	92	1 75	119/747, 1.4230 ²⁵
	methylcyclohexanes 1, 1, 3-Trimethylcyclo- bentane	9	35	194	105/760, 1.4109
C,	1,3,5-Trimethylcyclo-	4	92	1 ===	137/740
	hexane 1-Ethyl-1-butylcyclo-	9	94	196	140/760, 1.4183
	propane	~	62	1 193	190/762, 1.4642
С 10	Bicyclopentyl	2	02	1 75	195 *. 1.4811 *
	cis-Decahydronaphtha-	4	71	*	
	trans-Decabydronaphtha-		100	1 252	186 *, 1.4697 *
Cı	Bicyclohexyl (cyclohexyl	I- 4	95	178	119/20, 1.4795*
C1	cyclohexane) 4 Tetradecahydrophenan-	4	89	1 86	148/20, 1.5003 ²⁵
c,	threne g Tricyclohexylmethane	4	90	1 82	165/3, (59)
		Arom	atic Hyd	lrocarbons	
\overline{c}	Benzene	14	60	1 226	80*, 1.5012*
	Toluene	1	58	115	111/760, 1.4968*
ς,	4 VINCES	3	46	1 136	111
		7	98	1186	
		13	92	1238	111, 1.4978**
		14	80	1 226	

TABLE	1.	(continued)
-------	----	-------------

С л	Compound	Method	Yield (%)	Chapterref	B.p./mm., n ^t _D , (M.p.), Deriv		
	Aromatic Hydrocarbons (continued)						
C,	Ethylbenzene	1	50	1 32	135		
		1	76	1 ⁵⁸	133/732, 1,4953		
		3	83	1 145			
		3	38	I 151	136/765, 1,4960		
	o-Xylene	19	61	1 183	142, 1.5054 *, 264Te		
	m-Xylene	2	88	1 54	139/760, 1.4972		
	p-Xylene	14	67	1 229	138/760, (13)		
C,	<i>n</i> -Propylbenzene	1	25	1 ³⁵	157/760, 1.4921		
		3	82	1 138	160-163, 1.4908 ²⁵		
		10	75	1 ¹³⁰	155-160, 1.4919*		
	Isopropylbenzene	1	71	111	151/759, 1.4913 *		
		1	75	1 24	151		
		1	83	1 38	151/740, 1.4918		
		1	91	1 45	153, 1.4930		
	Phenylcyclopropane	13	6	1 236	80/37, 1.5285		
	o-Ethyltoluene	19	71	1 183	161/738, 1.5010 ²¹		
	m-Ethyltoluene	2	82	1 54	161/760, 1.4965		
	<i>p</i> -Ethyltoluene	3	80	1 150	161/748		
		3	91	I 145			
		3	95	1148	162, 1.4943		
	1,2,3-Trimethylbenzene (hemimellitene)	6	92	1 174	172/741, 1.5085 ³¹		
		2	79	1 54	176/760, 1.5138		
	1,2,4-Trimethylbenzene	10	37	1 132	68/22, 1.5048 *		
	1,3,5-Trimethylbenzene (mesitylene)	1	63	123	165, 1.4991 •		
		17	15	1 ²⁰³	163–167		
Сıø	n-Butylbenzene	3	74	I 145	183*, 1.4880*		
		5	25 t	1 ¹⁹²	183/760, 1.4900		
		9	70	1 106	181/750		
	Isobutylbenzene	5	35 t	1 192	173/760, 1.4865		
	s-Butylbenzene	1	81	111	171/759, 1.4900*		
	t-Butylbenzene	1	75	1 38	169/731, 1.4934		
		1	70	13	169/740		
		1	89	1 45	168, 1.4960		
	Pnenylcyclobutane	13	28	1 236	102/41, 1.5277		
	p-isopropyltoluene (p-cymene)	8	73	I 199	178/760, 1.4888 ²³		
	o-Diethylbenzene	10	49	I 108	184/760, 1.5034		
	m-Diethylbenzene	1	30	149	181, 1.4955		
	p-Diethylbenzene	3	73	l 146	179		
	• • • • –	10	58] 108	184/760, 1.4950		
	1,2,3,4-Tetramethyl- benzene (prehnitene)	16	88	1 170	98/25, 1.5201 •		

For explanations and symbols see pages xi-xii.

-			
	•	ł	
 L	х	,	

		TABLE	1. (con	timued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Ato	natic Hydr	ocarbon	s (continued)
C 10	1,2,3,5-Tetramethyl-	10	60	1125	86/18, 1.5134*
	benzene (isodurene)	,	25	17	(80)
	1,2,4,5-Tetramethyl-	1	25	1	(80)
	benzene (durene)	-		1 184	(90)
		/	4)	1 244	(80) 1500; *
	Naphthalene	2	23	1 66	(80), 19011
		2	70	1.64	
		2	100	1 204	(01)
		17	25	1 ***	(81)
	1 4-Dibydronaphthalene	4	48	1 83	75/2, (25)
	1,7 3 4 Tetrahydronaph	4	81	163	78/10, 1.5395 ²⁵
	thelene				
	tu n tene	4	74	192	204
	2 Mathelindone	19	55	1 176	98/24, 1.5646 ²³ , 79Pi
	2-Methylindene	7	90	- 1 191	74/11. 1.5332
	-Methylindane	,		-	
C 11	n-Amylbenzene	10	59	1124	200, 1.4883 *
	Neopentylbenzene	3	58	1143	186/755, 1.4850-5
	Phenylcyclopentane	13	57	1 236	117/37, 1.5309
	p-m-Butyltoluene	3	83	1145	198*, 1.4916*
	p-Isobutyltoluene	3	74	1147	192/752, 1.4888
	p-s-Butyltoluene	5	82 †	1147	190, 1.4900
	Pentamethylbenzene	1		17	128/22, (53)
	1-Methylnaphthalene	2	62	1 ⁵⁸	141Pi
		2	95	1 59	95/5, 1.6037, 142Pi
		8	80	1 201	239, 1.6140 ²⁵ , 141Pi
		10	51	1131	240
	2-Methylnaphthalene	2	91	1 60	(38), 116Pi
		3	36	1155	240, (37), 115Pi
	l-Methyltetralin	17	60	1 ²⁰⁶	219
	6-Methyltetralin	4	94	1 59	102/12, 1.5358
	1-Fthylindane	5	80	1 206	212
		-	25	1 114	224-228 1 4902*
C 12	n-Hexylbenzene	9	55	1 116	02/12
	Isohexylbenzene	9	50	1 25	74/2 1 405618
	sym-Triethylbenzene	1	8/	1 253	/4/ 5, 1.4770
	Hexamethylbenzene	••••	70	1	(10))
		1		1'	(10))*
	Biphenyl	2	94	1 141	145/00 /71)#
		11	86	1 200	14)/44,(/1)*
		12	22	1 ***	(/1)
	Phenylcyclohexane	1	68	1*	113/13
		13	64	1 230	128/30, 1.3329
	l-Ethylnaphthalene	10	55	1 ***	248//42, 1.0089 -, 99P1
	2-Ethylnaphthalene	2	94	1.00	1.6028**, //P1
		3	85	1122	101/2

TABLE 1. HYDROCARBONS

TABLE 1	. (con	tinued)
---------	--------	---------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aron	matic Hyd	rocarbor	is (continued)
C 12	l-Ethyltetralin	17	65	1 206	238. 1.5388 *
	6-Ethyltetralin	3	84	158	121-125/20
	Acenaphthene	3	35	1 156	279 *. (96) *. 162Pi *
	Acenaphthylene	2	93	168	95/2, (93)*, 202Pi*
C 13	<i>n</i> -Heptylbenzene	9	62	1 214	245, 1,4860 •
-	Phenylcycloheptane	1	71	143	108/7, 1,5280
	2-Methylbiphenyl	2	32	1 249	255/760, 1.5914
		2	72	1 ⁵⁶	133/27 *
	3-Methylbiphenyl	12	28	1 214	268
	4-Methylbiphenyl	12	22	1 214	268, (48)
	• Diphenvlmethane	1	78	19	
	Dipnenyimethane	1	60	1 42	(26)
		1	53	1 38	(25)
		2	93	1 138	(2)) 1/0/20 1 575225
		3	100	1 149	149/29, 1.3/32
	1Desculas ababalas a	2	100	1 206	27/ 020
		2	45	1 59	276, 92P1
	2-isopropyinaphinalene	2	70	1 169	128/10, 1.5/30, 94P1
	6 Inconstruction	3 (92	1 59	$124/10, 1.5253^{-1}$
	D-Isopropyltetralin	0	80	1.22	122/12, 1.5246-
C 14	1, I-Diphenylethane	1	45	1 52	270, 1.562 ²⁵ *
		1	25	1 ¹⁶	148/15
	1,2-Diphenylethane	3	100	1 ¹⁴⁹	
•		5	95	1 197	(53)
		9	82	1 117	158/10, (51)
	2-Ethylbiphenyl	2	42	1 ⁵⁵	94/3, 1.5808
		10	42	1 ²⁴⁹	266/760, 1.5805
	2,2 -Dimethylbiphenyl	11	75	1 163	255, (18)
	4,4´-Dimethylbiphenyl	11	95	1 ¹⁶³	(118)*
	t-ButyInaphthalene	1	41	113	145/15, 1.5795
	9-Methylfluorene	18	75	1 254	(45)
	Phenanthrene	2	8 6	1 69	(97)
		6	72	1 182	(100)
		19	100	1 175	(97), 144Pi
	9, 10-Dihydrophenanthrene	4	67	1 ⁸⁹	154/8, (33)
		9	86	1 120	174/17, (35)
	1,2,3,4-Tetrahydrophenan- threne	3	68	1 152	(33), 111Pi
		4	40	1 ⁸⁶	170/10
	s-Octahydrophenanthrene	4	85	1 *1	180/20, 1.566917
		4	94	1 **	173/20, (17), 1.564025
	<i>as-</i> Octahydrophenan- threne	4	29	1 ⁸⁶	150/13, 1.5528 ²⁵
		17	85	1 210	147/10

For explanations and symbols see pages xi-xii.

PARAFFINIC, NAPHTHENIC, AROMATIC HYDROCARBONS Ch. 1

TABLE 1. (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aros	matic Hyd	rocarbo	ns (<i>continued</i>)
C14	9,10-Dihydroanthracene	4	76	190	(105)
		4	84	1.86	(109)
	1,2,3,4-Tetrahydro-	4	43	1 **	(101), 117Pi *
	anthracene				
	Octahydroanthracene	4		10.	(73)
C 15	1,2-Diphenylpropane	1	52	1 24	109/2
	1,3-Diphenylpropane	9	69	1 118	157/14
	2 -n- Propylbiphenyl	5	86	1 ²⁴⁹	277/760, 1.5696
	9-Ethylfluorene	9	65	1 90	(107)
	1-Methylphenanthrene	2	90	1246	(121), 136Pi
	3-Methylphenanthrene	13	84	1 235	(62), 138Pi • ·
	4-Methylphenanthrene	2	85	1 245	(50), 141Pi*
	9-Methylphenanthrene	9	73	1 ¹⁰⁹	(91), 153Pi •
		17	50	1 209	(91)
	9-Methylanthracene	3	78	1 157	(81), 137Pi *
		9	41	1111	(79)
		17	80	1 185	(81)
с.,	dl-2 3-Diphenylhutane	9	39	1 107	155/14
~ 10	mason 2 3 Diphenylbutane	9	25	1 107	(124)
	9-I sopropylfluorene	18	60	1 254	(55)
	l-Phenylnaphthalene	2	67	156	()
		2	94	1 57	135/2
		12	30	1 216	
	2-Phenylnaphthalene	2	72	1 56	
		12	25	1 217	(102)
		17	80	1 205	187/5, (104)
	1-Phenyl-3.4-dihydro-	19	48	1 57	135-140/2
	naphthalene				
	1-Ethylphenanthrene	2	90	1246	(64), 110Pi
	9-Ethylphenanthrene	17	54	1 209	(63), 124Pi
	9-Ethylanthracene	17	69	1 185	(59)
С	9-17-Butylfluorene	9	41	190	(101)
~ 17	l-m-Propylphenanthrene	2	100	1246	(33), 101Pi
	9-m-Propylphenanthrene	9	47	190	(59), 99Pi
	, , , , , , , , , , , , , , , , , , ,	17	51	1 209	(58), 99Pi
	l-Isopropylphenanthrene	2	65	1 246	(88), 126Pi
C 18	m-Terphenyl (1,3-di-	12	32	1 230	(89)
	pnenylbenzene) p-Terphenyl (1,4-di-	2	47	1 56	(211)
	phenylbenzene)				
		12	60	1222	(211)
	1-n-Butylphenanthrene	2	59	1 246	(42), 100Pi

TABLE I. HYDROCARBONS

TABLE 1. (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^l _D , (M.p.), Deriv.
	An	omatic Hyd	rocarbo	ns (continued	 }
C 19	Triphenylmethane	1	84	16	(92)
C 20	1,1,1-Triphenylethane	9	94	1113	(95)
	1, 1, 2-Triphenylethane	5	95	1 197	210, (55)
	l-Phenylphenanthrene	2	94	1246	(80), 118Pi
	9-Phenylanthracene	17	75	1 185	(155)
		19	70	1180	(153)
C 24	Quaterphenyl	13	31	1 237	(312)
C 25	Tetraphenylmethane	9	45	1112	(285)
C 26	1,1,2,2-Tetraphenyl-	5	95	1197	(209)
	ethane	9	90	1115	(208)

For explanations and symbols see pages xi-xii.

REFERENCES FOR CHAPTER 1

¹Gilman and Meals, J. Org. Chem., 8, 126 (1943). ^a Huston et al., J. Org. Chem., 3, 250 (1938), 6, 252 (1941); cf. ref. 20. ³Nightingale, Chem. Revs., 25, 329 (1939). *Corson and Ipatieff, Org. Syntheses, Coll. Vol. II, 151 (1943); Buu-Hoi and Cagniant, Bull. soc. chim. France, (5) 11, 131 (1944); Neunhoeffer, J. prakt. Chem., 133, 105 (1932). ⁵ Francis, Chem. Revs., 42, 107 (1948). ⁶Norris, Org. Syntheses, Coll. Vol. I, 548 (1941). ⁷ Smith, Org. Syntheses, Coll. Vol. II, 248 (1943); cf. ref. 8. ⁸ Birch et al., J. Am. Chem. Soc., 71, 1362 (1949). ⁹ Pratt, Preston, and Draper, J. Am. Chem. Soc., 72, 1367 (1950). ¹⁰ Epelberg and Lowy, J. Am. Chem. Soc., 63, 101 (1941). 11 Huston and Kaye, J. Am. Chem. Soc., 64, 1576 (1942); cf. ref. 19. 13 Bradlow and Vanderwerf, J. Am. Chem. Soc., 69, 1254 (1947). ¹³ Bromby, Peters, and Rowe, J. Chem. Soc., 144 (1943); Price and Ciskowski, J. Am. Chem. Soc., 60, 2499 (1938); Whitmore and James, ibid., 65, 2088 (1943). 14 Hennion and Kurtz, J. Am. Chem. Soc., 65, 1001 (1943). 15 Hardy, J. Soc. Chem. Ind., 67, 81 (1948). ¹⁶ Spilker and Schade, Ber., 65, 1686 (1932). 17 Price in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 1, 16-19. ¹⁸ Francis, Chem. Revs., 43, 257 (1948). ¹⁹ Toussaint and Hennion, J. Am. Chem. Soc., 62, 1145 (1940). ²⁰ Potts and Dodson, J. Am. Chem. Soc., 61, 2553 (1939). ²¹ Norris et al., J. Am. Chem. Soc., 61, 2128, 2131 (1939). ²² Simons, Archer, and Randall, J. Am. Chem. Soc., 61, 1821 (1939). ²³ Spiegler and Tinker, J. Am. Chem. Soc., 61, 1002 (1939). ²⁴Calcott, Tinker, and Weinmayr, J. Am. Chem. Soc., 61, 1012 (1939). ²⁵ Norris and Rubinstein, J. Am. Chem. Soc., 61, 1163 (1939); Smith and Guss, ibid., 62, 2628 (1940); cf. Ref. 17. ²⁶ Price and Lund, J. Am. Chem. Soc., 62, 3105 (1940). ²⁷ Kane and Lowy, J. Am. Chem. Soc., 58, 2605 (1936). 28 Ipatieff, Corson, and Pines, J. Am. Chem. Soc., 58, 920 (1936). 29 Smith, J. Am. Chem. Soc., 59, 899 (1937). ³⁰ McKenna and Sowa, J. Am. Chem. Soc., 59, 1204 (1937). 31 IDatieff and Corson, J. Am. Chem. Soc., 59, 1417 (1937). 32 Francis and Reid, Ind. Eng. Chem., 38, 1194 (1946). ³³ Ipatieff, Pines, and Schmerling, J. Org. Chem., 5, 253 (1940). 34 Calloway, Chem. Revs., 17, 327 (1935). ³⁵ Grosse and Ipatieff, J. Org. Chem., 2, 447 (1937). 36 Egloff et al., Chem. Revs., 20, 387-411 (1937). ³⁷ Nightingale and Wadsworth, J. Am. Chem. Soc., 63, 3514 (1941). 38 Diuguid, J. Am. Chem. Soc., 63, 3527 (1941); Hartman and Phillips, Org. Syntheses, Coll. Vol. II, 232 (1943). ³⁹ Simons and Hart, J. Am. Chem. Soc., 66, 1309 (1944); cf. ref. 40. * Simons and Hart, J. Am. Chem. Soc., 69, 979 (1947). 41 Wertyporoch, Ber., 66, 1232 (1933). 42 Bredereck et al., Ber., 72, 1414 (1939). ⁴⁹ Pines, Edeleanu, and Ipatieff, J. Am. Chem. Soc., 67, 2193 (1945).

44 Simons and Archer, J. Am. Chem. Soc., 60, 2952, 2953 (1938). 45 Potts and Carpenter, I. Am. Chem. Soc., 61, 663 (1939). 46 Norris and Sturgis, J. Am. Chem. Soc., 61, 1413 (1939). 47 Price, Chem. Revs., 29, 44-51 (1941). 48 Newton, J. Am. Chem. Soc., 65, 320 (1943). 49 Copenhaver and Reid, J. Am. Chem. Soc., 49, 3159 (1927). ⁵⁰ Schmerling, Ind. Eng. Chem., 40, 2072 (1948). ³¹ Thompson and Chenicek, Ind. Eng. Chem., 40, 1265 (1948). ⁵² Reichert and Nieuwland, J. Am. Chem. Soc., 45, 3090 (1923); Org. Syntheses, Coll. Vol. I, 229 (1941). ⁵³ Mavity, Zetterholm, and Hervert, Ind. Eng. Chem., 38, 829 (1946); Nickels et al., ibid., 41, 563 (1949). ⁵⁴ Reynolds et al., Ind. Eng. Chem., 40, 1751 (1948). 55 Orchin, J. Am. Chem. Soc., 68, 571 (1946). 56 Arnold, Collins, and Zenk, J. Am. Chem. Soc., 62, 983 (1940). 57 Weiss, Org. Syntheses, 24, 84 (1944). 58 Kloetzel and Herzog, J. Am. Chem. Soc., 72, 1993 (1950). ⁵⁹ Smith and Lo, J. Am. Chem. Soc., 70, 2209 (1948); cf. ref. 60. 60 Adkins et al., J. Am. Chem. Soc., 71, 2955, 2958, 2962 (1949). 61 Barnes, J. Am. Chem. Soc., 70, 145 (1948). 62 Adkins et al,, J. Am. Chem. Soc., 70, 381 (1948); cf. ref. 64. ⁶³ Adkins and Reid, J. Am. Chem. Soc., 63, 741 (1941). 64 Adkins, Richards, and Davis, J. Am. Chem. Soc., 63, 1320 (1941). 65 Kloetzel, J. Am. Chem. Soc., 62, 1708 (1940). 66 Ritter and Sharpe, J. Am. Chem. Soc., 59, 2351 (1937). 67 Linstead et al., J. Chem. Soc., 1146 (1937). 68 Kynaston and Jones, J. Soc. Chem. Ind., 68, 225, 228 (1949); Flowers and Miller, J. Am. Chem. Soc., 69, 1388 (1947). 69 Fieser and Hershberg, J. Am. Chem. Soc., 57, 2192 (1935); cf. ref. 64. ⁷⁰ Marler and Turner, J. Chem. Soc., 266 (1937); Hill et al., ibid., 510 (1937); Haworth and Sheldrick, ibid., 1950 (1934). ⁷¹ Newman and Zahn, J. Am. Chem. Soc., 65, 1097 (1943); Newman and O'Leary, ibid., 68, 258 (1946). 72 Linstead and Thomas, J. Chem. Soc., 1127 (1940). 73 Linstead and Michaelis, J. Chem. Soc., 1134 (1940). 74 Zelinsky, Ber., 44, 3121 (1911); 56, 787 (1923). ⁷⁵ Baker and Schuetz, J. Am. Chem. Soc., 69, 1250 (1947); Adams and Marshall, ibid., 50, 1970 (1928). 76 Serijan, Wise, and Gibbons, J. Am. Chem. Soc., 71, 2265 (1949). ⁷⁷ Seyer, Wright, and Bell, Ind. Eng. Chem., 31, 759 (1939). 78 Adkins and Cramer, J. Am. Chem. Soc., 52, 4354 (1930). 79 Truffault, Bull. soc. chim. France, (5) 2, 244 (1935). ⁸⁰ Wibaut and Haak, Rec. trav. chim., 67, 94 (1948). ⁸¹ Adkins, Reactions of Hydrogen, University of Wisconsin Press, Madison, Wisconsin, 1937; Adkins and Shriner in Gilman's Organic Chemistry, 2nd ed., Vol. I, John Wiley & Sons, New York, 1943, p. 779. ⁸² Adkins, Zartman, and Cramer, J. Am. Chem. Soc., 53, 1425 (1931). 83 Hock and Depke, Chem. Ber., 83, 331 (1950); Cook and Hill, J. Am. Chem. Soc., 62, 1996 (1940); Hückel and Bretschneider, Ann., 540, 157 (1939). ⁸⁴ Bergstrom and Carson, J. Am. Chem. Soc., 63, 2934 (1941).

REFERENCES FOR CHAPTER 1

⁸⁵ Waterman, Clausen, and Tulleners, Rec. trav. chim., 53, 821 (1934).

REFERENCES FOR CHAPTER 1

PARAFFINIC, NAPHTHENIC, AROMATIC HYDROCARBONS Ch. 1 26 ³⁶ Durland and Adkins, J. Am. Chem. Soc., 59, 135 (1937); 60, 1501 (1938). ⁸⁷ Waterman, Leendertse, and Cranendonk, Rec. trav. chim., 58, 83 (1939). ** Garlock and Mosettig, J. Am. Chem. Soc., 67, 2256 (1945); Orchin, ibid., 66, 535 (1944). ⁸⁹ Fieser and Johnson, J. Am. Chem. Soc., 61, 169 (1939); Burger and Mosettig, ibid., 57, 2731 (1935). 90 Bachman et al., J. Am. Chem. Soc., 57, 768 (1935); 63, 621 (1941). ⁹¹ van de Kamp and Mosettig, J. Am. Chem. Soc., 57, 1107 (1935). 92 Papa, Schwenk, and Breiger, J. Org. Chem., 14, 369 (1949). 93 Arbit, J. Am. Chem. Soc., 68, 1662 (1946). 94 McKinley, Stevens, and Baldwin, J. Am. Chem. Soc., 67, 1455 (1945). 95 Noller, J. Am. Chem. Soc., 51, 594 (1929). 96 Whitmore et al., J. Am. Chem. Soc., 63, 127 (1941); Shortridge et al., ibid., 70, 946 (1948). 97 Soroos and Willis, J. Am. Chem. Soc., 63, 881 (1941). 98 Wibaut et al., Rec. trav. chim., 58, 329 (1939). 99 Whitmore and Fleming, J. Am. Chem. Soc., 55, 3804 (1933). 100 Cason and Way, I. Org. Chem., 14, 31 (1949). ¹⁰¹ Calingaert et al., J. Am. Chem. Soc., 66, 1389 (1944). 102 Lewis, Hendricks, and Yohe, J. Am. Chem. Soc., 50, 1993 (1928). 103 Whitmore, Bernstein, and Mixon, J. Am. Chem. Soc., 60, 2539 (1938). 104 Whitmore and Orem, J. Am. Chem. Soc., 60, 2573 (1938). ¹⁰⁵ Whitmore and Southgate, J. Am. Chem. Soc., 60, 2571 (1938). 106 Read et al., Org. Syntheses, 25, 11 (1945); Read and Foster, J. Am. Chem. Soc., 48, 1606 (1926). 107 Barber, Slack, and Woolman, J. Chem. Soc., 100 (1943). ¹⁰⁸ Karabinos, Serijan, and Gibbons, J. Am. Chem. Soc., 68, 2107 (1946). ¹⁰⁹ Bachmann, J. Am. Chem. Soc., 56, 1363 (1934); cf. ref. 90. ¹¹⁰ Morton et al., J. Am. Chem. Soc., 62, 123 (1940); 63, 324, 327 (1941); 64, 2239, 2240, 2242, 2250 (1942). ¹¹¹ Bachmann and Kloetzel, J. Org. Chem., 3, 55 (1938). 112 Seibert and Bergstrom, J. Org. Chem., 10, 544 (1945). ¹¹³ Wooster and Mitchell, J. Am. Chem. Soc., 52, 688 (1930). ¹¹⁴ Wegand and Mensdorf, Ber., 68, 1830 (1935). 115 Wittig and Witt, Ber., 74, 1474 (1941). ¹¹⁶ Stenzl and Fichter, Helv. Chim. Acta, 17, 679 (1934). 117 Reichstein and Oppenauer, Helv. Chim. Acta, 16, 1377 (1933). ¹¹⁸ Van Alphen, Rec. trav. chim., 59, 580 (1940); Sirks, ibid., 62, 193 (1943). ¹¹⁹ Fuson et al., J. Am. Chem. Soc., 63, 2652 (1946); 68, 533 (1946). ¹²⁰ Hall, Lesslie, and Turner, J. Chem. Soc., 711 (1950). 121 Müller and Schutz, Ber., 71, 691 (1938). 122 Dewar and Read, J. Soc. Chem. Ind., 55, 347T (1936). ¹²³ Whitmore and Zook, J. Am. Chem. Soc., 64, 1783 (1942). 124 Gilman and Robinson, Org. Syntheses, Coll. Vol. II, 47 (1943). 123 Smith, Org. Syntheses, Coll. Vol. II, 360 (1943); Smith and MacDougall, J.

Am. Chem. Soc., 51, 3002 (1929); cf. ref. 8.
¹³⁶ Gilman and Hoyle, J. Am. Chem. Soc., 44, 2621 (1922).
¹³⁷ Gilman and Kirby, J. Am. Chem. Soc., 51, 3477 (1929); cf. ref. 126.
¹³⁸ Gilman et al., J. Am. Chem. Soc., 47, 518, 2047 (1925); 50, 2223 (1928).
¹³⁹ Burtle and Shriner, J. Am. Chem. Soc., 69, 2059 (1947).
¹³⁰ Gilman and Catlin, Org. Syntheses, Coll. Vol. I, 471 (1941); cf. ref. 129.

¹³¹ Wibaut and van Dijk, Rec. trav. chim., 65, 413 (1946); Plattner and Ronco, Helv. Chim. Acta, 27, 402 (1944). ¹³² Maxwell and Adams, I. Am. Chem. Soc., 52, 2962 (1930); Smith and Lund, ibid., 52, 4147 (1930). 133 Murray and Stevenson, I. Am. Chem. Soc., 66, 812 (1944); Slabey, ibid., 68, 1335 (1946). ¹³⁴ Hass et al., Ind. Eng. Chem., 28, 1178 (1936). ¹³⁵ Martin in Oreanic Reactions, Vol. 1. John Wiley & Sons, New York, 1942. p. 155. 136 Clemmensen, Ber., 46, 1837 (1913). 137 Strating and Backer, Rec. trav. chim., 55, 903 (1936). 138 Huang-Minlon, J. Am. Chem. Soc., 68, 2487 (1946). 139 Soffer, Soffer, and Sherk, J. Am. Chem. Soc., 67, 1435 (1945). 140 Herr, Whitmore, and Schiessler, J. Am. Chem. Soc., 67, 2061 (1945). 141 Nenitzescu and Cantuniari, Ber., 65, 810 (1932). 142 Volkenburgh et al., J. Am. Chem. Soc., 71, 172 (1949). 143 Berliner and Berliner, J. Am. Chem. Soc., 71, 1196 (1949). 144 Cowan, Jeffery, and Vogel, J. Chem. Soc., 1862 (1939). 145 Nightingale and Radford, J. Org. Chem., 14, 1089 (1949). 146 Ross et al., J. Am. Chem. Soc., 72, 1136 (1950). 147 Pines, Strehlau, and Ipatieff, J. Am. Chem. Soc., 72, 1563 (1950). 148 Pines, Strehlau, and Ipatieff, J. Am. Chem. Soc., 71, 3536 (1949). 149 Adkins and Connor, J. Am. Chem. Soc., 53, 1091 (1931). 150 Brady and Day, J. Chem. Soc., 116 (1934). ¹⁵¹ Dolliver et al., I. Am. Chem. Soc., 59, 831 (1937). ¹⁵² Bachmann and Struve, I. Org. Chem., 4, 475 (1939). 153 Bachmann, Cronyn, and Struve, J. Org. Chem., 12, 600 (1947); cf. ref. 154. 154 Martin, J. Am. Chem. Soc., 58, 1438 (1936). ¹⁵⁵ Sah, Rec. trav. chim., 59, 1026 (1940). ¹⁵⁶ Goldstein and Glauser, Helv. Chim. Acta, 17, 788 (1934). ¹⁵⁷ Lock and Stach, Ber., 76, 1252 (1943); Waldmann and Marmorstein, ibid., 70, 106 (1937). ¹⁵⁸ Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2240 (1945). ¹⁵⁹ Speer and Hill, J. Org. Chem., 2, 142 (1937); Pope and Bogert, ibid., 2, 280 (1937); Mann and Watson, J. Chem. Soc., 508 (1947). ¹⁶⁰ Read and Wood, Org. Syntheses, 20, 57 (1940); Dohme, Cox, and Miller, J. Am. Chem. Soc., 48, 1691 (1926). ¹⁶¹ Buu-Hoi and Hoan, J. Org. Chem., 14, 1023 (1949). ¹⁶² Gardner and Borgstrom, J. Am. Chem. Soc., 51, 3375 (1929). 163 Kharasch and Urry, J. Org. Chem., 13, 101 (1948); Kharasch and Fields, J. Am. Chem. Soc., 63, 2316 (1941); cf. ref. 120. ¹⁶⁴ Conant and Blatt, J. Am. Chem. Soc., 50, 555 (1928). ¹⁶⁵ Fuson and Armstrong, J. Am. Chem. Soc., 63, 2650 (1941). 166 Fanta, Chem. Revs., 38, 139 (1946). 167 Busch and Weber, I. prakt. Chem., 146, 23 (1936). ¹⁶⁸ Smith in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 370, 381-384; Moyle and Smith, J. Org. Chem., 2, 112 (1937). ¹⁶⁹ Hart and Robinson, J. Am. Chem. Soc., 70, 3731 (1948); cf. ref. 59. ¹⁷⁰ Smith and Lux, I. Am. Chem. Soc., 51, 2994 (1929); Smith and MacDougall, ibid., 51, 3004 (1929); cf. ref. 168. ¹⁷¹ Smith and Moyle, I. Am. Chem. Soc., 58, 1 (1936).

172 Gilman and Lichtenwalter, J. Am. Chem. Soc., 61, 957 (1939). 173 Schroeter and Götzky, Ber., 60, 2035 (1927). 174 Smith and Spillane, J. Am. Chem. Soc., 62, 2641 (1940). 175 Brown and Bluestein, J. Am. Chem. Soc., 62, 3256 (1940). ¹⁷⁶ Koelsch and Johnson, J. Am. Chem. Soc., 65, 571 (1943). 177 Ford, Jacobson, and McGrew, J. Am. Chem. Soc., 70, 3793 (1948); cf. ref. 194. 178 Adkins and Burks, J. Am. Chem. Soc., 70, 4174 (1948); Ipatieff et al., Ind. Eng. Chem., 41, 1802 (1949). 179 Komarewsky, Price, and Coley, J. Am. Chem. Soc., 69, 238 (1947). 180 Julian et al., J. Am. Chem. Soc., 71, 2060 (1949). ¹⁸¹ Birch, J. Chem. Soc., 809 (1945). 102 Schönberg and Warren, J. Chem. Soc., 1840 (1939). 183 Grundmann, Chem. Ber., 81, 513 (1948). 184 Aitken, Badger, and Cook, J. Chem. Soc., 331 (1950); Braun and Nelles, Ber., 67, 1094 (1934). 185 Bradsher, J. Am. Chem. Soc., 62, 486 (1940). 186 Johnson, Blizzard, and Carhart, J. Am. Chem. Soc., 70, 3664 (1948); Nystrom and Brown, ibid., 70, 3778 (1948). 187 Levene, Org. Syntheses, Coll. Vol. II, 320 (1943); cf. ref. 186. 188 Buehler, Cooper, and Scrudder, J. Org. Chem. 8, 316 (1943). 189 Zechmeister and Rom, Ann., 468, 127 (1929). ¹⁹⁰ Hart, J. Am. Chem. Soc., 71, 1966 (1949). 191 Plattner and Roniger, Helv. Chim. Acta, 25, 593 (1942). ¹⁹² Boord et al., Ind. Eng. Chem., 41, 609, 613 (1949). 193 Goheen, J. Am. Chem. Soc., 63, 747 (1941). ¹⁹⁴ Schmerling, Friedman, and Ipatieff, J. Am. Chem. Soc., 62, 2448 (1940); Cramer and Mulligan, ibid., 58, 374 (1936). 195 Crane, Boord, and Henne, J. Am. Chem. Soc., 67, 1237 (1945); Pines and Ipatieff, ibid., 61, 1076 (1939); cf. ref. 192. ¹⁹⁶ Ipatieff and Corson, Ind. Eng. Chem., 30, 1039 (1938). 197 Zartman and Adkins, J. Am. Chem. Soc., 54, 1668 (1932); Kern, Shriner, and Adams, ibid., 47, 1147 (1925). ¹⁹⁸ Whitmore et al., J. Am. Chem. Soc., 64, 1801 (1942). 199 LeFevre, LeFevre, and Robertson, J. Chem. Soc., 481 (1935). ²⁰⁰ Noller, Org. Syntheses, Coll. Vol. II, 478 (1943). ²⁰¹ Grummitt and Buck, J. Am. Chem. Soc., 65, 295 (1943). ²⁰² Marvel et al., J. Am. Chem. Soc., 59, 1177 (1937); 63, 1482, 1894 (1941); 68, 1089 (1946). ²⁰³ Tistchenko, Bull. soc. chim. France, 47, 1137 (1930); Adams and Hufferd, Org. Syntheses, Coll. Vol. I, 341 (1941). ²⁰⁴ Bradsher, I. Am. Chem. Soc., 64, 1007 (1942). ²⁰⁵ Carter and Van Loon, J. Am. Chem. Soc., 60, 1077 (1938). ²⁰⁶ Roblin, Davidson, and Bogert, J. Am. Chem. Soc., 57, 151 (1935). ²⁰⁷ Bradsher and Smith, I. Am. Chem. Soc., 65, 451, 1643 (1943); cf. ref. 185. ²⁰⁸ Fieser in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942. p. 129. ²⁰⁹ Bradsher et al., J. Am. Chem. Soc., 63, 493 (1941); 61, 2184 (1939); 65, 2016 (1943); 68, 1094 (1946). ²¹⁰ Bardhan and Sengupta, I. Chem. Soc., 2523 (1932); Nenitzescu et al., Ber., 74, 687 (1941); Perlman, Davidson, and Bogert, J. Org. Chem., 1, 288 (1936).

REFERENCES FOR CHAPTER 1

²¹¹ Bachmann and Hoffman in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, pp. 224, 247-252. ²¹² Gomberg and Bachmann, Org. Syntheses, Coll. Vol. I, 113 (1941). ²¹³ Atkinson et al., J. Am. Chem. Soc., 63, 730 (1941); 65, 476 (1943); 67, 1513 (1945); Waters, J. Chem. Soc., 864 (1939). ²¹⁴ Gomberg and Pernert, J. Am. Chem. Soc., 48, 1372 (1926); cf. ref. 211. 215 Gomberg and Bachmann, J. Am. Chem. Soc., 46, 2343 (1924); cf. ref. 221. ²¹⁶ Hodgson and Marsden, J. Chem. Soc., 208 (1940). ²¹⁷ Hey and Lawton, J. Chem. Soc., 374 (1940). ²¹⁸ Hodgson and Crook, J. Chem. Soc., 573 (1937). ²¹⁹ Haworth, Heilbron, and Hey, J. Chem. Soc., 349 (1940). ²²⁰ France, Heilbron, and Hey, J. Chem. Soc., 1288 (1939); 371 (1940). 221 Elks, Haworth, and Hey, J. Chem. Soc., 1284 (1940). 222 France, Heilbron, and Hey, J. Chem. Soc., 1364 (1938). ²²³ Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942. pp. 246-247; cf. ref. 211, p. 239. ²²⁴ Kornblum in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 262. ²²⁵ Coleman and Talbot, Org. Syntheses, Coll. Vol. II, 592 (1943); Wallingford and Krueger, ibid., Coll. Vol. II, 353 (1943); Bigelow, Johnson, and Sandborn, ibid., Coll. Vol. I, 133 (1941); Clarke and Taylor, ibid., Coll. Vol. I, 415 (1941). ²²⁶ Brewster and Poje, J. Am. Chem. Soc., 61, 2418 (1939); cf. ref. 224, p. 295. ²²⁷ Kornblum, Org. Syntheses, 21, 32 (1941). ²²⁸ Hodgson et al., J. Chem. Soc., 744, 748 (1942); 86 (1943); 8, 21, 112 (1944). 229 Clemo, Haworth, and Walton, J. Chem. Soc., 2375 (1929). ²³⁰ Hodgson and Marsden, J. Chem. Soc., 207 (1940). 231 Kornblum and Iffland, J. Am. Chem. Soc., 71, 2137 (1949). ²³² Ayling, Gorvin, and Hinkel, J. Chem. Soc., 618 (1941). 233 Huston and Ballard, Org. Syntheses, Coll. Vol. II, 97 (1943); Ehrenfeld and Puterbaugh, ibid., Coll. Vol. I, 388 (1941). 234 Oakwood and Miller, J. Am. Chem. Soc., 72, 1849 (1950). 235 Bachmann and Cortes, J. Am. Chem. Soc., 65, 1332 (1943). 236 Case, J. Am. Chem. Soc., 56, 716 (1934). 237 Bergmann and Weizman, J. Org. Chem., 9, 415 (1944). 238 Hughes and Reid, J. Org. Chem., 14, 522 (1949). ²³⁹ Akin, Stamatoff, and Bogert, J. Am. Chem. Soc., 59, 1272 (1937). 240 Fichter et al., Helv. Chim. Acta, 22, 970 (1939); 23, 807 (1940). ²⁴¹ Brown, Durand, and Marvel, J. Am. Chem. Soc., 58, 1594 (1936). 242 Ruzicka and Seidel, Helv. Chim. Acta, 19, 424 (1936). ²⁴³ Plattner in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 21. 244 Mattox and Grosse, J. Am. Chem. Soc., 67, 84 (1945). 245 Bachmann and Edgerton, J. Am. Chem. Soc., 62, 2220 (1940). 246 Bachmann and Wilds, J. Am. Chem. Soc., 60, 624 (1938); Johnson, Goldman, and Schneider, ibid., 67, 1357 (1945). 247 Fahim and Mustafa, J. Chem. Soc., 519 (1949). 248 Pines, LaZerte, and Ipatieff, J. Am. Chem. Soc., 72, 2850 (1950). ²⁴⁹ Goodman and Wise, J. Am. Chem. Soc., 72, 3076 (1950). ²⁵⁰ Swann in Weissberger's Technique of Organic Chemistry, Vol. 2, Interscience Publishers, New York, 1948, p. 195.

²⁵¹ Luther and Wächter, Chem. Ber., 82, 161 (1949).

²⁵² Seyer and Yip, Ind. Eng. Chem., 41, 378 (1949).

²⁵³ Cullinane and Chard, J. Chem. Soc., 823 (1945); Backer, Rec. trav. chim., 54, 746 (1935).

²⁵⁴ Brown and Bluestein, J. Am. Chem. Soc., 65, 1082 (1943).

²⁵⁵ Doss, Physical Constants of the Principal Hydrocarbons, The Texas Co., New York, 1943; Egloff, Physical Constants of Hydrocarbons, Reinhold Publishing Corp., New York, 1947; Faraday, Encyclopedia of Hydrocarbon Compounds, Chemical Publishing Co., Brooklyn, N. Y.; Rossini et al., Selected Values of Properties of Hydrocarbons, U. S. Government Printing Office, Washington, D. C., 1947.

²⁵⁶ Todd in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, p. 378.

²⁵⁷ Brown in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 469.

²³⁵ Jones and Gilman in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 339.

2

Olefinic Compounds

CONTENTS

METHOD	PAGE
19. Dehydration of Hydroxy Compounds	32
20. Dehydrohalogenation of Halogen Compounds	35
21. Elimination of Halo and Alkoxyl Groups (Boord)	38
22. Dehalogenation of Dihalides	39
23. Elimination of Alcohol from Ethers and Acetals	40
24. Pyrolysis of Esters	41
25. Pyrolysis of Methyl Xanthates (Chugaev)	42
26. Pyrolysis of Substituted Amines and Ammonium Salts	43
27. Decarboxylation of Olefinic Acids	44
28. Coupling of Olefinic Acids and Diazonium Compounds	45
29. Coupling of Organometallic Compounds with Halogen Compounds	45
30. Partial Reduction of Acetylenic Compounds	46
31. Isomerization of Olefinic Compounds	47
32. Symmetrical Diarylethylenes from Thiocarbonyl Compounds	47
33. Condensation of Halides by Sodium Amide	47
34. Additions to Conjugated Dienes (Diels-Alder)	48
35. Condensation of Acetylenes with Compounds Containing Active Hy-	
drogen (Vinylation)	48
36. Aldol Condensation	49
37. Condensation of Carbonyl Compounds with Compounds Containing an	
Active Methylene Group (Knoevenagel)	52
38. Condensation of Aromatic Aldehydes with Anhydrides and Acid Salts	
(Perkin)	55
39. Cleavage of Substituted a-Ketolactones	56
40. Stilbenes by Pyrolysis of Ethylene Sulfones	56
41. Allenes by Reduction of Acetylenic Halides	56
42. Vinylacetylenes from Sulfonates of Acetylenic Alcohols	57
Table 2. Olefins	58
Table 3. Diolefins	63
References	66

In this chapter are brought together twenty-four reactions for the introduction of a double bond into an organic compound. Olefinic hydrocarbons prepared by these methods are listed in Tables 2 and 3. Olefinic compounds containing an additional functional group but prepared by these methods are found in tables in the following chapters. 19. Dehydration of Hydroxy Compounds

$$RCHOHCH_2 R \xrightarrow{\sim H_2 O} RCH = CHR$$

The formation of olefins by removal of the elements of water from simple aliphatic alcohols is not always a straightforward process. Dehydration of *n*-butyl alcohol by heating with aqueous sulfuric or phosphoric acids gives both 1- and 2-butenes.²⁶ Certain alcohols with branching on the *a*-carbon atoms exhibit extensive carbon-skeleton rearrangement upon dehydration with acid catalysts. For example, methyl-*t*-butylcarbinol gives a mixture of tetramethylethylene and *unsym*-methylisopropylethylene rather than *t*-butylerhylene.^{2, 17, 32}

$$(CH_3)_3CCHOHCH_3 \xrightarrow{-H_2O}_{CH_3\sim} (CH_3)_2 C = C(CH_3)_2 + H_2C = C(CH_3)CH(CH_3)_2$$

Fission of the carbon chain sometimes occurs during dehydration. Thus, di-*t*-butylcarbinol gives trimethylethylene and isobutylene when heated to 180° with chloronaphthalenesulfonic acid.³³

$$(CH_3)_3CCHOHC(CH_3)_3 \xrightarrow{-H_2O} (CH_3)_2C = CHCH_3 + (CH_3)_2C = CH_2$$

These isomerizations, rearrangements, and cleavages are best explained by a carbonium-ion mechanism.⁴³² Vapor-phase dehydration of alcohols over aluminum oxide greatly reduces the tendency for isomerization and rearrangement. The alcohol vapors are passed over the catalyst at 300-420°. In this manner, pure 1-butene is prepared from *n*-butyl alcohol³⁴ and *t*-butylethylene is obtained from methyl-*t*-butylcarbinol (54%).¹⁷ The relative rates of dehydration of the simpler alcohols over alumina have been studied.³⁹ The main side reaction is dehydration to ethers ⁴²⁸ (method 118).

Tertiary alcohols are more easily dehydrated than primary or secondary alcohols. The action of heat and a trace of iodine is usually sufficient.^{2, 25, 37} Other catalysts for this purpose include 15% sulfuric acid,²⁴ formic acid,²¹ oxalic acid,^{2, 36, 165} and zinc chloride.¹¹ When the carbinol contains different alkyl radicals, a mixture of isomeric olefins is usually obtained. Studies to determine the ease with which the simple alkyl radicals donate a hydrogen atom to form water have been made.^{24, 25} Very often, pure olefins can be obtained from the isomeric mixtures by modern methods of fractional distillation.⁴³⁰

Symmetrical secondary or tertiary alicyclic alcohols are readily dehydrated to only one olefin in each case. Examples include cyclopentene from cyclopentanol and phosphoric acid,⁴³⁵ cyclohexene from cyclohexanol over alumina,¹³ cycloheptene from cycloheptanol and β -naphthalene-

METHOD 19

sulfonic acid,¹⁸ and various alkylcyclohexenes from the corresponding tertiary carbinols.^{31, 426}

Styrenes are available by dehydration of either α -arylethyl or β -arylethyl alcohols. The procedures were reviewed in 1949.⁴⁴⁵ β -Phenylethyl alcohol loses water at 140° over a mixture of molten sodium and potassium hydroxides to give styrene, C₆H₅ CH== CH₂, in 57% yield.⁴⁹ The 2,4-dimethyl derivative has been prepared in a similar manner from the primary alcohol.¹⁰⁷ Many substituted styrenes have been made by dehydration of methylarylcarbinols with potassium hydrogen sulfate,^{22, 23, 62} phosphorus pentoxide,^{23, 106} or activated alumina.^{53, 61, 166} 1,1-Diphenylethylene¹⁴ and 2-phenyl-2-butene⁴²⁷ are easily obtained by boiling the corresponding tertiary alcohols with dilute sulfuric acid.

Preparation of *dienes* is accomplished by dehydration of diols or olefinic alcohols. Pinacol, $(CH_3)_2COHCOH(CH_3)_2$, is converted to 2,3-dimethyl-1,3-butadiene by heating with 48% hydrobromic acid⁴³ or by passing the vapors over activated alumina at 420-470°.⁴⁴ Yields of the diene are 60% and 86%, respectively. Aniline hydrobromide is used as a catalyst in the dehydration of 3-methyl-2,4-pentanediol to 3-methyl-1,3-pentadiene (42%).⁵⁴ An excellent laboratory preparation of isoprene from acetone in 65% over-all yield has been described. The last step involves catalytic dehydration of dimethylvinylcarbinol over aluminum oxide at 300° to give isoprene in 88% yield.⁴⁷

$$CH_{3}COCH_{3} \xrightarrow{NaC \equiv CH} (CH_{3})_{2}COHC \equiv CH \xrightarrow{H_{2}} (CH_{3})_{2}COHCH = CH_{2} \xrightarrow{Al_{2}O_{3}} CH_{2} = C(CH_{3})CH = CH_{2}$$

Olefinic tertiary alcohols obtained by the action of Grignard reagents on mesityl oxide, $(CH_3)_2C = CHCOCH_3$, have been dehydrated over iodine⁴⁶ or potassium hydrogen sulfate⁴⁸ and by distilling with phthalic anhydride.³ The yields of dienes are in the range of 58-65%. The product from the addition of methylmagnesium chloride to crotonaldehyde is the ether, $CH_3CH = CHCH(CH_3) - O - CH(CH_3)CH = CHCH_3$, formed from two molecules of the expected 2-penten-4-ol. By passing the vapors of this ether over alumina at 280-290°, 1,3-pentadiene is obtained in 72% yield.⁴⁹

Dehydration of β , γ - and γ , δ -olefinic alcohols does not always lead to large amounts of the expected conjugated dienes.^{55,109} Treatment of dimethylallylcarbinol with hydrobromic acid gives a 37% yield of the nonconjugated diene, H₂C=C(CH₃)CH₂CH=CH₂, along with 43% of the two possible conjugated isomers.⁵⁵ Oftentimes, ketones are formed by isomerization of the olefinic alcohols under the conditions of the dehydration. In the dehydration of 2-ethyl-3-hydroxy-1-butene,

 $H_2C = C(C_2H_5)CHOHCH_3$,

METHODS 19-20

Ch. 2

by potassium hydrogen sulfate, some methyl s-butyl ketone is formed.¹⁶⁷ The diene obtained from this alcohol is 3-methyl-1,3-pentadiene rather than the expected 2-ethyl-1,3-butadiene.¹⁷³

Olefinic acetylenes are made by the dehydration of acetylenic carbinols.^{111,436}

Several olefinic balides containing aliphatic halogen are prepared by dehydration of halo alcohols. For example, 3,3,3-trichloropropene, $Cl_sCCH=CH_2$, is made by heating the corresponding secondary alcohol with a 10% excess of phosphorus pentoxide; the yield is 84%.³⁷ Other unsaturated halogen compounds prepared by this method are β -chlorostyrene, $C_6H_sCH=CHCl$, from styrene chlorohydrin and phosphoric acid on silica gel at 400° (63%)⁶⁰ and various nuclear halogenated styrenes by dehydration of the corresponding arylmethylcarbinols.^{61, 437, 455}

Few olefinic alcohols or olefinic ethers have been made by this method. The procedure for the dehydration and reduction of glycerol to allyl alcohol⁶⁸ by heating with formic acid has been applied to the preparation of vinylglycol, $H_2C = CHCHOHCH_2OH$, from erythritol (35%).⁶⁶ a-Hydroxy ethers of the type $R_2C(OH)CH(OC_2H_8)R'$ are dehydrated to a,β -olefinic ethers, $R_2C = C(OC_2H_8)R'$, by refluxing with phosphorus pentoxide in pyridine.^{112,113} Dehydration by oxalic acid produces ketones of the type R_2CHCOR' (method 202). 3-Methoxystyrene and 4-phenoxystyrene are prepared by passing the vapors of the corresponding primary carbinols over potassium hydroxide pellets heated to 250° in stainless-steel or copper tubes.¹⁴⁵

 $\alpha_{,\beta}$ -Olefinic aldehydes are made by treatment of β -hydroxy acetals with acidic reagents.^{439, 440} The dehydration of β -hydroxy aldehydes and ketones from the aldol condensation is discussed in method 36.

Olefinic acids and olefinic esters are prepared by dehydration of hydroxy acids and esters. Cis- and trans- α -methylcrotonic acids have been made in small yields by pyrolysis of the corresponding α -hydroxy acids.⁸³ Certain halogen atoms are stable during the dehydration, as in the preparation of ethyl 3-chlorocrotonate by dehydration of the chlorohydrin, CH₃CHClCHOHCO₂C₂H₅.⁸⁶ A vinyl group may be formed on the benzene ring in the presence of an ester group by dehydration of the hydroxyethyl group with potassium hydrogen sulfate.^{96,97}

The condensation of aldehydes and ketones with α -halo esters may lead directly to *olefinic acids* and *esters* by dehydration of the intermediate β -hydroxy compounds (Reformatsky).^{407, 408} More often, the hydroxy esters are isolated and purified prior to dehydration (method 103).

 $RCH_{2}CR'(OH)CH_{2}CO_{2}C_{2}H_{5} \longrightarrow RCH=C(R')CH_{2}CO_{2}C_{2}H_{5}$ $RCH_{2}C(R')=CHCO_{2}C_{2}H_{5}$

When an alkyl substituent is present on the β -carbon atom, a mixture of $\alpha_{,}\beta_{-}$ and $\beta_{,}\gamma_{-}$ olefinic compounds is produced, the ratio depending on the nature of the alkyl group and the dehydrating agent.^{93, 94} This tendency for the formation of appreciable amounts of the non-conjugated $\beta_{,}\gamma_{-}$ olefinic ester is often not fully appreciated. The best work along these lines indicates that efficient fractionation is necessary to insure a pure product. Even when both R groups on the β -carbon atom are methyl groups, (CH₃)₂COHCHRCO₂C₂H₈, considerable dehydration to the non-conjugated $\beta_{,}\gamma_{-}$ olefinic ester occurs.^{94, 420} It was formerly believed that this structure gave only $\alpha_{,}\beta_{-}$ olefinic esters.⁸⁷ Also, the tertiary hydroxyl group in this compound is surprisingly stable. Neither iodine nor hydrochloric acid is an effective catalyst for dehydration, although phosphorus pentoxide has proved satisfactory.

The mode of dehydration can sometimes be controlled from a practical standpoint.^{171, 417-419} Thus, ethyl 1-hydroxycyclohexylacetate is converted to 1-cyclohexeneacetic acid in 80% yield by anhydrous hydrogen chloride, whereas dehydration by acetic anhydride followed by saponification leads to cyclohexylidenacetic acid (68%).⁸⁶

A wide variety of dehydrating agents have been employed. In addition to those already mentioned are sulfuric acid,^{89, 418} potassium bisulfate,^{418, 421} formic acid,⁴¹⁰ thionyl chloride,^{90, 92} iodine,⁴¹⁹ acetic anhydride,^{418, 419} phosphorus oxychloride,^{411, 416, 418} and phosphorus pentoxide.^{94, 420} It should be noted that the free olefinic acids are sometimes decarboxylated under conditions similar to those described for certain of these dehydrations (cf. method 27).

 β -Hydroxy esters are also obtained by reduction of β -keto esters and may be dehydrated over phosphorus pentoxide.⁴⁴¹

Dehydration of cyanohydrins to α , β -olefinic nitriles has been accomplished by thionyl chloride,^{91, 98, 101} phosphorus pentoxide,¹⁰⁰ or anhydrous potassium carbonate.⁹⁹ A typical example is the preparation of 1-cyano-1-cyclopentene from cyclopentanone cyanohydrin (75%).⁹⁸ Aluminum powder is the best of many catalysts studied for the dehydration of ethylene cyanohydrin to acrylonitrile, H₂C=CHCN (80%).⁴⁴²

The amino group on the benzene ring is unaffected by catalytic dehydration with iodine of the tertiary alcohol, dimethyl-(o-aminophenyl)carbinol, to 2-(o-aminophenyl)-1-propene (87%).¹⁰³

The direct dehydration of aliphatic β -nitro alcohols to nitro olefins is usually unsatisfactory.⁴⁴³ The latter compounds are obtained by method 24 or by treating the nitro alcohols with thionyl chloride and pyridine.⁴⁴⁴

20. Dehydrohalogenation of Halogen Compounds

34

METHOD 20

OLEFINIC COMPOUNDS

Ch. 2

The formation of a double bond by removal of the elements of hydrogen halide is a very general method. Basic reagents such as alkali hydroxides and alkoxides or a variety of amines are usually employed. The reaction is of limited application for the preparation of simple olefins, however, since the alcohols are usually more readily available and in most cases yield the same olefins by dehydration.

In general, primary halides show a greater tendency to react metathetically with most bases than to undergo the elimination reaction. Treatment of isoamyl chloride with alcoholic potassium hydroxide gives only an 11% yield of 3-methyl-1-butene, the remainder appearing as ethyl isoamyl ether.¹¹⁶ On the other hand, a 90% yield of 2-pentene is obtained by adding the secondary halide, 3-bromopentane, to a concentrated methanolic solution of potassium hydroxide at 115°.¹¹⁴ The ratio of dehydrohalogenation to metathesis has been studied for many aliphatic and alicyclic halides in the presence of a variety of bases such as piperidine,¹²⁵ pyridine,¹²⁶ sodium alkoxides,¹²⁰ potassium cresolate,¹¹⁹ and inorganic hydroxides.^{127,128} The catalytic dehydrohalogenation of dodecyl chloride over alumina at 250° gives all six possible isomeric straight-chain dodecenes.¹¹⁸

The dehydrohalogenation of a β -chloroalkylbenzene is readily accomplished by refluxing with excess aqueous methanolic potassium hydroxide. Substituted α -alkylstyrenes which are difficult to obtain by other methods are prepared in this way by a two-step process involving catalytic condensation of aromatic compounds with aliphatic chlorohydrins followed by removal of hydrogen halide from the resulting haloalkylated derivatives.¹²¹

$$\operatorname{ArH} \xrightarrow{\operatorname{RCHOHCH_2Cl}} \operatorname{ArCHRCH_2Cl} \xrightarrow{\operatorname{KOH}} \operatorname{ArC(R)} \longrightarrow \operatorname{CH_2}CH_2$$

A bromine atom in the *alpha* position of the side chain is removed by quinoline at 160° in the preparation of $1-(\beta-naphthyl)-1$ -butene (81%).⁴⁴⁶ Dehydrohalogenation of halides to styrenes has been reviewed.⁴⁴⁵

Several conjugated diole/ins have been made by heating bromo olefins with solid potassium hydroxide¹²³ or excess quinoline.¹²⁴ In the latter case, the bromo olefins were made available by allylic bromination of olefins with N-bromosuccinimide. β -phenylbutadiene is obtained in 46% yield by the action of pyridine on the corresponding secondary chloride.⁵¹⁸ Chlorination of *n*-butyl chloride gives an isomeric mixture of dichlorides from which low yields (18-30%) of butadiene are obtained by passing the vapors over soda lime at about 700°.¹²²

Certain olefinic halogen compounds are best prepared by this method. Isobutylene bromide is dehydrohalogenated by hot potassium hydroxide solution to give isobutenyl bromide. $(CH_3)_2C=CHBr (27\%)$.⁴⁴⁸ A primary halogen atom of 1,2,3-trichloropropane or 1,2,3-tribromopropane is removed in preference to the secondary halogen atom upon treatment with alkali hydroxides. Yields of 2,3-dibromopropene¹³¹ and 2,3-dichloropropene^{132, 133} are 80-87%). 1,1-Dichlorocyclohexane prepared from cyclohexanone and phosphorus pentachloride loses hydrogen chloride upon distillation to give 1-chloro-1-cyclohexene (40%).¹³⁶ Nuclear halogenated styrenes have been made by dehydrohalogenation of either α - or β -chloroalkylhalobenzenes.^{61, 121, 137}

Two techniques are commonly used in the preparation of *ole/inic* ethers from halo ethers. The first involves heating a β -halo ether with fused or powdered potassium hydroxide.²⁵³ This method is typified by the conversion of β -phenoxyethyl bromide to phenyl vinyl ether (69%)¹⁴³ and β , β' -dichlorodiethyl ether to divinyl ether (61%).¹⁴¹ In the latter case, yields are improved in the presence of ammonia gas. In the second procedure, an aliphatic¹⁴⁴ or aromatic^{145, 146} chloro ether is heated with pyridine to 115°. This method is of value in the preparation of several methoxystyrenes. Chloroalkylation of the aromatic ether is followed by dehydrohalogenation.

The elimination of a molecule of halogen acid from halo acetals of acetaldehyde with powdered potassium hydroxide gives ketene acetals.⁴⁵³ However, the α -bromo acetals of the homologs of acetaldehyde on similar treatment with potassium hydroxide or potassium *t*-butoxide are converted into α , β -olefinic acetals.⁴⁵⁴

 $CH_{2}BrCH(OR)_{2} \rightarrow H_{2}C = C(OR)_{2}$ $RCH_{2}CHBrCH(OR)_{2} \rightarrow RCH = CHCH(OR)_{2}$

1-Cyclohexenealdehyde is prepared from the saturated aldehyde by bromination in the presence of finely powdered calcium carbonate followed by dehydrohalogenation of the resulting bromo aldehyde by diethylaniline.⁴⁵¹

 α , β -Olefinic ketones result from the loss of hydrogen halide from either α - or β -halo ketones. 2,4-Dinitrophenylhydrazine shows promise as a re-

1

METHODS 21-22

OLEFINIC COMPOUNDS

Ch. 2

agent for the dehydrohalogenation of α -halo ketones.⁴⁸² Alcoholic potassium hydroxide, sodium carbonate,¹⁸² sodium acetate,¹⁸¹ and tertiary amines^{149,150} have been used to remove hydrogen halide from β -halo ketones. In the acylation of olefins by acyl chlorides (method 178), dehydrohalogenation sometimes occurs spontaneously to give olefinic ketones. An alcoholic solution of β -chloropropiophenone containing an equivalent amount of potassium acetate is used in synthetic work in place of the readily polymerizable phenyl vinyl ketone. The olefinic ketone may be isolated in 78% yield by a chloroform extraction of this solution.¹⁴⁸

A variety of bases have been used to effect dehydrohalogenation of halo acids and halo esters. a-Bromo esters or a-bromo acyl halides give α,β -olefinic acids with alcoholic potassium hydroxide.¹⁵⁴, ¹⁵⁵ Yields are poor with the higher-molecular-weight a-bromo acids; other products are those formed by substitution of the halogen atom by the basic anions. Ethyl a-methyl- and a-ethyl-crotonates are prepared in 80% yields by refluxing the corresponding α -bromo esters with dimethylaniline.¹⁸⁸ β -Chloro esters in which the chlorine atom is tertiary readily lose hydrogen chloride upon heating¹⁶³ or upon treatment with alcoholic ammonia. By the latter procedure a series of β , β -dialkylacrylic esters have been prepared in 80-96% yield.¹⁵⁹ a-Haloacrylic acids and esters are made in good yield from α , β -dihalopropionic esters and bases such as barium hydroxide,¹⁵⁸ sodium ethoxide,¹⁶⁴ and quinoline.¹⁶² Excess sodium alkoxide replaces the α -bromine atom in the product by an alkoxyl group.⁴²⁴ γ -Halocrotonic esters are prepared in 60-65% yields by the dehydrohalogenation of β,γ dihalobutyric esters.160

Certain *olefinic nitriles* are readily available from α -chloro- β -arylpropionitriles obtained by the addition of diazonium salts to acrylonitrile. Dehydrohalogenation is effected by boiling with diethylaniline.²⁷⁵

$$H_2C = CHCN \xrightarrow{C_6H_6} N_2CI C_6H_5 CH_2CHClCN \rightarrow C_6H_5 CH = CHCN$$

21. Elimination of Halo and Alkoxyl Groups (Boord)

$$\begin{array}{cccc} \operatorname{RCH}_{2}\operatorname{CHO} & \xrightarrow{C_{2}H_{5} \operatorname{OH}} \operatorname{RCH}_{2}\operatorname{CHClOC}_{2}H_{5} & \xrightarrow{\operatorname{Br}_{2}} \operatorname{RCHBr}\operatorname{CHBr}\operatorname{OC}_{2}H_{5} \\ & & & \downarrow \\ \operatorname{RCHBr}\operatorname{CR'Br}\operatorname{OC}_{2}H_{5} & \xleftarrow{\operatorname{Br}_{2}} \operatorname{RCH} = \operatorname{CR'OC}_{2}H_{5} & \xleftarrow{\operatorname{KOH}} \operatorname{RCHBr}\operatorname{CHBr}\operatorname{OC}_{2}H_{5} \\ & & \downarrow \\ \operatorname{R''Mg}\operatorname{Br} & & \downarrow \\ \operatorname{R''Mg}\operatorname{Br} & & \downarrow \\ \operatorname{RCHBr}\operatorname{CR'R''OC}_{2}H_{5} & \xrightarrow{Z_{n}} \operatorname{RCH} = \operatorname{CR'R''} \\ \end{array}$$

This combination of reactions represents the best general method for the preparation of olefins of unequivocal structure. Many mono-,²⁴⁴,²⁴⁵ di-,^{138, 139, 246} and tri-substituted ²⁴⁶ ethylenes have been made by various modifications of this procedure. Typical examples include various hexenes,¹³⁶ heptenes,²⁴⁶ 1-hexadecene (63%),²⁴³ and styrene (89%).²⁴⁷ The formation of α -chloro and α , β -dibromo ethers from aldehydes is treated elsewhere (methods 117 and 65). When used for the preparation of olefins these compounds are not isolated or purified.²⁴⁴ In coupling with the Grignard reagent, advantage is taken of the inert nature of halogen atoms in the *beta* position of ethers. An excess of 10-30% of organomagnesium compound is recommended.¹³⁸ Coupling in the *alpha* position takes place readily at 0°.²⁴⁸ In order to introduce a second alkyl group, hydrogen bromide is eliminated (cf. method 20) and the resulting olefinic ether is treated with bromine at 0° followed by coupling of the dibromide with another Grignard reagent.

Elimination of bromine and ethoxyl groups with zinc is much the same as the elimination of two adjacent halogen atoms. The β -bromo ether is heated with a stirred suspension of powdered zinc^{138, 244, 245} or zinc-copper couple^{139, 247} in 90-95% ethanol,^{139, 244, 247} *n*-propyl alcohol,¹³⁸ or isopropyl alcohol.²⁴⁶ The preparation of 3-octene fails in *n*-propyl alcohol.²⁴⁵ In several cases the products have been shown to be mixtures of *cis* and *trans* isomers.^{209, 246} The yields for the first two steps of the synthesis are 70-90%. The coupling of the α,β -dibromo ethers with primary Grignard reagents takes place in 50-80% yields, whereas with secondary Grignard reagents only 30-55% yields are obtained.

The method has been adapted to the synthesis of 1,4-diolefins by coupling the bromo ethers with allylmagnesium bromide. Yields vary from 42% to 67% for C_5 - C_7 compounds.^{244, 248} *n*-Propyl and *n*-butyl alcohols as solvents are preferred for the decomposition of the β -bromo ethers.

Olefinic acetylenes of the general formula $RCH = CHC \equiv CR'$ are prepared by coupling the α , β -dibromo ethers with an acetylenic Grignard reagent followed by elimination of halogen and alkoxyl groups. Over-all yields are approximately 60%.^{249, 250}

The action of zinc and alcohol on dibromo acetals, $CHBr_2CH(OR)_2$, gives *olefinic halo ethers*, BrCH = CHOR (50-78%).²⁵¹ A similar elimination from α -halo ortho esters by means of sodium sand in boiling benzene leads to ketene acetals.

 $RCHBrC(OC_2H_5)_3 + Na \rightarrow RCH = C(OC_2H_5)_2 + NaBr + C_2H_5ONa$

The method has been applied widely, and the yields are good (65-90%).²¹⁰ 22. Dehalogenation of Dihalides

$$RCHBrCH_2Br \xrightarrow{Z_n} RCH \rightarrow CH_2$$

OLEFINIC COMPOUNDS

This reaction is sometimes an important step in the purification of olefinic compounds prepared by other methods or for the protection of the double bond during oxidation of some other functional group in the molecule. The dihalides are usually unavailable except from the reaction of halogens with olefinic compounds (method 74). The reagent most commonly used for the regeneration of the double bond is zinc dust in 95% ethanol.^{180, 474} The reaction is carried out at the boiling point of the solution or at lower temperatures if possible. No isomerization or carbon-skeleton rearrangement takes place in the regeneration of simple olefins. Other reagents are magnesium in ether and sodium iodide in acetone. Certain bases in non-alcoholic solvents cause debromination rather than dehydrohalogenation of chalcone dibromides⁴⁷⁵ and stilbene dibromides (cf. method 13).

An isolated halogen atom is unaffected by zinc under the conditions of the reaction. Thus, 1,2,5-tribromopentane gives the halo ole/in, 5-bromo-1-pentene (71%).²⁶⁶

A mixture of magnesium and magnesium iodide in ether is used to prepare the cyclic *ole/inic ethers*, dioxene and dioxadiene, from the corresponding dichloro- and tetrachloro-dioxanes, respectively.²⁶⁷

The allenes, RC=C=CR', are readily prepared by this method from tetrahalides and dihalo olefins. Typical procedures are given for methylallene $(72\%)^{263}$ and 1-phenyl-1,2-butadiene (77%).²⁶⁴ A convenient route to the allenes from allyl halides is as follows:²⁶⁵

$$RCH = CHCH_{2}Br \xrightarrow{Br_{2}} RCHBrCHBrCH_{2}Br \xrightarrow{KOH} RCHBrC(Br) = CH_{2} \xrightarrow{Zn} C_{2H_{3}}OH$$

$$RCH = C = CH_{2}$$

$$RCH = C = CH_{2}$$

$$RCH = C = CH_{2}$$

23. Elimination of Alcohol from Ethers and Acetals

$$RCH_2CH_2OR' \rightarrow RCH = CH_2 + R'OH$$

The elimination of a molecule of alcohol from an ether has not been developed as a laboratory synthesis of simple olefins, although several olefinic compounds are conveniently made by this method. 1,3-Pentadiene is obtained in 72% yield by passing the ether of 2-penten-4-ol over alumina at 290°.⁴⁹ A series of α,β -olefinic esters has been made by heating alky1 α -alkoxyisobutyrates with phosphorus pentoxide at 60-100°. The yields range from 85% to 100%.⁵⁰³

Loss of alcohol from acetals occurs upon catalytic thermal decomposition⁵⁰⁴ or when these compounds are heated to 140-170° with phosMETHODS 23-24

sphorus pentoxide and quinoline or with phthalic anhydride.⁵⁰⁷ α , β -Ole-Ifinic ethers including several alkoxy styrenes are formed in widely varying yields (36-86%).

 $RCH_2CH(OR')_2 \rightarrow R'OH + RCH = CHOR'$

.

г

14 platinum-on-asbestos catalyst at 290° is used in the conversion of t liethyl acetal to ethyl vinyl ether (42%).¹⁴⁰ Ketals of the type

 $C(OCH_3)_2CH_3$ are readily split by heating with a small amount of *p*r:oluenesulfonic acid to yield substituted vinyl ethers of the type $CH_2(92\%)$. In the presence of excess of a higher alcohol, $CH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $CH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a higher alcohol, $COCH_3 = CH_2(92\%)$. In the presence of excess of a

24. Pyrolysis of Esters

 $R_3CCH(OCOR')CH_2R \xrightarrow{Heat} R_3CCH = CHR + R'COOH$

Vapor-phase pyrolysis or destructive distillation of esters is of value for the preparation of simple olefins in cases where direct dehydration of he alcohol leads to extensive isomerization or carbon-skeleton rearangement (cf. method 19). The older literature has been reviewed, and the reaction has been applied to the preparation of nine straight-chain ¹ und branched olefins ranging in complexity from 1-butene to 2,2,4-tri-^{(nethyl-2-pentene (75%),²²⁹ Acetates of primary and secondary alcohols} Fre generally used, although esters of boric acid are reportedly more ¹:asily pyrolyzed.⁴⁶⁶ Pure *t*-butylethylene is obtained by the pyrolysis of ¹ he acetate of pinacolyl alcohol at 300-400°. Yields vary from 35% to 130%, depending upon the temperature and time of heating.^{49, 223} The product contains no rearranged olefins. Pyrolysis of ethyl-t-butylcarbinol gives 7% rearranged olefins along with 4,4-dimethyl-2-pentene (77%).224 Higher-molecular-weight 1-alkenes have been obtained in good yields by byrolysis of the palmitates or stearates of the corresponding primary Ilcohols.^{225,227} Most products have been straight-chain olefins, e.g., 1-hexadecene (69%),²²⁶ although a few branched compounds have been nade in this way, e.g., 3,7-dimethyl-1-octene (84%).²²² Several styrenes have been made by pyrolysis of the corresponding α -phenethyl acefates.445, 492

t Both conjugated and non-conjugated *dienes* have been made by this r nethod from the acetates of diols and olefinic alcohols. A pyrolysis t emperature of 575° is required for the conversion of 1,5-pentanediol

METHODS 25-26

diacetate to 1,4-pentadiene (91%).²³⁰ 2-Alkyl-1,3-butadienes are best made by this method.^{167,173} Direct dehydration of the olefinic alcohols

OLEFINIC COMPOUNDS

gives extensive rearrangement. Pyrolysis of the acetate of benzyl-o-chlorophenylcarbinol at 300° gives the unsaturated balide, o-chlorostilbene. This carbinol is resistant to direct dehydration by potassium hydrogen sulfate at 180° .²³³ This method is also superior for the preparation of the olefinic aldehyde, α -isopropylacrolein (50%),¹⁶⁷ and the olefinic ketone, methyl isopropenyl ketone (98%).⁴⁸⁸

 β -Lactones formed by the addition of ketene or ketene dimer to aldehydes are decarboxylated to α , β -olefinic methyl ketones (50-65%). The over-all process is carried out by passing ketene into the aldehyde at room temperature.⁵²³

Esters of acrylic acid are made by pyrolytic decomposition of α acetoxypropionates.^{234, 235, 236} Direct dehydration of the α -hydroxy esters fails.

Methoxyl, cyano, and nitro groups may also be present in the molecule during pyrolysis. Examples are γ -methoxycrotononitrile (83%),⁹⁹ acrylonitrile (64%),²³⁹ 1-cyano-1,3-butadiene (70%),²³⁸ and a series of conjugated nitroalkenes. The esters of β -nitro alcohols are pyrolyzed at 195°²⁴⁰ or merely refluxed with sodium bicarbonate in dilute aqueous methanol. By the latter procedure the yields of conjugated nitro alkenes are .90-95%.²⁴¹ Direct dehydration by heating the nitro alcohols to 180° with phthalic anhydride has also been used.⁴⁴³

25. Pyrolysis of Methyl Xanthates (Chugaev)

$$\operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{OH} \xrightarrow{\operatorname{NaOH}} \operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{Na} \xrightarrow{\operatorname{CH}_{3}\operatorname{I}} \operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{CH}_{3} \xrightarrow{\operatorname{Heat}} \operatorname{RCH}_{=}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{CH}_{3} \xrightarrow{\operatorname{Heat}} \operatorname{RCH}_{=}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{CH}_{3} \xrightarrow{\operatorname{Heat}} \operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{CH}_{3} \xrightarrow{\operatorname{Heat}} \operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{OCS}_{2}\operatorname{CH}_{3} \xrightarrow{\operatorname{Heat}} \operatorname{RCH}_{2}\operatorname{CH$$

Thermal decomposition of methyl xanthates is similar to the pyrolysis of acetates for the formation of the double bond. Olefins are obtained from primary,²⁴² secondary, ¹⁶³ and tertiary¹⁷⁰ alcohols without extensive isomerization or structural rearrangement. The other products of the pyrolysis of the methyl xanthates are methyl mercaptan and carbon oxysulfide. The xanthates prepared from primary alcohols are more difficult to decompose than those prepared from secondary and tertiary alcohols. Over-all yields of 22-51% have been obtained for a number of tertiary alkyl derivatives of ethylene.¹⁶⁵ Originally the xanthates were made by successive treatment of the alcohol with sodium or potassium, carbon disulfide, and methyl iodide. In a modification of this procedure sodium hydroxide is used in place of the metal.²⁴² A study of the stereochemistry of the reaction supports the view that the mechanism involves intramolecular bonding of a β -hydrogen atom with a sulfur atom in *quasi* sixmembered ring formation.^{427, 469}

26. Pyrolysis of Substituted Amines and Ammonium Salts

$$\operatorname{RCH}(\operatorname{CH}_{3})\operatorname{N}(\operatorname{CH}_{3})_{3}^{*}\operatorname{OH} \longrightarrow \operatorname{RCH}(\operatorname{CH}_{3})\operatorname{N}(\operatorname{CH}_{3})_{2}^{*} + \operatorname{CH}_{3}\operatorname{OH} \xrightarrow{\operatorname{B}} \operatorname{RCH} = \operatorname{CH}_{2}^{*} + (\operatorname{CH}_{3})_{3}\operatorname{N}^{*} + \operatorname{H}_{2}\operatorname{OH}$$

Thermal decomposition of quaternary ammonium salts and bases is most valuable in structural investigations of amines, particularly heterocyclic secondary amines (Hofmann exhaustive methylation).²⁸² The course of the elimination (A or B) is determined by the nature of the four alkyl groups on the nitrogen atom.²⁸¹ The reaction has found little use in the synthesis of pure olefins. The yields are low even when three of the alkyl groups are methyl radicals. Carbon-skeleton rearrangement does not occur. Thus, the only olefin obtained by pyrolysis of pinacolyltrimethylammonium hydroxide, (CH₃)₃CCH(CH₃)N(CH₃)₃OH, is *t*-butylethylene (50%).²⁷⁹

Pyrolysis is accomplished by concentrating an aqueous solution of the quaternary hydroxide at temperatures ranging from 30° to 200°. Thermal decomposition on a platinum catalyst at an optimum temperature of 325° has been studied in detail in the preparation of cyclopropene (45%).²⁸⁰

Mannich bases formed by dialkylaminomethylation of various compounds containing an active hydrogen atom are useful intermediates in the synthesis of certain olefinic compounds. The tertiary amine group of the Mannich base is eliminated upon steam distillation or low-temperature pyrolysis (120°) of the hydrochloride. The over-all reaction is illustrated by the following preparation of an α , β -olefinic ketone.²⁸⁵

$$\operatorname{RCOCH}_2 \operatorname{R} \xrightarrow{\operatorname{HCHO}} \operatorname{RCOCHRCH}_2 \operatorname{NR}'_2 \cdot \operatorname{HCl} \longrightarrow \operatorname{RCOC}(\operatorname{R}) = \operatorname{CH}_2$$

+ R',NH·HCl

The methylene group of methyl ethyl ketone is active in the condensation to give, upon pyrolysis, only methyl isopropenyl ketone (92%).⁴⁷⁸ Olefinic aldehydes,¹⁶⁷ acids,²⁸³ esters,²⁸⁶ and nitro compounds²⁸⁴ have been prepared in a similar manner. The literature of the Mannich reaction has been reviewed.²⁸³

Ch. 2

27. Decarboxylation of Olefinic Acids

ArCH=CHCO₂H
$$\xrightarrow{Quinoline}$$
 ArCH=CH₂

As a preparative method the direct decarboxylation of olefinic acids is almost limited to the formation of styrenes and stilbenes from substituted cinnamic acids. Thermal decomposition of cinnamic acid gives styrene (41%).²⁵² The yield is nearly quantitative if the reaction is carried out in quinoline at 220° in the presence of a copper catalyst.²⁵⁵ The yields of substituted styrenes where the aryl radical contains halo, methoxyl, aldehyde,⁴⁹³ cyano, and nitro groups are in the range of 30–76%.^{255–258} cis-Stilbene and cis-p-nitrostilbene are prepared in this way from the corresponding α -phenylcinnamic acids (65%).^{254, 259} One aliphatic compound worthy of mention is 2-ethoxypropene, prepared by heating β -ethoxycrotonic acid at 165° (91% yield).¹⁴⁰ The mechanism of acid-catalyzed decarboxylations of this type has been studied.⁴⁷³ Isomerization of the double bond from the α,β - to the β,γ -position before decarboxylation very likely occurs in many instances.⁴⁷²

A related reaction is the dehydrohalogenation and decarboxylation of β -halo acids to olefins.

$$\begin{array}{c} \beta & \alpha \\ \text{RCHXCHR'CO_2H} \xrightarrow{\text{Na_2CO_3}} \text{RCH} = \text{CHR'} \end{array}$$

Decarboxylation precedes dehydrohalogenation, however, as noted by analysis of the gas formed in the preparation of 2-butene. Decarboxylation occurs at 20-30° in sodium carbonate solution. Butene is then evolved at higher temperatures.⁸³ The reaction is important in the preparation of *cis*- and *trans*-2-alkenes from *cis*- and *trans*-alkylacrylic acids, $RCH = CR'CO_2H$, respectively.^{83, 84, 260} Either the β -iodo or β -bromo acids prepared by the addition of hydrogen halide are suitable sources.

 $\alpha_{,\beta}$ -Dibromo and $\alpha_{,\beta}$, β -tribromo acids give bromo and dibromo olefins, respectively. A study of the influence of structure upon yield has been made.²⁶¹ Best yields are obtained when two alkyl groups are in the beta position or when two bromine atoms are in the alpha position. Decomposition to the bromo olefins is effected by refluxing the bromo acids with aqueous sodium carbonate solution or pyridine. β -Bromostyrenes, ArCH=CHBr and ArCH=CRBr, are similarly prepared from substituted cinnamic acid dibromides by heating with alcoholic sodium acetate solution.²⁶² 28. Coupling of Olefinic Acids and Diazonium Compounds

$$ArCH = CHCO_2H + Ar'N_2X \xrightarrow[CuCl_2]{NaOAc} ArCH = CHAr' + N_2 + CO_2 + (HX)$$

This relatively new synthesis uses readily available materials and, although the yields are low, is preferred for obtaining certain stilbenes. A cooled solution of the diazonium salt is treated with sodium acetate and an acetone solution of the cinnamic acid. Then aqueous cupric chloride is added and the mixture is stirred at room temperature. The aryl radical may carry alkyl, halo, ether, ester, or nitro groups.^{233, 272, 273, 477}

The synthesis has been extended to the preparation of substituted 1,4diphenylbutadienes^{233, 274, 277} and triarylethylenes²⁷⁸ by the use of cinnamalacetic acid, $C_6H_5CH=CHCH=CHCO_2H$, and diarylacrylic acids, $Ar_2C=CHCO_2H$, respectively.

In the above reactions the aryl group adds to the α - rather than to the β -carbon atom of the α , β -olefinic acid. The reverse addition occurs in the conversion of acrylonitrile to cinnamonitrile (33%)²⁷⁵ (cf. method 20).

29. Coupling of Organometallic Compounds with Halogen Compounds

 $RMgX + CH_2 = CHCH_2X \rightarrow RCH_2CH = CH_2 + MgX_2$

This reaction affords an excellent method for the preparation of 1alkenes. The halogen compound must be of the allylic or some other active type. The double bond is sometimes contained in the organometallic compound.^{190, 193} The reaction is exothermic and takes place readily at room temperature. Short periods of heating are sometimes required to complete the coupling. For the preparation of the lower olefins, butyl ether is employed as the solvent for the Grignard reagent¹⁷⁸ or most of the ethyl ether is removed before the addition of the unsaturated halide.¹⁷⁷ In certain cases the olefins have been purified through the corresponding dibromides.^{179,180}

Allyl bromide has been used to prepare allylbenzene (82%),¹⁸⁵ allylcyclopentane (71%),¹⁸⁴ and neopentylethylene (85%).¹⁸⁰ Coupling with methallyl halides, $CH_2 = C(CH_3)CH_2X$, gives branched structures,^{117, 203} and the use of 3-chlorocyclopentene leads to 3-substituted cyclopentenes such as 3-cyclopentylcyclopentene (73%).¹⁹⁵ Coupling of the latter halogen compound is catalyzed by copper vessels.¹⁸³ Crotyl chloride, $CH_3CH = CHCH_2Cl$, undergoes an allylic-type reatrangement during coupling.¹⁹⁷ However, since the allylic system in 4-bromo-2-pentene,

METHODS 30-33

Ch. 2

 $CH_3CH = CHCHBrCH_3$, is symmetrically substituted, certain 2-alkenes may be prepared from this compound in good yields.⁵¹

The relatively inactive vinyl halides have been employed with some success in this reaction. α -Thienylmagnesium bromide is coupled with vinyl chloride in the presence of cobaltous chloride to give α -vinylthiophene (29%).⁴⁵⁵ Also, the coupling of vinyl and allyl bromides by magnesium-copper alloy produces the diolefin, 1,4-pentadiene, in 15% yield.¹⁹⁹

Other diolefins have been prepared by this method. ^{51, 203} Biallyl is made in a one-step process from allyl chloride and magnesium (65%).¹⁹⁴ Either crotyl or methylvinylcarbinyl chloride gives 3-methyl-1,5-heptadiene, $CH_2 = CHCH(CH_3)CH_2CH = CHCH_3$, when the Grignard reagent is coupled with an excess of the chloride.¹⁹⁸

Olefinic acetylenes are prepared by the use of acetylenic Grignard reagents. This coupling is catalyzed by copper salts.¹⁸¹ 2,3-Dibromopropene, BrCH₂C(Br)=CH₂, gives olefinic halides of the type $RCH_2C(Br)=CH_2$ (45-65%).^{196, 200-202} The remaining vinyl-type halogen atom is not affected. Coupling reactions of the homologs of 2,3-dibromopropene are complicated by allylic-type rearrangements.⁴⁸⁹ Olefinic ethers may be prepared when the ether group is in either the halide or the Grignard reagent.^{191, 192} The olefinic amine, 5-diethylamino-1-pentene, is obtained in 85% yield by refluxing a suspension of allylmagnesium chloride with diethylaminoethyl chloride.¹⁹³

30. Partial Reduction of Acetylenic Compounds

$$\mathbf{RC} = \mathbf{CR'} \stackrel{(\mathsf{H})}{\longrightarrow} \mathbf{RCH} = \mathbf{CHR'}$$

An acetylene may be reduced to an olefin by sodium in liquid ammonia,^{204, 206} by electrolytic reduction at a spongy nickel cathode,²⁰⁵ or by partial hydrogenation over metal catalysts. Catalysts for the hydrogenation include nickel,^{204, 207} iron,²⁰⁸ colloidal palladium,²⁰⁹ and palladium on barium sulfate²¹¹ or calcium carbonate.^{312, 214} Pure *trans* olefins are obtained from dialkylacetylenes by reduction with sodium in liquid ammonia. The yields are better than 90%. Catalytic hydrogenation leads to mixtures of *cis* and *trans* olefins in which the *cis* isomers predominate.^{204, 206} Mono- and di-arylacetylenes have also been reduced.^{205, 207, 220}

Diolefins have been prepared from diacetylenes and olefinic acetylenes;²¹² for example, reduction of 2,7-nonadiyne by sodium and liquid ammonia gives trans, trans-2,7-nonadiene (72%).²⁰⁴

Olefinic alcohols,²¹³, ²¹⁵, ⁴⁶³ ethers,²¹⁶, ²¹⁷ and acids ²¹⁸, ²¹⁹, ⁴⁶² have been prepared by this method. The nitro group is reduced to the amino group

as in the formation of symmetrical diaminostilbenes from the corresponding dinitrotolanes.^{220, 221}

31. Isomerization of Olefinic Compounds

$$RCH = CHCH_2R' \rightarrow RCH_2CH = CHR'$$

Migrations of the double bond and carbon-skeleton rearrangements are important in the preparation of several olefinic compounds. A number of alkyl cyclopentenes are available in quantities suitable for synthetic work by the isomerization of cyclohexene and its homologs over alumina at 470-480°.⁵⁰⁶ o-Allylphenol is isomerized by methanolic potassium hydroxide at 110° to o-propenylphenol (75%).²⁰⁹ Several β , γ -olefinic acids are conveniently obtained from the corresponding α , β -isomers by equilibration in basic media. The two isomeric acids are readily separated by partial esterification of the resulting mixtures since the β , γ isomers are more easily esterified.⁵¹⁰

32. Symmetrical Diarylethylenes from Thiocarbonyl Compounds

$$ArC(=S)R \xrightarrow{Ni \text{ or } Cu} ArRC = CRAr$$

Thiobenzaldehyde trimer, $(C_6H_5 \text{ CHS})_3$, is decomposed at 230° by freshly reduced copper powder to give stilbene, $C_6H_5 \text{ CH} = \text{CHC}_6H_5$ (45%).²⁸⁷ Several benzologs and alkoxyl derivatives of stilbene have been prepared by this method in low yields. The trimers of the thioaldehydes are readily prepared from their oxy analogs, hydrochloric acid, and hydrogen sulfide.

A similar condensation of thioacetophenone fails with copper powder but is accomplished over Raney nickel.²⁸⁸ Copper bronze, however, is successfully used in the preparation of tetraphenylethylene from thiobenzophenone.²⁸⁹

33. Condensation of Halides by Sodium Amide

$$H_{2}C = C(CH_{3})CH_{2}CI \xrightarrow[NH_{3}]{NaNH_{2}} H_{2}C = C(CH_{3})CH = CHC(CH_{3}) = CH_{2}$$

Allyl and methallyl chlorides have been condensed to trienes in 30% yields by adding sodium amide to a liquid ammonia solution of the halide.^{266, 269} The low yields are due partly to dimerization of the products. Under the same conditions, α -chloroethylbenzene gives cis- α , α '-dimethyl-stilbene (40%).²⁷⁶

Ch. 2

34. Additions to Conjugated Dienes (Diels-Alder)

This reaction furnishes the best means of preparation of hundreds of cyclic olefinic compounds, most of which are beyond the scope of this book. In its simplest form, the reaction may be looked upon as a 1,4addition of an olefinic compound to a conjugated diene. The scope of the reaction is inadequately represented by the above equation. The diene system may be a part of an aromatic or heterocyclic nucleus such as α -vinylnaphthalene or furan, or the double bonds may be parts of two independent molecules. The olefinic compound (dienophile) usually contains one or more groups (Z) which activate the double bond,⁵⁰² although this is not necessary; e.g., ethylene is condensed with butadiene at 200° to give cyclohexene (18%).499 Triple bonds may replace double bonds in both the diene and dienophile. Excellent reviews of the reaction have been published.⁴⁹⁶ Cis addition of the dienophile to the diene occurs, and several of the reactions have been shown to be truly reversible.500 Butadiene is conveniently prepared in the laboratory by passing the vapors of cyclohexene over a hot filament.⁵¹¹

A related reaction is the substituting addition shown by acceptors such as maleic anhydride with simple olefins.⁵⁰¹

35. Condensation of Acetylenes with Compounds Containing Active Hydrogen (Vinylation)

$$HC \equiv CH \xrightarrow{HC \equiv CH} H_2C = CHC \equiv CH$$

$$HC \equiv CH \xrightarrow{ROH} H_2C = CHCl$$

$$ROH \xrightarrow{H_2C} = CHOR$$

$$RCO_2H \xrightarrow{H_2C} = CHO_2CR$$

Acetylene is condensed to vinylacetylene and divinylacetylene by cuprous chloride and ammonium chloride.⁵¹⁴ Similar additions of other compounds containing an active hydrogen atom occur in the presence of various catalysts. Mercury salts are most effective in the vapor-phase reaction of acetylene with hydrogen chloride to give vinyl chloride (100%).⁵²⁶ Basic catalysts such as potassium hydroxide, potassium ethoxide, or zinc oxide are used for the vinylation of alcohols, glycols, amines, and acids.⁵²⁷ Most of these reactions involve the use of acetylene under pressure, and few have been described as simple laboratory procedures. Chloroacetic acid, however, reacts with acetylene at atmospheric pressure in the presence of mercuric oxide to yield vinyl chloroacetate (49%).⁵²⁸

36. Aldoi Condensation

$$RCH_{2}CHOHCH(R)CHO \xrightarrow{-H_{2}O} \xrightarrow{RCH_{2}CH} RCH_{2}CH \cong C(R)CHO$$

Olefinic aldehydes and ketones result from the dehydration of the corresponding β -hydroxy compounds. The availability of olefinic compounds by this method is subject to the limitations of the aldol condensation (method 102) and the mode of dehydration. The tendency for dehydration to a conjugated system (α,β -olefinic compounds) is not as pronounced as is generally believed.

Many aldols dehydrate spontaneously at room temperature or upon acidification by acetic acid. Thus, the condensation of benzaldehyde with propionaldehyde or butyraldehyde gives the α -alkylcinnamaldehydes directly (58-67%).^{312, 314}

 C_6H_5 CHO + RCH₂CHO \rightarrow C_6H_5 CH = CRCHO + H₂O

However, direct dehydration of the aldol is inferior to pyrolysis of its benzoate (method 24) in the preparation of α -isopropylacrolein.¹⁶⁷

The γ -hydrogen atom of crotonaldehyde is involved in its self-condensation and in its condensation with benzaldehyde,³¹⁸ acetaldehyde,³¹⁷ or cinnamaldehyde.⁴⁸³ The linear olefinic aldehydes,

 $CH_3CH = CHCH = CHCH = CHCHO$, $C_6H_5CH = CHCH = CHCHO$, $CH_3CH = CHCH = CHCHO$, and $C_6H_5CH = CHCH = CHCH = CHCHO$,

are obtained directly in low yields. In the presence of dibutylamine ^{Crot}onaldehyde condenses to dihydro-o-tolylaldehyde (75%).⁴⁸¹

METHOD 36

OLEFINIC COMPOUNDS

Ch. 2

 β -Hydroxy ketones obtained by the condensation of ketones or by the crossed condensation of aldehydes with ketones are important sources of olefinic ketones. Dehydration is effected by warming the ketols with oxalic acid,⁷⁷ dilute sulfuric acid,⁷² hydrobromic acid,⁷¹ phosphoric acid,²⁹¹ or a trace of iodine.^{67, 70, 76} A typical example is the dehydration of diacetone alcohol obtained from the self-condensation of acetone. The product is an equilibrium mixture of the conjugated and unconjugated isomers, (CH₃)₂C=CHCOCH₃ and CH₂=C(CH₃)CH₂COCH₃, in a ratio of 91 to 9, respectively.^{67, 68}

The condensation of methyl ketones and subsequent dehydration to olefinic ketones is frequently accomplished without isolation of the ketol. The course of the condensation of methyl *n*-alkyl ketones depends upon the nature of the reagent. The methyl group is involved when a basic catalyst such as aluminum *t*-butoxide is employed. The unsaturated ketones are obtained in 70-80% yields; branched ketones give somewhat lower yields.³²¹

$2RCH_2COCH_3 \rightarrow RCH_2C(CH_3) = CHCOCH_2R$

An acidic reagent such as hydrogen chloride causes condensation on the higher alkyl group of the ketone. β -Chloro ketones are formed which are dehydrohalogenated by the action of heat or by treatment with bases.^{290, 320, 322} Thus, the condensation of methyl ethyl ketone in acid media leads to $C_2H_5C(CH_3)=C(CH_3)COCH_3$, whereas, with basic catalysts, condensation gives $C_2H_5C(CH_3)=CHCOC_2H_5$. These condensations are further complicated by the equilibria between the conjugated and non-conjugated forms of the olefinic ketones as well as by *cis-trans* isomerism.^{290, 322, 488}

Methyl aryl ketones are converted smoothly to the olefinic ketones by aluminum *t*-butoxide. This reagent has the added advantage of removing the water formed by the dehydration of the ketols. The condensations are carried out at 60-140°, with the distillation of *t*-butyl alcohol from the reaction mixture if necessary. An example is the preparation of dypnone, $C_6H_5 C(CH_3) = CHCOC_6H_5$, from acetophenone in 82% yield.³²¹

The crossed condensation of an aromatic aldehyde with a ketone usually gives a high yield of the unsaturated ketone directly. Acetone is condensed with either one or two molecules of benzaldehyde to give benzalacetone $(68\%)^{294}$ or dibenzalacetone (94%),²⁹³ respectively. Alkyl styryl ketones, $C_6H_8 CH = C(R)COR$, have been prepared from benzaldehyde and higher ketones in the presence of hydrochloric acid³⁰⁴ or alkali hydroxide.⁴⁸⁴ Substituents on the phenyl group include methyl,³⁰² hydroxyl,²⁹⁸ methoxyl,^{294, 299} and nitro³⁰³ groups. A survey of condensations of substituted benzaldehydes and methyl ethyl ketone has been made.³⁰⁵ The reaction with acetophenone leads to phenyl styryl ketones, the simplest of which is benzalacetophenone or chalcone, $C_6H_5 CH = CHCOC_6H_5$ (85%).²⁹⁵ Many substituted chalcones have been prepared with substituents on one or both of the phenyl groups.^{300, 301, 305} Furfural,³¹¹ 5-methylfurfural,³¹⁰ and 2-thiophenealdehyde ⁴⁸² condense with ketones in good yields. Examples are furfuralacetone (66%),³⁰⁷ furfuralacetophenone (90%),³⁰⁸ and furfuralacetofuran (89%)³⁰⁹ from acetone, acetophenone, and acetylfuran, respectively.

Substituted cyclopentenones are formed by internal aldol condensation of γ -diketones in the presence of basic catalysts.

The methyl group on the carbonyl carbon atom does not take part in the condensation. The single product is a 1-methyl-2-alkyl-1-cyclopenten-3-one. The yields are excellent except for the simplest γ -diketone, acetonylacetone. A similar condensation of α -acyllevulinates, CH₃COCH₂CH(COR)CO₂CH₃, leads to 4-carbomethoxy derivatives which are readily decarboxylated to cyclopentenones.⁴¹²

Certain substituted cyclobexenones are made by an analogous internal aldol condensation and decarboxylation of bis-esters resulting from condensation of aldehydes with acetoacetic ester.

The R group may be aliphatic or aromatic.^{409, 414} The use of formaldehyde in the initial condensation gives compounds without the 5-alkyl group.⁴¹³

Cyclic ketones may be converted to olefinic cyclic ketones containing one additional ring. The sodium enolate of the ketone is treated with a Mannich base such as 1-diethylamino-3-butanone. The last substance is a source of methyl vinyl ketone, which condenses with the cyclic ketone enolate by the usual Michael addition. Subsequent cyclization of this 1,5-diketone yields the new dicyclic ketone.⁴²³

The reaction has been extended with certain improvements to the synthesis of higher polycyclic olefinic ketones.⁴²²

37. Condensation of Carbonyl Compounds with Compounds Containing an Active Methylene Group (Knoevenagel)*

 $RCH_{2}CHO + CH_{2}(CO_{2}H)_{2} \xrightarrow{C_{5}H_{5}N} RCH_{2}CH = CHCO_{2}H$ $(HOCH_{2}CH_{2})_{3}N RCH = CHCH_{2}CO_{2}H$

The active methylene group of malonic acid readily takes part in condensations with aldehydes. The reaction is catalyzed by ammonia and various amines.³²⁵ Decarboxylation occurs at room temperature or upon heating to 100° to give, in most cases, a mixture of α , β - and β , γ -olefinic

* The confusion resulting from the association of the name of a scientist with a reaction is deplorable. The Knoevenagel reaction has been stated to include the condensation of compounds containing an active hydrogen atom with a variety of carbonyl compounds in the presence of nitrogen bases.³³⁵ The Doebner reaction usually signifies the use of pyridine as a catalyst, although this base was first used in this manner by Verley.³²⁵ The Perkin reaction (method 38) is sometimes extended to include these and other named reactions. In this chapter the following arbitrary division has been made. When the active methylene group is part of a simple aldehyde or ketone, the condensation is discussed as an aldol condensation (method 36), and when it is part of a simple anhydride, the condensation is discussed as a Perkin reaction (method 38). All other condensations of this type are treated here (method 37) regardless of the nature of the catalyst. METHOD 37

acids. The use of pyridine as a solvent leads to good yields of α,β olefinic acids from most low-molecular-weight aliphatic, alicyclic, and aromatic aldehydes. The small amount of β,γ -olefinic acid present is best removed by distillation and crystallization.³²⁴ When acetaldehyde is used, the resulting crotonic acid is the *trans* form.³²³ The best examples are found in the preparations of 2-hexenoic acid (64%)³²⁶ and 2-nonenoic acid (85%),³⁷² although α,β -olefinic acids as high as 2-heptadecenoic acid have been made.³³⁴ Triethanolamine is the best catalyst for the preparation of β,γ -olefinic acids such as 3-hexenoic acid (42%)³²⁷ and β -cyclohexylidenepropionic acid (36%).³³¹

Substituted benzaldehydes and malonic acid give cinnamic acids in excellent yields. Among the common nuclear substituents are methyl,³⁴¹ halo,^{255, 342, 348} hydroxyl,^{335, 341} methoxyl,^{255, 341, 346, 347} cyano,²⁵⁷ nitro,^{343, 345} and diethylamino²⁵⁵ groups. Other β -arylacrylic acids have been made by the use of α -naphthaldehyde,³⁴⁴ phenanthraldehydes,³⁵¹ and furfural.³⁵⁴ Phenyl-substituted aliphatic aldehydes have also been used in this condensation.^{340, 349, 350}

Conjugated olefinic acids containing more than one double bond are prepared from olefinic aldehydes. Thus, acrolein and crotonaldehyde with malonic acid yield vinylacrylic acid (60%)³³⁶ and sorbic acid, (32%)³³⁷ respectively. In this manner, the completely conjugated 2,4,6,8,10,12tetradecahexaenoic acid, CH₃(CH=CH)₆CO₂H, has been made.³³⁹

Olefinic esters may be obtained directly by the Knoevenagel reaction. Alkyl hydrogen malonates are used in place of malonic acid. Decarboxylation then gives the ester directly as in the preparation of ethyl 2heptenoate (78%)³⁶² and methyl *m*-nitrocinnamate (87%).³⁴⁵ Alkyl hydrogen malonates are readily available by partial hydrolysis of dialkyl malonates.³⁴⁵ The use of malonic ester in the condensation leads to olefinic diesters, namely, alkylidenemalonates such as ethyl heptylidenemalonate (68%).³⁵⁸ A small amount of organic acid is added to the amine catalyst³⁵⁷ since the salts rather than the free amines have been shown to be the catalysts in condensations of this type.^{355, 356} Various catalysts have been studied in the preparation of diethyl methylenemalonate. Increased yields are obtained in the presence of copper salts.³⁶⁰ Trimethylacetaldehyde and malonic ester are condensed by acetic anhydride and zinc chloride.⁴⁰⁴ Acetic anhydride is also used for the condensation of furfural and malonic ester to furfurylidenemalonic ester (82%).⁴⁰⁶

Certain aromatic and heterocyclic olefinic esters are best prepared by condensation of ethyl acetate and aromatic aldehydes by sodium sand (Claisen). Benzaldehyde in this reaction gives ethyl cinnamate, $C_6H_5CH=CHCO_2C_2H_5$ (74%).³⁹⁴ *p*-Methylbenzaldehyde,³⁹⁵ furfural,⁴⁰⁶ furylacrolein,⁴⁰⁶ and 2-thiophenecarboxaldehyde³⁵² have been condensed in a similar manner.

METHODS 37-38

Ketones do not condense readily with malonic ester. The condensation of acetone and diethyl malonate is brought about by heating for 24 hours with acetic anhydride and zinc chloride. The yield of diethyl isopropylidenemalonate is 52%.³⁷⁰ Under similar conditions methyl ethyl ketone condenses to the extent of only 19%.⁴⁰⁵

Olefinic dibasic acids with the carboxyl groups farther apart are prepared from aldehyde esters, $C_2H_5 O_2C(CH_2)_nCHO$, malonic acid, and pyridine.³⁵⁹

Ketones are condensed with diethyl succinate,

C₂H₅O₂CCH₂CH₂CO₂C₂H₅

by a variety of basic reagents (Stobbe condensation).⁵²⁹ Acetone, sodium ethoxide, and succinic ester give diethyl isopropylidenesuccinate, $(CH_3)_2C = C(CO_2C_2H_5)CH_2CO_2C_2H_5$ (41%).³⁵⁸ Cyclohexanone has been similarly condensed.³⁷⁴ Potassium *t*-butoxide and sodium hydride are excellent catalysts for condensations involving aryl ketones.³⁷³ Here, acid esters are formed which are readily decarbethoxylated to a tautomeric mixture of olefinic acid and lactone. The over-all process combined with reduction of the lactones or olefinic acids is a method of introduction of a propionic acid residue at the site of a carbonyl group of a ketone.

Various modifications of this process have been used with moderate success to make β , γ -olefinic acids (pyrolysis of paraconic acids).³²⁹,³⁷³

Acetoacetic ester condenses with aldehydes at 5-10° in the presence of piperidine, piperidine acetate, or acetamide. Several olefinic β -keto esters have been made in this way: for example, ethyl butylideneacetoacetate (81%).³⁷¹

The methyl group of pyruvic acid, CH_3COCO_2H , undergoes condensation with aldehydes to give olefinic α -keto acids. Directions for improved yields are given for benzalpyruvic acid, $C_6H_5CH = CHCOCO_2H$ (80%).³⁷⁷ Aromatic aldehydes containing alkyl³⁷⁵ and alkoxyl³⁷⁶ groups, as well as olefinic aliphatic aldehydes³⁷⁸ and furfural,⁴⁰⁶ have been condensed.

The reaction of aliphatic, alicyclic, and aromatic aldehydes and ketones with cyanoacetic ester, NCCH₂CO₂C₂H₅, is general. The products are α , β -olefinic cyanoacetates. The aldehydes are condensed with the ester in the presence of amines^{350, 368, 369} or with sodium cyanoacetate in the presence of sodium hydroxide.^{366, 367} Similarly, cyanoacetic ester is condensed with ketones by catalysts such as acetamide or the acetates of ammonia or amines.^{357, 364, 365, 530} The reaction is reversible and is carried to completion by removal of water.³⁶³

Excellent yields of alkylidenemalononitriles, $RR'C = C(CN)_2$, are obtained by condensation of aldehydes and ketones with malononitrile.³⁸⁰⁻³⁸² The catalysts are piperidine and benzylamine for aldehydes and ammonium acetate for ketones.

Olefinic cyanides are also produced by condensation of aldehydes or ketones ⁴⁸⁶, ⁵³¹ with benzyl cyanide, C_6H_s CH₂CN. The yields from aldehydes are in the range of 36-91% when sodium ethoxide is used as the condensing agent.³⁷⁹, ³³³, ⁴⁸⁵ Condensations involving all types of cyano compounds containing active methylene groups were reviewed in 1947,⁴⁹⁴

Ole/inic nitro compounds are made by condensation of aldehydes and ketones with nitro compounds containing an active hydrogen atom.

$$\mathsf{RCHO} + \mathsf{R'CH}_2\mathsf{NO}_2 \xrightarrow{\mathsf{Base}} \mathsf{RCH} \rightleftharpoons \mathsf{CR'NO}_2$$

Nitro alcohols are usually isolated (method 102) but are sometimes dehydrated directly to olefinic nitro compounds as in the preparation of ω nitro-2-vinylthiophene from nitromethane, thiophenecarboxaldehyde, and sodium hydroxide (78% yield).³⁵² Many substituted β -nitrostyrenes have been obtained by condensation of nitromethane or nitroethane ⁴⁹⁰ with substituted benzaldehydes.^{445, 439} A methyl group on the benzene ring is sufficiently activated by nitro groups in the ortho or para position to cause condensation with aldehydes. A series of nitrostilbenes has been made in this way from substituted benzaldehydes.⁴⁹¹

38. Condensation of Aromatic Aldehydes with Anhydrides and Acid Salts (Perkin)

 $ArCHO + (RCH_2CO)_2O + RCH_2CO_2Na \rightarrow ArCH = C(R)CO_2Na$

This condensation is essentially an aldol-type reaction of an aldehyde with the methylene group of an anhydride. The sodium salt may be replaced by other basic catalysts such as potassium carbonate or tertiary amines.³⁹⁸ If the acid residue in the anhydride is not the same as that in the sodium salt, an equilibrium between these substances may occur before condensation. Thus, a mixture of acetic anhydride and sodium butyrate or a mixture of butyric anhydride and sodium acetate gives cinnamic acid and α -ethylcinnamic acid in the same ratio.³⁹⁹

A review of the literature of this reaction to 1941 has been made.³⁸⁴ The condensation is most valuable for the preparation of substituted cinnamic acids, particularly those containing halo, methyl, and nitro groups.^{386, 387, 400} Furfural has been condensed in good yields with acetic anhydride,³⁹⁰ butyric anhydride,⁴⁰² and sodium phenylacetate in the

42. Vinylacetylenes from Sulfonates of Acetylenic Alcohols⁵¹⁷

 $RCHOHCH_2C \equiv CH \xrightarrow{ArSO_2CI} ArSO_1CHRCH_2C \equiv CH \xrightarrow{Base}$

RCH = CHC = CH (91%)

presence of acetic anhydride.³⁹¹ Homologs of acetic anhydride give α -substituted cinnamic acids, ArCH=C(R)CO₂H, where R is methyl (70%),³⁸⁴ phenyl, (56%)³⁸⁸ and vinyl (40%).³⁸⁹ Sodium salts of arylacetic acids, ArCH₂CO₂Na, may be used with acetic anhydride for this purpose, the aryl group appearing on the α -carbon atom of the product.^{391, 393}

The reaction is usually carried out be heating equimolar quantities of the aldehyde and salt with excess of the anhydride for 8 hours at 170-180°. Lower temperatures are often employed when potassium acetate³⁹⁰ or trialkylamines^{86, 388, 398} are used as condensing agents. Continuous removal of acetic acid during the reaction was found to have no effect on the yield of cinnamic acid.³⁸⁵ Substitution of diacetimide for acetic anhydride gives cinnamide (77%).⁴⁹⁵

Highly conjugated diphenylpolyenes, C_6H_5 (CH=CH)_n C_6H_5 , are obtained directly from the condensation of olefinic aldehydes such as cinnamaldehyde, C_6H_8 CH=CHCHO, with sodium salts of phenylacetic or succinic acids in the presence of lead oxide and acetic anhydride.^{397, 401} The unsaturated acids first formed are decarboxylated under the conditions of the condensation.

39. Cleavage of Substituted α -Ketolactones

 $RCH = C(Br)COR' + (COOK)_2$

Several a-bromo- α , β -olefinic ketones and esters have been prepared by an interesting cleavage of β -acyl or β -carbethoxy- α -ketolactones. It is unnecessary to isolate the bromolactone. Bromination and cleavage take place readily at 0-20°; over-all yields are 60-85%.¹⁴⁷ The β -acyl and β -carbethoxy- α -ketolactones are prepared by aldol-type condensations of aldehydes with the active methylene groups of ethyl β -acetylpyruvate, CH₃COCH₂COCO₂C₂H₅, and ethyl oxalacetate, C₂H₅ O₂CCOCH₂COC₄C₂C₄H₅, respectively.

40. Stilbenes by Pyrolysis of Ethylene Sulfones⁵²²

$$2ArRC = NNH_2 \xrightarrow{HgO} 2ArRCN_2 \xrightarrow{SO_2} ArRC \xrightarrow{-C} RAr \xrightarrow{Heat} ArRC = CRAr$$

SO₂

41. Allenes by Reduction of Acetylenic Halides 525

$$\operatorname{RCHClC} \cong \operatorname{CH} \xrightarrow{\operatorname{Zn-Cu}} \operatorname{RCH} \cong \operatorname{CH} \cong \operatorname{CH}_2 (71\%)$$

C_n

С,

C,

C4

Cs

Ethylene

Propene

1-Butene

2-Butene

Isobutene

1-Pentene

2-Pentene

cis-2-Pentene

trans-2-Pentene

2-Methyl-1-butene

3-Methyl-1-butene

Trimethylethylene

l-Hexene

2-Hexene

3-Hexene

cis-3-Hexene

trans-3-Hexene

2-Methyl-1-pentene

C 6

cis-2-Butene

trans-2-Butene

Compound

cis- and trans-2-Butene

OLEFINIC COMPOUNDS

TABLE 2. OLEFINS

27

2524

27

2 27

234

2115

227

2229

2177

227

226

283

2 ⁸³

234

2 27

2244

2 467

2¹⁷⁸

215

238

2114

2 229

216

284

2²⁰⁹

2 16

284

224

238

2139

2116

2³⁸

224

219

2¹³⁸

2 229

2467

2117

2¹³⁸

2138

2206

2206

2¹³⁸

2117

Yield

(%) Aliphatic Olefins

• • • •

85

• •• •

90

....

....

. . . .

. . . .

40

80

48

65

84

100

82

65

84

54

80

90

90

71

74

55

55

74

90

12

80

74

11

66

86

36

78

66

84

. . . .

75

85

75

40

65

. . . .

Method

19

.

19

19

19

20

22

24

29

19

19

27

27

19

19

21

24

29

19

19

20

24

22

27

30

22

27

19

19

21

20

19

19

19

21

24

24

29

21

21

30

30

21

29

Ch. 2

Chapterref. B.p./mm., nD, (M.p.), Deriv.

-104*

-48/755

-6.7/755

3/746

0.4/744

-6.7/770

30/758, 1.3716

36/760, 1.383925

36/760, 1.3796

36/744, 1.3828

36/760, 1.3817

38/760, 1.3822

36/760, 1.3799

33/740, 1.3788

31/760, 1.3783

19/731, 1.3640

39.5/740, 1.3870

64/760, 1.3858

63/755, 1.3882

68/760, 1.3928

67/760, 1.3942

67/741, 1.3934

68/741, 1.3938

62/760, 1.3921

61, 1.3924

62.5, 1.3891

64, 1.3887

35.5/744, 1.3798

36, 1.3801

30, 1.3717²¹

29-31

36

33

21

38/744

-7

TABLE 2. OLEFINS

TABLE 2. (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv
		Aliphatic	Olefin	s (continued)	
C 6	3-Methyl-1-pentene	21	72	2138	54/760, 1.3835
	4-Methyl-1-pentene	21	57	2 ¹³⁸	54/760, 1.3825
	2-Methyl-2-pentene	21	40	2138	67/760, 1.4005
	4-Methyl-2-pentene	21	70	2 138	58/760, 1.3885
		29	57	2 51	59, 1.3869 ²⁵
	2-Ethyl-1-butene	20	21	2117	63/728, 1.3967
		21	58	2 ¹³⁸	67/760, 1.3990
		24	80	2229	65, 1.3974
		24	53	2 228	65/743, 1.3948 ²⁴
	t-Butylethylene	19	54	217	41.4, 1,3765
		24	72	2223	42/760
		25	58	2 ¹⁶⁵	41/760, 1.3759
		26	50	2279	41, 1.3762
	2,3-Dimethyl-1-butene	19	20	2 ¹⁶⁵	55/748, 1.3899
		21	70	2 ¹³⁸	56/760, 1.3995
	Tetramethylethylene	19	80	2 ¹⁶⁵	72.5/747, 1.4115
ς,	l-Heptene	19	60	2°	94/760, 1.4008
		21	88	2246	95/760, 1.3999
		24	72	2 ²²⁹	94, 1.3999
		29	20	2460	94/760, 1.3996
		30	65	2 ²⁰⁵	93/740, 1.3978
	2-Heptene	21	77	2 346	98/760, 1.4041
	3-Heptene	21	87	2 346	96/760, 1.4090
	2-Methyl-1-hexene	21	66	2 346	92/760, 1.4040
	3-Methyl-1-hexene	21	75	2 246	84/760, 1.3970
	4-Methyl-1-hexene	21	72	2 246	88/760, 1.3985
	5-Methyl-1-hexene	21	70	2246	85/760, 1.3954
		29	21	251	86, 1.3940 ²⁵
	2-Methyl-2-hexene	19	95	2 ³⁷	96
		21	••••	2246	95/760, 1.4075
	3-Methyl-2-hexene	21	75	2 ²⁴⁶	93/760, 1.4080
	4-Methyl-2-hexene	21	92	2 ²⁴⁶	86/760, 1.4000
	5-Methyl-2-hexene	21	91	2 ²⁴⁶	86/760, 1.3995
	2-Methyl-3-hexene	21	78	2246	87/760, 1.3991
	3-Methyl-3-hexene	19	93	2 ³⁷	96
	2-Ethyl-1-pentene	21	62	2 ²⁴⁶	94/760, 1.4050
	2,3-Dimethyl-1-pentene	21	66	2 ²⁴⁶	84/760, 1.4022
	2,4-Dimethyl-1-pentene	21	66	2 ²⁴⁶	81/760, 1.3970
	3,3-Dimethyl-l-pentene	25	67	2 ¹⁶⁵	76/745, 1.3991
	4,4-Dimethyl-l-pentene	22	91	2180	72/760, 1.3911
	(neopentylethylene)	29	85	2 ¹⁸⁰	71, 1.3918

For explanations and symbols see pp. xi-xii.

OLEFINIC COMPOUNDS

Ch. 2

TABLE 2. OLEFINS

61

TABLE	2.	(continued)
INDLE	4.	(commuea)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n _D , (M.p.), Deriv
		Aliphatic	: Olefin	s (continued)	
C 16	1-Hexadecene	21	63	2243	122/3, 1.4410
c	2 Estado do esta	29	47	2 ¹⁸⁹	1 (7) (1)
- <u>20</u>					
		A1i	icyclic	Olefins	
C3	Cyclopropene	26	45	2 ²⁸⁰	-36/744
C 5	Cyclopentene	19	, 83	2 * 9	44/760, 1.4223
		19	90	2435	45
	Methylenecyclobutane	22	70	2 ⁴⁷⁶	42
C ₆	Cyclohexene	19	89	213	82
		19	73	2 40	83
		- 19	73	2 ²⁹	
		34	18	2 499	83/758, 1.4461
	1-Methyl-1-cyclopentene	19	84	2104	75, 1.433522
		19	89	2176	75, 1.4325
		31	34	2 508	75, 1.4300 ²⁵
	3-Methylcyclopentene	29	24 †	2 ¹⁸³	65/760, 1.4207
	1-Methyl-2-cyclopentene	31	14	2 508	65, 1.4198 ²⁵
	Methylenecyclopentane	27	81	2 470	74/745, 1.4354
	Isopropenylcyclopropane	19	80	2170	70.4/760, 1.4254
с,	Cycloheptene	19		2 ²⁰	115/756, 1.4576
		19	80	2 ¹⁸	114/760, 1.4580
	l-Methylcyclohexene	19	80	231	110, 1.4498
	Methylenecyclohexane	24	72	2232	102/738
	3-Ethylcyclopentene	29	48 †	2 183	98/760, 1.4321
	1,2-Dimethyl-1-cyclo- pentene	19	87	228	105
	1, 2-Dimethyl-2-cyclo- pentene	31	16	2 ⁵⁰⁸	92, 1.4265 ²³
C,	l-Ethyl-l-cyclohexene	19	58	211	135/747
		19	80	231	136. 1.4583
	l, l-Dimethyl-l-cyclo- hexene	19	81	210	124/752, 1.4474 ¹⁶
	1,2-Dimethylcyclohexene	34	50	2499	138/760, 1.4612
	3-m-Propylcyclopentene	29	48 t	2183	126/760, 1.4359
	3-Isopropylcyclopentene	29	28 t	2183	121/760, 1.4380
	Allylcyclopentane	29	75	2184	126/739, 1.4410
C,	1-m-Propylcyclohexene	19	80	231	157, 1.4578
	1-Isopropylcyclohexene	19	80	2 31	154. 1.4594
	1-Ethyl-4-methylcyclo- hexene	19	89	2 429	149, 1.4526

For explanations and symbols see pp. xi-xii.

	TABLE 2. (continued)							
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
		Aliphatic	- Olefin	s (continued)				
<u> </u>	3-Ethyl-2-pentene	19	96	225	97/737, 1.4142			
-,	5 [0]]]]]]]]]]]]]]]	19	95	2 ³⁷	97			
		19	84	2 ³⁶	96			
		21	69	2 ²⁴⁶	95/760, 1.4120			
	2.3-Dimethyl-2-pentene	19	54	2 37	95			
	2.4-Dimethyl-2-pentene	19	91	2 ³⁷	83			
	-,	19	49	22	83/760, 1.4018 ²²			
		24	88	2 229	83, 1.4042			
	3.4-Dimethyl-2-pentene	21	60	2246	86/760, 1.4052			
	4.4-Dimethyl-2-pentene	24	71	2 224	77, 1.3983			
	,	25	73	2 165	75/739, 1.3986			
	2-Ethyl-3-methyl-1-	21	84	2 ²⁴⁶	89/760, 1.4120			
	butene	10	~	21	70 1 4030			
	2,3,3-Trimethyl-1-butene	19	67	2-	78, 1.4029			
		19	95	2	78			
C,	1-Octene	24	77	2 229	121, 1.4094			
		24	70	2 46 7	122/760, 1.4087			
		29	••••	24	122/765, 1.4088			
		30	90	2 204	121/760, 1.4088			
	2-Octene (mostly cis)	30		2 ²⁰⁴	126/760, 1.4150			
	trans-2-Octene	30	81	2 204	125/760, 1.4132			
	3-Octene	21	70	2 245	122/760, 1.4136			
	trans-3-Octene	30	98	2 ²⁰⁴	123/760, 1.4129			
	cis-4-Octene	30	80	2 205	72/150, 1.4139			
	trans-4-Octene	30	99	2 ²⁰⁴	122/760, 1.4122			
	4-Methyl-2-heptene	29	27	2 51	114, 1.4100 ²⁵			
	2-Ethyl-1-hexene	24	79	2 229	119, 1.4155			
	2,2-Dimethyl-3-hexene	25	63	2 ¹⁶⁵	100/760, 1.4068			
	4,4-Dimethyl-2-hexene	25	55	2 ¹⁶⁵	104/739, 1.4120			
	2,4,4-Trimethyl-1-	19	78	224	103/742, 1.4086			
	2,2,4-Trimethyl-2-	24	75	2 229	105, 1.4160			
	pentene 2,2,3-Trimethyl-3- pentene	19	52	22	111, 1.4220			
c.	1-Nonene	24	74	2 467	147/760, 1.4157			
-	4-Methyl-2-octene	29	28	2 51	138, 1.4158 ²⁵			
	4,6-Dimethyl-2-heptene	29	36	2 ⁵¹	130, 1.4135 ²⁵			
C 10	3,4-Diethyl-3-hexene	19	85	2 41	158/758, 1.4338			
C 11	4-Methyl-1-decene	29	71	2 ¹⁹⁰	72/12, 1.4241 ²⁵			
C 12	1-Dodecene	24	70	2 227	93/13			
C 13	1-Tridecene	29	7 7	2182	103/10, 1.4328 ²⁵			

OLEFINIC COMPOUNDS

.

Ch. 2

.

	TABLE 2. (continued)						
C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv		
	A	licyclic ()lefins (continued)			
C 10	1-Cyclopentyl-2-cyclo-	29	73	2 ¹⁹⁵	186/760, 1.4760		
C 12	1-Cyclohexylcyclohexene		85	2 ⁵¹³	104/12, 1.493, 127Di		
		Aryl-S	ubstitut	ed Olefins			
с.	Styrene	19	90	2434			
•		19	57	2 🕈	67/60, 1.5470		
		21	89	2 247	146/760, 1.5463		
		27	41	2 252	45/40		
c.	Allvlbenzene	29	82	2 ¹⁸⁵	154/725		
•	l-Phenyl-l-propene	19	60	242	62/11		
		30	50	2 207	167/746, 1.5420		
	α-Methylstyrene	19	71	2 433			
		19	90	21	162/752, 1.537022		
		20	77	2121	72/30. 1.535025		
	p-Methylstyrene	19	83	2 ¹⁶⁶	66/18, 1.5402 ²⁵		
C	cis-2-Phenyl-2-butene	19	59	2 427	94/30, 1.5393 ²⁵		
ωņ	trans-2-Phenyl-2-butene	19	14	2 427	77/30, 1.5192		
	o-Allyltoluene	29	70	2187	181/750, 1.517124		
	<i>p</i> -Allyltoluene	29	75	2 ¹⁸⁷	181/750, 1.5082		
	m-Ethylstyrene	19	93	2 ¹⁶⁶	74/14, 1.5315 ²⁵		
	p-Ethylstyrene	19	83	2166	68/16, 1.5350 ²⁵		
	2.4-Dimethylstyrene	19	85	2 ¹⁰⁷	79/12, 1.539		
	-,,,,,	19	71	222	90/25, 1.5423		
	2.5-Dimethylstyrene	19	88	222	83/23, 1.5395		
	3.4-Dimethylstyrene	19	80	222	96/26, 1.5463		
	3.5-Dimethylstyrene	19	87	222	58/4, 1.5382		
	a, 4-Dimethyl styrene	20	60	2121	77/19, 15290 25		
	1,4-Dihydronaphthalene	22	67	2271	(25)		
С,,	<i>m</i> -Allylethylbenzene	29	65	2 ¹⁸⁶	88/18		
C	m-s-Butylstyrene	19	61	2 23	98/15, 1.5246		
- 14	<i>m</i> - <i>t</i> -Butylstyrene	19	61	223	100/17, 1.5234		
	<i>p-t</i> -Butyl styrene	19	76	2166	100/14, 1.5245 ²⁵		
	3. S-Diethylstyrene	19	83	2166	107/15, 1.5280 25		
	a-Vinvlnaphthalene	19	57	2166	87/2.0. 1.6436 ²⁵		
	β -Vinylnaphthalene	19	75	2166	79/2.5, (66)		
С.,	α -Allvinaphthalene	29	81	2188	128/8, 1.6089 ²⁵		
- <u>1</u>	1.1-Diphenvlethylene	19	70 t	214	113/2		
⊂ 14	cis-Stilbene (isostilbene)	27	65	2254	134/10		
	cie carbene (aboutbene)	30	80	2 ²⁰⁵	145/18, 1.6265		
	teme-Stilbere	19	57	212	(124)		

TABLE 3. DIOLEFINS

TABLE 2. (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aryl-S	ubstitute	d Olefin	s (continued)	
C 14	Stilbene	19	55	230	(124), 238Di
		28	25	2 ²⁷³	(125)
		32	45	2 ²⁸⁷	(124)
	o-Vinylbiphenyl	19	70	2 ¹⁷²	116/1, 1.6168 ²⁵
	<i>m</i> •Vinylbiphenyl	19	55	2 ¹⁷²	112/1, 1.6263 ²⁵
	p-Vinylbiphenyl	19	82	2 172	137/6, (119)
	l-(β-Naphthyl)-1-butene	20	81 †	2446	(40)
C 15	1, 1-Diphenyl-1-propene	19	70	2 ³⁵	
	o-Methylstilbene	28	12	2 477	125/0.15, 159Di
	<i>m</i> -Methylstilbene	28	14	2477	(48), 176Di
	p-Methylstilbene	28	32	2 ²⁷³	(120), 188Di *
	2-Vinylfluorene	19	28	2 ¹⁶⁶	(134)
C 16	1,3-Diphenyl-1-butene	22	89	2 474	167/9, 1.5930
	α , α -Dimethyl stilbene	32	18	2 ²⁸⁸	(106), 153Di
	<i>cis</i> -α,α'-Dimethylstilbene	33	40	2 276	(67)
	1-Vinylacenaphthene	19	32	2 ¹⁶⁶	135/2, 1.651225
C 20	Triphenylethylene	19	59	2 431	(69)

For explanations and symbols see pp. xi-xii.

TABLE 3. DIOLEFINS

C _n	Compound	Meth od	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphatic I	Diolefini	ic Hydrocarbo	ons
C,	Allene	22		2 \$16	•34/762
C4	Methylallene	22	72	2 ²⁶³	10, 1.4205 ¹
	1,3-Butadiene	20	30	2122	
		22	90	2270	-4
		34	75	2 ⁵¹¹	
С s	l,2-Pentadiene (ethylallene)	22	70	2 ²⁶⁵	45, 1.4149
	1,3-Pentadiene	19		26	43, 1.4309
		23	72	2 #	42/770, 1.4304
		24	65	2 230	44, 1.4314, 114Te
	1,4-Pentadiene	21	75	2 ⁵¹⁶	26/767
		21	53	2 ²⁴⁸	29/742, 1.3880, 86Te
		24	91	2 230	27, 1.3865 ²⁶ , 86Te
		29	15	2 199	26/756, 1.3883

For explanations and symbols see pp. xi-xii.
OLEFINIC COMPOUNDS

Ch. 2

TABLE	3. ((continued)
-------	------	-------------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic I	Diolefini	ic Hydro	carbons (con	tinued)
C.	1,4-Octadiene	24	57	2 461	119/746, 1.432215
•	2,4-Octadiene	19	33	2 ⁵¹	134, 1.454225
	2,4,6-Octatriene	19	43	2 ⁵⁶	45/11
	4-Methyl-1,5-heptadiene	29	49	2 ⁵¹	111, 1.4213 ²⁵
	2, 2-Dimethyl-3, 4-hexadiene	19	19	2 ⁵¹	108, 1.4425 ²⁵
	2,5-Dimethyl-1,5- hexadiene	29	80	2 203	137/760
	2,5-Dimethylhexatriene	33	27	2 ²⁶⁹	90/200, 1.5150 ²¹
C,	trans-trans-2,7-Nonadiene	30	79	2 ²⁰⁴	150/760, 1,4358
-	2,5,5-Trimethyl-1,3- hexadiene	19	27 †	2 ⁵⁰	128/732, 1.4489
	2-n-Amyl-1,3-butadiene	24	43	2 173	69/65, 1.4450
C 10	4,5-Dimethyl-2,6- octadiene	29	38	2 ⁵¹	154, 1.4375 ²⁵
	1,1-Dimethyl-3-t-butyl- 1,3-butadiene	19	64	248	59/32
	A1	icyclic I	Diolefini	c Hydrocarbo	ns
C,	Cyclopentadiene	34		2516	41/772
C.	1,3-Cyclohexadiene	20	90	2124	
	Cyclohexadiene	23	57	2 ⁵¹⁶	80/757, 1.4740
	1,4-Dihydrobenzene	4	65 t	2 ⁸⁰	89
с,	Cycloheptadiene	26	90	218	121/758
•	Cycloheptatriene	20	66	218	115/760 1.5243
	1-Vinyl-1-cyclopentene	19	88	25	114
C.	I-Viewl 1. and have a	20		- 212	1 (5 1 (01114
C	le (3- Butonul), 1- sucle	50 10	44	2	14), 1.4911**
	hexene	19	70	2-	62/10, 1.4/4)-*
	Ar	omatic I	Diolefini	c Hydrocarbo	ons
С 10	1-Phenyl-1, 2-butadiene	22	77	2264	77/10, 1.571624
	trans-1-Phenyl-1,3- butadiene	19	75	2 ¹⁰⁸	78-81/8, 1.6090
	β -Phenylbutadiene	20	46 †	2 518	67/13
	<i>p</i> -Divinylbenzene	19	83	2 ¹⁶⁶	46/1, (31)
		27	45	2493	(31)
С 12	1, 3, 5-Trivinylbenzene	19	75	2 53	73/0.5. 1.5967
C 16	l,4-Diphenylbutadiene (bistyryl)	38	25	2 ³⁹⁷	(153)
_	2,3-Diphenylbutadiene	19	80	2 518	(51)

For explanations and symbols see pp. xi-xii.

	TABLE 3. (continue d)								
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aliphatic	Diolefini	c Hydro	carbons (cont	timued)				
Cs	2-Methyl-1,3-butadiene	19		26	34/748, 1.4207				
	(isoprene)	19	88	247	34				
		34	58	2 ^{51 2}					
C6	1,2-Hexadiene (n- propylallene)	22	70	2 ²⁶⁵	78, 1.4298 ¹⁷				
		40	71	2 52 5	75/740, 1.4282				
	1,4-Hexadiene	21	67	2 ²⁴⁸	64/745, 1.4162, 64Te				
	•	24	34	2 ⁴⁶¹	66/761, 1.4167 ¹⁶				
	1,5-Hexadiene (biallyl)	29	65	2 ¹⁹⁴	60/760, 1.4040				
	2,4-Hexadiene	24	66	2 ²²⁹	78-81, 1.4469				
	1,3,5-Hexatriene	19	64	2 ¹⁷⁵	80, 1.503528				
		33	30	2 ²⁶⁸	75/748, 1.4770 ²⁵				
	4-Methyl-1,2-pentadiene (isopropylallene)	22	70	2 ²⁶⁵	70, 1.4232 ²²				
	2-Methyl-1,3-pentadiene	19		2 6	76/765, 1.4467				
	3-Methyl-1,3-pentadiene	19	64	2 52	75-80				
		19		26	78/747, 1.4511				
		19	42	2 ⁵⁴	78, 1.4561 ²¹				
	4-Methyl-1, 3-pentadiene	19	23	245	76/760				
		20		2 ⁶	77/758, 1.4525				
	2-Ethylbutadiene	24	23	2 ¹⁷³	66, 1.4325				
•	2,3-Dimethyl-1,3- butadiene	19	72	2*9	69/765, 1.4390				
		19	86	2**	70				
		19	60	243	70				
		24	85	2 ²³¹	69				
c,	1,2-Heptadiene (n- butylallene)	22	70	2 ²⁶⁵	106, 1.4360 ²¹				
	1,4-Heptadiene	21	42	2248	92/755, 1.4202				
		24	80	2 461	93/772, 1.4273 ¹¹				
	1,6-Heptadiene	30	61	2 204	90/760, 1.4142				
	5-Methyl-1,2-hexadiene (isobutylallene)	22	70	2 ²⁶⁵	96, 1.4282 ¹⁹				
	4-Methyl-1,3-hexadiene	19	88	2 1 23	98, 1.4342 ²⁵				

2¹²⁴

2**3**

2173

2 **

2 48

107/760

93, 1.4412

86, 1.4337

95/771

93

20

19

24

19

19

68

54

65

58 t

60 t

2-Methyl-2,4-hexadiene

2,4-Dimethyl-1,3-penta-

2-Isopropyl-1, 3-butadiene

1,1,3-Trimethyl-1,3-

butadiene

diene

REFERENCES FOR CHAPTER 2

¹Sabetay, Bull. soc. chim. France, 47, 614 (1930). ²Wibaut et al., Rec. trav. chim., 58, 329 (1939). ³Waterman and Kok, Rec. trav. chim., 52, 234 (1933). ⁴Waterman and Kok, Rec. trav. chim., 53, 725 (1934). ⁵Backer and vander Bij, Rec. trav. chim., 62, 564 (1943). ⁶Farmer and Warren, J. Chem. Soc., 3221 (1931). 'Newth, J. Chem. Soc., 79, 917 (1901). ^aLinstead et al., *I. Chem. Soc.*, 1138 (1937). ⁹Griffith, I. Chem. Soc., 715 (1945). ¹⁰ Elliott and Linstead, J. Chem. Soc., 662 (1938); Hibbit and Linstead, ibid., 474 (1936). ¹¹ Baker and Groves, J. Chem. Soc., 1148 (1939). 12 Shriner and Berger, Org. Syntheses, 23, 86 (1943); Ballard and Dehn, J. Am. Chem. Soc., 54, 3969 (1932). ¹³ Coleman and Johnstone, Org. Syntheses, Coll. Vol. I, 183 (1941); Hershberg and Ruhoff, ibid., 184 (1941). ¹⁴ Allen and Converse, Org. Syntheses, Coll. Vol. I, 226 (1941). ¹⁵Norris, Org. Syntheses, Coll. Vol. I, 430 (1941). ¹⁶Lucas, Schlatter, and Jones, J. Am. Chem. Soc., 63, 27 (1941). ¹⁷ Cramer and Glasebrook, J. Am. Chem. Soc., 61, 230 (1939). ¹⁸ Kohler et al., J. Am. Chem. Soc., 61, 1058 (1939). 19 Walling, Kharasch, and Mayo, J. Am. Chem. Soc., 61, 2695 (1939). ²⁰ Pines, Edeleanu, and Ipatieff, J. Am. Chem. Soc., 67, 2194 (1945). ²¹ Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2240 (1945). ²² Marvel, Saunders, and Overberger, J. Am. Chem. Soc., 68, 1085 (1946). ²³ Marvel, Allen, and Overberger, J. Am. Chem. Soc., 68, 1088 (1946). ²⁴ Whitmore et al., J. Am. Chem. Soc., 64, 2970 (1942). ²⁵ Church, Whitmore, and McGrew, J. Am. Chem. Soc., 56, 180 (1934). 26 Lucas, Prater, and Morris, J. Am. Chem. Soc., 57, 723 (1935); Young and Lucas, ibid., 52, 1964 (1930); Wilson and Lucas, ibid., 58, 2398 (1936). ²⁷ Kistiakowsky et al., J. Am. Chem. Soc., 57, 876 (1935). ²⁸ Bartlett and Bayley, I. Am. Chem. Soc., 60, 2418 (1938). 29 Bartlett and Berry, J. Am. Chem. Soc., 56, 2684 (1934). ³⁰ Pearl and Dehn, J. Am. Chem. Soc., 60, 58 (1938). ³¹ Signaigo and Cramer, J. Am. Chem. Soc., 55, 3329 (1933). ³² Whitmore and Meunier, J. Am. Chem. Soc., 55, 3721 (1933); Whitmore and Rothrock, ibid., 55, 1106 (1933). 33 Whitmore and Stahly, J. Am. Chem. Soc., 55, 4153 (1933). ³⁴ Pines, J. Am. Chem. Soc., 55, 3892 (1933). ³⁵Hussey, Marvel, and Hager, J. Am. Chem. Soc., 52, 1123 (1930). ³⁶Lucas, I. Am. Chem. Soc., 51, 252 (1929). ³⁷ Edgar, Calingaert, and Marker, J. Am. Chem. Soc., 51, 1485 (1929). ³⁸Norris and Joubert, J. Am. Chem. Soc., 49, 884 (1927). ³⁹ Adkins and Perkins, J. Am. Chem. Soc., 47, 1163 (1925). 40 Osterberg and Kendall, J. Am. Chem. Soc., 42, 2620 (1920). ⁴¹ Koch and Hilberath, Ber., 73, 1171 (1940). 42 Wittig and Harborth, Ber., 77, 319 (1944). 43 Allen and Bell, Org. Syntheses, 22, 39 (1942); Kilby and Kipping, J. Chem. Soc., 437 (1939).

44 Newton and Coburn, Org. Syntheses, 22, 40 (1942). 45 Bachman and Goebel, J. Am. Chem. Soc., 64, 787 (1942). 46 Jitkow and Bogert, J. Am. Chem. Soc., 63, 1981 (1941). 47 Taylor and Shenk, J. Am. Chem. Soc., 63, 2756 (1941). 48 Fieser and Wieghard, J. Am. Chem. Soc., 62, 154 (1940). 49 Dolliver et al., 1. Am. Chem. Soc., 59, 833 (1937). ⁵⁰ Campbell, J. Am. Chem. Soc., 59, 1982 (1937). ⁵¹ Mulliken, Wakeman, and Gerry, J. Am. Chem. Soc., 57, 1607 (1935). 52 Kyrides, J. Am. Chem. Soc., 55, 3434 (1933). 53 Mowry and Ringwald, J. Am. Chem. Soc., 72, 2037 (1950). 54 Fisher and Chittenden, Ind. Eng. Chem., 22, 869 (1930). 55 Bacon and Farmer, J. Chem. Soc., 1065 (1937). ⁵⁶ Kuhn and Grundmann, Ber., 71, 445 (1938). 57 Kharasch, Rossin, and Fields, J. Am. Chem. Soc., 63, 2560 (1941). 58 Price and Marshall, J. Org. Chem., 8, 532 (1943). 59 Hill and Fischer, J. Am. Chem. Soc., 44, 2582 (1922). 60 Emerson and Agnew, J. Am. Chem. Soc., 67, 518 (1945). 61 Emerson and Lucas, J. Am. Chem. Soc., 70, 1180 (1948); cf. ref. 437. 62 Marvel and Moon, I. Am. Chem. Soc., 62, 47 (1940); cf. ref. 437. 63 Porter and Suter, J. Am. Chem. Soc., 57, 2024 (1935). ⁶⁴ Marvel, Allen, and Overberger, J. Am. Chem. Soc., 68, 1089 (1946). ⁶⁵ Kamm and Marvel, Org. Syntheses, Coll. Vol. I, 42 (1941). 66 Urion, Ann. chim., (11) 1, 33 (1934). ⁶⁷Conant and Tuttle, Org. Syntheses, Coll. Vol. I, 345 (1941). 68 Stross, Monger, and Finch, J. Am. Chem. Soc., 69, 1627 (1947). 69 Bourdiol, Calcagni, and Ducasse, Bull. soc. chim. France, (5) 8, 380 (1941). ⁷⁰ Milas et al., I. Am. Chem. Soc., 70, 1602 (1948). ⁷¹ Kyrides, J. Am. Chem. Soc., 55, 3431 (1933); Powell, ibid., 46, 2514 (1924). ⁷² Smith, Chase, and Rhodes, J. Am. Chem. Soc., 66, 1548 (1944). ⁷³ Powell and Ballard, J. Am. Chem. Soc., 60, 1914 (1938). 74 Powell and Hagemann, J. Am. Chem. Soc., 66, 372 (1944). ⁷⁵Colonge, Bull. soc. chim. France, (5) 3, 415 (1936). ⁷⁶ Rapson, I. Chem. Soc., 1626 (1936). ⁷⁷ Vavon and Flurer, Bull. soc. chim. France, (4) 45, 755 (1929). ⁷⁸ Allen, Gates, and Van Allan, Org. Syntheses, 27, 30 (1947). ⁷⁹ Bartlett and Woods, J. Am. Chem. Soc., 62, 2935 (1940). ⁸⁰ Bardhan and Banerji, J. Chem. Soc., 477 (1935). ⁸¹ Bruce, Org. Syntheses, Coll. Vol. II, 12 (1943). ⁸² Kloetzel, J. Am. Chem. Soc., 62, 1710 (1940). ⁸³ Young, Dillon, and Lucas, J. Am. Chem. Soc., 51, 2528 (1929). ⁸⁴ Lucas and Prater, I. Am. Chem. Soc., 59, 1682 (1937). ⁸⁵ Natelson and Gottfried, J. Am. Chem. Soc., 58, 1435 (1936). ⁸⁶Schwenk and Papa, J. Am. Chem. Soc., 67, 1432 (1945). ⁸⁷ Shriner in Organic Reactions, Vol. I, John Wiley & Sons, New York, 1942, pp. 11-14. ⁸⁸ Braun, J. Am. Chem. Soc., 52, 3170 (1930). 89 Bohnsack, Ber. 74, 1582 (1941); cf. ref. 421. 90 Linstead and Meade, J. Chem. Soc., 942 (1934). ⁹¹Cook and Linstead, J. Chem. Soc., 956 (1934).

92 Cook and Lawrence, J. Chem. Soc., 1637 (1935).

93 Kon and Nargund, J. Chem. Soc., 2461 (1932). ⁹⁴ Huston, Goemer, and György, J. Am. Chem. Soc., 70, 390 (1948). ⁹⁵ Linstead, Whetstone, and Levine, J. Am. Chem. Soc., 64, 2019 (1942). ⁹⁶ Emerson et al., J. Am. Chem. Soc., 68, 674 (1946). 97 Emerson et al., J. Am. Chem. Soc., 68, 1665 (1946). 96 Rapson and Robinson, J. Chem. Soc., 1538 (1935). 99 Koelsch, J. Am. Chem. Soc., 65, 2462 (1943). 100 Gotkis and Cloke, I. Am. Chem. Soc., 56, 2711 (1934). ¹⁰¹ King and Robinson, I. Chem. Soc., 467 (1941). ¹⁰² Kern and Fernow, J. prakt. Chem., 160, 297 (1942). 103 Jacobs et al., J. Am. Chem. Soc., 68, 1311 (1946). ¹⁰⁴ Piaux, Ann. chim., (11) 4, 209 (1935). ¹⁰⁵ Marvel and Schertz, J. Am. Chem. Soc., 65, 2056 (1943). ¹⁰⁶ Brown and Marvel, J. Am. Chem. Soc., 59, 1177 (1937). ¹⁰⁷ Harispe, Ann. chim., (11) 6, 342 (1936). 108 Grummitt and Becker, Org. Syntheses, 30, 75 (1950). ¹⁰⁹ Prevost, Bull. soc. chim. France, (5) 8. 89 (1941). 110 Milas, MacDonald, and Black, J. Am. Chem. Soc., 70, 1831 (1948). ¹¹¹ Thompson, Milas, and Rovno, J. Am. Chem. Soc., 63, 754 (1941). ¹¹² Bardan, Bull. soc. chim. France. (4) 49, 1551 (1931). ¹¹³ Bardan, Bull. soc. chim. France, (5) 1, 368 (1934). 114 Sherrill, Otto, and Pickett, J. Am. Chem. Soc., 51, 3028 (1929). ¹¹⁵Olson and Whitacre, I. Am. Chem. Soc., 65, 1019 (1943). ¹¹⁶ Whitmore et al., J. Am. Chem. Soc., 63, 126 (1941). 117 Whitmore et al., J. Am. Chem. Soc., 62, 795 (1940). ¹¹⁸ Asinger, Ber., 75, 1247 (1942). ¹¹⁹ Ward and Fulweiler, I. Am. Chem. Soc., 56, 1641 (1934). ¹²⁰ Loevenich et al., Ber., 62, 3084 (1929). 121 Bachman and Hellman, J. Am. Chem. Soc., 70, 1772 (1948). 122 Muskat and Northrup, J. Am. Chem. Soc., 52, 4050 (1930). 123 Milas and McAlevy, J. Am. Chem. Soc., 57, 580 (1935). ¹²⁴ Ziegler et al., Ann., 551, 113 (1942). 125 Semb and McElvain, I. Am. Chem. Soc., 53, 690 (1931). ¹²⁶ Noller and Dinsmore, J. Am. Chem. Soc., 54, 1025 (1932). 127 French, McShan, and Johler, J. Am. Chem. Soc., 56, 1346 (1934). 128 French and Wade, I. Am. Chem. Soc., 57, 1574 (1935). 129 Burkhardt and Cocker, Rec. trav. chim., 50, 843 (1931). 130 Spence, J. Am. Chem. Soc., 55, 1290 (1933). ¹³¹ Lespieau and Bourguel, Org. Syntheses, Coll. Vol. I, 209 (1941). ¹³²Hurd and Webb, J. Am. Chem. Soc., 58, 2191 (1936). ¹³³ Henne and Haeckl, J. Am. Chem. Soc., 63, 2692 (1941). ¹³⁴ Prins, Rec. trav. chim., 54, 250 (1935). 135 Kharasch and Fuchs, J. Am. Chem. Soc., 65, 506 (1943). 136 Wittig and Harborth, Ber., 77, 311 (1944). 137 Wittig and Harborth, Ber., 77, 320 (1944). 138 Schmitt and Boord, J. Am. Chem. Soc., 54, 758 (1932). 139 Sherrill and Walter, J. Am. Chem. Soc., 58, 742 (1936). 140 Dolliver et al., I. Am. Chem. Soc., 60, 440 (1938). 141 Ruigh and Major, J. Am. Chem. Soc., 53, 2662 (1931). 142 Powell and Adams, J. Am. Chem. Soc., 42, 652 (1920).

143 McElvain and Fajardo-Pinzón, J. Am. Chem. Soc., 67, 652 (1945). 144 Hurd and Botteron, J. Am. Chem. Soc., 68, 1200 (1946). 145 Frank et al., J. Am. Chem. Soc., 68, 1365 (1946). 146 Ouelet, Bull. soc. chim. France, (5) 7, 196, 205 (1940). 147 Nield, J. Am. Chem. Soc., 67, 1145 (1945). 148 Allen et al., J. Am. Chem. Soc., 62, 663 (1940). 149 Colonge, Bull. soc. chim. France, (5) 3, 2116 (1936). ¹⁵⁰Colonge and Mostafavi, Bull. soc. chim. France, (5) 6, 342 (1939). ¹⁵¹ Cromwell, Cram, and Harris, Org. Syntheses, 27, 9 (1947). 152 Christ and Fuson. I. Am. Chem. Soc., 59, 895 (1937). 153 Dev. I. Chem. Soc., 1059 (1937). 154 Guha and Sankaran, Org. Syntheses, 26, 57 (1946). 155 Gardner and Rydon, J. Chem. Soc., 53 (1938). 156 Phillips, J. Chem. Soc., 2981 (1926). ¹⁵⁷ v. Braun and Nelles, Ber., 66, 1467 (1933). 158 Marvel et al., J. Am. Chem. Soc., 62, 3497 (1940). 159 Philippi, Hendgen, and Hernler, Monatsch., 69, 279 (1936). 160 Glattfeld and Rietz, J. Am. Chem. Soc., 62, 976 (1940). ¹⁶¹ Newman and Rosher, J. Org. Chem., 9, 221 (1944). 162 Marvel and Cowan, J. Am. Chem. Soc., 61, 3158 (1939). 163 Cason et al., J. Am. Chem. Soc., 66, 1764 (1944). 164 Murfitt and Roberts, J. Chem. Soc., 372 (1944). 165 Schurman and Boord, I. Am. Chem. Soc., 55, 4930 (1933). 166 Mowry, Renoll, and Huber, J. Am. Chem. Soc., 68, 1105 (1946). 167 Marvel. Myers, and Saunders, J. Am. Chem. Soc., 70, 1694 (1948). ¹⁶⁸ Bergmann and Szmuszkowicz, J. Am. Chem. Soc., 70, 2748 (1948). 169 Huntress and Sanchez-Nieva, J. Am. Chem. Soc., 70, 2813 (1948). ¹⁷⁰ Volkenburgh et al., J. Am. Chem. Soc., 71, 172 (1949). ¹⁷¹ Fieser, Leffler et al., J. Am. Chem. Soc., 70, 3209 (1948); cf. ref. 413. ¹⁷² Huber et al., J. Am. Chem. Soc., 68, 1109 (1946). 173 Marvel and Williams, J. Am. Chem. Soc., 70, 3842 (1948). 174 Sobotka and Chanley, J. Am. Chem. Soc., 70, 3915 (1948). ¹⁷⁵ Woods and Schwartzman, J. Am. Chem. Soc., 70, 3394 (1948). ¹⁷⁶Lutz et al., J. Am. Chem. Soc., 70, 4140 (1948). 177 Lucas and Dillon, J. Am. Chem. Soc., 50, 1461 (1928); Regier and Blue, J. Org. Chem., 14, 507 (1949). 178 Hurd, Goodyear, and Goldsby, I. Am. Chem. Soc., 58, 235 (1936). ¹⁷⁹ Wilkinson, J. Chem. Soc., 3057 (1931). 180 Whitmore and Homeyer, J. Am. Chem. Soc., 55, 4556 (1933). 181 Danehy, Killian, and Nieuwland, J. Am. Chem. Soc., 58, 611 (1936). 182 Kozacik and Reid, J. Am. Chem. Soc., 60, 2436 (1938). 183 Crane, Boord, and Henne, J. Am. Chem. Soc., 67, 1237 (1945). 184 Coleman, Callen, and Dornfeld, J. Am. Chem. Soc., 68, 1101 (1946); Whitmore et al., ibid., 67, 2060 (1945). ¹⁸⁵ Hershberg, Helv. Chim. Acta, 17, 352 (1934). 186 Lewis and Elderfield, J. Org. Chem., 5, 296 (1940). 187 Hurd and Bollman, J. Am. Chem. Soc., 56, 447 (1934). 188 Fieser and Hershberg, J. Am. Chem. Soc., 60, 1662 (1938). 189 Suida and Drahowzal, Ber., 75, 997 (1942). ¹⁹⁰ Letsinger and Traynham, J. Am. Chem. Soc., 70, 3342 (1948); 72, 850 (1950).

REFERENCES FOR CHAPTER 2

¹⁹¹ Pummerer and Schönamsgruber, Ber., 72, 1839 (1939). 192 Palomaa, Ber., 77, 65 (1944). 193 Kharasch and Fuchs, J. Org. Chem., 9, 364 (1944). ¹⁹⁴ Turk and Chanan, Org. Syntheses, 27, 7 (1947); Cortese, J. Am. Chem. Soc., 51, 2266 (1929). ¹⁹⁵ Goheen, J. Am. Chem. Soc., 63, 746 (1941). 196 Lespieau and Bourguel, Org. Syntheses, Coll. Vol. I, 186 (1941). 197 Henne, Chanan, and Turk, J. Am. Chem. Soc., 63, 3474 (1941). 198 Young, Roberts, and Wax, J. Am. Chem. Soc., 67, 841 (1945). 199 Kogerman, J. Am. Chem. Soc., 52, 5060 (1930). 200 Ozanne and Marvel, J. Am. Chem. Soc., 52, 5269 (1930). 201 Johnson and McEwen, J. Am. Chem. Soc., 48, 473 (1926). 202 Gredy, Ann. chim., (11) 4, 23 (1935). 203 Schales, Ber., 70, 119 (1937); Ott, Marple, and Hearne, Ind. Eng. Chem., 33, 120 (1941). ²⁰⁴ Henne and Greenlee, J. Am. Chem. Soc., 65, 2020 (1943). 205 Campbell and Young, J. Am. Chem. Soc., 65, 965 (1943). 206 Campbell and Eby, J. Am. Chem. Soc., 63, 216, 2683 (1941). 207 Campbell and O'Connor, J. Am. Chem. Soc., 61, 2897 (1939); Dupont, Bull. soc. chim. France, (5) 3, 1030 (1936). 208 Thompson and Wyatt, J. Am. Chem. Soc., 62, 2555 (1940). 209 Sherrill and Matlack, J. Am. Chem. Soc., 59, 2134 (1937). ²¹⁰ McElvain et al., J. Am. Chem. Soc., 62, 1482 (1940); 64, 1966, 2525 (1942); 68, 1922 (1946). ¹¹¹ Kharasch, Walling, and Mayo, J. Am. Chem. Soc., 61, 1559 (1939). ²¹² Heilbron, Jones, and Richardson, J. Chem. Soc., 291 (1949). 213 Taylor and Shenk, J. Am. Chem. Soc., 63, 2756 (1941). ²¹⁴ John son, J. Chem. Soc., 1015 (1946); Valette, Ann. chim., (12) 3, 667 (1948). ²¹⁵Heilbron et al., J. Chem. Soc., 86 (1945). 216 Golse, Ann. chim., (12) 3, 538 (1948). ²¹⁷ Gredy, Bull. soc. chim. France, (5) 3, 1096 (1936). ²¹⁸ Bourguel, Bull. soc. chim. France, (4) 45, 1067 (1929). ²¹⁹ Ahmad and Strong, J. Am. Chem. Soc., 70, 1700 (1948). ²²⁰ Ruggli and Zaeslin, Helv. Chim. Acta, 18, 855 (1935). ²²¹ Ruggli and Lang, Helv. Chim. Acta, 19, 1002 (1936). 222 Smith and Rouault, J. Am. Chem. Soc., 65, 747 (1943). 223 Whitmore and Rothrock, J. Am. Chem. Soc., 55, 1106 (1933); Cramer and Mulligan, ibid., 58, 373 (1936); Wibaut and Gitsels, Rec. trav. chim., 60, 241 (1941). 224 Cramer and Miller, J. Am. Chem. Soc., 62, 1452 (1940). 225 Dover and Hensley, Ind. Eng. Chem., 27, 337 (1935). 226 Asinger and Eckoldt, Ber., 76B, 589 (1943). ²²⁷ Asinger, Ber., 75B, 663 (1942); Baumgarten, ibid., 75B, 980 (1942). ²²⁸ Colonge, Bull. soc. chim. France, (5) 9, 732 (1942). ²²⁹ Wibaut and Van Pelt, Rec. trav. chim., 57, 1055 (1938); ibid., 60, 55 (1941). 230 Schniepp and Geller, J. Am. Chem. Soc., 67, 54 (1945). 231 Lebedev and Yakubchik, J. Chem. Soc., 2191 (1928). 232 Amold and Dowdall, J. Am. Chem. Soc., 70, 2590 (1948). ²³³ Bergmann, Weizman, and Schapiro, J. Org. Chem., 9, 408 (1944). 234 Rehberg and Fisher, J. Am. Chem. Soc., 67, 56 (1945).

²³⁵ Smith et al., Ind. Eng. Chem., 34, 473 (1942). ²³⁶ Filachione, Lengel, and Fisher, J. Am. Chem. Soc., 66, 495 (1944). 237 Fisher, Rehberg, and Smith, J. Am. Chem. Soc., 65, 763 (1943). 238 Snyder, Stewart, and Myers, J. Am. Chem. Soc., 71, 1055 (1949). ²³⁹ Burns, Jones, and Ritchie, J. Chem. Soc., 405 (1935). 240 Blomquist, Tapp, and Johnson, J. Am. Chem. Soc., 67, 1522 (1945); Gold, ibid. 68. 2544 (1946). ²⁴¹Nightingale and Janes, J. Am. Chem. Soc., 66, 352 (1944); Parham and Bleasdale, ibid., 72, 3844 (1950). 242 Whitmore and Simpson, J. Am. Chem. Soc., 55, 3809 (1933). 243 Niemann and Wagner, J. Org. Chem., 7, 228 (1942). ²⁴⁴ Dykstra, Lewis, and Boord, J. Am. Chem. Soc., 52, 3396 (1930). 245 Wibaut and Gitsels, Rec. trav. chim., 59, 947 (1940). 246 Soday and Boord, J. Am. Chem. Soc., 55, 3293 (1933). 247 Waterman and de Kok, Rec. trav. chim., 53, 1133 (1934). 248 Shoemaker and Boord, J. Am. Chem. Soc., 53, 1505 (1931). 249 Anzilotti and Vogt, J. Am. Chem. Soc., 61, 572 (1939). ²⁵⁰ Golse, Ann. chim. (12) 3, 542 (1948). ²⁵¹ Jacobs, Cramer, and Hanson, J. Am. Chem. Soc., 64, 223 (1942). ²⁵² Abbott and Johnson, Org. Syntheses, Coll. Vol. I, 440 (1941); cf. ref. 255. ²⁵³ Lauer and Spielman, J. Am. Chem. Soc., 53, 1533 (1931). ²⁵⁴ Taylor and Crawford, J. Chem. Soc., 1130 (1934); Kayser, Ann. chim., (11) 6, 221 (1936). 255 Walling and Wolfstim, J. Am. Chem. Soc., 69, 852 (1947). ²⁵⁶ Marvel and Hein, J. Am. Chem. Soc., 70, 1897 (1948). ²⁵⁷ Wiley and Smith, J. Am. Chem. Soc., 70, 1560 (1948). ²⁵⁸ Wiley and Smith, J. Am. Chem. Soc., 70, 2296 (1948). ²⁵⁹ Weygand and Gabler, Ber., 71B, 2476 (1938). 260 Winstein, Pressman, and Young, J. Am. Chem. Soc., 61, 1646 (1939). 261 Farrell and Bachman, J. Am. Chem. Soc., 57, 1281 (1935); Bachman, ibid., 55, 4279 (1933). ¹⁶² Bogert and Davidson, J. Am. Chem. Soc., 54, 334 (1932). ²⁶³ Hurd and Meinert, J. Am. Chem. Soc., 53, 293 (1931). ²⁶⁴ Acree and LaForge, J. Org. Chem., 4, 573 (1939). ²⁶⁵ Bouis, Ann. chim., (10) 9, 438 (1928). ²⁶⁶ Wilson, J. Chem. Soc., 50 (1945). ²⁶⁷ Summerbell and Umhoefer, J. Am. Chem. Soc., 61, 3017, 3020 (1939). 268 Kharasch and Sternfeld, J. Am. Chem. Soc., 61, 2318 (1939); Howton, J. Org. Chem., 14, 7 (1949). ²⁶⁹ Kharasch, Nudenberg, and Sternfeld, J. Am. Chem. Soc., 62, 2034 (1940). ²⁷⁰ Hickinbottom, Reactions of Organic Compounds, Longmans, Green & Co., New York, 1948, p. 400; Thiele, Ann., 308, 339 (1899). ²⁷¹ Strauss, Ber., 46, 1054 (1913); cf. ref. 270. ²⁷² Fuson and Cooke, J. Am. Chem. Soc., 62, 1180 (1940). ²⁷³ Meerwein, Büchner, and Emster, J. prakt. Chem., 152, 242, 256 (1939). ²⁷⁴ Bergmann and Weizman, J. Org. Chem., 9, 415 (1944). ²⁷⁵ Koelsch, J. Am. Chem. Soc., 65, 57 (1943). ²⁷⁶ Kharasch and Kleiman, J. Am. Chem. Soc., 65, 14 (1943). ²⁷⁷ Bergmann and Weinberg, J. Org. Chem., 6, 134 (1941). ²⁷⁸ Bergmann, Dimant, and Japhe, J. Am. Chem. Soc. 70, 1618 (1948).

REFERENCES FOR CHAPTER 2

73

²⁷⁹ Stevens and Richmond, J. Am. Chem. Soc., 63, 3132 (1941). 280 Schlatter, J. Am. Chem. Soc., 63, 1733 (1941). ²⁸¹ Ingold et al., J. Chem. Soc., 997 (1927); 3125 (1928); 68, 69 (1933). 282 Hofmann, Ber., 14, 494, 659 (1881). 283 Blicke in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 318. 284 Blomquist and Shelley, J. Am. Chem. Soc., 70, 147 (1948). 285 Burckhalter and Fuson, J. Am. Chem. Soc., 70, 4184 (1948). 286 Mannich and Ritsert, Ber., 57, 1116 (1924). 287 Wood et al., J. Am. Chem. Soc., 63, 1334 (1941). 288 Cline, Campaigne, and Spies, J. Am. Chem. Soc., 66, 1136 (1944). 289 Schönberg, Schütz, and Nickel, Ber., 61, 1383 (1928). 290 Kon and Leton, J. Chem. Soc., 2496 (1931); Abbott, Kon, and Satchell, ibid., 2514 (1928). ²⁹¹ Landau and Irany, J. Org. Chem., 12, 422 (1947); McMahon et al., J. Am. Chem. Soc., 70, 2971 (1948); Wagner, ibid., 71, 3215 (1949). 292 Campbell, J. Am. Chem. Soc., 59, 1982 (1937). ²⁹³ Conard and Dolliver, Org. Syntheses, Coll. Vol. II, 167 (1943). ²⁹⁴ Drake and Allen, Org. Syntheses, Coll. Vol. I, 77 (1941). ²⁹⁵ Kohler and Chadwell, Org. Syntheses, Coll. Vol. I, 78 (1941). ²⁹⁶ Hill and Bramann, Org. Syntheses, Coll. Vol. I, 81 (1941). 297 Wilds et al., J. Am. Chem. Soc., 69, 1994 (1947). 298 Dickinson, J. Chem. Soc., 2237 (1926). 299 Delepine and Sosa, Bull. soc. chim. France, (5) 9, 772 (1942); Friedmann, I. prakt. Chem. 145, 324 (1936). 300 Raiford and Tanzer, J. Org. Chem., 6, 722 (1941). ³⁰¹ Dippy and Lewis, Rec. trav. chim., 56, 1002 (1937). 302 Harvey, Heilbron, and Wilkinson, J. Chem. Soc., 429 (1930). ³⁰³ Hinkel and Dippy, J. Chem. Soc., 1388 (1930). ³⁰⁴ Bogert and Davidson, J. Am. Chem. Soc., 54, 335 (1932). 305 Tanasescu and Baciu, Bull. soc. chim. France, (5) 4, 1742 (1937); Shriner and Kurosawa, J. Am. Chem. Soc., 52, 2538 (1930); Weygand and Mensdorf, Ber., 68, 1832 (1935). 306 Haeussler and Brugger, Ber., 77, 152 (1944). 307 Leuck and Cejka, Org. Syntheses, Coll. Vol. 1, 283 (1941). 308 Drake and Gilbert, J. Am. Chem. Soc., 52, 4965 (1930). 309 Alexander and Smith, J. Am. Chem. Soc., 71, 735 (1949). ³¹⁰ Alder and Schmidt, Ber., 76, 195, 200 (1943); Hunsdiecker, ibid., 75, 451 (1942). ³¹¹ Maxim and Angelesco, Bull. soc. chim. France, (5) 1, 1129 (1934). 312 Kraft, J. Am. Chem. Soc., 70, 3570 (1948). 313 Burdick and Adkins, J. Am. Chem. Soc., 56, 438 (1934). ³¹⁴ Bernhauer and Skudrzyk, J. prakt. Chem., 155, 310 (1940). 315 Evans and Gillam, J. Chem. Soc., 571 (1943); cf. ref. 314. ³¹⁶ Burton, I. Chem. Soc., 748 (1932). 317 Kuhn and Hoffer, Ber., 64, 1977 (1931). 318 Kuhn and Winterstein, Helv. Chim. Acta, 12, 496 (1929); cf. ref. 356. ³¹⁹ Powell and Secoy, J. Am. Chem. Soc., 53, 765 (1931); cf. refs. 290 and 321. 320 Price, Knell, and West, J. Am. Chem. Soc., 65, 2469 (1943); Rapson, J. Chem. Soc., 16, (1941); Gault et al., Bull. soc. chim. France, (5e) 12, 952 (1945); cf. ref. 321.

321 Wayne and Adkins, J. Am. Chem Soc., 62, 3401 (1940). 322 Colonge, Bull. soc. chim. France, (4) 49, 426, 432, 441 (1931); cf. ref. 290. 323 Letch and Linstead, J. Chem. Soc., 454 (1932). 324 Schjanberg, Ber., 70B, 2386 (1937). 325 Boxer and Linstead, J. Chem. Soc., 740 (1931). 326 Niemann and Redemann, J. Am. Chem. Soc., 68, 1933 (1946); Baker et al., I. Org. Chem., 12, 144 (1947); cf. ref. 325. 327 Linstead, Noble, and Boorman, J. Chem. Soc., 559 (1933); cf. ref. 325. 328 Goldberg and Linstead, J. Chem. Soc., 2353 (1928). 329 Linstead and Mann, J. Chem. Soc., 2064 (1930). 330 Anker and Cook, J. Chem. Soc., 312 (1945). 331 Linstead et al., J. Chem. Soc., 1140 (1937). 332 Sircar, J. Chem. Soc., 54 (1928); cf. ref. 331. 333 Fried and Elderfield, J. Org. Chem., 6, 574 (1941). 334 Lauer, Gensler, and Miller, J. Am. Chem. Soc., 63, 1153 (1941). 335 Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 226, 227, and 233. ³³⁶ Muskat, Becker, and Lowenstein, J. Am. Chem. Soc., 52, 329 (1930); Kohler and Butler, ibid., 48, 1041 (1926); Alder, Schumacher, and Wolff, Ann., 564, 91 (1949).337 Allen and Van Allan, Org. Syntheses, 24, 92 (1944). 338 Lennartz, Ber., 76B, 1009 (1943). 339 Kuhn and Grundmann, Ber., 70B, 1326 (1937). 340 Burton and Shoppee, J. Chem. Soc., 548 (1937). 341 Dippy and Page, J. Chem. Soc., 362 (1938). 342 Fieser, Leffler, et al., J. Am. Chem. Soc., 70, 3197 (1948). 343 Ruggli, Steiger, and Schobel, Helv. Chim. Acta, 28, 335 (1945); Slotta and Szyszka, Ber., 68B, 187 (1935). 344 West, J. Am. Chem. Soc., 42, 1664 (1920). 345 Galat, J. Am. Chem. Soc., 68, 377 (1946). 346 Johnson and Robertson, J. Chem. Soc., 24 (1930); Friedmann, J. prakt. Chem., 145, 334 (1936). 347 Robinson and Walker, J. Chem. Soc., 193 (1936). 348 Bachmann, J. Org. Chem., 3, 444 (1938). ³⁴⁹ Borsche, Ann., 526, 18 (1936). ³⁵⁰ Linstead and Williams, J. Chem. Soc., 2735 (1926). 351 Bachmann and Kloetzel, J. Am. Chem. Soc., 59, 2209 (1937). ³⁵² King and Nord, J. Org. Chem., 14, 405 (1949). 353 Panizzon, Helv. Chim. Acta, 24, 27E (1941). 354 Rajagopalan and Raman, Org. Syntheses, 25, 51 (1945). 335 Kroeker and McElvain, J. Am. Chem. Soc., 56, 1172, 1173 (1934); Allen and Spangler, Org. Syntheses, 25, 42 (1945). ³⁵⁶ Kuhn, Badstübner, and Grundmann, Ber., 69B, 98 (1936). 357 Cope et al., J. Am. Chem. Soc., 63, 3452 (1941). 358 Wojcik and Adkins, J. Am. Chem. Soc., 56, 2424 (1934). ³⁵⁹ English, J. Am. Chem. Soc., 63, 942 (1941). 360 Bachman and Tanner, J. Org. Chem., 4, 493 (1939). ³⁶¹ King, Clifton, and Openshaw, J. Chem. Soc., 424 (1942). ³⁶² Martin, Schepartz, and Daubert, J. Am. Chem. Soc., 70, 2601 (1948). 363 Cope, J. Am. Chem. Soc., 59, 2327 (1937). 364 Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948).

365 Vogel, J. Chem. Soc., 2019-2026 (1928); Vogel and Oommen, ibid., 768 (1930). 366 Lapworth and Baker, Org. Syntheses, Coll. Vol. 1, 181 (1941); Robinson and Young, J. Chem. Soc., 1415 (1935). 367 Naps and Johns, J. Am. Chem. Soc., 62, 2451 (1940). 368 Lohaus, Ann., 514, 137 (1934). 369 Letch and Linstead, J. Chem. Soc., 450 (1932). ³⁷⁰ Cope and Hancock, J. Am. Chem. Soc., 60, 2645 (1938). ³⁷¹ Cope and Hofmann, J. Am. Chem. Soc., 63, 3456 (1941). ³⁷² Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 252. 373 Johnson et al., J. Am. Chem. Soc., 70, 418 (1948); 67, 1357, 1360, 1366 (1945); 69, 74 (1947). ³⁷⁴ Swain, Todd, and Waring, J. Chem. Soc., 551 (1944). 375 Reimer and Chase, J. Am. Chem. Soc., 60, 2470 (1938). 376 Reimer and Howard, J. Am. Chem. Soc., 50, 2507 (1928). 377 Reimer, I. Am. Chem. Soc., 46, 785 (1924). 378 Fischer and Wiedemann, Ann., 513, 251 (1934). 379 Murray and Cloke, J. Am. Chem. Soc., 56, 2751 (1934). 380 Mowry, J. Am. Chem. Soc., 67, 1050 (1945). 381 Corson and Stroughton, J. Am. Chem. Soc., 50, 2830 (1928). 382 Boehm and Grohnwald, Arch. Pharm., 274, 321 (1936); cf. ref. 381. 383 Knowles and Cloke, J. Am. Chem. Soc., 54, 2036 (1932). 384 Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 210, 248-254. 385 Utermohlen and Wallace, J. Org. Chem., 12, 547 (1947). 386 Thayer, Org. Syntheses, Coll. Vol. 1, 398 (1941). 387 Maxwell and Adams, J. Am. Chem. Soc., 52, 2967 (1930). 388 Buckles and Hausman, J. Am. Chem. Soc., 70, 415 (1948); cf. ref. 372. 389 Kuhn and Ishikawa, Ber., 64B, 2349 (1931). 390 Johnson, Org. Syntheses, 20, 55 (1940). ³⁹¹ Maxim and Stancovici, Bull. soc. chim. France, (5) 2, 600 (1935). ³⁹² Hinkel, Ayling, and Beynon, J. Chem. Soc., 779 (1937). 393 McPhee and Erickson, J. Am. Chem. Soc., 68, 625 (1946). 394 Marvel and King, Org. Syntheses, Coll. Vol. I, 252 (1941). 395 Ramage, J. Chem. Soc., 398 (1938). 396 Fuson, Parham, and Reed, J. Org. Chem., 11, 194 (1946); Parham and Reed, Org. Syntheses, 28, 60 (1948). 397 Corson, Org. Syntheses, Coll. Vol. II, 229 (1943). 398 Kalnin, Helv. Chim. Acta, 11, 977 (1928). 399 Breslow and Hauser, J. Am. Chem. Soc., 61, 786 (1939). 400 Bock, Lock, and Schmidt, Monatsh., 64, 399 (1934). ⁴⁰¹ Kuhn and Winterstein, Helv. Chim. Acta, 11, 87 (1928). ⁴⁰² Carter, J. Am. Chem. Soc., 50, 2301 (1928). 403 Slotta and Szyszka, Ber., 68B, 189 (1935). 404 Foreman and McElvain, J. Am. Chem. Soc., 62, 1438 (1940). 405 Cope and Hancock, J. Am. Chem. Soc., 60, 2901 (1938). 406 Hinz, Meyer, and Schucking, Ber., 76B, 683 (1943). 407 Nieuwland and Daly, J. Am. Chem. Soc., 53, 1842 (1931); cf. ref. 93.

408 Lipkin and Stewart, J. Am. Chem. Soc., 61, 3295 (1939).

9. 547 (1944); J. Am. Chem. Soc., 68, 384 (1946). ⁴¹⁰ Burton and Shoppee, J. Chem. Soc., 1160 (1935); Rupe, Steiger, and Fiedler, Ber., 47, 68 (1914); cf. ref. 87, p. 17. 411 Woodruff and Pierson, J. Am. Chem. Soc., 60, 1076 (1938). ⁴¹² Hunsdiecker, Ber., 75B, 455, 460 (1942). 413 Bergmann and Weizmann, J. Org. Chem., 4, 266 (1939). 414 Henze, Wilson, and Townley, J. Am. Chem. Soc., 65, 964 (1943). 413 Kuhn and Hoffer, Ber., 65B, 655 (1932); Burton and Ingold, J. Chem., Soc. 2028 (1929). ⁴¹⁶ Wagner-Jauregg and Hippchen, Ber., 76B, 698 (1943). ⁴¹⁷ Kon et al., J. Chem. Soc., 1411 (1931). 418 Johnson and Kon, J. Chem. Soc., 2748 (1926). ⁴¹⁹Colonge and Joly, Ann. chim., (11) 18, 306 (1943); Kon and Linstead, J. Chem. Soc., 620 (1925); Kon, Linstead, and Wright, ibid., 602 (1934). 420 Huston and Goemer, J. Am. Chem. Soc., 68, 2504 (1946). ⁴²¹ Baker and Holdsworth, J. Chem. Soc., 728 (1945). 422 Wilds and Shunk, J. Am. Chem. Soc., 65, 469 (1943). 423 Rapson and Robinson, J. Chem. Soc., 1285 (1935); du Feu, McQuillin, and Robinson, J. Chem. Soc., 53 (1937). 424 Owen, J. Chem. Soc., 385 (1945); 236, 3089 (1949). 425 Bachman and Heisey, J. Am. Chem. Soc., 71, 1986 (1949). 426 Dice, Loveless, and Cates, J. Am. Chem. Soc., 71, 3547 (1949). 427 Cram, J. Am. Chem. Soc., 71, 3887 (1949). 428 Walker, Ind. Eng. Chem., 41, 2640 (1949). 429 Ipatieff, Appell, and Pines, J. Am. Chem. Soc., 72, 4260 (1950). 430 Whitmore, Whitmore, and Cook, J. Am. Chem. Soc., 72, 51 (1950). 431 Adkins and Zartman, Org. Syntheses, Coll. Vol. II, 606 (1943). 432 Whitmore, Ind. Eng. Chem., News Ed., 26, 668 (1948). 433 Nickels et al., Ind. Eng. Chem., 41, 563 (1949). 434 Mavity, Zetterholm, and Hervert, Ind. Eng. Chem., 38, 829 (1946); cf. ref. 433. 435 Kögl and Ultee, Rec. trav. chim., 69, 1582 (1950). 436 Heilbron et al., J. Chem. Soc., 1827, 2023, 2028 (1949); cf. ref. 110. 437 Overberger and Saunders, Org. Syntheses, 28, 31 (1948); cf. refs. 105, 106, and 458. 438 Kon and Spickett, J. Chem. Soc., 2724 (1949). 439 Wendler and Slates, J. Am. Chem. Soc., 72, 5341 (1950). 440 Price and Pappalardo, J. Am. Chem. Soc., 72, 2613 (1950). 441 Doering and Wiberg, J. Am. Chem. Soc., 72, 2609 (1950). 442 Hands and Walker, J. Soc. Chem. Ind., 67, 458 (1948). 443 Buckley and Scaife, J. Chem. Soc., 1471 (1947). 444 Fraser and Kon, J. Chem. Soc., 606 (1934). 445 Emerson, Chem. Revs. 45, 347 (1949). 446 Pickering and Smith, Rec. trav. chim., 69, 537 (1950). 447 Fosdick, Fancher, and Urbach, J. Am. Chem. Soc., 68, 841 (1946). 448 Braude and Timmons, J. Chem. Soc., 2004 (1950). 449 Ecke, Cook, and Whitmore, J. Am. Chem. Soc., 72, 1511 (1950). 450 Paul et al., Bull. soc. chim. France, (5) 17, 124 (1950). 451 Heilbron et al., J. Chem. Soc., 739 (1949).

REFERENCES FOR CHAPTER 2

409 Horning, Denekas, and Field, Org. Syntheses, 27, 24 (1947); J. Org. Chem.,

453 McElvain and Walters, J. Am. Chem. Soc., 64, 1059 (1942); McElvain and Kundiger, Org. Syntheses, 23, 45 (1943). ⁴⁵⁴ Kuhn and Grundmann, Ber., 70, 1894 (1937); McElvain, Clarke, and Jones, I. Am. Chem. Soc., 64, 1966 (1942). 455 Strassburg, Gregg, and Walling, J. Am. Chem. Soc., 69, 2141 (1947). 456 Emerson and Patrick, J. Org. Chem., 13, 730 (1948). 457 Iddles, Lang, and Gregg, J. Am. Chem. Soc., 59, 1945 (1937). 458 Brooks, J. Am. Chem. Soc., 66, 1295 (1944). 459 Jacobs in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 24. 460 Waterman and De Kok, Rec. trav. chim., 52, 298 (1933); cf. ref. 467. 461 Riobe, Ann. chim., (12) 4, 634 (1949). 462 Taylor and Strong, J. Am. Chem. Soc., 72, 4264 (1950). 463 Crombie and Harper, J. Chem. Soc., 877, 1712 (1950). 464 Birch, J. Chem. Soc., 812 (1945). 465 Backer and van der Bij, Rec. trav. chim., 62, 564 (1943). 466 Brandenberg and Galat, J. Am. Chem. Soc., 72, 3275 (1950). 467 Geldof and Wibaut, Rec. trav. chim., 67, 110 (1948). 468 Scaife and Wilder-Smith, J. Chem. Soc., 1477 (1947). 469 Alexander and Mudrak, J. Am. Chem. Soc., 72, 1810 (1950). 470 Amold, Amidon, and Dodson, J. Am. Chem. Soc., 72, 2871 (1950). 471 St. Pfau et al., Helv. Chim. Acta, 18, 946 (1935); Paul and Tchelitcheff, Bull. soc. chim. France, (5) 14, 453 (1947). 472 Arnold, Elmer, and Dodson, J. Am. Chem. Soc., 72, 4359 (1950). 473 John son and Heinz, J. Am. Chem. Soc., 71, 2913 (1949). 474 Spoerri and Rosen, J. Am. Chem. Soc., 72, 4918 (1950). 475 Bickel, J. Am. Chem. Soc., 72, 349 (1950). 476 Roberts and Sauer, J. Am. Chem. Soc., 71, 3927 (1949). 477 Bergmann and Schapiro, J. Org. Chem., 12, 57 (1947). 478 Hagemeyer, J. Am. Chem. Soc., 71, 1119 (1949). 479 Wiley and Behr, J. Am. Chem. Soc., 72, 1822 (1950). 480 Southwick, Pursglove, and Numerof, J. Am. Chem. Soc., 72, 1605 (1950). 481 Grundmann, Ber., 81, 516 (1948). 482 Emerson and Patrick, J. Org. Chem., 14, 795 (1949). 483 Korach and Bergmann, J. Org. Chem., 14, 1121 (1949). 484 Metayer, Ann. chim., (12) 4, 201, 202 (1949). 485 Wawzonek and Smolin, Org. Syntheses, 29, 83 (1949); Mattocks and Hutchison, J. Am. Chem. Soc., 70, 3516 (1948). 486 Buu-Hoi and Lecocq, J. Chem. Soc., 641 (1947). 487 Wagner, J. Am. Chem. Soc., 71, 3215 (1949). 488 McMahon et al., I. Am. Chem. Soc., 70, 2971 (1948). 489 Worrall, Org. Syntheses, Coll. Vol. I, 413 (1941). 490 Hoover and Hass, J. Org. Chem., 12, 504 (1947). ⁴⁹¹ Hargreaves and McGookin, J. Soc. Chem. Ind., 69, 186 (1950). 492 Overberger and Allen, J. Am. Chem. Soc., 68, 722 (1946). 493 Wiley and Hobson, J. Am. Chem. Soc., 71, 2429 (1949). 494 Migrdichian, Organic Cyanogen Compounds, Reinhold Publishing Corp., New York, 1947, p. 319.

495 Polya and Tardrew, Rec. trav. chim., 68, 566 (1949).

REFERENCES FOR CHAPTER 2

496 Norton, Chem. Revs., 31, 319 (1942); Alder in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 381; Kloetzel. Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, p. 1: Holmes, ibid., p. 60. 497 Roberts, Jevdel, and Armstrong, J. Am. Chem. Soc., 71, 3248 (1949). 498 Cope, Kovacic, and Burg, I. Am. Chem. Soc., 71, 3658 (1949). 499 Joshel and Butz, J. Am. Chem. Soc., 63, 3350 (1941). 500 Kloetzel and Herzog, J. Am. Chem. Soc., 72, 1991 (1950). ⁵⁰¹ Alder et al., Ann., 565, 57, 73, 99, 135 (1949). ⁵⁰² Alder et al., Ann., 564, 79, 96, 109, 120 (1949). ⁵⁰³ Weizmann, Sulzbacher, and Bergmann, J. Am. Chem. Soc., 70, 1157 (1948). ⁵⁰⁴ Sigmund and Uchann, Monatsh., 51, 234 (1929). ⁵⁰⁵ Norris, Verbanc, and Hennion, J. Am. Chem. Soc., 60, 1160 (1938); Dykstra, ibid., 57, 2257 (1935). 506 Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 57, 545 (1935). ⁵⁰⁷ Scheibler and Baganz, Ann., 565, 170 (1949). 508 Adkins and Roebuck, J. Am. Chem. Soc., 70, 4041 (1948). ⁵⁰⁹ Tarbell in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 27. ⁵¹⁰ Eccott and Linstead, J. Chem. Soc., 2153 (1929); Kon and Thakur, ibid., 2220 (1930); Goldberg and Linstead, ibid., 2354 (1928). ⁵¹¹ Johnson, Jobling, and Bodamer, J. Am. Chem. Soc., 63, 133 (1941); Williams and Hurd, J. Org. Chem., 5, 122 (1940); Kharasch, Margolis, and Mayo, ibid., 1. 393 (1936); Hershberg and Ruhoff, Org. Syntheses, Coll. Vol. II, 102 (1943); cf. ref. 516. ⁵¹² Boonstra and van Amerongen, Ind. Eng. Chem., 41, 161 (1949). ⁵¹³ Truffault, Bull. soc. chim. France, (5) 3, 444 (1936). ⁵¹⁴Nieuwland, Calcott, Downing, and Carter, J. Am. Chem. Soc., 53, 4201 (1931); Dunicz, ibid., 63, 2468 (1941). ⁵¹⁵ Willstatter and Wirth, Ber., 46, 535 (1913). ⁵¹⁶ Kistiakowsky et al., J. Am. Chem. Soc., 58, 146 (1936). ⁵¹⁷ Eglinton and Whiting, J. Chem. Soc., 3650 (1950). 518 Alder and Haydn, Ann., 570, 208, 212 (1950). ⁵¹⁹ Grob and Tscharner, Helv. Chim. Acta, 33, 1075 (1950). ⁵²⁰ Lunt and Sondheimer, J. Chem. Soc., 3365 (1950). ⁵²¹ Armstrong and Robinson, I. Chem. Soc., 1650 (1934); Goldberg and Müller, Helv. Chim. Acta, 21, 1701 (1938). 522 Vargha and Kovacs, Ber., 75, 794 (1942). 523 Hagemeyer, Ind. Eng. Chem., 41, 766 (1949). 524 Nystrom and Brown, J. Am. Chem. Soc., 70, 3739 (1948). 525 Hennion and Sheehan, J. Am. Chem. Soc., 71, 1964 (1949). 526 Fierz-David and Zollinger, Helv. Chim. Acta, 28, 1130 (1945). 527 Hanford and Fuller, Ind. Eng. Chem., 40, 1171 (1948); Schildknecht, Zoss, and McKinley, ibid. 39, 180 (1947). ⁵²⁸ Wiley, Org. Syntheses, 28, 94 (1948). ⁵²⁹ Johnson and Daub in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 1. ⁵³⁰Cope et al., Org. Syntheses, 31, 25 (1951).

⁵³¹ Wawzonek and Smolin, Org. Syntheses, 31, 52 (1951).

METHOD 43

Suspensions of potassium hydroxide in mineral oil,³⁵ molten potassium hydroxide,³¹ and alcoholic potassium hydroxide³²,³⁶,³⁷,³⁸ give consistently better yields (60-88%) of 1- and 2-alkynes. Most of the 1-alkynes prepared in this way are incapable of isomerization: e.g., propyne, phenylacetylene, and t-butylacetylene. Alcoholic potassium hydroxide dehydrohalogenates stilbene dibromide to diphenylacetylene (tolane), $C_6H_5C \equiv CC_6H_5(85\%)$,²⁹ whereas sodium amide in liquid ammonia causes dehalogenation to stilbene, $C_6H_5CH = CHC_6H_5$ (86%).³⁴ A series of alkylphenylacetylenes, $C_6H_5C \equiv CR$, has been prepared directly from α -alkylcinnamic acid dibromides, $C_6H_5CHBrCRBrCO_2H$, by dehydrohalogenation and decarboxylation with alcoholic potassium hydroxide.³⁹

An interesting rearrangement of an aryl group occurs in the dehydrohalogenation of *unsym*-diarylhaloethylenes to diarylacetylenes.

 $Ar_2C = CHX + KNH_2 \rightarrow ArC = CAr + KX + NH_1$

The relative positions of groups on the nucleus are not changed during the migration. The yields of tolanes are generally 80-90%.⁶²

Many acetylenic acids have been made by the dehydrohalogenation of the dibromo derivatives of olefinic acids. Aliphatic $\alpha_{,\beta}$ -acetylenic acids are often decarboxylated under the conditions of the reaction.⁵³ However, phenylpropiolic acid,⁵² C₆H₅ C \equiv CCO₂H, and acetylenedicarboxylic acid,⁵² HO₂CC \equiv CCO₂H, are prepared in this way as well as acids having the triple bond in the $\beta_{,\gamma}$ -, $\gamma_{,\delta}$ -, and more remote positions in the aliphatic chain.^{50,53}

Other functional groups may be present in the molecule during dehydrohalogenation. Dichloroacetylene is obtained by passing trichloroethylene over solid potassium hydroxide at 130°.49 Aryl halogen atoms are stable during dehydrohalogenation.⁶¹ Aqueous sodium hydroxide removes hydrogen chloride from 3-chloro-2-buten-1-ol to give 2-butyn-1-ol (40%).44 Powdered potassium hydroxide at 100° is used with bromides of the general type ROCH=CHBr for the preparation of alkoxy- and phenoxyacetylenes (34-80%).48,57 Ethylene glycol is the solvent for potassium hydroxide in a preparation of methyl propargyl ether, $CH_3OCH_2C \equiv CH_1$, from 2,3-dibromo-1-methoxypropane.⁵⁹ The aldehyde group is protected as the acetal in the preparation of phenylpropargyl aldehyde (81%).33 Sodium amide in liquid ammonia removes hydrogen bromide from 1-diethylamino-2bromo-2-propene, (C₂H₅)₂NCH₂C(Br)=CH₂, to give 1-diethylamino-2propyne (82%).55 o- and p-Nitro groups have been present in a series of diphenylacetylenes prepared from the corresponding stilbene dihalides and alcoholic potassium hydroxide.³⁶ A modification involves a one-step

3

Acetylenic Compounds

CONTENTS

	PAGE
METHOD	1 1100
43. Dehydrohalogenation of Halides	/8
44. Alkylation of Acetylenic Compounds	80
45 Coupling of Grignard Reagents with Haloacetylenes	81
46 Diagetulenes by Oridation of Metallic Acetylides	81
47. Description of Acetylenic Acids	81
47. Decarboxylation of Hudrazones of Diketones	. 82
48. I clanes by Oxidation of Hydrazones of Zinetozo	82
49. Isomerization of Allenes 50. Coupling of Acetylenic Grignard Reagents with Cyanogen Chloride	82
Table (Accordence	. 83
Table 4. Acetylenes	. 84
Table 5. Diacetylenes	84
Table 6. Olefinic Acetylenes	
References	. 86

43, Dehydrohalogenation of Halides

 $RCX = CH_2 \xrightarrow{Base} RC \equiv CH + (HX)$

A triple bond may be formed by dehydrohalogenation of dihalides and olefinic halides of the general types $RCX = CH_2$, RCH = CHX, RCH = CXR', $RCHXCH_2X$, RCHXCHXR', RCH_2CHX_2 , and RCX_2CH_2R' .³⁵ The choice of a base depends somewhat on the position desired for the triple bond in the product. Sodium amide tends to rearrange the triple bond toward the end of the chain,³⁶ and potassium hydroxide favors reverse isomerization toward the center of the chain.^{35,42,43} Although neither rearrangement is dependable from a synthetic standpoint, it is best to choose the base favoring the desired product.

A suspension of sodium amide in mineral oil^{30, 40, 41, 46} or sodium amide in liquid ammonia²⁸ has been used to prepare 1-alkynes of various types in 45-96% yields. The acetylenes are liberated from their sodium salts by dilute acid. It is important that the sodium amide be of good quality and that moisture be excluded from the reaction mixture.³⁴

78

METHODS 44-47

Ch. 3

process of coupling and dehydrohalogenation of a substituted benzal chloride by sodium in alcohol.⁵⁶

$$ArCHCl_2 \xrightarrow[C_2H_5 OH]{Na} ArC \equiv CAr$$

44. Alkylation of Acetylenic Compounds

 $RCH_{2}CH_{2}X + HC \equiv CN_{a} \rightarrow RCH_{2}CH_{2}C \equiv CH + NaX$ $RCH_{2}CH_{2}X + R'C \equiv CN_{a} \rightarrow RCH_{2}CH_{2}C \equiv CR' + NaX$

Mono- and di-alkylacetylenes are prepared from sodium alkydes and primary alkyl halides which lack branching on the second carbon atom. The branched primary halides as well as secondary and tertiary halides undergo dehydrohalogenation to olefins by the basic alkyde. The alkydes are best prepared from the acetylenes and sodium amide in liquid ammonia.^{10,60} The yields of 1-alkynes are frequently 70-90% when alkyl bromides are employed as alkylating agents.^{6,9,11,26} Dialkylacetylenes are formed in somewhat lower yields (30-70%), which decrease rapidly with increasing chain length of the alkyl bromides above *n*-amyl bromide.^{2,6,9,60,74} Alkyl sulfates and alkyl sulfonates are also used as alkylating agents to give mono- and di-alkylacetylenes in yields of 60-83%.^{1,3,4,7,15} Symmetrical dialkylacetylenes may be prepared by a onestep process from sodium acetylide, sodium amide, and an alkyl halide or sulfate in liquid ammonia.^{2,6,7}

Acetylenic Grignard reagents are less active than sodium alkydes but are readily alkylated by benzyl halides as well as by alkyl sulfates and sulfonates.^{1,12,14,18} The Grignard reagents are conveniently prepared from the acetylenes and ethylmagnesium bromide in ether solution.

$$RC \equiv CH \xrightarrow{C_{2}H_{5} \text{ MgBr}} RC \equiv CMgBr \xrightarrow{R'_{2}SO_{4}} RC \equiv CR'$$

Several critical reviews of the alkylation reaction have been made in which the best experimental procedures are indicated.^{5, 6, 10} Highefficiency fractionation is necessary to obtain pure acetylenes free from halides and olefins.⁹ 1-Alkynes are sometimes purified through their silver salts.¹³

An additional functional group may be present in one of the reactants. Alkylation of vinylacetylene gives low yields of 1-alken-3-ynes.¹⁹ Cuprous halide catalyst is required for alkylations by allyl bromide; the yields of 1-alken-4-ynes are about 88%.²⁷ Both halogen atoms of dibromides can be induced to take part in alkylation if the halogens are not on the same or adjacent carbon atoms. The yields of diynes are 46-85%.⁹ Diynes in which the triple bonds are closer together have been made by the action of substituted propargyl bromides, $RC \equiv CCH_2Br$, on sodium alkydes or by the coupling of two propargyl residues by magnesium²⁵ (method 45). Polymethylene chlorobromides⁹,²⁰ and iodochlorides²¹,⁷⁵ when used as alkylating agents lead to ω -chloroacetylenes. The last compounds may also be prepared by alkylation with ω -haloalkyl sulfonates¹,²² (cf. method 10). Alkylations have been effected with both α - and β -halo ethers to give acetylenic ethers.²³,²⁴ The amino acetylene, 2-diethylaminol-propyne, has been alkylated by the sodium amide procedure with a series of primary halides including allyl bromide. Average yields are better than 60%.⁵⁵

45. Coupling of Grignard Reagents with Haloacetylenes

$$RC = CCXR_{2} \xrightarrow{R'MgX} RC = CCR_{2}R'$$

Acetylenic hydrocarbons are prepared in 60-74% yields by the coupling of Grignard reagents and substituted propargyl halides. Allenes are also formed by an allylic-type rearrangement of the halogen atom.^{16,28,63} 1,5-Diynes are available by this reaction in 50-60% yields by coupling two molecules of substituted propargyl halide by magnesium.²⁵

Organomagnesium compounds react with dichloroacetylene to give 40-70% yields of aryl- and alkyl-1-chloroacetylenes.⁶⁹

46. Diacetylenes by Oxidation of Metallic Acetylides

$$2RC \equiv CCu \xrightarrow{(0)} RC \equiv C - C \equiv CR$$

Oxidation of cuprous acetylides by air or potassium ferricyanide brings about the union of two acetylenic groupings as in the preparation of dimethyldiacetylene (42%).^{7,38} The reaction has been applied to the synthesis of *diynediols* from acetylenic carbinols.⁶⁵

47. Decarboxylation of Acetylenic Acids

$$ArC \equiv CCO_2H \longrightarrow ArC \equiv CH + CO_2$$

Arylpropiolic acids lose carbon dioxide when refluxed with water^{71,73} or a solution of sodium bicarbonate and cupric chloride.⁷² Yields of phenylacetylenes containing nuclear halo, alkoxyl, and nitro groups are in the range of 40-67%. Alkylphenylacetylenes, $C_6H_5 C \equiv CR$, may be made directly from α -alkylcinnamic acid dibromides, $C_6H_5 CHBrCRBrCO_2H$, by dehydrohalogenation and decarboxylation.³⁹

$$ArC = NNH_{2} \xrightarrow{2HgO} ArC \equiv CAr + 2Hg + 2H_{2}O + 2N_{2}$$
$$ArC = NNH_{2}$$

49. Isomerization of Allenes68

$$\operatorname{RCH} = \operatorname{C} = \operatorname{CH}_{2} \xrightarrow{\operatorname{Na}\operatorname{NH}_{2}} \operatorname{RCH}_{2}\operatorname{C} = \operatorname{CNa} \xrightarrow{\operatorname{H}_{2}\operatorname{O}} \operatorname{RCH}_{2}\operatorname{C} = \operatorname{CH}$$

50. Coupling of Acetylenic Grignard Reagents with Cyanogen Chloride⁶⁷

$$RC \equiv CMgX + CICN \rightarrow RC \equiv CCN$$

TABLE 4. ACETYLENES

TABLE 4. ACETYLENES

C _n	Compound	Method	(%)	Chapterref.	B.p./mm., n_{D}^{t} , (M.p.)
	Aliphatic and Alic	yclic Ac	etyleni	c Hydrocarbo	ns
C,	Propyne (methylacetylene)	43	60	338	-23/760
		43	85	3 ³⁸	- 23/760
		44	75	34	
C₄	1-Butyne (ethylacetylene)	43	40	3*	11
		44	60	33	8.5
	2-Butyne (dimethylacetylene)	44	41	36	27/754, 1.3920
C.	1-Pentyne (n-propylacetylene)	44	50	326	40. 1.3850
- 5		44	85	39	40/760, 1.3852
	2-Pentyne (methylethylacetylene)	43	56	337	55. 1.4050
		44	41	312	56/755, 1.4035
C.	1-Hexyne (n-butylacetylene)	44	89	38	71/760, 1,3990
- 0		44	77	326	72. 1.3987
	3-Hexvne (diethylacetylene)	44	47	32	82/744. 1.4115
	Methylisopropylacetylene	44	36	316	72, 1,4078 ¹⁹
	3.3-Dimethyl-1-butyne		20	2	
	(t-butylacetylene)	43	81	3 ³⁶	37/768
C,	l-Heptyne (n-amylacetylene)	43	88	335	
- 1		44	52	38	100/760, 1,4088
		44	75	3 26	98. 1.4088
	2-Heptyne	44	48	374	111, 1.419225
	5-Methyl-1-hexyne	44	75	326	92, 1.4060
	4,4-Dimethyl-1-pentyne	43	45	3 40	74, 1.4028
Ся	1-Octyne (n-hexylacetylene)	44	65	326	77/150. 1.4157
•		44	72	39	126/760, 1.4159
	2-Octyne (methyl- <i>n</i> -amylacetylene)	44	36	38	131-135/750, 1,428525
	3-Octyne (ethyl-n-butylacetylene)	44	64	3²	133/760, 1.4250
		44	70	314	131/745, 1.4261
	4-Octyne (di- <i>n</i> -propylacetylene)	44	66	32	130/744, 1.4248
	1-Cyclopentyl-1-propyne	44	50	317	143, 1.463622
	3-Cyclopentyl-1-propyne	43	65	317	133, 1.4494 ²⁵
c,	1-Cyclopentyl-2-butyne	44	65	317	165. 1.4621 26
	3-Cyclohexylpropyne	43	66	3 30	62/24
C 10	Di-t-butylacetylene	9	55	370	112/746, (19), 1.4055
	Aryl-sub	stituted	Acetyl	enes	
c.	Phenylacetylene	43	67	2 31	143
•		43	52	3 ²⁸	74/80
C.	Phenvlmethylacetylene	- 4 A	50	2 60	113/8/ 1 5650
3	yimeiny racety iche	-7-7 4 A	66	315	73/15 1 565
	Benzylacetylene	43	52	3 41	48-58/5
	Tala la secola da	4.2	40	2 32	10 00/ 0

ACETYLENIC COMPOUNDS

Ch. 3

TABLE 4 (continued)							
с _{<i>n</i>}	Compound	Method	Yi e ld (%)	Chapter ref.	B.p./mm., n ^t _D , (M.p.)		
	Aryl-subst	ituted Acety	lenes (continued)			
C ₁₀ 1-Phe 4-Phe	enyl-1-butyne enyl-1-butyne	44 43	77 63	31 3 41	82/5 95-99/17		
C 14 Diphe	enylacetylene (tolane)	43 48	69† 75	3 29 3 66	(61) (59)		
C ₁₅ 1,3-D	iphenylpropyne	44	72	318	129/2, 1.5946		

For explanations and symbols see pp. xi-xii.

.

Cn	Compound	Method	Yield (%)	Chaptersef.	B.p./mm., n ^f _D , (M.p.)
C4	1,3-Butadiyne (diacetylene) 2 4-Hexadiyne (dimethyldi-	46		338	10/760
00	acetylene)	46	42	3 ³⁸	(64)
	1,3,5-Hexatriyne (triacetylene)	43	10 †	364	
C,	1,6-Heptadiyne	44	46	3°	112/760, 1.4423
Ċ,	1,8-Nonadiyne	44	85	3°	162/760, 1.4490
2	2,7-Nonadiyne	44	76	3°	180/760, 1.4674

TABLE 5. DIACETYLENES

For explanations and symbols see pp. xi-xii.

TABLE 6. OLEFINIC ACETYLENES

с _{<i>n</i>}	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n_{D}^{t} , (M.p.)
с.	Vinvlacetylene	26	28	2515	3/729
•		35		2 514	5/740
		42	92	2 517	
C,	l-Penten-3-yne (methylvinyl-				
2	acetylene)	44	38	319	59/760, 1.4496
	2-Penten-4-yne	42	91	2 51 7	47, 1.4356 ¹⁹
	2-Methyl-1-buten-3-yne	19	50	2111	35-40
C،	l-Hexen-3-yne (ethylvinyl-				
Ŭ	acetylene)	44	31	319	85/758, 1.4522
	Divinvlacetylene	35	75	2 51 4	84/760, 1.504
	3-Methyl-3-penten-l-yne	19	55	2111	71
C,	l-Hepten-3-yne	21	77	2 249	45/75, 1.4520 ²⁵
-7	1-Ethynylcyclopentene	19	42	2 436	66/125, 1.4880 ¹⁹

TABLE 6. OLEFINIC ACETYLENES

.

C _n	Compound	Method	Yield (%)	Chapter ref.	B.p./mm., n ^t _D , (M.p.)
C ₈	1-Octen-3-yne	21	73	2249	62/60, 1,450525
	l-Ethynyl-1-cyclohexene	19	34	2110	$53/30, 1.4934^{25}$
		19	40	2174	39/12, 1,4970
		42	40	2 ⁵¹⁷	34-37/14, 1.496217
Сş	l-Nonen-3-yne	21	76	2 249	28/4. 1 4487 25
	l-Nonen-4-yne	29	88	2 181	58/22 1 4413 ²⁵
	2-Nonen-4-yne	21	70	2 ²⁴⁹	70/29 1.4590 25
	l-Ethynylcycloheptene	19	52	2436	78/35, 1, 4980
	2-Methyl-1-ethynyl-1-cyclohexene	19	54	2 ⁴³⁶	$68/35, 1.4890^{23}$
	2-Methyl-1-ethynyl-1-cyclohexene	19	62	2 436	72/40, 1.4836 ¹⁸

REFERENCES FOR CHAPTER 3

¹ Johnson, Schwartz, and Jacobs, J. Am. Chem. Soc., 60, 1882 (1938). ² Bried and Hennion, J. Am. Chem. Soc., 59, 1310 (1937); 60, 1717 (1938); cf. ref. 8. ³Hurd and Meinert, J. Am. Chem. Soc., 53, 296 (1931); cf. refs. 11 and 12. *Kharasch, McNab, and McNab, J. Am. Chem. Soc., 57, 2465 (1935); Meinert and Hurd, ibid., 52, 4544 (1930); see also refs. 7 and 8. ⁵Nieuwland and Vogt, The Chemistry of Acetylene, Reinhold Publishing Corp., New York, 1945, pp. 74-81. Walling, Kharasch, and Mayo, J. Am. Chem. Soc., 61, 1711 (1939); cf. ref. 7. ⁷ Conn, Kistiakowsky, and Smith, J. Am. Chem. Soc., 61, 1868 (1939). ⁴ Vaughn et al., J. Org. Chem., 2, 1 (1937); cf. ref. 9. ⁹ Henne and Greenlee, J. Am. Chem. Soc., 67, 484 (1945); cf. ref. 10. ¹⁰ Jacobs in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 1. 11 Tchao Yin Lai, Bull soc. chim. France, 53, 687 (1933). 12 Kharasch, Walling, and Mayo, J. Am. Chem. Soc., 61, 1561 (1939). ¹³ Young, Vogt, and Nieuwland, J. Am. Chem. Soc., 58, 56 (1936). 14 Thorn, Hennion, and Nieuwland, J. Am. Chem. Soc., 58, 796 (1936). ¹⁵ Truchet, Ann. chim., (10) 16, 390 (1931). ¹⁶ Gredy, Bull. soc. chim. France, (5) 2, 1953 (1935). ¹⁷ Gredy, Ann. chim., (11) 4, 16-31 (1935). 18 Johnson, Jacobs, and Schwartz, J. Am. Chem. Soc., 60, 1887 (1938). ¹⁹ Jacobson and Carothers, J. Am. Chem. Soc., 55, 1622 (1933). ²⁰ Newman and Wotiz, J. Am. Chem. Soc., 71, 1292 (1949). ²¹ Ahmad and Strong, J. Am. Chem. Soc., 70, 1699 (1948); Ahmad, Bumpus, and Strong, ibid., 70, 3391 (1948). ²² Gilman and Beaber, J. Am. Chem. Soc., 45, 839 (1923). ²³ McCusker and Kroeger, J. Am. Chem. Soc., 59, 213 (1937). 24 Golse, Ann. chim., (12) 3, 537, 557 (1948). 23 Tchao Yin Lai, Bull. soc. chim. France, (4) 53, 1537, 1545 (1933). ²⁶ Campbell and Campbell, Org. Syntheses, 30, 15 (1950). ²⁷ Danehy, Killian. and Nieuwland, J. Am. Chem. Soc., 58, 611 (1936). ²⁸ Campbell and Campbell, Org. Syntheses, 30, 72 (1950); cf. refs. 34 and 47. ²⁹ Smith and Falkof, Org. Syntheses, 22, 50 (1942); cf. refs. 45 and 60. ³⁰ Lespieau and Bourguel, Org. Syntheses, Coll. Vol. I, 191 (1941). ³¹ Hessler, Org. Syntheses, Coll. Vol. I, 438 (1941). ³² Smith and Hoehn, J. Am. Chem. Soc., 63, 1175 (1941); cf. ref. 34. 33 Allen and Edens, Org. Syntheses, 25, 92 (1945). ³⁴ Vaughn, J. Am. Chem. Soc., 56, 2064 (1934); Vaughn, Vogt, and Nieuwland, ibid., 56, 2120 (1934). 35 Bachman and Hill, J. Am. Chem. Soc., 56, 2730 (1934). ³⁶ Bartlett and Rosen, I. Am. Chem. Soc., 64, 544 (1942); Ivitzky, Bull. soc. chim, France, (4) 35, 357 (1924). 37 Sherrill and Matlack, J. Am. Chem. Soc., 59, 2137 (1937). ³⁸ Pauling, Springall, and Palmer, J. Am. Chem. Soc., 61, 927 (1939); Heisig and Davis, ibid., 57, 339 (1935); Chauvelier, Ann. chim., (12) 3, 410 (1948); cf. ref. 7. ³⁹ Bogert and Davidson, J. Am. Chem. Soc., 54, 337 (1932).

REFERENCES FOR CHAPTER 3 40 Ozanne and Marvel, J. Am. Chem. Soc., 52, 5269 (1930). ⁴² Johnson and McEwen, J. Am. Chem. Soc., 48, 469 (1926). 42 Hurd, Meinert, and Spence, J. Am. Chem. Soc., 52, 1141 (1930). 43 Guest. I. Am. Chem. Soc., 50, 1746 (1928). 44 Hatch and Nesbitt, J. Am. Chem. Soc., 72, 730 (1950). 45 Paillard and Wieland, Helv. Chim. Acta, 21, 1363 (1938). 46 Stoll and Rouve. Helv. Chim. Acta, 21, 1544 (1938). 47 Golse, Ann. chim., (12) 3, 529 (1948). 48 Jacobs and Tuttle, J. Am. Chem. Soc., 71, 1318 (1949); Jacobs, Cramer, and Weiss, ibid., 62, 1849 (1940). 49 Ott, Ottemeyer, and Packendorff, Ber., 63, 1943 (1930). ⁵⁰ Adkins and Burks, Org. Syntheses, 27, 76 (1947). ⁵¹ Abbott, Arnold, and Thompson, Org. Syntheses, Coll. Vol. II, 10 (1943). ⁵² Reimer, J. Am. Chem. Soc., 64, 2510 (1942); Abbott, Org. Syntheses, Coll. Vol. II, 515 (1943); Gitsels and Wibaut, Rec. trav. chim., 59, 1100 (1940). ⁵³ Schjanberg, Ber., 71, 569 (1938); cf. Jeffery and Vogel, J. Chem. Soc., 677 (1948). ⁵⁴ West, J. Am. Chem. Soc., 42, 1666 (1920). 55 Parcell and Pollard, J. Am. Chem. Soc., 72, 2385 (1950). ⁵⁶ Ruggli et al., Helv. Chim. Acta, 18, 855 (1935); 19, 1001 (1936); 20, 257 (1937); 21, 42 (1938). ³⁷ Jacobs, Cramer, and Hanson, J. Am. Chem. Soc., 64, 225 (1942). 58 Bourguel, Ann. chim., (10) 3, 191, 325 (1925). ⁵⁹ Heilbron, Jones, and Lacey, J. Chem. Soc., 28 (1946). 60 Campbell and O'Connor, J. Am. Chem. Soc., 61, 2897 (1939). ⁶¹ Dufraisse and Dequesnes, Bull. soc. chim. France, (4) 49, 1880 (1931). ⁶² Coleman and Maxwell, J. Am. Chem. Soc., 56, 132 (1934); Coleman, Holst, and Maxwell, ibid., 58, 2310 (1936). 63 Campbell and Eby, J. Am. Chem. Soc., 62, 1798 (1940); Zakharova, J. Gen. Chem. (U.S.S.R.) 17, 1277 (1947); Chem. Abstracts, 42, 3722 (1948). 64 Hunsmann, Chem. Ber., 83, 213 (1950). ⁶⁵ Bowden, Heilbron, Iones, and Sargent, I. Chem. Soc., 1579 (1947). 66 Schlenk and Bergmann, Ann., 463, 76 (1928), ⁶⁷ Grignard and Perrichon, Ann. chim., (10) 5, 28 (1926). 68 Bouis, Ann. chim., (10) 9, 459 (1928). 69 Ott and Bossaller, Ber., 76, 88 (1943). ⁷⁰ Hennion and Banigan, J. Am. Chem. Soc., 68, 1202 (1946). ⁷¹Otto, J. Am. Chem. Soc., 56, 1393 (1934); Gilman, Hewlett, and Wright, ibid., 53, 4192 (1931); Weltzien, Micheel, and Hess, Ann., 433, 257 (1923). ⁷² Bergmann and Bondi, Ber., 66, 278 (1933); cf. ref. 71. ⁷³ Schofield and Simpson, J. Chem. Soc., 517 (1945). ⁷⁴ Hennion and Pillar, J. Am. Chem. Soc., 72, 5317 (1950). ⁷⁵ Taylor and Strong, I. Am. Chem. Soc., 72, 4263 (1950).

METHODS 50-51

In this chapter are gathered twenty-eight methods for introducing the halogen atom into organic substances. These methods are grouped in accordance with some general type of reaction such as replacement reactions (methods 51-63), halogenation reactions (methods 64-72), and addition reactions (methods 73-78).

In the tables are collected a number of halogenated compounds, which have been prepared by these methods and, as such, serve as examples.

Special works on summarizing information concerning halogen compounds are noteworthy. Outstanding is the compilation of data on organic chlorine compounds, which presents their preparation, properties, chemical behavior, and identification.⁶⁸³ The chemistry of fluorine compounds has been reviewed in several excellent works.⁶⁸⁶

51. Action of Hydrogen Halides on Hydroxy Compounds

$ROH + HBr \rightarrow RBr + H_2O$

A general method for the preparation of primary alkyl bromides of the type RCH_2CH_2Br consists in the treatment of the alcohol with excess aqueous hydrobromic acid together with sulfuric acid (90-95%).¹ The hydrobromic acid is readily prepared from bromine and sulfur dioxide. The use of sodium bromide, sulfuric acid, and water is satisfactory in the preparation of low-molecular-weight compounds such as *n*-butyl bromide and trimethylene bromide, but this procedure leads to comparatively low yields of high-molecular-weight bromides. The higher primary bromides are prepared more conveniently by saturating the alcohol at 100-120° with dry hydrogen bromide.³

Primary alkyl chlorides are formed by the action of zinc chloride and hydrochloric acid.¹⁰ The original procedure has been modified so that the time of action of the hot reagents has been shortened; the yields are higher (70-90%).¹⁰ Long cont**act** time of the halide with the *hot* reagent causes the formation of isomeric halides.¹² Efforts have been made to avoid possible isomeric changes by using cold ZnCl₂-HCl reagent and long reaction periods.^{6,12,13} Thionyl chloride is a more satisfactory reagent for the preparation of primary alkyl chlorides (method 53).

Highly branched primary halides, RR'R"CCH₄X, cannot be made from the corresponding alcohols except in small yields; the main product is a tertiary halide formed by the rearrangement of one of the alkyl groups. Similarly, secondary carbinols (RR'CHCHOHR ") having a tertiary hydrogen atom alpha to the carbinol group give tertiary halides even under the mildest conditions on treatment with halogen acids.⁹ Primary halides of the type RR'CHCH₄X can be obtained best using phosphorus tribromide or thionyl chloride in pyridine; other reagents cause rearrangement.¹¹

4

Halides

CONTENTS

VETHOD

DACE

METHOD	
51. Action of Hydrogen Halides on Hydroxy Compounds	89
52. Action of Phosphorus Halides on Hydroxy Compounds	91
53. Action of Thionyl Chloride on Hydroxy Compounds	92
54. Cleavage of Ethers	92
55. Interchange of Halogen	93
56. Replacement of the Diazonium Group by Halogen	94
57. Action of Hydrogen Halides on Diazo Ketones	95
58. Replacement of the Sulfonic Acid Group by Halogen	95
59. Interaction of Organometallic Compounds and Halogen	96
60. Interaction of Grignard Reagents and Haloalkyl Sulfonates	96
61. Interaction of Organic Silver Salts and Halogen (Simonini)	96
62. Reductive Elimination of Halogen from Polyhalides	97
63. Interaction of Amides and Phosphorus Pentahalides (von Braun)	97
64. Direct Halogenation of Hydrocarbons	98
65. Halogenation of Ethers	99
66. Halogenation of Aldehydes and Ketones	100
67. Halogenation of Acids and Esters	102
68. N-Halogenation of Amides and Imides	103
69. N-Halogenation of Amines	103
70. Haloalkylation	104
71. Allylic Bromination (Wohl-Zeigler)	104
72. Action of Phosphorus Pentachloride on Carbonyl Compounds	105
73. Addition of Hydrogen Halides to Olefinic Compounds	105
74. Addition of Halogen to Olefinic Compounds	106
75. Peroxide-Induced Addition of Halogenated Compounds to Olefins	107
76. Condensation of Hydrocarbons and Halogenated Compounds	108
77. Addition of Hypohalous Acids to Olefins	109
78. Addition of Hydrogen Halides to Oxides	110
T-11. 7 11-114 -	111
Table /, hauges	120
Table 0. Olefinic Helidee	125
Table 10. Acetylenic Halides	129
	112
References	152

METHODS 51-52

Ch. 4

Secondary chlorides of propane and butane can be made without side reactions from isopropyl alcohol and s-butyl alcohol by treatment with HCl and ZnCl₂ in the cold; however, treatment of the next higher homolog 3-pentanol under the same conditions gives a mixture of chloropentanes. The 2- and 3-chloropentanes are best obtained by the SOCl₂-pyridine procedure.¹² The corresponding bromo derivatives have been obtained using hydrogen bromide at a low temperature;⁷ however, care must be taken to avoid isomerization.

Tertiary halides, RR'R"CX, are formed easily by reaction of the alcohol and aqueous hydrogen halide.^{19,11,22} Acetyl chloride or bromide has also been used as the halogenating agent, as illustrated by the synthesis of triphenylchloromethane and its derivatives.^{37,562}

Alkyl iodides are obtained from primary, secondary, and tertiary alcohols in 88-95% yields by the action of potassium or sodium iodide and phosphoric acid at reflux temperatures.

$$ROH + KI + H_3PO_4 \xrightarrow{\text{Reflux}} RI + KH_3PO_4 + H_2O_4$$

Extensive reduction of the sensitive iodide, usually encountered with hydrogen iodide, is avoided. In the conversion of 2-methyl-1-propanol, $(CH_3)_2CHCH_4OH$, apparently no isomerization to the tertiary halide occurs.

The physical properties of alkyl monohalides prepared by various reagents have been compared.¹⁷

Improved directions for the preparation of *dihalides* by this method have been described.⁷¹ Since ω -acetoxyamyl chloride is readily available by the ring opening of tetrahydropyran with acetyl chloride, an attractive route for making pentamethylene chlorobromide is afforded by reaction of this ester with hydrobromic acid (82%).⁵⁶⁶ Other diesters have been cleaved to furnish dihalides, the procedure being particularly valuable for obtaining sterically pure α -dibromides.^{43,564}

Other difunctional compounds have been made. A few examples are noteworthy. Olefinic carbinols of the types $RCH = CHCH_2OH$ and $RCHOHCH = CH_2$ on treatment with dry hydrogen bromide or chloride undergo allylic rearrangements to yield equilibrium mixtures of isomeric unsaturated halides.^{47, 49, 31} Acetylenic carbinols prepared from sodium acetylide and aldehydes or ketones³⁵ can be converted to their chlorides by means of anhydrous hydrogen chloride at $-5^{\circ}C.^{54}$ However, it should be noted that, in the reaction of dimethylethynylcarbinol, $(CH_3)_2C(OH)C \equiv CH$, with hydrochloric acid, extensive production of 2-chloro-3-methyl-1,3-butadiene, $H_2C = C(CH_3)C(CI) = CH_2$, occurs instead of the expected metathesis product.⁵⁷⁸ m-Methoxybenzyl alcohol has been converted to the corresponding halide in 90% yield without cleavage of the ether linkage.⁶³ β -Bromoethylamine hydrobromide is synthesized from ethanolamine and hydrobromic acid in 83% yield.⁷⁰

52. Action of Phosphorus Halides on Hydroxy Compounds

$$3 \text{ ROH} + PX_3 \xrightarrow{\text{Pyridine}} 3 \text{ RX} + H_3 PO_3$$

This method is superior to the hydrobromic-sulfruic acid method in the preparation of certain low-molecular-weight alkyl bromides.⁷⁴ It has been applied in the preparation of a large number of primary and secondary bromides without any apparent isomerization.⁷⁵ Thus, primary bromides of the type RR'CHCH₄Br are best obtained using phosphorus tribromide in pyridine; other reagents cause rearrangements.¹¹ The presence of pyridine helps to retard isomeric changes. In the preparation of tetrahydrofurfuryl bromide, this combination gives markedly improved yields (61%).^{93,99} Alkyl iodides are conveniently prepared by bringing the alcohol in contact with phosphorus and iodine.^{72,73} Phosphorus pentachloride has been used for the formation of alkyl chlorides,⁸⁶ although thionyl chloride is more satisfactory. Certain phenolic groups are replaced by halogen by the action of phosphorus tribromide⁹⁸ or phosphorus pentabromide.⁹⁴

The method has been extended to the preparation of difunctional compounds. Dihalides including the mixed variety are formed in 90 to 98% yields. 104, 105, 109 Primary unsaturated bromides of the type RCH=CHCH,Br have been formed from the corresponding alcohols by the action of phosphorus tribromide and pyridine at a low temperature without any apparent rearrangement. 47,213 However, the corresponding secondary-carbinol system, RCHOHCH=CH₂, is very susceptible to allylic isomerization.^{47, \$1} The formation of α, β -acetylenic bromides from acetylenic alcohols and phosphorus tribromide is common (40-70%).119-121 An acetylenic-allenic isomerization has been observed, 122, 575 viz., $RC = CCH_{\lambda}X \rightarrow RCX = C = CH_{\lambda}$, β, γ - and γ, δ -Acetylenic alcohols can be transformed to the halides in better yields by an alternative procedure, which consists in their esterification with p-toluene sulfonyl chloride and subsequent cleavage of the ester by the action of sodium iodide, lithium chloride, or calcium bromide in an appropriate solvent (60-90%).⁵⁷⁸ Halo ethers are prepared by the action of phosphorus tribromide on hydroxy ethers, as in the preparation of β -ethoxyethyl bromide (66%).¹²³ In a similar manner, β -halo esters have been prepared without appreciable dehydration of the β -hydroxy ester (40-60%).³³² The reaction of cyanohydrins leads to a-halo nitriles.¹⁴⁰ Treatment of 2-nitro-1-propanol with phosphorus pentachloride gives 1-chloro-2-nitropropane (47%),500

53. Action of Thionyl Chloride on Hydroxy Compounds

$$ROH + SOCl_2 \xrightarrow{C_{5}H_{5}N} RCl + SO_2 + C_{5}H_{5}N \cdot HCl$$

Alcohols on treatment with thionyl chloride in the presence of pyridine are converted in good yields to chlorides. This method has been successful where other methods have given poor results¹⁴⁷ or have led to isomeric products (cf. methods 51 and 52).^{11, 12}

Only a small amount of pyridine or its hydrochloride is required for the decomposition of the intermediate alkyl chlorosulfinate.^{91,141,135} Oftentimes, in the absence of pyridine, the reaction takes other courses.¹³¹ On the other hand, certain aromatic and heterocyclic alcohols react normally without the hydrogen chloride acceptor, as in the preparation of α -naphthylmethyl chloride (79%)¹⁴⁵ and γ -(α -tetrahydrofuryl)-propyl chloride (83%).¹⁴⁷

The method has been used for the preparation of dibalides, e.g., 1,9-dichlorononane (93%);¹⁵⁴ unsaturated halides, e.g., 11-undecylenyl chloride (83%);¹⁵⁶ halo ethers, e.g., β -ethoxyethyl chloride (80%);¹⁵⁹ halo ketones, e.g., desyl chloride (79%);¹⁶³ halo esters, e.g., methyl α -chloropropionate (71%);¹⁶⁹ halo cyanides, e.g., phenylchloroacetonitrile (80%);¹⁷⁹ and aminoalkyl halides.¹⁷⁰⁻¹⁷⁶ An interesting isomerization has been observed in liberating 2-diethylamino-1-chloropropane from its hydrochloride salt; 1-diethylamino-2-chloropropane is formed.¹⁷²

54. Cleavage of Ethers

$$C_{s}H_{s}OR + HX \rightarrow RX + C_{s}H_{s}OH$$

The cleavage of alkyl aryl ethers is more important as a preparative method for phenols than for alkyl halides (method 97). The procedure has been employed as the final step in a synthesis proposed as a means for increasing the carbon chain of an alkyl halide, viz.,³⁶³

$$RX \xrightarrow{Mg} RMgX \xrightarrow{C1CH_2OCH_3} RCH_2OCH_3 \xrightarrow{HX} RCH_2X$$

It should be mentioned that the formation of methyl iodide by heating methyl ethers with concentrated hydriodic acid is quantitative and is the basis of the Zeisel method for the determination of methoxyl groups.

Gaseous or aqueous hydrogen iodide is the common reagent for cleavage; however, it also leads to extensive reduction of the product. A modification which overcomes this difficulty consists in heating the ether with orthophosphoric acid and potassium iodide, viz.,⁶⁰³ METHODS 54-55

 $ROR + 2KI + 2H_3PO_4 \xrightarrow{Heat} 2RI + 2KH_2PO_4 + H_2O$

In this manner, dibutyl ether is converted to 1-iodobutane in 81% yield. Certain ethers have been cleaved successfully with boron tribromide.³⁶⁶

More often, the method is applied in the synthesis of halogenated acids, ³⁷³, ³⁹¹, ⁴⁰⁴ ketones, ¹²³ and amines. ³⁷⁶, ³⁷⁷ The halo group in the starting material is substituted by the relatively unreactive alkoxyl group before taking steps in which the halogen itself would react; the halo group is then "regenerated" at the appropriate time.

 γ -Alkoxybutyryl chlorides are transformed by heat into alkyl γ chlorobutyrates as a result of an intramolecular rearrangement, viz.,605

$CH_3OCH_2CH_2CH_2COCI \rightarrow CICH_2CH_2CH_2CO_2CH_3$ (84%)

The cleavage of tetrahydrofuran and its alkylated derivatives with halogen acids is an excellent method for the preparation of 1,4-dibaloalkanes.^{410,413} The reaction of tetrahydrofuran with the less-reactive hydrogen chloride stops at the chlorohydrin stage,⁶⁰⁶ whereas the reaction in the presence of zinc chloride catalyst leads to the formation of the dichloride.⁴¹⁰ The crude reaction mixture containing the intermediate chlorohydrin may be treated directly with phosphorus tribromide, yielding tetramethylene chlorobromide.¹¹⁹ The preparation of dibromides can be accomplished easily with hydrogen bromide⁴¹¹ or phosphorus and bromine⁴¹² and diiodides, by the action of potassium iodide and orthophosphoric acid.⁵³³

$$\begin{array}{c|c} H_2C - CH_2 \\ | & | \\ H_2 + 2HBr \rightarrow BrCH_2CH_2CH_2CHBrR + H_2O \\ RHC & CH_2 \\ O \end{array}$$

Cleavage of tetrahydrofuran and its derivatives with other reagents has been carried out—acid halides lead to 4-*balobutyl esters*⁴¹⁶ and phosphorus oxychloride to *chloro ethers*.⁴¹¹

Similarly, tetrahydropyrans react to yield the 1,5-dihaloalkanes^{416,418} and 5-haloamyl esters.^{414,866}

55. Interchange of Halogen

$$RX + NaI \longrightarrow RI + NaX$$

The exchange of chlorine or bromine atoms for iodine is an important method for the preparation of alkyl iodides. In general, the reactivity of

METHODS 56-58

Ch. 4

the halogen atom is in the order of primary > secondary > tertiary. Vinyl and aryl halogen atoms show little or no reactivity. Bromine is replaced more readily than chlorine. The exchange is effected by heating the halogen compound with a solution of sodium iodide in acetone; sodium chloride or sodium bromide precipitates.^{\$78} Potassium or silver fluoride at high temperatures leads to alkyl fluorides; sodium fluoride is without action.^{\$80,607}

Mixed *dihalides* such as iodochlorides have been prepared by treating a dichloride or bromochloride with one equivalent of sodium iodide (50-90%).^{154,270} Mixtures of dichloride, iodochloride, and diiodide may result. 1.2-Dihalides yield only the olefin and iodine (method 22).

This method is adaptable to the preparation of benzyl iodides,³⁰⁸ unsaturated iodides,³⁰³ iodo ethers,³⁰⁴ iodo esters,³⁰⁷ and iodo nitriles.³⁰⁰

56 Replacement of the Diazonium Group by Halogen

$$\operatorname{ArN}_{2}^{+} X^{-} \xrightarrow[HX]{\operatorname{Cu}_{2}X_{2}} \operatorname{ArX} + N_{2}$$

The replacement of the diazonium group by halogen constitutes an important method for the preparation of aromatic halides, particularly when the assignment of the halogen to a definite position is desired.

For the preparation of chlorides or bromides, the diazonium salt is decomposed with a solution of cuprous chloride or bromide in the corresponding halogen acid (Sandmeyer reaction). It is possible to prepare the aryl bromide from the diazonium chloride or sulfate.²⁹⁹ A variation involves the use of copper powder and a mineral acid for the decomposition step (Gattermann reaction). Both procedures are illustrated by the syntheses of the isomeric bromotoluenes³⁰⁰ and chlorotoluenes.³⁰¹ The usual conditions of the Sandmeyer reaction fail in the preparation of the chloro- and bromo-phenanthrenes. However, these compounds can be successfully obtained by the interaction of the diazonium compound with mercuric and potassium halides (Schwechten procedure).³¹⁰ Another procedure for formation of aryl bromides involves treatment of the amine hydrobromide with nitrogen trioxide in the presence of excess 40% hydrobromic acid. The intermediate diazonium perbromide is then decomposed by heat.³¹⁶

$$\operatorname{ArNH}_{2} \cdot \operatorname{HBr} \xrightarrow{\operatorname{N_{2}O_{3}}} \operatorname{ArN_{2}Br_{3}} \xrightarrow{\operatorname{Heat}} \operatorname{ArBr} + \operatorname{N_{2}} + \operatorname{Br_{3}}$$

In a somewhat analogous fashion, pyridine hydrobromide on treatment with sodium nitrite and bromine gives a perbromide which decomposes to 2-bromopyridine (92%).³¹² If the decomposition of the diazonium chloride is carried out in the presence of aqueous potassium iodide, an aryl iodide results.³⁰³ This method furnishes a very satisfactory means for obtaining many aromatic iodo compounds.

The introduction of fluorine into the aromatic nucleus can readily be accomplished by first converting the diazonium chloride with fluoroboric acid to an insoluble borofluoride, which is isolated and then decomposed by heat (Schiemann reaction).

$$ArN_2BF_4 \xrightarrow{Heat} ArF + N_2 + BF$$

A critical discussion of the reaction has been presented along with a table of fluoro compounds.³⁰³ More recently, the reaction has been extended to the preparation of heterocyclic fluorine compounds.³¹⁴

Difunctional compounds, including certain halogenated ethers,³¹⁰ aldehydes,³²⁹ ketones,³³³ phenols,³²⁴ amines,³³⁶ and nitro compounds,³³⁷ have been prepared by the Sandmeyer reaction. However, fluorophenols and fluoro acids are best obtained from the corresponding ethers and esters, respectively, which have been fluorinated by the Schiemann reaction.³⁰³

57. Action of Hydrogen Halides on Diazo Ketones

$$RCOCHN_2 + HBr \rightarrow RCOCH_2Br + N_2$$

The action of hydrogen bromide or hydrogen chloride on diazo ketones represents a general preparative method (50-90%) for pure halomethyl alkyl,^{\$19, \$34, 633} halomethyl aryl,^{\$20} or halomethyl heterocyclic ketones.^{\$23, \$27, 644}

Interaction of hydrogen iodide and diazoketones forms methyl ketones with the liberation of nitrogen and iodine (method 228). If the diazoketone is treated with bromine, then a dibromomethyl ketone, RCOCHBr₂, is formed.⁶⁴⁵

The diazo ketones are readily prepared from acyl halides and diazomethane.⁵²¹

58. Replacement of the Sulfonic Acid Group by Halogen

 $4\text{-HOC}_6\text{H}_4\text{SO}_3\text{H} + \text{Br}_2 \longrightarrow 2,4,6\text{-Br}_3\text{C}_6\text{H}_2\text{OH}$

The replacement of the sulfonic acid group by halogen is governed largely by groups already present on the nucleus. When there is no other group, as in benzenesulfonic acid, the replacement does not take place. The reaction occurs readily with phenolic sulfonic acids and is

METHODS 61-63

Ch. 4

accompanied by halogenation to give polyhalogenated phenols. The amino group also accelerates the reaction. On the other hand, a nitro group retards the reaction and alkylated and halogenated sulfonic acids undergo the reaction with difficulty.³⁵⁴ An aqueous solution of the potassium salt is treated with bromine and sodium bromide for a short time and then extracted with ether, as illustrated by the preparation of 1-methyl-4bromonaphthalene from 1-methyl-4-naphthalenesulfonic acid (68%).²⁹¹

59. Interaction of Organometallic Compounds and Halogen

$$RHgX + Br_2 \rightarrow RBr + HgXBr$$

Organometallic compounds of magnesium, mercury, or lithium have been treated with iodine or bromine to form organic halides. The method has been successful for obtaining neopentyl iodide where other methods have failed (92%).³⁵⁴ It has been found convenient in the synthesis of 9-iodoanthracene (53%)³⁵⁵ and certain heterocyclic halides.³³⁸

The method has been of particular value in the preparation of di/unctional compounds. For example, the action of elemental halogen on sodium acetylides or alkynylmagnesium halides gives 1-halo-1-alkynes (70-90%).^{359,360,363} Also, halo esters, phenols, or acids result when the appropriate aromatic mercurial is treated.^{361,362,364} Sometimes p-toylsulfonyl chloride is substituted for chlorine gas.³⁶⁵ p-Iododimethylaniline is easily made in 42-54% yield by the reaction of p-dimethylaminophenyllithium and iodine.⁶⁰¹

60. Interaction of Grignard Reagents and Haloalkyl Sulfonates

 $\mathrm{RMgX} + p \cdot \mathrm{CH_3C_6H_4SO_2O(CH_2)_nCl} \longrightarrow \mathrm{R(CH_2)_nCl} + p \cdot \mathrm{CH_3C_6H_4SO_2OMgX}$

The reaction of various Grignard reagents with excess γ -chloropropyl p-toluenesulfonate (n = 3) is a satisfactory procedure for lengthening carbon chains by three methylene groups; the yields are about 50-60% when the Grignard reagent has six or more carbon atoms.³⁵² β -Chloroethyl p-toluenesulfonate (n = 2) or di- $(\beta$ -chloroethyl) sulfate³⁵³ can be employed to effect an increase of two carbon atoms in the chain; however, reaction of the Grignard reagent with ethylene oxide is usually superior.

61. Interaction of Organic Silver Salts and Halogen (Simonini)

$$RCO_2Ag + X_2 \rightarrow RX + CO_2 + AgX$$

Silver salts of carboxylic acids react with bromine or chlorine in an inert solvent to give carbon dioxide, a silver halide, and the halide containing one less carbon atom than the acid. The method has been reviewed.³⁹¹ Both low- and high-molecular-weight aliphatic bromides have been prepared.^{142,396,613} The degradation of silver salts of aromatic acids is complicated by nuclear halogenation.⁶¹¹ The procedure is valuable as a step in the synthesis of ω -bromo esters (C_s to C₁₇) from dicarboxylic acids.^{392,393}

The formation of neopentyl bromide by the degradation of silver tbutylacetate is in keeping with a free-radical mechanism and eliminates the possibility of a carbonium-ion mechanism. 610

62. Reductive Elimination of Halogen from Polyhalides

 $CHBr_3 + Na_3AsO_3 + NaOH \rightarrow CH_2Br_2 + Na_3AsO_4 + NaBr_3$

The replacement of halogen by hydrogen has been discussed (method 7). The procedure becomes of practical importance for the stepwise replacement of halogen in polyhalides. For example, methylene bromide has been synthesized from bromoform by the reducing action of sodium arsenite.⁴⁰⁴ Similarly, trichloroacetic acid in aqueous solution is converted to dichloroacetic acid by the action of copper.⁴⁰⁶ Dihalo ketones have been selectively hydrogenated to monohalo ketones, as illustrated by the conversion of phenyl α, α -dichlorobenzyl ketone to phenyl α -chlorobenzyl ketone (65%).⁴⁰⁷ Tetraiodothiophene on reduction with sodium amalgam loses three iodine atoms to give β -iodothiophene (64%).⁴⁰⁹

63. Interaction of Amides and Phosphorus Pentahalides (von Braun)

 $RNHCOC_6H_5 + PCI_5 \rightarrow POCI_3 + C_6H_5CN + RCI + HCI$

The amine group in primary amines can be replaced by halogen by warming the benzoyl derivative with phosphorus pentachloride or phosphorus pentabromide. Oftentimes, the separation of the halide from the benzonitrile, which is also formed, is troublesome.³⁹⁷ The process has been applied mostly to high-molecular-weight amines obtained by the Hofmann degradation of acid amides or by reduction of nitriles.^{402,403}

Diamines lead to dihalogen derivatives.^{400,402} If N-benzoyl piperidines are treated, substituted pentamethylene halides are formed.^{397,399} An example is the synthesis of pentamethylene bromide by the action of phosphorus pentabromide on N-benzoyl piperidine (72%).³⁹⁷

$$C_s H_{10}NCOC_6H_s + PBr_s \longrightarrow Br(CH_2)_s Br + C_6H_s CN + POBr_s$$

96

64. Direct Halogenation of Hydrocarbons

 $RH + X_1 \rightarrow RX + HX$

Direct halogenation of alkanes has found limited use in the laboratory preparation of aliphatic mono- and di-halides;^{311-213,270,591} mixtures are obtained, and other methods are more convenient and satisfactory. The reaction may be carried out in the liquid or vapor phase; slow at room temperature, it is accelerated by heat and light and proceeds rapidly in the vapor phase.^{209,210} In general, substitution occurs most readily with tertiary hydrogens and least at primary positions; the relative rates approach equality with higher temperatures. Many paraffins can be chlorinated in the dark using sulfuryl chloride in the presence or organic peroxides.²¹⁷ Halogenation of alkenes at elevated temperatures leads to allyl-type monohalides.²⁴¹

Direct halogenation of aromatic hydrocarbons finds more use. In sunlight and in the absence of catalysts, the alkylbenzenes are chlorinated or brominated predominately in the side chain.²¹⁴⁻²¹⁶ A peroxide-induced reaction with sulfuryl chloride proceeds smoothly and easily, giving no nuclear substitution.²¹⁷ In contrast, the thiophene ring undergoes substitution under these conditions.²⁸⁷ Benzyl bromide has been prepared in 60-75% yield by bromination of toluene with carbon tetrabromide²⁴⁰ or N-bromosuccinimide.⁴⁵⁸ In the presence of benzoyl peroxide, the latter agent causes a predominance of side-chain substitution.^{218,258} The sidechain halogenation of 2-methylnaphthalene has been accomplished using chlorine, phosphorus trichloride, and light.²⁴⁶

In the presence of halogen carriers, such as certain metal salts or iodine, halogenation of aromatic hydrocarbons occurs in the nucleus; however, these materials are not always needed. General directions for the procedure have been given which include preparation and measurement of the halogenating agent and choice of solvent.²²⁰ Good examples of liquid-phase halogenation are found in the chlorination ²³¹ and bromination ^{229,230} of the polyalkylbenzenes (60-80%). The course of the bromination in the gaseous phase is markedly influenced by the temperature; at 400° p-dibromobenzene (57%) is formed, whereas at 450° to 630° m-dibromobenzene (60%) is formed.²⁷² Polybromination substitutes the benzene ring completely with the replacement of any *sec-* or *tert*alkyl groups; however, straight-chain-alkyl groups are not affected.²⁷¹

Bromine,²³⁴ iodine monobromide,²⁴⁵ and N-bromosuccinimide ²³⁵ have been employed as brominating agents in the treatment of certain polycyclic hydrocarbons. The conversion of naphthalene to its α -bromo derivative with one equivalent of bromine occurs rapidly at room temper-

METHODS 64-65

99

ature (75%); no halogen carrier is needed.²³⁴ In the presence of an iron catalyst and at a temperature of 150° to 165°, β -bromonaphthalene is formed to the extent of 57%. These conditions are favorable for an $\alpha \Longrightarrow \beta$ -bromonaphthalene equilibrium.⁴⁴⁷

Direct iodination of the nucleus can be brought about if the hydrogen iodide is removed as fast as it is formed. Its removal may be accomplished either by oxidation or by reaction with a basic agent. For example, nitric acid as an oxidizing agent is convenient and effective in the preparation of iodobenzene (87%).²³⁶ Sodium persulfate in acetic acid gives good results in the iodination of benzene and its homologs.²³⁷ Mercuric oxide has been used as a basic agent in the iodination of thiophene (75%).²³⁸ Another general method consists in treating the organic compound in ether with a suspension of silver perchlorate, iodine, and calcium carbonate; the last neutralizes the liberated perchloric acid.²⁹⁸ Iodine monochloride has been used for the iodination of phenols and amines in which the substitution of hydrogen atoms takes place readily.²³⁹ Direct iodination of benzoic acid is performed by the action of iodine and silver sulfate in concentrated sulfuric acid to yield *m*-iodobenzoic acid (75%).⁵⁹³

Various heterocyclic compounds undergo nuclear halogenation.²⁵⁵⁻²⁶⁹ In furan and thiophene, the halogen enters the alpha position. The vaporphase reaction of pyridine and bromine at 500° furnishes 2-bromo- and 2,6-dibromo-pyridines, and at 300°, 3-bromo- and 3,5-dibromo-pyridines.²⁴⁵ 3-Bromopyridine is more conveniently prepared by pyrolysis of pyridine hydrobromide perbromide (40%). Similarly, quinoline yields 3-bromoquinoline at 300° and 2-bromoquinoline at 500°.²⁶² Pyrolysis of isoquinoline hydrobromide perbromide gives the 4-bromo derivative (53%).²⁶³

Difunctional compounds have been prepared by the nuclear halogenation of phenols,²⁸² acids,^{285, 387} amines,²⁹⁰ cyanides,²⁹³ and nitro compounds.²⁹³ Aromatic esters containing nuclear halogen atoms are best prepared by halogenating the acid chloride followed by esterification.²⁸⁸ The direct halogenations of ethers (method 65), aldehydes and ketones (method 66), and acids and esters (method 67) are discussed later.

The process of halogenation has been reviewed; in addition, articles on this subject appear periodically.³⁹⁴

65. Halogenation of Ethers

 $C_6H_5 OCH_3 + PBr_5 \rightarrow p - BrC_6H_4 OCH_3 + PBr_3 + HBr_5$

Halogens react very vigorously with aliphatic ethers at room temperature to yield complex mixtures. Thus, the products formed by successive substitution in the chlorination of diethyl ether at room temperature are

METHOD 66

Ch. 4

a-chloroethyl, α , β -dichloroethyl, α , β , β -trichloroethyl, and α , β , β , β -tetrachloroethyl ethyl ether. The β -chlorine atoms probably arise by the repeated loss of hydrogen chloride followed by addition of chlorine to the resultant double bond, the chlorine atom of the hydrogen chloride coming from the labile alpha position.

On the other hand, if diethyl ether is treated at -20° or below with one equivalent of chlorine, α -chloroethyl ethyl ether is formed in 42% yield. Further chlorination at this low temperature leads to α, α' -dichlorodiethyl ether in 57% yield, the second chlorine atom entering a new alpha position in preference to an alpha position already substituted. The extension of this new technique to higher ethers is under way.⁶³³ Other methods are available for the preparation of α - and β -halo ethers (see Chapter 6).

Aryl ethers in the presence of a solvent can be preferentially halogenated in the nucleus. Thus, anisole with phosphorus pentabromide or with iodine monochloride yields *p*-bromoanisole $(90\%)^{479}$ and *p*-iodoanisole (46%),²⁸³ respectively. Phosphorus pentachloride has also been used for the halogenation of the nucleus as in the preparation of 4-chlorobiphenyl ether (90%).²⁸⁴ The action of this reagent with aliphatic and aryl-aliphatic ethers is very complex, giving both cleavage and halogenation products.⁴⁸¹

The bromination of α -chloro ethers proceeds readily and represents the second stage in the Boord synthesis of olefins (method 21):

 $RCH_{3}CHCIOR' + Br_{3} \longrightarrow RCHBrCHBrOR' + HCl$

In the conversion, the chlorine atom is replaced by bromine. Since the yield is nearly quantitative (90-95%), the bromination product is often used without purification to avoid losses by decomposition.^{384,480}

66. Halogenation of Aldehydes and Ketones

 $RCH_2COCH_1R + Br_2 \rightarrow RCHBrCOCH_1R + HBr$

The direct bromination of aliphatic ketones occurs readily, often giving isometic mixtures. Thus, methyl ethyl ketone and an equimolar quantity of bromine yield the α -bromomethyl (17%) and the α -bromoethyl (50%) isomers; polybrominated products are also formed.⁴⁸⁴ On the other hand, only the tertiary hydrogen in methyl isopropyl ketone is substituted upon monobromination.⁴⁸⁵ By varying the conditions for the bromination of acetone, mono- or poly-substitution products may be formed: e.g., bromo-acetone (44%),⁴⁸³ α , α '-dibromoacetone (60%), and α , α , α '-tribromoacetone (60%).

Oftentimes condensation reactions are promoted by the liberated hydrogen halide (cf. method 36). This difficulty may be overcome by brominating in the presence of calcium carbonate or potassium chlorate.⁴¹⁴

 $6RCH_2COR + 3Br_1 + KCIO_3 \rightarrow 6RCHBrCOR + KCI + 3H_3C$

The bromine may be added in a stream of nitrogen which also serves to remove the liberated hydrogen halide. In the bromination of pinacolone, aluminum amalgam or aluminum chloride is used as a catalyst.⁴⁴⁹ Phosphorus pentabromide,⁴⁹⁰ N-bromosuccinimide,²¹⁸ and pyridine hydrobromide perbromide ⁴⁹¹ have been used as brominating agents.

Chloro ketones have been prepared by direct chlorination^{496,497} or by the action of sulfuryl chloride.⁴⁹³ Cyclohexanol suspended in water in the presence of calcium carbonate is oxidized and chlorinated in one step to 2-chlorocyclohexanone (57%).⁴⁹⁸

Aliphatic atomatic ketones are halogenated in the side chain exclusively, as in the synthesis of α -bromoacetophenone (96%).⁴⁹⁹ The reaction is frequently carried out in cold ether, which can be easily removed.^{499,507} The third chlorine atom is introduced into trichloroacetophenone by passing chlorine into a solution of dichloroacetophenone and fused sodium acetate in acetic acid at 95° (95%).⁶³⁶ The treatment of 2-acetylthiophene with bromine in carbon tetrachloride in the presence of iron filings yields 2-(bromoacetyl)-thiophene (80%).⁵⁰⁹

Direct halogenation of aldehydes is more complicated. Substitution on the aldehyde carbon as well as the α -carbon may take place. Thus, acetaldehyde in aqueous solution yields chloral, whereas, in the absence of water, acetyl chloride is formed. Bromination of cyclohexanealdehyde in chloroform at 0° in the presence of calcium carbonate is straightforward, the 1-bromo compound being formed in 80% yield.⁶³⁹ Also, the direct bromination of *n*-valeraldehyde in chloroform solution at -15° has been successfully accomplished, α -bromo-*n*-valeraldehyde being formed in 70% yield.⁵¹⁴ Frequently, the reaction mixture containing the α -bromo aldehyde is treated with absolute ethanol and the product is isolated as the diethyl acetal.⁶⁴¹ o-Chlorobenzaldehyde, which lacks an α -hydrogen, undergoes chlorination to give o-chlorobenzoyl chloride.

Bromination of acetals affords satisfactory yields of the α -bromo acetals. The reaction is carried out in cold chloroform solution in the presence of calcium carbonate, which reacts with the liberated hydrogen bromide.⁶⁴⁰

 $RCH_{2}CH(OC_{2}H_{5})_{2} + Br_{2} + CaCO_{3} \rightarrow RCHBrCH(OC_{2}H_{5})_{2} + CaBr_{1} + CO_{2}$

METHODS 67-69

Acetals may also be converted by the action of phosphorus trichlorodibromide to α -bromoaldehydes (60-75%).⁵¹⁸

 $RCH_{CH}(COR')_{2} + 2PCl_{3}Br_{2} \rightarrow RCHBrCHO + 2R'Br + HBr +$

 $POCl_1 + PCl_2$

In other instances, aldehyde trimers have been brominated and then heated to yield the monomolecular derivative.^{\$13, \$16, \$17}

Bromination of enol acetates of aldehydes with subsequent reaction of the brominated product with methanol furnishes a novel synthesis of a-bromoaldehyde acetals.

 $RCH = CHOCOCH_3 \xrightarrow{Br_2} RCHBrCHBrOCOCH_3 \xrightarrow{CH_3OH} RCHBrCH(OCH_3)_2$

The yields of enol acetates prepared by boiling the aldehydes with acetic anhydride and potassium acetate range from 40%-60%, and the α -bromoaldehyde dimethyl acetals are formed in about 80% yield. These products can be hydrolyzed with varying yields to the α -bromoaldehydes. A typical example is the synthesis of α -bromoheptaldehyde (40% overall).⁶⁴²

An analogous change is involved in the conversion of ketones possessing a methylenic hydrogen atom as in methyl *n*-amyl ketone, propiophenone, and cyclohexanone. Bromination of the enol acetates with subsequent hydrolysis in methanol gives α -bromo ketones in 46-90% yields.⁶⁴³

67. Halogenation of Acids and Esters

$$\operatorname{RCH}_{2}\operatorname{COOH} + \operatorname{Br}_{2} \xrightarrow{\operatorname{PBr}_{3}} \operatorname{RCHBr}\operatorname{COOH} + \operatorname{HBr}$$

Direct bromination of an acid yields the α -substituted product when red phosphorus or phosphorus halides are used as carriers. The procedure is illustrated by the preparation of α -bromo-*n*-caproic acid (89%)⁵³⁰ and α -bromoisovaleric acid (89%).⁵²⁸ An excellent laboratory preparation of bromoacetic acid is furnished by a modification of the reaction in which acetic anhydride with pyridine is used as the catalyst.⁵⁴⁴

Direct chlorination of acetic acid in the presence of a small quantity of red phosphorus is a standard procedure for the preparation of chloroacetic acid;²³¹ however, similar treatment of its straight-chain homologs gives complex mixtures of halogenated acids.⁵⁴⁷ Substitution by chlorine in a branched-chain acid such as isovaleric acid occurs largely at the tertiary hydrogen. The peroxide-catalyzed chlorination of aliphatic acids or acyl chlorides with sulfuryl chloride produces preferentially betaand gamma- rather than alpha-substitution products. For example, chlorination of *n*-butyryl chloride yields 15% α -, 55% β -, and 30% γ -chlorobutyryl chloride.⁶⁴⁷

Oftentimes, it is desirable to halogenate the acyl chloride and then hydrolyze the resulting α -halo acyl chloride or convert it to an ester with alcohol.^{545,648-650} Formation of the acyl halide and α -halogenation can be accomplished in a single operation by using two molecular equivalents of bromine (Hell-Volhard-Zelinsky).^{546,646} Another successful procedure employs thionyl chloride not only as the reagent for forming the acyl chloride but also as a solvent for the subsequent halogenation, which is accomplished with either bromine or sulfuryl chloride; no red phosphorus is needed.⁵⁵⁰

Malonic acid, ethyl malonate, and their monoalkyl derivatives can be readily halogenated in ether solution; subsequent decarboxylation leads to the corresponding α -halogenated acetic acid in 55-80% yield.³³⁷ The reaction of the potassium salts of monoethyl alkylmalonates with bromine provides the α -bromo esters directly, although the yields are relatively low.³⁵²

Halogenation of the higher dicarboxylic acids occurs readily to give α, α' -dibromo acids, for example, α, α' -dibromoadipic acid (70%).⁵⁴² In fact, it is difficult to avoid these products when the α -halo dicarboxylic acid is desired. Preparation of the monohalogenated compounds is accomplished by treatment of the ester acyl chloride with bromine or sulfuryl chloride in thionyl chloride solution (88–98%).⁵⁵⁰

68. N-Halogenation of Amides and Imides

 $RCONH_2 + Br_2 + KOH \rightarrow RCONHBr + KBr + H_0$

Amido^{630,631} or imido^{637,638} hydrogen atoms are easily replaced in the cold by the positive bromine atom of alkali hypobromites. The reaction is the first step in the Hofmann degradation of acid amides (method 446) and, as such, has been extensively studied. The N-bromoamides are sometimes isolated.⁶⁹⁰ Excellent directions are given for the preparation of N-bromoacetamide (51%).⁶⁹⁵

69. N-Halogenation of Amines

$$RNH_2 + NaOCl \rightarrow RNHCl + NaOH$$

N-Halogenated amines can be prepared in excellent yields by treating the amine with sodium hypochlorite in ethereal solution, the mono- or Ch. 4

di-chloro derivative being formed depending on the molecular proportion of reactants.⁶⁵⁵ A number of dichloroamines have been made by passing chlorine directly into a cold solution of sodium bicarbonate and the free amine, as in the preparation of *n*-butyldichloroamine (92%).⁶⁵⁶ N-Chloro*t*-butylamine is formed in a similar way.⁶⁵⁷

70. Haloalkylation

$ArH + CH_2O + HX \rightarrow ArCH_2X + H_2O$

A survey of the chloromethylation of aromatic compounds has been made,³³⁶ and a thorough study of the conditions of the reaction for the production of benzyl chloride has been carried out.³³⁹ The reaction is generally applicable to aromatic hydrocarbons. The effect of substituents on the ease of chloromethylation is pronounced; alkyl and alkoxyl groups facilitate the introduction of the chloromethyl group, whereas halogen, carboxyl, and nitro substituents retard or prevent the reaction. Zinc chloride, sulfuric acid, and phosphoric acid³⁴³ have been used as catalysts when needed. A chief by-product is the *bis*-chloromethyl compound. Indeed, these disubstituted hydrocarbons are readily obtained by employing excess hydrochloric acid and formaldehyde, e.g., *bis*-(chloromethyl)durene (67%)⁵⁹⁹ and 2,5-*bis*-(chloromethyl)-*p*-xylene (55%).⁶⁰⁰

Related reactions such as bromomethylation,^{340, 597} chloroethylation, and chloropropylation³⁴¹ have been reported.

Thiophene and benzothiophene undergo chloromethylation to furnish the respective 2- and 3-chloromethyl derivatives.³⁴⁹⁻³⁵¹

A few aliphatic ketones have been condensed with formaldehyde in the presence of hydrochloric acid to yield β -cbloro ketones.³⁴⁸

 $RCOCH_3 + CH_2O + HCl \rightarrow RCOCH_2CH_2Cl + H_2O$

The formation of halo ethers by chloroalkylation of alcohols is discussed under Ethers (method 117).

71. Allylic Bromination (Wohl-Ziegler)

 $RCH = CH - CH_{1}R \xrightarrow{N-Bro mosuccinimide} RCH = CH - CHBrR$

Bromination of an olefin in the allylic position with N-bromoimides has become a valuable method for the preparation of unsaturated halogenated compounds. In general, it consists in heating the unsaturated compound in anhydrous carbon tetrachloride under reflux with N-bromosuccimide (or N-bromophthalimide). As the bromination proceeds, succinimide collects at the surface of the mixture. After the completion of the reaction, the insoluble imide is filtered and the solution is processed. The scope, limitation, and experimental details have been elegantly reviewed.⁴⁵⁵

As a result of an extensive study, it has been found that methylene groups are attacked much more readily than a methyl group. For example, 2-methyl-2-butene requires 16 hours for completion of the reaction, whereas, 2-methyl-2-hexene requires 10 minutes. The conversion of cyclohexene to 3-bromocyclohexene is accomplished in 20 minutes in 87% yield.⁴³⁶ It is noteworthy that the bromination of 1-octene with N-bromosuccinimide yields a mixture of 1-bromo-2-octene and 3-bromo-1-octene and that the proportion of these isomers is in close agreement with the equilibrium mixture formed at 100° by analogous bromides.⁶⁴³

More recently, the use of benzoyl peroxide catalyst or light (or both) has extended the scope of the reaction. Thus, previously unsuccessful brominations of conjugated diene systems and terminal methyl groups can now be accomplished.^{457,458}

72. Action of Phosphorus Pentachloride on Carbonyl Compounds

 $RCOCH_2R' + PCI_5 \rightarrow RCCI_2CH_2R' + POCI_5$

The reaction of phosphorus pentachloride with aliphatic aldehydes or ketones has been used to prepare gem-dihalides. These compounds are important intermediates in the synthesis of acetylenes (method 43). Often, a large quantity of hydrogen chloride is evolved with the formation of monochloroölefins, RC(CI) = CHR'; however, the resulting mixture is suitable for the acetylene synthesis.⁴⁴⁴ Small amounts of dichloro compounds of the type RCHClCHClR' are also formed. These side reactions are limited by adding the ketone to the phosphorus pentachloride at 0° C.

Arylacetones are converted mostly to mixtures of chloroölefins, giving very little of the dichlorides. Aromatic methyl ketones yield mixtures of an α -chloro ketone and the monochloroölefin.⁴³²

Phosphorus pentabromide causes mainly α -halogenation.⁴⁵⁰ Even phosphorus pentachloride leads to an α -chloro ketone in the case of ethyl *t*-butyl ketone.⁴⁵¹

 $(CH_3)_3CCOCH_2CH_3 + PCl_5 \rightarrow (CH_3)_3CCOCHClCH_3 + HCl + PCl_3$

73. Addition of Hydrogen Halides to Olefinic Compounds

$$CH_{3}CH = CH_{2} \xrightarrow{HBr} \xrightarrow{Peroxides} CH_{3}CH_{2}CH_{2}Br$$

METHODS 74-75

The addition of hydrogen halides to olefinic linkages is of little preparative importance for simple alkyl halides since these compounds can u sually be prepared by more convenient methods; however, addition to an α,β -olefinic system is important for obtaining certain unsaturated halides,¹⁹⁴ and halogenated acids,¹⁹⁹ esters,²⁰² and cyanides,²⁰⁶ all having the halogen atom in the beta position. The reaction between isoprene and dry hydrogen chloride is noteworthy. These compounds combine in ether solution at -15° to form 3-chloro-3-methyl-1-butene on addition of a limited quantity of halogen acid (1,2-addition) or 1-chloro-3-methyl-2butene with excess acid; furthermore, the former rearranges upon heating to the latter under the catalytic influence of hydrochloric acid.⁵⁸⁵

$$H_{2}C = C - CH = CH_{2} \xrightarrow{HCI} H_{3}C - C - CH = CH_{2} \xrightarrow{Heat} CH_{3} \xrightarrow{HCI} H_{3}C - CH_{3} \xrightarrow{Heat} CH_{3}$$

$$\begin{array}{c} H_{a}C - C = CHCH_{2}CI \\ | \\ CH_{a} \end{array}$$

Reactions with hydrogen bromide or hydrogen iodide generally occur at room temperature, whereas the addition of hydrogen chloride may require heat. Benzene, pentane, and ether are employed as solvents.

A unique procedure for adding hydrogen iodide to olefins consists in refluxing the olefin with a mixture of sodium iodide and 95% phosphoric acid, as in the preparation of 2,3-dimethyl-2-iodobutane (91%).⁶⁰³

Many olefinic compounds are capable of adding hydrogen bromide, but rarely the other halogen acids, to form either or both of the possible bromides. In the absence of oxygen or peroxides, the "normal" reaction takes place, giving halogen addition to the carbon with the fewer hydrogen atoms (Markownikoff's rule). In the presence of peroxides or oxygen, the direction of addition is reversed. A discussion of the peroxide effect has been presented.¹⁹⁵ Examples include the addition of hydrogen bromide to trimethylethylene, $(CH_3)_2C = CHCH_3$, and styrene, $C_6H_5CH = CH_2$.¹⁹⁸

From methylene compounds of the type $R_1CHCH = CH_2$, a mixture of isomeric halides may form as a result of an isomerization.¹⁸⁵

$$(CH_3)_2CHCH = CH_2 \xrightarrow{HC1} (CH_3)_2CCICH_2CH_3 + (CH_3)_2CHCHCICH_3$$

74. Addition of Halogen to Olefinic Compounds

 $RCH = CHR + X_2 \rightarrow RCHXCHXR$

The addition of halogen to unsaturated carbon compounds occurs readily, and under proper conditions the reaction is a valuable method for preparing compounds with the halogen atoms in adjacent positions. In the laboratory, the dibromides are the most conveniently and easily prepared. The reaction is generally run at low temperatures. $(-20^{\circ} \text{ to} 20^{\circ})$ using a solvent, such as chloroform, carbon disulfide, acetic acid, or ether; it is sometimes aided by artificial light or sunlight. Heating is usually not recommended because it promotes substitution and dehydrohalogenation. The procedure is illustrated by the addition of bromine to allyl bromide to yield 1,2,3-tribromopropane (98%).⁴²²

The dibromides are often used for the purification of olefins since the double bond is easily regenerated by zinc and alcohol treatment.^{424,425}

Compounds of the type RR'CHCHBrCHBrR'', where R'' is an alkyl group or a hydrogen atom are prepared directly from the corresponding tertiary alcohols.⁴²³ Under the conditions of bromination, simultaneous dehydration and addition occurs: e.g., *t*-amyl alcohol to trimethylethylene dibromide (70%).⁴²³

Additions with more-reactive gaseous chlorine are carried out slowly at low temperatures to avoid substitution reactions. An efficient gasliquid reaction tower has proved satisfactory for this purpose.⁴⁴³ The addition to the double bond is *trans.*⁴²⁰ Sulfuryl chloride⁴²⁷ and phosphorus pentachloride¹³⁶ have been used as chlorinating agents. With sulfuryl chloride, cyclohexene is converted in 90% yield to 1,2-dichlorocyclohexane, which is difficult to obtain in good yields by direct chlorination.⁴²⁷

Iodochlorides have been prepared by the action of mercuric chloride and iodine on olefins.⁴²¹

A conjugated double bond system undergoes 1,4-addition (Thiele's rule); for example, butadiene and an equimolar quantity of bromine yield 1,4-dibromo-2-butene (90%).⁶¹⁸ On the other hand, chlorination of butadiene in the liquid or vapor phase furnishes about equal amounts of 1,2and 1,4-addition products.⁶¹⁹ Other polyfunctional compounds resulting from this method of preparation include *dibalogenated acids*.⁴³² *esters*.⁴³⁶ *aldebydes*.⁴³⁸ and *ketones*.^{439,442} The addition of bromine to unsaturated ethers yields *dibromo ethers* which are used as intermediates in the synthesis of olefins (method 21) and olefinic alcohols (method 99).

75. Peroxide-Induced Addition of Halogenated Compounds to Olefins

$$CCl_4 + RCH = CH_2 \xrightarrow{\text{Peroxide}} RCHClCH_2CCl_3$$

In photochemical or peroxide-induced reactions, polyhaloalkanescarbon tetrachloride, chloroform, dibromodichloromethane or bromotrichloromethane-add to olefins containing a terminal double bond, 537, 538

METHODS 76-77

Ch. 4

For example, the addition of carbon tetrachloride to 1-octene yields 1,1,1,3-tetrachlorononane (85%). The reactions are carried out under pressure in the usual hydrogenation equipment when low-boiling reactants are involved. When this free-radical-initiated reaction is applied to a combination of ethylene and a polyhalomethane, products of the general formula $X(CH_2CH_2)_nY$ are obtained, in which X is hydrogen or halogen and Y is the remainder of the polyhalomethane molecule.⁶⁵²

Aliphatic olefins and α -bromocarboxylic esters yield γ -bromo esters in good yields, as illustrated by the formation of ethyl γ -bromocapoate from 1-octene and ethyl bromoacetate (57%).⁵³⁹

76. Condensation of Hydrocarbons and Halogenated Compounds

$$RX + H_2C = CH_2 \xrightarrow{AICI_3} RCH_2CH_2X$$

Certain halogenated compounds will condense with paraffinic, olefinic, or aromatic hydrocarbons. Catalysts for these reactions are of the Friedel-Crafts type. Thus, the condensation of alkyl halides with ethylene in the presence of aluminum chloride, zinc chloride, iron chloride, etc., furnishes higher alkyl halides. An example is the reaction of *t*-butyl chloride and ethylene to form 1-chloro-3,3-dimethylbutane (75%).⁶³⁴ Although the yields are good with tertiary halides, the combination of primary and secondary alkyl halides with ethylene is slow and complicated by isomerization.

The condensation of saturated hydrocarbons with haloölefins in the presence of anhydrous aluminum chloride also results in the formation of alkyl halides, as in the preparation of 1-chloro-3,4-dimethylpentane from isobutane and allyl chloride (40%).³³⁵ Under the same conditions, alkyl halides react with olefinic halides to give dihaloalkanes.³³⁶ unsym-Heptachloropropane is synthesized from tetrachloroethylene and chloroform (93%).⁶³⁹

a-Chloro ethers have been added to butadiene in the presence of zinc chloride to give a mixture of unsaturated halo ethers in 61-86% yields.653

 $ROCHCIR' \xrightarrow{H_2C=CHCH=CH_2}_{ZnCl_2} \xrightarrow{R'CHORCH_2CHCICH=CH_2}_{R'CHORCH_2CH=CHCH_2CI}$

These isomers can be separated by fractional distillation at reduced pressure and represent valuable intermediates for synthetic work.

Aromatic compounds have been alkylated with unsaturated halides to aryl-aliphatic halides. Hydrofluoric acid is an effective condensing agent for this purpose, as illustrated by the preparation of β -chloro-*t*-butylbenzene (60%).⁶⁶⁰ Benzene and allyl bromide are converted to β -bromoisopropylbenzene by means of concentrated sulfuric acid in 58% yield.⁶⁶¹

A large number of alkyl-substituted aryl halides have been made by alkylating halogenated benzenes. An example is the treatment of bromobenzene with isopropyl chloride in the presence of aluminum chloride, 4-bromocumene being formed in 67% yield.⁶⁶² Similarly, o-dichlorobenzene and ethyl bromide give 3,4-dichloroethylbenzene (53%).⁶⁶³ Alkylation of chlorobenzene with alcohols and aluminum chloride at 90° yields mainly the *para* isomers with some *meta*, but with ethylene at 100° the principal products are the *meta* isomers (80%).⁶⁶⁴ Boron trifluoride in the presence of a strong dehydrating agent like phosphoric anhydride is an excellent catalyst for the alkylation of monohalobenzenes with alcohols, *p-s*-alkylhalobenzenes being formed in 30-66% yields. Its chief advantages are lack of *meta*-isomer formation and halogen migration, both of which may occur with aluminum chloride as catalyst.⁶⁶³

Triphenylchloromethane is synthesized in 86% yield by the reaction of carbon tetrachloride and benzene in the presence of aluminum chloride.⁶⁵⁶ 77. Addition of Hypohalous Acids to Olefins

 $RCH = CHR' + HOX \rightarrow RCHOHCHXR'$

Halohydrins are prepared by vigorously stirring a cold mixture of an olefinic compound and a dilute hypohalous acid solution until the reaction is complete. Solutions of hypohalous acid for this purpose may be conveniently prepared from an aqueous suspension of freshly precipitated mercurous oxide and the appropriate halogen;⁴⁶⁴ also a solution of halogen in water has been used.⁴⁵⁹ In other instances, *t*-butyl hypochlorite in dilute acetic acid,⁴⁷⁰ aqueous calcium hypochlorite,⁴⁷⁰ monochlorourea and acetic acid,⁴⁶⁴ benzenesulfondibromamide,⁶⁹² or N-bromoacetamide and water⁴⁷¹ have been used successfully as a source of the hypohalous acid. An emulsifying agent with efficient stirring gives improved yields.⁴⁷⁰,⁴⁷² The hydroxyl group joins the carbon having the smaller number of hydrogen atoms. Typical examples of the synthesis of halohydrins are found in the preparation of *trans*-2-bromocyclohexanol (73%),⁴⁶⁴ styrene chlorohydrin (76%),⁴⁷⁰ and *trans*-2-bromocyclohexanol (79%).⁴⁷¹

The reaction has been carried out with diolefins,⁴⁷⁴ unsaturated ketones,⁶²⁷ and unsaturated acids.⁴⁷⁵

When the above reagents are combined with olefins in the presence of a reactive solvent like an alcohol or acid, the corresponding halohydrin

108

TABLE 7. HALIDES

TABLE 7. HALIDES

HALIDES

Ch. 4

ether or ester is formed.⁶²⁸⁻⁶³⁰ For example, propylene and *t*-butyl hypochlorite react in the presence of either methanol or acetic acid to give 1-chloro-2-methoxypropane (56%) or 1-chloro-2-acetoxypropane, (72%) respectively. The addition of small amounts of *p*-toluenesulfonic acid increases the yields.

Chlorohydrins are also formed in 35-50% yields by the interaction of 1-olefins (C, to C₆) and chromyl chloride, CrO₂Cl₂, with subsequent hydrolysis. In each instance, the hydroxyl group takes a primary position as in RCHCICH₂OH, opposite to that given by hypochlorous acid.⁶³¹

78. Addition of Hydrogen Halides to Oxides

 $-CHR' + HX \rightarrow RCHOHCHXR'$

The opening of oxide rings with halogen acids furnishes an excellent method for preparing halohydrins of known stereoconfiguration. Thus, the isomeric 2,3-epoxybutanes are first prepared from a mixture of the isomeric bromohydrins, separated by fractional distillation, and then converted to the pure erytbro- or threo-halohydrins with hydrogen halide.⁴⁷⁸ In each instance, the bromohydrin is regenerated by a trans opening of the oxide. Also cyclohexene oxide gives the trans-halohydrin with hydrogen bromide or hydrogen iodide.^{476, 477} When an oxide is not symmetrical, the ring opening leads to an isomeric mixture, the composition of which depends on the structure of the oxide. Extensive studies of the mechanism of the reaction have been made and have been reviewed.⁶³²

с _п	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Alij	phatic H	lalides	
Cı	Methyl iodide	52	95	42	42.5
C ₂	Ethyl bromide	51	95	4 ¹	39.5
C,	<i>n</i> -Propyl chloride	51	70	4 ¹⁸	47*
	n-Propyl bromide	51	87	4 565	71, 1.4330
		52	9 5	4 74	73
	n-Propyl iodide	51	91	4 003	
		52	90	4 ⁷³	102
	Isopropyl bromide	51	74	4 20	61
		51	60	4 23	60/720
		52	68	4 74	63
	Isopropyl iodide	52	92	4 73	89
		55	63	4 378	
C4	n-Butyl chloride	51	78	4 18	77.5
	n-Butyl bromide	51	95	4 ¹	104. 1.4392*
	n-Butyl iodide	52	94	4 73	129
		54	78	4 603	130, 1.504
	s-Butyl chloride	51	88	4 ¹⁸	68*
	s-Butyl bromide	52	80	4**	93
	Isobutyl bromide	5 2	60	474	93/760, 43/135
	Isobutyl iodide	51	88	4 603	
		52	80	4 73	122
	t-Butyl chloride	51	88	4 19	52
	I- Butyl iodide	51	90	4 003	100d*
C5	n-Amyl fluoride	55	50	4 607	64/766, 1.3569 ²⁵
	n-Amyl chloride	53	80	4 15	106/725, 1.4128
	n-Amyl bromide	51	78	4 565	127, 1.444322
		54	88	4 365	124/760, 1.4290 ²⁵
		55	85	4 378	
	2-Chloropentane	53	28	412	95/729, 1.4068
	2-Bromopentane	51	90	47	118/745, 1.4415
	3-Chloropentane	53	46	412	96, 1.4104
	5-Diomopentane	51	85	47	118/760, 1.4443
	(+	52	66	4 3/4	120, 1.4552
	Isoamyl indide	51	90	4-	120
	-Amyl chloride	52	85	4'3	148
	Neopentyl bromide	51	0) 90	4-	86
	heopentyr blomide	61	62 t	4 610	105//32, 1.43/0
	Neopentyl iodide	59	92	4 334	70/100, 1.4309
2.6	n-Hexyl bromide	51	82	A 2	156
•	3-Bromohexane	73	76	4 186	68/50 1 4450
	1-Bromo-2-methyl- pentane	52	65	4 77	44/17, 1.4495
	2-Chloro-4-methyl-	51	82	4 ¹⁰	112/733, 1.4113

111

 C_n

C.

Compound

1-Chloro-2-ethylbutane

1-Bromo-2-ethylbutane

4-Bromo-2, 2-dimethyl-

1-Chloro-3, 3-dimethyl-

2.3-Dimethyl-2-iodobutane

3-Chloro-3-methyl-

pentane

butan e

butane

C, 1-Bromoheptane

2-Bromoheptane

3-Bromoheptane

4-Bromoheptane

2-Chloro-2-methylhexane

2-Chloro-5-methylhexane

3-Chloro-3-methylhexane

3-Chloro-3-ethylpentane

1-Iodo-2.4-dimethyl-

1-Chloro-3,4-dimethylpentane

2-Chloro-4,4-dimethyl-

1-Bromo-4,4-dimethylpentane

1-Iodo-2-ethyl-3-methyl-

2-Chloro-2-methylheptane

2-lodo-6-methylheptane

1-Bromo-4-ethylhexane

Chlorohexamethylethane

pentane

pentane

butane

2-Bromooctane

n-Nonyl chloride

n-Nonyl bromide

Isononyl bromide

n-Decyl bromide

C₁₀ n-Decyl chloride

C.

C. 1-Bromooctane

HALIDES

Method

51

53

52

52

75

73

51

51

52

51

51

51

51

51

51

51

51

52

75

51

73

52

51

51

52

51

52

51

64

60

51

52

63

51

60

51

TABLE 7 (continued)

Aliphatic Halides (continued) 59+

82

48

63

75

91

75

90

90

75

75

75

75

90

90

94

88

83

40

90

88

79

90

91

88

73

80

83

-33

52

82

85

70

91

50

73

4 21

411

4114

479

4 654

4 603

4⁸

43

475

48

48

48

421

4¹⁰

4 21

413

4 21

4 80

4 \$55

4 10

4 187

4 80

44

4¹

4 76

4 21

4 81

4 114

4 212

4 352

4 16

4 75

4 ⁴⁰²

4 352

46

45

Ch. 4

Yield Chapter^{ref.} B.p./mm., n^t_D, (M.p.), Deriv.

69/160, 1.4208

88/225, 1.4230

41/50, 115, 1.4160

74.7/70

59/51

1.495

71/19

178

66/24, 1.4476

62/18, 1.4503

60/18, 1.4495

63/52, 1.4250

65/52, 1.4329

53/20, 1.4299

93/250, 1.4180'

71/35, 1.4484

106/39, 1.4527

70/10, 1.4500

83/14, 1.4870¹⁷

79/4, 1.440025

112/21, 1.457813.5

142/24, 1.4400²⁵

124/20, 1.4558

93/22, 200

81/40, (53)

107.5/17.5

1.4257

84/17

91/9

93/13

83.5, 1.4311

138d/735

55/9

70/14

35/15.5, 1.4205

TABLE 7. HALIDES

TABLE 7 (continued)

с <u></u>	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Aliphatic	Halid	es (continued	<i>d</i>)
Cıı	<i>n</i> -Undecyl chloride	53	94	4142	166/2, (23.5)
	n-Undecyl bromide	61	67	4 39 4	134/15
С 12	n-Dodecyl bromide	51	91	4 ¹	180/45
	(lauryl bromide)	51	88	4 ³	202/100, 136/6, 1.4586
C 14	n-Tetradecyl bromide	51	71	4 14	147/5, (5.5), 1 4608
~		51	98	4 ³	
C 16	n-Hexadecyl bromide	51	75	4 14	154/1.5, (17.8), 1.4627
	n-Hexadecyl iodide (cetyl)	52	78	4 *2	225/22, 205/9, (22)
С 18	n-Octadecyl bromide	51	74	414	169/1.5. (27.4)
		51	91	43	175/2. (27.6). 1.459430
	n-Octadecyl iodide	52	94	4 83	(32.9)
		Alic	yclic I	lalides	
C4	Cyclobutyl bromide	61	50	4 396	108/760, 1,4801
	Cyclopropylmethyl bromide	63	48	4 ³⁹⁸	110
C,	Cyclopentyl chloride	51	60	4 102	115/777
		51	80	4 24	114/752
	Cyclopentyl bromide	51	70	4 ⁶	137/737. 1.4890
		52	84	4 84	136, 56/45, 1,4882
	Cyclopentyl iodide	51	80	4 102	58/22
Cő	Cyclohexyl fluoride	73	70	4 189	63/200, (13), 1,4130 ²⁵
	Cyclohexyl chloride	51	70	4 25	48/26, 1.4600
		51	70	4 102	142/755
		64	72	4 217	68/62, 1.462
	Cyclohexyl bromide	51	75	4 ³	
		51	90	4 25	64/21
		52	77	4 **	71/30, 1.4917 ²⁵
	Cyclohexyl iodide	51	80	4 603	
	.	52	80	4 102	83/20
	Cyclopentylmethyl chloride	52	80	4 ⁸⁷	60/50, 1.4611
	Cyclopentylmethyl bromide	52	50	4 ⁸⁴	57/17
	l-Chloro-l-methyl-	51	56	4 560	64-74/152-162
	cyclopentane	73	100	4 **	67/125, 1.4477
	1-Chloro-2-methyl- cyclopentane	52	34	4 86	72/125, 1.4477
	1-Chloro-3-methyl- cyclopentane	52	60	4 86	76/125, 1.4469
7	Cyclohexylmethyl	51	78	4 ²⁶	83/26. 1.4906 ²⁵
	bromide	52	60	4*0	77/26, 1.4889 ²⁵
	β-Cyclopentylethyl bromide	51	65	4 ⁸⁵	77/19, 1.4863

HALIDES

Ch. 4

TABLE 7. HALIDES

TABLE 7 (continued)

с "	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.). Deriv
		Aromatic	Halides	(continued)	
c,	m-Bromotoluene	14	59	4679	183/760
	p-Chlorotoluene	56	79	4 ³⁰¹	162, (7)
	p-Bromotoluene	56	73	4 ³⁰⁰	185, (26)
		64	40	4 226	(28)
	p-lodotoluen e	56	90	4 ³⁰⁵	212, (35)
C s	₯Chloroethylbenzene	64	85	4 217	93/30
		73	90	4 191	73/11
	∞ Bromoethylbenzene	73	85	4 198	66/3*
		51	74	4 ³⁰	94/8
	eta-Phenylethyl chloride	51	82	4 31	92/16
		52	80	4 ⁹⁰	86/12
	eta-Phenylethyl bromide	51	92	4*	99/15, 1.5572
		51	76	4 26	97/14, 1.5543 ²⁵
		51	97	4 29	95/13
		52	80	4 ⁹⁰	93/11
	o-Bromoethylbenzene	5	42†	4 674	88/18
	<i>m</i> -Chloroethylbenzene	76	80	4 664	72/14, 1,5171 ²⁵
	<i>m</i> -Bromoethylbenzene	3	80	4 669	102/30, 1.5407 25
		5	86	4 672	86/20, 1.5470
	o-Methylbenzyl chloride	51	91	4 33	100/28
		53	89	4 ⁹¹	84/14
	o-Methylbenzyl bromide	64	80	4 ***	218
	m-Methylbenzyl chiofide	64	80	4 ***	102/30, 1.5345
	p-methyldenzyl bromide	70	87	4 597	(39)
	4 Bromo-o-xylene	64	97	4 443	94/15, 1.5558 22
	4- bromo- <i>m</i> -xylene	64	70	4	205
	Cultoro-p-xylene	64	83	4	184, (13)
9	✤Chloropropylbenzene	51	55	434	87/15
	1-Phenyl-2-bromopropane	52	63	4 91	114/21, 1.5416 ³⁰
	3-Phenylpropyl chloride	60	62	4 352	93/6, 1.5160 ²⁵
		53	50	4143	97/12
	3-Phenylpropyl bromide	51	82	4 561	110/9
		51	68	4 26	109/10, 1.5540
	2-Phenyl-1-bromopropane	51	75	4 32	118/20
		76	58	4 661	111/16, 1.5462 ²⁵
	2-Phenyl-2-chloropropane	64	90	4 217	99/21
	m-Bromo-n-propylbenzene	5	85	4 673	100/17, 1.5354
	p-Bromo-n-propylbenzene	3	45	4 670	226
	3-Bromo-l-isopropyl- benzene	14	58	4 ⁶⁸⁰	96/20
	4-Chloro-1-isopropyl- benzene	76	63	4 665	66-72/11, 1.5109
	4-Bromo-1-isopropyl- benzene	76	67	4 662	89/9, 216/744
	p-Ethýlbenzyl chloride	70	71	4 342	100/11, 1,529325

TABLE 7 (continued)

с <u>л</u>	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alicyclic	Halides	s (continued))
с,	1-Chloro-1,3-dimethyl- cyclopentane	51	84	4 ²⁸	33/15, 1.4406
C,	a-Cyclohexylethyl	51	59	4 ⁸⁹	96/26
	β -Cyclohexylethyl	51	65	4 27	71/6, 1.4888 ²⁵
	γ-Bromopropylcyclo-	73	75	4 ¹⁵⁸	145/124, 1.4841
	γ-Chloropropylcyclo- pentane	60	19	4 288	87/22.5, 1.4582 ²⁵
C,	y-Cyclohexylpropyl	60	62	4 352	79/5, 1.4660 ²⁵
	y-Cyclohexylpropyl	51	77	4 **	79/4, 1.4848 ²⁸
	&Cyclopen tylbutyl bromide	51	65	4 85	111/17, 1.4820
Сıo	&Cyclohexylbutyl	52	74	4*	92/4, 1.4832 ²⁵
	β-Chlorodecalin (cis or trans)	64	49	4242	115/13
C11	€-Cyclohexylpentyl	52	74	440	114/5, 1.4814 ²⁵
	bromide	52	87	4 **	90.5/1, 1.4784 ³⁴
		Ar	omatic	Halides	
C.	Fluorobenzene	56	57	4 304	85
v	Chlorob en zen e	64	90	4 219	132*
	Bromobenzene	64.	59	4 221	155
	Jadahanzene	56	76	4 303	78/20, 64/8
	DODOCILLEUC	64	70	4 237	186
		64	87	4 236	186
c	Berryl fluoride	55	60	4 ³⁸¹	40/14, 140/760
ς,	Benevil chloride	64	70	4 221	64/12
	Denzyr chtoride	64	80	4217	99/62, 1.53 9 0
		70	79	4 339	70/15
	D	64	64	4 218	198/760
	Denzyl bromide	70	87	4 597	
	C11	56	79	4 301	158
	o-Chiorotoluene	64	90	t 4 220	159
	D lu	54	47	4 300	181
	o-bromotoluene	70 64	65	4 298	210
	0-todotoruene	64	86	4 237	204
	m-Fluorotoluene	56	89	4303	115

For explanations and symbols see pp. xi-xii.

.

HALIDES

Ch. 4

TABLE 7	(continued)
---------	-------------

		TAB	LE 7 (co	ontinued)	
C _n	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Aromatic	Halides	s (continued)	
2,9	2,4-Dimethylbenzyl chloride	70	61	4 344	118/16
	2,5-Dimethylbenzyl chloride	70	90	4 344	101/15
	3-Chloropseudocumene	16	79	4 ⁶⁶⁷	127/61
	Chloromesitylene	64	75	4 ²³¹	91/20
	Bromomesitylene	64	82	4 229	107/17, 139/70
	2-Bromoindene	19	55	2 ⁶³	124/22, (39)
10	2-Phenyl-1-bromobutane	51	80	4 32	132/28
	- •	52	70	4 92	60/1, 1.5385 ²⁵
	3-Phenylbutyl bromide	52	85	4 ⁹³	112/11
	4-Phenylbutyl chloride	53	98	4144	123/17
	• • •	60	50	4 352	102/6, 1.5183 ²⁵
	<i>m</i> -Bromo- <i>n</i> -butylbenzene	5	83	4 ⁶⁷³	116/18, 1.5330
	p-Chloro-n-butylbenzene	64	72	4 225	224/748
	m-Bromo-s-butylbenzene	5	92	4 675	107/15, 1.5338
	B-Chloro-t-butylbenzene	64	70	4 217	120/30, 1.5253
	,	76	66	4 660	111/90
	m-Bromo-t-butylbenzene	14	56	4 675	106/17, 1.5337
	p-Bromo-t-butylbenzene	64	75	4 227	81/2
	p-Isopropylbenzyl	70	21	4 598	124/26
	Isopropylphenylbromo- methane	51	64	4 ³⁰	119/17
	3-Bromo-p-cymene	52	60	4 ⁹⁴	233
	Chloroprehnitene	64	59	4 ²³¹	132/24, (24), 1.5422 ²⁸
	Bromoprehnitene	64	76	4 ²³⁰	141/30, 1.5650 ²² , (30)
	Chlorodurene	64	57	4 ²³¹	(48)
	Bromodurene	64	80	4 230	(60.5)
	Chloroisodurene	64	37	4 231	139/41, 1.5382 ²⁸
	Bromoisodurene	64	88	4 ²³⁰	142/22, 1.5614 ²⁸ , (8.5)
	☞ Fluoronaphthalene	56	90	4 307	98/17
	∞Chloronaphthalene	64	90	4 244	263*
	a-Bromonaphthalene	64	75	4 234	135/12, 148/20
	eta-Fluoronaphthalene	56	81	4 ³⁰³	(60)
	eta-Chloronaphthalene	56	80	4 ³⁰⁸	(61)
	eta-Bromonaphthalene	52	50	4 ⁹⁵	282, (59)
		56	45	4 ⁹⁵	(59)
	œBromotetralin	56	55	4 311	130/2
211	5-Phenyl-1-chloropentane	63	73	4 402	123/17
	n-Butylphenylbromo- methane	51	70	4 ³⁰	123/10
	p-Bromo-n-amylbenzene	6	60	4 672	115/5, 1.5545
	p-Bromo-t-amylbenzene	64	70	4 228	125/20, 1.5321

C _n	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromatic	Halide	s (continued)	
C 11	p-Butylbenzyl chloride	70	67	4 3 43	146/27, 1.515925
	t-Butylphenylbromo-	51	55	4 ³⁰	112/9
	methane	51	75	4 36	104/7.4, 112/9
	Chloromethyldurene	70	73	4 596	141/15, (66)
	1-Chloromethyl-	53	79	4 145	139/6
	naphthalene	70	77	4 3 45	133/5, 153/14, 1.635*
	1-Bromomethyl-	64	56	4 235	(56)
	naphthalene	70	81	4 597	(53)
	2-Chloromethyl- naphthalene	64	53	4 246	(49)
	2-Bromomethyl- naphthalene	64	22	4 250	214/100, (54)
C 12	2,4,6-Triethylbromo- benzene	64	70	4 232	99/3, 1.5366
	β-(1-Naphthyl)-ethyl bromide	51	91	4 38	137/1.5
	5-Chloroacenaphthene	64	70	4 254	163/13, (69.5)
	7-Bromoacenaphthene	52	89	4 96	(72)
	o-Chlorobiphenyl	64	32	4 243	274/738, (32)
	o-lodo biphenyl	12	52	4 677	158/6
		56	52	4 ³⁰⁸	158/6
	<i>m</i> -Bromobiphenyl	12	16	4 ⁶⁷⁸	173/17, 1.6411
		14	58	4 682	158-167/11, 1.6390 ²⁵
	<i>m</i> -lodobiphenyl	56	48	4 309	152/1
	p-Chlorobiphenyl	64	25	4 243	291/745, (77)
	p-Bromobiphenyl	12	35	4 676	(90)
Cu	Diphenylchloro- methane	51	82	4 ³⁵	116/1, 120/2.5
	o-Chlorodiphenyl- methane	6	81	4 ⁶⁷¹	144/5
	p-Bromodiphenyl- methane	3	92	4 668	162/13, 128/3
	2-Bromofluorene	64	65	4 ²⁵¹	239/48, (110)
	9-Bromofluorene	51	80	4 37	
		64	64	4 252	(105)
C 14	3-Bromo-1,2,4,5-tetra- ethylbenzene	64	96	4 233	151/10, 1.5425, (9)
	1-Chlorophenanthrene	56	41	4 310	(120)
	1-Bromophenanthrene	56	72	4 310	(110)
	1-Iodophenanthrene	56	53	4 ³¹⁰	(113)
	2-Chlorophenanthrene	56	42	4 310	(86)
	2-Bromophenanthrene	56	70	4 ³¹⁰	(96)
	2-Iodophenanthrene	56	47	4 ³¹⁰	(116)
	3-Chlorophenanthrene	56	48	4 310	(81.5)

3-Thenyl bromide

2-Chloropyridine

2-Bromopyridine

2-Iodopyridine

3-Fluoropyridine

Ch

_

118		Cn. 4			
		TAB	LE 7 (c	continued)	
с <u>п</u>	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromatic	Halides	(continued)	
C.,	3-Bromophenanthrene	56	70	4 310	(84)
	3-Iodophenanthrene	56	47	4 310	(84)
	9-Fluorophenanthrene	56	30	4 248	(52), 107Pi
	9-Chlorophenanthrene	64	85	4 247	(51.5)
	9-Bromophenanthrene	64	94	4 249	(56)
	9-Iodophenanthrene	56	45	4 248	(92), 141Pi
	9- Bromoan thra cene	64	55	4 ²⁵³	(101)
			48	4 684	(102)
	9-Iodoanthracene	59	53	4 ³⁵⁵	(83)
C 15	9-Chloromethyl- phenanthrene	70	21	4 ^{3 46}	(102), 102Pi
C 16	β -(9-Phenanthryl)-ethyl chloride	53	77	4 146	(84)
C 19	Triphenylchloromethane	51	95	4 37	(112)
		76	86	4 666	(112)
		Het	erocycli	ic Halides	
C.	2-Chlorofuran	559	91	39 184	77/744, 1.4569
-	3-Chlorofuran	559	79	39 ¹⁸⁴	79/742, 1.4600
	2-Bromofuran	64	49	4 ²⁵⁹	103/744, 1.4980
		5 59	75	39 184	102/744, 1.4981
	3-Bromofuran	559	48	39 184	103/745, 1.4958
	2-Iodofuran	5 59	20	39 ¹⁸³	44/15, 1.5661
	β -Bromotetrahydrofuran	560	77	39 41	61/29, 1.4912 ²⁵
	2-Chlorothiophene	64	50	4 257	129/742, 56/56, 1.5490
	2-Bromothiophene	64	55	4 ²⁵⁶	154
	2-lodothiophene	64	75	4 ²³⁸	73/15, 81/20
		64	72	4 ⁵⁸⁸	89-93/36, 1.6465 ²⁸
	3-Iodothiophene	62	64	4 ⁴⁰⁹	80/11
₅3	2-Furfuryl chloride	53	63	4149	50/27, 1.4941
	2-Furfuryl bromide	52	50	4 97	34.5/2
	3-Chloromethylfuran	53	55	4 581	43/17, 52/27, 1.4863
	Tetrahydrofurfuryl chloride	53	75	4 ¹⁴⁸	42/11
	Tetrahydro furfuryl bromide	52	61	498	70/22, 50/4
	2-Chloromethylthiophene	70	41	4 351	75/17

4 255

4 ²⁶⁶

4 ³¹²

4 265

4 ³¹³

4 ³⁰³

64

64

56

64

56

56

. .. .

31

92

46

32

50

78/1, 1.604

75/13

92/25

93/13

107/752

67/17, 1.5325

TABLE 7. HALIDES

TABLE 7	' (continued))
---------	-----	------------	---

С _п	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Не	terocycli	ic Halid	es (continue	ed)
C,	3-Bromopyridine	64	37	4 265	63/15, 159HCl
	3-Iodopyridine	64	19	4 ²⁶⁷	(53), 154Pi
	4-Chloropyridine	52	75	4 100	148*
	4-Bromopyridine	52	47	4 100	26,5/0.3, (9,5)
	N-Chloropiperidine	69	90	4 658	
	4-Bromopiperidine	51	80	4 ³⁹	193
C6	2-a Furylethyl chloride	53	61	4 ¹⁵⁰	71/42, 63/26, 1.478825
	2,2-Dimethyl-4-bromo- tetrahydrofuran	560	44	39 * 0	51/11, 1.4686 15
	β-(2-Thienyl)-ethyl chloride	60	71	4 351	92/20
	2,5-bis-(Chloromethyl)- thiophene	70	79	4349	108/5, (37)
	2-Piperidylmethyl chloride hydrochloride	53	60	4 152	(178)
	ω-Trichloropicoline	64	25	4 268	115/15
с,	γ-(α-Tetrahydrofuryl)- propyl chloride	53	83	4 147	75/4, 1.4540
	γ-(& Tetrahydrofuryl)- propyl bromide	52	66	4 ⁹⁹	101/16
	2-(2-Piperidyl)- 1- chloroethane	53	85	4 ¹⁵²	150HC1
C,	2-Chloro-t-butyl- thiophene	558	50	39 ¹⁹⁶	57/1.5, 1.5315
	2-Bromobenzofuran		55	39215	
	3-Bromoben zofuran		77	39215	220, (39)
	3-Bromothionaphthene	64	90	4 2 58	140/18
C,	2-Bromomethyl-2, 3- dihydrobenzofuran	560	63	39 s o	145/20, 1.575
	2-Chloromethylthio- naphthene	53	79	4 582	126/2, (56)
	3-Chloromethylthio- naphthene	70	56	4 ^{\$50}	131/5, (45)
	2-Chloroquinoline	72	90	4 453	268/744, (38)
	2-Bromoquínoline	64	25	4 262	95/0.5, (12.5)
	3-Bromoquinoline	64	50	4 261	162/24
	5-Chloroquinoline	56	59	39 146	257/756, (43)
	5-Bromoquinoline	56	47	4 315	(48)
		56	48	39146	280/756, (48)
	6-Chloroquinoline	575	88	39 176	159/45, (42)
	7-Chloroquinoline	56	59	39146	268, (30)
	7-Bromoquinoline	56	45	39 146	288/753, (35)
	8-Chloroquinoline	575	55	39 176	163/20
	8-Bromoquinoline	56	74	4 315	166/18

Ch. 4

TABLE 8. DIHALIDES

TABLE 8 (continued)

С л	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic and A	licyclic	Di- and	Poly-halide	s (continued)
с,	Trimethylene fluoro- bromide	55	71	4 607	101/756
	Trimethylene iodo-	55	53	4 270	60/15
	chloride	52	58	4 103	173
	1,2,3-Trichloropropane	52	57	4 106	158
		74	90	4 427	
	1,2,3-Tribromopropane	74	98	4 422	103/18
	unsym-Heptachlotopropane	76	93	4 6 59	113/10, 140/32, (30)
C.4	1,3-Dichlorobutane	53	44	4153	133
	2,2-Dichlorobutane	72	50	4 447	102/728
	dl-2,3-Dichlorobutane	74	81	4 430	53.2/80, 1.4409
	<i>meso</i> -2,3-dichloro- butane	74	63	4 420	49.5/80, 1.438625
	1,4-Dibromobutane	51	85	441	97/30 110/30
	-	54	47	4 367	85/18
		54	63	411	63/3
		61	58	A 395	81/11
		63	49		78/10
	1,4-Diiodobutane	54	96	419	110/10 1 615
	-	54	70	4 367	152/26
	1-Bromo-4-chlorobutane	64	35	4 591	112/100
		52	62	4 119	82/30
		52	98	4 105	176, 1,4885
	1-Iodo-3-chlorobutane	55	78	4 270	51/6.5. 1.5267
	1-lodo-4-chlorobutane	55	71	4 379	94/17
	erythro-2-Chloro-3- iodobutan e	51	63	4 563	35/5, 1.531325
	1,2-Dibromo-2-methyl- propane	74	75	4423	150/735, 62/45, 1.5068
	Isobutylene iodochloride	74	67	4 421	56/22, 1.5237 ²³
5	1,3-Dichloropentane	64	30	4 270	80/60, 1.4485
	1,4-Dichloropentane	64	31	4 270	88/60, 1.4503
	1,5-Dichloropentane	64	19	4 270	102/60, 1.4563
	1,5-Dibromopentane	54	82	4 417	106/19
		63	72	4 397	110/20
	2,3-Dibromopentane	51 [.]	94	4 43	91/50, 1.5087
		74	87	443	91/50, 1.5087
	1-Bromo-5-chloro-	51	82	4 566	102/30, 1.4838 ²³
	pentane	52	88	4119	93/20, 1.4815 ²⁵
	l-lodo-3-chioto- pentane	55	90	4 270	51/2.5, 1.5229
	1-Iodo-4-chloro-	55	90	4 270	61/3.5, 1.5248
	pentane 1-lodo-5-chloro- pentane	55	62	4 270	76/4, 1.5304

For explanations and symbols see pp. xi-xii.

~	
_	_

HALIDES 120 TABLE 7 (continued) Yield Chapter^{ref.} B.p./mm., n_D, (M.p.), Deriv. Method C_n Compound % Heterocyclic Halides (continued) 4 264 165/30 64 91 1-Chloroisoquinoline C. 4 454 278/759, (24) 72 66 39 **22**0 278/759, (38)* 72 91 4 263 152/13, (40) 4-Bromoisoquinoline 64 45 39 **142** C₁₀ 4-Bromo-2-methyl-89/1 52 25 quinoline 4 101 95 (58) 2-Chloro-4-methyl-52 quinoline 39 142 2-Bromo-4-methyl-52 91 126/1, (81) quinoline 4 681 C12 1-Bromodibenzofuran 78 (67) 14 4 260 (109) 2-Bromodibenzofuran 64 51 4 356 59 41 (71) 4-Bromodibenzofuran 4 358 (73) 59 42 4-Iododibenzofuran 4 357 4-Iododibenzothiophene 59 22 (102) 39 158 (110) 557 90 1-Chlorocarbazole 4 218 55 (199) 64 3-Bromocarbazole 40 4 269 (194) 64 3-Iodocarbazole 39 217 (120) C13 9-Chloroacridine 100 · • • •

For explanations and symbols see pp. xi-xii.

TABLE 8. DIHALIDES

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphat	ic and Ali	cyclic l	Di- and Poly-	halides
<u> </u>	Methylene bromide	62	90	4 404	100
~1	Methylene iodide	62	97	4 405	107/70
	Trifluoroiodomethane	61	80	4 612	- 22
	Bromodichloromethane		87	4 ⁵⁵⁸	88, 1.4962
	Ethvlidene dibromide	72	20	4 ⁴⁴⁵	106-114
- 4	1-Chloro-2-fluoroethane	53	69	4 607	51-55, 1.3727 25
	1-Bromo-2-fluoroethane	52	57	4 607	74
	sym-Tetrachloroethane	74	85	4 427	145, 1.4942
c.	Propylidene dichloride	72	30	4 446	88
- 3	Trimethylene bromide	51	95	4 ¹	165
	Trimethylene iodide	55	84	4 ³⁷⁸	78/5*
	Trimethylene chloro- bromide	52	94	4 ¹⁰⁴	143

	2	2
1	2	Z
_		

.

	TABLE 8 (continued)							
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)			
	Aliphatic and A	Alicyclic	Di- and	Poly-halide	s (continued)			
С,	1, 1-Dichloro-3-methyl- butane	75	34	4 556	59/70, 1.4344			
	1,2-Dibromo-2-methyl- butane	74	80	4 423	62/15			
	2,3-Dibromo-2-methyl- butane	74	70	4 423	51/11			
	1,3-Dibromo-2,2-dimethyl- propane	52	46	4 108	68/9, 1.5050			
	Pentaerythrityl bromide	52	76	4 107	(163)			
			78	4 694	(158)			
	Pentaerythrityl iodide	55	98	4 107	(233)			
	1.2,4,5-Tetrabromopentane	- 74	90	4 429	(86)			
		74	6 5	4 ⁴⁸⁰	(86)			
с.	1 2 Dibromohexane	73	85	4 192	90/18, 1.5023			
~6	1,2-010101101101101101	74	100	4 424	90/18, 1.5024			
	1 4 Dibromohexane	54	60	4 410	100/15, (30)			
	1,4-Dijodoherane	54	75	4 410	119/12			
	1 6-Dibromohevane	51	75	4 52	80/3			
	1,0-01010110110124110	51	90	471	108-112/8			
	1 6 Dijadaherane	51	95	4 603	113/3. (9), 1.585			
	2. 2 Dibromohevane	74	100	4 424	90/16. 1.5025			
	2,5-Dibromohexane	52	96	4 182	89/13			
	2, - Di biolione Lane	51	70	4 367	106/25			
	a A-Dichlorohexane	74	67	4 186	70/30, 1.4490			
	A Dibromoherane	74	100	4 424	81/13, 1.5045			
	3,4Dibiomone and	51	801	4 564	72/9, 1.5050			
	1, 2-Dichlorocyclo-	74	90	4 427	80/22, 1.4903			
	1,2-Dibromocyclo-	74	95	4 426	103/16, 112/25			
	1 3-Dibromo-2-methyl-	52	75	4 110	82/12			
	1, J-Diblomo-2-metalyr	74	100	4 424	88/20, 1.5015			
	2. 3- Dibromo- 2-methyl-	74	64	4 423	68/15, 1.4975			
	Deptage	74	100	4 424	72/18, 1.5063			
	2,4-Dibromo-2-methyl-	52	90	4 109	62/4, 1.4980			
	1,2-Dibromo-3-methyl-	74	100	4 424	99/30, 1.5060			
	1,5-Dibromo-3-methyl-	63	65	4 ³⁹⁹	98/10, 1.5073			
	2,3-Dibromo-3-methyl-	74	50	4 *23	50/5, 1.5085			
	1,2-Dibromo-4-methyl- pentane	74	100	4 424	87/21, 1.4980			

TABLE 8. DIHALIDES

TABLE 8 (continued)

 С"	Compound	Method	Yield	Chaptertef.	$B_{p}/mm_{n} n_{-}^{l}$ (M _p)
	Aliphatic and	Alicyclic	(%) Di- and	Polv-halide	s (continued)
 C•	1,2-Dibromo-2-ethyl-	74	100	4 424	87/21, 1.5112
	butane	-	100	474	
	butane	74	100	4	80/17, 1.5105
	1,1-Dichloro-3,3-di- methylbutane	75	77	4 586	57/31, 1.4389
	1,2-Di chloro-3,3-di- methylbutane	74	53	4 614	52/11, 1.4553
	2,2-Dichloro-3,3-di- methylbutane	72	50	4 448	(152)
c,	1, l-Dichloroheptane	72	70	4 449	82/20, 1.4440
	2,2-Dichloroheptane	72	23	4 449	77/25, 1.4440
	1,4-Dibromoheptane	54	79	4 413	$112/11, 1.5004^{11}$
	1,7-Dibromoheptane	63	65	4 402	127/9
	2,3-Dibromo-2-methyl-	74	71	4 423	78/6, 1.5024
	3-Methyl-2,4-dibromo-	52	90	4 109	72.5/1, 1.4967
	2,3-Dibromo-3-ethyl-	74	63	4 423	77/4, 1.5098
	1,2-Dichloro-3,4-di- methylpentane	75	48	4 556	59/12, 1.4489
	2,2-Dichloro-4,4-di- methylpentane	75	49	4 556	60/20, 1.4470
	1,3-Dibromo-2,2-di- ethylpropan e	52	40	4 ¹⁰⁶	97/10, (40.6)
٥.	1,4-Dibromooctane	54	82	4 423	126/11, 1.500311
	1,8-Dibromoöctane	51	75	4 **	120/2
		61	60	4 394	93/0.45
		63	74	4 401	142/13
	1, 1-bis-(Bromomethyl)- cyclohexane	52	27	4 ¹⁰⁸	117/6, 1.5390
	3-Isopropyl-1,5-di- bromopentane	54	83	4 418	130/10
2,	1,9-Dichlorononane	53	93	4 154	92/0.1, 1.4591
	1,9-Dibromononane	51	93	4 71	130/2
	1-Chloro-9-iodononane	55	59	4 154	124/2.9, 1.5060 25
	1,1,1,3-Tetrachloro- nonane	75	85	4 557	79/0.1, 1.4770
	1,3-Dibromo-2-ethyl- 2-butylpropane	52	49	4 108	133/16, 1.5018
- 10	Decamethylene bromide	51	90	4 71	142/2
14	Tetradecamethylene bromide	51	65	4 **	175/3

C_n

C.

Compound

o-Chlorobromobenzene

o-Chloroiodobenzene

m-Chlorobromobenzene

p-Fluorochloroben zen e

p-Bromofluorobenzene

p-Chloroiodobenzene

sym-Tribromobenzene

Hexachlorobenzene

C, Benzal chloride

o-Chlorobenzyl

o-Chlorobenzyl

m-Chloroben zyl

m-Bromobenzotri-

o-Iodobenzvl bromide

chlori de

bromi de

bromide

fluoride

p-Fluorobenzyl bromide

p-Chloroben zyl

chloride

p-Bromobenzyl

p-Bromobenzyl

chlori de

bromide

p-lodobenzyl bromide

C. Styrene dibromide

benzene

benzene

chloride

xylene

xyl en e

p-xylene

ω.ω-Dibromo-m-

 ω_{ω} -Dibromo-p

Styrene iodochloride

a.m-Dichloroethyl-

3.4-Dichloroethyl-

p-Chloromethylbenzyl

a,a,a',a'-Tetrabromo-

m-Dibromoben zen e

TABLE 8 (continued)

Yield (%)

Aromatic Di- and Poly-halides

95

78

87

94

66

77

95

71

79

90

76

98

65

55

52

65

70

60

66

35

60

98

47

91

53

40

35

43

55

4 318

4 3 20

4318

4 318

4 319

4 ³⁰³

4 298

4 683

4 ²⁷³

4 217

4 289

4 289

4 278

4 277

4 274

4 589

4 217

4 275

4 276

4 ⁵⁹⁷

4 590

4 616

4 421

4 664

4 663

4347

4 279

4 279

4 ²⁸⁰

Method

56

56

56

56

56

56

64

14

64

64

64

64

64

64

64

64

64

64

64

70

64

74

74

64

76

70

64

64

64

Chapter^{ref.} B.p./mm., n^t_D, (M.p.)

201/742

(0.7)

217

194

130

151

(55)

(122.5)

105/30, 1.5503

(227)

84/9

107/12

125/4

(152)

105/8, (15.5)

117/30, (29)

140/15, (74)*

65/3, 1.5411

135/16, (100)

63-70/2, 1.5401-2325

238, (50)

(61)

(63)

(79)

(40)

(76)

(144)

(170)

202, 95/20, 1.548022

Ch. 4

TABLE 9. OLEFINIC HALIDES

TABLE 8 (continued)

C _n	Compound	Metho d	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)		
Aromatic Di- and Poly-halides (continued)							
с,	o-Bromoethylbenzyl bromide	51	90	4 46	(53)		
	1,1,1,3-Tetrabromo-3- phenylpropane	75	9 6	4 ⁵⁵⁷	(59)		
C 10	2-Phenyl-1,4-dibromo- butane	51	80	4 ⁴⁵	175/16		
	2,5-bis-(Chloromethyl)- p-xylene	70	55	4 600	(134)		
C ₁₁	3-Phenyl-1,5-dibromo- pentane	51	80	4 45	182/16, (72)		
	bis-(Chloromethyl)- mesitylene	70	80	4 ⁵⁹⁹	(106)		
C 12	bis-(Chloromethyl)- durene	70	67	4 ⁵⁹⁹	(194)		
	bis-(Chloromethyl)- isodurene	70	80	4 599	(107)		
	4,4 -Difluorobiphenyl	56	56	4 321	(90)		
	4,4 -Dibromobiphenyl	64	77	4 693	(163)		
C 14	a, a '-Dichlorobibenzyl						
	(dl)	74	55	4 615	(91)		
	(meso)				(191)		
	Stilbene dibromide	74	78	4 438	(244)		
		74	83	4 615	(111)		

TABLE 9. OLEFINIC HALIDES

С <i>п</i>	Compound	Method	Yield (%)	Chapter ^{ref}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphati	c Olefin	nic Halides	
С,	Vinyl chloride		100	2 526	15/724
	Vinyl bromide	20	50	2129	16*
	Vinyl iodide	20	32	2130	56
	Tetrachloroethylene	20	95	2134	121*
	<i>unsym</i> -Dibromo- ethylene	27	30	2 ²⁶¹	92
с,	Allyl bromide	51	9 6	4 ¹	72. 1.4689*
	Allyl iodide	55	77	4 382	102. 1.554222
	2-Bromopropene	27	32	2 ²⁶¹	49, 1.4426
	1- and 2-Bromo-1- propenes	20	••••	2 ¹³⁵	48-60*
	β-Chloroallyl chloride	19	75	2 ^{\$9}	108

C_n

Compound

HALIDES

Ch. 4

TABLE 9. OLEFINIC HALIDES

TABLE 9 (continued)

Ċ,	Compound	Method	Yield (%)	Chapter ^{sef.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Ali	phatic Ole	finic H	alides (conti	nued)
C,	1-Chloro-3-methyl- 2-butene	73	65	4 583	113/760
	2-Bromo-3-methyl- 2-butene	27	84	2 ²⁶¹	119, 1.4738
	1,4-Dibromo-2- methyl-2-butene	74	31	4 430	96/12
C ₆	1-Bromo-1-hexene	27	27	2 261	139, 1.4584
		73	72	4 192	141/751, 1,4596
	1,1-Dibromo-1-hexene	27	75	2 261	91/22, 1,5050
	3-Bromo-1,5-hexadiene	71	45	4 458	47/11
	1-Bromo-2-hexene	51	90	4 51	32/3, 1.4745 ²⁵
	3-Bromo-1-hexene				22/9, 1,4627 ²⁵
	4-Chloro-2-hexene	51	70	4 50	67/110, 1.4385
	1-Bromo-3-hexene	52	68	4112	54/17
	2-Chloro-2-methyl- 4-pentene	51	63	4 ⁵⁶⁹	44/90, 1.428414
	1-Chloro-3,3-dimethyl- 1-butene	20	32	2 449	105/730, 1.4276
	2-Chloro-3, 3-dimethyl- 1-butene	20	6 8	2 ***	96/730, 1.4247
	1-Bromo-2, 3-dimethyl- 2-butene	73	73	4 194	66/40, 1.4948
с,	1-Bromo-1-heptene	27	35	2 261	162/747, 1.4594
	1,1-Dibromo-1-heptene	27	74	2 261	106/22, 1.5009
	2-Chloro-1-heptene	72	40	4 ***	71/75, 1.4349
	4-Bromo-4-methyl- 1-bexene	52	44	4 115	59.8/27
	4,4-Dimethyl-2-bromo- 1-pentene	29	62	2 ²⁰⁰	137, 1.4630
C,	1-Bromo-1-octene	27	26	2 ²⁶¹	179/750, 1.4602
	1,1-Dibromo-1-octene	27	70	2 ²⁶¹	121/22, 1.4978
C 10	2-Bromo-1-decene	29	60	2 ²⁰¹	116/22, 1.4629
		29	65	2 ¹⁹⁶	77/3
С11	11-Undecylenyl chloride	53	83	4 156	115/12 1.448725
		53	76	A 142	122/16 1 4510 ¹⁸
	11-Undecylenyl iodide	55	91	4 383	104/2, 1.4937 ²⁵
C 18	9,10-Octadecenyl chloride	53	82	4141	165/3, 1.4586 ²⁵
		Alicyclic	Olefin	ic Halides	
C,	2-Cyclopentenyl chloride	73	89	4 196	31/30
C 6	3-Bromocyclohexene	71	87	4 456	

Yield (%) Chapter^{ref.} B.p./mm., n^t_D, (M.p.), Deriv. Method Aliphatic Olefinic Halides (continued) 2169 20 ...

TABLE 9 (continued)

с.	1. 2-Dichloro-1-propene	20	58	2 ¹⁶⁹	77/757, 1.4451 ²⁵
9,	1. 1-Dibromo-1-propene	27	88	2 261	127/750, 1.5260
	2.3-Dichloropropene	20	80	2132	94, 1.4600 ²¹
		20	87	2 ¹³³	93
	2.3-Dibromopropene	20	84	2131	74/75
	3,3,3-Trichloropropene	19	84	2 ⁵⁷	57/103, 1.4827
C,	1-Bromo-1-butene	27	. 28	2 ²⁶¹	88, 1.4536
-	3-Chloro-1-butene	51	35	4 568	64/748, 1.4151
		73	26	4 ¹⁹³	63, 1.4153
	3-Bromo-1-butene	52		4 47	31/93, 1.4602 ²⁵
	1, 1-Dibromo-1-butene	27	83	2 ²⁶¹	54/22, 1.5168
	trans-Crotyl chloride	51	65	4 568	84/748, 1.4350
		73	49	4 ¹⁹³	83, 1.4352
	1-Bromo-2-butene	52	96	4 47	49/93, 1.4795 ²⁵
	2-Bromo-2-butene	27	71	2 261	109, 1.4580
	1.4-Dibromo-2-butene	74	90	4 618	(54)
	1.4-Dibromo-2-butene	74	70	4 ¹⁵⁹	(52)
	1-Chloro-2-methyl-1-		85	4 553	68, 1.4221
	1-Bromo-2-methyl-1-	27	81	2 261	91, 1.4625
	properte	20	27	2 448	91, 1,4603 ²¹
	1,1-Dibromo-2-methyl- 1-propene	27	81	2 261	157, 1.5300
	1, 1, 1-Trichloro-2-methyl- 2-propene	19	43	2 ⁵⁸	43/30
C,	1-Bromo-1-pentene	27	32	2 261	114, 1.4572
	1, 1-Dibromo-1-pentene	27	79	2261	73/22, 1.5097
	5-Bromo-1-pentene	22	71	2 266	128/770
	· ·	52	82	4 111	130, 1.4610 ²⁸
	1-Chloro-2-pentene)	51	33	4 🕈	63/146
	3-Chloro-1-pentene		33		50/150
	1-Bromo-2-pentene	51	90	4 51	43.5/30, 1.4777 ²⁵
	3-Bromo-1-pentene				30.5/30, 1.4626 ²⁵
	1-Bromo-2-pentene	52	73	4 112	38/20
	2-Bromo-2-pentene	27	75	2 261	109, 1.4580
	3-Bromo-2-pentene	27	73	2 261	111, 1.4628
	4-Bromo-2-pentene	51	54	4 48	72/145
	5-Bromo-2-pentene	52	60	4 113	121/621, 1.4695
	1-Bromo-3-methyl-	27	28	2 ²⁶¹	100, 1.4482
	1-butene				
	3-Chloro-3-methyl-	73	66	4 ⁵⁸⁵	32/120, 1.4190
	1-butene 1,1-Dibromo-3-methyl-	27	70	2 ²⁶¹	160, 1.5037
	1-butene				

C₉ 1-Phenyl-2-chloro-

1-propene

2-propene

1-Bromo-1-phenyl-

Cinnamyl chloride

Cinnamyl bromide

4-Chloro-a-methylstyrene

HALIDES

Ch. 4

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D (M.p.), Deriv.
	Ali	icyclic Ole	finic H	alides (contir	nued)
C 6	1-Chloro-1-cyclo-	20	40	2136	143
	hexene	72	60	4 623	95/160, 1.4798
	1-Cyclopentenyl- methyl bromide	52	30	4 118	59/15, 1.5170
c,	2-Cyclopentenyl- ethyl bromide	52	53	4116	72/16, 1.4995
C8	1-Cyclohexenyl- ethyl bromide	52	50	4117	90/7
	3-Cyclopentyl-2- bromopropene	29	82	2 ²⁰²	75/13, 1.4930 ²³
C,	2-Cyclopentenylbutyl bromide	52	47	4 116	86/5, 1.4942
	3-Cyclohexyl-2-bromo- propene	29	64	2 ¹⁹⁶	89/14
		Aromati	ic Olefi	nic Halides	
C,	β-Chlorostyrene	19	63	2 60	88-100/18
	o-Fluorostyrene	19	76	2 4 58	33/3, 1.5197
		27	66	2 ²⁵⁶	46/32, 1.5201
	o-Chlorostyrene	19	70	2 ⁴⁵⁸	61/4, 1.5648
		27	50	2 ²⁵⁵	59/7, 1.5641
	o-Bromostyren e	19	33	262	65/4, 1.5893 ²⁵
	<i>m</i> -Fluorostyrene	19	80	2 458	31/4, 1.5173
	<i>m</i> -Chlorostyrene	19	84	2 ⁶¹	63/6, 1.5612 ²⁵
		20	93	2 ⁶¹	63/6, 1.5616 ²⁵
		27	65	2 ²⁵⁵	58/10, 1.5630
	m-Bromostyrene	19	56	2437	75/3, 1.5855
		27	47	2 ²⁵⁵	48/0.5, 1.5900
	p-Fluorostyrene	19	81	2 458	30/4, 1.5158
		20	72	2 447	59/25, 75Di
	p-Chlorostyrene	19	57	2437	65/4, 1.5648
		27	51	2 ²⁵⁵	61/6, 1.5650
	p-Bromostyrene	19	50	2437	88/12
	<i>p</i> -lodostyrene	19	60	2 455	(44)

20

71

51 53

71

20

70

50

85

83

75

16

2¹³⁷

4 624

4 53

4¹⁵⁸

4 456

2121

83-87/11

1 19/17, 1.5830

85/0.8, (34)

87/2, 103/5, (8)

82/10, 1.552925

120/6

TABLE 10. ACETYLENIC HALIDES

C _n	Compound	Method	Yield (%)	Chaptersef.	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aro	matic Ole	finic Ha	alides (contin	nued)
C 10	4-Phenyl-2-bromo- l-butene	29	45	2196	119/20
	β -Ethyl- β -bromostyrene	27	85	2 262	127/23
	1-(m-Bromophenyl)-1,2- dimethylethylene	19	70	2 64	111/17, 1.5620
C11	β- π- Propyl-β-bromo- styrene	27	85	2 ²⁶²	139/22
C 14	a-Chlorostilbene	72	38	4 61 5	(51)
	o-Chlorostilbene	24	80	2 ²³³	209
	<i>m</i> -Chlorostilbene	28	16	2 ²³³	(74), 166Di
	<i>m</i> -Bromostilbene	28	17	2 233	(90), 166Di
	p-Chlorostilbene	28	40	2 ²³³	(129), 190Di
	p-Bromostilbene	28	23	2 233	(139), 202Di
С <u>1</u> 3	2,3-Diphenylallyl bromide	71	75	4 457	133/0.01
	3,3-Diphenylallyl bromide	71	86	4 486	98/0.05
	o-Chloromethylstilbene	53	74	4 157	185/15
C 20	Triphenylvinyl	74	98	4 ⁴³¹	(115.5)

For explanations and symbols see pp. xi-xii.

TABLE 10. ACETYLENIC HALIDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Alip	hatic and Al	licyclic	Acetylenic I	falides
С1	Dichloroacetylene	43	65	3 49	29/743
	Diiodoacetylene	59	87	4 ³⁶⁶	(79)
24	4-Chloro-1-butyne	52	90	4 578	86/762, 1.4383 ²²
	4-Bromo-1-butyne	52	82	4 ⁵⁷⁸	107/740, 1.4817
	4-Iodo-1-butyne	52	64	4 ⁵⁷⁸	61/80, 1.550419
-5	5-Chloro-1-pentyne	44	57	3°	68/145, 1.445
	5-lodo-1-pentyne	52	70	4 ⁵⁷⁸	84-89/43, 1.5351 ¹⁷
	1-Bromo-2-pentyne	52	65	4 121	148/754, 1.4983 ²⁴
6	1-Bromo-1-hexyne	59	78	4 360	46/54, 1.4579 ¹³
	I-Iodo-I-hexyne	59	7 6	4 ³⁶⁰	54/23, 1.514819
	3-Chloro-1-hexyne	53	72	4 ¹⁶⁰	64/100, 1.4375 ²⁵
	3-Bromo-1-hexyne	52	48	4577	83/110, 1.4731 ²¹
	1-Bromo-2-h exyn e	52	63	4 ¹¹⁹	98/80, 1.4884 ²⁵
	1-Chloro-5-hexyne	44	80	3 75	48/17, 1.4480 ²⁵
		44	74	3 ²⁰	144
	1-Iodo-5-hexyne	55	82	4 119	95/35, 1.5286 ²⁵

HALIDES

Ch. 4

TABLE 10. ACETYLENIC HALIDES

131

TABLE 10 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
_	Arom	atic Acetyle	nic Hal	ides (continu	ued)
С 10	3-Bromo-1-phenyl-1- butyne	52	60	4 ⁵⁷⁹	133/20, 1.6050
	4-Bromo-1-phenyl-1- butyne	52	40	4 ⁵⁷⁹	145/18, 1.5951
	1-Bromo-4-phenyl-1- butyne	59	6 8	4 ³⁶⁰	111/7, 1.563612
Cıı	l-Phenyl-5-chloro-1- pentyne	44	75	31	126/4, 1.5615

C _n	Compound	Method	Yield (%)	Chapter ^t ef.	B.p./mm., n_{D}^{t} (M.p.)
Aliphatic and Alicyclic Acetylenic Halides (continued)					
C.	3-Chloro-3-methyl-4-	51	60	4 54	55/130, 1.4330
•	pentyne	51	50	4 55	52/135, 1.4331
C,	1-Chloro-1-heptyne	59	70	4359	65/45, 1.4411 ²⁴
	1-Bromo-1-heptyne	59	70	4 3 59	69/25, 1.4678 ²²
	• •	59	50	4 60 2	57/13, 165/758
	1-Iodo-1-heptyne	59	68	4359	93/21, 1.5105 ²⁶
	1-Bromo-2-heptyne	52	72	4 119	105/56, 1.4878 ²⁵
	1-Bromo-3-heptyne	52	41	4 119	100/65, 1.4785 ²⁵
	1-Chloro-5-heptyne	44	73	320	175, 1,4599 25
	1-Chloro-6-heptyne	44	70	3 20	166, 1,4507 ²⁵
		44	85	3 75	79/33, 1.4490 ²⁵
	1-Bromo-6-heptyne	44	27	3 20	92/20, 1.4750 ²⁵
	1-Bromo-4.4-dimethyl-	52	41	4 120	52.5/20. 1.4751
	2-pentyne	72		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C ₈	1-Chloro-1-octyne	59	65	<u> 4</u> 363	62/17. 1.445
	3 Chloro 3 methyl-4	51	66	á 54	$\frac{64}{25}$ 1 4514
	heptyne	71	~~~~		
	Cyclohexylchloro-	45	48	369	115/15
	acetylene			-	
	Cyclohexylbromo-	59	78	4 ³⁶⁰	84/20, 1,512412
	acetylene			-	
	Cyclohexyliodo-	59	76	4 360	86/5, 1,55911
	acetylene			-	
				6	
ς,	n-Heptylchloro-	59	>>	4.00	///15, 1.450
	acetylene		~ ~		60 / 1 F / 100
	2-Chloro-2-methyl-3-	51	85	4-	68/15, 1.4480
	octyne			. 86	
	t-Butylethynyldimethyl-	51	80	4-0	81/100, (15), 1.4343
	carbinyl chloride				
		Aromatic	Acetyle	nic Halides	
C,	Phenylchloroacetylene	45	70	369	72/15
		59	60	4 ³⁶³	71/16, 1.576 ¹⁸
	Phenylbromoacetylene	59	88	4 602	89/13
	Phenyliodoacetylene	59	92	4 ³⁵⁹	1.6591 ²⁵
	o-Chlorophenylacetylene	47	67	372	71/18, 1.5690 ²⁵
	p-Bromophenylacetylene	43	53	361	89/16, (65)
c	1. Broma 2 phanul 1	۰ د ۵	60	A 360	107/15 1 560212
و٢	I-DIOMO-J-phenyl-I-	27	00	4	107/13, 1.3073
	1-Brome-3-phenyl-2-	57	70	A 121	108/6 1 625 ¹⁹
	Propyre	2	70	7	100,0, 1.029
	рюруце				
C 10	4-Chloro-1-phenyl-1	44	75	342	
	butyne	44	46	31	95/3, 1.5724

REFERENCES FOR CHAPTER 4

¹Kamm and Marvel, Org. Syntheses, Coll. Vol. I, 25 (1941). ²Dox, I. Am. Chem. Soc., 46, 1707 (1924). ³ Reid, Ruhoff, and Burnett, Org. Syntheses, Coll. Vol. 11, 246 (1943); Whitmore et al., I. Am. Chem. Soc., 69, 235 (1947); 70, 529 (1948); 67, 2059 (1945). ⁴Whitmore et al., J. Am. Chem. Soc., 67, 2059 (1945). ⁵Cason, I. Am. Chem. Soc., 64, 1109 (1942). ⁶Whitmore et al., I. Am. Chem. Soc., 64, 1802 (1942). ⁷Sherrill, Otto, and Pickett, J. Am. Chem. Soc., 51, 3023 (1929); Kharasch, Walling, and Mayo, ibid., 61, 1559 (1939); Lucas, Simpson, and Carter, ibid., 47, 1462 (1925); Shonle, Keltch, and Swanson, ibid., 52, 2442 (1930). ⁸Sherrill, J. Am. Chem. Soc., 52, 1982 (1930). ⁹Whitmore et al., J. Am. Chem. Soc., 54, 3431 (1932); 55, 1106 (1933); 60, 2265, 2533 (1938). ¹⁰ Whitmore and Johnson, J. Am. Chem. Soc., 60, 2265 (1938). ¹¹ Whitmore and Karnatz, J. Am. Chem. Soc., 60, 2533 (1938); cf. ref. 114. 12 Whitmore and Karnatz, J. Am. Chem. Soc., 60, 2536 (1938). 13 Lucas, J. Am. Chem. Soc., 51, 252 (1929). 14 Niemann and Wagner, J. Org. Chem., 7, 227 (1942). ¹⁵ Whitmore, Karnatz, and Popkin, J. Am. Chem. Soc., 60, 2540 (1938). ¹⁶Strating and Backer, Rec. trav. chim., 55, 913 (1935). ¹⁷ Vogel, J. Chem. Soc., 636 (1943). 18 Copenhaver and Whaley, Org. Syntheses, Coll. Vol. I, 142 (1941); J. Am. Chem. Soc., 60, 2497 (1938). ¹⁹ Norris and Olmsted, Org. Syntheses, Coll. Vol. I, 144 (1941). ²⁰ Werner, I. Soc. Chem. Ind., 52, 285 (1933). ²¹ Whitmore et al., J. Am. Chem. Soc., 55, 361, 406, 1559 (1933). ²² Corson, Thomas, and Waugh, J. Am. Chem. Soc., 51, 1950 (1929). ²³ Klages et al., Ann. chim., 547, 33 (1941). ²⁴ Neunhoeffer and Schlüter, Ann. chim., 526, 70 (1936); Yarnall and Wallis, I. Org. Chem., 4, 287 (1939). ¹⁵ King, J. Chem. Soc., 982 (1935). ²⁶Perlman, Davidson, and Bogert, J. Org. Chem., 1, 288 (1936). ²⁷ Hiers and Adams, I. Am. Chem. Soc., 48, 1091 (1926). ²⁸ McKinley, Stevens, and Baldwin, J. Am. Chem. Soc., 67, 1458 (1945). ²⁹Slotta and Altner, Ber., 64, 1515 (1931); Ashley et al., J. Chem. Soc., 115 (1942). ³⁰Conant and Blatt, J. Am. Chem. Soc., 50, 554 (1928). ³¹ Norris and Taylor, J. Am. Chem. Soc., 46, 753 (1924). ³² Amagat, Bull, soc. chim. France, (4) 49, 1410 (1931). ³³ Smith and Spillane, I. Am. Chem. Soc., 62, 2640 (1940); Reichstein et al., Helv. Chim. Acta, 19, 412 (1936). ³⁴Kharasch and Kleiman, J. Am. Chem. Soc., 65, 14 (1943). 35 Nauta and Mulder, Rec. trav. chim., 58, 1075 (1939). 36 Skell and Hauser, J. Am. Chem. Soc., 64, 2633 (1942). 37 Bachmann, Org. Syntheses, 23, 100 (1943); cf. Bachmann, J. Am. Chem. Soc., 55, 2135 (1933). ³⁸Newman, I. Org. Chem., 9, 518 (1944).

39 Renshaw and Conn, J. Am. Chem. Soc., 60, 745 (1938); Koenigs and Neumann, Ber., 48, 961 (1915). 40 Hiers and Adams, J. Am. Chem. Soc., 48, 2385 (1926). ⁴¹Steele, J. Am. Chem. Soc., 53, 285 (1931); Nenitzescu and Necsoiu, ibid., 72. 3483 (1950); Goldsworthy, J. Chem. Soc., 484 (1931). ⁴² Adams and Kornblun, J. Am. Chem. Soc., 63, 199 (1941). ⁴⁹Lucas, Schlatter, and Jones, J. Am. Chem. Soc., 63, 22 (1941). 44 Stone, I. Am. Chem. Soc., 62, 571 (1940). 45 Manske, J. Am. Chem. Soc., 53, 1104 (1931). 46 Holliman and Mann, J. Chem. Soc., 737 (1942). 47 Young et al., J. Am. Chem. Soc., 58, 104 (1936); 59, 2051 (1937). 48 Mulliken, Wakeman, and Gerry, J. Am. Chem. Soc., 57, 1605 (1935). 49 Lauer and Filbert, J. Am. Chem. Soc., 58, 1388 (1936). ⁵⁰ Smith et al., J. Am. Chem. Soc., 61, 3080 (1939). ⁵¹ Young, Richards, and Azorlosa, J. Am. Chem. Soc., 61, 3070 (1939). ⁵² Baudart, Bull. soc. chim. France, (5) 11, 337 (1944). ⁵³Carroll, J. Chem. Soc., 1266 (1940); Meisenheimer and Link, Ann., 479, 240 (1930). 54 Campbell and Eby, J. Am. Chem. Soc., 62, 1789 (1940). 55 Campbell, Campbell, and Eby, J. Am. Chem. Soc., 60, 2882, (1938). ⁵⁶ Hennion and Banigan, Jr., J. Am. Chem. Soc., 68, 1202 (1946). ⁵⁷ Marvel and Calvery, Org. Syntheses, Coll. Vol. I, 533 (1941); also, Hultman, Davis, and Clarke, J. Am. Chem. Soc., 43, 369 (1921). ⁵⁸ McElvain and Carney, J. Am. Chem. Soc., 68, 2596 (1946). 59 Campbell et al., J. Am. Chem. Soc., 68, 1556 (1946); Org. Syntheses, 28, 65 (1948). ⁶⁰Conant and Ouayle, Org. Syntheses, Coll. Vol. I, 292 (1941). ⁶¹ Conant and Quayle, Org. Syntheses, Coll. Vol. I, 294 (1941). ⁶² Bogert and Slocum, J. Am. Chem. Soc., 46, 763 (1924); Kamm and Newcomb, ibid., 43, 2228 (1921). ⁶³ Ayers, Jr., J. Am. Chem. Soc., 60, 2959 (1938). 64 Leffler and Volwiler, J. Am. Chem. Soc., 60, 898 (1938). 65 Silverman and Bogert, J. Org. Chem., 11, 43 (1946). 66 Sosa, Ann. chim., (11) 14, 88 (1940). ⁶⁷ Franke and Kroupa, Monatsh., 69, 202 (1936). 68 Fling, Minard, and Fox, J. Am. Chem. Soc., 69, 2466 (1947). 69 Beilenson and Hamer, J. Chem. Soc., 101 (1942). ⁷⁰ Cortese, Org. Syntheses, Coll. Vol. II, 91 (1943). ⁷¹ McEwen, Org. Syntheses, 20, 24 (1940). ⁷²King, Org. Syntheses, Coll. Vol. II, 399 (1943). ⁷³ Bogert and Slocum, J. Am. Chem. Soc., 46, 763 (1924); cf. ref. 72. ⁷⁴Noller and Dinsmore, Org. Syntheses, Coll. Vol. II, 358 (1943); Whitmore and Lux, J. Am. Chem. Soc., 54, 3450 (1932). ⁷⁵ Delaby, Bull. soc. chim. France, (5) 3, 2375 (1936). ⁷⁶Kornblum et al., J. Am. Chem. Soc., 69, 309 (1947). "Rehberg and Henze, J. Am. Chem. Soc., 63, 2789 (1941). ⁷⁸ Shonle et al., J. Am. Chem. Soc., 58, 585 (1936). ⁷⁹ Strating and Backer, Rec. trav. chim., 55, 911 (1936). ³⁰ Dirscherl and Nahm, Ber., 76, 640, 710 (1943). ⁸¹ Peak and Robinson, J. Chem. Soc., 1590 (1937).

⁸² Hartman, Byers, and Dickey, Org. Syntheses, Coll. Vol. II, 322 (1943). as Smith, I. Chem. Soc., 737 (1932). ⁸⁴Noller and Adams, J. Am. Chem. Soc., 48, 1080 (1926). ⁸⁵Yohe and Adams, J. Am. Chem. Soc., 50, 1503 (1928). ³⁶Lutz et al., J. Am. Chem. Soc., 70, 4135 (1948). ⁸⁷ Turkiewicz, Ber., 72, 1062 (1939). ⁸⁸Clemence and Leffler, J. Am. Chem. Soc., 70, 2439 (1948). ⁸⁹ Blicke and Zienty, J. Am. Chem. Soc., 61, 772 (1939). 90 Bergs, Ber., 67, 244 (1934). ⁹¹ Newman, I. Am. Chem. Soc., 62, 2295 (1940). 92 Hauser et al., J. Am. Chem. Soc., 69, 589 (1947). 93 Rupe and van Walraven, Helv. Chim. Acta, 13, 369 (1930). ⁹⁴Bogert and Tuttle, J. Am. Chem. Soc., 38, 1361 (1916); Lester and Bailey, ibid., 68, 375 (1946). 95 Sah, Rec. trav. chim., 59. 1022 (1940). 96 Bachmann and Sheehan, J. Am. Chem. Soc., 63, 204 (1941). 97 Zanetti and Bashour, J. Am. Chem. Soc., 61, 2249 (1939); Woodward, ibid., 62, 1481 (1940). 98 Smith, Org. Syntheses, 23, 88 (1943). 99 Barger, Robinson, and Smith, J. Chem. Soc., 720 (1937). 100 Wibaut and Broekman, Rec. trav. chim., 58, 885 (1939). ¹⁰¹ Krahler and Burger, J. Am. Chem. Soc., 63, 2368 (1941). 102 Vogel, I. Chem. Soc., 1809 (1948). 103 Case, J. Am. Chem. Soc., 55, 2927 (1933). ¹⁰⁴Cloke et al., J. Am. Chem. Soc., 53, 2794 (1931). ¹⁰⁵ Starr and Hixon, J. Am. Chem. Soc., 56, 1595 (1934); cf. ref. 119. ¹⁰⁶ Hurd and Webb, J. Am. Chem. Soc., 58, 2190 (1936). 107 Schurink, Org. Syntheses, Coll. Vol. II, 476 (1943). ¹⁰⁸Shortridge et al., J. Am. Chem. Soc., 70, 946 (1948). ¹⁰⁹ Bartleson, Burk, and Lankelma, J. Am. Chem. Soc., 68, 2513 (1946). ¹¹⁰ Montmollin and Martenet, Helv. Chim. Acta, 12, 604 (1929). 111 LaForge, Green, and Gersdorff, J. Am. Chem. Soc., 70, 3707 (1948). 112 Hunsdiecker, Ber., 75, 460 (1942). 113 Goering, Cristol, and Dittmer, J. Am. Chem. Soc., 70, 3314 (1948). 114 Prout and Cason, J. Org. Chem., 14, 132 (1949). ¹¹⁵ Milas and McAlevy, J. Am. Chem. Soc., 57, 580 (1935). ¹¹⁶ Arvin and Adams, J. Am. Chem. Soc., 50, 1790 (1928). ¹¹⁷ Cook and Dansi, J. Chem. Soc., 500 (1935). 118 Piaux, Ann. chim., (11) 4, 211 (1935). ¹¹⁹ Newman and Wotiz, J. Am. Chem. Soc., 71, 1292 (1949). ¹²⁰ Bartlett and Rosen, J. Am. Chem. Soc., 64, 543 (1942). 121 Lai, Bull. soc. chim. France, 53, 1533 (1933). 122 Johnson, Acetylenic Compounds, Edward Arnold & Co., London, 1946, Vol. I, p 63. 123 Harrison and Diehl, Org. Syntheses, 23, 32 (1943). ¹²⁴ Smith and Sprung, J. Am. Chem. Soc., 65, 1276 (1943). 123 Anderson, Crawford, and Sherrill, J. Am. Chem. Soc., 68, 1294 (1946). ¹²⁶ Pummerer and Schönamsgruber, Ber., 72, 1838 (1939). ¹²⁷ Prelog and Seiwerth, Ber., 72, 1640 (1939). 128 Elderfield et al., J. Am. Chem. Soc., 68, 1579 (1946).

129 Marvel and Tanenbaum, J. Am. Chem. Soc., 44, 2645 (1922). ¹³ Braun, Org. Syntheses, Coll. Vol. II, 308 (1943). 131 Cowdrey, Hughes, and Ingold, J. Chem. Soc., 1227 (1937); cf. Gerrard, Kenyon, and Phillips, ibid., 155 (1937). ¹³² Philippi, Hendgen, and Hernler, Monatsh., 69, 278 (1936). ¹³³ Meincke and McElvain, J. Am. Chem. Soc., 57, 1443 (1935). 134 Glattfeld and Lee, J. Am. Chem. Soc., 62, 354 (1940). 135 Foreman and McElvain, J. Am. Chem. Soc., 62, 1438 (1940). ¹³⁶ Wagner-Jauregg, Helv. Chim. Acta, 12, 63 (1929). 137 Osterberg and Kendall, J. Am. Chem. Soc., 42, 2616 (1920). 138 Leffler and Adams, J. Am. Chem. Soc., 59, 2252 (1937). 139 Foreman and McElvain, J. Am. Chem. Soc., 62, 1435 (1940). 140 Mc Elvain and Fajardo-Pinzon, J. Am. Chem. Soc., 67, 690 (1945). 141 Noller and Bannerot, J. Am. Chem. Soc., 56, 1563 (1934). 142 Barkovsky, Ann. chim., (11) 19, 491 (1944). 143 Cohen. I. Chem. Soc., 433 (1935). 144 Scheer, J. Am. Chem. Soc., 56, 744 (1934). 145 Gilman and Kirby, J. Am. Chem. Soc., 51, 3476 (1929). 146 Bergmann and Blum-Bergmann, J. Am. Chem. Soc., 58, 1678 (1936). 147 Gilman and Hewlett, Rec. trav. chim., 51, 93 (1932). 148 Kirner, J. Am. Chem. Soc., 52, 3254 (1930); Wilson, J. Chem. Soc., 51 (1945). ¹⁴⁹ Kirner, J. Am. Chem. Soc., 50, 1955 (1928). ¹⁵⁰ Amstutz and Plucker, J. Am. Chem. Soc., 63, 206 (1941). ¹⁵¹ Bissinger and Kung, J. Am. Chem. Soc., 69, 2158 (1947). ¹⁵² Norton et al., J. Am. Chem. Soc., 68, 1572 (1946). 153 Sisido and Nozaki, J. Am. Chem. Soc., 69, 961 (1947). 154 Ahmad, Bumpus, and Strong, J. Am. Chem. Soc., 70, 3391 (1948). 155 Gerrard, J. Chem. Soc., 99 (1939). ¹⁵⁶ Brody and Bogert, J. Am. Chem. Soc., 65, 1075 (1943). 157 Natelson and Gottfried, J. Am. Chem. Soc., 64, 2962 (1942). ¹⁵⁸Gilman and Harris, Rec. trav. chim., 50, 1052 (1931). 159 Hurd and Fowler, J. Am. Chem. Soc., 61, 249 (1939). ¹⁶⁰ Hennion and Sheehan, J. Am. Chem. Soc., 71, 1964 (1949). ¹⁶¹Lauer and Spielman, J. Am. Chem. Soc., 55, 1572 (1933). 162 Palomaa, Ber., 74, 298 (1941). 163 Hardegger, Redlich, and Gal, Helv. Chim. Acta, 28, 628 (1945); Hill, Short, and Strong, J. Chem. Soc., 1620 (1937). ¹⁶⁴Cornforth and Robinson, J. Chem. Soc., 686 (1942). 165 Kindler and Gehlhaar, Arch. Pharm., 274, 385 (1936). ¹⁶⁶Kirner and Richter, J. Am. Chem. Soc., 51, 2505 (1929). 167 Thayer and McElvain, J. Am. Chem. Soc., 50, 3353 (1928). 168 Barger, Robinson, and Smith, J. Chem. Soc., 718 (1937). ¹⁶⁹ Niemann, Benson, and Mead, J. Org. Chem., 8, 397 (1943). ¹⁷⁰ Breslow et al., J. Am. Chem. Soc., 66, 1921 (1944). 171 Schultz and Sprague, J. Am. Chem. Soc., 70, 48 (1948); cf. Shapiro, J. Org. Chem., 14, 844 (1949). ¹⁷² Kerwin et al., J. Am. Chem. Soc., 69, 2961 (1947). ¹⁷³ Magidson and Strukow, Arch. Pharm., 271, 572 (1933). ¹⁷⁴Elderfield et al., I. Am. Chem. Soc., 68, 1516 (1946).
175 Mannich and Margotte, Ber., 68, 274 (1935). 176 Lasselle and Sundet, J. Am. Chem. Soc., 63, 2374 (1941). ¹⁷⁷ Mann, J. Chem. Soc., 461 (1934); Ward, J. Am. Chem. Soc., 57, 914 (1935). 178 Alphen, Rec. trav. chim., 56, 1008 (1937); Ward, ref. 177. 179 Hignett and Kay, J. Soc. Chem. Ind., 54, 98 (1935). 180 Knowles and Cloke, J. Am. Chem. Soc., 54, 2034 (1932). 181 Kornblum and Iffland, J. Am. Chem. Soc., 71, 2137 (1949). 182 Kornblum and Eicher, J. Am. Chem. Soc., 71, 2259 (1949). 183 Ward, Org, Syntheses, Coll. Vol. II, 159 (1943). 184 Kharasch et al., J. Org. Chem., 2, 288 (1937); 4, 428 (1939). 185 Whitmore and Johnston, J. Am. Chem. Soc., 55, 5020 (1933). 186 Spiegler and Tinker, J. Am. Chem. Soc., 61, 940 (1939). 187 Whitmore and Homeyer, J. Am. Chem. Soc., 55, 4555 (1933); Kharasch, Hannum, and Gladstone, ibid., 56, 244 (1934). 188 Coleman, Callen, and Dornfeld, J. Am. Chem. Soc., 68, 1101 (1946); ref. 4. 189 McElvain and Langston, J. Am. Chem. Soc., 66, 1762 (1944). 190 Kharasch and Kleiman, J. Am. Chem. Soc., 65, 11 (1943). ¹⁹¹ Goemer and Hines, J. Am. Chem. Soc., 70, 3511 (1948); ref. 190. 192 Young, Vogt, and Nieuwland, J. Am. Chem. Soc., 58, 1806 (1936). 199 Henne, Chanan, and Turk, J. Am. Chem. Soc., 63, 3474 (1941). 194 Naves, Grampoloff, and Bachmann, Helv. Chim. Acta, 30, 1604 (1947). 195 Mayo and Walling, Chem. Revs., 27, 351 (1940). ¹⁹⁶ Noller and Adams, J. Am. Chem. Soc., 48, 2446 (1926). ¹⁹⁷ Jacobs et al., J. Org. Chem., 11, 225 (1946). 198 Walling, Kharasch, and Mayo, J. Am. Chem. Soc., 61, 2693 (1939). ¹⁹⁹ Guest. J. Am. Chem. Soc., 69, 300 (1947). 200 Sherrill and Matlack, J. Am. Chem. Soc., 59, 2137 (1937). ²⁰¹ Jones, J. Am. Chem. Soc., 69, 2352 (1947); Ashton and Smith, J. Chem. Soc., 435 (1934). ²⁰² Mozingo and Patterson, Org. Syntheses, 20, 64 (1940); including note 5. 203 Price and Coyner, J. Am. Chem. Soc., 62, 1306 (1940); also, Clemo and Melrose, J. Chem. Soc., 424 (1942). ¹⁰⁴ Kharasch and Fuchs, J. Org. Chem., 9, 365 (1944). ²⁰⁵ Stevens, J. Am. Chem. Soc., 70, 165 (1948). 206 Stewart and Clark, J. Am. Chem. Soc., 69, 713 (1947). 207 Buchi and Jeger, Helv. Chim. Acta, 32, 538 (1949). 208 Sorkin and Hinden, Helv. Chim. Acta, 32, 65 (1949). ²⁰⁹ Groggins, Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New York, 1947, pp. 168-259. ²¹⁰ McBee and Haas, Ind. Eng. Chem., 33, 137 (1941). 211 Whitmore et al., J. Am. Chem. Soc., 55, 4161 (1933); 60, 2539 (1938). 212 Whitmore, Marker, and Plambeck, Jr., J. Am. Chem. Soc., 63, 1626 (1941). 213 Stevens, J. Am. Chem. Soc., 68, 620 (1946). ²¹⁴ Sampey, Fawcett, and Morehead, J. Am. Chem. Soc., 62, 1839 (1940). ²¹⁵ Mason et al., J. Chem. Soc., 3150 (1931). ²¹⁶ Atkinson and Thorpe, I. Chem. Soc., 1695 (1907). 217 Kharasch and Brown, J. Am. Chem. Soc., 61, 2142 (1939). 218 Schmid and Karrer, Helv. Chim. Acta, 29, 573 (1946). ¹¹⁹ Gindraux, Helv. Chim. Acta, 12, 921 (1929). ²²⁰ McMaster and Carol, Ind. Eng. Chem., 23, 218 (1931).

²²¹ Gatterman and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938. 222 Maxwell and Adams, J. Am. Chem. Soc., 52, 2962 (1930). 223 Wisansky and Ansbacher, Org. Syntheses, 28, 22 (1948). ²²⁴ Wahl, Ann. chim., (11) 5, 12 (1936). ²²⁵ Jenkins et al., J. Org. Chem., 13, 865 (1948). 226 Weygand, Organic Preparations, Interscience Publishers, New York, 1945. p. 76. 227 Marvel et al., J. Am. Chem. Soc., 66, 916 (1944). ²²⁸ Marvel, Kaplan, and Himel, J. Am. Chem. Soc., 63, 1894 (1941). ²²⁹ Smith, Org. Syntheses, Coll. Vol. II, 95 (1943). 230 Smith and Moyle, J. Am. Chem. Soc., 55, 1676 (1933). ²³¹ Smith and Moyle, J. Am. Chem. Soc., 58, 1 (1936). 232 Fuson and Corse, J. Am. Chem. Soc., 60, 2065 (1938). 233 Smith and Guss, J. Am. Chem. Soc., 62, 2635 (1940). ²³⁴ Clarke and Brethen, Org. Syntheses, Coll. Vol. I, 121 (1941). 235 Buu-Hoi, Ann., 556, 6 (1944); Lecocq, Ann. chim., (12) 3, 79 (1948). ²³⁶ Dains and Brewster, Org. Syntheses, Coll. Vol. 1, 323 (1941). ²³⁷ Elbs and Jaroslawzew, J. prakt. Chem., 88, 92 (1913). 238 Minnis, Org. Syntheses, Coll. Vol. II, 357 (1943). 219 Sandin, Drake, and Leger, Org. Syntheses, Coll. Vol. II, 196 (1943); Woollett and Johnson, ibid., Coll. Vol. II, 343 (1943). 240 Hunter and Edgar, J. Am. Chem. Soc., 54, 2025 (1932). 244 Groll and Hearne, Ind. Eng. Chem., 31, 1239, 1413, 1530 (1939). 242 T satsas, Ann. chim., (11) 19, 224 (1944). 243 Jenkins, McCullough, and Booth, Ind. Eng. Chem., 22, 31 (1930). 244 Ferrero and Corbaz, Helv. Chim. Acta, 13, 1009 (1930). ²⁴⁵ Militzer, J. Am. Chem. Soc., 60, 256 (1938). 246 Tarbell, Fukushima, and Dam. J. Am. Chem. Soc., 67, 197 (1945). 247 Schultz et al., J. Org. Chem., 11, 320 (1946). •248 Goldberg, Ordas, and Carsch, J. Am. Chem. Soc., 69, 260 (1947). ²⁴⁹ Dornfeld, Callen, and Coleman, Org. Syntheses, 28, 19 (1948); cf. ref. 246. ²⁵⁰ Campbell, Anderson, and Gilmore, J. Chem. Soc., 819 (1940); cf. ref. 246. ²⁵¹ Clarkson and Gomberg, J. Am. Chem. Soc., 52, 2886 (1930); Thurston and Shriner, ibid., 57, 2164 (1935). ²⁵² Fuson and Porter, J. Am. Chem. Soc., 70, 896 (1948); Sampey and Reid, ibid., 69, 234 (1947); Wittig and Felletschun, Ann., 555, 138 (1944). ²⁵³ Bachmann and Kloetzel, J. Org. Chem., 3, 58 (1938). ²⁵⁴ Paillard and Farvarger, Helv. Chim. Acta, 16, 614 (1933). ²⁵⁵Campaigne and LeSuer, J. Am. Chem. Soc., 70, 1555 (1948); Dittmer et al., ibid., 71, 1201 (1949). 256 Blicke and Burckhalter, J. Am. Chem. Soc., 64, 477 (1942). ²⁵⁷ Truitt, Mattison, and Richardson, J. Am. Chem. Soc., 70, 79 (1948); Campaigne and LeSuer, ibid., 70, 415 (1948). 238 Crook and Davies, J. Chem. Soc., 1697 (1937). 259 Klopp and Wright, J. Org. Chem., 4, 142 (1939). 260 Gilman and Avakian, J. Am. Chem. Soc., 68, 580 (1946). 261 Renshaw and Friedman, J. Am. Chem. Soc., 61, 3320 (1939); cf. ref. 262. 262 Jansen and Wibaut. Rec. trav. chim., 56, 699 (1937). 263 Bergstrom and Rodda, J. Am. Chem. Soc., 62, 3030 (1950); Craig and Cass, ibid., 64, 783 (1942).

²⁶⁴ Elpern and Hamilton, I. Am. Chem. Soc., 68, 1436 (1946). 265 McElvain and Goese, J. Am. Chem. Soc., 65, 2227 (1943); Wibaut and Den Hertog, Rec. trav. chim., 64, 55 (1945). 266 Wibaut and Nicolai, Rec. trav. chim., 58, 709 (1939). 267 Rodewald and Plazek, Ber., 70, 1159 (1937). 268 Dy son and Hammick, J. Chem. Soc., 781 (1939). 269 Tucker, J. Chem. Soc. 546 (1926). ²⁷⁰ Hass and Huffman, J. Am. Chem. Soc., 63, 1233 (1941). ²⁷¹ Hennion and Anderson, J. Am. Chem. Soc., 68, 424 (1946). ²⁷² Wibaut, Van De Lande, and Wallagh, Rec. trav. chim., 52, 794 (1933). 273 Dvornikoff, Sheets, and Zienty, J. Am. Chem. Soc., 68, 142 (1946). ²⁷⁴ Simons and Ramler, I. Am. Chem. Soc., 65, 389 (1943). 275 Dippy and Williams, J. Chem. Soc., 164 (1934). 276 Weizmann and Patai, I. Am. Chem. Soc., 68, 150 (1946). ²⁷⁷ Jenkins, J. Am. Chem. Soc., 55, 2896 (1933). 278 Rapson and Shuttleworth, I. Chem. Soc., 489 (1941); cf. ref. 590. 279 Ruggli and Theilheimer, Helv. Chim. Acta, 24, 906 (1941); Titley, J. Chem. Soc., 513 (1926); Atkinson and Thorpe, ibid., 1698 (1907). 280 Snell and Weissberger. Org. Syntheses, 20. 92 (1940). 281 Koelsch, Org. Syntheses, 20, 18 (1940). 282 Adams and Marvel, Org. Syntheses, Coll. Vol. I, 128 (1941). 283 Blicke and Smith, I. Am. Chem. Soc., 50, 1229 (1928); Frank, Fanta, and Tarbell, ibid., 70, 2317 (1948). ²⁸⁴ Brewster and Stevenson, J. Am. Chem. Soc., 62, 3144 (1940). 285 Plati, Strain, and Warren, J. Am. Chem. Soc., 65, 1273 (1943). 286 Dippy and Williams, J. Chem. Soc., 1891 (1934). 287 Wallingford and Krueger, Org. Syntheses. Coll. Vol. II. 349 (1943). 288 Fuson and Cooke, Jr., J. Am. Chem. Soc., 62, 1180 (1940). 289 Barnes and Gordon, J. Am. Chem. Soc., 71, 2644 (1949). 290 Brewster, Org. Syntheses, Coll. Vol. II, 347 (1943). ²⁹¹ Fieser and Bowen, J. Am. Chem. Soc., 62, 2103 (1940). 292 Fuson, J. Am. Chem. Soc., 48, 830 (1926). 293 Case, I. Am. Chem. Soc., 47, 1143 (1925). 294 Blicke and Patelski, I. Am. Chem. Soc., 58, 559 (1936). ²⁹⁵ Johnson and Gauerke, Ore. Syntheses, Coll. Vol. I, 123 (1941). 296 Coleman and Honeywell, Org. Syntheses, Coll. Vol. II, 443 (1943); cf. Cavill, J. Soc. Chem. Ind., 65, 124 (1946). 297 van Tamelen and Van Zyl, J. Am. Chem. Soc., 71, 835 (1949). 298 Birckenbach and Goubeau, Ber., 65, 395 (1932). ²⁹⁹ Hodgson, Chem. Revs., 40, 251 (1947). 300 Bigelow, Org. Syntheses, Coll. Vol. I, 133-126 (1941). ³⁰¹ Marvel and McElvain, Org. Syntheses, Coll. Vol. I, 170 (1941). 302 Lucas and Kennedy, Org. Syntheses, Coll. Vol. II, 351 (1943). 303 Roe in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 193. 304 Flood, Org. Syntheses, Coll. Vol. II, 295 (1943). 305 Sah and Hsu, Rec. trav. chim., 59, 351 (1940); Lucas, Kennedy, and Wilmot, J. Am. Chem. Soc., 58, 157 (1936). ³⁰⁶ Chattaway et al., J. Chem. Soc., 65, 875 (1894). 307 Vogel, J. Chem. Soc., 650 (1948).

308 Gilman, Kirby, and Kinney, J. Am. Chem. Soc., 51, 2260 (1929). 309 Campaigne and Reid, Ir., J. Am. Chem. Soc., 68, 1663 (1946). ³¹⁰ Bachmann and Boatner, I. Am. Chem. Soc., 58, 2194 (1936). ³¹¹ Fieser and Seligman, J. Am. Chem. Soc., 58, 478 (1936). 322 Allen and Thirtle. Org. Syntheses, 26, 16 (1946). 313 Wibaut and Bastide, Rec. trav. chim., 52, 495 (1933). ³¹⁴Roe and Hawkins. I. Am. Chem. Soc., 69, 2443 (1947); 71, 1785 (1949). ³¹⁵Dikshoorn, Rec. trav. chim., 48, 550 (1929). ³¹⁶ Newman and Fones. J. Am. Chem. Soc., 69, 1221 (1947). ³¹⁷ Frv and Grote. 1. Am. Chem. Soc., 48, 710 (1926). ³¹⁸Hartwell. Org. Syntheses, 24, 22 (1944). ³¹⁹ Ingold and Vass, J. Chem. Soc., 2265 (1928). ³²⁰ Wallagh and Wibaut, Rec. trav. chim., 55, 1072 (1936). 321 Schiemann and Winkelmüller, Org. Syntheses, Coll. Vol. II, 188 (1943). 322 Leslie and Turner, J. Chem. Soc., 282 (1932). 323 Li and Adams, I. Am. Chem. Soc., 57, 1568 (1935). ³²⁴Dain's and Eberly, Org. Syntheses, Coll. Vol. II, 355 (1943). 325 Bradlow and Vanderwerf. J. Am. Chem. Soc., 70, 656 (1948). ³²⁶Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 117. 327 Searle and Adams. I. Am. Chem. Soc., 55, 1652 (1933). 328 Schiemann and Winkelmüller, Org. Syntheses, Coll. Vol. II, 299 (1943). ³²⁹ Buck and Ide, Org. Syntheses, Coll. Vol. II, 130 (1943). 330 Schoutissen, Rec. trav. chim., 54, 98 (1935). ³³¹ Marvel, Allen, and Overberger, J. Am. Chem. Soc., 68, 1089 (1946). 332 Elson, Gibson, and Johnson, J. Chem. Soc., 1128 (1930). 333 Zenitz and Hartung, J. Org. Chem., 11, 444 (1946), cf. ref. 332. 334 Evans, Morgan, and Watson, I. Chem. Soc., 1172 (1935); Leonard and Boyd, I. Org. Chem., 11, 412 (1946). 335 Strassburg, Gregg, and Walling, J. Am. Chem. Soc., 69, 2141 (1947). 336 Ayling, Gorvin, and Hinkel, J. Chem. Soc., 618 (1941). 337 Hartman and Brethen, Org. Syntheses, Coll. Vol. I, 162 (1941). 338 Fuson and McKeever in Organic Reactions, Vol. I, John Wiley & Sons, New York, 1942, p. 63. 339 Whitmore et al., Ind. Eng. Chem., 38, 478 (1946); cf. ref. 338. ³⁴⁰ Darzens, Compt. rend., 208, 818 (1939). 341 Ouelet, Bull. soc. chim. France, (5e) 7, 196, 205 (1940). ³⁴² Emerson et al., I. Am. Chem. Soc., 69, 1905 (1947); cf. ref. 343. 343 Kosolapoff, J. Am. Chem. Soc., 68, 1670 (1946). 344 Akin, Stamatoff, and Bogert, J. Am. Chem. Soc., 59, 1271 (1937); cf. ref. 338. 345 Grummitt and Buck, Org. Syntheses, 24, 30 (1944). 346 Tarbell and Wystrach, J. Am. Chem. Soc., 65, 2151 (1943). 347 Ouelet, Bull. soc. chim. France, 53, 222 (1933). ³⁴⁸ Colonge, Bull. soc. chim. France, (5e) 3, 2116 (1936). 349 Griffling and Salisbury, J. Am. Chem. Soc., 70, 3416 (1948). 350 Avakian, Moss, and Martin, J. Am. Chem. Soc., 70, 3075 (1948); Blicke and Sheets, ibid., 70, 3768 (1948). 351 Wiberg and McShane, Org. Syntheses, 29, 31 (1949); cf. ref. 256. 352 Rossander and Marvel, J. Am. Chem. Soc., 50, 1491 (1928); Harmon and Marvel, ibid., 54, 2515 (1932).

353 Suter and Evans, I. Am. Chem. Soc., 60, 536 (1938). 354 Whitmore, Wittle, and Harriman, J. Am. Chem. Soc., 61, 1585 (1939). 355 Bachmann and Kloetzel, J. Org. Chem., 3, 55 (1938). 356 Gilman et al., I. Am. Chem. Soc., 61, 2836 (1939). 357 Gilman and Norris, I. Am. Chem. Soc., 67, 1479 (1945). 338 Gilman and Avakian. I. Am. Chem. Soc., 67, 349 (1945). 359 Vaughn and Nieuwland, J. Am. Chem. Soc., 55, 2150 (1933); McCusker and Vogt, ibid., 59, 1307 (1937); cf. ref. 360. 360 Grignard and Perrichon, Ann. chim., (10) 5. 5 (1926); cf. ref. 359. 561 Whitmore and Woodward, Org. Syntheses, Coll. Vol. I, 325 (1941). 362 Whitmore and Hanson, Org. Syntheses, Coll. Vol. 1, 326 (1941). 363 Truchet, Ann. chim., (10) 16. 334 (1931). 364 Carter and West. Org. Syntheses, 20, 81, 101 (1940). 365 Gredy, Bull. soc, chim. France, (5e) 3, 1094 (1936). 366 Dehn, J. Am. Chem. Soc., 33. 1598 (1911); Vaughn and Nieuwland, ibid. 54, 788 (1932). 367 Marvel and Tanenbaum, I. Am. Chem. Soc., 44, 2645 (1922). 368 Benton and Dillon, I. Am. Chem. Soc., 64, 1128 (1942). 369 Hass and Bender, I. Am. Chem. Soc., 71, 1767 (1949). ³⁷⁰ Finkelstein and Elderfield, J. Org. Chem., 4, 372 (1939). ³⁷¹ Marvel and Birkhimer. I. Am. Chem. Soc., 51, 260 (1929). ³⁷² Merchant, Wickert, and Marvel, J. Am. Chem. Soc., 49, 1828 (1927). ³⁷³ Marvel et al., J. Am. Chem. Soc., 46, 2838 (1924); Sayles and Degering. ibid., 71, 3161 (1949); cf. ref. 372. ³⁷⁴Carter, J. Am. Chem. Soc., 50, 1967 (1928). 375 Marvel, Zartman, and Bluthardt, J. Am. Chem. Soc., 49, 2299 (1927). 376 Gibbs, Littmann, and Marvel, J. Am. Chem. Soc., 55, 753 (1933). 377 Drake et al., I. Am. Chem. Soc., 68, 1536 (1946). 378 Finkelstein, Ber., 43, 1528 (1910). 379 Ahmad and Strong, J. Am. Chem. Soc., 70, 1699 (1948). 380 Gryszkiewicz-Trochimowski, Rec. trav. chim., 66, 415 (1947); Saunders and Stacey, J. Chem. Soc., 1773 (1948). 381 Ingold and Ingold, I. Chem. Soc., 2249 (1928). 382 Letsinger and Traynham, J. Am. Chem. Soc., 70, 2818 (1948). 383 Brody and Bogert, J. Am. Chem. Soc., 65, 1080 (1943). 384 Swallen and Boord, J. Am. Chem. Soc., 52, 651 (1930). 385 Gibson and Johnson, J. Chem. Soc., 2525 (1930). 386 Bennett and Hock, I. Chem. Soc., 472 (1927). 387 King and L'Ecuyer, J. Chem. Soc., 1901 (1934); Baker, ibid., 216 (1933). 368 Adickes, J. prakt. Chem., 161, 277 (1943). 389 Borsche, Ann., 526, 14 (1936). 390 Newman and Closson, J. Am. Chem. Soc., 66, 1553 (1944). 391 Kleinberg, Chem. Revs., 40, 381 (1947). 392 Hunsdiecker and Hunsdiecker, Ber., 75, 291 (1942); U. S. patent 2,176,181 (1939). 393 Allen and Wilson, Org. Syntheses, 26, 52 (1946). 394 Luttringhaus and Schade, Ber., 74, 1565 (1941); cf. ref. 392. 395 Schmid, Helv. Chim. Acta, 27, 134 (1944). 396 Cason and Way, 1. Org. Chem., 14, 31 (1949). 397 von Braun, Org. Syntheses, Coll. Vol. I, 428 (1941). 398 Arvin and Adams, J. Am. Chem. Soc., 50, 1984 (1928).

399 Leonard and Wicks, J. Am. Chem. Soc., 68, 2402 (1946). 400 Stone, I. Am. Chem. Soc., 58, 488 (1936). ⁴⁰¹ Müller and Kindlmann, Ber., 74, 416 (1941). 402 Braun and Sobecki, Ber., 44, 1464 (1911). 403 Suida and Drahowzal, Ber., 75, 991 (1942). 404 Hartman and Dreger, Org. Syntheses, Coll. Vol. I, 357 (1941). 403 Adams and Marvel. Org. Syntheses, Coll. Vol. 1, 358 (1941). 406 Doughty and Derge, I. Am. Chem. Soc., 53, 1594 (1931). 407 Buck and Ide. 1. Am. Chem. Soc., 54, 4359 (1932). 408 Glattfeld and Schneider, J. Am. Chem. Soc., 60, 415 (1938). ⁴⁰⁹ Rinkes, Rec. trav. chim., 55, 991 (1936); Steinkopf et al., Ann., 527, 237 (1936). ⁴¹⁰ Fried and Kleene, J. Am. Chem. Soc., 63, 2691 (1941); 62, 3258 (1940). 411 Tarbell and Weaver, J. Am. Chem. Soc., 63, 2939 (1941); cf. refs. 410 and 412. 412 Cloke and Ayers, J. Am. Chem. Soc., 56, 2144 (1934). ⁴¹³ Paul, Bull. soc. chim. France, (5) 5, 1053 (1938). 414 Synerholm, J. Am. Chem. Soc., 69, 2581 (1947). 413 Alexander and Schniepp, I. Am. Chem. Soc., 70, 1839 (1948); Org. Syntheses, 30, 27 (1950). ⁴¹⁶Cloke and Pilgrim, J. Am. Chem. Soc., 61, 2667 (1939); Synerholm, Org. Syntheses, 29, 30 (1949). 417 Andrus, Org. Syntheses, 23, 67 (1943). 418 Piantanida, I. prakt. Chem., 153, 257 (1939). ⁴¹⁹ Stone and Schechter, Org. Syntheses, 30, 33 (1950). 420 Lucas and Gould, Jr., J. Am. Chem. Soc., 63, 2541 (1941). ⁴¹ Winstein and Grunwald, J. Am. Chem. Soc., 70, 836 (1948). 422 Johnson and McEwen, Org. Syntheses, Coll. Vol. 1, 521 (1941). 423 Evers et al., J. Am. Chem. Soc., 55, 1136 (1933); Whitmore, Evers, and Rothrock, Org. Syntheses, Coll. Vol. II, 408 (1943). 44 Schmitt and Boord, J. Am. Chem. Soc., 54, 751 (1932). 43 Soday and Boord, J. Am. Chem. Soc., 55, 3293 (1933). ⁴²⁶Snyder and Brooks, Org. Syntheses, Coll. Vol. II, 171 (1943). 427 Kharasch and Brown, J. Am. Chem. Soc., 61, 3432 (1939). 428 Smith and Hoehn, J. Am. Chem. Soc., 63, 1180 (1941). ⁶⁹ Paul and Normant, Bull. soc. chim. France, (5) 11, 365 (1944). 430 She pard and Johnson, J. Am. Chem. Soc., 54, 4385 (1932). 431 Koelsch, J. Am. Chem. Soc., 54, 2045 (1932). 432 Farrell and Bachman, J. Am. Chem. Soc., 57, 1281 (1935). 433 Jackson and Pasiut, J. Am. Chem. Soc., 50, 2249 (1928). 434 Rhinesmith, Org. Syntheses, Coll. Vol. II, 177 (1943). 435 Marvel et al., J. Am. Chem. Soc., 62, 3495 (1940). 436 Abbott and Althousen, Org. Syntheses, Coll. Vol. II, 270 (1943). 457 Carter and Ney, J. Am. Chem. Soc., 64, 1223 (1942). 438 Lichtenberger and Naftali, Bull. soc. chim. France, (5) 4, 325 (1937). ⁴³⁹Croinwell and Benson, Org. Syntheses, 27, 5 (1947). 440 Cromwell and Wankel, J. Am. Chem. Soc., 70, 1320 (1948). 441 Auwers and Hügel, J. prakt. Chem., 143, 157 (1934); cf. ref. 440. 442 Wagner, J. Am. Chem. Soc., 71, 3214 (1949). 443 Degering, Ind. Eng. Chem., 24, 181 (1932).

44 Jacobs in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 20. 445 Burkhardt and Cocker, Rec. trav. chim., 50, 843 (1931). 446 Hurd. Meinert, and Spence, I. Am. Chem. Soc., 52, 1138 (1930). 447 Stoll and Rouve, Helv. Chim. Acta, 21, 1542 (1938). 448 Bartlett and Rosen, J. Am. Chem. Soc., 64, 543 (1942). 449 Bachman and Hill, J. Am. Chem. Soc., 56, 2730 (1934). 450 Favorski, I. prakt. Chem., (2) 88, 641 (1913). 451 Vassliev, Bull. soc. chim. France, (4) 43, 563 (1928). 452 Smith and Hoehn, J. Am. Chem. Soc., 63, 1175 (1941); Adams and Theobald, ibid., 65, 2208 (1943). 453 Perkin and Robinson, J. Chem. Soc., 103, 1977 (1913). 454 Fisher and Hamer, J. Chem. Soc., 1907 (1934). 455 Dierassi, Chem. Revs., 43, 271 (1948). 456 Ziegler et al., Ann., 551, 80 (1942). 457 Lüttringhaus, König, and Böttcher, Ann., 560, 213 (1948). 458 Karrer and Ringli, Helv. Chim. Acta, 30, 863. 1771 (1947). 459 Gomberg, J. Am. Chem. Soc., 41, 1414 (1919); Frahm, Rec. trav. chim., 50, 261 (1931). 460 Olson and Whitacre, J. Am. Chem. Soc., 65, 1019 (1943); Montmollin and Matile, Helv, Chim. Acta, 7, 106 (1924). 461 Lucas and Gould, J. Am. Chem. Soc., 63, 2541 (1941). 462 Glavis, Ryden, and Marvel, J. Am. Chem. Soc., 59, 707 (1937). 463 Hurd and Abernethy, J. Am. Chem. Soc., 63, 976 (1941). 464 Coleman and Johnstone, Org. Syntheses, Coll. Vol. I, 158 (1941); cf. Newman and Venderwerf, J. Am. Chem. Soc., 67, 233 (1945). 465 Magidson et al., Arch. Pharm., 272, 79 (1934). 466 Rothstein, Bull. soc. chim. France, (5) 2, 1936 (1935). 467 Detoeuf, Bull. soc. chim. France, (4) 31, 169 (1922). 468 Read and Williams, J. Chem. Soc., 359, 1214 (1920). 469 Read and Reid, J. Chem. Soc., 1487 (1928); cf. ref. 473. 470 Emerson, J. Am. Chem. Soc., 67, 516 (1945); Hanby and Rydon, J. Chem. Soc. 114 (1946). 471 Winstein and Buckles, J. Am. Chem. Soc., 64, 2780 (1942); cf. ref. 476. 472 Suter and Milne, I. Am. Chem. Soc., 62, 3476 (1940). 473 Suter and Zook, J. Am. Chem. Soc., 66, 738 (1944). 474 Evans and Owen, J. Chem. Soc., 239 (1949); cf. Kadesch, J. Am. Chem. Soc. 68, 46 (1946). 473 Ruggli and Hegedüs, Helv. Chim. Acta, 25, 1285 (1942); Bloomfield and Farmer, J. Chem. Soc., 2062 (1932); Abderhalden and Heyns, Ber., 67, 530 (1934); Braun, J. Am. Chem. Soc., 52, 3185 (1930). 476 Winstein, J. Am. Chem. Soc., 64, 2792 (1942). 477 Winstein et al., J. Am. Chem. Soc., 70, 816 (1948). 478 Thayer, Marvel, and Hiers, Org. Syntheses, Coll. Vol. 1, 117 (1941). 479 Autenrieth and Mühlinghaus, Ber., 39, 4098 (1906). 480 Shoemaker and Boord, J. Am. Chem. Soc., 53, 1505 (1931). 481 Whitmore and Langlois, J. Am. Chem. Soc., 55, 1518 (1933). 482 Dykstra, Lewis, and Boord, J. Am. Chem. Soc., 52, 3396 (1930). 483 Levene, Org. Syntheses, Coll. Vol. 11, 88 (1943). 484 Catch et al., J. Chem. Soc., 272 (1948); Janetzky and Verkade, Rec. trav. chim., 65,691 (1946).

REFERENCES FOR CHAPTER 4 485 Catch et al., J. Chem. Soc., 276 (1948); Janetzky and Verkade, Rec. trav. chim., 65, 905 (1946). 486 Aston et al., J. Am. Chem. Soc., 64, 300 (1942). 487 Bachman and Hill, J. Am. Chem. Soc., 56, 2730 (1934). 408 Borrows, Holland, and Kenyon, J. Chem. Soc., 1083 (1946). 489 Hill and Kropa, J. Am. Chem. Soc., 55, 2509 (1933); Jackman et al., ibid., 70. 2884 (1948). 490 Favorski, 1. prakt. Chem., 88, 641 (1913). 491 Dierassi and Scholz, J. Am. Chem. Soc., 70, 417 (1948). 492 Bedoukian. I. Am. Chem. Soc., 67, 1430 (1945). 493 Ruggli et al., Helv. Chim. Acta, 29, 95 (1946). 494 Buchman and Richardson, J. Am. Chem. Soc., 67, 395 (1945). 495 Buchman and Sargent, J. Am. Chem. Soc., 67, 400 (1945). 496 Rabjohn and Rogier, J. Org. Chem., 11, 781 (1946). ⁴⁹⁷Newman, Farbman, and Hipsher, Org. Syntheses, 25, 22 (1945). 498 Mever, Helv. Chim. Acta, 16, 1291 (1933); Ebel, ibid., 12, 9 (1929). "Cowper and Davidson, Org. Syntheses, Coll. Vol. II, 480 (1943). 500 Langley, Org. Syntheses, Coll. Vol. I, 127 (1941). ⁵⁰¹ Kindler and Blaas, Ber,, 77, 585 (1944). 502 Taylor, J. Chem. Soc., 304 (1937). ⁵⁰³ Fourneau and Barrelet, Bull. soc. chim. France, 47, 72 (1930). ⁵⁰⁴ Schultz and Mickey, Org. Syntheses, 29, 38 (1949); Verkade and Janetzky, Rec. trav. chim., 62, 780 (1943); von Wacek et al., Ber., 75, 1352 (1942). 503 Machlis and Blanchard, J. Am. Chem. Soc., 57, 176 (1935). 506 Maeder, Helv. Chim. Acta, 29, 124 (1946). 507 Jacobs et al., J. Org. Chem., 11, 21 (1946). ⁵⁰⁸ May and Mosettig, J. Am. Chem. Soc., 70, 686 (1948). 509 Kipnis, Soloway, and Ornfelt, J. Am. Chem. Soc., 71, 10 (1949). ⁵¹⁰ McPhee and Klingsberg, J. Am. Chem. Soc., 66, 1132 (1944). ^{\$11}Prevost and Sommiere, Bull. soc. chim. France, (5) 2, 1157 (1935). ⁵¹² Emerson and Patrick, Jr., J. Org. Chem., 13, 722 (1948). ⁵¹³ Long and Howard, Org. Syntheses, Coll. Vol. II, 87 (1943). 514 Erlenmeyer and Jung, Helv. Chim. Acta, 32, 37 (1949). ⁵¹⁵Danilow and Venus-Danilowa, Ber., 63, 2765 (1930). ^{\$16} Hibbert and Hill, I. Am. Chem. Soc., 45, 734 (1923). ⁵¹⁷ Danilow and Venus-Danilowa, Ber., 67, 24 (1934). 518 Kirrmann, Ann. chim., (10) 11, 223 (1929); Chancel, Bull. soc. chim. France, (5) 17, 714 (1950). ^{\$19} Catch et al., J. Chem. Soc., 278 (1948). ⁵²⁰ McPhee and Klingsberg, Org. Syntheses, 26, 13 (1946). 521 Bachmann in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 47. s22 Ritter and Sokol, J. Am. Chem. Soc., 70, 3419 (1948). 523 Karrer and Schmid, Helv. Chim. Acta, 27, 119 (1944). 524 Lutz and Wilson, J. Org. Chem., 12, 767 (1947). 525 King and Work, J. Chem. Soc., 1307 (1940). s26 Ruggli and Knecht, Helv. Chim. Acta, 27, 1108 (1944). 527 Burger and Harnest, J. Am. Chem. Soc., 65, 2382 (1943). 528 Marvel, Org. Syntheses, 20, 106 (1940). ⁵²⁹ Marvel, Org. Syntheses, 21, 74 (1941); cf. ref. 537.

³³⁰ Clarke and Taylor, Org. Syntheses, Coll. Vol. I, 115 (1941); cf. ref. 537. s31 Ahlberg, I. prakt. Chem., 135, 282 (1932). 532 Hurd and Cashion, J. Am. Chem. Soc., 65, 2037 (1943); cf. ref. 537. sss Bernhard and Lincke, Helv. Chim. Acta, 29, 1462 (1946). ³³⁴ Homeyer, Whitmore, and Wallingford, J. Am. Chem. Soc., 55, 4209 (1933). 535 Berger, J. brakt. Chem., 152, 315 (1939). 536 Grewe, Ber., 76, 1081 (1943). ³³⁷ Marvel and Du Vigneaud, Org. Syntheses, Coll. Vol. II, 93 (1943). 538 Kandiah, J. Chem. Soc., 1215 (1932). ³³⁹ Bergs, Ber., 63, 1291 (1930). 540 Fling, Minard, and Fox, J. Am. Chem. Soc., 69, 2466 (1947); cf. ref. 372. 541 Zanden, Rec. trav. chim., 53, 477 (1934). 542 Zanden, Rec. trav. chim., 63, 113 (1944). 34 Goss and Ingold, J. Chem. Soc., 1471 (1926). *** Natelson and Gottfried, Org. Syntheses, 23, 37 (1943). 545 Vogel, J. Chem. Soc., 648 (1948). 546 Saunders and Stacey, I. Chem. Soc., 1773 (1948). 547 Guest and Goddard, Jr., J. Am. Chem. Soc., 66, 2074 (1944). 548 Brockmann, Ann., 521, 42 (1935). 549 Buchman et al., I. Am. Chem. Soc., 64, 2696 (1942). sso Schwenk and Papa, J. Am. Chem. Soc., 70, 3626 (1948). ⁵⁵¹ Palmer and McWheterr, Org. Syntheses, Coll. Vol. I, 245 (1941). 552 Dice and Bowden, I. Am. Chem. Soc., 71, 3107 (1949). 553 Burgin, Hearne, and Rust, Ind. Eng. Chem., 33, 385 (1941). 554 Datta and Bhoumik, I. Am. Chem. Soc., 43, 303 (1921). 555 Schmerling, I. Am. Chem. Soc., 67, 1438 (1945). 556 Schmerling, J. Am. Chem. Soc., 68, 1650 (1946). 557 Kharasch, Jensen, and Urry, J. Am. Chem. Soc., 69, 1100 (1947). 538 Kharasch, Kuderna, and Urry, J. Org. Chem., 13, 895 (1948); Kharasch and Sage, ibid., 14, 537 (1949). 559 Kharasch, Skell, and Fisher, J. Am. Chem. Soc., 70, 1055 (1948). 560 Hey and Musgrave, I. Chem. Soc., 3156 (1949). sei Aspinall and Baker, J. Chem. Soc., 743 (1950). 562 Marvel et al., J. Am. Chem. Soc., 63, 1892 (1941); 66, 914 (1944). 563 Lucas and Garner, I. Am. Chem. Soc., 72, 2145 (1950). 364 Young, Cristol, and Skei, J. Am. Chem. Soc., 65, 2099 (1943). ⁵⁶⁵ Joseph, Ross, and Vulliet, J. Chem. Education, 26, 329 (1949). 566 Cason, Wallcave, and Whiteside, J. Org. Chem., 14, 37 (1949). 567 Jacobs and Florsheim, J. Am. Chem. Soc., 72, 256 (1950). 568 Hatch and Nesbitt, I. Am. Chem. Soc., 72, 727 (1950). 569 Colonge and Garnier, Bull. soc. chim. France, (5) 15, 436 (1948). 570 Degering and Boatright, J. Am. Chem. Soc., 72, 5137 (1950). 571 Owen and Roberts, J. Chem. Soc., 325 (1949). 577 Ames, Bowman, and Mason, I. Chem. Soc., 174 (1950). 573 Katchalski and Ishai, J. Org. Chem., 15, 1070 (1950). 574 Crombie and Harper, I. Chem. Soc., 2688 (1950). 575 Hurd and McPhee, J. Am. Chem. Soc., 71, 398 (1949). 576 Prelog, El-Neweihy, and Häfliger, Helv. Chim. Acta, 33, 1937 (1950). 577 Henbest, Jones, and Walls, J. Chem. Soc., 2699 (1949). ⁵⁷⁸ Eglinton and Whiting, J. Chem. Soc., 3650 (1950).

145

579 Golse, Ann. chim., (2) 548, 554 (1948). 560 Theilacker and Wendtland, Ann., 570, 49 (1950). 581 Sherman and Amstutz, J. Am. Chem. Soc., 72, 2195 (1950). ⁵⁶² Blicke and Sheets, J. Am. Chem. Soc., 71, 2856 (1949). 583 Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1342 (1950). 584 Kyrides et al., J. Am. Chem. Soc., 72, 747 (1950). 365 Ultee, Rec. trav. chim., 68, 125 (1949). 546 Walborsky, J. Am. Chem. Soc., 71, 2941 (1949). 587 Wibaut, Sixma, and Suyver, Rec. trav. chim., 68, 525, 915 (1949). 588 Lew and Noller, Org. Syntheses. 30, 53 (1950). 589 Vaughan et al., J. Org. Chem., 14, 230 (1949). 590 Sloviter, J. Am. Chem. Soc., 71, 3360 (1949). ³⁹¹Sayles and Degering, J. Am. Chem. Soc., 71, 3161 (1949). ⁵⁹² Hussey and Wilk, I. Am. Chem. Soc., 72, 830 (1950). ⁵⁹³ Derby shire and Waters, I. Chem. Soc., 3694 (1950). 594 Groggins, Unit Processes in Organic Chemistry, McGraw-Hill Book Co., New York, 1947, pp. 168-259; McBee and Pierce, Ind. Eng. Chem., 42, 1694 (1950). 595 Sandin and Cairns, Org. Syntheses, Coll, Vol. II, 604 (1943). 596 Aitken, Badger, and Cook, J. Chem. Soc., 331 (1950). ⁵⁹⁷ Kubiczek and Neugebauer, Monatsh., 81, 917 (1950). 598 Horning, Horning, and Platt, J. Am. Chem. Soc., 72, 2731 (1950). 599 Rhoad and Flory, J. Am. Chem. Soc., 72, 2216 (1950). 600 Wood, Perry, and Tung, I. Am. Chem. Soc., 72, 2989 (1950). 601 Gilman and Summers, J. Am. Chem. Soc., 72, 2767 (1950). 602 Straus, Kollek, and Heyn, Ber., 63, 1868 (1930). 603 Stone and Shechter, J. Org. Chem., 15, 491 (1950); Org. Syntheses, 31, 31, 66 (1951). ⁶⁰⁴ Buckle, Pattison, and Saunders, J. Chem. Soc., 1476 (1949). 605 Blicke, Wright, and Zienty, J. Am. Chem. Soc., 63, 2488 (1941). 606 Starr and Hixon, Org. Syntheses, Coll. Vol. II, 571 (1943). ⁶⁰⁷ Saunders, Stacey, and Wilding, J. Chem. Soc., 773 (1949); Hoffmann, J. Org. Chem., 15, 430 (1950). ⁶⁰⁸ Ford-Moore, Org. Syntheses, 30, 11 (1950). 609 Leonard and Goode, J. Am. Chem. Soc., 72, 5404 (1950). 610 Smith and Hull, J. Am. Chem. Soc., 72, 3309 (1950). ⁶¹¹ Dauben and Tilles, I. Am. Chem. Soc., 72, 3185 (1950); Barnes and Prochaska, ibid., 72, 3188 (1950). 612 Henne and Finnegan, J. Am. Chem. Soc., 72, 3806 (1950). 613 Oldham, J. Chem. Soc., 100 (1950). 614 Ecke, Cook, and Whitmore, J. Am. Chem. Soc., 72, 1511 (1950). ⁶¹⁵ Buckles, Steinmetz, and Wheeler, J. Am. Chem. Soc., 72, 2496 (1950). 616 Evans and Morgan, I. Am. Chem. Soc., 35, 54 (1913). 617 Ames and Bowman, J. Chem. Soc., 406 (1950); cf. ref. 159. ⁶⁴⁸Skinner, Limperos, and Pettebone, J. Am. Chem. Soc., 72, 1648 (1950). 619 Taylor and Morey, Ind. Eng. Chem., 40, 432 (1948). 620 Jacobson, J. Am. Chem. Soc., 72, 1489 (1950). 621 Brandon, Derfer, and Boord, J. Am. Chem. Soc., 72, 2120 (1950). 622 Seifert et al., Helv. Chim. Acta, 33, 732 (1950). 623 Braude and Coles, J. Chem. Soc., 2014 (1950). 424 Lora-Tamayo et al., J. Chem. Soc., 1418 (1950).

615 Bateman et al., J. Chem. Soc., 936, 941 (1950). Donahoe and Vanderwerf, Org. Syntheses, 30, 24 (1950). 627 Colonge and Cumet, Bull. soc. chim. France, (5) 14, 838 (1947). 628 Dolliver et al., J. Am. Chem. Soc., 60, 440 (1938). ⁶²⁹ Irwin and Hennion, J. Am. Chem. Soc., 63, 858 (1941). 630 Winstein and Henderson, J. Am. Chem. Soc., 65, 2196 (1943). ⁶³¹ Cristol and Eilar, J. Am. Chem. Soc., 72, 4353 (1950). 632 Winstein and Henderson in Elderfield's Heterocyclic Compounds, John Wiley & Sons, New York, 1950, Vol. I, pp. 22-42. 633 Hall and Ubertini, J. Org. Chem., 15, 715 (1950). 634 Weygand and Schmied-Kowarzik, Chem. Ber., 82, 333 (1949). 635 Wagner and Moore, J. Am. Chem. Soc., 72, 2884 (1950). 636 Cohen, Wolosinski, and Scheuer, J. Am. Chem. Soc., 72, 3952 (1950). ⁶⁰⁷ Aston et al., Org. Syntheses, 23, 48 (1943). ⁶³⁸ Mentzer and Pillon, Bull. soc. chim. France, (5) 17, 809 (1950). 639 Heilbron et al., J. Chem. Soc., 737 (1949). ⁶⁴⁰ Hartung and Adkins, J. Am. Chem. Soc., 49, 2517 (1927); McElvain, Clarke. and Jones, ibid., 64, 1966 (1942). 64 Kuhn and Grundmann, Ber., 70, 1894 (1937); Fisher, Ettel, and Lowenberg, ibid., 64, 30 (1931). 64 Bedoukian, J. Am. Chem. Soc., 66, 1325 (1944); Org. Syntheses, 29, 14 (1949). 643 Bedoukian, J. Am. Chem. Soc., 67. 1430 (1945). 644 Wagner and Tome, J. Am. Chem. Soc., 72, 3477 (1950). 645 Wagner and Moore, J. Am. Chem. Soc., 72, 3655 (1950). 646 Arens and van Dorp, Rec. trav. chim., 66, 409 (1947). 647 Kharasch and Brown, J. Am. Chem. Soc., 62, 925 (1940). 648 Wagner and Moore, J. Am. Chem. Soc., 72, 974 (1950). 649 Shriner and Damschroder, J. Am. Chem. Soc., 60, 894 (1938). 650 Phillips, I. Chem. Soc., 222 (1942). 651 Levine and Stephens, J. Am. Chem. Soc., 72, 1642 (1950). 652 Harmon et al., J. Am. Chem. Soc., 72, 2213 (1950). 453 Emerson, Deebel, and Longley, J. Org. Chem., 14, 696 (1949). 654 Schmerling, J. Am. Chem. Soc., 67, 1152 (1945). 655 Coleman, J. Am. Chem. Soc., 55, 3001 (1933). 656 Jackson, Sinart and Wright, J. Am. Chem. Soc., 69, 1539 (1947). 657 Klages et al., Ann., 547, 25 (1941). 658 Schöpf et al., Ann., 559, 22 (1947). 659 Farlow, Org. Syntheses, Coll. Vol. II, 312 (1943). 660 Calcott, Tinker, and Weinmayt, J. Am. Chem. Soc., 61, 1010 (1939). 661 Adams and Garber, J. Am. Chem. Soc., 71, 525 (1949). 662 Bruce and Todd, J. Am. Chem. Soc., 61, 157 (1939). 663 Marvel et al., J. Am. Chem. Soc., 68, 863 (1946). 664 Emerson and Lucas, J. Am. Chem. Soc., 70, 1180 (1948). 665 Hennion and Pieronek, J. Am. Chem. Soc., 64, 2751 (1942). 666 Hauser and Hudson, Org. Syntheses, 23, 102 (1943). 667 Smith in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 383. 668 Speer and Hill, J. Org. Chem., 2, 143 (1937). 669 Pope and Bogert, J. Org. Chem., 2, 280 (1937).

670 Mann and Watson, J. Chem. Soc., 508 (1947). 671 Bradsher, J. Am. Chem. Soc., 62, 486 (1940). 672 Brown and Marvel, J. Am. Chem. Soc., 59, 1176 (1937). 673 Marvel and Botteron, J. Am. Chem. Soc., 63, 1482 (1941). 674 Marvel, Kaplan, and Himel, J. Am. Chem. Soc., 63, 1894 (1941). 675 Marvel, Allan, and Overberger, J. Am. Chem. Soc., 68, 1088 (1946). 676 Gomberg and Bachman, Org. Syntheses, Coll. Vol. I, 113 (1941). 677 Gilman, Kirby, and Kinney, J. Am. Chem. Soc., 51, 2260 (1929). 678 Marvel, Ginsberg, and Mueller, J. Am. Chem. Soc., 61, 77 (1939). ⁶⁷⁹ Bigelow, Johnson, and Sandborn, Org. Syntheses, Coll. Vol. I, 133 (1941). 680 Haworth and Barker, J. Chem. Soc., 1302 (1939). 681 Gilman and Van Ess, J. Am. Chem. Soc., 61, 1369 (1939). 682 Huber et al., J. Am. Chem. Soc., 68, 1109 (1946). 643 Coleman and Talbot, Org. Syntheses, Coll. Vol. II, 592 (1943). 684 Bartlett et al., J. Am. Chem. Soc., 72, 1003 (1950). 685 Huntress, Organic Chlorine Compounds, John Wiley & Sons, New York, 1948. 686 Simons, Fluorine Chemistry, Vol. I, Academic Press, New York, 1950; Bockemüller and Wiechert in New Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, pp. 229-245, 315-362; Henne in Gilman's Organic Chemistry, Vol. I, John Wiley & Sons, New York, 1948, pp. 944-964. 687 Lecocq, Ann. chim., (12) 3, 79 (1948); Zeigler et al., Ann., 551, 109 (1942). 688 Meinel, Ann., 516, 242 (1935). 669 Hodges, J. Chem. Soc., 241 (1933). 690 Hauser and Renfrow, J. Am. Chem. Soc., 59, 122 (1937). ⁶⁹¹ Winstein and Henderson, J. Am. Chem. Soc., 65, 2198 (1943). 692 Holmes and Mann, J. Am. Chem. Soc., 69, 2001 (1947). 693 Buckles and Wheeler, Org. Syntheses, 31, 29 (1951). 694 Herzog, Org. Syntheses, 31, 82 (1951). 695 Oliveto and Gerold, Org. Syntheses, 31, 17 (1951).

696 Hall, Stephens, and Burckhalter, Org. Syntheses, 31, 37 (1951).

147

CONTENTS (continued)

METHOD	PAG
113. Condensation of Pyridine or Quinoline with Ketones	181
114. Hydrolysis of a-Diazo Ketones	181
Table 11. Hydroxy Compounds	182
Table 12. Dihydroxy Compounds	193
Table 13. Hydroxy Olefins	197
Table 14. Hydroxy Acetylenes	201
Table 15. Hydroxy Halides	202
References	207
-	

79. Reduction of Aldehydes and Ketones

$$\begin{array}{ccc} \text{RCHO} & \xrightarrow{(H)} & \text{RCH}_2\text{OH} \\ \text{RCOR'} & \xrightarrow{(H)} & \text{RCHOHR'} \end{array}$$

This method is widely used for the preparation of secondary alcohols from ketones. The reduction of aldehydes is important only when these substances are readily available, e.g., heptanal and furfural.

Catalytic reduction procedures give excellent yields. Special apparatus for hydrogenation has been described.^{30,87} Platinum oxide catalyst is generally useful for the reduction of carbonyl compounds 89,97,108 but is unsatisfactory for certain ketones.¹¹³ Nickel catalysts have been used extensively. 91,122,137,138,568,676 The most promising of these is the highly active W-6 Raney nickel, which permits hydrogenation in glass apparatus at low temperatures and pressures.^{111,140} The rate of hydrogenation with this catalyst is increased markedly by the addition of a small amount of triethylamine.¹¹¹ Other catalysts include copper-chromium oxide,^{99,674} sometimes fortified with barium, 134, 139 and a copper-alumina catalyst used successfully for the preparation of a series of alkylphenylcarbinols.¹¹⁴ Great selectivity is possible by varying the catalyst and conditions. In this respect, hydrogenation of β -furylacrolein is interesting. The furan ring is not reduced over copper-chromium oxide in the preparation of 3-(a-furyl)-1-propanol (72%).95 With Raney nickel the double bond may be reduced first (46%),⁹⁵ then the aldehyde group (80%),¹⁰⁰ and finally the nucleus to give 3-(tetrahydrofuryl)-1-propanol (80%).⁹⁵

The new metallic hydrides are excellent reducing agents for carbonyl compounds. These hydrides now include lithium aluminum hydride,^{4,800} lithium borohydride,³ and sodium borohydride.² The last reagent may be used in either aqueous or methanolic solutions. It does not reduce esters, acids, or nitriles and, for this reason, is superior for certain selective reductions. Other groups which are unaffected by this reagent include α , β -double bonds and hydroxyl, methoxyl, nitro, and dimethylamino groups.²

Hydroxy Compounds

CONTENTS

MET	HOD
79.	Reduction of Aldehydes and Ketones
80.	Reduction of Carbonyl Compounds by Alcohols (Meerwein-Ponndorf-
	Verley)
81.	Intramolecular Oxidation-Reduction of Aldehydes (Cannizzaro)
82.	Bimolecular Reduction of Carbonyl Compounds to Glycols
83.	Reduction of Quinones
84.	Reduction of Carboxylic Acids and Esters
85.	Reduction of Unsaturated Hydroxy Compounds
86.	Reduction of the Aromatic Nucleus
87.	Interaction of Organometallic Compounds and Oxygen
88.	Interaction of Organometallic Compounds and Aldehydes
89.	Interaction of Organometallic Compounds and Ketones
90.	Interaction of Organometallic Compounds and Oxides
91.	Action of Organometallic Reagents on Esters or Related Compounds
92.	Replacement of the Sulfonic Acid Group by the Hydroxyl Group
93.	Replacement of the Diazonium Group by the Hydroxyl Group
94.	Replacement of the Amino Group by the Hydroxyl Group
95.	Hydrolysis of Esters
96.	Hydrolysis of Halogen Compounds
97.	Cleavage of Ethers
98.	Cleavage of Oxides
99.	Cleavage of Furans and Pyrans
100.	Rearrangement of Allyl Ethers (Claisen)
101.	Hydration of Olefinic Compounds
102.	Condensation of Aldehydes and Ketones (Aldol Condensation)
103.	Condensation of Carbonyl Compounds with Halogenated Compounds
	(Reformatsky)
104.	Condensation of Carbonyl Compounds (Acyloin and Benzoin
	Condensations)
105.	a-Hydroxy Ketones from Interaction of Dicarbonyl Compounds and
	Aromatic Hydrocarbons
106.	Alkylation of Phenols
107.	Oxidation of Olefinic Compounds to Glycols
108.	Phenols by Dehydrogenation of Cyclic Ketones
109.	Unsaturated Alcohols by Oxidation of Olefins or Acetylenes
110.	Oxidation of Phenols (Elbs)
111.	Condensation of Alcohols by Sodium (Guerbet)
112.	Condensation of Aromatic Compounds with Ethylene Oxide

A convenient procedure for the reduction of small amounts of ketones involves the periodic addition of small pieces of sodium to a slowly stirred mixture of an ethereal ¹²¹ or benzene ¹¹³ solution of the ketone and water or a concentrated solution of sodium carbonate. Sodium and alcohol are used for the conversion of methyl *n*-amyl ketone to 2-heptanol (65%).¹¹⁵ These reagents are used to prepare secondary alcohols from olefinic ketones obtained by the aldol condensation.^{212,218} Benzophenone and related compounds are reduced by zinc dust and sodium hydroxide,¹¹⁸ magnesium and methanol,¹²⁰ and sodium amalgam.¹¹⁹ With the last reagent the reaction has been shown to take place through the intermediate sodium ketyl, (C₆H₅)₂CONa.

Less basic reagents which are more suitable for the reduction of aldehydes include iron and acetic acid^{88,94} and aluminum amalgam in alcohol.^{90,103}

A review of electrolytic reduction of carbonyl compounds was made in 1948.⁶⁷⁷

Both exo- and endo-cyclic alicyclic and heterocyclic ketones have been reduced. Important examples are found in the preparations of cyclopentanol (95%),¹²⁸ cycloheptanol (92%),¹²² β -pyridylmethylcarbinol (85%),¹³⁶ and 1-alkyl-4-piperidinols (90%).¹³³ A comparison of four reagents—sodium and alcohol, lithium aluminum hydride, hydrogen and Raney nickel, and hydrogen and copper-chromium oxide—has been made in the preparation of methyl cyclopropylcarbinol. The last method is superior for the preparation of this compound (90%).¹¹⁷

The reduction of aldols and ketols from the aldol condensation (method 102) is often a convenient route to branched 1,3-diols. Catalytic hydrogenation over platinum oxide,¹⁴² nickel-on-kieselguhr,^{138,145} and copperchromium oxide ⁹⁹ has been used. Other procedures include electrolytic reduction ²⁰⁹ and reduction by aluminum amalgam.¹⁰³ 1,3-Diols may also be prepared by catalytic reduction of 1,3-diketones. Cleavage of the carbon-to-carbon and carbon-to-oxygen bonds accompanies this conversion. The effect of structure on the course of the reaction has been studied.¹⁴⁴

1,2-Diols may be prepared by reduction of α -diketones or α -hydroxy ketones such as biacetyl,^{2,146} benzoin, and benzil.^{2,138} Substituted benzoins containing methoxyl and *p*-dimethylamino groups have been reduced catalytically over platinum oxide and by sodium amalgam and alcohol.¹⁴⁷ Levorotatory propylene glycol is made from acetol, CH₃COCH₂OH, by an enzymatic reduction with yeast.¹⁴¹

Glycols in which the hydroxyl groups are farther apart have also been prepared by this method from a γ -diketone² and a δ -hydroxy aldehyde.¹⁰²

The reduction of a carbonyl compound containing an additional functional group is a common practice. If the other group is easily reduced, best results are frequently obtained by the Meerwein-Ponndorf-Verley reaction (method 80). The following paragraphs, however, describe certain useful selective reductions.

The best reagents for reduction of olefinic aldehydes to *olefinic alcohols* are lithium aluminum hydride and sodium borohydride. Crotyl alcohol, CH₃CH=CHCH₂OH, and cinnamyl alcohol, C₆H₅CH=CHCH₂OH, have been prepared in excellent yields.^{2,4} Cinnamyl alcohol is further reduced at higher temperatures to hydrocinnamyl alcohol.¹⁰⁵ Citral, (CH₃)₂C=CHCH₂CH₂C(CH₃)=CHCHO, may be selectively reduced to the corresponding dienol by catalytic hydrogenation over platinum catalyst.⁹² A new method for the preparation of enediol esters of the type

$RO_2CC(OH) = C(OH)CO_2R$

involves the partial reduction of diketosuccinic esters with sodium hydrosulfite.¹⁴⁹

Halo alcohols in which the halogen atom is on an aliphatic chain^{73,150} or an aromatic nucleus^{151,152} are prepared from the corresponding halo ketones by catalytic hydrogenation. Sodium borohydride effects the conversion of ω -bromoacetophenone to styrene bromohydrin (71%).² Other halohydrins have been made from α -halo ketones and lithium aluminum hydride.⁶⁵⁰

The ether linkage is stable during the reduction of an aldehyde or ketone group by most reagents. A number of *alkoxy* and *aryloxy alcohols* are prepared in excellent yields by this method. Catalytic hydrogenation,^{91,107,103,110,155} sodium and wet ether,¹⁵³ and sodium with alcohol¹⁵⁴ have been used.

Hydroxy ketones of the type RCOCH₂CHOHCH₃ are formed in 35-66% yields by partial catalytic hydrogenation of the corresponding β -diketones over Raney nickel at 100°.¹⁵⁸ Aromatic α -hydroxy ketones (benzoins) are prepared from the corresponding α -diketones (benzils) by catalytic reduction ¹⁵⁶ or by reduction with magnesium-magnesium iodide mixture.¹⁵⁷

The keto group of a keto ester may be preferentially reduced by catalytic hydrogenation. Excellent yields of *bydroxy esters* are obtained. Copper-chromium oxide catalyst has been employed in the preparation of methyl p-(α -hydroxyethyl)-benzoate¹⁶⁰ and several aliphatic β -hydroxy esters.⁹⁹ The last compounds have also been made by hydrogenation over nickel catalysts.^{161,165} Substituted mandelic esters are prepared by catalytic reduction of aromatic α -keto esters over a palladium catalyst.^{159,162} Similarly, platinum oxide and copper-chromium oxide have been used in the aliphatic series for the preparation of the α -hydroxy diester, diethyl

 β -methylmalate (92%).¹⁶³ The keto group may also be in the gamma position to the ester group, which may be in the form of acetoxy, CH₃COO--, or carbethoxy, $-CO_2C_2H_5$, γ -hydroxy esters being formed by hydrogenation over nickel catalysts.^{137,164}

Certain aryl-substituted α - and β -amino ketones have been successfully reduced to *amino alcohols* by catalytic hydrogenation over palladium,^{168,183} platinum,^{167,169} or nickel¹⁷⁰ catalysts. Cleavage of the carbon chain sometimes occurs during catalytic hydrogenation of β -amino ketones. Fair yields of the amino alcohols are obtained in these cases by reduction with sodium amalgam in dilute acid^{171,182,185} or aluminum amalgam and water.^{168,184} β -Amino aldehydes from the Mannich reaction (method 444) are reduced in excellent yields to amino alcohols by lithium aluminum hydride or by catalytic hydrogenation over Raney nickel.⁶⁷⁵ Lithium aluminum hydride reduces diazo ketones to 1-amino-2-alkanols (93-99%).⁶⁷²

80. Reduction of Carbonyl Compounds by Alcohols (Meerwein-Ponndorf-Verley)

 $\text{RCHO} + (\text{CH}_{3})_{2}\text{CHOH} \xleftarrow{\text{Al}[\text{OCH}(\text{CH}_{3})_{2}]_{3}}{\text{RCH}_{2}\text{OH} + \text{CH}_{3}\text{COCH}_{3}}$

The reduction of an aldehyde or ketone by this equilibrium reaction is readily accomplished by removal of the acetone as it is formed. In a review of the literature to 1943, experimental conditions and limitations of the reaction have been discussed.¹⁷³ Aluminum isopropoxide is superior to other metallic alkoxides that have been used. Yields are better, and the technique for determining the completion of the reaction is simpler. Procedures for the preparation of the reagent are described.^{173,175,177} A solution made by dissolving amalgamated aluminum in isopropyl alcohol is used directly, or the aluminum isopropoxide is purified by distillation. Best results are obtained when molecular amounts of the alkoxide are used.

A modification of the procedure has been described in which improved yields of alcohols are obtained from aldehydes and unstable ketones.⁶⁸⁶

The reaction is most useful for the preparation of *ole/inic*, *balo*, and *nitro* alcohols from the corresponding substituted aldehydes and ketones. These substituents are very often affected by other reduction procedures. Excellent directions are found in the preparations of crotyl alcohol (60%),¹⁷⁵ 1-bromo-5-hexanol (64%),¹⁹² 1-chloro-4-pentanol (76%),¹⁶⁴ β , β , β -trichloroethyl alcohol (84%),²³³ methyl-*p*-chlorophenylcarbinol (81%),¹⁹³ and o-nitrobenzyl alcohol (90%).¹⁹⁵ The reaction has also been used in the preparation of certain tetralols¹⁷⁶ and decalols¹⁷⁷ as well as 9-fluorenylcarbinol (50%).¹⁸¹ The thiophene^{134,180} and furan²⁵¹ nuclei are not reduced.

81. Intramolecular Oxidation-Reduction of Aldehydes (Cannizzaro)

 $2R_3CCHO + NaOH \rightarrow R_3CCO_2Na + R_3CCH_2OH$

Aldehydes that have no α -hydrogen atom react with concentrated aqueous or alcoholic alkali to give alcohols and salts of acids. The literature of this reaction has been reviewed to 1944.⁵⁰⁴ The preparation of carboxylic acids by this procedure is discussed elsewhere (method 261), and a similar reaction of aldehydes that have an α -hydrogen atom is treated separately (method 306).

The reaction is most important for the preparation of carbinols from certain aromatic and heterocyclic^{504,508} aldehydes and for the preparation of several aliphatic polyhydroxy compounds. In the normal Cannizzaro reaction the theoretical yield of alcohol is only 50% because half of the aldehyde is converted to the acid. A mixture of an aldehyde with excess formaldehyde, however, results in a dismutation in which most of the higher aldehyde is reduced; formaldehyde is oxidized to sodium formate, viz.,⁵¹⁰

 $RCHO + HCHO + NaOH \rightarrow RCH_2OH + HCO_2Na$

Excellent directions are given for the preparation of *p*-tolylcarbinol (72%).⁵¹³ The aryl radical may contain alkyl, halo, hydroxyl, methoxyl, and nitro groups.⁵⁰⁴

The crossed aldol condensation of formaldehyde with aldehydes that have α -hydrogen atoms results in the replacement of these hydrogen atoms by hydroxymethyl groups. The β -hydroxyaldehydes are then reduced to polyhydric alcohols by excess formaldehyde.

$$\text{RCH}_{2}\text{CHO} \xrightarrow[\text{Ca(OH)}_{2}]{2\text{HCHO}} \text{RC}(\text{CH}_{2}\text{OH})_{2}\text{CHO} \xrightarrow[\text{Ca(OH)}_{2}]{2\text{HCHO}} \text{RC}(\text{CH}_{2}\text{OH})_{3}$$

Pentaerythritol, C(CH₂OH)₄, is obtained in this way from acetaldehyde and formaldehyde (74%).⁵⁰⁹ Higher aldehydes give trimethylol compounds,^{507,762} and aldehydes with branching on the α -carbon atom give dimethylol compounds or β , β -disubstituted trimethylene glycols,

RR'C(CH2OH)2.506,512

Cyclohexanone gives a tetramethylolcyclohexanol. 798

82. Bimolecular Reduction of Carbonyl Compounds to Glycols

Tetraalkyl- and tetraaryl-ethylene glycols (pinacols) are made by reduction of ketones with active metals such as sodium, magnesium, and aluminum. The reaction is only fair for aliphatic and alicyclic ketones. Acetone,⁵⁸⁷ methyl ethyl ketone,⁵⁹² cyclopentanone, and cyclohexanone ⁵⁹³ all give less than 50% yields of pinacols. Mixtures of ketones are reduced to unsymmetrical pinacols.⁷²⁷ An active zinc-copper couple has been employed in the reduction of several simple olefinic aldehydes to diendiols, e.g., crotonaldehyde to dipropenyl glycol,

 $CH_3CH = CHCHOHCHOHCH = CHCH_3 (67\%).^{728}$

Diaryl ketones are reduced by a mixture of magnesium and magnesium iodide ⁵⁹⁰ and by alkali metal amalgams.^{588,589} Metal ketyls, $Ar_2C - OMgX$, are intermediates which associate to pinacolates, $Ar_2C(OMgX)C(OMgX)Ar_2$, from which the pinacols are obtained by hydrolysis. The association of the ketyl radicals is reversible,^{589,590} as is shown by reaction of benzopinacolate with benzaldehyde to give triphenylethylene glycol and benzophenone.⁵⁹⁴

 $(C_{6}H_{5})_{2}C(OMgX)C(OMgX)(C_{6}H_{5})_{2} \xrightarrow{C_{6}H_{5}CHO;} (C_{6}H_{5})_{2}CO + (C_{6}H_{5})_{2}COHCHOHC_{6}H_{5}$

A novel preparation of benzopinacol, $(C_6H_5)_2$ COHCOH $(C_6H_5)_2$, is by reduction of benzophenone with isopropyl alcohol in the presence of sunlight (95%).⁵⁹¹

Aromatic aldehydes and ketones may also be reduced electrolytically to glycols.^{104,677,726}

83. Reduction of Quinones

o- and p-Benzoquinones are reduced to dihydroxybenzenes by cold aqueous solutions of sulfur dioxide. The reaction is accompanied, however, by appreciable sulfonation of the benzene ring in the case of p-benzoquinone.⁶³⁵ The reduction has its greatest value in the preparation of dihydroxy derivatives of alkylated benzenes and naphthalenes from the corresponding quinones. Reduction by zinc in refluxing acetic acid converts o-xyloquinone to o-xylohydroquinone (95%).⁶³¹ A saturated solution of sodium hydrosulfite gives better yields in the preparation of the *para* isomer.⁶³⁰ Reductions by stannous chloride and by sodium hydrosulfite are compared in the preparation of 2-methyl-1,4-naphthohydroquinone. The product obtained by sodium hydrosulfite darkens more rapidly in storage.⁶³² Sodium hydrosulfite is better than sulfur dioxide in the reduction of β -naphthoquinone.⁶³⁴ Several o-quinones have been reduced by lithium aluminum hydride to give *trans*-dihydroxydihydro derivatives of the hydrocarbons.⁷²⁹ *p*-Benzoquinone is reduced by this reagent to hydroquinone (70%).⁴⁴

84. Reduction of Carboxylic Acids and Esters

$$RCO_2C_2H_5 \xrightarrow{(H)} RCH_2OH$$

The discovery of lithium aluminum hydride and similar compounds^{2,3} has made possible the direct reduction of the carboxyl group.^{75,77} Acid chlorides, esters, and anhydrides are similarly reduced to primary alcohols.⁴ Lactones are converted to diols.⁴⁴ The reaction takes place readily at room temperature. The compound to be reduced is added to an ethereal solution of the reagent, and the resulting alcoholate is hydrolyzed by acid.

$$2\text{RCO}_2\text{C}_2\text{H}_5 \xrightarrow{\text{LIA1H}_4} \text{LIA1(OC}_2\text{H}_5)_2(\text{OCH}_2\text{R})_2 \xrightarrow{\text{H}^+} 2\text{RCH}_2\text{OH}_2$$

Alcohols containing heterocyclic nuclei,^{57,63} halo,^{74,75} and alkoxyl⁷⁶⁻⁷⁸ groups as well as double bonds^{71,72} may be prepared. Without doubt, this is the best general procedure for the formation of the primary alcohol grouping from compounds at the oxidation level of a carboxylic acid. Reductions by this reagent were reviewed in 1951.⁸⁰⁰

The reduction of esters by sodium and alcohol (Bouveault-Blanc) is widely used. An alcoholic solution of the ester is added to a large excess of sodium under benzene¹³ or toluene.⁵ The use of absolute alcohol is essential; otherwise an appreciable quantity of acid is produced by saponification.¹ Straight-chain primary alcohols containing up to thirtyfive carbon atoms have been made by the reduction of the corresponding esters with sodium sand and *n*-butyl alcohol.²⁶ An improved technique based on the mechanism of the reaction is described.¹² By this procedure a xylene solution of the ester and the reducing alcohol is added to molten

sodium in refluxing xylene. Secondary alcohols are best since they are active enough to decompose the intermediate sodium ketyls but do not react rapidly with sodium to produce molecular hydrogen.

Most esters can be converted to primary alcohols in exceptionally high yields by catalytic hydrogenation over copper-chromium oxide at 200-250° (Adkins). This is an equilibrium reaction which is forced to completion by the high pressure of hydrogen gas.⁵¹ The special apparatus, catalysts, and factors influencing yield have been discussed.^{30,33} In the hydrogenation of ethyl phenylacetate, $C_6H_5CH_2CO_2C_2H_5$, to β -phenylethanol, some ethylbenzene is produced. Best yields are obtained if hydrogenation is stopped while 5-10% of the ester is still present.²⁰ Hydrogenation of ethyl benzoate under the usual conditions gives toluene. With relatively large amounts of catalyst, however, hydrogenation proceeds at lower temperatures to give benzyl alcohol (63%).²³ Substituted benzyl alcohols ²³ and naphthylcarbinols ²⁶ are obtained in a similar manner. Esters of phenol give cyclohexanol and primary alcohols.¹⁴ Nickel catalysts have also been used for the reduction of higher-molecular-weight esters.³² The free fatty acids have been reduced over copper catalysts.³⁵

Optically active esters in which the activity is due to asymmetry of the α -carbon atom are racemized by the Bouveault-Blanc and catalytic hydrogenation procedures.³¹ The optically active alcohols may be prepared by the addition of small pieces of sodium to a stirred mixture of an ethereal solution of the ester and aqueous sodium acetate at 0°. A slight acidity is maintained by periodic additions of acetic acid (Prin's method).^{6,11} An asymmetric center in the *alpha* position to a carboxyl group is not racemized by lithium aluminum hydride.⁶⁵⁶

Under certain conditions the reduction of amides leads to primary alcohols (cf. method 428). Thus, phenylethylacetamide is reduced by sodium and absolute ethanol to 2-phenyl-1-butanol (75%).²² α -Naphthylacetamide is reduced by sodium amalgam and hydrochloric acid to α -naphthylcarbinol (63%).²⁹ Trifluoroethanol is obtained by catalytic hydrogenation of trifluoroacetamide over a platinum catalyst. Hydrogenation of the corresponding ester over copper-chromium oxide failed.⁷³

Certain heterocyclic carbinols are readily prepared from the corresponding esters. The furan nucleus is not reduced by the Bouveault-Blanc procedure.^{54,56} However, the pyridine nucleus as well as the carbethoxyl group in the ethyl ester of nicotinic or picolinic acid is reduced by sodium and ethanol.^{58,59} Catalytic hydrogenation of several carbethoxypyrroles over copper-chromium oxide gives methyl pyrroles and pyrrolidines rather than the carbinols.³⁰ The same catalyst has been used in the hydrogenation of piperidino esters of the type $C_5H_{10}N(CH_2)_nCO_2C_2H_5$. Yields are poor when n is 2 or 3. When n is 2, cleavage occurs to give piperidine and ethyl propionate.^{15,61} The lactam linkage in carbethoxypyrrolidones and carbethoxypiperidones is stable during catalytic hydrogenation of the ester group to the carbinol group.⁶² Lithium aluminum hydride has been used to reduce ethyl indole-2-carboxylate to 2-hydroxymethylindole (68%),⁵⁷ thianaphthene-2-carboxylic acid to 2-hydroxymethylthianaphthene (99%),⁶³ and 3-furoic acid to 3-furylcarbinol (91%).⁶⁵⁹

Both the Bouveault-Blanc^{39,41} and catalytic hydrogenation procedures 38,40 are popular methods for the preparation of diols from esters of dibasic acids. The reduction of malonic esters, β -keto esters, and β -hydroxy esters by the usual catalytic hydrogenation procedure results in extensive hydrogenolysis of the carbon chain to give lower-molecularweight alcohols.^{30,46} However, with relatively large amounts of catalyst 1,3-glycols are obtained in fair yields.^{15,50} Decarboxylation of 1,1-dicarbethoxycyclobutane during its reduction by sodium and alcohol gives cyclobutylcarbinol in 49% yield rather than the diol.²⁵ Lactones are reduced to diols by lithium aluminum hydride as in the preparation of 1 4-pentanediol (85%) from γ -valerolactone.⁴³ The tertiary lactones prepared from Grignard reagents and levulinic ester are reduced by the Bouveault-Blanc procedure to glycols of the type R(CH₃)C(OH)(CH₂)₃OH. However, catalytic hydrogenation gives branched alcohols of the type R(CH₃)CH(CH₂)₃OH.⁴⁵ Esters of dibasic acids are reduced to diols in good yields by lithium aluminum hydride.655,662

Olefinic alcohols are best prepared by the action of lithium aluminum hydride on the corresponding acid⁶⁶⁶ or ester as in the preparation of 3-penten-1-ol (75%).⁷¹ The double bond may be in the α , β -position to the ester group.^{72,657} The Bouveault-Blanc procedure has also been used with success for reduction of nonconjugated olefinic esters.^{64,66} The addition of the sodium to an alcoholic solution of the ester is superior to the reverse addition of the ester to sodium in toluene for the preparation of 2,2-dimethyl-3-buten-1-ol (62%).⁷⁰ Selective catalytic hydrogenation is inferior. Large amounts of catalyst are required, and the products contain saturated alcohols.⁶⁹

Lithium aluminum hydride shows much promise for the preparation of $balo^{74,75}$ and $alkoxy^{76-78}$ alcohols, although the Bouveault-Blanc method is satisfactory for the latter.

The *keto* group of acetoacetic ester is protected as the ethylene ketal during the reduction of the ester by sodium and alcohol. Hydrolysis of the ketal by acid then gives 1-hydroxy-3-butanone in 44% over-all yield.⁶⁶⁹

Many amino alcohols have been made from esters of amino acids by catalytic reductions over Raney nickel^{15,84} and copper chromite⁸³ catalysts. The yields are generally better than those obtained by reduction with sodium and alcohol.^{82,86} The action of ammonia or amines on β -keto

esters leads to substituted β -aminoacrylates, RC(NR₂)=CHCO₂C₂H₃, which are reduced directly by sodium and alcohol to γ -amino alcohols.⁸⁵ Electrolytic reduction of anthranilic acid is used to prepare o-aminobenzyl alcohol (78%).⁸¹ Some hydrogenolysis to o-toluidine accompanies the reduction of this acid by lithium aluminum hydride.⁶⁶¹

85. Reduction of Unsaturated Hydroxy Compounds

 $RCH = CHCHOHR \xrightarrow{H_2} RCH_2CH_2CHOHR$

Olefinic alcohols react smoothly with hydrogen over platinum oxide catalyst at room temperature.³⁰⁶ The procedure is illustrated by the preparation of dihydrocholesterol from cholesterol.⁶⁵² Cinnamyl alcohol, $C_6H_5CH=CHCH_2OH$, is reduced to dihydrocinnamyl alcohol by lithium aluminum hydride. The reduction of allyl alcohol to *n*-propyl alcohol by the reagent, however, is unsatisfactory.¹⁰⁵

Several aliphatic diols and hydroxy ethers have been made by catalytic hydrogenation of the triple bond in the corresponding acetylenic compounds. Both platinum³⁷⁷ and nickel^{653,654} catalysts are used.

86. Reduction of the Aromatic Nucleus

$$C_6H_5OH \xrightarrow[Ni]{H_2} C_6H_{11}OH$$

This general method for the synthesis of alkyl-^{561,568,570,722} and aryl-^{573,374} cyclohexanols is limited only by the availability of the phenols. Hydrogenation proceeds smoothly over Raney nickel catalyst at about 150-200° except when both ortho positions are substituted by alkyl groups. When these ortho substituents are ethyl or *n*-propyl radicals, reduction is accomplished in the presence of a small amount of aqueous sodium hydroxide.⁵⁶⁸ The sodium phenolates are promoters in most hydrogenations of this type.⁵⁶⁹ High-pressure hydrogenation at room temperature over platinum oxide catalyst effects nuclear reduction of a number of phenols.⁷²⁴ Alkylcyclohexanols exhibit geometrical isomerism. Usually only one of the possible geometrical isomers predominates in the product.^{568,723}

Hydroquinone is reduced by a nickel-on-kieselguhr catalyst to *cis*- and *trans*-1,4-cyclohexanediols.⁵⁷⁶ Other cyclohexanediols ^{577, 580, 725} and meth-oxycyclohexanols ^{575, 578} are formed from dihydric phenols and their monomethyl ethers. β -Naphthol may be reduced in either ring, depending upon the catalyst and conditions.⁵⁷² 87. Interaction of Organometallic Compounds and Oxygen

 $RMgX \xrightarrow{O_2} ROMgX \xrightarrow{H_2O} ROH$

The oxidation of a Grignard reagent to an alcoholate affords a general method for converting alkyl halides to alcohols. It is particularly useful where direct hydrolysis is difficult or is complicated by elimination of hydrogen halide. Oxidation of the organometallic reagent by air or oxygen is rapid in ether solution at 0°.¹⁹⁶ Typical examples are found in the preparation of 4,4-dimethyl-1-pentanol (90%)¹⁹⁷ and 2,2,3,3-tetramethyl-1-butanol (53%).¹⁹⁸ The yield of phenol from phenylmagnesium bromide is only 25%.²⁴⁹ The main by-product is biphenyl, which is formed to the extent of 65% when phenyllithium is used in place of the Grignard compound.²⁴² The yield of phenol is increased to 64% by the presence of an aliphatic organometallic compound in the reaction mixture.²⁵⁰ By this technique the first successful preparation of 2-thienol has been achieved,⁶⁰³ and a number of hydroxydibenzofurans²⁴³⁻²⁴⁵ and 4-hydroxy-dibenzothiophene²⁴⁶ have been prepared in fair yields from the organo-sodium or lithium compounds.

88. Interaction of Organometallic Compounds and Aldehydes

$$RMgX \xrightarrow{HCHO} RCH_2OMgX \xrightarrow{H_2O} RCH_2OH$$
$$RMgX \xrightarrow{R'CHO} RR'CHOMgX \xrightarrow{H_2O} RR'CHOH$$

Alkyl- and aryl-magnesium halides react with aldehydes to give halomagnesium alkoxides which are decomposed by dilute acid to yield alcohols. Primary alcohols are formed in 50-70% yields by treatment of primary or secondary Grignard compounds with formaldehyde, and in 30-40% yield in the case of tertiary Grignard reagents.²³⁸ Either gaseous formaldehyde^{128,255,268,309} or trioxymethylene^{270,285} may be used; the latter reagent is more convenient but usually gives somewhat lower yields. A common by-product is the formal of the alcohol, $CH_2(OR)_2$.^{270,285} Most of this by-product can be hydrolyzed if excess dilute acid is added to the Grignard complex before steam distillation of the alcohol.²⁶⁸

Benzylmagnesium halides, $C_6H_5CH_2MgX$, react abnormally with formaldehyde to yield o-methylbenzyl alcohol (55%).^{281,283} When one ortho position is blocked by a methyl group, the rearrangement takes place to the other ortho position.^{282,283} The influence of structure on this rearrangement has been extensively studied.⁶⁸⁹

Many straight-chain²⁸⁴ and branched^{256,262,267} secondary alcohols have been made by the action of organomagnesium compounds on higher aldehydes. The method is popular for the preparation of arylalkylcarbinols from either the aromatic aldehyde or the aromatic Grignard reagent.^{265,271,280}

Other organometallic compounds have been used with less success. Zinc, aluminum, and boron alkyls give considerable reduction of the aldehyde to the primary alcohol.³¹⁷

Few diols have been obtained by this method. An example is the preparation of 2-isopropyl-1,3-butanediol from excess methylmagnesium iodide and 2-isopropyl-3-hydroxypropionaldehyde (72%).²⁰¹

Olefinic primary alcobols are obtained in fair yields by the action of formaldehyde on unsaturated Grignard reagents.^{305,306} Crotyl- and cinnamyl-magnesium halides give carbinols derived from the secondary organomagnesium compounds resulting from allylic isomerization.^{306,315} Thus, 2-methyl-3-buten-1-ol, $CH_2 = CHCH(CH_3)CH_2OH$, is the sole product from the action of formaldehyde on the butenyl Grignard reagent prepared from a mixture of crotyl and methylvinylcarbinyl bromides.

Olefinic secondary alcohols may be prepared from a Grignard reagent and an olefinic aldehyde or from an olefinic Grignard reagent and a saturated aldehyde. The former method is recommended,³⁰⁰ although the latter has been used with moderate success for allylmagnesium halides^{302,308,692} and vinyllithium compounds.⁶⁹⁸ Higher yields have been obtained by adding a mixture of allyl chloride and the aldehyde to a well-stirred suspension of magnesium and ether.³⁰⁹ Reactions of saturated Grignard compounds with olefinic aldehydes are numerous. Yields vary from 50% to 75%. Acrolein has been treated with methyl-,²⁹³ ethyl-,³⁰¹ n-propyl-,²⁹² n-amyl-,²⁹⁷ and higher alkyl-magnesium halides.²⁹⁴ Similar additions have been made to crotonaldehyde 291, 295, 296, 696 and higher homologs. 201, 304 Excellent yields of dienols have been obtained by the action of Grignard reagents on pentadienal ³¹¹ and sorbic aldehyde.³¹⁰ When the Grignard reagent is highly branched, a competing reaction is 1,4-addition to the conjugated system. For example, major products of the reactions of t-butyl and t-amyl Grignard reagents with crotonaldehyde are the saturated aldehydes formed in this manner.^{291,328} Aromatic olefinic alcohols have been made from aromatic Grignard reagents or from cinnamaldehyde.^{312,313}

Acetylenic carbinols are prepared by the interaction of sodium acetylides or acetylenic Grignard reagents with aldehydes. The formation and reaction of the metallic acetylide may be combined into a single operation. For example, an alkylacetylene in ether solution is treated successively with ethylmagnesium bromide and formaldehyde to give the acetylenic alcohol such as 2-heptyn-1-ol (82%).^{320,323}

$$RC \equiv CH \xrightarrow{C_2H_5MgX} RC \equiv CMgX \xrightarrow{HCHO;} RC \equiv CCH_2OH$$

Higher aldehydes give secondary alcohols.³²⁶ In another procedure, sodium is dissolved in liquid ammonia and treated successively with acetylene and an aldehyde to give alkyl-^{319,324} and aryl-^{321,322} ethynylcarbinols.

$$HC \equiv CH \xrightarrow{Na} HC \equiv CNa \xrightarrow{RCHO;} HC \equiv CCHCHR$$

Sodium acetylide adds to the carbonyl group of conjugated olefinic aldehydes to give olefinic acetylenic alcohols.^{318,321,697} Direct addition of acetylene to aldehydes and ketones is catalyzed by copper acetylide (ethynylation).⁶⁹¹

Aromatic halogen atoms either in the Grignard reagent ^{271,329} or in the aldehyde ^{271,330,331,336} are stable during the reaction to give *balo alcobols*. Similarly, *ether* groups may be present in the Grignard reagent as in the preparation of 7-methoxy-1-heptanol (35%)¹⁶⁴ and 4-methoxy-1-butanol (37%),³²² or in the aldehyde as in the preparation of 1-phenoxy-2-butanol (86%).³³³

The aldehyde group of aldehyde esters is preferentially attacked by Grignard reagents to give fair yields of *bydroxy esters*.³³⁴ The method is important in the preparation of compounds in which the hydroxyl group is further removed from the ester group than the *gamma* position. A *bydroxy acid* is established indirectly by hydrolysis of the trichloro alcohol resulting from the interaction of chloral and α -naphthylmagnesium bromide. The α -naphthylglycollic acid is obtained in 50% yield.³³⁵

Dialkylamino aldehydes condense with Grignard reagents to give dialkylamino alcobols.³³⁶

89. Interaction of Organometallic Compounds and Ketones

$$RCOR' \xrightarrow{R'MgX} RR'R''COMgX \xrightarrow{H_2O} RR'R''COH$$

The addition of Grignard compounds to ketones is the most general method for the preparation of tertiary alcohols. The three radicals may be the same or different alkyl or aryl groups.²⁷⁸ Yields are in the range of 60-85% if the reactants are not too highly branched. Best procedures involve decomposition of the halomagnesium alcoholates with ice followed by steam distillation of the resulting carbinols.^{264,340,344} Mineral acids should be avoided because the last traces are difficult to remove by washing and cause dehydration of the tertiary carbinol. A solution of ammonium chloride is sometimes used to dissolve the magnesium hydroxide, although a large excess of this reagent may be detrimental, as is claimed in the preparation of dimethylcyclopropylcarbinol (68%).³⁵⁵ Distillation of the tertiary carbinol is carried out at temperatures as low as possible in order to prevent dehydration. Common side reactions are reduction of the ketone by the Grignard reagent to the corresponding secondary alcohol and enolization and condensation of the ketone. These reactions take place almost to the exclusion of ordinary addition when sterically hindered ketones are treated with highly branched Grignard reagents.^{262,340,350} Reduction of the ketone has been related to the presence of β -hydrogen atoms in the organometallic compound. Better yields of the highly branched tertiary alcohols can sometimes be obtained by the action of organolithium compounds and ketones.³⁴⁷ Many highly branched tertiary alcohols have been prepared, however, from Grignard reagents.^{352,353}

Mono- and di-alkylcyclopentanols³⁵⁶⁻³⁵⁸ and cyclohexanols are made from the corresponding cyclic ketones.

Low yields of phenyl-substituted 1,2-*diols* are obtained by the action of various Grignard reagents on α -hydroxy ketones.¹¹² Better results are obtained when the acetate of the hydroxy ketone is used.³⁶³

Olefinic tertiary alcohols have been prepared from olefinic organometallic compounds or from olefinic ketones. In the former method allyl-365, 367, 368 3-butenyl-,³⁶⁹ methylvinylcarbinyl-,³⁶⁶ and 4-pentenyl-,³⁷⁰ magnesium halides have been used. The coupling of two allyl radicals is minimized by adding a mixture of the allyl halide and the ketone to magnesium in ether. α . β -Olefinic ketones react with Grignard reagents by 1.2-addition to give olefinic tertiary alcohols and by 1.4-addition to give saturated ketones. The tendency for 1.4-addition is greater with α,β -olefinic ketones than with α,β -olefinic aldehydes (cf. method 88). The mode of addition depends upon the substituents present in the Grignard reagent and carbonyl compound. Mesityl oxide, $(CH_3)_2C = CHCOCH_3$, and ethylideneacetone, $CH_3CH = CHCOCH_3$, add methyl Grignard reagent to give the olefinic tertiary alcohols.^{364,371} With t-butyl Grignard reagent the yield of tertiary alcohol from mesityl oxide is only 37%.³⁶⁴ A comparison of the mode of addition of four Grignard reagents to 2-cyclohexenone has been made.³⁷³ The amounts of 1,4-addition are as follows: methyl 15%, ethyl 24%, isopropyl 44%, and t-butyl 70%. In a comparison of eight phenyl-substituted ketones with ethyl- and phenyl-magnesium bromides, it has been noted that 1,4-addition increases with decreasing activity of the carbonyl group.374

Acetylenic tertiary alcohols are prepared from sodium acetylides or acetylenic Grignard reagents and ketones in the same manner as described for primary and secondary alcohols (method 88). Dimethylethynylcarbinol is prepared from acetone, aqueous potassium hydroxide, and acetylene in an autoclave at 100° and 300 p.s.i.³⁸⁶ Ketones are sometimes treated with an acetylide prepared from acetylene and a solution of sodium or potassium alkoxide in t-amyl alcohol.^{376,386,394} Another procedure utilizes ar acetylenic Grignard reagent prepared from the acetylene and ethylmagnesium bromide.^{384,387,391} Better yields of dialkylhexynylcarbinols are obtained by this method than by the preceding one involving the tertiary alkoxide.³⁸⁶ The most widely used procedure involves the preparation of the sodium acetylide from the acetylene and sodium amide in liquid ammonia.^{377,382,383,393} In one modification, the ketone is first converted to its enolate by sodium amide in ether. The enolate is then treated with acetylene at -10° .³⁶¹ Strictly anhydrous conditions are essential for the production of the carbinols in maximum yield. As little as 0.01% water decreases the yields markedly.³⁸⁵

The lithium derivative of phenylacetylene, $C_6H_5C \equiv CLi$, reacts with benzophenone to give diphenylphenylethynylcarbinol,

$(C_6H_5)_2COHC \equiv CC_6H_5 (95\%).^{390}$

The corresponding Grignard reagent has been similarly employed to make phenylethynyldialkylcarbinols.^{318,391} Sodium acetylide and acetylenic Grignard reagents exhibit 1,2-addition with α , β -olefinic ketones to give olefinic acetylenic carbinols.^{318,376} The sodio derivatives of propiolic esters, NaC = CCO₂R, add to certain ketones. This reaction presents a method for introducing a three-carbon chain at the site of a carbonyl group.⁷⁰¹

A by-product from the reaction of acetone and sodium acetylide is the acetylenic diol, $(CH_3)_2C(OH)C \equiv C(OH)(CH_3)_2$, formed by condensation of two molecules of acetone with one molecule of sodium acetylide.³⁸² A general method for the preparation of acetylenic diols of this type is from calcium carbide, potassium hydroxide, and ketones.³⁹² Diethynyl glycols in which the triple bonds are separated by two or four carbon atoms are made from sodium acetylide and α - or β -diketones.³⁷⁹

Grignard reagents add to the carbonyl group of α -halo ketones to give low yields of α -halo alcohols.^{380,381,395,396} The reaction is complicated by further action of the organometallic reagent with the halohydrin.

Fair yields of *alkoxy alcohols* are obtained from a-alkoxy ketones and Grignard reagents.³⁹⁶ Methylmagnesium iodide and phenoxyacetone give phenoxy-t-butyl alcohol (88%).³⁹⁷

Aliphatic and aromatic keto alcohols of the general formula

RC(OH)(CH₃)COCH₃

have been made by the action of Grignard reagents on methyl isonitrosoethyl ketone followed by hydrolysis with 10% oxalic acid.

$$CH_{3}COC(CH_{3}) = NOH \xrightarrow{RMgX} \xrightarrow{H_{2}O} P(CH_{3})COHC(CH_{3}) = NCH$$
$$\xrightarrow{H_{2}O} R(CH_{3})COHCOCH_{3}$$

Oximes of α -bydroxyaldebydes result when isonitrosoacetone is used. The free monomeric hydroxy aldebydes are difficult to obtain by hydrolysis of the oximes.³⁹⁸ Bromomagnesium enolates prepared from Grignard reagents and sterically hindered ketones act as true Grignard reagents. β -keto alcohols are formed by their reaction with aldehydes or ketones.³⁹⁹

$$(\text{RCOCH}_2)\text{MgX} \xrightarrow[H_2O]{\text{R'}_2CO;} \text{R'}_2C(\text{OH})\text{CH}_2\text{COR}$$

Selective addition of a Grignard reagent to the keto group of a keto acid or keto ester is possible. Several α -hydroxy acids have been prepared in this manner from α -keto acids by the use of an excess of Grignard reagent, which first replaces the active hydrogen atom of the carboxyl group.^{159,400} Methyl β -benzoylpropionate adds methylmagnesium iodide to the keto group to the extent of 75% when the molar ratio of keto ester to Grignard reagent is 1:1.38. Smaller or larger ratios give lower yields.⁴⁰¹

Amino alcohols have been prepared by this method in two ways: by the action of a ketone on a Grignard reagent containing a dialkylamino group,⁴⁰² and by the action of organometallic compounds on α -amino⁴⁰³ and β -amino⁴⁰⁴ ketones.

90. Interaction of Organometallic Compounds and Oxides

$$CH_2 - CH_2 \xrightarrow{RMgX_1}_{H_2O} RCH_2CH_2OH$$

The reaction of Grignard reagents with ethylene oxide is valuable for lengthening the carbon chain by two carbon atoms in a one-step process. A cooled solution of ethylene oxide in ether is added with stirring to a precooled solution of the Grignard compound. The mixture is then allowed to stand for a time or is heated before hydrolysis. Benzene is added as a diluent to prevent violent reaction during heating in the preparation of *n*-hexyl alcohol $(62\%)^{442}$ from *n*-butyl Grignard reagent. Some 2-hexanol is also formed in this preparation.⁷⁰⁴

Ethylene halohydrins, XCH_2CH_2OH , are by-products which are formed in increasing amount as the Grignard reagent is varied from primary to tertiary. The yield of primary alcohol decreases from 50-70% with primary organomagnesium compounds to 0-15% with tertiary Grignard reagents.⁴⁴⁴ Highest yields are obtained when the molar ratio of ethylene oxide to Grignard reagent is 2:1. A study of the intermediate compounds and modes of formation of the products has been made.^{446, 704}

The Grignard reagent may be aliphatic, 442,446 alicyclic, 448,451 or aromatic. Many β -arylethanols have been made by this method. $^{447,453-455}$ Oxides other than ethylene oxide have been used. Cyclohexene oxide and diethylmagnesium give *trans*-2-ethylcyclohexanol (42%).⁴⁵⁰ 1-Phenyl-2-propanol is obtained from either styrene oxide and methylmagnesium iodide or propylene oxide and phenylmagnesium bromide.^{281,452,466} Propylene oxide reacts with alkylmagnesium bromides to give chiefly propylene bromohydrin, CH₃CHOHCH₂Br, when the ratio of reactants is 1:1. A ratio of two moles of oxide to one mole of Grignard reagent gives secondary alcohols of the type CH₃CHOHCH₂R in 15-54% yields accompanied by large amounts of the bromohydrins.⁴⁶⁶ Addition of the Grignard reagent to the oxides of *cis*- and *trans*-stilbenes has been studied.⁴⁸⁷

Organosodium compounds behave similarly to the Grignard reagent with ethylene oxide. 2-(α -Thienyl)-1-ethanol⁴⁸⁹ and γ , γ , γ -triphenylpropyl alcohol⁴⁵⁸ are prepared from 2-chlorothiophene and trityl chloride, respectively, through the sodium compounds.

The *diol*, tetradecamethylene glycol, has been synthesized from decamethylene bromide by an adaptation of this method.⁴⁶⁰

The best example of a preparation of an *ole/inic alcohol* by this method is that of 1-penten-5-ol from allylmagnesium chloride and ethylene oxide (60%).⁴⁶¹ Acetylenic alcohols are made in fair yields from sodium acetylides or acetylenic Grignard compounds and ethylene oxide.^{320,463,690}

Halo alcohols available by this method are of two types: those containing aryl halogen formed from halo aryl Grignard reagents,^{464,465} and 1-chloro-2-alkanols, $ClCH_2CH(CH)CH_2R$.^{467,469} The latter compounds are made by the action of Grignard reagents on epichlorohydrin,

The effect of the structure of the Crignard reagent on the course of this reaction has been studied.⁴⁶⁸ Best results are obtained from primary organomagnesium compounds.

Hydroxy ethers in which the alkoxyl group is on an aromatic nucleus^{470,471} or an aliphatic chain⁴⁷² have been made from alkoxy Grignard reagents in about 50% yields.

91. Action of Organometallic Reagents on Esters or Related Compounds

$$\mathrm{RCO}_{2}\mathrm{C}_{2}\mathrm{H}_{s} \xrightarrow{\mathrm{R}'\mathrm{Mg}X} \mathrm{RR}'\mathrm{C}(\mathrm{CMg}X)(\mathrm{OC}_{2}\mathrm{H}_{s}) \xrightarrow{\mathrm{R}'\mathrm{Mg}X} \mathrm{RR}'_{2}\mathrm{COMg}X \xrightarrow{\mathrm{H}_{2}\mathrm{O}} \mathrm{RR}'_{2}\mathrm{COH}$$

Symmetrical secondary alcohols are prepared by this method from ethyl formate and organomagnesium halides. Excellent directions are available for 3-pentanol (70%)⁴⁰⁷ and 5-nonanol (85%).⁴⁰⁸ An ester exchange reaction sometimes gives the formate of the alcohol as an impurity in the

product. The pure secondary alcohol is obtained by saponification and steam distillation.

Tertiary alcohols in which two alkyl or aryl groups are identical are formed from higher esters or the corresponding acyl chlorides. Ethyl isobutyrate and methylmagnesium iodide give 2,3-dimethyl-2-butanol (92%).²⁶⁴ Yields of 40-83% are listed for eighteen aliphatic tertiary alcohols.³⁴⁶ Ethyl esters of furoic and tetrahydrofuroic acids give tertiary carbinols in good yields with ethyl-, *n*-butyl-, and phenyl-magnesium bromides.⁴¹² Triphenylcarbinol is made from ethyl benzoate and phenylmagnesium bromide.⁴²⁰

By-products formed by condensation, reduction, and fission reactions become appreciable as branching of the organometallic reagent, ester, or acyl halide is increased. β -Keto esters are formed by condensation of esters by the Grignard reagent^{262,440} (cf. method 211). Reduction products include the aldehyde and primary alcohol corresponding to the ester or acyl halide and the secondary alcohol resulting either from the addition of the Grignard reagent to the aldehyde or from the reduction of the ketone formed from the Grignard reagent and the acyl halide.^{413,416,417}

$$\begin{array}{c} \text{RCOCl} \xrightarrow{\mathbf{R'MgX}} \text{RCHO} \xrightarrow{\mathbf{R'MgX;}} \text{RCH}_2\text{OH} \\ \downarrow \mathbf{R'MgX} & \downarrow \mathbf{R'MgX} \\ \text{RCOR'} \xrightarrow{\mathbf{R'MgX;}} \text{RCHOHR'} \\ \xrightarrow{\mathbf{H}_2\text{O}} \end{array}$$

In these reductions the organometallic reagent is oxidized to an olefin. Esters give less reduction than acyl chlorides.⁴¹⁵ Relatively simple reagents react in this manner. For example, reduction products are formed exclusively in the reaction of *t*-butylmagnesium chloride with *n*-butyryl, isobutyryl, and lauroyl chlorides.⁴¹³ Cleavage of allyl esters by the Grignard reagent to give acid salts and hydrocarbons takes place when the carbonyl group is sterically hindered.⁴¹⁴

$$RCO_2CH_2CH = CH_2 \xrightarrow{R'MgX} RCO_2MgX + R'CH_2CH = CH_2$$

Tertiary alcohols are also made by carbonation of Grignard reagents and treatment of the resulting halomagnesium salts with an excess of the same or different organometallic compound.^{406,421} Sixteen aliphatic tertiary alcohols are formed in 40-60% yields from primary Grignard reagents and aliphatic acids. Yields are higher when the reactions are carried out at 83° in benzene solution.⁴⁰⁵ Ketones are obtained as by-products.

Symmetrical tertiary alcohols are best prepared from organometallic reagents and ethyl carbonate, $(C_2H_5O)_2CO$ (cf. method 312).^{422, 424}

Esters react with certain di-Grignard reagents to give tertiary alicyclic alcohols in 20-67% yields.⁷⁰³

where n = 2 or 3.

A number of other (unctional groups may be present in the reacting ester molecule. The method has been applied to the preparation of glycols,³⁶³ pinacols,⁴²⁷ and olefinic^{428,429} and acetylenic^{430,431} tertiary alcohols. Esters containing halogen in the *alpha* and *beta* positions have been converted to halo alcohols of questionable purity.^{434,435,437} Halogen atoms on the aromatic nucleus are stable.⁴³² α -Alkoxy esters give good yields of α -alkoxy tertiary alcohols^{436,702} (cf. methods 167 and 202). Amino alcohols may be prepared by the addition of excess Grignard reagent to esters of amino acids.^{438,439,441}

92. Replacement of the Sulfonic Acid Group by the Hydroxyl Group

$$\operatorname{ArSO}_{3}\operatorname{Na} \xrightarrow[\operatorname{Fuse}]{\operatorname{NaOH} + \operatorname{KOH}} \operatorname{ArONa} \xrightarrow[\operatorname{H_2O}]{H^+} \operatorname{ArOH}$$

The preparation of phenols by this method is limited to compounds having substituents which are not attacked by alkali at the fusion temperature. A molten mixture of the hydroxide and a little water in a copper, nickel, or iron crucible is treated with small portions of the sodium salt of a sulfonic acid. The reaction occurs at 300-320°. Fusion of sodium *p*-toluenesulfonate with sodium hydroxide gives no cresol; potassium hydroxide or a mixture of sodium and potassium hydroxides containing at least 28% of the latter compound is required. Similar results are found in the preparations of *m*-hydroxybenzoic acid (91%)⁷²⁰ and 6-methyl-2-naphthol.⁷²¹ Several factors affecting the conversion are studied in the preparation of the naphthol. Excellent directions are given for the preparations of *p*-cresol (72%)⁵⁶³ and β -naphthol (80%).⁵⁶² *m*-Benzenedisulfonic acid gives *m*-hydroxybenzenesulfonic acid ⁵⁶⁷ or resorcinol,⁵⁶⁴ depending upon the concentration of alkali used. 5- and 8-Hydroxyisoquinolines are made by this method with the reaction occurring at 210-220°.⁵⁶⁶

93. Replacement of the Diazonium Group by the Hydroxyl Group

 $ArN_{2}^{+}HSO_{4}^{-} + H_{2}O \rightarrow ArOH + H_{2}SO_{4} + N_{2}$

This reaction is of little value for the preparation of aliphatic alcohols. Methyl alcohol cannot be obtained from methylamine and nitrous acid. n-Propylamine gives a mixture of n-propyl alcohol, isopropyl alcohol, and propene.⁴⁷³

Many phenols are best prepared by boiling aryldiazonium compounds with water. Excess nitrous acid from the diazotization is first destroyed by addition of solid urea.^{475,476,481} Some substituted diazonium compounds are hydrolyzed with difficulty. Refluxing with aqueous sulfuric acid,^{476,490} copper sulfate,^{474,478} or sodium sulfate^{488,494} solutions is usually recommended.

The diazonium sulfates are preferred to the nitrates or chlorides. Aryl chlorides and nitro compounds are sometimes formed as by-products in the decomposition of diazonium chlorides and nitrates. For example, o-nitro-p-cresol is formed in 69% yield by the hydrolysis of the diazonium nitrate from p-toluidine.⁵⁰¹

A modification of this reaction involves conversion of the diazonium salt to the diazonium fluoroboride with fluoroboric acid. Treatment with glacial acetic acid then gives the aryl acetate, from which the free phenol is obtained by hydrolysis.^{244,497}

 $ArN_2^+Cl^- \xrightarrow{HBF_4} ArN_2^+BF_4^- \xrightarrow{CH_3CO_2H} ArOCOCH_3 \xrightarrow{H_2O} ArOH$

The aryl group may contain halogen,^{485,486} phenoxyl,⁷⁰⁷ aldehyde,⁴⁸⁹ keto,⁴⁹³ carboxyl,^{495,496} carbomethoxyl,⁴⁹⁴ cyano,⁴⁹² or nitro^{490,491} groups. Certain activated methyl groups in the *ortho* position to the diazonium group cause complications owing to ring closure with the formation of indazoles.⁴⁹⁸ Coupling of the phenol with the diazonium compound may also occur (method 494). This reaction may be minimized for phenols which are volatile with steam by employing a dilute solution of the diazonium salt and removing the phenol as it is formed.⁷⁰⁵ Amino groups on heterocyclic nuclei such as pyridine,^{484,486} thianaphthene,⁴⁸³ dibenzo-furan,²⁴⁴ and pyrazine⁴⁸⁷ are replaced by hydroxyl groups by this method.

94. Replacement of the Amino Group by the Hydroxyl Group

$$C_{10}H_7NH_2 + H_2O \stackrel{\text{NaHSO}_3}{\longleftarrow} C_{10}H_7OH + NH_3$$

This equilibrium reaction in the presence of sulfites is used for the preparation of naphthols and naphthylamines (Bucherer reaction) (cf. method 438). A review of the literature to 1942 has been made.⁴⁹⁹ The substituted naphthalenes are heated with aqueous sodium bisulfite at 90-150°. Nearly quantitative yields of α - and β -naphthols are obtained from the corresponding naphthylamines. Many substituted naphthols have been prepared by this procedure.

The direct removal of an acetylamino group $(NHCOCH_3)$ on naphthalene by boiling with sodium hydroxide is used in the preparation of 1-nitro-2-naphthol (89%).⁵⁰³

An amino group on the benzene ring is directly hydrolyzable only when it is in the *meta* position to hydroxyl or other amino groups. *m*-Dihydroxybenzene (resorcinol) has been made by the Bucherer reaction, and 1,3,5trihydroxybenzene (phloroglucinol) is obtained by direct hydrolysis and decarboxylation of 2,4,6-triaminobenzoic acid.⁵⁰⁰

In the heterocyclic series 5-aminoquinoline has been converted by the Bucherer reaction to 5-hydroxyquinoline (47%).⁵⁰²

95. Hydrolysis of Esters

$$RCO_2R' + NaOH \rightarrow R'OH + RCO_2Na$$

Few alcohols are made by this method because the corresponding esters are usually available only from the alcohols. Several esters of important alcohols are formed by other means and are hydrolyzed to the alcohols. For example, oxidation of acenaphthene by red lead in acetic acid gives 7-acenaphthenol acetate, from which 7-acenaphthenol is obtained by saponification with methanolic sodium hydroxide.⁵²⁰ Phenols may be prepared indirectly from aromatic aldehydes by oxidation with peracetic acid followed by hydrolysis of the resulting aryl formate.⁶⁸⁷

ArCHO
$$\xrightarrow{CH_3CO_3H}$$
 ArOCHO $\xrightarrow{KOH_1}_{H^+}$ ArOH

Most esters are cleaved by saponification rather than by acid-catalyzed hydrolysis. The hydrolysis by acid is reversible and requires removal of one of the products for its completion. The procedure employed varies somewhat, depending upon whether the acid or alcohol is desired (cf. method 249). In the preparation of cetyl alcohol, $n-C_{16}H_{33}OH$, from the natural wax spermaceti, the acid fraction is precipitated as the calcium salt to eliminate troublesome emulsions during the extraction process.²⁶

The conversion of dihalides to *diols* through the diacetates is sometimes more convenient than direct hydrolysis (method 96). The diesters are prepared by heating dihalides with sodium or potassium acetate in acetic acid or ethyl alcohol.⁵¹⁵⁻⁵¹⁷ Glycols are distilled directly from mixtures of the diacetates and powdered potassium hydroxide or calcium hydroxide.⁵¹⁷ Ethylene glycol is obtained from the diacetate by "transesterification" with methanolic hydrogen chloride.⁵¹⁵ This modification has also been used for the preparation of several α -hydroxy acids.⁵²⁶

A similar conversion of olefins to glycols involves reaction with iodine and silver benzoate followed by saponification of the resulting crude di-

benzoate. Over-all yields of more than 70% are obtained for 1,2-octadecanediol from 1-octadecene,³⁶ γ -phenylpropylene glycol from allylbenzene,⁵¹⁸ and 9,10-dihydroxystearic acid from methyl oleate.⁷¹⁰

The conversion of a halogen compound to a carbinol through its acetate or formate⁵²² has been used for the preparation of olefinic alcohols,^{303,521} halo alcohols,^{465,524} a-hydroxy ketones,^{522,523,711} a-hydroxy acids,⁵²⁶ amino alcohols,⁷⁰⁹ and *p*-nitrobenzyl alcohol.⁵²⁴ Allyl-type halides undergo allylic isomerization during conversion to the acetate. Both phenylvinylcarbinol, C₆H₅CHOHCH = CH₂, and cinnamyl alcohol, C₆H₅CH = CHCH₂OH, are obtained from cinnamyl chloride.⁵²¹ The replacement of an a-halogen atom on a ketone is not always straightforward. Thus, the a-ketol obtained through the acetate from α -bromopropiophenone, C₄H₆CCCHBrCH₂, is phenylacetylcarbinol, C₆H₅CHOHCOCH₃, whereas that obtained through the formate is methylbenzoylcarbinol, C₆H₅COCHOHCH,⁵²³ Isomerizations of ketols of this type have been shown to be base-catalyzed equilibria. Lead oxide and acetic acid are used to convert p-bromobenzyl bromide to *p*-bromobenzyl acetate. The crude acetate is saponified with methanolic potassium hydroxide. The over-all yield of p-bromobenzyl alcohol is 61%.465 Certain aryl halides are converted to phenols with the aid of higher temperatures and copper acetate.546

96. Hydrolysis of Halogen Compounds

$$RX + H_2O \rightarrow ROH + HX$$

Alkyl halides are hydrolyzed to alcohols by water or dilute bases, the order of reactivity of the halogen atoms being tertiary > secondary > primary and iodine > bromine > chlorine. By heating 1,2-dichloro-2-methyl-propane, $(CH_3)_2CClCH_2Cl$, with an aqueous suspension of calcium carbonate, the tertiary chlorine atom is replaced to give 1-chloro-2-methyl-2-propanol (48%).⁵⁵³

A suspension of lead oxide in water is used in the preparation of 2,3butanediol from the corresponding dibromide.⁵⁵⁰ Glycols are usually obtained from dihalides through the acetates (method 95).

Allyl-type halides are hydrolyzed readily to olefinic alcohols.³⁰⁷ The difference in reactivity between allyl and vinyl halogen atoms is well illustrated by the hydrolysis of 1,3-dichloropropene, $ClCH = CHCH_2Cl$, to 3-chloro-2-propen-1-ol, $ClCH = CHCH_2CH$ (76–81%).⁵⁵¹

Bromine atoms in the *alpha* position to carbonyl or carboxyl groups may be successfully hydrolyzed in certain cases by exercising proper precautions. α -Hydroxy carbonyl compounds are sensitive to alkali (cf. method 95). Benzylglycolic aldehyde,⁵⁵⁵ C₆H₅CH₂CH(OH)CHO, and glycolic acid,⁵⁵⁶ CH₂OHCO₂H, are obtained by refluxing the corresponding halo compounds with water and barium carbonate. Higher-molecularweight α -hydroxy acids may be obtained from α -bromo acids and aqueous alkali hydroxides or carbonates.^{545, 554}

Halogen atoms attached to an aromatic nucleus are not easily hydrolyzed unless they are activated by electron-attracting groups in the *ortho* or *para* positions. Under the influence of copper catalysts, however, aryl bromides react with aqueous sodium hydroxide at 200-275° to give phenols. This conversion is illustrated by the preparation of 3-pseudocumenol (82%)⁵⁴⁸ and 2-hydroxydibenzofuran (75%).²⁴⁸

Halogen atoms in the *alpha* position to an aromatic nucleus (benzyltype) are very readily hydrolyzed. With proper precautions hydrolysis of the halogen atom of *p*-cyanobenzyl chloride is possible without affecting the cyanide group; *p*-cyanobenzyl alcohol is obtained in 85% yield.⁵⁴⁹

97. Cleavage of Ethers

$$ArOR + HI \rightarrow ArOH + RI$$

This reaction is an important step in the synthesis of many phenols. The phenolic grouping is unstable in numerous chemical transformations but may be "protected" in the form of its ethers. No good general reagent has been found for the cleavage of the ether linkages. By refluxing the alkoxy compounds with hydrogen bromide or hydrogen iodide in water or acetic acid solution, successful conversions to hydroxy compounds have been accomplished for *n*-propylphenol,⁵²⁸ o-dihydroxybenzene,⁷⁶⁶ o- and *m*-hydroxyphenylacetic acids,^{539,540} 4,4'-dihydroxybenzil,⁵⁴¹ several hydroxyquinolines,^{502,532} and hydroxy amino acids.^{542,543} Yields are in the range of 72–93%. A modification of this procedure involves heating the ether with pyridine hydrochloride or hydrobromide at 200°. Anisole is cleaved to phenol in 82% yield, but diphenyl ether is not attacked. o- and *m*-Dimethoxybenzenes may be cleaved to dihydric phenols or to phenolic ethers.⁵²⁹

Aluminum and boron halides are sometimes used to dealkylate alkyl aryl ethers to phenols. Boron tribromide cleaves aliphatic ethers to alcohols and alkyl halides, but the reaction has no preparative value in the aliphatic series.⁵²⁷ Aluminum halide and the ether first form a complex from which a molecule of alkyl halide is eliminated upon heating.

ArOR
$$\xrightarrow{AlX_3}$$
 ArOR \cdot AlX₃ $\xrightarrow{\text{Heat}}$ ArOAlX₂ $\xrightarrow{H_2O}$ ArOH

The reaction has been successfully employed to prepare fluorophenols^{534,535} and hydroxybenzophenones.⁵³⁶ Diaryl ethers and alkyl aryl ethers are also cleaved by sodium amide,⁵³³ sodium hydroxide,⁷¹⁶ and by

sodium in liquid ammonia⁵³⁰ or pyridine.⁵⁴⁴ Anisole, phenetole, phenyl benzyl ether, and diphenyl ether are converted to phenol in yields above 90% by refluxing with sodium or potassium in pyridine solution. Ethers of benzyl alcohol may be cleaved by catalytic hydrogenation.

An excellent means of protecting phenolic hydroxyl groups for reactions in alkaline media is by the formation of the methoxymethyl ether from the sodium salt of the phenol and chloromethyl ether, viz.,

 $ArONa + ClCH_2OCH_3 \rightarrow ArOCH_2OCH_3$.

This mixed acetal is stable to alkali but easily hydrolyzed to the phenol by warming with dilute acid.⁵³⁷

98. Cleavage of Oxides

$$\frac{RCH-CHR + H_2O \xrightarrow{H^+} RCHOHCHOHR}{O}$$

This reaction is the last step in the hydroxylation of the double bond by peracids (cf. method 107). Oxides available by other methods (Chapter 7) may also be converted to diols in good yields. Hydrolysis proceeds readily at room temperature in the presence of a small amount of sulfuric ^{615,616} or perchloric ^{614,617} acids. Inversion of the configuration of a carbon atom occurs. Thus, *cis*-2,3-epoxypentane gives *threo*-2,3pentanediol, and the *trans* oxide gives the *erythro* diol.⁶¹⁵ *Chloro* ⁶¹⁸ and *keto* ⁶¹⁹ groups in the *alpha* position to the epoxide linkage are unaffected by the ring opening.

Alkene oxides may also be cleaved by reduction with lithium aluminum hydride as in the preparation of α -phenylethyl alcohol from styrene oxide (94%).⁴⁴

99. Cleavage of Furans and Pyrans

$$\begin{array}{c} CH_2 \longrightarrow CH_2\\ CH_2 \longrightarrow CHCH_2OH \xrightarrow{H_2} HO(CH_2)_3OH\\ O\end{array}$$

Various derivatives of furan and pyran are cleaved to give open-chain di- and poly-functional compounds. Fission to give dihalides, halo alcohols, and halo esters is described elsewhere (method 54). Hydrogenation and hydrogenolysis reactions lead to hydroxy compounds, as in the preparation of 5-hydroxy-2-pentanone and 1,4-pentanediol from methylfuran⁶²³ and 1,5-pentanediol from tetrahydrofurfuryl alcohol.⁶²¹ Tetrahydrofurfuryl alcohol is also cleaved by acetic anhydride and zinc chloride to give the triacetate of 1,2,5-trihydroxypentane.^{622,626}

Hydrolysis of 2,3-dihydropyran by dilute hydrochloric acid gives 5-hydroxypentanal (79%),⁶²⁸ which is readily reduced to 1,5-pentanediol. The 2,3-dihydropyran is prepared by dehydration and rearrangement of tetrahydrofurfuryl alcohol over aluminum oxide.⁶²⁸

Dehydrohalogenation and ether cleavage of tetrahydrofurfuryl chloride by sodium sand produces 4-penten-1-ol in 82% yield.⁶²⁹ Likewise, 4-octen-1-ol is obtained from 3-chloro-2-*n*-propyltetrahydropyran.⁷³¹ This synthesis is general for 4-alken-1-ols from the commercially available dihydropyran (cf. method 21).⁷³¹

$$\underbrace{\bigcirc}_{O} \xrightarrow{\text{Br}_{2}} \underbrace{\bigcirc}_{O} \xrightarrow{\text{Br}} \xrightarrow{\text{RMgX}} \underbrace{\bigcirc}_{O} \xrightarrow{\text{R}} \xrightarrow{\text{Na};}_{\text{H}_{2}O} \text{RCH} = CH(CH_{2})_{3}OH$$

A similar synthesis of 3-alken-1-ols from 2,3-dichlorotetrahydrofuran has been devised, and the stereochemical relationships of both syntheses have been investigated.⁷³³ Many cleavages of furan and pyran rings have been reviewed.⁷³⁰

Dibenzofuran is cleaved by a mixture of sodium and potassium hydroxides at 410° to 2,2'-dihydroxybiphenyl (29%).⁶²⁷

100. Rearrangement of Allyl Ethers (Claisen)

 $C_6H_5OCH_2CH = CHR \rightarrow o-HOC_6H_4CH(R)CH = CH_2$

This interesting nuclear alkylation by the allyl group of an allyl aryl ether gives unsaturated phenols. Migration takes place to the *ortho* position of the ring with tautomeric isomerization within the allyl group. If both *ortho* positions are blocked, migration occurs to the *para* position either with or without tautomeric change within the allyl group. A large variety of substituents may be present in the side chain and the aromatic nucleus. The furfuryl radical contains the necessary allylic structure for the side chain; rearrangement affords a preparation for o-furfurylphenol (38%).⁵⁵⁰

The reaction occurs below 200° without catalysts by refluxing the ether at atmospheric or reduced pressures either with or without solvents. The yield of o-allylphenol from allyl phenyl ether is 73%.⁵⁵⁹

Excellent literature reviews complete with experimental conditions have been made.⁵⁵⁹

101. Hydration of Olefinic Compounds

RCH = CHR $\xrightarrow{H_2SO_4}$ RCH, CH(OSO, H)R $\xrightarrow{H_2O}$ RCH, CH(OH)R

Hydration of olefins is accomplished by dissolving them in aqueous sulfuric acid and hydrolyzing the resulting alkyl hydrogen sulfate. The vields of alcohols are fair for the simple olefins. The hydroxyl group adds to the carbon atom of the double bond which contains the least number of hydrogen atoms. Olefins from t-alcohols are hydrated by 50-65% sulfuric acid, whereas those from primary and secondary alcohols require higher concentration of acid. Details have been worked out for a satisfactory laboratory preparation of t-butyl alcohol from gaseous isobutylene.⁵⁸¹ Kerosene is used as a solvent to lower the vapor pressure of the isobutylene, which is then absorbed by 50% sulfuric acid. The concentration of the sulfuric acid is critical; polymerization of the olefin occurs when the acid is too concentrated.

Other functional groups may be present in the molecule containing the double bond. Methallyl alcohol, $H_2C = C(CH_3)CH_2OH$, is hydrated by a mixture of 25% sulfuric acid in the presence of isobutyraldehyde to give the cyclic acetal of isobutylene glycol with the aldehyde. Hydrolysis of the acetal by dilute mineral acid gives isobutylene glycol (94%).⁵⁸⁴ Hydration of the double bond by aqueous sulfuric acid has been used to make chloro-t-butyl alcohol from methallyl chloride⁵⁸⁵ and β -hydroxybutyric acid from crotonic acid. 586

102. Condensation of Aldehydes and Ketones (Aldol Condensation)

2RCH_CHO \xrightarrow{OH} RCH_CH(OH)CH(R)CHO

This is a general reaction exhibited by aldehydes and ketones having labile (usually a) hydrogen atoms. The hydrogen atom of one molecule of the carbonyl compound adds to the carbonyl group of another molecule of the same or different compound to form an aldol (hydroxy aldehyde) or a ketol (hydroxy ketone). The condensation is reversible and is usually promoted by basic catalysts. The products are distilled at temperatures as low as possible to prevent not only the reverse reaction²⁰³ but also the dehydration to olefinic compounds (method 36).

The condensation of an aldehyde or a mixture of two aldehydes is best effected by aqueous sodium or potassium carbonate or aqueous alcoholic hydroxides at 0-30°. From a preparative standpoint, best results from a mixture of two aldehydes are achieved when one of the aldehydes does not contain an a-hydrogen atom. Otherwise, a mixture of products is obtained. Crossed condensations of formaldehyde with isobutyraldehyde

and isovaleraldehyde give the aldols, CH₂OHC(CH₃)₂CHO, and (CH,),CHCH(CH,OH)CHO, respectively.^{200,201} Certain aldols dehydrate spontaneously or upon distillation. This is especially true of those resulting from the crossed condensation of benzaldehyde with another aldehyde (method 36). Self-condensation of aldehydes is sometimes complicated by the formation of trimers believed to be substituted 1,3dioxanes.²⁰² The aldol of propionaldehyde may be prepared by distilling the trimer from a small amount of adipic acid.206

Self-condensation of methyl ketones to ketols is best accomplished by basic catalysts. Only methyl ketones have been satisfactorily condensed. Diacetone alcohol is prepared by refluxing acetone with barium hydroxide in a Soxhlet extractor.²⁰⁴ Condensation of higher methyl ketones by basic reagents involves a hydrogen atom on the methyl group rather than one on the higher alkyl group. Most of these condensations lead directly to olefinic ketones (method 36). However, the ketols are prepared in fair yields when bromomagnesium amines are used as catalysts. For example, methyl ethyl ketone gives the ketol, C,H,C(CH,)(OH)CH,COCH,CH,, in 67% yield with C_sH_sN(CH_s)MgBr prepared from ethylmagnesium bromide and methylaniline. Eight higher ketols prepared by this procedure are described. Yields are in the range of 55-70%. Pinacolone, which is condensed in poor yields by other basic reagents, gives a 68% yield of the corresponding ketol when the anilinomagnesium bromide is used.²⁰⁵ The acidcatalyzed condensation of methyl ketones follows a completely different course (method 36).

The crossed condensation of an aldehyde and a ketone is possible under proper conditions. The tendency for self-condensation is much less for ketones than for aldehydes. Advantage is taken of this fact by adding the aldehyde diluted with part of the ketone to a cooled, well-stirred mixture of the ketone and basic catalyst.²¹⁰ The carbonyl group of the aldehyde and an a-hydrogen atom of the ketone are involved in the condensation. A study of solvents, bH, catalyst concentration, and mole ratio of reactants has been made for the condensations of paraformaldehyde²⁰⁸ and acetaldehyde⁷³⁹ with methyl ethyl ketone. The various by-products formed in the condensations with formaldehyde have been discussed.⁷⁴¹ Basecatalyzed condensation of methyl alkyl ketones with straight-chain aldehydes involves a hydrogen atom on the methylene group of the ketone (3-condensation).^{209,211,212,740} It was formerly believed that condensation with a-alkyl-branched aldehydes takes place on the methyl group of the ketone (1-condensation).^{217, 218} However, the condensation has been shown to depend markedly on the catalyst. For example, the condensation of isobutyraldehyde and methyl ethyl ketone with aqueous base gives both 1- and 3-condensation in the ratio of 55 to 45. With sodium ethylate the

ratio is 90 to 10, and with hydrochloric acid only 3-condensation is observed.²¹³ Cyclopentanone and cyclohexanone have been used in crossed c ondensations.^{215,216} Condensation of higher-molecular-weight ketones gives very poor results.²¹⁴ The condensation of aromatic and heterocyclic aldehydes with ketones usually leads directly to unsaturated ketones (method 36).

Many other compounds containing labile hydrogen atoms may be condensed with carbonyl compounds in basic media. The introduction of a trichloromethyl group is achieved by condensation of chloroform with ketones, α -branched aldehydes, or substituted benzaldehydes. Straightchain aldehydes undergo self-condensation. The condensations are best effected by powdered potassium hydroxide in an acetal solvent. The yield of trichloro-*t*-butyl alcohol from acetone and chloroform is 80%. The yields of higher homologs vary over a wide range but, in general, are exceptionally good.⁷³⁶ Condensations with bromoform or iodoform are less successful.⁷³⁷

Aliphatic esters have been condensed with benzaldehyde by means of sodium triphenylmethide. The reaction has been stopped at the "aldol" stage to give low yields (26-30%) of β -hydroxy esters.⁷⁸⁴

Either or both active hydrogen atoms of malonic or acetoacetic esters enter into condensation with formaldehyde or acetaldehyde.⁷⁵⁴ Acetoacetic ester is readily converted to the dimethylol or diethylol derivatives by condensation with formaldehyde or acetaldehyde, respectively, in the presence of potassium carbonate.⁷⁵⁵ α -Methylacetoacetates are similarly condensed with one molecule of aldehyde.⁷⁵⁶

Aliphatic and aryl-substituted aliphatic nitro compounds contain active methylene groups which take part in condensation with carbonyl compounds.

$RCHO + R'CH_2NO_2 \xrightarrow{Base} RCHOHCHR'NO_2$

The yields of nitro alcohols from simple nitroparaffins and aliphatic aldehydes or benzaldehyde are usually above 60%.⁷⁴²⁻⁷⁵⁰ The condensations are generally carried out with aqueous ethanolic sodium hydroxide, although weaker bases are sometimes desirable to prevent polymerization of the aldehyde.^{745,749} Sodium bisulfite addition compounds of the aldehydes are sometimes used.^{744,749} Better results are obtained with sodium methoxide than with alkali hydroxides in the condensation of nitroethane with formaldehyde.⁷⁴⁸ Sodium alkoxides are also used to effect the condensation of nitroethane with acetone⁷⁵¹ and cyclohexanone.⁷⁵² Condensation proceeds to the nitroalkanediol stage in certain cases with both nitromethane⁷⁵³ and with formaldehyde.⁷⁴⁵ 103. Condensation of Carbonyl Compounds with Halogenated Compounds (Reformatsky)

$$RRCO + R'CHBrCO_2C_2H_s \xrightarrow[H_2O]{Zn \text{ or } Mg;} RRC(OH)CHR'CO_2C_2H_s$$

In this reaction organometallic compounds incapable of existence in high concentration are formed and utilized immediately. When an aldehyde or ketone is condensed with a halo ester the product is a β -bydroxy ester. Sometimes dehydration occurs to give olefinic esters directly (method 19). The use of an ester as the carbonyl compound leads to β -keto esters (method 234). The halo esters most commonly employed are of three types: XCH₂CO₂C₂H₅, RCHXCO₂C₂H₅, and R₂CXCO₂C₂H₅. Vinylogous halo esters, such as γ -bromocrotonate,²³⁴ and certain benzyl halides²³⁸ have been used with variable success.

A review of the literature to 1942 lists 157 condensations involving aldehydes and ketones.²¹⁹ Trioxymethylene serves as a source of formaldehyde.²³⁵ In addition to the compounds listed, condensations of 2-pentenal,²⁴⁰ o-tolualdehyde,²³⁰ methyl ethyl ketone,^{227,231,232} diethyl ketone,²²⁸ methyl hexyl ketone,²²² cyclopentanone,²³² and phenyl *t*-butyl ketone ²²⁹ are noteworthy.

The best experimental conditions for the reaction have been discussed.²¹⁹ An optimum temperature of 90-105° is easily maintained by the use of a refluxing mixture of benzene and toluene as solvent.²²⁵ Granulated zinc which has been washed with hydrochloric acid can be substituted for the sandpaper-cleaned zinc foil that is sometimes recommended.²²⁴ Magnesium has been used successfully for several condensations.^{226, 233,759}

Many competing reactions are responsible for the low yields occasionally obtained in the Reformatsky reaction. Zinc salts bring about the aldol condensation of certain aldehydes. Coupling of two molecules of bromo ester by zinc to give a succinic ester sometimes occurs. The extent of this reaction is reduced by adding the bromo ester to a refluxing mixture of benzene, ketone, and zinc.²³⁷ A portion of the bromo ester is sometimes reduced by reaction of the zinc derivative with an active hydrogen atom of the ketone; the ketone is regenerated from its enol salt by

 $R_2CHCOR + BrZnCH_2CO_2R \rightarrow CH_3CO_2R + (R_2CCOR^-)Zn^+Br$

hydrolysis. This side reaction occurs to the extent of 90% with acetomesitylene.²²⁰ The reduced ester may also be condensed by the organozinc compound to yield a β -keto ester.²²¹ Propargyl bromide, HC \equiv CCH₂Br, undergoes a Reformatsky-type reaction with a variety of carbonyl compounds to give β , γ -acetylenic carbinols in fair yields.⁷⁸⁸

104. Condensation of Carbonyl Compounds (Acyloin and Benzoin Condensations)

$$\operatorname{RCO}_{2}C_{2}H_{5} \xrightarrow{\operatorname{Na}} \begin{array}{c} \operatorname{RC} -\operatorname{ONa} & H^{+} \\ H & H^{-} \\ \operatorname{RC} -\operatorname{ONa} & \operatorname{RCO} \end{array}$$

Aliphatic acyloins (α -hydroxy ketones) are formed by the action of sodium sand on ethereal or benzene solutions of aliphatic esters.^{636,637} Improved techniques involving highly dispersed sodium preparations are invaluable in this condensation.⁸⁰¹ Straight-chain and branched esters are condensed in 55-75% yields.⁶³⁶ Contrary to earlier reports, highermolecular-weight aliphatic esters give acyloins in excellent yields. The reaction has been extended to include esters containing eight to eighteen carbon atoms.⁶³⁹ The mechanism of the condensation by sodium in liquid ammonia has been studied.⁶³⁸ Evidence is presented for the existence of intermediate free radicals, RC(ONa)(OC₂H₃), and acyl sodium compounds, RCONa. Esters of glutaric and adipic acids give α -hydroxy alicyclic ketones.⁷⁶¹ Several aromatic aldehydes, acids, and esters have been condensed by metals in a similar manner.^{638,645}

Aromatic α -hydroxy ketones (benzoins) are best obtained by the condensation of aromatic aldehydes by alkali cyanides. An aqueousalcoholic solution of the aldehyde and sodium cyanide is refluxed for a short time.^{640,642}

$$2ArCHO \xrightarrow{NaCN} ArCH(OH)COAr$$

Crossed condensation of two aldehydes has been accomplished as in the preparation of *p*-methoxybenzoin.⁶⁴⁴ The condensation is reversible, as has been demonstrated by the preparation of mixed benzoins from benzoin and an aromatic aldehyde.⁶⁴¹

The mechanism and experimental conditions for these reactions have been discussed in two reviews of all methods for the synthesis of benzoins⁷⁶⁰ and acyloins.⁷⁷⁹

105. α-Hydroxy Ketones by Interaction of Dicarbonyl Compounds and Aromatic Hydrocarbons

$$ArCOCHO + Ar'H \xrightarrow{AiCi_3} ArCOCH(OH)Ar$$

This reaction was first described as a new synthesis for mixed benzoins.⁶⁴⁸ A solution of the aryl glyoxal in the aromatic hydrocarbon is stirred at 0° for 5-20 hours with aluminum chloride. Carbon disulfide may be used as a solvent if necessary. The yields vary from 35% to 90%. The reaction has been extended to the preparation of α -hydroxy ketones of the types RCOCHOHAr⁶⁴⁹ and CH₃COCOH(CH₃)Ar⁶⁵⁰ by substituting *t*-butylglyoxal and biacetyl, respectively, for the aryl glyoxal.

106. Alkylation of Phenols

 $C_6H_5OH + (CH_3)_3COH \xrightarrow{A1C1_3} p - (CH_3)_3CC_6H_4OH$

Alkylation of the aromatic nucleus has been discussed previously (method 1). Phenols are alkylated chiefly in the *para* position by tertiary alcohols^{773,773} or olefins.^{778,796} The yields of product range from 24% to 64%. Primary alkyl radicals isomerize to secondary alkyl groups.⁷⁷⁴ The best method for the preparation of *n*-alkylphenols is by reduction of the corresponding acyl derivatives (method 3).^{528,651,795,797}

Boron trifluoride catalyzes the condensation of phenol and propylene to isopropyl phenyl ether and the subsequent rearrangement of this compound to o-isopropyl phenol.⁷⁷² This rearrangement of an aryl alkyl ether is similar to the Fries reaction of phenolic esters (method 209).

Indirect methylation of reactive phenols is sometimes accomplished by condensation of two molecules of the phenol with one molecule of formaldehyde. The resulting diphenylmethane derivative may be reduced with zinc and sodium hydroxide or cleaved by alkali to the methylated phenol.^{776,777} A modification of this procedure involves dimethylaminomethylation of the phenol followed by hydrogenolysis of the dimethylaminomethyl group.⁶³⁴

107. Oxidation of Olefinic Compounds to Glycols

$$RCH = CHR + H_2O_2 \xrightarrow{HCO_2H_1} RCH(OH)CH(OH)R$$

This method has been employed extensively for the conversion of olefins to glycols and olefinic acids to dibydroxy acids. The best general reagent is performic acid. The olefinic compound is stirred at 40° with

a solution of 30% hydrogen peroxide in aqueous formic acid. Only a slight excess of hydrogen peroxide is required. The yields of dihydroxy compounds are 40-99% from 1-olefins,⁶⁰⁰ olefinic alicyclic hydrocarbons,^{597,601} and olefinic acids.⁵⁹⁸ The double bond in the α , β -position of several acids and esters has been hydroxylated by 90% hydrogen peroxide at 55-95°.⁵⁹⁹ Epoxides are first formed in the reaction (cf. method 126). These compounds react with formic acid to give hydroxy formoxy compounds, which are then hydrolyzed to the dihydroxy compounds. Inversion of a carbon atom occurs during cleavage of the epoxide in acid solution. The reaction has been reviewed.⁷³⁵

Hydroxylation by hydrogen peroxide in t-butyl alcohol solution is catalyzed by osmium tetroxide.⁶⁰³⁻⁶⁰⁵ The catalyst is volatile and dangerous to handle ⁶¹⁰ but is conveniently used in a solution of the tertiary alcohol. The yields of diols are usually low (30-60%), and the process has not been adapted to large-scale preparations. In contrast to hydroxylation by performic acid, this procedure leads to *cis* addition of the two hydroxyl groups to the double bond. An extensive study of other catalysts has been made.⁷³⁴ Some catalysts, e.g., selenium dioxide and pertungstic acid, catalyze addition in the *trans* direction. Hydroxylation of cyclopentadiene takes place in the 1,4-positions to give 2-cyclopenten-1,4-diol.⁶¹²

Osmium tetroxide is also a catalyst in the oxidation of the double bond by chlorates. *Cis* addition of hydroxyl groups takes place as is shown by the preparation of *cis*-1,2-cyclohexanediol from cyclohexene⁶⁰⁷ and the formation of the proper diastereoisomeric dihydroxy derivatives of maleic, fumaric,⁶¹⁰ and 4-halocrotonic acids.^{608,609} Silver chlorate is preferred to potassium chlorate in the hydroxylation of crotonic acid.⁶⁰²

Perbenzoic acid is an important reagent for the preparation of epoxides from olefinic compounds (method 126). When the epoxides are unstable in aqueous solution, glycols are formed directly. The over-all reaction results in *trans* addition of hydroxy groups to the double bond for crotonic and isocrotonic acids.⁶⁰²

Other reagents used for hydroxylations of this type are peracetic acid⁶¹³ and a neutral solution of potassium permanganate.^{611,620}

108. Phenols by Dehydrogenation of Cyclic Ketones

The dehydrogenation of alicyclic 6-membered rings to aromatic hydrocarbons is discussed elsewhere (method 2). When a carbonyl group is present in the ring, fair yields of phenols can sometimes be obtained. Dehydrogenation by sulfur or selenium⁷⁷¹ has largely been replaced by catalytic dehydrogenation over nickel⁷⁶⁹ or palladium^{768,770} catalysts.

109. Unsaturated Alcohols by Oxidation of Olefins or Acetylenes 793

$$RCH = CHCH_2R \xrightarrow{seO_2} RCH = CHCHOHR$$

110. Oxidation of Phenols (Elbs)

where Z = H, Cl, CHO, or NO₂ (20-48%).^{783,791,799}

111. Condensation of Alcohols by Sodium (Guerbet) 767

 $3\text{RCH}_2\text{CH}_2\text{OH} \xrightarrow{\text{Na, Cu bronze, 300}^\circ;} \text{RCH}_2\text{CH}_2\text{CHRCH}_2\text{OH} + \text{RCH}_2\text{CO}_2\text{H}$

112. Condensation of Aromatic Compounds with Ethylene Oxide 788

ArH
$$\xrightarrow{\text{Ethylene oxide}}$$
 ArCH₂CH₂OH
AICl₃

113. Condensation of Pyridine or Quinoline with Ketones 786

$$C_{s}H_{s}N + R_{2}CO \xrightarrow{Mg, HgCl_{2}}{} \alpha - C_{s}H_{4}NC(OH)R_{2}$$

114. Hydrolysis of a-Diazo Ketones 764,765

$$RCOC1 \xrightarrow{CH_2N_2} RCOCHN_2 \xrightarrow{H_2O} RCOCH_2OH$$

182

HYDROXY COMPOUNDS

Ch. 5

TABLE 11. HYDROXY COMPOUNDS

<i>C</i> _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^f _D , (M.p.), Deriv.				
Aliphatic Alcohols									
c,	2-Propanol	79	100	599	82*				
		79	100	5111					
C₄	1-Butanol	79	85	52	1.3977 25				
		90	80	5446	117/740, 1.3993 ²³ , 71Nu				
	2-Butanol	79	87	5²	1.3956 25				
		101	77	5 582	98				
	2-Methyl-2-propanol	101	40	5 ⁵⁸¹	82				
C 5	1-Pentanol	84	61	5 ¹	137/740*, 1.4101*, 46Pu*				
		84	94	534	136				
		88	68	5 ²³⁵	136/733, 1.4099				
		90	76	5 446	136/740, 1.4100 ²³ , 66Nu				
	2-Pentanol	90	54	5 466	119/745, 1.4801, 61Db				
	3-Pentanol	80	60	5 177					
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	91	70	5 407	115, 1.4078				
	2-Methyl- I-butanol	84	78	533	120-124				
		88	66	5 285	128/749				
	3- Methyl- I- butanol	90	74	5***	130/740, 1.4081 ²³ , 67Nu				
	Mathematica	90	60	5 ***	131				
	Memyiisopropyicarbinol	88	56	5 436	111/727, 1.4090				
	t Amyl clockel	88	54	5 407	111				
	F-Amyl arconol	101	74	5.005	100-103				
_	· Buty rear binor	04	88	5	111/738				
C 6	l-Hexanol	79	100	5 111	69/20, 1.4134 ²³ , 42Pu				
		84	92	5 33	153				
		90	71	5 446	154/740, 1.4131 ²³ , 59Nu				
	<u>.</u>	90	62	5 442	154-157				
	2-Hexanol	88	66	5 266	136				
	2 4 4 1 1 1 .	90	51	5466	140/740, 1.4155, 37Db				
	-Methyl-l-pentanol	84	66	510	148/766				
	2. Mark 1. 1. a	111	72	5 '0'	148				
	- Methyl 1 - pentanol	90	65	5	152/740, 1.4112 ²³ , 58Nu				
	Dimethyl-r-pentanol	90	69	5 ***0	151/740, 1.4132 ²³ , 60Nu				
	2 Methyl- 2 percent	89	50	5 306	123/762, 1.412516				
	A Methyl-2-pentanol	85	/5	5 137	131, 1.4198, 47Db				
	4 Methyl-2-pentanor	/9	95	5 - 260	131/740				
		08 90	49	256					
		00	412 20	c 466	1507/34, 1.4111, 97Nu				
	Methyldiethylcarbinol	80	50 67	s 264	00/ 32, 1.4120, 62Db				
		89	71	ر ج 264	122				
	3,3-Dimethyl-1-butanol	90	15	5 444	142 94Db				
	(neopentylcarbinol)	20	• /	,	174, 0400				
	2-Ethyl-1-butanol	84	63	519	147/743 1 472417				
	Ethylisopropylcarbinol	88	52	5 2 56	126/742, 1.4170				

TABLE 11. HYDROXY COMPOUNDS

TABLE 11 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^f _D , (M.p.), Deriv
	A	liphatic A	lcohol	s (continued)	
C.	2,3-Dimethyl-2-butanol	91	92	5 264	119/759, 1.4169
- 0	Methyl-1-butylcarbinol	79	75	5 121	120
		79	100	5138	117/740
		88	28	5 261	117 - 121, 76Pu
C,	1-Heptanol	79	86	54	175/750
•		79	81	5 88	174, 72/12
		90	69	5 446	174/740, 1.4231 ²³ , 62Nu
	2-Heptanol	79	65	5 ¹¹⁵	156
	-	90	56	5 466	77/24, 1.4214, 48Db
	3-Heptanol	88	40	5284	155/745, 1.4197
	4-Heptanol (di-n-propyl-	80	92	5177	155*
	carbinol)	88	63	5284	154/745. 1.4199
	3-Methyl-l-hexanol	90	63	5 446	162/740, 1.4213 ²³ , 45Nu
	4-Methyl-l-hexanol	84	83	s 45	84/24, 1,4223 ²⁷
	4 mouth 1 nomenon	90	58	s 446	$169/740$, 1.4233^{23} , $50Nu$
	S-Methyl-l-heranol	90	50	s 446	$169/740 + 4251^{23}$, 55Db
) Memyr i neganor	90	53	5º	100/45 82Pu
	2-Methyl-2-hevenol	90	69	< 357	142/730 1 4186
	2-Methyl-2-nexanor	80	00	< 349	127-141
		80	60	5 343	60/25 1 4176
	A Methyle 2-herenol	00	21	c 466	86/44 1 4223 63Db
	S-Methyl-2-hexanol	90	15	s 466	73/32 1 4227 36Db
	J-Methy I-2- ne kanoi	88	65	s 256	151/742 1 4180 85Nn
	2-Methyle 3-heve nol	88	62	s 256	145/734 1 4213
	3-Methyl-3-hevenol	80	64	5 349	138
	2 4 Dimethyl Ispentanol	94	77	<18	54/7
	2,4 Dimethyr r pentanor	88	30	260	66/18 1 427
	3 & Dimethyl-l-pentanol	0 0	46	< 446	$161/740 + 4261^{23}$
	A A Dimethyl-1-pentanol	87	90	5 197	96/62 1.4202 81Nu
	3. Ethyle 2-pentanol	. 79	70	5116	151/743
	2 3-Dimethyl-2-pentanol	85	80	\$ 306	137 1.4262
	2,5 Dimemyr 2 pentanor	80	35	≤ 3.49	130
	2 A Dimethyle 2 pentanol	80	54	s 49	128
	2,4 Dimethyl 2 pentanoi	01	82	264	132/760 1.4162
	A A Dimethyl-2 pentanol	79	72	5 113	137/736 1 4188 87Nn
	4,4 Dimentyr 2 peatanor	90	15	5 466	65/40, 1.4248, 50Db
	3-Ethyl-3-pentanol	89	63	5116	73/50, 1,4305
	2 2-Dimethyl-3-pentanol	88	62	5 263	135-138
	-12 21	91	88	5 424	140
	2.3-Dimethyl-3-pentanol	89	59	5 343	45/14. 1.4287
	2,5 2 month 5 percent	89	50	5 338	51/20, 1.4283
	2. & Dimethyl-3-pentanol	88	78	5 262	134-138, 99Pu
	_, > per unor	91	100	5 409	132
	3-Methyl-2-ethyl-1-but anol	84	70	517	66/14, 49 Db
	· · · · · · · · · · · · · · · · · · ·			-	· • - •

184		
•		

HYDROXY COMPOUNDS

Ch. 5

TABLE 11 (continued)

Cn	Compound	Me tho d	Yield (%)	Chapter ref.	B.p./mm., n_{D}^{t} , (M.p.), Deriv.
	Ali	phatic A	lcohols	(continued)	
C,	2,3,3-Trimethyl-2-butanol	89	75	5 345	50/20
		89	28	5349	130
	Pentamethylethanol hydrate	89	62	5 346	(83)
C,	1-Octanol	84	94	5 33	190
		84	75	57	104/16
		90	49	5 446	192/740 1.4303 ²³ 66Nu
	2-Octanol		42	5 792	77/15 1.4264
	3-Methyl-l-heptanol	90	43	s 446	101/26 1 429323
	3-Methyl-2-heptanol	79	77	5212	173/760 1 436 ¹³
	6-Methyl-2-heptanol	80	96	\$ 176	80/16 1 427219
	3-Methyl-3-heptanol	89	71	< 343	66/15 1 4270
	3-Methyl-4-hentanol	88	62	< 273	70/15
	2-Ethyl-1-heranol	84	59	, c 6	70/13 00/28 1 4338
	- Sulfr - nezalitr	111	01	, c 767	90/18, 1.4328
	4- Ethyl- I-bergool		20) c 443	06 /20
	2 2-Dimethyle I-heropol	90 00) r 343	96/20
	2.2-Dimethyl-1-nexciol	80	60	c 3 54	81/14, 1.4304
	S Dimethyl 2th averal	89	80	- 693	151/760
	2.3 Dimethyl-2-nexanol	88	00	264	166, 1.4229
	2,7 Dimetryl-7 nexanol	89	32	- 141	62/14, 1.4309
		89	35	5	43/6, 1,4300
	2,4-Dimethyl-5-hexanol	88	30	5053	160, 1.4316
	3,4-Dimethyl-3-hexanol	89	25	5*04	68/16, 1.4313
	2,4-Dimethyl-4-hexanol	89	56	5	153, 1.4277 ¹⁸
	2-Propyl-1-pentanol	84	50	5°	179
	2-Methyl-2-ethyl-1-pentanol	88	30	5 2 58	76/15, 1.4353
	2,3,3-Trimethyl-2-pentanol	89	65	5339	84/58, 1.4280
	2,3,4-Trimethyl-2-pentanol	89	58	5341	156/752, 1.4400 ¹³
		91	40†	5 410	50/7, 1.4350
	2,4,4-Trime thyl-2-pentanol	89	78	5 344	38/8, 1.4272
			60	5 782	146, 1.4301 23
	2,2,3-Trimethyl-3-pentanol	89	60	5 3 39	76/40, 1.4353
	2,2,4 Trimethyl-3-pentanol	88	44	5262	148-152, 89Pu
	2,3,4 Trimethyl- 3-pentanol	89	95	5 340	101/125, 1.4350
	2,2,3,3-Tetramethyl- l-butanol	87	53†	5198	(150), 66Pu
C,	5-Nonanol (di- <i>n</i> -butyl- carbinol)	91	85	5 ⁴⁰⁶	97/20
	4-Methyl-I-octanol	84	81	5 ⁴⁵	105/18 1.432027
	5-Methyl-1-octatol	84	58	516	123/37
	7-Methyl-l-octanol (isononyl	84	57	ś	100/13 65Pu
	alcohol)	90	<u>4</u> 0	ŚP	118/75 652
	Dimethyl-z-hexylcarbinol	80	85	< 342	24/20 1 427
	Methylethyl-m-amylcathingl	80	74	5 272	09/50 1 425725
		89	76	5 343	81/15 1 4315
		-/		-	~~/ +J1 107J1J

TABLE 11. HYDROXY COMPOUNDS

TABLE 11 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D . (M.p.), Deriv.
	Al	iphatic A	lcohol	s (continued)	
C,	Methyl-n-propyl-n-butyl- carbinol	89	68	5 3 43	79/15, 1.4327
	2 2-Dimethyl-1-heptanol	88	41	5 ²⁵⁸	89/15, 1.4339
	Diethyl-z-butyl carbinol	89	67	5 342	96/36, 1.4362
	-Butyl-t-butylcarbinol	91	69	5416	71/15, 1.4320, 65Pu
	Methyl-z-butylisoptopyl-	89	61	5343	57/5, 1.4365
	carbinol	89	65	5342	77/16, 1.4355
	2-Methyl-2-ethyl-1-hexanol	88	31	5 258	86/11, 1.4401
	Diethyl-t-butyl carbinol	91	77	5 415	84/40, 1.4418
	Methylisopropyl- <i>t</i> -butyl- carbinol	89	71	5 353	172–176, 1.4495 ¹⁷
с	Dodecyl alcohol (lauryl	84	75	5 ⁵	145/18
C 12	alcohol)	84	80	515	117/4, (24), 74Pu
C 14	1-Tetradecanol (myristyl alcohol)	84	60	5 36	130/3, (38.5)
C.,	1-Pentadecapol	84	85	5 ²⁵⁹	113/0.2
C ₁₈	1-Octadecanol	84	90	5 ³⁷	(59)
	<u> </u>	Alicy	clic Al	cohols	
<u> </u>	Cyclobutanol	79	90	5 605	125, 1.4347 ²⁵ , 131Pu
•	Cyclopropyleathinol	84	27	5 53	121/730, 1.4273 ²³
	<i>c,</i> ,,.,.,,	84	58	5664	123, 1.426, 76Pu
C,	Cyclopentanol	79	95	5128	139, 1.4530
-		79	90	5²	1.4520 ²⁵
		79	100	5 ¹³⁸	137
	Cyclobutylcarbinol	84	49	5 ²⁵	142, 1.4449 ²⁵
	Methylcyclopropyl carbinol	79	60	5 ⁶⁷⁸	124/760, 1.4316, 70Pu
		79	90	5117	122/760, 1.4316
	1-Methylcyclopropane- methanol	84	56	5 663	128/750, 1.4308, 85Db
C.	Cyclohexanol	80	95	5 ¹⁷⁷	
-0		86	1.00	5 569	159, 1,4642, 83Pu
	1-Methyley clopenter ol	80		5 358	81/100, (36), 83NBz
	2 Methyleyclopentanol	79	100	5125	148. 1.4510
	2-Methyleyclopentanol	70	100	5 127	150/750
	Gwalepeatyleashinol	88	40	5 270	162. 1.4552
	Dimethyl melopropuls	91	85	5411	124/760
	carbinol	89	68	5 3 35	123/760, 1.4337
с.	Cycloheptanol	79	92	5122	187, 1.4760
-1	1-Methylcyclohexanol	89	64	5 ³⁵⁷	74/7, 1.4610
	2-Methylcyclohexanol	84	61	533	162
	cis-2-Methylcvclohexanol	79	70	5 ⁶⁷³	45/2, 1.4620 ²⁵
		86		5 ⁷²³	51/3, 1.4649, 93Pu

186

,

HYDROXY COMPOUNDS

Ch. 5

TABLE 11 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Al	icyclic A	lcohols	(continued)	
C,	trans-2-Methylcyclohexanol	86	100	5 369	164, 1.4602, 106Pu
		86		5 723	53/3.5, 1.4616, 105Pu
		95	85	5 673	61/10, 1.4596 ²⁵
	3-Methylcyclohexanol	86	92	5722	82/20, 1.4570
	trans-3-Methylcyclohexanol	86	100	5 ⁵⁶⁹	169, 1.4545, 92Pu
	cis-4-Methylcyclohexanol	86		5 723	52/2, 1.4614, 104Pu
	trans-4-Methylcyclohexanol	86	92	5568	170, 1.4551, 124Pu
		86		5723	1.4561, 124Pu
	cis- and trans-2-, 3-, and	79		5131	
	4-Methylcyclohexanols				
	Cyclohexylcarbinol	84	98	5 33	181
		88	69	5 ²⁶⁸	91/18, 1.4640 ²⁵
	β -Cyclopentylethanol	90	45	5 451	85/11, 1.4577
	1-Ethylcyclopentanol	89		5 ^{3 58}	75/20, 1.4494 ²⁵ , 53NBz
	trans-2-Ethylcyclopentanol	79	90	5132	166, 70Pu
	3,3-Dimethyl cyclopentanol	79	89	5 ¹²³	155/738, 1.4468 ¹⁵
2.8	Cyclooctanol	79	98	5 ¹²²	112/25, (25)
	eta -Cyclohexylethyl alcohol	84	94	5 20	102/12
	,	90	51	5 448	89/7, 1.4693 ²³ , 71Db
	l-Ethylcyclohexanol	89	62	5 ³⁵⁷	62/7, 1.4633
	2-Ethylcyclohexanol	86	93	5 722	89/20, 1.4660
		86	80	5 579	76-79/12
	trans-2-Ethylcyclohexanol	90	42	5 450	89/25
	3-Ethylcyclohexanol	86	94	5 568	192, 1.4600 ²⁵ , 99Nu
	4-Ethylcyclohexanol	86	88	5 368	192, 115Pu
	trans, cis, trans-2,5-Di- methylcyclohexanol	86	94	5 568	180, 1.4555, 117Pu
	trans, cis, cis-3,5-Dimethyl- cyclohexanol	86	91	5 ⁵⁶⁸	182, 107Pu
	2,4-Dimethylcyclohexanol	86	91	5 568	177. 1.4544. 96Pu
	2,6-Dimethylcyclohexanol	86	73	5 370	172, 1,4625, 132Pu
	3,3-Dimethylcyclohexanol	79	75	5 123	78/10
	3,4-Dimethylcyclohexanol	86	98	5 568	189, 1.4570, 97Pu
	3,5-Dimethyl cyclohexanol	86	93	5 571	91/20, 1.4550
	1-n-Propylcyclopentanol	91	65	5 703	171/760. 1.4504
		89		5 358	71/9, 1.4502 ²⁵ , 60NBz
	3-Cyclohexyl-1-propanol	88	79	5 ²⁵⁷	92/5, 1.4624 ²⁵
	1- <i>n</i> -Propyl-1-cyclohexanol	91	41	5703	180/760, 1.4634
		89	57	5 3 37	86/15, 1.4635
	cis-2-n-Propylcyclohexanol	86	94	5 368	202, 95Pu
	4- <i>n</i> -Propylcyclohexanol	79	71	5126	211/745, 1.4506 ²⁵ , 135N ₀
	1-Isopropylcyclohexanol	89	41	5 357	68/7 1 4648

TABLE 11. HYDROXY COMPOUNDS

TABLE 11 (continued)

С п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Al	icyclic A	lcohols	s (continued)	
C,	cis-4-Isopropylcyclo- hexanol	79	100	5124	68/0.6, 1.4671, 89Pu
	trans-4-Isopropylcyclo-		90	5124	1.4658, 114Pu
	4-Isopropylcyclohexanol	86	96	5 561	124/40, 1.4660
	2,4,6-Trimethylcyclo- hexanol	86	90	5 ⁵⁶⁸	183
	2,3,5-Trimethylcyclo- hexanol	86	90	5 ⁵⁶⁸	197, 1.4572 ²⁵ , 149Nu
	4-Cyclopentyl-1-butanol	90	75	5 451	90/2, 1.4613
C	a-Decalol	80	95	5 ¹⁷⁷	
- 10	cis-2-Decalol	87	48	5199	124-130/16
	trans-2-Decalol	87	53	5 ¹⁹⁹	120-126/13
C 12	<i>cis</i> -2-Cyclohexylcyclo- hexanol	79		5146	265/748, (63), 153Pu
	trans-4-Cyclohexylcyclo- hexanol	79	86	5 574	(104), 157Pu
С 13	Dicyclohexylcarbinol	79	88	5²	(62)
	Arc	matic Al	cohol s	and Phenols	
с,	Benzyl alcohol	79	85	54	
		79	100	5111	105/20, 1.5340 ²⁵ , 76Pu
		80	89	5173	90/7
		81	80	5 513	
		84	90	54	
	• • • • • • • •	84	63	523	104/23, 85NBz
	o-Cresol (o-methylphenol)	3	86	5797	
		93	40	5 476	70/6
		93	89	5 103	190/746, (34)
	m-Cresol (m-methylphenol)	93	41	5 770	81/6
	p-Cresol (p-methylphenol)	92	72	5 203	96/15, (31)
		93	46	5***	195-200
c,	Phenylmethyl carbinol	79	97	5 ⁶⁷⁹	93/16, 1.5251 ²⁵ , 94Pu
		80	93	5 ¹⁷⁷	x
		84	95	5 ²⁷⁴	93/16
		88	80	5 ²⁶⁵	111/28
	β -Phenylethanol	90	70	5 447	94/5, 1.5351, 119Nu
		84	47	5 21	117/25
		112	45	5 ⁷⁸⁸	
	p-Ethylphenol	3	100	5 651	217/750, (46)
		79	86	5 566	215/739
		92	58	5 565	219

HYDROXY COMPOUNDS

.

188

Ch. 5

С 	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aromatic Alcohols and Phenols (continued)								
C 8	o-Methylbenzyl alcohol	84	70	5 23	121/23, 101NBz				
		88	42	5 ²⁸¹	109/12, (35), 79Pu				
	p-Methylbenzyl alcohol	81	72	5 513	117/20, (61)				
		84	70	523	(58), 118Db				
	p-Xylenol	93	70	5 474	212/760, (74)				
Ċ,	Ethylphenylcarbinol	79	99	5114	93/4. 1.5208				
		79	100	5 158	214/740				
	3-Phenyl-l-propanol	79	100	5 111	84/1. 1.5354 ²⁵				
		84	93	5 33	124/19				
		84	80	515	87/2, 1.5218 ²⁵ , 48Pu				
		84	83	5 34	112/8				
		85	93	5 ¹⁰⁵	132/21, 1.5278				
		90	79	5 446	234/740, 1.5351 ²³ , 47Pu				
		97	85	5 713	116/13, 1.5242 25				
	1-Phenyl-2-propanol	90	53	5 452	93/8, 1.5210 ²⁵ , 87Pu				
		90	60	5 ²⁸¹	107/15, 1.5196 ²⁶ , 89Pu				
		90	67	5 466	95/7, 1.5221, 90Nu				
	o-n-Propylphenol	79	83	5 568	215/740, 110Pu				
	<i>p-n</i> -Propylphenol	97	93	5 528	80/1				
	o-Isopropylphenol	106	41	5 772					
	p-Isopropylphenol	92	35†	5 561	(59)				
		93	74	5 475	(60)				
	<i>m</i> -Methylphenylmethyl- carbinol	.88	71	5 271	104/6, 1.5240				
	2,3,6-Trimethylphenol (3-pseudocumenol)	96	82	5 548	(56)				
	5-Hydroxyhydrindene	93	69	5 478	(54)				
C 10	2-Phenyl-1-butanol	84	75	5 ²²	122/18				
		84	64	5 33	235				
	3-Phenyl-1-butanol	84	66	5 27	120/11				
		97	68	5 713	122/13, 1.5165 25				
	4-Phenyl-1-butanol	84	94	5 20	126/9				
	1	88	60	5 362	137/14				
		90	60	5 362	137/14				
	2-Phenyl-2-butanol	89	88	5 360	88/3, 107/15				
	4-Phenyl-2-butanol	79	77	5 120	124/15				
	Phenylisopropyl carbinol	88	83	5 ²⁶⁵	103/7				
	p-Isopropylbenzyl alcohol	79	70	5 ⁹³	91/0.7, 1.5181, 62Pu				
	(Cumyl alcohol)	84	81	5 ²³	136/26, 92 Db				
	o-t-Butylphenol	7	91	5 ⁷⁹⁶	218, 1.5160				
i	p-t-Butylphenol	106	60	5 ⁷⁷³	237/740, (100), 82Bz				
	β-Naphthol	92	80	5 562	286, (123)				

TABLE 11. HYDROXY COMPOUNDS

TABLE 11 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aromatic Alcohols and Phenols (continued)							
C 11	1-Phenyl-1-pentanol	79	99	5 11 4	115/6, 1.5078			
		88	62	5 362	137/21			
		88	85	5 265	130/13			
	5-Phenyl-1-pentanol	88	68	5 362	151/13			
		90	68	5 362	151/13			
		99	72	5 624	141/16*			
	1-Phenyl-2-pentanol	88	28	5 362	127/15			
	4-Ph envl-2-pentanol	79	89	5 135	124/15			
	1-Phenyl-3-pentanol	88	50	5 362	130/15			
	1-Phenyl-1-cyclopentanol	91	66	5 703	136/12, 1,5473			
	Phenyl-t-butylcarbinol	88	56	5279	110/15, (45)			
	h-m-Amvinhenol	3	85	5 528	107/2			
	t-t-Amylphenol	106	60	5 773	249/740, (95), $61Bz$			
	a-Naphthylcarbinol	84	63	5 29	(60)			
	a maphiny rearrand	88	58	5 309	163/11. (60)			
	8-Naphthylcathinol	79	80	5101	(80)			
		84	35	s 28	(81)			
	l-Methyl-l-tetralol	89	94	5 3 59	(87)			
C 12	1-Phenyl-1-cyclohexanol	91	51	5 ⁷⁰³	144/12, (60)			
	<i>cis</i> -2-Phenylcyclohexanol	8 6	75	5 573	141/16, (42), 128Pu			
	trans-2-Phenylcyclohexanol	79	36	5 ⁶⁸²	(57), 137Pu			
		79	60	5 573	154/16, (57), 137Pu			
	cis-4-Phenylcyclohexanol	79	29	5 574	(77), 141Pu			
	trans-4-Phenylcyclohexanol	79	60	5 574	(118), 140Pu			
	β -(1-Naphthyl)-ethyl alcohol	90	76	5 454	176/13			
	β -(2-Naphthyl)-ethyl alcohol	90	45	5 ⁴⁵⁶	(67)			
	Methyl-a-naphthylcarbinol	79	85	5134	121/1, 1.6188 ²⁵			
		80	95	5177				
	Methyl- <i>B</i> -naphthylcarbinol	79	100	5111	126/2, (68), 144Pu			
	• • • • •	79	75	5134	(73)			
		80	90	5177				
	2-Acenaphthenol	93	80	5477	(151)			
	7-Acenaphthenol	95	74	5 520	(146)			
C 13	o-n-Heptylphenol	3	8 6	5 ⁷⁹⁵	118-123/1			
	Diphenylcarbinol	79	81	53				
	(benzhydrol)	79	100	5111	(69), 140Pu			
		79	87	5138	(65)			
		79	97	5118	(68)			
		80	99	5173	(69)			
		88	70	5277	(68)			
	2-Phenylbenzyl alcohol	84	85	5 668	177/17			
		88	66	5 694	146-152/4			
	•	93	96	5 482	174/13			
	2-(a-Naphthyl)-1-propanol	79	79	594	145/3, 126Db			

٠

HYDROXY COMPOUNDS

Ch. 5

С_п

C s

C 6

C,

TABLE 11 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromatic	Alcohols	and P	henols (cont	inued)
C 13	l-(a-Naphthyl)-2-propanol	80	83	5 684	173/17, 1.604 ²² , 108Pu
	2-Hydroxyfluorene	93	57	5 480	(169)
		95	38	5 5 47	(138)
	9-Hydroxyfluorene	96	69	5 547	(158)
C 14	2,2-Diphenylethanol	84	93	5 24	145/1, (55), 92Bz
	1,2-Diphenylethanol	88	78	5 275	177/15, (67)
	Benzylcyclohexylcarbinol	88	42	5 ²⁶⁹	174/12
	1-(2-Biphenyl)-1-ethanol	88	56	5 449	(112)
	1-Phenanthrol	93	11	5479	(156)*
	2-Phenanthrol	92	50	5 481	(167)
		93	40	5 479	
•	3-Phenanthrol	93	39	5 479	(122)*
	9-Phenanthrol	97	30	5 531	(154)
	2-Hydroxy-9,10-dihydro-	93	69	5 481	(113)
	phenanthrene				
	9-Hydroxyperhydro- phenanthrene	80	83	5 685	132/0.5
	9-Fluorenylcarbinol	80	50	5 ¹⁸¹	(100), 212Db
	l-Acenaphthenylmethyl- carbinol	79	83	5134	(83)
C 15	1,2-Diphenyl-1-propanol	79	75	5112	(53), 122Pu
2.0	, , , , , , , , , , , , , , , , , , , ,	88	65	5 112	182/18, 116Pu
	Dib enzylcar binol	79	89	5 120	199/15
	2-Fluorenylmethylcarbinol	79	65	5 134	(140)
С.,	1-Phenanthrylmethylcatbinol	88	90	5 ²⁸⁰	(110)
- 10	β -(9-Phenanthryl)-ethyl alcohol	90	50	5 453	(92)
С.,	Diphenyl-t-butylcarbinol	91	63	5 419	149/2.5. 1.5748
C 19	Triphenyl carbinol	91	93	5 420	(162)
с [—]	a B B-Triphenulethanol	01	22	c 425	
C 20	Di-g-naphthyleashinol	91	52 90	c 418	
C_{n}	Di-a-naphthylph envloathing	91	26	, 423	(144)
C	Tribiphenylcarbinol	91	55 40	5 422	(167)
				, ,	(200)
		Heteroc		lcohols	
C₄	3-Hydroxytetrahydrofuran		30†	39 ⁵²	48/0.5
	2-Thienol	87	25	5 ⁶⁸³	75/5, 1.5644
C,	2-Furylcarbinol (furfuryl	79	90	5 ⁹⁷	169/754, 1.4828
-	alcohol)	80	88	5 ²⁵¹	173
		81	63	5 ⁵⁰⁸	76/15
	3-Furylcarbinol	84	91	5 ^{6 59}	55/2, 1.4842, 105Pu
	Tetrahydrofurfuryl alcohol	84	55	584	61Pu
		554	85	39°7	178/743, 1.4502 ¹⁹

TABLE 11. HYDROXY COMPOUNDS

TABLE 11 (continued)

Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
Hete	rocyclic	Alcoho	ls (continued	l)
2-Thenyl alcohol	95	49	5 708	96/12, 1.5630 ²⁵
5-Hydroxy-2-methyl-	561	19	39 ²⁸	96/15
thiophene				
Sodium 2-pyridolate	93	95	5 484	
3-Hydroxypyridine	96	28	5 552	(127)
4-Hydroxypiperidine	554	30	39 ¹¹⁹	213/748, (87), 148HCl
2-(a-Furyl)-1-ethanol	84	32	5 54	87/21, 1.4788 ²⁵ , 86Nu
a-Furylmethylcarbinol	88	56	5 ²⁸⁷	70/15, 1.4827 ¹⁵
5-Methylfurfuryl alcohol	79	70	5 ⁹⁶	98/36, 1.4853
2-(a-Tetrahydrofuryl)-2- ethanol	554	90	39 ⁹⁹	71/16, 1.4500 ¹⁷ , 84Pu
2-(a-Thienyl)-ethanol	90	47	5 ⁴⁵⁹	100/7, 1.5478, 53Pu
a-Thienylmethylcarbinol	80	87	5134	92/11, 1.5422 ²⁵
	88	79	5 289	91/11
β -(1-Pyrryl)-ethyl alcohol	95	100	5 514	112/12
2-Pyridylmethanol	87	21	5 248	111-115/16, 150Pi
3-Pyridylmethanol	79	90	5 ⁹⁸	145/16, 158Pi
4-Pyridylcarbinol	93	65	5 ⁷⁰⁶	141/12, (41), 166Pi
a-Piperidylcarbinol	84	29	5 58	82/1
	84	92	5 84	88/5, (70), 135Pi
β -Piperidylcarbinol	84	43	5 ⁵⁹	107/3.5, 1.4964
1-Methyl-4-piperidinol	79	90	5133	97/16
1-Methyl-3-hydroxy- piperidine	574	39	5 785	79/15, 1.4695 ¹⁶ , 194Bz
3-(a-Furyl)-1-propanol	79	80	5 100	105-115/21, 1.4764 ²⁷ , 59Nu
3-(a-Tetrahydrofuryl)-1-	79	65	595	106/10, 1.4560 ²⁵
propanol	84	75	5 55	112/11, 1.4597 13
F - F F	554	92	39 ⁹⁸	112/10
3-(a-Tetrahydrofuryl)-3-	554	88	39 ⁹⁹	84/15, 1.4527 ¹
a-Furvlethylcathinol	88	82	5288	90/23, 1.4759
2-Furvlethynylcarbinol	88	65	5 321	84/2
2-(1-Pyrrolidyl)-1-propanol	84	79	5 665	80/11, 1.4758 ²⁵
1-(1-Pyrrolidy)-2-propanol	558	77	39 109	117/110
B-(2-Pyridyl)-ethyl alcohol	88	50	5 286	89/2
/- (- · · · · · · · · · ·	102	32	5 787	107/7
β -Pyridylmethylcarbinol	79	85	5 136	124/5
1-(a-Piperidyl)-2-ethanol	554	82	39124	86/1.5
2-(B-Piperidyl)-1-ethanol	84	63	5 60	122/6, 1.4888 ²⁵
B-Piperidinoethanol	554	100	39 116	196/746
3-Piperidylmethylcarbinol	554	61	39 ⁹⁵	104/4
N-(2-Hydroxyethyl)-	84	80	561	
piperidine			-	

.

HYDROXY COMPOUNDS

Ch. 5

TABLE 11 (continued)

с _п	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^f _D , (M.p.), Deriv.
	Hete	rocyclic	Alcoho	ls (continued	()
C,	a-Furyl-n-propylcarbinol	88	55	5 286	92/12, 1.4768 ²⁵
	l-(a-Tetrahydrofuryl)- 3-butanol	554	76	39 *7	94/2, 1.454619
	4-(a-Tetrahydrofuryl)- 4-butanol	554	90	39 **	95/14, 1.4536 ¹⁴
	a-Thienyl-n-propylcarbinol	88	84	5 289	85/3
	4-(1-Pyrrolidyl)-butanol	436	72	24 169	113/12, 1,4705 ²⁵
	2-(1-Pyrrolidyl)-2-methyl- propanol	436	76	24 ¹⁶⁹	87/12, (30), 1.4720 ³⁰
	1-(a-Pyridyl)-2-propanol	88	50	5 290	117/17
	a-Pyridyldimethylcarbinol	113	12	5 ⁷⁸⁶	89/12, (50)
	1-(γ-Piperidyl)-2-propanol	554	59	39124	125/0.8, (47)
	l-(a-Piperidyl)-3-propanol	554	89	39 124	95/0.6, 1.4863 ²⁵
	l-(γ-Piperidyl)-3-propanol	554	83	39124	131/1.5, (65), 155HCl
	3-Hydroxythianaphthene	87	8	5247	(70), 225Se
	5-Hydroxythianaphthene	93	51	5 ⁴⁸³	(104)
C,	5-(a-Furyl)-1-pentanol	84	85	5 56	128/16, 58Nu
	a-Furyldiethylcarbinol	91	77	5412	95/14
	5-(a-Tetrahydrofuryl)-1- pentanol	554	90	39 ⁹⁸	142/10
	Tetrahydrofuryldiethyl- carbinol	91	76	5 412	202/740, 1.4552 ²⁵
	3-Piperidino-1-butanol	79	40	5185	110/15, 159BzHCl
	2-Hydroxymethyl- thianaphthene	84	99	5 63	124/1.5 (100)
	2-Hydroxymethylindole	84	68	5 57	(77)
	4-Hydroxyquinoline	575	531	39144	(200)
	5-Hydroxyquinoline	94	47	5 302	(224)
	6-Hydroxyquinoline	97	90	5 302	(193)
	7-Hydroxyquinoline	97	90	5 502	(238)
	8-Hydroxyquinoline	97	90	5 532	122/0.1, (77), 204Pi
	5-Hydroxyisoquinoline	92	48	5 ⁵⁶⁶	(230)
	8-Hydroxyi soquinoline	92	15†	5 ^{3 66}	(213), 285Pi
Cıo	2-Methyl-4-hydroxy-	575	90	39 ¹³²	(236)
	quinoline	575	90	39142	(228)
	4-Methyl-8-hydroxy- quinoline	575	20	39 172	(141)
C 11	o-Furfurylphenol	100	38	5 360	152/14, 1.568917
C 12	1-Ethyl-4-methyl-2-hydroxy- quinoline	575	83	39 ¹⁷³	136/0.5
	1-Hydroxydibenzofuran	87	31	5 243	(141)
	2-Hydroxydibenzofuran	87	37	5 244	(134)
		96	50	5243	(134)
	3-Hydroxydibenzofuran	93	24	5 244	(139)

TABLE 12. DIHYDROXY COMPOUNDS

TABLE 11 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^f _D , (M.p.), Deriv.
	Hete	rocyclic	Alcoho	ls (continued	()
C 12	4-Hydroxydibenzofuran 4-Hydroxydibenzothiophene	87 87	35 33	5 ²⁴⁵ 5 ²⁴⁶	(102) (167)
C 14	N-(β-Hydroxyethyl)- carbazole	558	40	39 ¹⁸⁰	(83.5)
Cıs	N-(β-Hydroxypropyl)- carbazole	558	90	39 ¹⁸⁰	(121)

For explanations and symbols see pp. xi-xii.

TABLE 12. DIHYDROXY COMPOUNDS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^f _D , (M.p.), Deriv.
		Ali	phatic	Diols	
<u> </u>	Ethylene glycol	95	90	5 515	195
\tilde{c}	1 2-Propanediol	84	80	5 ¹³	97/20, 1.4305, 150Pu
0,	1,2 1 109-2020	84	91	5 33	187
		98	95	5 ⁶¹⁶	1.4334 ¹⁷
	(-)-1.2-Propanediol	79	58	514	89/12
c	1 2-Butenedial	98	95	5 616	1.438817
4	1 3 Butanediol	79	86	5 49	104/8
	1,9 Dunie outor	84	30	5 50	115-120/21, 102NBz
		84	80	5 ¹⁵	107/14, 1.4381 ²⁵ , 116Pu
	1 4-Butanediol	84	81	5 34	106/4
		84	62	5 🕊	134/18, 1.4445 ²⁵ , 183Pu
		95	61	5 517	127/20, 198Nu
		97	69	5 ³³⁸	108/4, (19), 1.4467, 180Pu
	2.3-Butanediol	79	75	5146	58/2
	-13	79	62	5 ²	1.4336 ²⁵
		96	50	5 ⁵⁵⁰	183/760, 1.4364 ²⁵
		98	95	5 614	(8), (34)
	1.2.4-Butanetriol	84	67	5 15	133/1, 1.4688
	1,2,3,4-Butanetetrol (erythritol)	84	80	515	(89)
	2-Methyl-1.2-propanediol	84	80	5 ¹⁵	80/12, 1.4340 ²⁵ , 137Pu
		101	94	5 584	178, 1.4350
		107	38	5 ⁶⁰³	177
с.	1 & Pentanediol	84	83	5 43	123/15
~ ;	1,7 1 CHIME CO. 01	99	62	5 623	115/14, 1.4452 ²⁵

194

.

HYDROXY COMPOUNDS

Ch. 5

TABLE 12 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphatic	Diols	(continued)	
C s	1,5-Pentanediol	79	96	5102	105/4, 1.4498, 174Du
		84	92	5 33	109/2.5
		84	80	5 15	124/7, 1.4490 ²⁵ , 172Pu
		95	90	5 \$17	174Pu
		99	47	5 621	119/6
	three-2,3-Pentanediol	98	81	5 615	83/10, 1.4320, 161Db
	erythro-2,3-Pentanediol	98	81	5 615	89/10, 1.4431, 207Db
	2,4-Pentanediol	79	80	5144	195-19 9
	1,2,5-Pentanetriol	99	71	5 622	170/1, 1.4730 ²⁵
	1,3,5-Pentanetriol	84	60	515	139/1, 1.4594 ²⁵ , 152Pu
	2-Methyl-1,4-butanediol	84	72	5*6	127/14
	2-Methyl-2,3-butanediol	107	39	5 ⁶⁰³	175
	2-Ethyl-1,3-propanediol	84	80	515	86/2, 1.4480, 123Pu
		84	49	5 ⁵⁰	87/0.5, 89NBz
	2,2-Dimethyl-1,3- propanediol	81	76	5 ⁵⁰⁶	200, (130)
	1,1,1-tris-(Hydroxymethyl)- ethane	81	51	5 ⁵⁰⁷	(198)
	Pentaerythritol	81	74	5 ⁵⁰⁹	(260)
C 6	1,3-Hexanediol	95		5 516	123/13, 1.4461 ²² , 99Pu
	1,4-Hexanediol	99	90	5 ⁵¹⁶	123/9, 1.4530 ¹⁷ , 71Pu
	1,6-Hexanediol	84	90	5 38	144/4, (42)
		84	83	54	
	2,5-Hexanediol	79	8 6	52	1.4453 ²⁵
	2-Methyl-1,3-pentanediol	79	75	5109	112-115/12
	4-Methyl-1,4-pentanediol	85	83	5 377	107/6, 158NBz
	3-Methyl-1,5-pentanediol	84	50	5 47	136/6
	2-Methyl-2,4-pentanediol	79	100	5 138	111/22
	3-Methyl-2,4-pentanediol	79	63	514	82-90/1
		79	66	5 209	125/36
	3-Methyl-2,5-pentanediol	84	86	5.48	134/20
	2-Ethyl-1, 3-butanediol	84	80	515	87/2, 1,4473 ²⁵ , 135Pu
	Pinacol (anhydrous)	82	30	5 596	172, (38)
	Pinacol hydrate	82	50	5 587	(47)
	2-(n-Propyl)-1,3-propanediol	84	80	5 15	97/3, 1.4480 ²⁵ , 125Pu
	2-Methyl-2-ethyl-1,3- propanediol	81	61	5 312	120/19, (42)
с,	1,4-Heptanediol	99	29	5 ⁹⁵	128/6, 1.4520 ²⁵
	1,7-Heptanediol	84	88	5 39	145/8
	2,4-Heptanediol	79	94	5 158	108/8, 1.4386 ²⁵ , 101Pu
	3-Methyl-2,4-hexanediol	79	54	5 245	109/9, 1.4450
	2-Methyl-3,5-hexanediol	79	73	5144	124/24
	3-Ethyl-2,4-pentanediol	79	64	5144	205-210

TABLE 12. DIHYDROXY COMPOUNDS

TABLE 12 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t , (M.p.), Deriv.
		Aliphatic	Diols	(continued)	
с.	2-Isopropyl-1,3-butanediol	88	72	5 201	106/4, 1.4528
	2-Isopropyl-1,4-butanediol	84	96	5 ⁶⁵⁵	129/6, 1.4515 ²⁵
	2-(n-Butyl)-1,3-propanediol	84	80	5 15	99/2, 1.4492 ²⁵ , 131Pu
	2.2-Diethyl-1,3-propanediol	81	91	5 ³⁰⁶	131/13, (62)
	-,	84	50	5 ⁶⁶²	112/5, (57)
	1.1.1-tris-(Hydroxymethyl)-	81	53	5 ⁵⁰⁷	170-175/6, (82)
	2-methyl propane				
c.	1.2-Octanediol	107	58	5 600	(30)
~6	1.8-Octanediol	84	90	5 42	155/12, (63)
	-,	84	55	5 525	168/15, (63)
	2.4-Octanediol	79	94	5158	118/8, 1.4422 ²⁵ , 127Pu
	5-Methyl-2, 4-heptanediol	79	80	5 158	112/8, 1.4449 ²⁵ , 130Pu
	2-Methyl-4.6-heptanediol	79	77	5144	125/14
	2.5-Dimethyl-2.5-hexanedio	85	99	5 653	(89)
	3 4-Dimethyl-3,4-hexanediol	82	40	5 592	105/21
	2 2-Dimethyl-3.5-hexanedio	79	17	5 144	105-110/10
	2-Isobutyl-1.3-butanediol	84	17	5 50	143/22, 130NBz
	2-Methyl-2-butyl-1,3- propanediol	81	82	5 512	131/15, (48)
C.	1.9 Nonanediol	84	84	5 40	148/1
	4-Methyl-1,4-octanediol	84	61	5 ⁴⁵	126/4, 1.4540 ²⁷
	2-Ethyl- 2-butyl- 1,3-	81	70	5 ⁵⁰⁶	152/10, (42)
	propan edi ol	84	45	515	110/2, (39)
C 10	1,10-Decanediol	84	74	5 39	(74)
		84	94	5 33	151/3, (71)
C 18	1,2-Octade canediol	95	73	5 36	(79)
		Ali	icyclic	Diols	
C ₅	1-(Hydroxymethyl)-1- cyclobutanol	107	39	5 ⁶⁰⁵	78-85/2
C.	cis-1,2-Cyclohexanediol	107	46	5 ⁶⁰⁷	(98)
•	trans-1,2-Cyclohexanediol	98	80	5 617	(104)
	· ·	107	73	5 ⁵⁹⁷	123/4, (103), 92Bz
	cis and trans-1,2-Cyclo- hexanediols	86	••••	5 577	(98) (104)
	cis-1.3-Cyclohexanediol	86	24	5725	137/13, (85), 66Bz
	tran: 1,3-Cyclohexanediol	8 6	16	5 ⁷²⁵	135/13, (118), 124Bz
	cis-4-Cyclohexanediol	79	88	5 188	(102)
		86	38	5 576	(107)
	trans-1.4-Cyclohexanediol	86	62	5 576	(142)
	1-Methyl-1,2-cyclo- pentanediol	107	58	5 ⁶⁰¹	89/1, (65), 92Db

HYDROXY COMPOUNDS

TABLE 12 (continued)

٠

Ch. 5

TABLE	13.	HYDROXY	OLEFINS
INDLL	1.7.	III DROAL	OLDI MIO

TABLE 12 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromatic	Dihydroa	ry Com	pounds (cont	inued)
C,	2-Phenyl-1,3-propanediol	84	50	515	137/2, 1.5348 ²⁵ , (49), 137Pu
C 🗤	2-Phenyl-1,2-butanediol	89	50	5 3 63	165/23, (56)
U U	1-Phenyl-1,3-butanediol	79	50	5144	176/21
		79	95	5 ¹³⁸	168/13
	2-Phenyl-1.4-butanediol	84	50	5 49	165/4, 113Pu
	2-Benzyl-1, 3-propanediol	84	80	515	156/3, (68), 70Pu
	2-Methyl-2-phenyl-1,3- propanediol	81	83	5 512	185/15, (87)
с.,	2 2'-Dihydroxybiphenyl	99	29	5 627	(109)
C.,	1 2-Diphenvl-1 2-ethanediol	79	90	5 138	(136)
Ч	1,2 Diplicit, 1,2 comount	79	89	52	(124-131)
		80	90	5177	
с.	1 1-Diphenyl-1.2-propanediol	91	40	5 426	(95)
01	1,3-Diphenyl-1,3-propanedio	79	51	5144	(93-97)
C 14	2,3-Diphenyl-2,3-butanediol	82	13	5 ⁵⁹⁵	(122)
C.	Triphenylethylene glycol	82	94	5 594	(166)
C ₂	Benzopinacol (tetraphenyl- ethylene glycol)	82	94	5 ⁵⁹¹	(190)
	TAB	LE 13. 1	HYDRC Yield	Chapter ^{ref.}	$B_{p,mm,n} \stackrel{t}{\sim} (M_{p,n}), Deriv,$
<u>_</u>			(%)		
	Al	iphatic (Olefini	c Alcohols	
С,	Allyl alcohol	19	47	2 65	97
C4	<i>cis</i> -Crotyl alcohol	30	76		
	Crotyl alcohol	70		5 657	121/752, 1.4342, 51Db
		13	85	5 ⁶⁵⁷ 5 ²	121/752, 1.4342, 51Db 1.4249 ²⁵
		80	85 60	5 657 5 ² 5 ¹⁷⁵	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760
	Methyl vinylcarbinol	80 88	85 60 60	5 ⁶⁵⁷ 5 ² 5 ¹⁷⁵ 5 ²⁹³	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵
	Methylvinylcarbinol 1-Buten-4-ol (allyl- carbinol)	80 88 88	85 60 60 64	5 657 5 2 5 1 75 5 293 5 305	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵
	Methylvinylcarbinol 1-Buten-4-ol (allyl- carbinol) <i>cis</i> -2-Buten-1,4-diol	80 88 88 30	85 60 64 77	5 657 5 2 5 175 5 293 5 305 2 214	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz
	Methyl vinylcarbinol 1-Buten-4-ol (allyl- carbinol) <i>cis</i> -2-Buten-1,4-diol 3,4-Dihydroxy-1-butene	80 88 88 30 19	85 60 64 77 35	5 657 5 2 5 175 5 293 5 305 2 214 2 66	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12
	Methyl vinylcarbinol 1-Buten-4-ol (allyl- carbinol) <i>cis</i> -2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol	80 88 88 30 19 96	85 60 64 77 35 90	5 637 5 2 5 175 5 293 5 305 2 214 2 66 5 307	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255
C,	Methylvinylcarbinol 1-Buten-4-ol (allyl- carbinol) <i>cis</i> -2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol 3-Penten-1-ol	80 88 88 30 19 96 84	85 60 64 77 35 90 75	5 657 5 2 5 175 5 293 5 305 2 214 2 66 5 307 5 72	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255 130/628, 1.4327
C ₅	Methyl vinylcarbinol 1-Buten-4-ol (allyl- carbinol) <i>cis</i> -2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol 3-Penten-1-ol	80 88 88 30 19 96 84 99	85 60 60 64 77 35 90 75 83	5 657 5 2 5 175 5 293 5 305 2 214 2 66 5 307 5 71 5 733	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255 130/628, 1.4327 138, 1.4356
C ₅	Methyl vinyl carbinol 1-Buten-4-ol (allyl- carbinol) cis-2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol 3-Penten-1-ol cis-3-Penten-1-ol	80 88 88 30 19 96 84 99 30	85 60 64 77 35 90 75 83 75	5 657 5 2 5 175 5 293 5 305 2 214 2 66 5 307 5 71 5 733 2 463	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255 130/628, 1.4327 138, 1.4356 140, 1.4387, 89Nu
C ₅	Methyl vinyl carbinol 1-Buten-4-ol (allyl- carbinol) cis-2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol 3-Penten-1-ol cis-3-Penten-1-ol trans-3-Penten-1-ol	80 88 88 30 19 96 84 99 30 30	85 60 64 77 35 90 75 83 75 60	5 657 5 2 5 175 5 293 5 305 2 214 2 66 5 307 5 71 5 733 2 463 2 463	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255 130/628, 1.4327 138, 1.4356 140, 1.4387, 89Nu 137, 1.4340, 93Nu
C ₅	Methyl vinyl carbinol 1-Buten-4-ol (allyl- carbinol) cis-2-Buten-1,4-diol 3,4-Dihydroxy-1-butene Methallyl alcohol 3-Penten-1-ol cis-3-Penten-1-ol trans-3-Penten-1-ol 4-Penten-1-ol	80 88 88 30 19 96 84 99 30 30 84	85 60 64 77 35 90 75 83 75 60 55	5 657 5 2 5 1 75 5 2 93 5 3 05 2 21 4 2 66 5 3 07 5 71 5 733 2 463 2 463 5 67	121/752, 1.4342, 51Db 1.4249 ²⁵ 121/760 97, 1.4119 ²⁵ 113, 1.4189 ²⁵ 135/15, 1.4716 ²⁵ , 70Bz 95/12 114, 1.4255 130/628, 1.4327 138, 1.4356 140, 1.4387, 89Nu 137, 1.4340, 93Nu 139/766, 1.4305 ¹⁵

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Alicyclic	Diols	continued)	
C 6	1-Methyl-2,3-cyclo- pentanediol	107	65	5 ⁶⁰¹	96/1, 1.4760 ²⁵ , 93Db
ç,	l-Methyl-1,2-cyclo- hexanediol	107	73	5 ⁶⁰¹	107/2, (84), 71Bz
	l-Methyl-2,3-cyclo- hexanediol	107	80	5 ⁶⁰¹	98/1
	1-Methyl-3,4-cyclo- hexanediol	107	81	5 ⁶⁰¹	104/1, (68), 121Db
	2-Hydroxymethylcyclo- hexanol	79	88	5143	136/9, 134NBz
	3-Hydroxymethylcyclo- hexanol	84	84	5 667	166/27, 1.4900, 181Db
	cis-4-Hydroxymethyl- cyclohexanol	84		5 52	135-147/3, 181Pu
	trans-4-Hydroxymethyl- cyclohexanol			5 52	(103)
	1,2-Dimethyl-2,3-cyclo- pentanediol	107	59	5 ⁶⁰¹	86/1, 1.4755 ²⁵
C.8	<i>cis</i> -1,2-Dimethyl-1,2- cyclohexanediol	107	27	5 611	103/10, (50)
C 10	1,1'-Dihydroxy-1,1'- dicyclopentyl	82	31	5 ⁵⁹⁵	(109)
C 12	1,1'-Dihydroxy-1,1'- dicyclohexyl	82	30	5 ⁵⁹³	(130)

C ₆	o-Dihydroxybenzene (catechol)	97	87	5 ⁷⁶⁶	125/12, (105)
	<i>m</i> -Dihydroxybenzene (resorcinol)	92	77	5 564	110/25
	p-Dihydroxybenzene (hydroquinone)	110	18	5 783	(173)•
	1,2,4 Trihydroxybenzene	95	80	5 519	(140)•
	1,3,5-Trihydroxybenzene (phloroglucinol)	94	53	5 500	(219)•
C,	o-Hydroxybenzyl alcohol	79	41	5138	(84)
		79	57	5137	(86)
	<i>m</i> -Hydroxybenzyl alcohol	79	93	5²	(64)
	p-Hydroxybenzyl alcohol	84	60	5 ²³	(125)
C ₈	1-Phenyl-1,2-ethanediol	84	80	515	(68), 150Pu
	Phthalyl alcohol	84	87	5*	(64), 35Ac
	p-Di-(hydroxymethyl)- benzene	96	40	5 117	(118)
C,	γ -Phenylpropylene glycol	95	84	5 518	164/15
	1-Phenyl-1,3-propanediol	95	75	5 794	180/18, (45)

HYDROXY COMPOUNDS

•

198

TABLE 13 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphat	ic Olefin	ic Alco	ohols (contin	ued)
C,	3-Penten-2-ol	88	86	5 291	120/740
	4-Penten-2-ol	88	65	5 3 08	114/740
	1-Penten-3-ol (ethylvinyl- carbinol)	88	55	5301	36/20
	1-Penten-5-ol	90	60	5 461	76/60, 1.4299
	2-Methyl-3-buten-1-ol	88	50	5 ³⁰⁶	121/756, 1.4262, 58Db
	3-Methyl-1-buten-3-ol	30	84	2213	97/757
	Divinylcarbinol	30	67	2 ²¹⁵	65/100, 1.4400 ¹⁷
C6	trans-3-Hexen-1-ol	99	53	5 ⁷³³	64/16, 1.4385, 69Nu
	4-Hexen-1-ol	99	45	5 ⁷³¹	159/760, 1.4407
	cis-4-Hexen-1-ol	30	75	2 463	159, 1.4420, 75Nu
	trans-4-Hexen-1-ol	30	72	2 ⁴⁶³	158, 1.4402, 72Nu
	2,4-Hexadien-1-ol	80	64	5 2 52	77/12, (32), 85Db
	5-Hexen-2-ol	79	78	5 670	139/752, 1.4286 ²⁴
	1-Hexen-3-ol	88	55	5292	92/150
	4-Hexen-3-ol (ethylpropenyl- carbinol)	88	50	5296	45/13, 1.4325 ²³
	1,4-Hexadien-3-ol	30	91	5 ²¹⁵	87/100, 1.4501 ¹⁹ , 94Nu
	1,5-Hexadien-3-ol	88	59	5302	61/40, 1.4471
	1,3-Hexadien-5-ol	88	75	5 311	65/20, 1.4829 ³⁰ , 86Nu
	1,5-Hexadien-3,4-diol	82	45	5 728	100/10
	2-Methyl-3-penten-2-ol	89	70	5 371	37/13, 1.4285 ¹⁷
	4-Methyl-3-penten-2-ol	79	77	5²	1,431025
		79	77	5²	139, 1.4310 ²⁵
		88	50	5 ³⁷¹	55/20, 1.4318 ¹⁷
	2-Methyl-4-penten-2-ol	88	53	5 302	46/30, 1.4263
		89	75	5368	118, 1.4302
	4-Methyl-4-penten-2-ol	88	65	5 307	
	2-Methyl-4-penten-3-ol	88	20	5371	43/21, 1.431616
	Isopropenylvinylcarbinol	30	81	2*15	66/50, 1.4530 ¹⁶
	2,2-Dimethyl-3-buten-1-ol	84	62	5"	130
C,	2-Hepten-1-ol	84	79	572	75/15
	4-Hepten-1-ol	99	29	5 731	176/760, 1.4433
	6-Hepten-1-ol	84	72	5 629	105/20, 1.4403
	3-Hepten-2-ol	80	25	5254	67/16, 1.4391 ¹⁸ , 30NBz
	4-Hepten-3-ol	88	74	5 304	155/760, 1.4384 ¹²
	1-Hepten-4-ol	88	57	5302	66/20, 1.4342
	2-Hepten-4-ol (n-propyl- propenylcarbinol)	88	74	5 ²⁹⁵	64/14, 1.4380 ¹⁸
	1,5-Heptadien-4-ol	88	83	5 302	62/15, 1.4533
		88	66	5316	64/18, 1.4556 ¹⁹
	2-Methyl-4-hexen-3-ol	88	50	5371	56/18, 1.4377 ²¹
	3-Methyl-5-hexen-3-ol	88	84	5302	61/35, 1.4370
		89	52	5367	70/60, 1.4309 ²⁵

TABLE 13. HYDROXY OLEFINS

TABLE 13 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphat	ic Olefin	ic Alco	hols (contin	ued)
C,	5-Methyl-1-hexen-5-ol	91	82	5 428	143
	Vinyli sobuten yl carbinol	88	36	5 698	57/8, 1.4614 ¹⁸
	2,4-Dimethyl-3-penten-2-ol	89	86	5 364	46/14
	2-Isopropyl-3-hydroxy-1- butene	88	75	5 ²⁰¹	84/75, 1.4361
c.	cis-2-Octen-1-ol	30	60	5 303	$89/11, 1.4450^{22}$
	trans-2-Octen-1-ol	95	90	5 3 08	98/21, 1.4437 ²¹
	4-Octen-1-ol	99	86	5 731	88/12, 1.4435 ²⁵
	1-Octen-3-ol (<i>n</i> -amylvinyl- carbinol)	88	49	5 ²⁹⁷	80/20, 1.4379 ²³
	1-Octen-4-ol	88	65	5 302	69/10, 1.4383
	2-Octen-4-ol (n-butyl- propenylcarbinol)	88	66	5 ⁶⁹⁶	83/20, 1.4395, 54Db
	2,4-Octadien-6-ol	88	79	5 310	75/12, 1.4892 ¹⁸
	2,4,6-Octatrien-1-ol	80	70	5 ²⁵²	(100)
	2-Methyl-6-hepten-2-ol	89	80	5370	61-66/13, 1.4387 ¹⁴
		91	89	5 428	66/15, 1.4393 ¹⁷ , 68Pu
	6-Methyl-2-hepten-6-ol	91	91	5 428	70/17, 1.4429 ¹⁵ , 89Pu
	6-Methyl-3-hepten-6-ol	91	83	5 428	64/20, 1.4407 ¹⁴
	3-Ethyl-5-hexen-2-ol	79	80	5 670	164/738, 1.4421 ¹⁶
	cis-2,5-Dimethyl-3-hexen- 2,5-diol	91	35	5 ⁴²⁹	(70)
c.	4-Nonen-1-ol	99	60	5 731	212/760, 1,4478
-,	8-Nonen-1-ol	84	51	5 629	135/20, 1.445023
	4.6-Dimethyl-1-hepten-4-ol	88	83	5 302	75/26, 1,4402
	4.6 Dimethyl-1,5 heptadien- 4-ol	89	91	5 302	72/18, 1.4598
C 11	ω-Undecylenyl alcohol	84	70	5 ⁵	124/6
C 18	Ol e yl alcohol	84	51	5 64	152/1, 1.4590 ²⁵
	Linoleyl alcohol	84	45	5 ⁶⁵	154/3, 1.4698 ²³ , 88Te
	Α	licyclic (Olefinio	Alcohols	
C,	2-Cyclopentenol	96	26 †	5 72 9	52/12, 1.4778 ¹⁷ , 128Pu
C₄	2-Cyclohexenol	80	49	5 ¹⁸⁷	85/25, 1.4861, 107Pu
c,	l-Methyl-2-cyclohexenol	89	38	5 373	64/20, 1.4736
	2-(1-Cyclopentenyl)-ethanol	84	89	5 660	77/9, 1.4765 ²⁵ , 85Db
	1-Vinyl-1-cyclopentanol	30	68	2 ⁴⁶⁵	57/13
	1-Methyl-2-cyclopentenyl- 1-carbinol	84	68	5 ¹⁰⁹	164/760, 67NBz
	Methyl-1-cycl op en tenyl- carbinol	88	85	5314	166/749, 1.4710 ²⁴

200

•

HYDROXY COMPOUNDS

Ch. 5

TABLE 13 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alicycl	ic Olefin	ic Alco	phols (contin	ued)
C ₈	β-(1-Cyclohexenyl)-ethyl alcohol	84	72	5 68	88/8,80Db
	1-Vinyl-1-cyclohexanol	30	70	2 464	75/15
	β -(1-Cyclohexenyl)-ethanol	••••	77	5 ⁷⁸⁹	67/2, 81Db
	1-Allylcyclopentanol	89	54	5 365	63/10, 1.4683
	Ethyl-1-cyclopentenyl- carbinol	88	85	5314	79/10, 1.4750 ¹⁹
C,	4- <i>n</i> - Propyl- 2- cyclohexenol (cryptol)	80	88	5 ¹⁸⁸	77NBz
	4-(2'-Cyclopentenyl)-1- butanol	90	38	5 462	118-123/24, 1.4723
	1-Methallylcyclopentanol	89	25	5365	99/40, 1.4720
C 12	trans-2-Cyclohexenyl- cyclohexanol	79	93	5 ¹⁴⁸	139/15, (42), 117Pu
	Aromati	c Olefini	ic Alco	hols and Phe	enol s
C ₈	o-Vinylphenol		65	5 ⁷⁹⁰	56/4, (29)
C,	Cinnamyl alcohol	79	97	5²	(33)
		79	90	5105	(34)
		80	80	5251	126-130
	Ph enylvinyl carbinol	88	60	5313	54/0.2, 1.5464 ¹⁵
		88	72	5312	107/17, 1.5404 ¹³ , 45NBz
		95	30	5 521	90-95/2, 1.5431
	o-Allylphenol	100	73	5 559	104/19, 1.544524
	o-Propenylphenol	31	75	2 ⁵⁰⁹	114/16, (37)
C 10	Phenylpropenylcarbinol	88	88	5 313	77/0.4, 1.5389 ¹⁸
	Methyl-a-styryl carbinol	88	53	5 ⁶⁸⁸	124/13
	Methyl- β -styrylcarbinol	88	70	5313	104/1, (31)
Cıı	Phenylisobutenylcarbinol	88	33	5 698	79/0.01, 1.5373 ¹⁸
C 14	l-(a-Naphthyl)- 3-buten- 1-ol	88	94	5 ^{69 2}	143/0.8, 1.6099 ²⁵ , 117Nu
	o-Cinnamylphenol	100	60	5 ⁵⁵⁹	209/11, (56), 132Pu
	2-Hydroxymethylstilbene	80	97	5 ¹⁸⁹	(93)

For explanations and symbols see pp. xi-xii.

TABLE 14. HYDROXY ACE TYLENES

TABLE 14. HYDROXY ACETYLENES

C _n	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aliphatic Acetylenic Alcohols								
c,	Propargyl alcohol	88	30	5389	117/760, 1.4320				
C,	2-Butyn-1-ol	43	40	3**	140/758, 1.4520 ²⁵ , 71Db				
- •	1,4-Butynediol	88	90	5 ⁶⁹¹	145/18, (58)				
c.	2-Pentyn-1-ol	88	70	5 327	82/54				
	1-Pentyn-3-ol (ethylethynyl- carbinol)	88	50	5324	123/750, 91Db				
	1-Pentyn-4-ol	90	36	5 463	75/100, 1.4406 ¹⁶				
	Dimethylethynylcarbinol	89	67	5 377	103/750				
		89	93	5 385	98-105, 1.4193				
		89	85	5 386	56/97, 1.4211				
		89	46	5 361	103-107				
C,	2-Hexyn-1-ol	88	71	5 320	88/58,65Db				
•	3-Hexyn-1-ol	90	48	5 320	161, 73Db				
	n-Propylethynylcarbinol	88	53	5 319	64/30, 1.4344 ²⁵				
	2-Methyl-4-pentyn-2-ol	103	40	5 ⁷⁵⁸	126/756, 1.4381 ²¹				
	Methylethylethynyl-	89	78	5 ³⁸⁸	120/760, 1.4220 ²²				
	carbinol	89	72	5 3 83	78/150, 1.4310				
		89	94	5 385	116-120, 1.4305				
		89	33	5 361	119-123				
	4-Methyl-2-pentyn-1,4- diol	88	61	5 ³⁷⁷	103/2, 1.4702				
c,	2-Heptyn-1-ol	88	82	5 320	115/56				
•	3-Heptyn-1-ol	90	30	5 320	111/70, 1.4530 ²⁵ , 61Db				
	5-Methyl-3-hexyn-2-ol	88	60	5 326	156, 1.4418				
	Methyl-z-propylethynyl-	89	50	5383	58/26, 1.4338				
	carbinol	89	77	5388	$139/760, 1.4282^{22}$				
	4 4-Dimethyl-2-pentyn-1-ol	88	71	5 323	163/768, 1.4427 ²²				
	Diethylethynylcarbinol	89	90	5 3 89	138/760, 1.4383				
		89	88	5 388	139/760, 1.4366 ²²				
	Methylethylpropynyl- carbinol	89	70	5 387	134/760, 1.4308 ²⁵				
	2,5-Heptadiyn-4-ol (di- propy nyl carbinol)	91	90	5 ⁴³¹	(107)				
C.	2-Octyn-1-ol	88	57	5 ⁶⁹⁵	77/2, 1.4550				
•	3-Octyn-1-ol	88	21	5 320	106/25				
	3-Octyn-2-ol	89	21	5383	88/40, 1.4347				
	3.5-Octadiyne-2.7-diol	46	84	3 ⁶⁵	120/10-4				
	Methyl-t-butylethynyl- carbinol	89	87	5 361	144				
	2,5-Dimethyl-3-hexyn- 2,5-diol	89	98	5 ³⁹²	(95)				

		ntinued)	14 (co	TABLE		
/mm., n ^t D, (M.p.), Deri	в.	Chapterref.	Yield (%)	Method	Compound	'n
	inue	cohols (conti	nic Ale	c Acetyle	Aliphati	
)/16, 1.4500 ²³		5 325	82	88	3-Nonyn-2-ol	.,
0/760, 1.4362 ²²		5 388	74	89	Methyl-n-amylethynyl-	
26, 1.4396	1	5 383	40	89	carbinol	
/760, 1.4492 22		5 ³⁸⁸	78	89	Diisopropylethynyl- carbinol	
	coh	cetylenic Ale	atic A	and Aron	Alicyclic	
16. (21)		5 3 75	40	89	l-Ethynylcyclopentanol	7
15, (32)		5 393	82	89	1-Ethynylcyclohexanol	8
14, 1.4822, (30)	7	5 ⁷⁰⁰	75	89		
12. (14)	Ģ	5 375	60	89	l-Ethynylcycloheptanol	9
/14. 1.4885 23	1	5 325	35	88	4-Cyclopentyl-2-butyn-1-ol	
/16, (28), 82Pu	1	5 321	65	88	Phenylethynylcarbinol	
/9	· 1	5 690	52	88	l-Phenyl-1-butyn-3-ol	10
/16. 1.573	1	5 690	40	90	1-Phenyl-1-butyn-4-ol	
1	(5 3 83	50	89	Diphenyle thynyl carbinol	15

.

•

:

TABLE	15.	HYDROXY	HALIDES
-------	-----	---------	---------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	· · · · · · · · · · · · · · · · · · ·	Aliphati	c Halo	Alcohol s	
C,	2-Fluoroethanol	55	42	4 607	105, 1.3633 ²⁵ , 128Nu
		95	75	5 433	101
	Ethylene chlorohydrin	77	86	4 459	129*
		84	62	5 75	
	Ethylene bromohydrin	77	33	4 468	55/14
		78	92	4 478	59/22
	2,2-Dichloroethanol	84	63	5 75	145/739
	2,2,2-Tri fluoroeth anol	84	77	5 73	76/740
	2,2,2-Trichloroethanol	79	61	52	
		80	84	5 2 53	94-97/125, (19)
		84	65	5 75	
	eta,eta,eta, eta -Tribromoethanol	80	77	5 177	(80)
с,	2-Chloro-1-propanol	77	43	4 631	124/613, 1,4377, 77Db
-	Trimethylene fluorohydrin	55	50	4 607	128. 1.377125
		95	80	5 413	128
	Trimethylene chlorohydrin	51	60	4 57	64/10
	Trimethylene bromohydrin	51	74	4 62	82/22

TABLE 15. HYDROXY HALIDES

TABLE 15 (continued)

.

с 	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aliphatic Halo Alcohols (continued)								
с.	Trimethylene iodohydrin	51	68	4 62	113/15				
	Glycerol a-monochloro- hydrin	51	66	4 ⁶¹	120/14				
	Glycerol a, y-dichloro- hydrin	51	70	4 ⁶⁰	73/14				
	Glycerol α,γ-dibromo- hydrin	52	54	4130	112/20				
	3,3,3-Trifluoropropanol	87	39	5241	100, 1.3200 28				
	Tri fluoroi sopropanol	79	90	5 73	78				
C₄	2-Chloro-1-but anol	77	49	4 6 31	53/13, 1.4428, 76Db				
	Tetramethylene chloro-	51	16	4 58	87/10, 1.4502				
	hydrin	53	47	4 ¹⁶⁶	85/16, 1.4518				
		54	56	4 105	82/14				
		54	57	4 606	82/14				
	β, β, γ -Trichlorobutyl alcohol	80	92	5 2 51	(62)				
	1-Chloro-2-butanol	77	50	4 460	55/17				
	threo-3-Chloro-2-butanol	77	61	4 461	52/30, 1.4386 ²⁵				
	erythro-3-Chloro-2-butanol	78	83	4 461	56/30, 1.4397 25				
	3-Bromo-2-butanol	77	82	4 471	50-54/13, 1.4762 ²⁵				
	erythro-3-Bromo-2-butanol	78	73	4 563	49/10, 1.4758 ²⁵				
	erythro-3-Iodo-2-butanol	78	75	4 563	(18.9), 1.5371 ²⁵				
	1, 1, 1- Trifluoro- 2- butanol	84	31	5 73	91/752, 1.3403				
	2-Methyl-2-chloro-1-propanol	89	15	5 3 81	127				
	1-Chloro-2-methyl-2-	96	48	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	71/100				
	propanol	101	63	5 585	127				
	1-Bromo-2-methyl-2-propanol	77	73	4 473	49.5/16, 1.4710 ²⁵				
	1,1-Dichloro-2-methyl-2- propanol	91	74	5 ⁴³⁷	38/5, 1.4598 ¹⁹				
	1,3-Dichloro-2-methyl-2-	77	30	4 463	73/23				
	1-Chloro-3-bromo-2-methyl- 2-propanol	77	98	4 463	85/20, 1.5171				
	3,3,3-Trifluoro-2-methyl- 2-propanol	91	80	5 433	(19)				
	Trichloromethyldimethyl-	102	80	5 ⁷³⁶					
	3-Chloro-2-methyl-1,2- propanediol	98	95	5 618	80/1.6, 1.4748				
c.	2-Chloro-1-pentanol	77	43	4 631	59-64/13, 1.4457, 71Db				
- 3	Pentamethylene chlorohydrir	n 51	23	4 ⁵⁸	103/8, 1.4518				
	1-Chloro-2-pentanol	77	43	4 462	75/30, 1.4520				
	-	90	80	5 467	80/28, 1.4425, 84Db				

204

C_n

Compound

3-Chloro-2-methyl-2-butanol

3-Bromo-2-methyl-2-butanol

1-Chloro-3-methyl-2-butanol

Trichloromethylmethylethyl-

Hexamethylene chlorohydrin

Hexamethylene bromohydrin

1-Chloro-2-hexanol

2-Chloro-3-hexanol

1-Bromo-5-hexanol

butanol

butanol

hydrin

C7 1-Chloro-2-heptanol

Ca 1-Chloro-2-octanol

heptanol

C₆ 2-Chlorocyclohexanol

2-Bromocyclohexanol

trans-2-Iodocyclohexanol

4-Chlorocyclohexanol

C, l-Methyl-2-chlorocyclo-

cyclohexanol

hexanol I-Trichloromethyl-1-

C,

2-Chloro-3-octanol

1-Chloro-6-methy1-2-

2-Ethyl-3-chlorohexanol

1-Chloro-4-ethyl-2-hexanol

trans-2-Chlorocyclopentanol

1.1-Dichloro-2-ethyl-2-

3-Chloro-2, 3-dimethyl-2-

Tetramethylethylene bromo-

1-Chloro-5-methy1-2-hexanol

C₅ 3-Bromo-2-pentanol

carbinol C₅ 2-Chloro-1-hexanol

2-Chloro-3-pentanol

1-Chloro-4-pentanol

HYDROXY COMPOUNDS

78

77

80

77

77

77

102

77

51

51

51

77

77

80

91

77

51

77

90

77

90

77

77

51

90

77

77

77

78

80

78

51

89

102

TABLE 15 (continued)

Aliphatic Halo Alcohols (continued)

90

48

76

70

50

35

89

36

55

31

81

60

60

64

70

67

27

60

16

60

30

50

60

30

11

Alicyclic Halo Alcohols

56

73

79

73

30

66

56

82

85

Method Yield Chapterref. B.p./mm., nD, (M.p.), Deriv.

4 43

4 ⁴³

5164

4 467

4 469

4 465

5 736

4 631

4 59

4 ⁵⁸

4 ^{\$70}

4 466

4 467

5 192

5 437

4 467

4 63

4 466

5 468

4 466

5 468

4 467

4 466

4 58

5 468

4 626

4 464

4 471

4 476

5194

4 477

4 571

5 ³⁸⁰

5 736

Ch. 5

53-59/10, 1.4758-1.4717

64-71/30

67/3

46/12

141

145

99/29

1.4486

89/4, 1.4544

112/12, 1.4541

106/5, 1.484524

75/12, 1.4478

70/15, 171/753

89/4, 1.480825

76/14, 1.4710²¹

152, (65)

92/14, 1.4489

87/15, 1.4475

106/13, 55Db

110/14, 1.452319

100/12, 1.4508

121/30, 1.4559

82/15, 1.477025

90/20, 106/45

88/I0, 1.5184²⁵

86/10, 1.517825

86/10, 1.516425

85/5, 1.496416

74/15, 1.477525

122/20, (52)

104/15

(40.4)

93/13, 59Db

(71)

TABLE 15. HYDROXY HALIDES

TABLE 15 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Alic	yclic Halo	Alcoho	ols (continu	ed)
C,	1-Chloro-3-cyclohexyl- 2-propanol	90	15	5 4 68	123/11, 96Db
	Aromat	ic Halo Al	cohols	and Halo Ph	enols
C 6	o-Fluorophenol	56	551	4 ³²⁶	46/10
		97	75	5 ⁵³⁵	50/14
	o-lodophenol	59	63	4 362	130/18, (43)
	<i>m</i> -Fluoroph e nol	56	35	4325	103/46
		97	95	5 ⁵³⁵	84/20
	<i>m</i> -Bromophenol	93	95	5 ⁴⁸⁵	138/12, (33)
	p-Fluorophenol	97	74	5 53 4	87/23
	p-Bromophenol	64	84	4 2 82	150/30, (63)
	p-Iodophenol	56	72	4324	140/5, (94)
		64	80	4 ²⁹⁸	(94)
	2,6-Dichlorophenol	13	91	5 ⁷⁸⁰	(66)
C,	o-Chlorobenzyl alcohol	79	96	5 89	(65)
	o-Iodobenzyl alcohol	81	90	5 511	(71)
	m-Chlorobenzyl alcohol	81	97	5 521	119/10
	<i>m</i> -Bromobenzyl alcohol	81	89	5 511	128/10
	p-Chlorobenzyl alcohol	79	92	589	(72)
	<i>p</i> -Bromobenzyl alcohol	79	96	5 89	(76)
	,,	95	61 †	5 465	(78)
	t-Indobenzyl alcohol	81	81	5 511	(91)
	p 100000111,1 0100101	95	86	5 524	(72)
C	β -Hydroxy- β -phenylethyl chloride	77	76	4 ⁴⁷⁰	111/6, 1.5400, 81NBz
	B-Hydroxy-B-phenylethyl	77	50	4 469	$110/2, 1.5800^{17}$
	bromide	80	85	5177	134/12
		79	71	52	1.575125
	o-Chlorophenylmethyl- carbinol	88	69	5 ²⁷¹	94/4
	o-Bromophenylmethyl-	88	73	5 ²⁷¹	105/3
	carbinol	88	87	5330	109/7. 1.5702
	m-Chlorophenylmethyl-	79	94	5151	103/3. 1.5438
	carbinol	88	88	5271	99-104/4, 1,5405 ²⁵
	<i>m</i> -Bromophenylmethyl-	88	74	5 271	110/3
	p-Bromophenylmethyl-	88	64	5 ²⁷¹	90/1
	t-Fluorophenvlmethyl-	79	98	s 152	91/10, 1,4980 ²⁵
	carbinol	88	66	5329	104-110/20 1.5035 ²⁵
	Cardinol	00		,	104 110/201 11/03/
	t-Chlorophenulmethul-	P O	Q1	< 193	81-86/1 1.5420

HYDROXY COMPOUNDS

Ch. 5

TABLE 15 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv
	Aromatic Halo	Alcohol	s and I	ialo Phenols	(continued)
C.	p-lodophenylmethylcarbinol	80	93	5 ¹⁹⁰	(42)
•	Phenyltrichloromethyl- carbinol	102	41	5 ⁷³⁶	159/26, 1.5673
	p-Trifluoromethylbenzyl alcohol	84	94	574	80/4, 1.4600
C,	<i>m</i> -Trifluoromethylphenyl- methylcarbinol	88	83	5271	102/17, 1.4585
	Phenyltrichloromethyl- methylcarbinol	102	41	5 736	
	3-Chloro-1-phenyl-1- propanol	79	70	5 ¹⁵⁰	131/8, 63NBz
	1-Chloro-3-phenyl-2- propanol	90	18	5468	143/23, 121Db
	α Methyl-α phenyl-β-chloro- ethanol	89	55	5 ³⁹⁵	131/21
	2-Bromo-1-indanol	77	94	4 472	(128)
C in	1-Chloro-4-phenyl-2-butanol	90	45	5 ⁴⁶⁹	113/4, (47)
	6-Bromo-2-naphthol	64	100	4 ²⁸¹	(129)
C11	1-Chloro-5-phenyl-2- pentanol	90	13	5 468	153/8, 107Db

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 5

REFERENCES FOR CHAPTER 5 ¹ Adams and Marvel, J. Am. Chem. Soc., 42. 315 (1920). ² Chaikin and Brown, J. Am. Chem. Soc., 71, 122 (1949); cf. refs. 3 and 4. ³ Nystrom et al., I. Am. Chem. Soc., 71, 3245 (1949); cf. refs. 2 and 4. "Nystrom and Brown, J. Am. Chem. Soc., 69, 1197 (1947); cf. refs. 2 and 3. ⁵ Ford and Marvel, Org. Syntheses, Coll. Vol. II, 372 (1943). ⁶Kenvon and Platt. 1. Chem. Soc., 637 (1939); Doligue, Ann. chim., (10) 15. 483 (1931). ⁷ Marvel and Tanenbaum, J. Am. Chem. Soc., 44, 2648 (1922). ⁸ Koller and Kandler, Monatsh., 58, 234 (1931). ⁹ Cason, J. Am. Chem. Soc., 64, 1108 (1942). 10 Olivier. Rec. trav. chim., 55, 1031 (1936). ¹¹ Prins, Rec. trav. chim., 42, 1050 (1923). ¹² Hansley, Ind. Eng. Chem., 39, 55 (1947). ¹³ Harmon and Marvel, J. Am. Chem. Soc., 54, 2515 (1932). ¹⁴ McClellan and Connor, J. Am. Chem. Soc., 63, 484 (1941). 15 Adkins and Billica. I. Am. Chem. Soc., 70, 3118, 3121 (1948); cf. ref. 46. ¹⁶ Cason et al., 1. Am. Chem. Soc., 66, 1766 (1944). ¹⁷ Dirscherl and Nahm, Ber., 76B, 639 (1943). ¹⁸ Dirscherl and Nahm, Ber., 76B, 709 (1943), ¹⁹ Colonge, Bull. soc. chim. France, (5) 9, 731 (1942). ²⁰ Adkins, Wojcik, and Covert, J. Am. Chem. Soc., 55, 1669 (1933). ²¹ Leonard, I. Am. Chem. Soc., 47, 1774 (1925); cf. ref. 33. ²² Hauser et al., I. Am. Chem. Soc., 69, 591 (1947); cf. ref. 33. ²³ Mozingo and Folkers, J. Am. Chem. Soc., 70, 229 (1948). ²⁴ Hamlin et al., J. Am. Chem. Soc., 71, 2735 (1949). ²⁵ Ford and Adams, J. Am. Chem. Soc., 52, 1260 (1930). ²⁶ Hickinbottom, Reactions of Organic Compounds, Longmans, Green & Co., New York, 2nd ed., 1948, p. 265. ²⁷ Rupe and van Walraven, Helv. Chim. Acta, 13, 369 (1930). ²⁸ Adkins and Burgovne, *I. Am. Chem. Soc.*, 71, 3528 (1949). ²⁹ West. 1. Am. Chem. Soc., 42, 1662 (1920). ³⁰ Adkins, Reactions of Hydrogen, University of Wisconsin Press, Madison, 1937. ³¹ Bowden and Adkins, J. Am. Chem. Soc., 56, 689 (1934). 32 Palfray, Bull. soc. chim. France, (5) 7, 440 (1940). 33 Folkers and Adkins, J. Am. Chem. Soc., 54, 1145 (1932). 34 Adkins and Folkers, J. Am. Chem. Soc., 53, 1095 (1931). 35 Guver, Bieler, and Jaberg, Helv. Chim. Acta, 30, 42 (1947). ³⁶ Niemann and Wagner, J. Org. Chem., 7, 227 (1942); cf. ref. 34. ³⁷ Bleyberg and Ulrich, Ber., 64B, 2510 (1931). 38 Wasserman and Dawson, J. Org. Chem., 8, 76 (1943); Lazier, Hill, and Amend, Org. Syntheses, Coll. Vol. II, 325 (1943); cf. ref. 15. ³⁹ Manske, Org. Syntheses, Coll. Vol. II, 154 (1943). ⁴⁰ Ahmad, Bumpus. and Strong, J. Am. Chem. Soc., 70, 3392 (1948); cf. ref. 39. ⁴¹ Bennett and Mosses, J. Chem. Soc., 1697 (1931); cf. ref. 15. 42 Adams and Kornblum, J. Am. Chem. Soc., 63, 199 (1941). 43 Christian, Brown, and Hixon, J. Am. Chem. Soc., 69, 1961 (1947); cf. refs. 33 and 44.

44 Nystrom and Brown, J. Am. Chem. Soc., 70, 3739 (1948).
45 Cason, Brewer, and Pippen, J. Org. Chem., 13, 239 (1948). 46 Woicik and Adkins, J. Am. Chem. Soc., 55, 4939 (1933); cf. ref. 15. 47 Karrer and Lee, Helv. Chim. Acta, 17, 545 (1934); cf. ref. 46. 48 Nenitzescu, Cioranescu, and Cantuniari, Ber., 70B, 282 (1937). 49 Manske, J. Am. Chem. Soc., 53, 1107 (1931). ⁵⁰ Mozingo and Folkers, J. Am. Chem. Soc., 70, 228 (1948). ⁵¹ Adkins and Burks, J. Am. Chem. Soc., 70, 4174 (1948). 52 Owen and Robins, J. Chem. Soc., 330 (1949). 53 Rambaud, Bull. soc. chim. France, (5) 7, 479 (1940). 54 Amstutz and Plucker, J. Am. Chem. Soc., 63, 206 (1941), ⁵⁵ Barger, Robinson, and Smith. I. Chem. Soc., 720 (1937). 56 Hofmann, J. Am. Chem. Soc., 67, 421 (1945). ⁵⁷ Brehm, J. Am. Chem. Soc., 71, 3541 (1949). ⁵⁶ Renshaw et al., J. Am. Chem. Soc., 61, 639 (1939). ⁵⁹ Sandborn and Marvel, J. Am. Chem. Soc., 50, 565 (1928). 60 Merchant and Marvel, I. Am. Chem. Soc., 50, 1200 (1928). ⁶¹ Adkins et al., I. Am. Chem. Soc., 56, 2425 (1934). 62 Sauer and Adkins. I. Am. Chem. Soc., 60, 402 (1938); cf. ref. 15. 63 Blicke and Sheetz, I. Am. Chem. Soc., 71, 2856 (1949). ⁶⁴ Reid et al., Org. Syntheses, Coll. Vol. II, 468 (1943); Adkins and Gillespie, ibid., 29, 80 (1949). 65 Kass and Burr, J. Am. Chem. Soc., 62, 1796 (1940). ⁶⁶ Gaubert, Linstead, and Rydon, J. Chem. Soc., 1971 (1937). ⁶⁷ Paul, Ann. chim., (10) 18, 333 (1932). ⁶⁸ Cook and Dansi, J. Chem. Soc., 500 (1935); Cook and Lawrence, ibid., 822 (1937). 69 Sauer and Adkins, J. Am. Chem. Soc., 59, 1 (1937). ⁷⁰ Folkers and Adkins, J. Am. Chem. Soc., 53, 1418 (1931). ⁿ Goering, Cristol, and Dittmer, J. Am. Chem. Soc., 70, 3315 (1948). ¹² Martin, Schepartz, and Daubert, J. Am. Chem. Soc., 70, 2601 (1948). ⁷³ Gilman and Jones, J. Am. Chem. Soc., 70, 1281 (1948); Campbell, Knobloch, and Campbell, ibid., 72, 4380 (1950). ⁷⁴Hass and Bender, J. Am. Chem. Soc., 71, 1768 (1949). ⁷⁵Sroog et al., I. Am. Chem. Soc., 71, 1710 (1949). ⁷⁶Adams, Harfenist, and Loewe, J. Am. Chem. Soc., 71, 1627 (1949). "Hunter and Hogg, J. Am. Chem. Soc., 71, 1924 (1949). ⁷⁸ Guss, J. Am. Chem. Soc., 71, 3462 (1949). ⁷⁹ Bennett and Hock, J. Chem. Soc., 475 (1927). ⁶⁰ Prelog and Seiwerth, Ber., 72B, 1640 (1939). ⁸¹ Coleman and Johnson, Org. Syntheses, 21, 10 (1941); cf. ref. 661. ⁸² Barrow and Ferguson, J. Chem. Soc., 410 (1935). ⁸³ Kerwin et al., I. Am. Chem. Soc., 69, 2963 (1947). 44 Adkins and Pavlic, I. Am. Chem. Soc., 69, 3040 (1947); cf. ref. 15. ⁶⁵ Decombe, Ann. chim., (10) 18, 160 (1932). ⁴⁶ Magidson et al., Arch. Pharm., 271, 574 (1933); 272, 78 (1934); cf. ref. 85. ⁶⁷ Adams and Voorhees, Org. Syntheses, Coll. Vol. I, 61 (1941). ⁸⁸ Clarke and Dreger, Org. Syntheses, Coll. Vol. I, 304 (1941). ⁸⁹ Carothers and Adams, J. Am. Chem. Soc., 46, 1675 (1924); 45, 1071 (1923). ⁹⁰ Franke and Kroupa, Monatsh., 69, 190 (1936). 91 Palfrav, Bull. soc. chim. France, (5) 7, 407 (1940).

³² Adams and Garvey, J. Am. Chem. Soc., 48, 477 (1926). 93 Cooke, Gillespie, and MacBeth, J. Chem. Soc., 1825 (1938). 94 Fieser, Joshel, and Seligman, J. Am. Chem. Soc., 61, 2137 (1939). 95 Burdick and Adkins, J. Am. Chem. Soc., 56, 440 (1934). 96 Scott and Johnson, J. Am. Chem. Soc., 54, 2554 (1932). 97 Kaufmann and Adams, J. Am. Chem. Soc., 45, 3041 (1923); Brown and Hixon, Ind. Eng. Chem., 41, 1382 (1949); Bremner and Keeys, J. Chem. Soc., 1068 (1947); cf. ref. 99. 98 Panizzon, Helv. Chim. Acta, 24, 26E (1941). 99 Adkins and Connor, J. Am. Chem. Soc., 53, 1093 (1931). ¹⁰⁰ Hofmann et al., J. Am. Chem. Soc., 69, 193 (1947); cf. ref. 95. ¹⁰¹ Campbell, Anderson, and Gilmore, J. Chem. Soc., 820 (1940). ¹⁰² Woods and Sanders, J. Am. Chem. Soc., 68, 2111 (1946). ¹⁰³ Montmollin and Martenet, Helv. Chim. Acta, 12, 606 (1929). ¹⁰⁴ Wilson and Read. I. Chem. Soc., 1123 (1935). ¹⁰³ Hochstein and Brown, J. Am. Chem. Soc., 70, 3484 (1948); cf. ref. 106. 106 Hill and Nason, J. Am. Chem. Soc., 46, 2236 (1924); Tuley and Adams. ibid., 47, 3061 (1925). 107 Kindler and Gehlhaar, Arch. Pharm., 274, 385 (1936). ¹⁰⁸ Woodward, I. Am. Chem. Soc., 62, 1480 (1940). 109 Rapson and Robinson, J. Chem. Soc., 1536 (1935). ¹¹⁰ Sexton and Britton, J. Am. Chem. Soc., 70, 3606 (1948). ¹¹¹ Adkins and Billica, J. Am. Chem. Soc., 70, 696, 3118 (1948). ¹¹² Kayser, Ann. chim., (11) 6, 155, 188, 238 (1936). ¹¹³ Whitmore and Homeyer, I. Am. Chem. Soc., 55, 4195 (1933); Whitmore and Krueger, ibid., 55, 1531 (1933). ¹¹⁴ Ipatieff and Haensel, J. Am. Chem. Soc., 64, 520 (1942). 115 Whitmore and Otterbacher, Org. Syntheses, Coll. Vol. 11, 317 (1943). ¹¹⁶ Lucas, I. Am. Chem. Soc., 51, 251 (1929). ¹¹⁷ Slabey and Wise, J. Am. Chem. Soc., 71, 3252 (1949). ¹¹⁸ Wiselogle and Sonneborn, Org. Syntheses, Coll. Vol. I, 90 (1941); Hughes, Ingold, and Taher, J. Chem. Soc., 954 (1940); cf. refs. 119 and 120. ¹¹⁹ Bachmann, J. Am. Chem. Soc., 55, 770 (1933). ¹²⁰Zechmeister and Rom, Ann., 468, 123 (1929). ¹²¹ Cramer and Glasebrook, J. Am. Chem. Soc., 61, 231 (1939); cf. ref. 99. 122 Pines, Edeleanu, and Ipatieff, J. Am. Chem. Soc., 67, 2193 (1945); Ruzicka, Platmer, and Wild, Helv. Chim. Acta, 28, 397 (1945); Kohler et al., J. Am. Chem. Soc., 61, 1059, 1061 (1939). ¹²³Henshall, J. Soc. Chem. Ind., 62, 127 (1943). ¹²⁴Cooke, Gillespie, and MacBeth, J. Chem. Soc., 518 (1939). 125 Lutz et al., J. Am. Chem. Soc., 70, 4137 (1948). 126 Ungnade and Ludutsky, J. Org. Chem., 10, 520 (1945); Ungnade, ibid., 14, 333 (1949). 127 Godchot, Cauguil, and Calas, Bull. soc. chim. France, (5) 6, 1358, 1366 (1939); cf. ref. 125. 128 Noller and Adams, J. Am. Chem. Soc., 48, 1080 (1926); cf. refs. 129 and 130. 129 Edwards and Reid, J. Am. Chem. Soc., 52, 3235 (1930). ¹³⁰Goheen, J. Am. Chem. Soc., 63, 745 (1941).

¹³¹ Skita and Faust, Ber., **64B**, 2878 (1931); Hückel and Hagenguth, *ibid.*, 64B, 2892 (1931); cf. ref. 656.

HYDROXY COMPOUNDS

¹³² Hückel and Gelmroth, Ann., 514, 250 (1934). 133 McElvain and Rorig, J. Am. Chem. Soc., 70, 1827 (1948). 134 Mowry, Renoll, and Huber, J. Am. Chem. Soc., 68, 1108 (1946). 135 Nenitzescu, Gavat, and Cocora, Ber., 73B, 237 (1940). ¹³⁶ Strong and McElvain, *I. Am. Chem. Soc.*, 55, 818 (1933). 137 Covert, Connor, and Adkins, J. Am. Chem. Soc., 54, 1651 (1932). 138 Adkins and Cramer, J. Am. Chem. Soc., 52, 4354 (1930). ¹³⁹ Lazier and Arnold, Org. Syntheses, Coll. Vol. II, 142 (1943). 140 Billica and Adkins, Org. Syntheses, 29, 24 (1949). 141 Levene and Walti, Org. Syntheses, Coll. Vol. 11, 545 (1943). 14 Fisher and Chittenden, Ind. Eng. Chem., 22, 870 (1930). 148 Rupe and Klemm, Helv. Chim. Acta, 21, 1539 (1938). 144 Sprague and Adkins, J. Am. Chem. Soc., 56, 2669 (1934). ¹⁴⁵ Bartleson, Burk, and Lankelma, J. Am. Chem. Soc., 68, 2513 (1946). ¹⁴⁶ Foster and Hammelt, J. Am. Chem. Soc., 68, 1737 (1946). 147 Jenkins, Buck, and Bigelow, J. Am. Chem. Soc., 52, 4495 (1930); Jenkins, ibid., 54, 1159 (1932); Weissberger and Bach. J. prakt. Chem., 127, 260 (1930). 148 Hückel et al., Ann., 477, 122, 123 (1929). 149 Fox, J. Org. Chem., 12, 537 (1947). ¹⁵⁰Case, J. Am. Chem. Soc., 55, 2929 (1933). ¹⁵¹ Emerson and Lucas, J. Am. Chem. Soc., 70, 1180 (1948). ¹⁵² Renoll, J. Am. Chem. Soc., 68, 1159 (1946). 153 Powell and Adams, J. Am. Chem. Soc., 42, 651 (1920). ¹⁵⁴ Bernstein and Wallis, J. Am. Chem. Soc., 62, 2873 (1940). 155 Hurd and Perletz, J. Am. Chem. Soc., 68, 38 (1946). 195 Buck and Jenkins, J. Am. Chem. Soc., 51, 2163 (1929). 157 Gomberg and Van Natta, J. Am. Chem. Soc., 51, 2238 (1929); Gomberg and Bachmann, ibid., 49, 2584 (1927). ¹⁵⁸ Stutsman and Adkins, J. Am. Chem. Soc., 61, 3303 (1939). ¹⁹⁹ Blicke and Grier, J. Am. Chem. Soc., 65, 1726 (1943). ¹⁶⁰ Emerson et al., J. Am. Chem. Soc., 68, 674 (1946). 161 Lochte and Pickard, J. Am. Chem. Soc., 68, 721 (1946). ¹⁶² Kindler et al., Ber., 76B, 308 (1943). 168 Scherp, J. Am. Chem. Soc., 68, 913 (1946); cf. ref. 46. ¹⁶⁴ Elderfield et al., J. Am. Chem. Soc., 68, 1579 (1946). 165 Adkins, Connor, and Cramer, J. Am. Chem. Soc., 52, 5195 (1930); cf. ref. 30, p. 51. 166 Davies and Powell, I. Am. Chem. Soc., 67, 1466 (1945). 167 Hyde, Browning, and Adams, J. Am. Chem. Soc., 50, 2292 (1928). 168 Elderfield et al., J. Am. Chem. Soc., 68, 1520 (1946). 16 Fourneau and Barrelet. Bull. soc. chim. France, (4) 47, 78 (1930). ¹⁷⁰Smith and Adkins, J. Am. Chem. Soc., 60, 409 (1938). ¹⁷² Cromwell, Wiles, and Schroeder, J. Am. Chem. Soc., 64, 2432 (1942). ¹⁷² Ghigi, Ann. chim. applicata, 32, 3 (1942). 173 Wilds, Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 178. 174 Kleiderer and Kornfeld, J. Org. Chem., 13, 457 (1948). 177 Young, Hartung, and Crossley, J. Am. Chem. Soc., 58, 100 (1936); cf. ref. 173, p. 200.

¹³⁶ Peak and Robinson, J. Chem. Soc., 1589 (1937).

¹⁷⁷ Lund, Ber., 70B, 1520 (1937). 178 Crawford and Nelson, J. Am. Chem. Soc., 68, 134 (1946). ¹⁷⁹ Marvel and Overberger, J. Am. Chem. Soc., 67, 2250 (1945); cf. ref. 134. 100 Campaigne and Diedrich, J. Am. Chem. Soc., 70, 391 (1948). ¹⁸¹ Brown and Bluestein, *J. Am. Chem. Soc.*, **62**, 3256 (1940). 182 Mannich and Salzmann, Ber., 72B, 506 (1939). 183 Mannich and Lammering, Ber., 55, 3510 (1922). 184 Mannich and Hof, Arch. Pharm., 265, 589 (1927). 185 Mannich and Horkheimer, Arch. Pharm., 264, 167 (1926). 106 Mannich, Borkowsky, and Wan Ho Lin, Arch. Pharm., 275, 54 (1937). 187 Bartlett and Woods, J. Am. Chem. Soc., 62, 2933 (1940); Whitmore and Pedlow, ibid., 63, 758 (1941). 188 Macbeth et al., I. Chem. Soc., 265, 1532 (1939). 189 Natelson and Gottfried, J. Am. Chem. Soc., 64, 2962 (1942). 190 Strassburg, Gregg, and Walling, J. Am. Chem. Soc., 69, 2141 (1947). ¹⁹¹ Kornblum and Iffland, I. Am. Chem. Soc., 71, 2140 (1949). 192 Elderfield et al., I. Am. Chem. Soc., 69, 1259 (1947). 193 Marvel and Schertz, J. Am. Chem. Scc., 65, 2055 (1943). ¹⁹⁴ Winstein, J. Am. Chem. Soc., 61, 1610 (1939). ¹⁹⁵ Schenck, Ber., 67, 1571 (1934). 196 Goebel and Marvel, J. Am. Chem. Soc., 55, 1693 (1933). ¹⁹⁷ Whitmore and Homeyer, I. Am. Chem. Soc., 55, 4558 (1933). 198 Whitmore, Marker, and Plambeck, J. Am. Chem. Soc., 63, 1628 (1941). 199 Tsatsas, Ann. Chim., (11) 19, 237 (1944). 200 Stiller et al., J. Am. Chem. Soc., 62, 1787 (1940); Ford, ibid., 66, 21 (1944). ²⁰¹ Marvel, Myers, and Saunders, J. Am. Chem. Soc., 70, 1694 (1948). 202 Alexander and Marvell, J. Am. Chem. Soc., 72, 3945 (1950); Saunders, Murray, and Cleveland, ibid., 65, 1714 (1943). 203 Backes, Bull. soc. chim. France, (5e) 9, 79 (1942). 204 Conant and Tuttle, Org. Syntheses, Coll. Vol. I, 199 (1941); Bourdiol et al., Bull. soc. chim. France, (5) 8, 375 (1941). 208 Colonge, Bull, soc, chim. France, (5) 1, 1101 (1934). 206 Späth, Lorenz, and Freund, Ber., 76B, 1203 (1943). 207 White and Haward, J. Chem. Soc., 25 (1943). 208 Landau and Irany, J. Org. Chem. 12, 422 (1947); White, J. Chem. Soc., 238 (1943). 209 Kyrides, I. Am. Chem. Soc., 55, 3431 (1933). ²¹⁰ Smith, Chase, and Rhodes, J. Am. Chem. Soc., 66, 1548 (1944); Eccott and Linstead, J. Chem. Soc., 911 (1930). ²¹¹ Powell, Murray, and Baldwin, J. Am. Chem. Soc., 55, 1153 (1933). 212 Powell, I. Am. Chem. Soc., 46, 2514 (1924). ²¹³ Haeussler and Dijkema, Ber., 77B, 601 (1944). ²¹⁴ Powell and Nielsen, J. Am. Chem. Soc., 70, 3627 (1948). ²¹⁵ Vavon and Flurer, Bull. soc. chim. France, 45, 754 (1929). ²¹⁶ Kenner, Ritchie, and Statham, J. Chem. Soc., 1170 (1937); Mannich and Brose, Ber., 56, 841 (1923). 217 Haeussler and Brugger, Ber., 77, 152 (1944). ²¹⁸ Powell and Hagemann, J. Am. Chem. Soc., 66, 372 (1944). 219 Shriner in Organic Reactions, Vol. I, John Wiley & Sons, New York, 1942, p. 1.

²²⁰ Newman, I. Am. Chem. Soc., 64, 2131 (1942). ²²¹ Hussey and Newman, I. Am. Chem. Soc., 70, 3024 (1948). ²²² Fieser, Leffler, et al., J. Am. Chem. Soc., 70, 3209 (1948); cf. ref. 239. ²²⁸ Huston, Goerner, and Gvorgy, J. Am. Chem. Soc., 70, 390 (1948). ²²⁴ Schwenk and Papa, J. Am. Chem. Soc., 67, 1433 (1945); cf. ref. 219, p. 17. ²²⁸ Natelson and Gottfried, J. Am. Chem. Soc., 61, 970 (1939). ²²⁶ Hauser and Breslow, Org. Syntheses, 21, 51 (1941). ¹¹⁷ Baker and Holdsworth, I. Chem. Soc., 728 (1945); Bohnsack. Ber., 74B. 1582 (1941). 228 Colonge and Joly, Ann. chim., (11) 18, 310 (1943); Colonge, Bull. soc. chim, France, (5) 9, 732 (1942). 229 Tsatsas, Ann. chim., (12) 1, 352 (1946). ²³⁰ Harvey, Heilbron, and Wilkinson, J. Chem. Soc., 426 (1930). ²³¹ Abbott, Kon, and Satchell, I. Chem. Soc., 2518 (1928). 232 Bardhan, J. Chem. Soc., 2603, 2615 (1928). 233 Philippi, Hendgen, and Hernler, Monatsh., 69, 277 (1936). ²³⁴Ziegler, Schumann, and Winkelmann, Ann., 551, 120 (1942); Fuson, Arnold, and Cooke, J. Am. Chem. Soc., 60, 2272 (1938); Jones, O'Sullivan, and Whiting, I. Chem. Soc., 1415 (1949). 235 Blaise and Luttringer, Bull. soc. chim. France, (3) 33, 635 (1905). ²³⁶ Courtot, Bull. soc. chim. France, (3) 35, 114 (1906). 237 Lipkin and Stewart, I. Am. Chem. Soc., 61, 3295 (1939). ²³⁸ Fuson and Cooke, J. Am. Chem. Soc., 62, 1180 (1940). ²³⁹ Cymerman, Heilbron, and Jones, J. Chem. Soc., 147 (1944). ²⁴⁰ Kuhn and Grundmann, Ber., 70B, 1899 (1937). ²⁴¹ McBee and Truchan, J. Am. Chem. Soc., 70, 2911 (1948). 242 Müller and Töpel, Ber., 72B, 273 (1939). 243 Gilman and Van Ess, J. Am. Chem. Soc., 61, 1365 (1939). ²⁴⁴Gilman, Bywater, and Parker, J. Am. Chem. Soc., 57, 885 (1935). 245 Gilman and Young, J. Am. Chem. Soc., 57, 1122 (1935). 246 Gilman and Jacoby, J. Org. Chem., 3, 113 (1938). ²⁴⁷ Komppa and Weckman, J. prakt. Chem., 138, 115 (1933). 248 Edwards and Teague, J. Am. Chem. Soc., 71, 3548 (1949). 249 Porter and Steel, J. Am. Chem. Soc., 42, 2650 (1920). ²⁵⁰ Ivanoff, Bull. soc. chim. France, 39, 47 (1926); Kharasch and Reynolds, J. Am. Chem. Soc., 65, 501 (1943). 251 Meerwein and Schmidt, Ann., 444, 221 (1925). 252 Reichstein, Ammann, and Trivelli, Helv. Chim. Acta, 15, 261 (1932). ²⁵³ Chalmers, Org. Syntheses, Coll. Vol. II, 598 (1943). ²⁵⁴ Arcus and Kenvon, J. Chem. Soc., 698 (1938). 255 Whitmore, Karnatz, and Popkin, J. Am. Chem. Soc., 60, 2540 (1938). ²⁵⁶ Whitmore and Johnston, J. Am. Chem. Soc., 60, 2265 (1938). 257 Hiers and Adams, J. Am. Chem. Soc., 48, 2388 (1926). 258 Whitmore and Badertscher, I. Am. Chem. Soc., 55, 1559 (1933). ²⁵⁹ Dauben, J. Am. Chem. Soc., 70, 1377 (1948). 260 Chu and Marvel, J. Am. Chem. Soc., 53, 4449 (1931). 261 Whitmore and Rothrock, J. Am. Chem. Soc., 55, 1107 (1933); cf. ref. 262. 262 Conant and Blatt, J. Am. Chem. Soc., 51, 1227 (1929). 263 Cavalieri, Pattison, and Carmack, J. Am. Chem. Soc., 67, 1785 (1945); cf. ref. 264, p. 344.

264 Wibaut et al., Rec. trav. chim., 58, 329 (1939). 265 Conant and Blatt. J. Am. Chem. Soc., 50, 554 (1928); cf. ref. 13. 266 Barrow and Atkinson, J. Chem. Soc., 638 (1939). ²⁶⁷ Drake and Cooke, Org. Syntheses, Coll. Vol. II, 406 (1943). ²⁶⁰ Gilman and Catlin. Org. Syntheses, Coll. Vol. I. 188 (1949): cf. ref. 257. 269 Bergs. Ber., 67B, 1619 (1934). ²⁷⁰ Turkiewicz, Ber., 72B, 1061 (1939); cf. ref. 128. ²⁷ Overberger et al., Org. Syntheses, 28, 28 (1948); cf. ref. 276. ²⁷² Davies, Dixon, and Iones, 1. Chem. Soc., 468 (1930). ²⁷⁵ Duveen and Kenyon, Bull. soc. chim. France, (5) 5, 1122 (1938). ²⁷⁴ Barber, Slack, and Woolman, I. Chem. Soc., 100 (1943). ²⁷⁵ Gerrard and Kenvon, I. Chem. Soc., 2564 (1928). ²⁷⁶ Marvel et al., I. Am. Chem. Soc., 68, 736, 1088 (1946). 277 Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 337. ²⁷⁸ Marvel et al., I. Am. Chem. Soc., 63, 1894 (1941); 66, 914 (1944). 279 Tsatsas, Ann. chim., (12) 1, 350 (1946). 280 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2098 (1936). ²⁶¹ Newman, J. Am. Chem. Soc., 62, 2298 (1940); cf. refs. 282 and 283. ²⁶² Smith and Spillane, I. Am. Chem. Soc., 62, 2640 (1940). 289 Reichstein et al., Helv. Chim, Acta, 19, 412 (1936), 284 Dillon and Lucas, J. Am. Chem. Soc., 50, 1712 (1928). 285 Freundler and Damond, Bull. soc. chim. France, (3), 35, 110 (1906). ²⁸⁶ Finkelstein and Elderfield, J. Org. Chem., 4, 374 (1939). 287 Duveen and Kenvon, J. Chem. Soc., 622 (1936); cf. ref. 288. 288 Peters and Fischer, J. Am. Chem. Soc., 52, 2081 (1930). 289 Clarke et al., J. Org. Chem., 14, 221 (1949). 290 Walter, Org. Syntheses, 23, 83 (1943). ²⁹¹ Coburn, Ore. Syntheses, 27, 65 (1947); Mulliken, Wakeman, and Gerry, J. Am. Chem. Soc., 57, 1606 (1935). ²⁹² Niemann, Benson, and Mead, J. Org. Chem., 8, 397 (1943); cf. ref. 294. ²⁹³ Young, Winstein, and Prater, J. Am. Chem. Soc., 58, 290 (1936); cf. ref. 294. ²⁹⁴ Delaby, Ann. chim., (9) 19, 275 (1923); Prevost, ibid., (10) 10, 147 (1928); Delaby and Lecomte, Bull. soc. chim. France, (5) 4, 741 (1937). 295 Arcus and Kenvon, J. Chem Soc., 317 (1938); cf. ref. 291. 296 Airs, Balfe, and Kenyon, J. Chem. Soc., 24 (1942); cf. ref. 299. ²⁹⁷ Noller and Girvin, J. Am. Chem. Soc., 59, 607 (1937); cf. ref. 303. 298 Hurd and Puterbaugh, J. Org. Chem. 2, 383 (1937); cf. ref. 291, ²⁹⁹ Smith et al., I. Am. Chem. Soc., 61, 3080 (1939). 300 Ginnings, Herring, and Coltrane, J. Am. Chem. Soc., 61, 807 (1939). ⁵⁰¹ Hunsdiecker, Ber., 75B, 467 (1942); cf. ref. 294. ³⁰² Henze, Allen, and Leslie, J. Org. Chem., 7, 326 (1942). ³⁰³ Gredy, Bull. soc. chim. France, (5) 3, 1093 (1936). ³⁰⁴ Platt. J. Chem. Soc., 318 (1941). sos Amstutz, J. Org. Chem., 9, 310 (1944); Linstead and Rydon. I. Chem. Soc., 1998 (1934). ³⁰⁶ Roberts and Young, J. Am. Chem. Soc., 67, 148 (1945). ³⁰⁷ Tamele, Ott, Marple, and Hearne, Ind. Eng. Chem., 33, 115 (1941). 308 Yanko, Mosher, and Whitmore, J. Am. Chem. Soc., 67, 666 (1945). 309 Ziegler, Ber., 54, 739 (1921).

³¹⁰ Kuhn and Grundmann, Ber., 71B, 444 (1938). ³¹¹ Woods and Schwartzman, J. Am. Chem. Soc., 70, 3394 (1948). ³¹² Duveen and Kenyon, J. Chem. Soc., 1699 (1939); Burton and Ingold, J. Chem. Soc., 915 (1928). ³¹³ Braude, Jones, and Stern, J. Chem. Soc., 401 (1946). ³¹⁴ Urion, Ann. chim., (11) 1, 48 (1934). ³¹⁵ Ou Kiun-Houo, Ann. chim., (11) 13, 195 (1940). ³¹⁶ Duveen and Kenyon, Bull. soc. chim. France, (5) 5, 706 (1938). ³¹⁷ Meerwein et al., J. prakt. Chem., 147, 226 (1936). ³¹⁸ Hennion and Lieb, J. Am. Chem. Soc., 66, 1289 (1944). ³¹⁹ Hennion and Sheehan, J. Am. Chem. Soc., 71, 1964 (1949). 320 Newman and Wotiz, J. Am. Chem. Soc., 71, 1294 (1949). ³²¹ Jones and McCombie, J. Chem. Soc., 733 (1942); Jones, Shen, and Whiting, ibid., 239 (1950); cf. ref. 322. 322 Rutan and May, J. Am. Chem. Soc., 69, 2017 (1947). 323 Bartlett and Rosen, I. Am. Chem. Soc., 64, 544 (1942). 324 McGrew and Adams, J. Am. Chem. Soc., 55, 1499 (1937). ³²⁵ Gredy, Ann. chim., (11) 4, 31, 53 (1935). ³²⁶ Gredy, Bull. soc. chim. France, (5) 2, 1953 (1935). 327 Tchao Yin Lai, Bull. soc. chim. France, (4) 53, 683 (1933). ³²⁸ Stevens, J. Am. Chem. Soc., 56, 1425 (1934), 57, 1112 (1935). ³²⁹ Bachman and Lewis, J. Am. Chem. Soc., 69, 2022 (1947). 330 Marvel and Moon, J. Am. Chem. Soc., 62, 46 (1940). ³³¹ Bradsher, I. Am. Chem. Soc., 62, 487 (1940). 332 Palomaa and Jansson, Ber., 64B, 1606 (1931). 333 Prelog et al., Ann., 545, 255 (1940). 334 Noller et al., J. Am. Chem. Soc., 48, 1079, 1091 (1926). 335 McKenzie and Dennler, J. Chem. Soc., 1600 (1926). ³³⁶ Jacobs et al., J. Org. Chem., 11, 223 (1946). 337 Pierotti and Stewart, J. Am. Chem. Soc., 59, 1773 (1937); cf. ref. 348. 338 Huston and Hedrick, J. Am. Chem. Soc., 59, 2001 (1937). ³³⁹ Whitmore and Laughlin, J. Am. Chem. Soc., 54, 4012, 4392 (1932); cf. ref. 264. 340 Whitmore and George, I. Am. Chem. Soc., 64, 1240 (1942); cf. ref. 339. 34 Huston and Guile, J. Am. Chem. Soc., 61, 70 (1939). 342 Whitmore et al., J. Am. Chem. Soc., 60, 2571, 2573 (1938); cf. ref. 343. 343 Whitmore et al., J. Am. Chem. Soc., 55, 361, 408, 813, 1120 (1933). 344 Whitmore et al., J. Am. Chem. Soc., 63, 2040 (1941). 345 Huston and Barrett, J. Org. Chem., 11, 657 (1946); cf. ref. 338. 346 Greenburg and Aston, I. Am. Chem. Soc., 62, 3135 (1940). 347 Young and Roberts, I. Am. Chem. Soc., 66, 1444 (1944). 346 Church, Whitmore, and McGrew, J. Am. Chem. Soc., 56, 176 (1934). 340 Edgar, Calingaert, and Marker, J. Am. Chem. Soc., 51, 1483 (1929); cf. ref. 264. 350 Blicke and Powers, I. Am. Chem. Soc., 51, 3378 (1929). 351 Deschamps, J. Am. Chem. Soc., 42, 2670 (1920); cf. ref. 264, p. 339. 332 Moersch and Whitmore, J. Am. Chem. Soc., 71, 819 (1949). 355 Nasarow, Ber., 69B, 23 (1936), 70B, 599 (1937). 354 Clarke, J. Am. Chem. Soc., 33, 529 (1911); cf. ref. 264, p. 351. 355 Volkenburgh, Greenlee, Derfer, and Boord, J. Am. Chem. Soc., 71, 172 (1949).

356 Dice, Loveless, and Cates, J. Am. Chem. Soc., 71, 3547 (1949); Bartlett and Bavley, ibid., 60, 2417 (1938). 357 Signaigo and Cramer, J. Am. Chem. Soc., 55, 3329 (1933); Mosher, ibid., 62, 552 (1940). 358 McLellan and Edwards, J. Am. Chem. Soc., 66, 409 (1944). 359 Smith and Lo, J. Am. Chem. Soc., 70, 2210 (1948). 360 Wallis and Bowman, J. Org. Chem., 1, 383 (1936); Inglis, J. Chem. Soc., 540 (1911). ³⁶¹ Coffman, Org. Syntheses, 20, 40 (1940); Sung Wouseng, Ann. chim., (10) 1, 343 (1924). ³⁶² Roblin, Davidson, and Bogert, J. Am. Chem. Soc., 57, 155, 156 (1935). ³⁶³ Ramart-Lucas and Salmon-Legagneur, Bull, soc. chim. France, 51, 1078 (1932). ³⁶⁴ Fieser and Wieghard, J. Am. Chem. Soc., 62, 154 (1940); cf. ref. 372. 365 Crane, Boord, and Henne, J. Am. Chem. Soc., 67, 1239 (1945). ³⁶⁶ Young and Roberts, J. Am. Chem. Soc., 67, 319 (1945). 367 Milas and McAlevy, J. Am. Chem. Soc., 57, 581 (1935). ³⁶⁸ Fischer, Ber., 76B, 735 (1943); cf. ref. 371. 369 Linstead et al., I. Chem. Soc., 1136 (1937). ³⁷⁰ Elliott and Linstead, J. Chem. Soc., 662 (1938). ³⁷¹ Bacon and Farmer, J. Chem. Soc., 1065 (1937); cf. ref. 372. 372 Kohler, Am. Chem. J., 38, 511 (1907); Kyriakides, J. Am. Chem. Soc., 36, 661 (1914). ³⁷³ Whitmore and Pedlow, I. Am. Chem. Soc., 63, 758 (1941). ³⁷⁴ Gilman, Organic Chemistry, John Wiley & Sons, New York, 2nd ed., 1943, p. 672. 375 Backer and van der Bij, Rec. trav. chim., 62, 561 (1943); Heilbron et al., I. Chem. Soc., 1827 (1949). ³⁷⁶ Cymerman, Heilbron, and Jones, J. Chem. Soc., 144 (1944), 90 (1945). ³⁷⁷ Newman, Fones, and Booth, J. Am. Chem. Soc., 67, 1053 (1945). ³⁷⁸ Price and Meisel, I. Am. Chem. Soc., 69, 1497 (1947). ³⁷⁹ Milas, Brown, and Phillips, J. Am. Chem. Soc., 70, 2862 (1948). ³⁸⁰ Bartlett and Rosenwald, J. Am. Chem. Soc., 56, 1992 (1934). ³⁶¹ Turner and Connor, J. Am. Chem. Soc., 69, 1011 (1947). 382 Froning and Hennion, I. Am. Chem. Soc., 62, 654 (1940). 303 Campbell, Campbell, and Eby, J. Am. Chem. Soc., 60, 2882 (1938). ³⁸⁴ Hennion and Banigan, I. Am. Chem. Soc., 68, 1202 (1946). 385 Hurd and McPhee, J. Am. Chem. Soc., 69, 239 (1947); cf. refs. 361 and 362. 386 McMahon et al., I. Am. Chem. Soc., 70, 2974 (1948). 367 Thompson and Margnetti, J. Am. Chem. Soc., 64, 573 (1942). 388 Thompson, Burr, and Shaw, J. Am. Chem. Soc., 63, 187 (1941). 389 Henne and Greenlee, J. Am. Chem. Soc., 67, 484 (1945). 390 Wittig and Waldi, J. prakt. Chem., 160, 243 (1942); cf. ref. 371. ³⁹¹ Willemart, Ann. chim., (10) 12, 362, 373 (1929); cf. ref. 325, p. 56. ³⁹² Bruson and Kroeger, J. Am. Chem. Soc., 62, 36, 41 (1940); cf. ref. 382. ³⁹³ Milas, MacDonald, and Black, I. Am. Chem. Soc., 70, 1831 (1948); cf. ref. 394. ³⁹⁴ Marvel, Mozingo, and Kirkpatrick, J. Am. Chem. Soc., 61, 2006 (1939); Pinknev et al., ibid., 58, 974 (1936).

³⁹⁵ King, J. Am. Chem. Soc., 61, 2386 (1939).

REFERENCES FOR CHAPTER 5

217

⁸⁹⁶ Barnes and Budde, J. Am. Chem. Soc., 68, 2339 (1946). 397 Hurd and Perletz, J. Am. Chem. Soc., 68, 40 (1946). 398 Freon, Ann. chim., (11) 11, 453 (1939). 399 Whitmore and Randall, J. Am. Chem. Soc., 64, 1246 (1942); Whitmore and Lester, ibid., 64, 1252 (1942). 400 McKenzie and Ritchie, Ber., 70B, 33 (1937). ⁴⁰¹ Kloetzel, J. Am. Chem. Soc., 62, 1710 (1940). 402 Marxer, Helv. Chim. Acta, 24, 216E, 223E (1941). 408 Suter and Weston, J. Am. Chem. Soc., 64, 2451 (1942). ⁴⁰⁴Spaeth, Geissman, and Jocobs, J. Org. Chem., 11, 399 (1946). 405 Huston and Bailey, J. Am. Chem. Soc., 68, 1382 (1946). 406 Calingaert et al., J. Am. Chem. Soc., 66, 1391 (1944). 407 Lewis. J. Chem. Education, 7, 856 (1930); Sherrill, Otto, and Pickett, J. Am. Chem. Soc., 51, 3026 (1929). 406 Coleman and Craig, Org. Syntheses, Coll. Vol. II, 179 (1943). ⁴⁰⁹ Neunhoeffer and Schlüter, Ann., 526, 71 (1936). 410 Huston and Krantz, 1. Org. Chem., 13, 66 (1948). ⁴¹¹ Farmer and Warren, *J. Chem. Soc.*, 3231 (1931). ⁴¹² Dounce, Wardlow, and Connor, J. Am. Chem. Soc., 57, 2556 (1935). 413 Whitmore et al., J. Am. Chem. Soc., 63, 643 (1941). ⁴¹⁴ Arnold and Liggett, J. Am. Chem. Soc., 64, 2875 (1942). 413 Whitmore and Forster, J. Am. Chem. Soc., 64, 2966 (1942). ⁴¹⁶ Whitmore et al., J. Am. Chem. Soc., 60, 2458, 2462 (1938). ⁴¹⁷ Whitmore et al., J. Am. Chem. Soc., 60, 2788 (1938). 41º Blicke, J. Am. Chem. Soc., 49, 2848 (1927). 49 Bateman and Marvel, J. Am. Chem. Soc., 49, 2917 (1927). ⁴⁰ Bachmann and Hetzner, Org. Syntheses, 23, 98 (1943); cf. ref. 421. 421 Gilman et al., Rec. trav. chim., 48, 749 (1929); 49, 1177 (1930). 422 Morton, Myles, and Emerson, Org. Syntheses, 23, 95 (1943). 423 Schoepfle, J. Am. Chem. Soc., 44, 188 (1922). ⁴⁴ Moyer and Marvel, Org. Syntheses, Coll. Vol. II, 602 (1943). 425 Boyle, McKenzie, and Mitchell, Ber., 70B, 2159 (1937). ⁴²⁶ Smith and Hoehn, J. Am. Chem. Soc., 63, 1177 (1941). 427 Bachmann and Sternberger, J. Am. Chem. Soc., 56, 171 (1934). 428 Hibbit and Linstead, J. Chem. Soc., 473 (1936). ⁴²⁹ Johnson and Johnson, J. Am. Chem. Soc., 62, 2617 (1940). 430 Salzberg and Marvel, J. Am. Chem. Soc., 50, 1740 (1928). 431 Chauvelier, Ann. chim., (12) 3, 410 (1948). 432 Bradsher and Smith, J. Am. Chem. Soc., 65, 1644 (1943). 433 Gryszkiewicz-Trochimowski, Rec. trav. chim., 66, 427 (1947). ⁴³⁴Weizmann and Bergmann, I. Chem. Soc., 401 (1936); Moureu and Barrett, Bull, soc. chim. France, (4) 29, 993 (1921). 435 Campbell and Campbell, J. Am. Chem. Soc., 60, 1372 (1938). 436 Bardan, Bull. soc. chim. France, (4) 49, 1429 (1931); (5) 1, 143 (1934). 437 Avy, Bull, soc. chim. France, (4) 49, 12 (1931). 438 Barrow and Ferguson, J. Chem. Soc., 416 (1935). 439 Campbell and McKenna, J. Org. Chem., 4, 202 (1939). 440 Spielman and Schmidt, J. Am. Chem. Soc., 59, 2009 (1937). 441 McKenzie and Mills, Ber., 62B, 284 (1929). 442 Dreger, Org. Syntheses, Coll. Vol. 1, 306 (1941).

443 Prout and Cason, J. Org. Chem., 14, 134 (1949). 444 Strating and Backer, Rec. trav. chim., 55, 910 (1936); cf. ref. 446. 445 Veibel et al., Bull. soc. chim. France, (5) 6, 990 (1939). 446 Huston and Agett, J. Org. Chem., 6, 123 (1942); Huston and Langham. ibid. 12, 90 (1947). 447 Schorigin et al., Ber., 64B, 2589 (1931); cf. ref. 446. 446 Blicke and Zienty, J. Am. Chem. Soc., 61, 95 (1939); cf. refs. 334 and 446. 409 Bradsher and Wert, J. Am. Chem. Soc., 62, 2807 (1940). 450 Bartlett and Berry, I. Am. Chem. Soc., 56, 2684 (1934). 451 Pilat and Turkiewicz, Ber., 72B, 1528 (1939); Yohe and Adams. I. Am. Chem. Soc., 50, 1505 (1928). 452 Golumbic and Cottle, J. Am. Chem. Soc., 61, 999 (1939). 453 Bergmann and Blum-Bergmann, J. Am. Chem. Soc., 58, 1679 (1936). 454 Newman, J. Org. Chem., 9, 525 (1944); Cook and Hewett, J. Chem. Soc., 1107 (1933). 455 Speer and Hill, J. Org. Chem., 2, 143 (1937); Papa, Perlman, and Bogert. J. Am. Chem. Soc., 60, 319 (1938); Kipping and Wild, J. Chem. Soc., 1241 (1940). 456 Karrer et al., Helv. Chim. Acta, 23, 586 (1940). 487 Kayser, Ann. chim., (11) 6, 223 (1936). 438 Wooster, Segool, and Allan, J. Am. Chem. Soc., 60, 1666 (1938). 459 Schick and Hartough, J. Am. Chem. Soc., 70, 1646 (1948); Cagniant and Deluzarche, Bull. soc. chim. France, (5) 15, 1084 (1948). 450 Stone, J. Am. Chem. Soc., 62, 571 (1940). 461 Kharasch and Fuchs, 1. Org. Chem., 9, 370 (1944). 462 Arvin and Adams, J. Am. Chem. Soc., 50, 1792 (1928). 463 Haynes and Jones, J. Chem. Soc., 956 (1946). 464 Suter and Weston, J. Am. Chem. Soc., 63, 606 (1941). 465 Gilman and Melstrom. I. Am. Chem. Soc., 70, 4177 (1948). 466 Huston and Bostwick, J. Org. Chem., 13, 334 (1948). 467 Koelsch and McElvain, J. Am. Chem. Soc., 51, 3392 (1929); cf. ref. 168. 468 Koelsch and McElvain, J. Am. Chem. Soc., 52, 1164 (1930). 469 Henze and Holder, J. Am. Chem. Soc., 63, 1943 (1941); cf. ref. 468. 470 Hardegger, Redlich, and Gal, Helv. Chim. Acta, 28, 631 (1945). 471 Plimmer, Short, and Hill, J. Chem. Soc., 695 (1938). 472 Palomaa, Ber., 74B, 297 (1941). 473 Whitmore and Thorpe, J. Am. Chem. Soc., 63, 1118 (1941); Taylor and Price, J. Chem. Soc., 2052 (1929). 474 Clemo, Haworth, and Walton, J. Chem. Soc., 2375 (1929). 475 Stevens and Beutel, J. Am. Chem. Soc., 63, 311 (1941). 476 Grillot and Gormley, J. Am. Chem. Soc., 67, 1968 (1945). 477 Morgan and Harrison, J. Soc. Chem. Ind., 49, 417T (1930). 478 Baker, J. Chem. Soc., 478 (1937). 479 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2195 (1936). 400 Lothrop, J. Am. Chem. Soc., 61, 2117 (1939). 411 Mosettig and Stuart, J. Am. Chem. Soc., 61, 1 (1939). 42 Geissman and Tess, J. Am. Chem. Soc., 62, 515 (1940). 43 Fieser and Kennelly, J. Am. Chem. Soc., 57, 1614 (1935). 444 Caldwell, Tyson, and Lauer, J. Am. Chem. Soc., 66, 1481 (1944).

⁴⁴³Hodgson, J. Am. Chem. Soc., 62, 230 (1940); Koelsch, *ibid.*, 61, 969 (1939); Natelson and Gottfried, *ibid.*, 61, 1001 (1939). 486 Willink and Wibaut, Rec. trav. chim., 53, 418 (1934).

407 Erickson and Spoerri, J. Am. Chem. Soc., 68, 400 (1946).

Higginbottom, Hill, and Short, J. Chem. Soc., 264 (1937).

⁵²⁸ Close, Tiffany, and Spielman, J. Am. Chem. Soc., 71, 1265 (1949). 331 Marvel and White, J. Am. Chem. Soc., 62, 2739 (1940); Fieser, Jacobsen.

532 King and Sherred, J. Chem. Soc., 416 (1942).

530 Weber and Sowa, 1. Am. Chem. Soc., 60, 94 (1938).

529 Prev. Ber., 74B, 1221 (1941); 75B, 350 (1942).

533 Mottier, Helv. Chim. Acta, 18, 840 (1935).

⁵³⁴ Suter, Lawson, and Smith, J. Am. Chem. Soc., 61, 163 (1939); cf. ref. 535.

535 Schiemann, J. prakt. Chem., 143, 23 (1935).

³³⁶ Pfeiffer and Loewe, J. prakt. Chem., 147, 293 (1936). ^{\$37} LaForge, J. Am. Chem. Soc., 55, 3045 (1933).

538 Kirner and Richter, J. Am. Chem. Soc., 51, 2505 (1929).

539 Levine, Eble, and Fischbach, J. Am. Chem. Soc., 70, 1930 (1948).

540 Kornfeld, J. Am. Chem. Soc., 70, 1375 (1948).

541 Gilman and Broadbent, J. Am. Chem. Soc., 70, 2620 (1948).

543 Carter and West, Org. Syntheses, 20, 81 (1940).

545 Carter and West, Org. Syntheses, 20, 101 (1940).

544 Prey, Ber., 76B, 156 (1943).

and Price, ibid., 58, 2163 (1936).

⁵⁴⁶ Le Sueur, J. Chem. Soc., 1895 (1905).

544 Hurtley, J. Chem. Soc., 1870 (1929); Rosenmund and Harms, Ber. 53, 2226 (1920).

⁵⁴⁷ Loevenich, Becker, and Schröder, I. prakt. Chem., 127, 248 (1930).

548 Smith et al., J. Org. Chem., 4, 320 (1939).

⁵⁴⁰ Ashlev et al., J. Chem. Soc., 114 (1942).

⁵⁵⁰ Schierholtz and Staples, J. Am. Chem. Soc., 57, 2710 (1935).

581 Hatch and Moore, J. Am. Chem. Soc., 66, 285 (1944).

552 Maier-Bode, Ber., 69, 1537 (1936).

553 Sparks and Nelson, J. Am. Chem. Soc., 58, 1010 (1936).

⁵⁵⁴ Marvel et al., I. Am. Chem. Soc., 46, 2840 (1924).

555 Danilow and Venus-Danilowa, Ber., 63B, 2769 (1930).

556 Witzemann, J. Am. Chem. Soc., 39, 109 (1917).

557 Dworzak and Prodinger, Monatsh., 50, 467 (1928).

556 Söderbaum and Widman, Ber., 25, 3291 (1892).

³⁵⁹ Tarbell in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 1.; Chem. Revs., 27, 495 (1940).

⁵⁶⁰ Paul and Normant, Bull. soc. chim. France, (5) 5, 1151 (1938).

541 Frank, Berry, and Shotwell, J. Am. Chem. Soc., 71, 3891 (1949).

⁵⁶² Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 239.

443 Hartman, Org. Syntheses, Coll. Vol. I. 175 (1941).

⁵⁶⁴ Fierz-David and Stamm, Helv. Chim. Acta, 25, 368 (1942).

565 Emerson et al., J. Am. Chem. Soc., 68, 1665 (1946).

566 Robinson, J. Am. Chem. Soc., 69, 1942, 1945 (1947).

567 Willson and Meyer, Ber., 47, 3162 (1914).

508 Ungnade and McLaren, J. Am. Chem. Soc., 66, 118 (1944); cf. ref. 569.

569 Ungnade and Nightingale, J. Am. Chem. Soc., 66, 1218 (1944); cf. ref. 568. ⁵⁷⁰ Carlin, I. Am. Chem. Soc., 67, 931 (1945).

⁵⁷¹ Skita and Faust, Ber., 72, 1127 (1939); cf. ref. 722.

572 Adkins and Krsek, J. Am. Chem. Soc., 70, 412 (1948); Papa, Schwenk, and Breiger, J. Org. Chem., 14, 366 (1949); Stork, J. Am. Chem. Soc., 69, 576 (1947); Dauben, McKusick, and Mueller, J. Am. Chem. Soc., 70, 4179 (1948).

Woodward, Org. Syntheses, 25, 55 (1945); Woodward and Doering, I. Am. Chem. Soc., 67, 868 (1945); Icke et al., Org. Syntheses, 29, 63 (1949). Manske, Org. Syntheses, Coll. Vol. I, 404 (1941). 401 Harvey and Robson, J. Chem. Soc., 99 (1938); Astle and Cropper, J. Am. Chem. Soc., 65, 2398 (1943). 42 Silverman and Bogert, J. Org. Chem., 11, 43 (1946). 493 King, McWhirter, and Barton, J. Am. Chem. Soc., 67, 2090 (1945). 44 Ungnade and Henick, J. Am. Chem. Soc., 64, 1737 (1942). 403 Blicke, Smith, and Powers, J. Am. Chem. Soc., 54, 1468 (1932). 496 Carter and Hey, J. Chem. Soc., 152 (1948). ⁴⁰⁷ Smith and Haller, J. Am. Chem. Soc., 61, 143 (1939); Haller and Schaffer, ibid., 55, 4954 (1933). 498 Witt, Nölting, and Grandmougin, Ber., 23, 3635 (1890). ⁴⁹⁹ Drake in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 318. ⁵⁰⁰ Clarke and Hartman, Org. Syntheses, Coll. Vol. I, 455 (1941). ⁵⁰¹ Neunhoeffer and Kölbel. Ber., 68B, 260 (1935). ⁵⁰² Hartshorn and Baird, J. Am. Chem. Soc., 68, 1562 (1946). ⁵⁰³ Hartman, Byers, and Dickey, Org. Syntheses, Coll. Vol. II, 451 (1943). ³⁰⁴ Geissman in Organic Reactions, Vol. 2. John Wiley & Sons, New York, 1944, p. 94. ⁵⁰⁵ Horning, Horning, and Platt, J. Am. Chem. Soc., 69, 2930 (1947). 504 Shortridge et al., J. Am. Chem. Soc., 70, 984 (1948); cf. ref. 512. ⁵⁰⁷ Derfer, Greenlee, and Boord, J. Am. Chem. Soc., 71, 178 (1949). ⁵⁰⁸ Wilson, Org. Syntheses, Coll. Vol. I, 276 (1941). ⁵⁰⁹ Schurink, Org. Syntheses, Coll. Vol. I, 425 (1941); cf. ref. 504, p. 111. ^{\$10} Davidson and Bogert, J. Am. Chem. Soc., 57, 905 (1935). ^{\$11} Lock, Ber., 63, 855 (1930); cf. ref. 504, p. 112. ⁵¹² Fourneau, Benoit, and Firmenich, Bull. soc. chim. France, (4) 47, 868 (1930). ^{\$13} Davidson and Weiss, Org. Syntheses, Coll. Vol. II, 590 (1943). ⁵¹⁴ Blicke and Blake, J. Am. Chem. Soc., 53, 1019 (1931). ⁵¹⁵ Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 115. ^{\$16} Glacet, Ann. chim., (12) 2, 321, 323 (1947). ⁵¹⁷ Bennett and Heathcoat, J. Chem. Soc., 271, 273 (1929); cf. ref. 525. ⁵¹⁰ Hershberg, Helv. Chim. Acta, 17, 354 (1934). ⁵¹⁹ Healey and Robinson, J. Chem. Soc., 1626 (1934). ⁵²⁰ Cason, Org. Syntheses, 21, 1 (1941). ^{\$21} Carroll, J. Chem. Soc., 1267 (1940). ⁵²² Levene and Walti, Org. Syntheses, Coll. Vol. II, 5 (1943). 523 Auwers, Ludewig, and Müller, Ann., 526, 143 (1936). ⁸³⁴ Hartman and Rahrs, Org. Syntheses, 24, 81 (1944). 525 Hill and Hibbert, J. Am. Chem. Soc., 45, 3130 (1923). ⁵²⁶ Guest. J. Am. Chem. Soc., 69, 301 (1947); Mendel and Coops, Rec. trav. chim., 58, 1136 (1939).

⁵²⁷ Benton and Dillon, J. Am. Chem. Soc., 64, 1128 (1942).

219

573 Price and Karabinos, J. Am. Chem. Soc., 62, 1160 (1940). ⁵⁷⁴ Ungnade, J. Org. Chem., 13, 361 (1948). 575 Adkins et al., J. Am. Chem. Soc., 71, 3629 (1949). 576 Olberg, Pines, and Ipatieff, J. Am. Chem. Soc., 66, 1097 (1944). 577 Wilson and Read, 1. Chem. Soc., 1270 (1935); cf. ref. 580. ⁵⁷⁸ Ruggli, Leupin, and Businger, Helv. Chim. Acta, 24, 341 (1941). 579 Vavon and Mitchovitch, Bull. soc. chim. France, 45, 963 (1929). ⁵⁸⁰ Adkins, Reactions of Hydrogen, Wisconsin University Press, Madison, 1937, p. 58. 581 Read and Prisley, J. Am. Chem. Soc., 46, 1512 (1924). ⁵⁴² King, J. Chem. Soc., 1409 (1919). 563 Adams, Kamm, and Marvel, 1. Am. Chem. Soc., 40, 1955 (1918). 584 Hearne, Tamele, and Converse, Ind. Eng. Chem., 33, 806 (1941). 565 Burgin, Hearne, and Rust, Ind. Eng. Chem., 33, 385 (1941). 586 Pressman and Lucas, 1. Am. Chem. Soc., 61, 2276 (1939). ⁵⁸⁷ Adams and Adams, Org. Syntheses, Coll. Vol. I, 459 (1941); Hill and Kropa, 1. Am. Chem. Soc., 55, 2509 (1933). 588 Bachmann, J. Am. Chem. Soc., 55, 1183 (1933). 589 Bachmann, J. Am. Chem. Soc., 55, 2829 (1933). ⁵⁹⁰ Gomberg and Bachmann, I. Am. Chem. Soc., 49, 236 (1927); Bachmann and Shankland, ibid., 51, 306 (1929). ³⁹¹ Bachmann, Org. Syntheses, Coll. Vol. II, 71 (1943); cf. ref. 590. ⁵⁹² Davis and Marvel, J. Am. Chem. Soc., 53, 3843 (1931). ⁵⁹³ Barnett and Lawrence, J. Chem. Soc., 1106 (1935); Backer, Strating, and Huisman, Rec. trav. chim., 60, 383 (1941). ³⁹⁴ Oppenauer, Rec. trav. chim., 58, 321 (1939). ⁵⁹⁵ Ramart-Lucas and Salmon-Legagneur, Bull. soc. chim. France, 45, 726 (1929). ⁵⁹⁶ Avers, 1. Am, Chem. Soc., 60, 2958 (1938). ⁵⁹⁷ Roebuck and Adkins, Org. Syntheses, 28, 35 (1948); cf. ref. 601. ⁵⁹⁸ Swern, Billen, Findley, and Scanlan, *I. Am. Chem. Soc.*, 67, 1786 (1945). ⁵⁹⁹ English and Gregory, *I. Am. Chem. Soc.*, 69, 2120 (1947). 600 Swern, Billen, and Scanlan, J. Am. Chem. Soc., 68, 1504 (1946). 601 Adkins and Roebuck, J. Am. Chem. Soc., 70, 4041 (1948). 602 Glattfeld and Straitiff, J. Am. Chem. Soc., 60, 1385 (1938); Glattfeld and Chittum, ibid., 55, 3663 (1933); Braun, ibid., 51, 228 (1929). 603 Milas and Sussman, J. Am. Chem. Soc., 58, 1302 (1936), 59, 2343, 2345 (1937). 604 Milas, Sussman, and Mason, J. Am. Chem. Soc., 61, 1844 (1939). 605 Roberts and Sauer, J. Am. Chem. Soc., 71, 3925 (1949). 606 Schindler and Reichstein, Helv. Chim. Acta, 25, 552 (1942). 607 Clarke and Owen, J. Chem. Soc., 318 (1949). 608 Braun, J. Am. Chem. Soc., 52, 3176, 3185, 3188 (1930). 409 Glattfeld and Reitz, J. Am. Chem. Soc., 62, 974 (1940); Braun, ibid., 54, 1133 (1932); cf. ref. 608. 610 Milas and Terry, J. Am. Chem. Soc., 47, 1412 (1925). 611 Meerwein, Ann., 542, 127 (1939). 612 Milas and Maloney, J. Am. Chem. Soc., 62, 1841 (1940). ⁶¹³ Scanlan and Swern, J. Am. Chem. Soc., 62, 2305, 2309 (1940). 44 Wilson and Lucas, 1. Am. Chem. Soc., 58, 2400 (1936); cf. ref. 616.

⁴¹⁵ Lucas, Schlatter, and Jones, J. Am. Chem. Soc., 63, 25 (1941). 616 Moureu and Dode, Bull. soc. chim. France, (5) 4, 289 (1937). ar Winstein, J. Am. Chem. Soc., 64, 2794 (1942). 618 Hearne and de Jong, Ind. Eng. Chem., 33, 941 (1941). 619 Cahnmann, Bull. soc. chim. France, (5) 4, 230 (1937). ⁴²⁰ Witzemann et al., Org. Syntheses, Coll. Vol. II, 307 (1943). 621 Kaufman and Reeve, Org. Syntheses, 26, 83 (1946). 422 Grummitt, Stearns, and Arters, Org. Syntheses, 29, 89 (1949); cf. ref. 626. 623 Schniepp, Geller, and Korff, J. Am. Chem. Soc., 69, 672 (1947). 44 Baker, Cornell, and Cron, J. Am. Chem. Soc., 70, 1491 (1948). 625 Woods, Org. Syntheses, 27, 43 (1947); Schniepp and Geller, J. Am. Chem. Soc., 68, 1646 (1946); cf. ref. 102. 626 Wilson, I. Chem. Soc., 49, (1945). 627 Gilman, Swiss, and Cheney, J. Am. Chem. Soc., 62, 1964 (1940). ⁶²⁸ Sawyer and Andrus, Org. Syntheses, 23, 25 (1943). ⁶²⁹ Brooks and Snyder, Org. Syntheses, 25, 84 (1945); Gaubert, Linstead, and Rydon, J. Chem. Soc., 1971 (1937); Paul and Normant, Bull. soc. chim. France, (5) 10, 484 (1943). 630 Smith and Nichols, J. Am. Chem. Soc., 65, 1742 (1943). 631 Emerson and Smith, J. Am. Chem. Soc., 62, 142 (1940). 632 Fieser et al., J. Am. Chem. Soc., 61, 3219 (1939). 633 Fieser and Fieser, J. Am. Chem. Soc., 61, 602 (1939). 434 Caldwell and Thompson, I. Am. Chem. Soc., 61, 765 (1939). 635 Dodgson, J. Chem. Soc., 2435 (1914). ⁶³⁶ Snell and McElvain, Org. Syntheses, Coll. Vol. II, 114 (1943); Speck and Bost, J. Org. Chem., 11, 791 (1946); cf. ref. 637. 637 Corson, Benson, and Goodwin, J. Am. Chem. Soc., 52, 3988 (1930). 638 Kharasch, Sternfeld, and Mayo, J. Org. Chem., 5, 362 (1940). 639 Hansley, J. Am. Chem. Soc., 57, 2303 (1935). 640 Adams and Marvel, Org. Syntheses, Coll. Vol. I, 94 (1941). 641 Buck and Ide, J. Am. Chem. Soc., 53, 2350, 2784 (1931). 642 Fulton and Robinson, J. Chem. Soc., 200 (1939). 648 Dewar and Read. J. Soc. Chem. Ind., 55, 347T (1936); cf. ref. 541. 644 Kinney, J. Am. Chem. Soc., 51, 1595 (1929); Jenkins, ibid., 54, 1159 (1932). 645 Schorigin, Ber., 66B, 1431 (1933); Gomberg, Rec. trav. chim., 48, 850 (1929). 646 Weissberger, J. Chem. Soc., 225 (1935); Hodgson and Rosenberg, ibid., 16 (1930); Lutz and Murphey, J. Am. Chem. Soc., 71, 480 (1949). 647 Hartman and Dickey, J. Am. Chem. Soc., 55, 1228 (1933). 644 Fuson, Weinstock, and Ullyot, J. Am. Chem. Soc., 57, 1803 (1935); Arnold and Fuson, ibid., 58, 1295 (1936). 54 Fuson, Gray, and Gouza, J. Am. Chem. Soc., 61, 1937 (1939). 650 Wegmann and Dahn, Helv. Chim. Acta, 29, 101 (1946). 651 Clemmensen, Ber., 47, 51 (1914); cf. ref. 797. 652 Bruce and Ralls, Org. Syntheses, Coll. Vol. II, 191 (1943). ⁶⁵³ Bruson and Kroeger, J. Am. Chem. Soc., 62, 41 (1940). 654 Bernard and Colonge, Bull. soc. chim. France, (5) 12, 357 (1945). 655 Overberger and Roberts, J. Am. Chem. Soc., 71, 3620 (1949). ⁵⁵⁶ Novce and Denney, I. Am. Chem. Soc., 72, 5743 (1950). 657 Hatch and Nesbitt, J. Am. Chem. Soc., 72, 730 (1950). 658 Reeve and Sadle, J. Am. Chem. Soc., 72, 1253 (1950).

⁸⁵⁹ Sherman and Amstutz, J. Am. Chem. Soc., 72, 2198 (1950). 440 Arnold, Amidon, and Dodson, J. Am. Chem. Soc., 72, 2873 (1950). 661 Conover and Tarbell, J. Am. Chem. Soc., 72, 3586 (1950). 442 Yale et al., J. Am. Chem. Soc., 72, 3716 (1950). 663 Siegel and Bergstrom, J. Am. Chem. Soc., 72, 3816 (1950). 664 Smith and McKenzie, J. Org. Chem., 15, 79 (1950). 665 Moffett, J. Org. Chem., 14, 862 (1949). 666 Ligthelm, Rudloff, and Sutton, J. Chem. Soc., 3187 (1950). 667 Clarke and Owen, J. Chem. Soc., 2111 (1950). 668 Goldschmidt and Veer, Rec. trav. chim., 67, 503 (1948). Willimann and Schinz, Helv. Chim. Acta, 32, 2151 (1949). ⁶⁷⁰ Colonge and Lagier, Bull, soc. chim. France, (5) 16, 15 (1949). ⁶⁷¹ Pascual, Sistare, and Regas, J. Chem. Soc., 1944 (1949). 672 Gruber and Renner, Monatsh., 81, 759 (1950). 673 Arnold, Smith, and Dodson, J. Org. Chem., 15, 1258 (1950). 674 Nightingale and Radford, J. Org. Chem., 14, 1090 (1949). 675 Hayes and Drake, J. Org. Chem., 15, 873 (1950); Wenner, ibid., 15, 301 (1950). 676 Hass, Susie, and Heider, J. Org. Chem., 15, 13 (1950). ⁶⁷⁷ Swann in Weissberger, Technique of Organic Chemistry, Vol. II, Interscience Publishers, New York, 1948, pp. 180-182. 678 Volkenburgh et al., J. Am. Chem. Soc., 71, 3595 (1949). 679 Eliel, J. Am. Chem. Soc., 71, 3971 (1949); also refs. 91, 111, 114, and 138. 680 Lutz, Wayland, and France, J. Am. Chem. Soc., 72, 5511 (1950). ⁶⁸¹ Elderfield, Pitt, and Wempen, I. Am. Chem. Soc., 72, 1342-1344 (1950). 682 Alexander and Mudrak, J. Am. Chem. Soc., 72, 1810 (1950). 663 Hurd and Kreuz, J. Am. Chem. Soc., 72, 5543 (1950). 684 Mentzer and Pillon, Bull. soc. chim. France, (5) 17, 810 (1950). 645 Linstead and Walpole, I. Chem. Soc., 854 (1939). 686 Macbeth and Mills, J. Chem. Soc., 2646 (1949); Jackman, Macbeth, and Mills, ibid., 2641 (1949). 687 Meltzer and Doczi, J. Am. Chem. Soc., 72, 4986 (1950). 688 Alder and Havdn, Ann., 570, 208 (1950). 609 Mousseron and Nguyen Phuoc Du, Bull. soc. chim. France, (5) 15, 91 (1948). 600 Golse, Ann. chim., (12) 3, 548, 554 (1948). 691 Valette, Ann. chim., (12) 3, 661 (1948); Hanford and Fuller, Ind. Eng. Chem., 40, 1175-1176 (1948). 692 Gavlord and Becker, J. Org. Chem., 15, 305 (1950). Whitmore, Whitmore, and Cook, I. Am. Chem. Soc., 72, 51 (1950). 694 Bradsher and Kittila, J. Am. Chem. Soc., 72, 278 (1950). ⁶⁹⁵ Taylor and Strong, J. Am. Chem. Soc., 72, 4264 (1950). ⁶⁰⁶ Hargreaves and Owen, J. Chem. Soc., 757 (1947); cf. refs. 291 and 298. ⁶⁹⁷ Heilbron, Jones, and Weedon, J. Chem. Soc., 83 (1945). ⁶⁹⁶ Braude and Timmons, *I. Chem. Soc.*, 2005, 2007 (1950). 699 Doering and Zeiss, J. Am. Chem. Soc., 72, 148 (1950). 700 Saunders, Org. Syntheses, 29, 47 (1949). 701 Bachmann and Raunio, J. Am. Chem. Soc., 72, 2530 (1950). ⁷⁰¹ Elphimoff-Felkin, Bull. soc. chim. France, (5) 17, 499 (1950). 703 Nenitzescu and Necsoiu, J. Am. Chem. Soc., 72, 3483 (1950). 704 Cottle and Hollyday, I. Org. Chem., 12, 510 (1947).

223

705 Lamboov, I. Am. Chem. Soc., 72, 5327 (1950). ⁷⁰⁶ Prijs, Lutz, and Erlenmeyer, Helv. Chim. Acta, 31, 575 (1948). ⁷⁰⁷ Lock, Monatsh., 55, 180, 183 (1930). 708 Emerson and Patrick, J. Org. Chem., 14, 790 (1949). ⁷⁰⁹ Synerholm, J. Am. Chem. Soc., 69, 2581 (1947). ^{no} Wittcoff and Miller, J. Am. Chem. Soc., 69, 3139 (1947). ⁷¹¹ Reid, Fortenbaugh, and Patterson, J. Org. Chem., 15, 579 (1950). ⁷¹² Villani and Lang, J. Am. Chem. Soc., 72, 2301 (1950). ⁷¹³ Emerson et al., J. Am. Chem. Soc., 72, 5314 (1950). ⁷¹⁴ Buck and Zimmerman, Org. Syntheses, Coll. Vol. II, 549 (1943). ⁷¹⁵ Morris and Riemenschneider, J. Am. Chem. Soc., 68, 500 (1946); Baltzly and Buck, ibid., 65, 1984 (1943). ⁿ⁶ Ungnade and Zilch, J. Org. Chem., 15, 1109 (1950). ¹¹⁷ Rhoad and Flory, J. Am. Chem. Soc., 72, 2218 (1950). ⁷¹⁶ Lowenthal and Pepper, J. Am. Chem. Soc., 72, 3292 (1950). ⁷¹⁹ David, Dupont, and Paquot, Bull. soc. chim. France, (5) 11, 562 (1944). ⁷²⁰ Clarke and Owen, I. Chem. Soc., 2111 (1950). 711 Shreve and Lloyd, Ind. Eng. Chem., 42, 811 (1950). 721 Nickels and Heintzelman, J. Org. Chem., 15, 1143 (1950). 723 Jackman, Macbeth, and Mills, J. Chem. Soc., 1717 (1949). ⁷²⁴ Baker and Schuetz, J. Am. Chem. Soc., 69, 1250 (1947). 728 Clarke and Owen, J. Chem. Soc., 2105 (1950); Rigby, ibid., 1586, 1588 (1949). ⁷²⁶ Allen, J. Am. Chem. Soc., 72, 3797 (1950); J. Org. Chem., 15, 435 (1950). ⁷²⁷ Laude and Wiemann, Bull. soc. chim. France, (5) 13, 256 (1946). 728 Young, Levanas, and Jasaitis, J. Am. Chem. Soc., 58, 2274 (1936); Urion, Ann. chim., (11) 1, 39, 67 (1934); Wiemann, ibid., (11) 5, 287 (1936). ⁷²⁹ Booth, Boyland, and Turner, J. Chem. Soc., 1188 (1950). 730 Elderfield and Dodd in Elderfield's Heterocyclic Compounds, Vol. I, John Wiley & Sons, New York, 1950, pp. 170-177; Paul, Bull. soc. chim. France, (5) 14, 158 (1947). 731 Brandon, Derfer, and Boord, J. Am. Chem. Soc., 72, 2120 (1950); Jacobson, ibid., 72, 1490 (1950); cf. ref. 733. 732 Adams and Vanderwerf, J. Am. Chem. Soc., 72, 4371 (1950). 733 Combie and Harper, J. Chem. Soc., 1707, 1714 (1950). 734 Mugdan and Young, I. Chem. Soc., 2988 (1949). 735 Swern, Chem. Revs., 45, 25-30 (1949). 736 Weizmann, Bergmann, and Sulzbacher, J. Am. Chem. Soc., 70, 1189 (1948); Bergmann, Ginsburg, and Lavie. ibid., 72, 5012 (1950). 73' Howard, J. Am. Chem. Soc., 52, 5059 (1930); Ekeley and Klemme, ibid., 46, 1252 (1924). 738 Wagner, J. Am. Chem. Soc., 71, 3215 (1949); cf. ref. 209. 739 Dubois, Bull. soc. chim. France, (5) 16, 66 (1949). 740 Colonge and Cumet, Bull. soc. chim. France, (5) 14, 838 (1947). ⁷⁴¹ Morgan, Megson, and Pepper, Chemistry & Industry, 16, 885 (1938). ⁷⁴² Long and Troutman, J. Am. Chem. Soc., 71, 2470 (1949). 743 Reasenberg and Smith, J. Am. Chem. Soc., 66, 993 (1944); cf. ref. 746. 744 Sprang and Degering, J. Am. Chem. Soc., 64, 1063 (1942); Cerf De Mauny, Bull. soc. chim. France, (5) 7, 135 (1940).

⁷⁴³ Vanderbilt and Hass, *Ind. Eng. Chem.*, 32, 34 (1940); Gakenheimer and Hartung, J. Org. Chem., 9, 86 (1944).

746 Parham and Bleasdale, J. Am. Chem. Soc., 72, 3844 (1950); Nightingale and lanes, ibid., 66, 352 (1944). 747 Marans and Zelinski, 1. Am. Chem. Soc., 72, 5329 (1950). 748 Attenburrow, Elks, Hems, and Speyer, J. Chem. Soc., 514 (1949); Blicke et al., I. Am. Chem. Soc., 67, 206 (1945). 749 Hoover and Hass, J. Org. Chem., 12, 507 (1947). 730 Schmidt, Ascherl, and Mayer, Ber., 58, 2430 (1925); cf. ref. 746. 751 Lambert and Lowe, J. Chem. Soc., 1517 (1946). 752 Grob and Tscharner, Helv. Chim. Acta. 33, 1075 (1950); Nightingale, Erickson, and Knight, I. Org. Chem., 15, 782 (1950); Fraser and Kon, I. Chem. Soc. 606 (1934). 753 Sprang and Degering, 1. Am. Chem. Soc., 64, 1735 (1942). ⁷⁹⁴ Gault and Roesch, Bull. soc. chim. France, (5) 4, 1411 (1937); Roesch, ibid., (5) 4, 1643 (1937). 755 Gault et al., Bull. soc. chim. France, (5) 5, 386 (1938); 3, 54 (1936). ⁷³⁶ Burkhard, Bull. soc. chim. France. (5) 5, 1664 (1938); Wendling, ibid., (5) 3. 790 (1936). ⁷⁵⁷ Newman and Rosher, 1. Org. Chem., 9, 223 (1944). 758 Henbest, Jones, and Walls, J. Chem. Soc., 2696 (1949). 759 Colonge and Dumont, Bull. soc. chim. France, (5) 14, 44 (1947). ⁷⁶⁰ Ide and Buck in Organic Reactions. Vol. 4. John Wiley & Sons, New York, 1948. р. 269. 761 Sheehan, O'Neill, and White, I. Am, Chem, Soc., 72, 3376 (1950). ⁷⁶² Dupont, Dulou, and Duplessis-Kergomard, Bull. soc. chim. France, (5) 16, 314 (1949). 763 Deschamps, King, and Nord, J. Org. Chem., 14, 185 (1949). 764 Kipnis, Soloway, and Ornfelt, J. Am. Chem. Soc., 70, 142 (1948). 765 Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 540. 766 Clarke and Taylor, Org. Syntheses, Coll. Vol. I, 150 (1941). ⁷⁶⁷ Weizmann, Bergmann, and Sulzbacher, J. Org. Chem., 15, 54 (1950). 760 Horning, Horning, and Walker, I. Am. Chem. Soc., 71, 169 (1949). 769 Adkins, Richards, and Davis, J. Am. Chem. Soc., 63, 1320 (1941). 770 Linstead and Michaelis, J. Chem. Soc., 1134 (1940). ⁷⁷¹ Ruzicka, Helv. Chim. Acta, 19, 419 (1936). 772 Sowa, Hinton, and Nieuwland, I. Am. Chem. Soc., 54, 3696 (1932). 773 Huston and Hsieh, J. Am. Chem. Soc., 58, 439 (1936). 774 Kolloff and Page, 1. Am. Chem. Soc., 60, 948 (1938). 775 Huston and Hedrick, J. Am. Chem. Soc., 59, 2002 (1937). 776 Shriner and Hull, J. Org. Chem., 10, 228 (1945); Robinson and Weygand, J. Chem. Soc., 387 (1941); Barclay, Burawoy, and Thomson, ibid., 400 (1944); Burawov and Chamberlain, ibid., 624 (1949). " Cornforth, Cornforth, and Robinson, J. Chem. Soc., 682 (1942). 77 Ipatieff, Pines, and Friedman, J. Am. Chem. Soc., 60, 2495 (1938). 779 McElvain in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, D. 256. 780 Tarbell, Wilson, and Fanta, Org. Syntheses, 29, 35 (1949). 781 Smith and Welch. J. Chem. Soc., 730 (1934). 742 Ritter, 1. Am. Chem. Soc., 70, 4253 (1948). 743 Baker and Brown, 1. Chem. Soc., 2303 (1948).

⁷⁸⁴ Hauser and Breslow, J. Am. Chem. Soc., 61, 793 (1939).

705 Paul and Tchelitcheff, Bull. soc. chim. France, (5) 13, 388 (1946).

⁷⁸⁶ Emmert and Asendorf, Ber., 72, 1188 (1939); Emmert and Pirot, *ibid.*, 74, 718 (1941).

707 Tullock and McElvain, J. Am. Chem. Soc., 61, 962 (1939).

⁷⁸⁸ Colonge and Rochas, Bull. soc. chim. France, (5) 15, 818, 822, 825, 827 (1948).

789 Arnold and Dowdall, J. Am. Chem. Soc., 70, 2590 (1948).

⁷⁹⁰ Smith and Niederl, J. Am. Chem. Soc., 53, 807 (1931).

⁷⁹¹ Astle and Stephenson, J. Am. Chem. Soc., 65, 2402 (1943).

⁷⁹² Adams and Marvel, Org. Syntheses, Coll. Vol. I, 366 (1941); Kornblum et al.,

J. Am. Chem. Soc., 69, 309 (1947).

⁷⁹³ Rabjohn in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 338.

⁷⁹⁴ Fourneau, Benoit, and Firmenich, Bull. soc. chim. France, (4) 47, 896 (1930).

⁷⁹⁵ Read and Wood, Org. Syntheses, 20, 57 (1940).

796 Hart, J. Am. Chem. Soc., 71, 1966 (1949).

"" Nightingale and Radford, J. Org. Chem., 14, 1089 (1949).

798 Wittcoff, Org. Syntheses, 31, 101 (1951).

⁷⁹⁹ Sethna, Chem. Revs., 49, 91 (1951).

⁸⁰⁰ Brown in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 469.

son Hansley, Ind. Eng. Chem., 43, 1759 (1951).

Ethers

CONTENTS

PAGE

METHOD

115. Alkylation of Hydroxy Compounds by Halogen Compounds	226
116. Alkylation of Hydroxy Compounds by Alkyl Sulfates, Sulfites, or Sul-	
fonates	228
117. Haloalkylation of Alcohols	230
118. Dehydration of Alcohols	230
119. Interaction of Grignard Reagents and Halo Ethers	231
120. Addition of Halo Ethers to Olefins	232
121. Addition of Hydroxy Compounds to Olefinic Compounds	232
122. Addition of Alcohols to Oxides	233
123. Halo Ethers by Action of Acyl Chlorides on Acetals	234
124. a-Alkoxy Ketones by Interaction of Alcohols and Diazoketones	234
Table 16. Ethers	235
Table 17. Diethers	238
Table 18. Olefinic Ethers	238
Table 19. Acetylenic Ethers	240
Table 20. Halo Ethers	240
Table 21. Hydroxy Ethers	246
References	249

115. Alkylation of Hydroxy Compounds by Halogen Compounds

$RONa + R'X \rightarrow ROR' + NaX$

Preparation of symmetrical and unsymmetrical aliphatic ethers can be accomplished by coupling alkyl halides and sodium alkoxides (Williamson). The formation of the alkoxide may be slow and incomplete because the slow-dissolving alkoxide coats the sodium. This difficulty can be overcome by using a large excess of alcohol. After the sodium has dissolved, the alkyl halide is added to form the ether which is finally removed by fractional distillation.¹ Sodium *t*-butoxide is not only formed slowly but also reacts very slowly with alkyl halides. The reaction of the *t*-alkyl halide with the sodium alcoholate is not any better, for the chief products are olefins. Consequently, another method must be considered for preparing *t*-alkyl ethers (method 118). Even in the conversion of *s*-alkyl halides, olefin formation occurs. Syntheses of alkyl phenyl ethers, C_6H_8 OR, are carried out by refluxing aqueous or alcoholic solutions of alkali phenolates with alkyl halides; the yields vary with the nature of the alkyl halides (40-80%).^{1,6} The reactive halogen in benzyl halides is easily replaced by an alkoxyl group (95%).^{9,10} The choice of a solvent is sometimes important. Thus, in the preparation of the alkyl ethers of o- and *p*-hydroxybiphenyl from a mixture of the phenol, alkyl halide, and powdered potassium hydroxide, high yields are obtained using acetone as a solvent, whereas, with alcohol as solvent, only small yields are obtained.¹¹ Triarylmethyl chlorides react with alcohols directly (97%).¹²

$$Ar_3CCl + ROH \rightarrow Ar_3COR + HC$$

In the preparation of substituted diaryl ethers (ArOAr'), the reaction of alkali phenoxides and aryl halides is catalyzed by copper (Ullmann).^{14, 23} Further studies have shown that the yield varies considerably with different copper-catalyst preparations.^{15, 24}

The chlorine atom in furfuryl chloride, like that in benzyl chloride, is very reactive and is readily replaced by the alkoxyl group (80%).¹⁷ On the other hand, the chlorine atom in tetrahydrofurfuryl chloride is unreactive, so that the corresponding ethers are prepared from the alkali alcoholate and alkyl halides (80%).¹⁸

2-Pyridyl aryl or alkyl ethers are made by condensing 2-bromopyridine with the appropriate sodium phenoxide or sodium alkoxide, copper powder being an effective catalyst in certain instances.¹⁵⁸

Certain diethers of the type $ROCH_2CH_2OR'$ have been prepared by adding alkyl halides to a solution of sodium in excess ethylene glycol monoalkyl ether, as in the preparation of ethylene glycol dimethyl ether (78%).²² Chloromethyl methyl ether and alcohols react to give an acetal derivative of formaldehyde, CH_3OCH_2OR ; the reaction is carried out in the presence of pyridine.²⁶ Aromatic diethers such as 2-methoxydiphenyl ether have been prepared by the Ullmann procedure.²³

Allylic chlorides, e.g., allyl, methallyl, and crotyl chlorides, are very reactive and are employed in the synthesis of *unsaturated ethers*.^{6, 27, 30} Besides the usual coupling of the sodium alcoholate and halide in alcohol solutions other conditions have been described, including reaction of the alcohol and unsaturated halide in the presence of potassium carbonate or sodium hydroxide in acetone or water. The combination of anhydrous potassium carbonate and acetone is widely used in the preparation of allyl aryl ethers;³⁰ the reaction is aided by the addition of finely powdered potassium iodide.³¹

Hydroxy ethers of the type ROCH₂CH₂CH₂OH are obtained by adding alkyl halides to a hot solution of sodium in excess trimethylene glycol Ch. 6

diluted with xylene (60-70%).^{37, 43} A series of 2-alkoxyethanols is made in a similar way from ethylene glycol and various alkyl halides.¹⁵³ The interaction of sym-glycerol dichlorohydrin and sodium alcoholates leads to sym-dialkoxypropanols in an average yield of 40%.³⁹ In the preparation of the phenyl ethers, the sodium phenoxide is treated with the chlorohydrin.^{41, 42}

Halo ethers are prepared by adding an alcoholic solution of the sodium alkoxide to the polymethylene halide, $X(CH_2)_n X$, in anhydrous ether⁴⁵ or benzene,⁴⁶ as illustrated by the preparation of 1-bromo-6-methoxyhexane (47%). In a somewhat different manner, an aromatic halo ether such as γ -phenoxypropyl bromide is synthesized by the action of phenol and the dihalide in the presence of hot aqueous sodium hydroxide (85%).⁴⁷ The syntheses of o- and p-chlorophenyl phenyl ethers have been successfully accomplished by the Ullmann procedure (40-55%), whereas chlorination of diphenyl ether yields an inseparable mixture of isomers.¹⁴

Dialkoxyaldebydes of the type RCH(OCH₃)CR(OCH₃)CHO are prepared from the corresponding α , β -dichloroaldebydes by the action of very dilute solutions of sodium alkoxide below 15° (70-85%).⁵⁰ In these preparations, the presence of potassium iodide or an alkyl iodide has been helpful. The yield of phenoxyacetone from chloroacetone and sodium phenoxide is increased from 16-23% to more than 90% chiefly by the presence of potassium iodide in the reaction mixture.⁵¹ The reaction of alkyl iodides with phenolic aldehydes in methanolic potassium hydroxide gives *p*-alkoxybenzaldehydes (60-75%).⁶³

Alkoxy acids⁵³ and esters⁵⁸ have been prepared from the corresponding chloro derivatives. Reaction of the hydroxyl group of methyl lactate with methyl iodide is brought about by silver oxide (65%).¹⁰¹ Alkylation of the isomeric hydroxy benzoic acids is readily accomplished.^{97, 98}

Aromatic¹⁴ and aliphatic⁶¹ amino ethers have been synthesized by this method. An example of the formation of a cyano ether is the preparation of *p*-cyano benzyl methyl ether from the substituted benzyl bromide and sodium methoxide (84%).⁶² Also, certain aryloxyacetonitriles, ArOCH₂CN, are made by the condensation of chloroacetonitrile with sodium phenoxides in a solution of methyl ethyl ketone containing a small amount of sodium iodide (70-80%).¹³⁵ Aromatic nitro ethers, like o- and *p*-nitrodiphenyl ether, have been prepared by the Ullmann procedure (84%).²⁴ The synthesis of alkyl *p*-nitrophenyl ethers has also been accomplished with good yields (55-92%).⁶³

116. Alkylation of Hydroxy Compounds by Alkyl Sulfates, Sulfites, or Sulfonates

 $2RONa + (CH_3)_2SO_4 \rightarrow 2ROCH_3 + Na_2SO_4$

Mixed aliphatic ethers containing methyl or ethyl radicals can be synthesized from the corresponding alkyl sulfate and magnesium alcoholates, e.g., methyl *n*-butyl, methyl cyclohexyl, and methyl isoamyl ethers (70– 78%).⁷² A higher yield of ethyl isobutyl ether is obtained by substituting sodium for magnesium (70% vs. 30%).⁷³

The method finds more general use in the alkylation of phenols.^{76, 77} One or both alkyl groups in the alkyl sulfate may be utilized. Thus, in the preparation of anisole, an aqueous solution of sodium phenoxide is treated at 10° with dimethyl sulfate (75%).⁷⁴ The first methyl group is readily furnished but the second only under reflux. The phenolic groups in certain phenanthrene compounds have been quantitatively methylated by adding dimethyl sulfate to a suspension of the compounds in acetone and aqueous potassium hydroxide.⁷⁹ In another instance, 1- and 4-methoxyphenanthrenes are made in quantitative yields by treating the corresponding acetoxy compounds under these same conditions.¹⁶⁰ Methyl β -naphthalenesulfonate is a satisfactory methylating agent.⁷⁵

Unsaturated ethers, $RCH = CHCH_2OCH_3$, have been prepared from the corresponding allylic alcohols and dimethyl sulfate in the presence of sodium amide (60-80%).⁸⁴ Acetylenic ethers are made in a similar manner from acetylenic alcohols.⁸⁵ The hydroxyethylation of phenols with ethylene sulfite or ethylene carbonate appears to be a promising reaction for the formation of *hydroxy ethers* of the type $ROCH_2CH_2OH.^{86}$

$$ArOH + \bigcup_{CH_2 - -O}^{CH_2 - -O} ArOCH_2CH_2OH + CO_2$$

The semi-methylation of resorcinol with dimethyl sulfate leads to m-methoxyphenol (45%).⁸⁷

Many other groups may be present in the alcohol or phenol during alkylation. Dimethyl sulfate and chlorohydrins give chloro ethers.^{82, 88} Halo ethers are also prepared by the action of this reagent on halogenated phenols, e.g., *m*-bromoanisole (91%).⁸⁹ Phenolic aldehydes are converted in excellent yields to alkoxy aldehydes with dimethyl sulfate ^{90, 94} or alkyl *p*-toluenesulfonates.⁹² The conversion of a phenolic ketone to an alkoxy ketone is illustrated by the preparation of *p*-methoxypropiophenone (88%).⁹⁶ Phenolic acids,⁹⁹ esters,¹⁰⁰ and cyanides,¹⁰³ and nitrophenols¹⁰⁴ respond favorably to this method for methylation. The sodium salt of mandelic acid, C₆H₅ CHOHCOOH, is methylated with dimethyl sulfate to furnish, after acidification, α -methoxyphenylacetic acid (42%).¹⁶² 117. Haloalkylation of Alcohols

$RCHO + R'OH + HX \rightarrow RCHXOR' + H_2O$

a-Halo ethers are prepared in good yields by treating mixtures of aldehydes and alcohols at ice temperature with dry hydrogen halides, the aldehyde furnishing the haloalkyl radical. In the preparation of halomethyl alkyl ethers, aqueous formaldehyde or paraformaldehyde is used. The procedure is illustrated by the formation of chloromethyl methyl ether $(89\%)^{126}$ and chloromethyl *n*-propyl ether $(64\%).^{127}$ These chloromethyl ethers and others are relatively unstable, especially upon exposure to moisture. Best results are obtained if the excess halogen acid is swept from the product before distillation.¹²⁸ The original procedure for preparing the corresponding bromo derivatives has been successfully modified so that branched alkyl bromomethyl ethers can be prepared $(85-98\%).^{131}$ Paraformaldehyde is preferred rather than the aqueous solution of formaldehyde; furthermore, the reaction is run in the presence of calcium chloride, which removes the water liberated.

This reaction is applicable to higher aldehydes and primary or secondary alcohols. Thus, paraldehyde and alcohols combine to give α -chloroethyl alkyl ethers (93-99%).¹³² Similarly, propionaldehyde and *n*-butyraldehyde yield α -chloro-*n*-propyl and α -chloro-*n*-butyl alkyl ethers, respectively.¹²⁵

By this same procedure, ethylene chlorohydrin and aldehydes yield *di*balo ethers.¹³⁴

 $CICH_2CH_2OH + CH_3CHO + HCI \rightarrow CICH_2CH_2OCHCICH_3$ (60%)

118. Dehydration of Alcohols

$$2ROH \xrightarrow{(H^+)} ROR + H_2C$$

Symmetrical aliphatic ethers (C_4-C_{16}) are prepared by the removal of water from alcohols under acidic conditions. Thus, in the preparation of diisoamyl ether, the alcohol is heated with concentrated sulfuric acid or *p*-toluenesulfonyl chloride in a flask equipped with a condenser and a water separator. The top layer of alcohol and ether is returned to the reaction flask until water no longer separates. Any alcohol remaining in the ether is converted to the higher-boiling triisoamyl borate, and the ether is purified by fractional distillation.⁶⁴ Several suitable water separators have been described.⁶⁵ High reaction temperatures must be avoided to prevent the formation of unsaturated hydrocarbons¹ (cf. method 19). This method has special advantages in the preparation of mixed ethers containing the *t*-butyl and primary alkyl radicals.³ For example, *t*-butyl alcohol added slowly to a boiling mixture of ethanol and 15% aqueous sulfuric acid gives a 95% yield of *t*-butyl ethyl ether.⁶⁶ Under these conditions, isopropyl alcohol reacts more slowly and the yield of *t*-butyl isopropyl ether is reduced by the large amount of isobutylene formed by the prolonged contact of the tertiary alcohol with the acid. However, the substitution of an aqueous solution of sodium hydrogen sulfate for the sulfuric acid gives an excellent yield of *t*-butyl isopropyl ether (82%).³ The formation of an ether from a primary and a secondary alcohol requires a concentration of 50% sulfuric acid or greater; the three possible ethers result.

The dehydration of alcohols in the gaseous phase by solid catalysts such as alumina and "solid phosphoric acid" is used to a small extent in the laboratory.⁶⁷ In the conversion of phenol over thorium dioxide at 450°, the yield of diphenyl ether is 64%.⁶⁸

An interesting synthesis of diglycerol, a *polyhydroxy ether*, has been reported involving the treatment of glycerol with calcium oxide and carbon dioxide.⁷⁰

119. Interaction of Grignard Reagents and Halo Ethers

 $RCHClOCH_2CH_3 + R'MgX \rightarrow RCHR'OCH_2CH_3$

The ready availability of α -halo ethers (methods 65 and 117) and the ease of reaction of the reactive halogen atom with Grignard reagents provide a good method for obtaining branched ethers of the type ROCHR'CH₂R'' (60-85%).¹¹⁸ If ethers without branching on the α -carbon atom are desired, then chloromethyl ether and normal Grignard reagents are used, as in the formation of methyl amyl ether from *n*-butylmagnesium bromide and chloromethyl methyl ether (67%).¹¹⁹

The reaction of Grignard reagents with α , β -dibromo ethers to form β bromo ethers has been developed as the third step in the Boord synthesis of olefins (method 21).^{120, 125} The coupling is carried out by adding the dibromo ether to the Grignard reagent at 0°, the bromine atom in the beta position being unreactive. The products may be put through a second process of dehydrobromination, bromination, and coupling to give more highly branched β -bromo ethers.^{121, 122, 124}

RCHBrCH(R')OCH₂CH₃ $\xrightarrow{\text{KOH}}$ RCH=C(R')OCH₂CH₃ $\xrightarrow{\text{Br}_2}$

231

 $\text{RCHB}_{r}\text{CB}_{r}(\text{R}')\text{OCH}_{2}\text{CH}_{3} \xrightarrow{\text{R}'\text{MgX}} \text{RCHB}_{r}\text{CR}''(\text{R}')\text{OCH}_{2}\text{CH}_{3}$

Ch. 6

In general, primary alkylmagnesium halides give better yields than the secondary derivatives, and the tertiary Grignard reagents do not react; allyl-¹²⁵ and phenyl-magnesium¹²³ halides respond favorably. If each alkyl group of the ether carries a halogen atom in the *beta* position, then a dihalo ether results,¹³⁵ viz., RMgX + ClCH₂CH₂OCHBrCH₂Br \rightarrow ClCH₂CH₂OCHRCH₂Br.

In a similar manner, Grignard reagents react with cyclic α , β -dihalo ethers derived from 3,4-dihydro-1,2-pyran^{166, 167} and tetrahydrofuran¹⁶⁸ to form the corresponding 2-alkyl-3-halo derivatives. Thus, addition of 2,3-dibromotetrahydropyran to methylmagnesium halide at 0° followed by hydrolysis gives a 65% yield of 2-methyl-3-bromotetrahydropyran. These materials are valuable intermediates in the synthesis of olefinic alcohols (cf. method 99).

120. Addition of Halo Ethers to Olefins

 $(CH_3)_2C = CH_2 + CICH_2OCH_3 \xrightarrow{HgCl_2} (CH_3)_2CCICH_2CH_2OCH_3 \quad (60\%)$

The addition of a chloromethyl ether to olefinic linkages takes place under conditions similar to the Friedel-Crafts reaction and leads to γ chloro ethers.¹³⁹ Substitution of zinc chloride for mercuric chloride as catalyst has improved the yields.¹⁴⁰ Allyl chloride and chloromethyl ether react to give a high yield of 1-methoxy-3,4-dichlorobutane (98%).⁴⁰

 $CH_{2} = CHCH_{2}CI + CICH_{2}OCH_{3} \xrightarrow{ZnCI_{2}} CH_{3}OCH_{2}CH_{2}CHCICH_{2}CI$

121. Addition of Hydroxy Compounds to Olefinic Compounds

$$ROH + CH_2 = C(CH_3)_2 \xrightarrow{H+} ROC(CH_3)_3$$

The addition of alcohols to olefinic compounds provides an easy method for making ethers which may otherwise be difficult to obtain, particularly those which contain a second functional group.

In the preparation of mixed aliphatic ethers, the reaction between alcohol and olefin is catalyzed by dilute sulfuric acid. Those olefins that can be derived from tertiary alcohols are the most suitable, e.g., isobutylene and trimethylethylene, leading to tertiary alkyl ethers. Also, primary alcohols are more suitable as additives than secondary alcohols; tertiary alcohols are practically non-reactive. The procedure, typified by the preparation of ethyl *t*-amyl ether (90%),¹⁰⁵ is not as rapid and convenient as the dehydration reaction discussed above (method 118). Phenols have been condensed in the cold with unsaturated compounds under the influence of a mineral acid¹⁰⁶ or boron trifluoride.¹⁰⁷ Reaction at high temperatures causes the formation of alkyl-substituted phenols.

Olefinic linkages activated by other groups add alcohols. Thus vinylacetylene, $CH_2 = CH - C = CH$, adds three molecules of methanol in the presence of boron trifluoride and mercuric oxide to yield 2,2,4-trimethoxybutane (65%).¹⁰⁸ On the other hand, in the presence of sodium methoxide. this unsaturated system adds only one molecule of methanol to form 4methoxy-1-butyne (61%).¹⁰⁹ Also, unsaturated ketones react with alcohols in the presence of boron trifluoride etherate to yield β -alkoxy ketones, e.g., 4-methoxy-2-butanone from methanol and methyl vinyl ketone (61%).^{110, 111} Sodium methoxide has also been used as the condensing agent.^{112, 149} Primary and secondary, but not tertiary, alcohols and phenols in the presence of the corresponding sodium derivatives add to the unsaturated system of acrylic esters to produce β -alkoxy- and β -aryloxypropionates.^{113,164} The reaction has been extended for the preparation of $\hat{\beta}$, $\hat{\beta}$ -dialkoxy esters by the catalytic addition of alcohols to β -alkoxyacrylic esters.¹¹⁴ Similarly, primary and secondary alcohols add to acrylonitrile to give β -alkoxypropionitriles; potassium hydroxide, sodium methoxide, or aqueous 40% trimethylbenzylammonium hydroxide (Triton B) are employed as catalysts.¹¹⁵⁻¹¹⁷ Alcohols and α -nitro olefins combine to form 2-nitroalkyl ethers, viz.,165

$$H_2C = CHNO_2 + ROH \rightarrow ROCH_2CH_2NO_2$$

122. Addition of Alcohols to Oxides

$$CH_{3}CH - CH_{2} + ROH \xrightarrow{NaOCH_{3}} CH_{3}CHOHCH_{2}OR$$

The alcoholysis of α -epoxides gives hydroxy ethers in a *trans* opening of the ring. An example is the treatment of cyclohexene oxide with methanol under reflux in the presence of a small quantity of sulfuric acid, *trans*-2-methoxycyclohexanol being formed in 82% yield.¹⁷¹ The mechanism and stereochemistry of the opening of oxide rings have been reviewed.¹⁷²

When an unsymmetrical α -epoxide reacts, either a primary or a secondary alcohol is formed, depending on which carbon-oxygen bond is cleaved. With propylene oxide, for example, a base-catalyzed reaction favors the formation of the secondary alcohol almost exclusively, whereas, a noncatalytic or acid-catalyzed alcoholysis yields a mixture of the isomeric ethers.^{141, 169} However, the reactions of other α -epoxides, such as 3,4epoxy-1-butene, 3,4-epoxy-1-chloropropane (epichlorohydrin), 3,4-epoxy-1propanol (glycidol), and styrene oxide, are more complicated with respect to which isomer is favored.^{142, 162} Ch. 6

The 1-alkoxy-2-hydroxy-3-chloropropanols are obtained from the acidcatalyzed condensation of aliphatic alcohols and 1,2-epoxy-3-chloropropane. These compounds are treated with alkali for the synthesis of epoxy ethers, which, in turn, are valuable intermediates.¹⁴³

$$\begin{array}{c} 0 \\ H_2C - CHCH_2CI + ROH \xrightarrow{H_3SO_4} ROCH_2CHOHCH_2CI \xrightarrow{KOH} H_2C - CHCH_2OR \end{array}$$

123. Halo Ethers by Action of Acyl Chlorides on Acetals

$RCH(OR')_2 + CH_3COC1 \rightarrow RCHCIOR' + CH_3CO_2R'$

The interaction of an acetal and an acyl chloride causes an exchange of chloro and alkoxyl groups, the corresponding α -chloro ether and an ester being formed.¹⁴⁶ The acetals of both aliphatic and aromatic aldehydes undergo the reaction. For example, the dimethyl acetal of *n*-butyraldehyde and acetyl chloride react vigorously to yield α -methoxy-*n*-butyl chloride, CH₃(CH₂)₂CHClOCH₃ (70-80%). The reaction may be catalyzed by a trace of copper-bronze filings.¹⁴⁸ Similarly, the dimethyl acetals of benzaldehyde and its derivatives react to give α -methoxybenzyl chlorides (80-98%).^{147, 148}

Dibalo ethers, RCHXOCH₂CH₂X, can be synthesized by utilizing dichloroalkyl acetals, RCH(OCH₂CH₂X)₂. In this manner, chloromethyl β chloroisopropyl ether is prepared from di-(β -chloroisopropyl)-formal and benzoyl chloride (66%).¹³⁷

 $H_2C[OCH(CH_3)CH_2CI]_2 \xrightarrow{C_6H_6COC1} CICH_2OCH(CH_3)CH_2CI$

124. a-Alkoxy Ketones by Interaction of Alcohols and Diazoketones¹⁷³

 $C_6H_5 COCHN_2 + ROH \xrightarrow{BF_3} C_6H_5 COCH_2OR + N_2$

TABLE 16. ETHERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.), Deriv.
	Α	licyclic	and Alij	phatic Ethers	
C,	Methyl cyclopropyl ether		50	6 6	43
C,	Methyl n-butyl ether	115	70	672	70
•		115	71	6 1	70.5/766, 1.3736
	Methyl <i>t-</i> butyl ether	118	95	6 3	55/760, 1.3690 *
	Ethyl <i>n</i> -propyl ether	115	60	672	64
C6	Methyl cyclopentyl ether	115	29	6 6	105.4/760, 1.4206
		115	26	6 5	105/763
	Methyl <i>n</i> -amyl ether	115	84	6 1	99/763, 1.3873
	-	119	67	6119	100, 1.386222
	Methyl isoamyl ether	115	70	672	91
	Ethyl <i>n</i> -butyl ether	115	71	6 ¹	91.5/757, 1.3818
		115	60	672	91
	Ethyl isobutyl ether	115	70	673	80 *
	Ethyl s-butyl ether	119	76	6118	81/776, 1.3802
	Ethyl <i>t</i> -butyl ether	118	95	6 3	73/760, 1.3755*
с,	Methyl <i>n</i> -hexyl ether	115	72	6 1	126/770, 1.3972
•	Ethyl <i>n</i> -amyl ether	115	47	61	117.5/768, 1.3927
	Ethyl <i>t</i> -amyl ether	121	90	6105	102
	Ethyl neopentyl ether	115	38	64	90.5/729, 1.3830
	<i>n</i> -Propyl isobutyl ether	115	67	6²	106/7 20
	Isopropyl <i>n</i> -butyl ether	115	72	62	108/738
	t-Butyl n-propyl ether	118	68	6 3	97/760, 1.3830 ²⁵
	t-Butyl isopropyl ether	118	82	6 3	88/760, 1.3798 *
	Methyl cyclohexyl ether	5	76	6 °	
		115	78	672	135
		115	27	6 5	133.5/762
	Ethyl cyclopentyl ether	115	35	6 5	122.5/763
C,	Ethyl <i>n</i> -hexyl ether	115	57	61	143/773, 1.4008
•	n-Butyl ether	118	60	6 66	144, 1.3989 *
	t-Butyl n-butyl ether	118	52	6 ³	124/760, 1.3928 ²⁵
C,	Ethyl n- heptyl ether	119	77	6118	51/15, 1.4066
C ₁₀	Isoamyl ether	118	75	6 64	61/10, 1.4085*
		Arc	matic E	thers	<u> </u>
с.	Anisole	116	75	674	154/748
C.	Ethyl phenyl ether (phene-	115	60	61	169/766, 1.5074
0	tole)	-		-	
	Methyl benzyl ether	115	90	6 °	170/760, 1.5022
	Methyl 4-tolyl ether	116	92	676	57/9, 1.5060 ²⁵
С,	<i>n</i> -Propyl phenyl ether	115	73	6 ¹	187/751, 1.5103
		115	63	6 °	189/760, 1.5014

236

C_n

с,

Compound

Isopropyl phenyl ether

m-Ethylanisole

C₁₀ *n*-Butyl phenyl ether

C₁₁ *n*-Amyl phenyl ether

s-Butyl phenyl ether

lsobutyl phenyl ether

n-Propyl benzyl ether

Isopropyl benzyl ether

n-Butyl benzyl ether

s-Butyl benzyl ether

p-t-Butylanisole

6-Methoxytetralin

C12 Isoamyl benzyl ether

Diphenyl ether

C₁₃ Phenyl benzyl ether

ether

C₁₄ Di-p-tolyl ether

ether

ether C₁₅ 1-Methoxyphenanthrene

Ethyl p-ethylbenzyl ether

Methyl anaphthyl ether

Methyl β -naphthyl ether

methoxynaphthalene

Ethyl a-naphthyl ether

Ethyl β -naphthyl ether

Phenyl o-tolyl ether

Phenyl m-tolyl ether

Phenyl p-tolyl ether

Methyl 2-biphenyl ether

4-Methyldiphenyl ether

Ethyl 2-biphenyl ether

Ethyl 3-biphenyl ether

Ethyl 4-biphenyl ether

Ethyl 2-cyclohexylphenyl

Ethyl 4-cyclohexylphenyl

4-Methoxyphenanthrene

Methyl 4-cyclohexylphenyl

1,2,3,4-Tetrahydro-2-

ETHERS

Method

115

115

121

116

115

115

115

115

115

115

115

115

115

116

116

116

116

119

115

116

116

115

115

115

115

116

14

116

115

115

116

116

115

116

116

116

116

116

4

TABLE 16 (continued) Yield

(%) Aromatic Ethers (continued)

40

54

54

87

80

59

90

93

84

72

74

55

95

60

70

73

65 t

58

85

82

77

84

73

77

81

69

89

60

64

87

75

87

90

80

71

59

57

100

100

Chapter^{ref.}

61

66

6107

678

61

66

67

6°

66

61

620

620

610

66

676

671

6159

6174

6118

614

676

676

613

614

614

614

676

6176

676

6145

611

676

6⁷⁶

611

676

676

676

6160

6160

Ch. 6

B.p./mm., n^t_D, (M.p.), Deriv.

174/758, 1.4975

177/760, 1.4975

207/755, 1.4971

196, 1.493224

68/8, 1.4905

83/16, 1.4859

112/23

(71)

138/18

259/754

(39)

(50)

(34)

(76)

99/1

(103)

(67)

132/5, (38)

122/2, (29)

116/4, (59)

132/6, (34)

158/8, (35)

188/13, (74)

131/3, (42)

278/744, 150/7

226/751, 1.4947

109/29, 1.478725

107/14, 1.491825

223/760, 1.5030

102/2, 1,694025

115/9, 1.5293

119/19, 1.4810

138/14, 1.595325

267/738, 124/9, 1.571025

275/738, 155/25, 1.571125

278/745, 126/9, 1.570125

72/5, 194/760, 1.492625

178, 1.4992

76/12

TABLE	16.	ETHERS
-------	-----	--------

TABLE 16 (continued)

<u>с</u> п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromatic	Ethers	(continued)	
C 15	9-Ethoxyfluorene	115	73	616	(54)
10	2-Methoxy-9, 10-dihydro- phenanthrene	116	100	679	(55)
C 19	9-Phenoxyfluorene	115	87	6 ¹⁶	(156)
C 21	Ethyl triphenylmethyl ether	115	97	612	(83)
<u> </u>		Hete	rocyclic	Ethers	
C,	2, 3-Dihydropyran	19	70	39209	86
-	Tetrahydropyran	554	100	39 ¹⁶⁷	86
C.	Methyl a-furfuryl ether	115	66	617	135/762, 1.4570
-0	Methyl tetrahydrofurfuryl ether	115	73	618	141/716, 1.4292
с,	Ethyl a-furfuryl ether	115	81	617	150/770, 1.4523
	Ethyl tetrahydrofurfuryl ether	115	85	618	154/726, 1.4298
C,	n-Propyl a-furfuryl ether	115	79	617	170/767, 1.4523
-	n-Propyl tetrahydrofurfuryl ether	115	86	618	176/728, 1.4313
C.	n-Butyl a-furfuryl ether	115	78	617	191/777, 1.4522
•	<i>n</i> -Butyl tetrahydrofurfuryl ether	115	79	618	196/721, 1.4357
	6-Methoxyindole	559	80	39 202	(92)
	3-(4-Piperidyl)-1-methoxy- propane	554	88	39125	112/17
C 10	Di-a-furfuryl ether	115	84	617	89/1, 1.5088
	6-Methoxyquinoline	575	63	39 128	102/0.5, (20)
	7-Methoxyquinoline	575	27	39 ¹⁴⁶	287/758, (210), 229Pi
	8-Methoxyquinoline	575	27	39147	175/29, (45), 162Pi
	<i>bz</i> -Tetrahydro-6-methoxy- quinoline	554	93	39 149	130/1, (43), 1.5718 ⁵⁰
Cu	4-Methoxydibenzofuran	116	97	6 ⁸⁰	165/5, (52)
2	4-Methoxydibenzothio- phene	116	94	681	(123)
C 14	3-Ethoxycarbazole	557	90	39 158	(106)
C 19	5-Phenoxyacridine	115	98	619	(128)

238

ETHERS

Ch. 6

TABLE 17. DIETHERS

с _{п}	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.)
C₄	Dimethyl ether of ethyl- ene glycol	115	78	622	84, 1.3813
C,	Methyl <i>n</i> -butyl ether of ethylene glycol	115	46	620	146, 1.3988 ²⁵
C,	Ethyl <i>n</i> -butyl ether of ethylene glycol	115	90	621	165
	1,2-Dimethoxybenzene (veratrole)	116	95	6 ⁷⁷ ,	205, (15)
C,	Ethyl <i>n</i> -pentyl ether of ethylene glycol	115	48	621	183
	Methoxymethyl benzyl ether	115	50	626	211/756
C 12	1,4-Dimethoxynaphthalene	116	70	6 ⁸³	(85)
С13	2-Methoxydiphenyl ether	115	67	6 ²³	(78)
	3-Methoxydiphenyl ether	115	96	6 ²⁵	175/20
	4 Methoxydiphenyl ether	115	96	6 ²⁵	186/32
C 16	4,4'-Dimethoxydibenzyl	9	60	6 ¹⁷⁵	(125)
C 18	o-Diphenoxybenzene	115	81	614	(93)
	p-Diphenoxybenzene	115	83	614	(77)

For explanations and symbols see pp. xi-xii.

TABLE 18. OLEFINIC ETHERS

C _n	Compound	Method	Yield (%)	Chapter ref.	B.p./mm., $n_{\rm D}^{l}$, (M.p.)
	Alip	hatic and	Alicycl	ic Olefinic Et	hers
C4	Ethyl vinyl ether	20	43	2144	36, 1.373721
		23	42	2140	36/760, 1.3768
	Divinyl ether	20	61	2141	28/760
	Dioxene	22	49	2 ²⁶⁷	94
	Dioxadiene	22	48	2267	75/746, 1.4350
C,	2-Methoxy-2-butene	20	52	2140	65/770, 1.4000 ¹⁵
	2-Methoxy-1,3-butadiene	23	60	2 ⁵⁰⁵	75/745, 1.4442
	Methyl methallyl ether	115	72	6 ⁶	66/760, 1.3943
	2-Ethoxyptopene	20	64	2139	62/760, 1.3913
		20	83	2138	62/748, 1.3915
		27	91	2140	62/765, 1.3927
	Vinyl allyl ether	20	67	2450	67
C 6	Ethyl crotyl ether	115	82	628	101/765, 1.4030 ²³
	2-Ethoxy-1-butene	20	65	2 ²⁵³	86, 1.401125
		20	70	2138	86/745, 1.4018
	3-Ethoxy-1-butene	115	53	628	77/760, 1.388223

TABLE 18. OLEFINIC ETHERS

TABLE 18 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^l _D , (M.p.)
	Aliphatic an	d Alicyc	lic Olef	inic Ethers (c	ontinued)
C.	2-Ethoxy-1, 3-butadiene	23	59	2 505	97/760, 1.4401
-	-	121	53	6163	95, 1.4400 ¹⁹
	1,3-Dimethoxy-2-butene	23	66	2 ⁵⁰⁵	130/748, 1.4145 ²⁵
	3,3-Dimethoxy-1-butene	23	29	2 ⁵⁰⁵	99/745, 1.4038
	trans-1,2-Diethoxyethylene	23	80	2 507	79
c,·	1-Methoxy-5-hexene	29	60	2192	123/745, 1.4109
		29	50	2 ¹⁹¹	124/742, 1.4117
	2-Methoxy-1-hexene	23	92	2 506	120/740, 1.4179 ¹⁹
	3-Methoxy-3-hexene	20	79	2 ²⁵³	115; 1.4130 ²⁵
	Allyl methallyl ether	115	90	627	115, 1.4236
	1sopropyl methallyl ether	115	57	6 6	104/760, 1.4014
	Ethyl allyl ether of ethyl- ene glycol	115	60	621	142
C.	1-Methoxy-6-heptene	29	56	2191	148/751, 1.4182
•	Dimethallyl ether	115	65	6 °	134/760, 1.4285
	t-Butyl methallyl ether	115	33	6 6	120/760, 1.4082
	1-Ethoxy-2-cyclohexene	115	46	629	153/728
Ξ,	trans-1-Methoxy-2-octene	116	78	684	70/18, 1.424922
		Atoma	tic Olef	inic Ethers	
с.	Phenyl vinyl ether	20		2149	155
C.	Phenyl allyl ether	115	74	631	89/26
- y	a-Methoxystytene	23	86	2 504	74/10
	β -Methoxystytene	23	36	2 504	212
	2-Methoxystytene	27	40	2255	62/3. 1.5608
	3-Methoxy styrene	19	69	2145	89/14. 1.5540
	4-Methoxystyrene	19	65	2166	46/0.5. 1.5553 ²⁵
	- Methoxy Styrene	20	33	- 2 ¹⁴⁵	93/13. 1.5608
		27	71	22 53	54/2, 1.5612
с.,	Crotyl phenyl ether	115	73	633	98/14
- 10	Methallyl phenyl ether	115	70	6 6	80/8, 1,5157
	Allyl p-tolyl ether	115	93	632	98/16
	α -Methoxy- β -methyl- styrene	20	42	2253	97/19, 1.5271 ²⁶
	a Ethoxystyrene	20	62	2253	110/30, 1.5287 ²⁵
	trans-3-Methoxy-1-phenyl- 1-propene	116	64	684	112/15, 1.5452 ²¹
	p-Ethoxystyrene	19	69	2166	58/1.0, 1.5454 ²⁵
Сл	1-Phenoxy-2-pentene	115	57	634	119/20
	5-Phenoxy-2-pentene	20	70	2142	132/32, 1.5005 ³⁰
C12	1-Phenoxy-2-hexene	115	57	636	107/5, 1.5109
	3-Ethoxy-4-propyl-3-	19	90	2112	109/17

240		ETHERS						
	TABLE 18 (continued)							
C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.))		
	Ar	omatíc Ol	efinic E	thers (continu	ved)			
C 14	4-Phenoxystyrene	19	77	2145	116/3, 1.6037			
C 15	Cinnamyl phenyl ether	115	92	635	(67)			
	<i>cis</i> -4-Methoxystilbene	27	60	2438	142/3			
	<i>trans</i> -4-Methoxystilbene	28	49	2273	(136)			

For explanations and symbols see pp. xi-xii.

TABLE 19. ACETYLENIC ETHERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., $n_{\rm D}^t$
C4	Ethoxyacetylene	43	55	3 57	28/300
	Methyl propargyl ether	43	60	3 59	64, 1.3975 ¹⁹
C,	4-Methoxy-1-butyne	44	60	323	88/748, 1.411722
	4-Methoxy-2-butyne	121	61	6 ¹⁰⁹	100
C6	4-Ethoxy-1-butyne	44	60	323	104/747, 1.4148 ²²
C,	Phenoxyacetylene	43	70	3 48	62/25, 1.5171
с,	1-Methoxy-2-octyne	116	80	6 ⁸⁵	77/19, 1.4380
		119	63	6*5	77/20, 1.4383 ¹⁸

For explanations and symbols see pp. xi-xii.

TABLE 20. HALO ETHERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.)
	Alip	hatic and	l Alicyc	lic Halo Ethe	fs
С,	Chloromethyl methyl ether	117	89	6126	55-60
с,	Chloromethyl ethyl ether	117	90	6 ¹²⁸	82, 1.028212
-	Chloromethyl β -chloro- ethyl ether	117	55	6134	46/10, 1.4578
	Methyl a-chloroethyl ether	117	97	6132	73, 1.4004
	Methyl β -chloroethyl ether	116	27	682	90
C₄	Chloromethyl <i>n</i> -propyl ether	117	64	6127	28/32, 110/755, 1.4106
	Bromomethyl <i>n</i> -propyl ether	117	80	6130	48/20, 1.4515
	γ -Methoxypropyl chloride	116	65	688	112

TABLE 20. HALO ETHERS

TABLE 20 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> ^t _D , (M.p.)
	Aliphatic	and Alic	yclic Ha	alo Ethers (co	ontinued)
C₄	γ -Methoxypropyl bromide	52	32	4126	30/15, 131/736, 1.4467
		52	27	4124	133
	Chloromethyl isopropyl	117	49	6127	36/45, 101/750, 1.4095
	ether	117	90	6128	98, 1.4592 ¹⁶
	Bromomethyl isopropyl ether	117	87	6131	76/196, 1.4251 ²⁵
	Chloromethyl β -chloro-	117	57	6137	107/146, 1.4521
	isopropyl ether	123	66	6137	59/16, 1.4528
	1-Chloro-2-methoxy- propane	77	56	4 629	101/743, 1.4147
	2-Chloro-2-methoxy- propane	123	90	6148	15/12
	a-Chloroethyl ethyl ether	65	42	4633	100
		117	94	6132	98/750, 1.3950
	Ethyl β -chloroethyl ether	53	80	4617	109
	-	118	66	682	109
	Ethyl eta -bromoethyl ether	52	66	4123	1 27/760
	Ethyl β -iodoethyl ether	55	89	4384	155
	a,a'-Dichlorodiethyl ether	65	57	4 63 3	114, 1.418324
	β -Chloroethyl α -chloro- ethyl ether	117	60	6134	51/10, 1.4473
	β -Bromoethyl α -chloro- ethyl ether	117	69	6136	84/37, 1.4770
	a, β -Dibromoethyl ethyl	65	91	4384	91/20
	β . β -Dichlorodiethyl	118	75	671	178. 1.457
	ether	77	61	4 629	178/752, 1,4568
	β,β -Dibromodiethyl	52	81	4 576	93/12
	β, β' -Diiododiethyl ether	55	74	4385	124/10
C₅	Chloromethyl <i>n</i> -butyl ether	117	37	6 ¹²⁹	134/760
	Bromomethyl <i>n</i> -butyl ether	117	78	6130	57/20, 1.4514
	a-Methoxy-n-butyl chloride	123	80	6148	29/12
	1-Chloro-4-methoxybutane	115	36	6149	143, 1.4244
	1-Bromo-4-methoxybutane	115	53	6**	70-82/34-35
	1-Methoxy-3,4-dichloro- butane	120	98	6 4 0	170/760, 73/20
	Bromomethyl isobutyl ether	117	98	6131	53/30, 1.4400 ²⁵
	Chloromethyl isobutyl ether	117	35	6 ¹²⁹	121/760

ETHERS

TABLE 20 (continued)

242

C6

ether

.

Ch. 6

C_n

C₆

TABLE 20. HALO ETHERS

TABLE 20 (continued)

Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)					
Aliphatic and Alicyclic Halo Ethers (continued)									
a-Chloro-n-butyl ethyl	117	81	6125	51/25, 1.4168					
ether	123	80	6148	47/12					
β -Chloroethyl α -chloro-	117	70	6134	71/10, 1.4471					
n-butyl ether									
a, <i>β</i> -Dibromoethyl <i>n</i> -	65	95	4 482	115/36					
butyl ether									
α,β -Dibromo- <i>n</i> -butyl ethyl	65	90	4 480	101/27, 1.4968					
ether									
a-Chloroisobutyl ethyl	117	90	6121	43/24, 1.4130					
ether				•					
a,β -Dibromoisobutyl ethyl	65	92	4 424	89/22, 1.4450					
ether									
a-Chloroethyl s-butyl	117	83	6133	39/20, 1.4149					
ether									
β -Ethoxy- <i>n</i> -butyl bromide	119	61	6120	166, 67/34					
β -Chloroethyl β -bromo-a-	1 18	81	6135	93/12, 1.4770					
ethylethyl ether									
β-Propoxy-n-propyl bro-	119	61	6120	65/32					
mide									
2-Methyl-3-chlorotetra-									
hydropyran (trans)	119	61	6 167	51/18, 1.4551					
(cis)				66/18, 1.4626					
2-Methyl-3-bromotetra-	119	65	6166	61/17, 1.4834					
hydropyran									
1-Been a fam other where a	115	47	6 45	113/30 1 446925					
1-Mothory Archloroherane	53	65	A 128	70/15					
3-Chloro-Amethoryhevane	77	63	4 629	95/98 1.4288					
4-Bromo-3-methowshevane	119	68	6121	66/12 1.4495					
a-Chloroethyl manyl	117	99	6132	66/8. 1.4218					
ether			Ū						
1-Bromo-Sethorypentane	52	78	A 127	85/14					
B-Ethoxy-manul bromide	119	57	6120	82/34					
1-Btomos2-ethoxy-2-	119	27	6122	57/13. 1.4508					
methylbutane			Ū	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
2-Chloro-3-ethownpentage	77	57	4 629	70/50 1.4236					
B-Proporty-monthly bromide	119	73	6120	66/15					
Chloromethyl cycloheyyl	117	90	6128	185 1.47139					
ether		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~						
1-Chloro-2-methorycyclo-	77	66	4 629	74/20. 1.4648					
herane		~	•	,, 1					
trans-1-Bromo-2-methow-	77	70	4 630	75/10, 1,4900 ²⁵					
cyclohexane			-	.,, _0, 1.,,00					
cyclolie kane									

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic	and Alicy	yclic Ha	lo Ethers (co	ntinued)
C,	3-Methoxy-2-methyl-1- chloropropane	53	92	4 583	124, 1.414327
	2-Methoxy-3-iodobutane	77	95	4 628	1.501217
	2-Methoxy-3-bromobutane	77	50	4 630	56/40, 1.4478 ²³
	Chloromethyl s-butyl ether	117	90	6128	123, 1.4205 ¹⁶
	Bromomethyl s-butyl ether	117	97	6131	108/357, 1.4453 ²⁵
	a-Chloroethyl <i>n</i> -propyl ether	117	93	6132	48/40, 1.4013
	a-Chloro-n-propyl ethyl ether	117	74	6125	36/25, 1.4120
	γ -Ethoxypropyl chloride	52	67	4124	128
	γ -Ethoxypropyl bromide	52	65	4124	150, 87/100
		52	. 75	4125	152/760, 65/33, 48/13
	α,β-Dibromoethyl n- propyl ether	65	93	4 482	97/27
	a, β -Dibromopropyl ethyl ether	65	97	4 480	82/20, 1.5000
	1,3-Dichloropropyl ethyl ether	117	66	6138	65/18, 1.4478
	β -Chloroethyl α -chloro- <i>n</i> -propyl ether	117	51	6134	60/10, 1.4496
	β -Ethoxy- <i>n</i> -propyl bro-	119	77	6120	138
	mide	119	42	6122	29/10, 1.4422
	2-Methyl-3-chlorotetra- hydrofuran (<i>trans</i>) (<i>cis</i>)	119	82	6168	130, 1.4420 145, 1.4520
	2,3-Dibromotetrahydro-	74	100	4621	
	2,3-Dichlorotetrahydro- pyran	74	91	4 620	83/13, 1.4930 ²⁵
C.	Bromoethyl <i>n</i> -amyl ether	117	99	6130	72/7, 83/15, 1,4512
•	1-Bromomethoxy-2- methylbutane	117	98	6131	68/16, 1.4671 ²⁵
	Bromomethyl isoamyl ether	117	98	6131	129/247, 1.4489 ²⁵
	2-Chloro-3-methyl-3- methoxybutane	77	45	4 629	135/749, 1.4279
	1-Methoxy-3-methyl-3- chlorobutane	120	60	6139	81/120, 136/751
	2-Chloro-3-methoxypen- tane	77	78	4 629	77/100, 1.4246
	a-Chloroethyl n-butyl	117	95	6132	50/11, 1.4155

243

ETHERS

Ch. 6

TABLE 20 (continued)						
С л	Compound	Me thod	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)	
	Aliphatic	and Alicy	vclic Ha	lo Ethers (<i>c</i> o	ntinued)	
C	1-Chloro-7-methoxy- heptane	53	67	4162	78/6.5, 1.4375	
	l-Bromo-7-methoxy- heptane	52	50	4128	97/8, 1.4592 ²⁵	
	1-Bromomethoxy-1- methylbexane	117	96	6131	69/4, 1.4537 ²⁵	
	1-Bromo-2-ethoxyhexane	119	78	6121	86/19, 1.4485	
	1-Bromo-2-ethoxy-3- methylpentane	119	30	6121	75/13, 1.4503	
	1-Bromo-2-ethoxy-4- methylpentane	119	48	6121	85/25, 1.4455	
	2-Bromo-3-ethoxyhexane	119	60	6121	73/12, 1.4474	
	1-Bromo-2-ethoxy-2- methylpentane	119	71	6121	82/19, 1.4532	
	2-Bromo-3-ethoxy-2- methylpentane	119	49	6121	67/20, 1.4376	
	2-Bromo-3-ethoxy-3- methylpentane	119	55	6121	79/25, 1.4458	
	1-Bromo-2-ethoxy-2- ethylbutane	119	75	6121	81/17, 1.4548	
	l-Bromo-2-ethoxy-2,3- dimethylbutane	119	71	6121	79/15, 1.4560	
	4,4'-Dichlorodibutyl ether	54	54	4 41 5	118/10, 1.456225	
	β-Propoxy- <i>n</i> -amyl bro- mide	119	70	6120	82/13	
	l-(Methoxymethyl)-2- chlorocyclohexane	120	27	6140	91/17	
C,	l-Bromomethoxy-l- methylheptane	117	93	6131	72/3, 1.456225	
	eta-Ethoxyisoheptyl bromide	119	65	6120	109/33	
	β-Propoxy-n-hexyl bromide	119	81	6120	93/14	
C 10	4,4'-Dichlorodiamyl ether	54	24	4415	69-75/0.3, 1.4533 ²⁵	
		Aromat	ic Halo	Ethers		
C,	o-Bromoanisole	56	93	4318	116/29	
	m-Bromoanisole	116	91	6 89	105/16	
	p-Chloroanisole	64	58	4 592	85-90, 1.5354 ²⁵	
	p-Bromoanisole	65	90	4 479	216	
	p-lodoanisole	65	73	4 283	139, (52)	
	p-riuoroanisole	56	52	4303	157	

TABLE 20. HALO ETHERS

TABLE 20 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	A	ed)			
C,	2-Bromo-4-chloroanisole	64 64	66 72	4 ⁵⁹² 4 ⁵⁹²	125-130/11, (29.1) 106/1, (62.3)
-	2, + Dibiomoanisoite	52	52 }	A 161	221
C ₈	β -Phenoxyethyl chloride	22	56	6 47	125-130/18
	Phenoxyethyl bromide	115	00 77	¢129	125/40
	Chloromethyl benzyl ether	117	//	0	12)/40
	a-Methoxybenzyl chloride	123	80	6147	72/0.1
	p-Chloro-a-methoxy-	123	98	6148	82/0.15
	Ethyl criedophenyl ether	56	68	4323	131/18
	Ethyl p-bromophenyl	65	85	4 479	236
		53	91	4164	115/10
	m-Methoxybenzyl bromide	51	90 t	465	129/18
	p-Methoxybenzyl chloride (anisyl chloride)	51	80	4 66	113/10, 1.5491
C.	γ -Phenoxypropyl bromide	115	85	647	136-142/20
- y	Benzyl β -iodoethyl ether	55	60	4 386	149/14
	1-Chloro-2-phenoxypro-	77	35	4 629	113/22, 1.5218
	a-Ethoxybenzyl chloride	123	95	6146	37/0.06
	β - α -Anisylethyl chloride	53	85	4163	112/12
	β -m-Anisylethyl bromide	52	61	4 65	139/13
	p-Methyl-a-methoxybenzyl	123	. 98	6148	70/0.15
	3,4-Dimethoxybenzyl	53	90	4 165	(51)
C	1-Bromo-A-phenovubutane	52	70	4129	156/18
C 10	1-Chloro-4-phenoxybu-	115	60	648	138/12
	γ -Chloropropyl benzyl	53	83	4 386	129/16
	γ-Bromopropyl benzyl ether	52	34	4 124	132/8
C11	2-Bromo-1-phenyl-1- ethoxypropane	119	56	6 ¹²³	114/9
с	6-Phenoxyhexyl bromide	115	79	6152	174-180/13
- 12	o-Chlorophenyl phenyl ether	115	40	614	153/15, (40)
	o-lodophenyl phenyl ether	56	68	4 322	185/15, (55)
	p-Chlorophenyl phenyl	115	55	614	162/19, 1.5865 ²⁵
	ether	65	90	4284	150/7

ETHERS

Method

84

122

115

88

84

115

122

79

115

88

88

88

88

84

88

90

84

85

91

89

115

115

122

115

122

86

86

88

90

115

84

89

122

TABLE 21. HYDROXY ETHERS

<u>ς 658</u>

6151

637

5 332

5 50

637

6141

5681

639

5 332

5332

5 681

5164

5 80

5332

5 681

5 681

5654

5 436

5 3 96

6³⁸

639

6144

6153

6171

5 375

5 578

5164

5 472

652

5 681

5396

6170

Yield

(%) Aliphatic and Alicyclic Hydroxy Ethers

40

63

64

37

78

62

81

94

60

47

29

67

47

71

28 74

85

80

79

52

83

46

75

42

82

60

74

35

53

45

60

58

80

246

C_n

C₄

C,

C₆

C,

C.

Compound

2-Methoxy-1-propanol

1-Methoxy-2-propanol

3-Methoxy-1-propanol

4-Methoxy-1-butanol

3-Ethoxy-1-propanol

1-Ethoxy-2-propanol

propanol

butanol

pentanol

pentanol

butanol

2-butanol

2-Amyloxyethanol

hexanol

pentanol

hexanol

3-Methoxy-2-methyl-1-

5-Methoxy-1-pentanol

4-Methoxy-3-methyl-1-

1-Methoxy-4-hexanol

5-Ethoxy-1-pentanol

5-Methoxy-4-methyl-1-

5-Methoxy-2-methyl-1-

1-Methoxy-2-ethyl-2-

3-Ethoxy-2-methyl-2butanol

1-Methoxy-2, 3-dimethyl-

 γ -n-Butoxypropyl alcohol

1,3-Diethoxy-2-propanol

trans-2-Methoxycyclo-

3-Methoxycyclohexanol

4-Methoxy cyclohexanol

7-Methoxy-1-heptanol

3-Methyl-5-ethoxy-1-

1-Methoxy-3-methyl-2-

ethyl+2-butanol

trans-2-Ethoxycyclo-

2-Ethyl-4-ethoxy-1-butanol

4-Ethoxy-1-butanol

1,3-Dimethoxy-2-propanol

Ch. 6

Chapter^{tef.} B.p./mm., n^t_D, (M.p.), Deriv.

119/765, 80Db

64/7, 1.4213

138, 1.4100

66/9, 1.4192

84/9, 1,4281

72/8, 1.4229

91/9, 1.4291

97/15, 1.427227

155/750, 1.425815

36/10, 1.420223

141, 226Pu

78-85/10

89/8

99/12

111/20

92/10

62/2, 1.4200

111/60, 1.420

188/753, 1.4239

73/10, 1.458625

109/8, 1.433425

55/11, 1.428822

86/15, 1.453725

97/3, 1.4357

91/15

90/9

94/10

155, 1.4140²⁷, 64Db

89/25, 1.4213²⁷, 57Db

149

161

157-163

130/758, 97Db, 60Nu

.

TABLE 21. HYDROXY ETHERS

		TABL	.E 21 (C	ontinued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic an	d Alicycl	ic Hydr	oxy Ethers (c	ontinued)
C,	3-Ethyl-4-ethoxy-3- pentanol	91	75	5 436	68/14, 231Pu
	2-Ethoxycyclohexyl-1- methanol	115	60	6**	75/10
		Aromati	c Hydro	xy Ethers	
С,	m-Methoxyphenol	116	45	687	242
c.	o-Methoxybenzyl alcohol	84	56	523	135/20 82NBz
- 0	m-Methoxybenzyl alcohol	79	100	5108	150/25
	treMethorybenzyl alcohol	79	97	5 91	138/14 (24)
	(anisyl alcohol)	79	96	52	(24) 93Pu *
	(amsyl arconol)	84	80	5 23	151/27 94NB+
		0.	07		1)1/2/,)4102
C,	1-Phenoxy-2-propanol	79	75	5155	130/21, 1.5232
		122	90	6169	117/10, 1.5200 ²⁵
	2-Phenoxy-1-propanol	79	100	5110	120/10, 1,4760 ²⁵
	γ -Phenoxypropyl alcohol	115	80	64	160/25
	a-Glyceryl phenyl ether	115	64	64	187/15, (70)
	2-Phenyl-2-methoxy- ethanol	122	42	6142	93/4, 1.5182 ²⁵
	β -Methoxy- α -phenylethyl alcohol	115	61	6150	131/18, 1.5165 ²⁶
	Benzyl β-hydroxyethyl ether	115	69	644	138/15
	<i>m</i> -Methoxyphenylethyl alcohol	84	90	577	145/13
	2,3-Dimethoxybenzyl alcohol	81	71	5 505	173/33, (48)
	3,4-Dimethoxybenzyl alcohol	79	91	5 ¹⁰⁷	170/14, 118Pu*
	3,5-Dimethoxybenzyl alcohol	84	93	576	(46)
C 10	1-Phenoxy-2-butanol	88	86	5 333	134/20, (29)
~	4-Phenoxy-1-butanol	84	68	57	163/19, 1.520 ²⁷ , 91NBz
	γ -Benzyloxypropyl	115	72	669	142/10
	alcohol	115	73	6 ³⁷	150/13
	l-Phenoxy-2-methyl-2- propanol	89	88	5397	125/21, 1.5100
	β -Ethoxy- α -phenylethyl alcohol	115	65	6 ¹⁵⁰	131-135/18, 1.5109 ²⁵
С 11	Benzyl 4-hydroxybutyl ether	84	37	5 ⁷⁹	157/12
	Methyl-Y-phenoxypropyl- carbinol	79	75	5153	163/20, 1.5123 ²⁵

For explanations and symbols see pp. xi-xii.

247

248

ETHERS

Ch. 6

	TABLE 21 (continued)						
С _{n}	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., $n_{\rm D}^{t}$, (M.p.), Deriv		
	Aro	matic Hy	droxy E	thers (continu	ued)		
C12	o-Hydroxyphenyl phenyl ether	97	91	5 716	(105)		
	<i>m</i> -Hydroxyphenyl phenyl ether	93	40	5 707	320/743		
	<i>p</i> -Hydroxyphenyl phenyl ether	97	70	5707	176/10, (85)		
	eta-Hydroxyethyl eta -naphthyl ether	116	98	6 86	(77.5)		
Cu	l-(^β -Naphthoxy)-2- propanol	79	88	5155	(83)		
C 14	l-Phenyl-2-phenoxy- ethanol	80	87	5 ⁷⁸	(64), 84NBz		
	2-Phenyl-2-phenoxy- ethanol	84	84	578	(81), 87NBz		
Сu	a,γ -Glycerol diphenyl ether	122	80	6144	(81)		

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 6

REFERENCES FOR CHAPTER 6

¹ Vogel, I. Chem. Soc., 616 (1948). ²Henstock, I. Chem. Soc., 371 (1931). ³Norris and Rigby, J. Am. Chem. Soc., 54, 2088 (1932). ⁴Whitmore, Wittle, and Popkin, J. Am. Chem. Soc., 61, 1589 (1939). ⁵ Vogel, I. Chem. Soc., 1809 (1948). ⁶Olson et al., J. Am. Chem. Soc., 69, 2451 (1947). ⁷Smith, J. Am. Chem. Soc., 56, 717 (1934). ⁸ Sprung and Wallis, J. Am. Chem. Soc., 56, 1717 (1934). ⁹ Monacelli and Hennion, I. Am. Chem. Soc., 63, 1722 (1941). ¹⁰ Emerson et al., *I. Am. Chem. Soc.*, 69, 1905 (1947). ¹¹ Brewster and Putman, Jr., J. Am. Chem. Soc., 61, 3083 (1939). ¹²Nixon and Branch, I. Am. Chem. Soc., 58, 492 (1936). ¹³ Short and Stewart, J. Chem. Soc., 553 (1929). ¹⁴Ullmann and Sponagel, Ann., 350, 83 (1906); Suter and Green, J. Am. Chem. Soc., 59, 2578 (1937); also, ref. 20. ¹⁵ Weston and Adkins, J. Am. Chem. Soc., 50, 859 (1928). ¹⁶Loevenich, Becker, and Schröder, J. prakt. Chem., 127, 248 (1930). ¹⁷ Kirner, J. Am. Chem. Soc., 50, 1955 (1928). ¹⁸ Kimer, J. Am. Chem. Soc., 52, 3251 (1930). ¹⁹ Dupre and Robinson, J. Chem. Soc., 549 (1945). ²⁰ Van Duzee and Adkins, I. Am. Chem. Soc., 57, 147 (1935). ²¹ Liston and Dehn, J. Am. Chem. Soc., 60, 1264 (1938). ²² Capinjola, I. Am. Chem. Soc., 67, 1615 (1945). ²³ Ungnade and Orwoll, Org. Syntheses, 26, 50 (1946). ²⁴ Brewster and Groening, Org. Syntheses, Coll. Vol. II, 445 (1943). ²⁵ Lea and Robinson, I. Chem. Soc., 411 (1926); cf. ref. 23. ²⁶ Cocker, Lapworth, and Walton, J. Chem. Soc., 451 (1930). ²⁷ Tamele et al., Ind. Eng. Chem., 33, 115 (1941). ²⁸ Roberts, Young, and Winstein, J. Am. Chem. Soc., 64, 2157 (1942). ²⁹ Kohlrausch, Monatsh., 70, 223 (1937). ³⁰ Tarbell in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, pp. 22, 26. ³¹ Smith, Hoehn, and Whitney, J. Am. Chem. Soc., 62, 1863 (1940); cf. ref. 30. 32 Hurd and Yamall, I. Am. Chem. Soc., 59, 1686 (1937). 33 Claisen and Tietze, Ber., 59, 2344 (1926). ³⁴ Lauer and Filbert, I. Am. Chem. Soc., 58, 1388 (1936). ³⁵ Hurd and Schmerling, J. Am. Chem. Soc., 59, 107 (1937). ³⁶ Hurd and McNamee, J. Am. Chem. Soc., 54, 1648 (1932). ³⁷ Smith and Sprung, I. Am. Chem. Soc., 65, 1276 (1943). ³⁸ Hurd and Fowler, J. Am. Chem. Soc., 61, 249 (1939). 39 Henze and Rogers, J. Am. Chem. Soc., 61, 433 (1939); 62, 1758 (1940). 40 Nenitzescu and Przemetzky, Ber., 74, 676 (1941). ⁴¹ Powell, I. Am. Chem. Soc., 45, 2708 (1923). ⁴² Wheeler and Willson, Org. Syntheses, Coll. Vol. I, 296 (1941). 49 Bennett and Hock, J. Chem. Soc., 472 (1927). 44 Bennett, I. Chem. Soc., 1277 (1925); cf. ref. 69. 45 Drake et al., I. Am. Chem. Soc., 68, 1536 (1946); Baudart, Bull. soc. chim. France, (5) 11, 336 (1944). 46 Schmid, Helv. Chim. Acta, 27, 134 (1944).

⁴⁷ Marvel and Tanenbaum, Org. Syntheses, Coll. Vol. I, 435 (1941). 46 Sayles and Degering, 1. Am. Chem. Soc., 71, 3161 (1949). * Rapson and Robinson, 1. Chem. Soc., 1540 (1935). ⁵⁰ Lechtenberger and Naftali, Bull. soc. chim. France, (5) 4, 325 (1937). ³¹ Hurd and Perletz, J. Am. Chem. Soc., 68, 38 (1946). ³² Karrer and Lee, Helv. Chim. Acta, 17, 543 (1934). ⁵⁵ Fuson and Wojcik, Org. Syntheses, Coll. Vol. II, 260 (1943). ⁵⁴ Rothstein, Bull, soc. chim. France, 51, 691 (1932). ³⁵ Mason and Manning, J. Am. Chem. Soc., 62, 1635 (1940). ³⁶ Scheibler and Baumann, Ber., 62, 2057 (1929). ⁵⁷ Munch-Petersen and Hauser, J. Am. Chem. Soc., 71, 770 (1949). ⁵⁸ Bardan, Bull. soc. chim. France, 49, 1426 (1931); cf. ref. 57. ⁵⁹ Niemann, Benson, and Mead, J. Org. Chem., 8, 401 (1943); cf. ref. 101. 60 Guss, J. Am. Chem. Soc., 71, 3460 (1949). ⁶¹ Richmond and Wright, J. Am. Chem. Soc., 67, 2272 (1945). 62 Hass and Bender, 1. Am. Chem. Soc., 71, 1767 (1949). ⁴⁰ Weygand and Gabler, J. prakt. Chem., 155, 332 (1940). ⁶⁴Schorigin and Makaroff-Semljanski, Ber., 65, 1293 (1932); also, Weygand, Organic Preparations. Interscience Publishers, New York, 1945, p. 163. ⁶⁵ Natelson and Gottfried, Org. Syntheses, 23, 37 (1943). ⁶⁶ Hultman, Davis, and Clarke, 1. Am. Chem. Soc., 43, 366 (1921). ⁶⁷ Clarke, Graham, and Winter, J. Am. Chem. Soc., 47, 2748 (1925); Ipatieff and Burwell, Jr., ibid., 63, 969 (1941); Cullinane and Chard, J. Chem. Soc., 821 (1945). 66 Briner, Bron-Stalet, and Paillard, Helv. Chim. Acta, 15, 619 (1932). 69 Butler, Renfrew, and Clapp, J. Am. Chem. Soc., 60, 1472 (1938). ⁷⁰ Wright and Du Puis, J. Am. Chem. Soc., 68, 446 (1946). ⁿ Kamm and Waldo, J. Am. Chem. Soc., 43, 2223 (1921). ¹²Cerchez, Bull. soc. chim. France, 43, 762 (1928). ⁷³ Marks, Lipkin, and Bettman, *J. Am. Chem. Soc.*, 59, 946 (1937). ⁷⁴ Hiers and Hager, Org. Syntheses, Coll. Vol. I, 58 (1941). ¹⁵ Rodionow, Bull, soc, chim, France, (4) 45, 118 (1929). ⁷⁶ Musser and Adkins, J. Am. Chem. Soc., 60, 667 (1938). ⁷⁷ Perkin and Weizmann, I. Chem. Soc., 89, 1649 (1906). ⁷⁸ Baker, I. Am. Chem. Soc., 65, 1576 (1943); footnote 12. ⁷⁹ Mosettig and Stuart, J. Am. Chem. Soc., 61, 1 (1939). ⁸⁰ Gilman and Young, I. Am. Chem. Soc., 57, 1121 (1935). ⁸¹ Gilman and Jacoby, J. Org. Chem., 3, 108 (1938). ⁸² Swallen and Boord, 1. Am. Chem. Soc., 52, 651 (1930). ⁴³ Sah, Rec. trav. chim., 59, 1032 (1940). ⁸⁴ Gredy, Bull. soc. chim. France. (5) 3, 1093 (1936). ⁸⁵ Gredy, Ann. chim., (11) 4, 42 (1935). ⁸⁶ Carlson and Cretcher, J. Am. Chem. Soc., 69, 1952 (1947). ⁶⁷ Perkin, Ray, and Robinson, J. Chem. Soc., 945 (1926). ⁸⁸ Paul, Bull, soc. chim. France, (10) 18, 315 (1932). ⁸⁹ Natelson and Gottfried, J. Am. Chem. Soc., 61, 1001 (1939). ⁹⁰ Icke et al., Org. Syntheses, 29, 63 (1949). ⁹¹ Levine, Eble, and Fishbach, J. Am. Chem. Soc., 60, 1930 (1948); cf. ref. 92. 92 Kanewskaja, Arch. Pharm., 271, 462 (1933). 93 Weissberger and Dym, Ann., 502, 78 (1933); cf. ref. 92.

94 Buck, Org. Syntheses, Coll. Vol. II, 619 (1943); cf. ref. 92.

REFERENCES FOR CHAPTER 6

⁹³ Weijlard, Swanezy, and Tashjian, J. Am. Chem. Soc., 71, 1889 (1949); cf. Kindler and Gehlhaar, Arch. Pharm., 274, 387 (1936). 96 Bernstein and Wallis, J. Am. Chem. Soc., 62, 2872 (1940). " McElvain and Carney, J. Am. Chem. Soc., 68, 2598 (1946). ⁹⁸ Pierce, Salsbury, and Fredericksen, J. Am. Chem. Soc., 64, 1691 (1942). 99 Bell and Robinson, J. Chem. Soc., 814 (1934); cf. ref. 77. ¹⁰⁰ Marshall, Kuck, and Elderfield, J. Org. Chem., 7, 444 (1942); cf. Amstutz, Fehnel, and Neumover, I. Am. Chem. Soc., 68, 351 (1946). ¹⁰¹ Cowdrey, Hughes, and Ingold, J. Chem. Soc., 1228 (1937). ¹⁰² Scarrow and Allen, Org. Syntheses, Coll. Vol. II, 387 (1943). 103 Silverman and Bogert, J. Org. Chem., 11, 43 (1946); Meisenheimer and Weibezahn, Ber., 54, 3195 (1921). 104 Li and Adams, 1. Am. Chem. Soc., 57, 1565 (1935); Haworth and Lapworth, J. Chem. Soc., 123, 2986 (1923). ¹⁰⁵ Evans and Edlund, Ind. Eng. Chem., 28, 1186 (1936). ¹⁰⁶ Niederl and Natelson, J. Am. Chem. Soc., 53, 272, 1928 (1931). ¹⁰⁷ Sowa, Hinton, and Nieuwland, J. Am. Chem. Soc., 54, 2019, 3695 (1932). 108 Killian, Hennion, and Nieuwland, j. Am. Chem. Soc., 56, 1786 (1934). 109 Jacobson, Dykstra, and Carothers, J. Am. Chem. Soc., 56, 1169 (1934). ¹¹⁰ Killian, Hennion, and Nieuwland, I. Am. Chem. Soc., 58, 892 (1936); also, refs. 111, 112, and 149. ¹¹¹ Milas et al., I. Am. Chem. Soc., 70, 1602 (1948). ¹¹² Puetzer, Nield, and Barry, J. Am. Chem. Soc., 67, 835 (1945). ¹¹³ Rehberg, Dixon, and Fisher, J. Am. Chem. Soc., 68, 544 (1946); 69, 2970 (1947). ¹¹⁴ Croxall, Van Hook, and Luckenbaugh, J. Am. Chem. Soc., 71, 2736 (1949). ¹¹⁵ Koelsch, J. Am. Chem. Soc., 65, 437 (1943); cf. ref. 116. ¹¹⁶ Utermohlen, I. Am. Chem. Soc., 67, 1505 (1945). ¹¹⁷ Christian and Hixon, J. Am. Chem. Soc., 70, 1333 (1948). ¹¹⁸ Waterman et al., Rec. trav. chim., 56, 437 (1937). ¹¹⁹ Gredy, Bull, soc. chim. France, (5) 3, 1094 (1936). 120 Boord et al., J. Am. Chem. Soc., 52, 651, 3396 (1930). ¹²¹ Schmitt and Boord, I. Am. Chem. Soc., 54, 751 (1932). ¹²² Sherrill and Walter. I. Am. Chem. Soc., 58, 742 (1936). ¹²³ Bossert and Brode, J. Am. Chem. Soc., 56, 165 (1934). 124 Soday and Boord, J. Am. Chem. Soc., 55, 3293 (1933). 125 Shoemaker and Boord, J. Am. Chem. Soc., 53, 1505 (1931). ¹²⁶ Marvel and Porter, Org. Syntheses, Coll. Vol. I, 377 (1941). ¹¹⁷ Henze et al., I. Am. Chem. Soc., 64, 1222 (1942). ¹²⁸ Farren et al., J. Am. Chem. Soc., 47, 2419 (1925). ¹²⁹ Hill and Keach, J. Am. Chem. Soc., 48, 259 (1926). ¹³⁰ Blair and Henze, I. Am. Chem. Soc., 54, 399 (1932). ¹³¹ Lucien and Mason, I. Am. Chem. Soc., 71, 258 (1949). ¹³² Henze and Murchison, J. Am. Chem. Soc., 53, 4077 (1931); cf. ref. 118. 133 Speer and Henze, J. Am. Chem. Soc., 61, 1226 (1939). ¹³⁴ Lingo and Henze, J. Am. Chem. Soc., 61, 1574 (1939); cf. ref. 135. 135 Cottle et al., 1. Org. Chem., 11, 289 (1946); Summerbell and Umhoefer, J. Am. Chem. Soc., 61, 3019 (1939). ¹³⁶Clark and Henze, J. Org. Chem., 2, 508 (1938).

¹³⁷ Spurlock and Henze, J. Org. Chem., 4, 234 (1939).

¹³⁸ Wilson and Henze, J. Am. Chem. Soc., 63, 2112 (1941). 139 Straus and Thiel, Ann., 525, 151 (1936). ¹⁴⁰Nenitzescu and Przemetzki, Ber., 69, 2706 (1936). 141 Chitwood and Freure, J. Am. Chem. Soc., 68, 680 (1946). 142 Bartlett and Ross, J. Am. Chem. Soc., 70, 926 (1948); Swern, Billen, and Knight, ibid., 71, 1152 (1949). 148 Flores-Gallardo and Pollard, J. Org. Chem., 12, 831 (1947); cf. Koelsch, J. Am. Chem. Soc., 65, 2460 (1943). 144 Fairbourne, Gibson, and Stephens, J. Chem. Soc., 1965 (1932). 145 Reilly, Drumm, and Barrett, J. Chem. Soc., 67 (1927). 146 Post, J. Org. Chem., 1, 231 (1936). 147 Straus and Heinze, Ann., 493, 203 (1932). 140 Straus and Weber, Ann., 498, 120 (1932). 149 Elderfield, Pitt, and Wempen, I. Am. Chem. Soc., 72, 1340 (1950). ¹⁵⁰ Emerson, J. Am. Chem. Soc., 67, 516 (1945). ¹⁵¹ Reeve and Sadle, J. Am. Chem. Soc., 72, 1251 (1950). ¹⁵² Buckle, Pattison, and Saunders, J. Chem. Soc., 1476 (1949). 153 Cooper and Partridge, J. Chem. Soc., 462 (1950). ¹⁵⁴ Manske and Ledingham, J. Am. Chem. Soc., 72, 4797 (1950). 155 Dierassi and Scholz, I. Am. Chem. Soc., 69, 1688 (1947). ¹⁵⁶ Partridge, I. Chem. Soc., 3043 (1949). 157 Tarbell and Noble, J. Am. Chem. Soc., 72, 2657 (1950). ¹³⁸ Hill and McGraw, J. Org. Chem., 14, 783 (1949); Adams and Jones, J. Am. Chem. Soc., 69, 1803 (1947). 159 Burnop, Elliott, and Linstead, J. Chem. Soc., 730 (1940). 160 Duvall and Mosettig, J. Am. Chem. Soc., 60, 2409 (1938). ¹⁶¹ Shepard and Noth, J. Am. Chem. Soc., 72, 4364 (1950). 162 Reeve and Christoffel, J. Am. Chem. Soc., 72, 1480 (1950). 163 Braude et al., I. Chem. Soc., 613 (1949). 164 Rehberg and Dixon, I. Am. Chem. Soc., 72, 2205 (1950); Hall and Stern, I. Chem. Soc., 2035 (1949). 165 Lambert, Scaife, and Wilder-Smith, J. Chem. Soc., 1474 (1947). ¹⁶⁶ Brandon, Derfer, and Boord, J. Am. Chem. Soc., 72, 2120 (1950). ¹⁶⁷ Crombie and Harper, I. Chem. Soc., 1707 (1950). ¹⁶⁸ Crombie and Harper, J. Chem. Soc., 1714 (1950). 169 Sexton and Britton, J. Am. Chem. Soc., 70, 3606 (1948). ¹⁷⁰ Winstein and Buckles, J. Am. Chem. Soc., 65, 613 (1943). ¹⁷¹ Winstein and Henderson, J. Am. Chem. Soc., 65, 2196 (1943). ¹⁷² Winstein and Henderson in Elderfield's Heterocyclic Compounds, Vol. I, Iohn Wiley & Sons, New York, 1950, pp. 22-42. 173 Newman and Beal, J. Am. Chem. Soc., 72, 5161 (1950). 174 Arbit, I. Am. Chem. Soc., 68, 1662 (1946). 175 Dewar and Read, J. Soc. Chem. Ind. (London), 55, 347T (1936). ¹⁷⁶ Kornblum in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 297.

Oxides

7

CONTENTS

METHOD

ME INOD	1 110 0
125. Action of Alkali on Halohydrins'	253
126. Action of Peracids on Olefinic Compounds	. 254
127. Condensation of Carbonyl Compounds with Halogenated Compounds	255
128. Dehydration of Glycols	. 256
Table 22. Oxides	. 257
Performance	259

PAGE

125. Action of Alkali on Halohydrins

RCHCICHOHR KOH RCH-CHR

Epoxy compounds are prepared by heating halohydrins with strong caustic solutions and, where possible, distilling the product as it is formed. By this procedure, 3-chloro-2-butanol yields a mixture of *cis*- and *trans*-2,3-epoxybutane (90%), which can be readily separated by fractional distillation. Another example is the conversion of 2-chloro-cyclohexanol to cyclohexene oxide (73%).⁶ The reaction is included in an excellent discussion of the chemistry of ethylene and trimethylene oxides.⁴⁹

The reaction has been applied to the preparation of many substituted ethylene oxides in which one to all four hydrogen atoms are replaced by alkyl groups.³⁻⁵ It is noted that alkyl substituents enhance oxide ring closure which occurs by a *trans* mechanism.

Aryl-substituted ethylene oxides have also been prepared. The simplest of these is styrene oxide, which is prepared by the alkali treatment of the iodohydrin made by the action of iodine, water, and mercuric oxide on styrene (51%).⁷ Aryl chlorohydrins resulting from the action of chloroacetone and aromatic Grignard reagents, C_6H_s (CH₂)_nMgX, have been converted by alkali or sodium ethoxide to oxides of the type

C.H. (CH.), (CH.)Ć-

Ch. 7

RCH-CHCO₂C₂H

(n = 0 to 4) in 20-40% over-all yields.^{8,9} Halohydrins from the aluminum isopropoxide reduction of 1-naphthyl halomethyl ketones are converted in excellent yields to α -naphthylethylene oxides.¹⁰

Trimethylene oxide and its homologs are prepared from the corresponding trimethylene chlorohydrins and alkali. The yield is higher when γ -chloropropyl acetate is substituted for the chlorohydrin (44% vs. 25%).¹¹ Pentamethylene oxide is obtained in almost quantitative yield by the action of zinc and water on α, ϵ -dibromopentane.¹³

Epoxy compounds containing another functional group are important materials in synthetic work. Among these are 3,4-epoxy-1-butene,¹⁴ 2,3-epoxy-1-propanol (glycidol),¹⁵ 2,3-epoxy-1-chloropropane (epichlorohydrin,^{16,17} 2,3-epoxy-1-methoxypropane and homologs,¹⁸ 2,3-epoxybutanoic acid,²⁰ and 1-diethylamino-2,3-epoxypropane,⁴⁵ all of which are prepared by treating the appropriate chlorohydrin with base under various conditions.

The condensation of ethyl dichloroacetate with aldehydes or ketones aided by magnesium amalgam gives good yields of α -chloro- β -hydroxy esters, which by treatment with sodium ethoxide are converted quantitatively to glycidic esters (cf. method 127).³²

 $\text{RCHO} + \text{CHCl}_2\text{CO}_2\text{C}_2\text{H}_5 \xrightarrow[\text{then H}_2\text{O}]{} \text{RCHOHCHClCO}_2\text{C}_2\text{H}_5 \xrightarrow[\text{c}_2\text{H}_5\text{ONe}]{} \text{C}_2\text{H}_5 \xrightarrow[\text{then H}_2\text{O}]{} \text{RCHOHCHClCO}_2\text{C}_2\text{H}_5 \xrightarrow[\text{c}_2\text{H}_5\text{ONe}]{} \text{RCHOHCHClCO}_2\text{R}_5 \xrightarrow[\text{c}_2\text{H}_5\text{ONe}]{} \text{RCHOHCHClCO}_2\text{R}_5 \xrightarrow[\text{c}_2\text{H}_5\text{ONe}]{} \text{RCHOHCHClCO}_2\text{R}_5 \xrightarrow[\text{c}_2\text{H}_5\text{ONe}]{} \text{RCHOHCHClCO}_2\text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{ON}]{} \text{RCHOHCHClCO}_2\text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{ON}]{} \text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{ON}]{} \text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{ON}]{} {} \text{R}_5 \xrightarrow[\text{c}_2\text{R}_5 \xrightarrow[\text{c}_2\text{R}_5$

The initial step closely resembles the well-known Reformatsky reaction for the formation of β -hydroxy esters (cf. method 103).

126. Action of Peracids on Olefinic Compounds

$$RCH = CH_2 + C_6H_5 CO_3H \rightarrow RCH - CH_2 + C_6H_5 CO_2H$$

Olefinic compounds are conveniently converted to epoxy compounds by treatment with an organic peracid, commonly perbenzoic acid or peracetic acid in chloroform solution at $0-5^{\circ}$. The preparation of perbenzoic acid has been described.²⁴ Performic and monoperphthalic acids have also been successfully employed.^{50, 51} The reaction has been reviewed.^{48, 52}

The rate of reaction of peracetic acid in acetic acid or perbenzoic acid in chloroform solution is quite sensitive to the number and kind of substituents on the ethylenic carbon atoms. In general, alkyl and aryl groups enhance the reactivity whereas carboxyl, carboalkoxyl, and carbonyl groups slow or prevent the reaction.⁵¹ However, α , β -unsaturated carbonyl compounds respond to treatment with hydrogen peroxide in basic medium. The conversion of alkyl- and aryl-substituted ethylenes is illustrated by the preparation of 1,1-dineopentylethylene oxide (88%)²⁷ and styrene oxide (75%).²³

The epoxidation of high-molecular-weight olefins (C_8-C_{18}) with peracetic acid in acetic acid solution is accompanied by appreciable quantities of hydroxy acetoxy compounds, which arise by reaction of the oxides with the solvent.²⁶ Similar treatment of the high-molecularweight unsaturated *fatty esters* has been more successful.²⁷

Perbenzoic acid in chloroform solution reacts with propylvinylcarbinol to give a *hydroxy epoxide*, 1,2-epoxy-3-hydroxyhexane (50%).²⁸

Epoxy ketones are prepared by the action of hydrogen peroxide on unsaturated ketones in alkaline medium.^{29,30} In this manner, dibenzoylethylene oxide (86%) is prepared from both *cis*- and *trans*-dibenzoylethylene.⁴⁶

$$C_6H_5COCH = CHCOC_6H_5 \xrightarrow{H_2O_2} C_6H_5COCH - CHCOC_6H_5$$

Certain α , β -olefinic nitriles with *alpha* branching (C = C(R)CN) give

epoxyamides with hydrogen peroxide instead of the corresponding unsaturated amides (cf. method 354). For example, α -phenylcrotononitrile, CH₃CH == C(C₆H₅)CN, reacts with hydrogen peroxide in the presence of sodium carbonate and aqueous acetone to give an excellent yield of α -phenyl- β -methylglycidamide. On the other hand, the double bond in allyl cyanide is not attacked, and the unsaturated amide is obtained.⁴⁷

127. Condensation of Carbonyl Compounds with Halogenated Compounds

$$R'COR'' + XCHR'''CO_2C_2H_5 \xrightarrow{\text{NeOC}_2H_5} R'R''C - CR'''CO_2C_2H_5 + \bigvee_{O}^{O}$$

 $NaX + C_2H_5OH$

The condensation of aldehydes and ketones with ethyl chloroacetate in the presence of sodium ethoxide or sodium amide produces α,β -epoxy esters (Darzens). The scope, limitations, typical experimental procedures, and examples have been given.^{33,36,46} Briefly, aliphatic and aromatic ketones, and aromatic aldehydes react satisfactorily, whereas aliphatic aldehydes give poor yields. α -Halopropionic and α -halobutyric Ch. 7

esters have also been employed. The α -chloro esters are preferable to the bromo or iodo esters.

Other halogenated compounds have been substituted for the halo esters. Aromatic α -halo ketones have been condensed with aromatic aldehydes to give α , β -epoxy ketones.^{39, 41}

RCHO + CICH₂COR'
$$\xrightarrow{C_2H_3 \text{ ONe}}$$
 RCH-CHCOR'

For example, the reaction of benzaldehyde and ω -chloroacetophenone yields α -phenyl- β -benzoylethylene oxide (80%)³⁹

Substituted benzyl halides and aromatic aldehydes have also been condensed to yield epoxy compounds.⁴²

RCHO + R'CH₂CI
$$\xrightarrow{KOH}$$
 RCH - CHR

128. Dehydration of Glycols

$$HOCH_2(CH_2)_nCH_2OH \xrightarrow{H_2SO_4} CH_2(CH_2)_nCH_2$$

Treatment of polymethylene glycols with 50% sulfuric acid gives mixtures of cyclic oxides. Thus, 1,6-hexanediol yields a mixture containing 16% 1,6-, 25% 1,5-, and 65% 1,4-oxidohexane. In other instances, formation of the 1,4-oxido derivatives is also favored.⁴³

By passing trans-1,4-cyclohexanediol over activated alumina at 275° , a 73% yield of 1,4-epoxycyclohexane is obtained.⁵⁴

TABLE 22. OXIDES

			Yield		
с <u></u>	Compound	Method	(%)	Chapter ^{rer.}	B.p./mm., n ^b _D , (M.p.)
С,	Ethylene oxide	125	61	74	12/760
с,	Propylene oxide	125	65	74	35/760, 1.3681 ¹⁷
	Trimethylene oxide	125	44	7 **	48, 1.3905 ²³
	Epichlorohydrin	125	81	7 16	115-117
		125	72	7 17	115-117
	Epibromohydrin	125	89	7 17	136, 62/50
	2, 3- Epoxy- 1-propanol (glycidol)	125	90	7 15	66/2.5, 1.4302 ²⁵
C₄	1.2-Epoxybutane	125	53	74	62/760, 1.3855 ¹⁷
•	trans-2, 3-Epoxybutane)	125	90	7 1	54/747, 1, 37 36
	cis-2, 3-Epoxybutane				60/747, 1.3826
	2-Methyl- 1, 2-epoxy- propane	125	47	74	56/760
	3,4-Epoxy-1-butene	125	84	7 14	65-72, 1.4162
	1,2-Epoxy-3-methoxy- ptopane	125	68	7 ¹⁸	54/85, 1.4012 ²⁵
	2, 3-Epoxybutanoic acid	125	54†	7 20	(88.5)
C5	Pentamethylene oxide	125	100	7 ¹³	88/760, 1.4195 ²⁵
	trans-2,3-Epoxy- pentane	125	9 6	7 2	80/748, 1.3867
	cis-2,3-Epoxy-				85/748, 1.3941
	2-Methyl-2, 3-epoxy- butane	125	62	7 12	74-78, 1.3896 ¹⁸
	1,2-Epoxycyclo- pentane	125	40	7 🏶	102, 1.4330 ²³
	1,2-Epoxy-3-ethoxy- ptopane	125	75	7 ¹⁸	61/65, 1.4046 ²⁵
C ₆	2,3-Dimethyl-2,3- epoxybutane	125	15†	7 5	91/753
	Cyclohexene oxide	125	73	76	129-134
		126	60	7 21	131
	1,4-Epoxycyclo- hexane	128	73	7 54	120/760, 1.4477
	1,2-Epoxy-3-hydroxy- n-hexane	126	50	7 ²⁸	90/25
с,	1,2-Dimethyl-1,2- epoxycyclopentane	126	85	7 ²⁵	122/20
	Ethyl β,β -dimethyl- glycidate	127	53	7 34	183, 74/12, 1.4202 ¹⁸
	1-Diethylamino-2, 3 epoxyptopane	125	63	7 ⁴⁵	62-65/20

OXIDES

Ch. 7

		TABLE	22 (<i>con</i>	tinued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C.	Styrene oxide	125	51	77	88/23, 1.5331 ²⁵
		126	75	7 23	188–192
	Ethyl β-isopropyl- glycidate	125	68 [¶]	732	
	Ethyl β-methyl-β- ethylglycidate	127	56	7 ³⁵	9 1- 95/ 17
с,	2-Ph enyl-1,2-epoxy- propane	125	79	7 ⁸	75/11
	1,2-Epoxy-3-phenyl- propane	125	63	7 ¹⁹	116/4
	1-Phenyl-2, 3-epoxy- 1-propanol	126	72	731	115/5, 1.5441 ²⁸
	3-Phenyl-2,3-epoxy- 1-propanol	126	65	731	127/2, (25)
	Epoxypropiophenone	126	40	7 ²⁹	(53)
C 10	1,2-Epoxydecane	126	56	7 ²⁶	89/10, 1.4288
-	2-Methyl-3-phenyl-1,	125	20 †	7 °	90/10
	2-epoxypropane Ethylα,β-epoxycyclo- hexylidenea cetate	125	97 [†]	7 32	
C11	2-Methyl-4-phenyl-1, 2-epoxybutane	125	13†	7°	105/10
C 12	1, 1-Dineopentyl ethylene oxide	126	88	7 22	88/15, 1.4330 ²²
	2-Methy l- 5-phenyl-1, 2-epoxypentane	125	41†	7°	116/4
	Ethyl β-methyl-β- phenylglycidate	125	95†	7 ³²	
		127	64	7 ³⁷	111-114/3
C 13	Ethyl & methyl-β- tolylglycidate	127	56	7 ³⁸	148-152/12
C <mark>1</mark> 5	a-Phenyl-β-benzoyl- ethylene oxide	127	80	7 ³⁹	(90)
C 16	Diben zoyl ethylen e oxide	126	8 6	7 ⁴⁶	(129)
C 17	Ethyl β , β -diphenyl- glycidate	127	30	7 ⁵³	145/0.45, (47)
C 19	Methyl 9, 10-epoxy- steamte	126	45	7 27	(16.5)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 7

REFERENCES FOR CHAPTER 7

¹ Wilson and Lucas, I. Am. Chem. Soc., 58, 2396 (1936). ² Lucas, Schlatter, and Jones, J. Am. Chem. Soc., 63, 22 (1941). ³ Rothstein, Bull. soc. chim. France, (5) 2, 1936 (1935). ⁴ Moureu and Dode, Bull. soc. chim. France, (5) 4, 288 (1937). ⁵Norton and Hass, J. Am. Chem. Soc., 58, 2147 (1936). ⁶Osterberg, Org. Syntheses, Coll, Vol. 1, 185 (1944). ⁷Golumbic and Cottle, J. Am. Chem. Soc., 61, 996 (1939). ^aKing, I. Am. Chem. Soc., 61, 2383 (1939). ⁹Ranatt-Lucas and Labaune, Ann. chim., (10) 16, 282 (1931). ¹⁰ Winstein et al., J. Org. Chem., 11, 157 (1946). ¹¹ Noller, Org. Syntheses, 29, 92 (1949). 12 Read and Reid, J. Chem. Soc., 1487 (1928); cf. ref. 5. ¹³Clarke, J. Chem. Soc., 1802 (1912); Allen and Hibbert, J. Am. Chem. Soc., 56, 1400 (1934). 14 Kadesch, I. Am. Chem. Soc., 68, 44 (1946). ¹³Rider and Hill, I. Am. Chem. Soc., 52, 1521 (1930). ¹⁶Clarke and Hartman, Ore. Syntheses, Coll. Vol. 1, 233 (1941). 17 Braun, Org. Syntheses, Coll. Vol. 11, 256 (1943). 18 Flores-Gallardo and Pollard, J. Org. Chem., 12, 831 (1947); cf. ref. 19. ¹⁹ Fairbourne, Gibson, and Stephens, J. Chem. Soc., 1965 (1932). ¹⁰ Braun, J. Am. Chem. Soc., 52, 3185 (1930). ²¹ Böeseken and Schneider, J. prakt. Chem., 131, 287 (1931). ²² Bartlett, Fraser, and Woodward, J. Am. Chem. Soc., 63, 495 (1941). ²³ Hibbert and Burt, Org. Syntheses, Coll. Vol. 1, 494 (1941). ²⁴Braun, Ore. Syntheses, Coll. Vol. 1, 431 (1941). 25 Bartlett and Bavley, J. Am. Chem. Soc., 60, 2416 (1938). ²⁶Swern, Billen, and Scanlan, J. Am. Chem. Soc., 68, 1504 (1946); cf. ref. 3. ¹⁷ Finley, Swem, and Scanlan, J. Am. Chem. Soc., 67, 412 (1945). ²⁸ Niemann, Benson, and Mead, J. Org. Chem., 8, 397 (1943). ²⁹ Cahnmann, Bull. soc. chim. France, (5) 4, 229 (1937). ³⁰ Rohrmann, Jones, and Shonle, J. Am. Chem. Soc., 66, 1856 (1944). ³¹ Datmon and Weill, Bull. soc. chim. France, (5) 8, 407, 413 (1941). ³²Darzens, Compt. rend., 151, 883 (1910); 203, 1374 (1936); 204, 272 (1937). 33 Newman and Magerlein in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 413. ³⁴ Rutowski and Dajew, Ber., 64, 693 (1931); Darzens, Compt. rend., 139, 1214 (1904); Culvenor et al., I. Chem, Soc., 2573 (1949). 35 Linstead and Mann, J. Chem. Soc., 2070 (1930). 36 Yarnall and Wallis, J. Org. Chem., 4, 270 (1939). ³⁷ Allen and Van Allen, Org. Syntheses, 24, 82 (1944). ³⁸ Ruzicka and Ehmann, Helv. Chim. Acta, 15, 160 (1932); ref. 33. 39 Widman, Ber., 49, 477 (1916). ¹⁰ Bodforss, Ber., 49, 2795 (1916); 51, 192 (1918); 52, 142 (1919). ⁴¹ Jörlander, Ber., 49, 2782 (1916); 50, 406, 1457 (1917). ⁴² Kleucker, Ber., 55, 1634 (1922); Bergmann and Hervey, ibid., 62, 902 (1929). ⁴³ Franke and Kroupa, Monatsh., 69, 172 (1936); C. A., 31, 1360 (1937). ⁴⁴Weizmann and Malkowa, Bull. soc. chim. France, 47, 356 (1930). 45 Gilman et al., I. Am. Chem. Soc., 68, 1291 (1946). 46 Lutz and Wilder, J. Am. Chem. Soc., 56, 1987 (1934).

260

Ch. 7

⁴⁷ Murray and Cloke, J. Am. Chem. Soc., 56, 2749 (1934).
 ⁴⁸ Winstein and Henderson in Elderfield's Heterocyclic Compounds, Vol. I,
 John Wiley & Sons, New York, 1950, pp. 1-60.
 ⁴⁹ McCasland and Snith, J. Am. Chem. Soc., 72, 2190 (1950).
 ⁵⁰ Chakravorty and Levin, J. Am. Chem. Soc., 64, 2317 (1942); Böhme, Org.
 Syntheses, 20, 70 (1940).
 ⁵¹ Swern, J. Am. Chem. Soc., 69, 1692 (1947).
 ⁵² Swern, Chem. Revs., 45, 1 (1949).
 ⁵³ Ecary, Ann. chim., (12) 3, 450 (1948).

54Olberg, Pines, and Ipatieff, J. Am. Chem. Soc., 65, 2260 (1943).

8

Acetals and Ketals

CONTENTS

METHOD	PAGE
129. Interaction of Alcohols and Carbonyl Compounds	261
130. Interaction of Orthoesters and Carbonyl Compounds	264
131. Interaction of Grignard Reagents and Orthoformic Esters	264
132. Interaction of Alcohols and Vinyl Esters	265
133. Interchange of Alkoxyl Groups	265
134. Addition of Alcohols to Acetylenic Compounds	265
135. Addition of Alcohols to Dihydropyran	266
136. Interaction of Carbonyl Compounds and Epoxides	266
137. β -Keto Acetals by Interaction of β -Chlorovinyl Ketones and Metha-	
nolic Alkali	266
138. Ketene Acetals by Pyrolysis of Orthoesters	267
139. a-Hydroxy Ketals from a-Halo Ketones	267
Table 23. Acetals	268
Table 24. Ketals	273
References	276

In addition to the procedures given here, which are concerned with making the acetal or ketal group, acetals or ketals having a second functional group are made by adaptations of methods employed for the second group. Thus, olefinic and acetylenic acetals are made by the dehydrohalogenation of halo acetals (methods 20 and 43); ketene acetals by the elimination of halo and alkoxyl groups from bromoörthoesters (method 21); halo acetals by direct halogenation of acetals (method 66) and by the action of phosphorus tribromide on hydroxy acetals (method 52); hydroxy acetals by the action of Grignard reagents on keto and carbethoxy acetals (methods 89 and 91), by the hydrolysis of halo acetals (method 96), and by the oxidation of olefinic acetals (method 107); alkoxy acetals by interaction of sodium alkoxides and halo acetals (method 115); amino acetals by amination of halo acetals (methods 435 and 436); and cyano acetals by the action of alkali cyanides on halo acetals (method 378) and by the dehydration of amido acetals (method 384).

129. Interaction of Alcohols and Carbonyl Compounds

 $RCHO + 2R'OH \rightleftharpoons RCH(OR')_2 + H_2O$

ACETALS AND KETALS

Ch. 8

In the formation of acetals from carbonyl compounds and low-molecularweight alcohols, an equilibrium is attained and the percentage conversion varies widely, depending on the structures of the reactants. With normal aliphatic aldehydes and primary alcohols, the average conversion is 80% and with secondary alcohols 46%; the yields become progressively lower as branching on the α -carbon of the aldehyde increases.³ Hydrogen chloride and ferric chloride are the most efficient catalysts in the production of methylal, HC(OCH₃)₂, from paraformaldehyde and methanol, and ferric chloride has been used for the combination of higher alcohols with this aldehyde.⁴ On the other hand, calcium chloride is preferred for the preparation of diethyl acetal since it has the advantage of removing water from the system.¹ This advantage is less marked with highmolecular-weight alcohols.²

In the reaction of higher aldehydes employing hydrogen chloride or still another catalyst, *p*-toluenesulfonic acid,^{4,3} the water is conveniently removed by an azeotropic distillation with benzene. The vapors containing the ternary mixture of alcohol, benzene, and water are condensed in a water separator,¹⁴ and the benzene-alcohol mixture is automatically returned to the reaction flask either directly⁸ or after drying with calcium carbide.⁵⁰

The acid catalyst must be quickly and completely neutralized before diluting the reaction mixture with water; otherwise the reverse reaction occurs.² A soluble base such as alcoholic sodium ethoxide has been recommended since its action is quick and thorough.⁵⁰

The preparation of ketals of monohydric alcohols is not as readily accomplished.

Dialkyl sulfites, which are prepared in good yields from thionyl chloride and alcohols, react with aldehydes in the presence of dry methanolic hydrochloric acid to form acetals (80%);⁶ moreover, high-molecularweight alcohols not only act as solvent but also enter into the reaction to give higher acetals.⁷

> $(CH_3O)_2SO + 2ROH \rightleftharpoons (RO)_2SO + 2CH_3OH$ $(RO)_2SO + R'CHO \rightleftharpoons R'CH(OR)_2 + SO_2$

Aromatic and aliphatic carbonyl compounds condense with glycols, such as ethylene, propylene, and trimethylene glycols, to form cyclic acetals; p-toluenesulfonic acid has proved to be an excellent catalyst.^{0,10} As before, the water formed in these reactions is conveniently removed by an azeotropic distillation with benzene. Representative aldehydes and kecones that undergo this acetalization include acetone, cyclohexanone, pinacolone, acetophenone, benzophenone, n-heptaldehyde, furfural, benzaldehyde, and substituted benzaldehydes (70-90%). Sulfuric acid,¹¹ phosphoric acid,^{12,30} and hydrogen chloride¹³ have also been used as catalysts in this cyclization reaction.

Unsaturated acetals can be prepared by the acetalization of an unsaturated aldehyde. Acrolein diethyl acetal, $CH_2 = CH - CH(OCH_2CH_3)_2$, is prepared in this manner and also by the dehydrohalogenation of β -chloropropionaldehyde diethyl acetal (cf. method 20); however, the former method has definite advantages in that it involves a single-step process and gives a more stable product.^{17,34} The double bond may also be in the alcohol fragment, as in acetaldehyde diallyl acetal,

$$CH_3CH(OCH_2CH = CH_2)_2$$
.¹⁸

Halo acetals have been prepared by the action of alcohol on halo ketones^{26,27} and halo aldehydes.^{19,25} An indirect application of this reaction consists in the halogenation of enol acetates with subsequent reaction of the brominated products with alcohols to give the halo acetals.^{20,22}

 $RCH = CHOCOCH_3 \xrightarrow{Br_2} RCHBrCHBrOCOCH_1 \xrightarrow{C_2H_5OH}$

 $RCHBrCH(OC_2H_5)_2 + CH_3CO_2C_2H_5$

The reaction of carbonyl compounds with glycerin- α -monochlorohydrin, CH₂OHCHOHCH₂Cl, leads to cyclic halo acetals.^{26,29,30} Treatment of α , β -olefinic aldehydes with alcohols *saturated* with dry hydrogen chloride causes the addition of the halogen acid to the double bond as well as acetalization to give β -halo acetals.^{23,24}

Isopropylideneglycerol, a five-membered cyclic *hydroxy ketal* from acetone and glycerol, is prepared in 90% yield by removing the liberated water by an azeotropic distillation.³² In another procedure, *calcium carbide* is added directly to the reaction mixture as a desiccant.³¹ Acetaldehyde and benzaldehyde, unlike acetone, react with glycerol to form a mixture of the five- and six-membered cyclic hydroxy acetals.³³

Alkoxy acetals are made by the acetalization of α,β -olefinic aldehydes in weakly acidic solutions; however, the addition of alcohol to the double bond may not go to completion.^{34,35}

Other functional groups may be present in acetals or ketals prepared by these procedures. Some of these groups are keto,^{36,37} e.g., phenylglyoxal diethyl acetal; carbethoxyl,^{26,28} e.g., ethyl acetoacetate ethylene ketal; amino,^{26,29} e.g., β -diethylaminopropyl methyl ketone ethylene ketal; and nitro,^{40,41} e.g., *m*-nitrobenzaldehyde dimethyl acetal. In addition, amino ketals can be prepared by the hydrogenation of nitro ketals over Raney nickel catalysts.^{40,119}

130. Interaction of Orthoesters and Carbonyl Compounds

 $RCHO + HC(OR')_3 \rightarrow RCH(OR')_2 + HCO_2R'$

Acetals and ketals are readily prepared from carbonyl compounds and orthoformic esters in alcohol solution in the presence of a catalyst such as concentrated sulfuric acid, anhydrous hydrogen chloride, or ammonium chloride (60-95%).⁴² The reaction mixture must be neutralized before processing since the acetals are very sensitive to an acid hydrolysis. The methyl and ethyl esters of orthosilicic acid have been substituted for the orthoformic esters with good results (70-90%); however, steps must be taken to remove compounds of silicon.^{47,112}

Acetals and ketals having a second functional group are made by these procedures. For example, acrolein reacts with ethyl orthoformate in alcohol solution with ammonium nitrate as catalyst to give acrolein diethyl acetal (73%).⁴⁸ On the other hand, it reacts with ethyl orthosilicate with anhydrous hydrogen chloride as catalyst to furnish β ethoxypropionaldehyde diethyl acetal (76%).¹¹² p-Bromoacetophenone and ethyl orthoformate give the corresponding ketal in 65% yield.¹¹³ p-Methoxy- and m-amino-benzaldehyde diethyl acetals are made in a similar way in 96% and 85% yields, respectively.^{42,49}

 α -Keto esters like ethyl α -keto-*n*-butyrate and ethyl α -keto-*n*-valerate are converted to their diethyl ketals in excellent yields by the action of orthoformic ester in ethanol-hydrochloric acid solution. If the reaction is carried out in the presence of ethylene glycol instead of ethanol and, in addition, the volatile products are removed by distillation, then the ethylene ketal is formed in almost quantitative yield¹¹⁴ (cf. method 133).

131. Interaction of Grignard Reagents and Orthoformic Esters

 $RMgBr + HC(OC_2H_s)_3 \longrightarrow RCH(OC_2H_s)_2 + C_2H_sOMgBr$

The preparation of acetals is effected by refluxing an ethereal solution of ethyl orthoformate and a Grignard reagent. Prolonged heating is necessary for maximum yields. The reaction mixtures are then carefully processed by the addition of ice and dilute acetic acid followed by extraction with ether and distillation to give the acetal (80-90%).⁵² Further studies have been made in conjunction with the preparation of aldehydes (method 165).⁵⁷ The procedure has been extended to the formation of difunctional compounds like 3-methyl-3-butenal diethyl acetal (24%),⁵⁴ 1, 1-diethoxy-2-butyne (80%),¹¹⁸ and β -ethoxyethyl methyl ketone diethyl ketal (92%).⁶³

A somewhat related reaction is the formation of diethyl acetals of a-formyl esters by treatment of a-bromo esters with zinc and ethyl ortho-formate (45-60%).¹²¹

$$\text{RCHBrCO}_2\text{C}_2\text{H}_5 + \text{HC(OC}_2\text{H}_5)_3 \xrightarrow{\text{Zn}} \text{RCHCO}_2\text{C}_2\text{H}_5$$

$$\downarrow$$

$$\text{HC(OC}_2\text{H}_5)_2$$

132. Interaction of Alcohols and Vinyl Esters

 $CH_2 = CHOCOCH_3 + 2ROH \xrightarrow{Catalyst} CH_sCH(OR)_2 + CH_sCOOH$

Acetaldehyde acetals are produced in 80-90% yields by the addition of primary aliphatic alcohols to vinyl acetate in the presence of an acidic mercury-boron catalyst. In a similar manner, acetone ketals are produced from isopropenyl acetate.⁶⁹

133. Interchange of Alkoxyl Groups

 $CICH_2CH(OC_2H_5)_2 + CH_2OHCH_2OH \xrightarrow{H^+} CICH_2CHOCH_2CH_2O + 2C_2H_5OH$

Cyclic acetals have been prepared in 75-90% yields by an alcohol exchange between dimethyl or diethyl acetals and a glycol. Thus, anhydrous glycerol and chloroacetal, on heating under a fractionating column to remove the liberated alcohol, give chloroethylidene glycerol (88%).⁷⁰ The reaction, catalyzed by a small amount of concentrated sulfuric acid, has been extended to the formation of numerous halo cyclic acetals ⁷¹ and mixed acetals.⁷²

134. Addition of Alcohols to Acetylenic Compounds

 $RC \equiv CH + 2R'OH \xrightarrow{Catalyst} RC(OR')_2CH_3$

Acetals are formed by the action of acetylene with alcohols in the presence of a catalyst consisting of boron trifluoride and mercuric oxide.⁵⁸ The method has been extended to the condensation of substituted acetylenes, $RC \equiv CH$, with alcohols to give ketals,^{59,60} as illustrated by the preparation of 2-hexanone dimethyl ketal (70%).⁵⁹ The acidic catalyst must be carefully neutralized with powdered anhydrous potassium carbonate before contacting the acetal or ketal with water.

Ch. 8

For the reaction of higher straight-chain monohydric alcohols a small amount of trichloroacetic acid is added to the above catalyst.⁶¹ The addition of alcohols to vinylacetylene, $H_2C = CHC = CH$, gives β -alkoxy ketals, ROCH₂CH₂C(OR)₂CH₃.^{64, 66} On the other hand, allylacetylenes, CH₂ = CHCH₂C = CR, add only two molecules of methanol under the same conditions to yield 5,5-dimethoxy-1-alkenes, CH₂ = CHCH₂CH₂C(OCH₃)₂R.⁶⁵

Reaction of 1-chloro- or 1-bromo-heptyne, $C_s H_{11}C \equiv CX$, in the same way gives the corresponding 1-halo-2,2-dimethoxyheptanes, $C_s H_{11}C(OCH_s)_2CH_2X$, in 30 and 60% yield, respectively.¹¹⁵

135. Addition of Alcohols to Dihydropyran

The formation of cyclic acetals by the acid-catalyzed addition of hydroxy compounds (both aromatic and aliphatic) to dihydropyran takes place in excellent yields.^{73, 74} The simple procedure consists in allowing the two compounds to stand in the presence of a trace of concentrated hydrochloric acid for several hours, followed by neutralization and distillation. The method is valuable for protecting the hydroxyl group in reactions that are conducted in basic media.⁷⁴

136. Interaction of Carbonyl Compounds and Epoxides

RCHO +
$$CH_2 - CH_2 \xrightarrow{S_nCl_4} RCHOCH_2CH_2$$

Epoxides react with aldehydes and ketones in the presence of stannic chloride to form cyclic acetals of dihydric alcohols.^{75,76} Undesirable side reactions are repressed by adding the reactants, dissolved in *dry* carbon tetrachloride, to a dilute solution of the catalyst in the same solvent at 20° to 30° . In most instances, the reaction is practically instantaneous and the mixture may be processed immediately by washing with aqueous alkali and distilling. The yields for the interaction of γ -halopropylene oxides and typical carbonyl compounds, such as propionaldehyde, diethyl ketone, or benzophenone, are 69–70%.

137. β -Keto Acetals by Interaction of β -Chlorovinyl Ketones and Methanolic Alkali

$$\text{RCOCH} = \text{CHCI} \xrightarrow[\text{NBOH, -10}]{\text{CH}_3\text{OH}} \text{RCOCH}_2\text{CH(OCH}_3)_2$$

 β -Keto dimethyl acetals are made in 80-90% yields by treating β -chlorovinyl alkyl ketones with a solution of sodium hydroxide in absolute methanol at -10°. The starting materials are readily obtained by adding acyl chlorides to acetylene in cold carbon tetrachloride solution in the presence of aluminum chloride, viz.,

$$HC \equiv CH + RCOCI \rightarrow RCOCH = CHCI$$

(R = methyl, isobutyl, isoamyl, and isohexyl, 60-80% yield).¹¹⁷

The β -keto acetals may be converted by the Grignard reaction to β -hydroxy acetals, RR'COHCH₂CH(OCH₃)₂, in 55-70% yields (cf. method 89).¹¹⁷

138. Ketene Acetals by Pyrolysis of Orthoesters^{94,116}

 $C_6H_5CH_2C(OR)_3 \xrightarrow{\text{Heat}} C_6H_5CH = C(OR)_2 + ROH \text{ (cf. method 23)}$

139. a-Hydroxy Ketals from a-Halo Ketones^{92,93}

$$\operatorname{RCOCH}_{2}X \xrightarrow{C_{2}H_{5} \text{ ONa}} C_{2}H_{5} \text{ OC}(R) - CH_{2} \xrightarrow{C_{2}H_{5} \text{ OH}} \operatorname{RC}(OC_{2}H_{5})_{2}CH_{2}OH$$

Ch. 8

TABLE 23. ACETALS

'n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.
			Acetals	•	
С,	Methylal	129	97	82	41.5/754, 1.35298
•	Glycolformal	129	25	812	75
	Methyl ethyl formal	115	13	897	65/745. 1.3543
- 4	Acetal dehyde dimethyl	132	84	869	64. 1.3665
	acetal		•••	-	
	Acetaldehyde ethylene	129	87	811	85
	acetal				
	Methyl zonopyl formal	115	17	897	93/760 1 3779
5	A cetal debude di ethul	129	64	81	101-103.5, 1.3805
6	acetal (acetal)	1 30	58	844	
		132	88	8 ⁶⁹	104, 1.3809
7	Propionaldehyde diethyl acetal	131	75	851	123
8	n-Butyraldehyde diethyl acetal	131	80	8 52	144
	Isobutyral dehyde di ethyl	130	61	843	134-138
	acetal	131	83	8 52	136
9	<i>n</i> -Heptaldehyde ethylene acetal	129	81	⁰⁴ 8	94/20, 1.4306
	Isoval eraldehyde diethyl	129	32	850	153
	acetal	131	90	8 51	158
	Benzaldehyde ethylene acetal	129	83	810	101/10, 1.5269
	Furfural diethyl acetal	129	24	815	79/16, 185/740
		1 30	97	842	189-191
	Thiophene 2-aldehyde di- ethyl acetal	131	51	8 ⁵⁶	97-102/15
11	Malonaldehyde tetra- ethyl acetal	164	35 [†]	8 ¹⁰⁵	78/3, 1.4101 ²⁵
	Cyclohexylacetal dehyde diethyl acetal	131	60	8 ⁵³	96-101/11, 1.4390 ²⁵
	Benzaldehyde diethyl	129	66	8 ⁵⁰	
	acetal	130	99	844	217-223
		131	55	8 2	93/10
13	Glutaral dehy de tetra- ethyl diacetal	129		816	100/3, 1.4232 ²⁵
15	Benzaldehyde di-n- butyl acetal	129	80	87	145-150/14

8 47 Crotonaldehyde dimethyl 1 30 50 124-128/760 C6 acetal

TABLE 23. ACETALS

TABLE 23 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^l _D , (M.p.)
	Olefinic	and Ace	tylenic	Acetals (con	tinued)
с,	Propiolaldehyde diethyl acetal	43	63	8 82	139
	Acrolein diethyl acetal	20	75	8 77	122-126
		129	30	8 17	45/24, 40/18, 92/32
		130	73	848	120-125
C,	a-Butenal diethyl acetal	20	41	8 ⁸³	49/21
	1, 1-Di etho xy-2-bu tyn e	43	78	8118	62/11, 1.4310 ¹⁸
		131	80	8118	63/14, 1.4300 ¹⁸
	Isobutenal diethyl acetal	20	64	8 ⁸³	137
	Acetaldehyde diallyl acetal	129	68	8 ¹⁸	149
C,	a-Pentenal diethyl acetal	20	90	8 ⁸⁰	165/750
	a-Isopentenal diethyl acetal	20	62	883	60/16
	3-Methyl-3-buten-1-al diethyl acetal	131	24	854	155, 1.4098
	β -Ethoxyacrolein di- ethyl acetal	20	80	881	96/20
C 11	1,1-Di etho xy-2-h ep tyn e	1 31	69	8 ⁵¹	98/10, 1.4320 ²⁷
		Ke	tene Ac	etal s	
C_	Ketene dimethyl acetal	21	65	885	91/740, 1.3962 ²⁵
C,	Ketene diethyl acetal	20	75	878	83-86/200
•		21	66	884	68/100, 1.4110 ²⁵
с,	n-Propylketene dimethyl acetal	21	68	8 ⁸⁶	68/47, 1.4235 ²⁴
	Methylketene diethyl acetal	21	80	8**	78/100, 1.4083 ²⁵
C,	n-Propylketene diethyl acetal	21	71	883	108/100, 1.4204 ²⁵
	Isopropylket en e diethyl acetal	21	65	883	97/100, 1.4158 ²⁵
C 10	Ph enylke tene dimethyl acetal	138	59	8 ⁹⁴	87/0.5, 1.5390 ²⁴
С <mark>и</mark>	<i>n</i> -Heptylketene dimethyl acetal	21	87	8 ⁸⁶	100-105/10, 1.4370
C12	Phenylketen e diethyl acetal	138	70	. 894	88/0.2, 1.5385
	······	He	lo Ace	tals	
C₄	Chloroacetaldehyde di- methyl acetal	1 29	53	821	126, 1.4150

For explanations and symbols see pp. xi-xii.

С"

C,

Compound

C4 Bromoacetal dehyde di-

methyl acetal Chloroacetal dehyde

ethylene acetal

Bromoacetaldehyde

ethylene acetal

ethylene acetal

Methyl β -chloroethyl

ethylene acetal

propylene acetal

Ethyl β -chloroethyl

methyl acetal β -Bromo-*n*-butyraldehyde

ethylene acetal

dimethyl acetal

Propionaldehyde Y-

ethyl acetal Bromoacetaldehyde di-

ethyl acetal

ethyl acetal

ethyl acetal Dibromoacetaldehyde di-

ethyl acetal C, n-Butyraldehyde Y-chlo-

diethyl acetal

diethyl acetal a-Bromo-n-butyraldehyde

diethyl acetal

diethyl acetal

C.

Iodoacetaldehyde di-

Dichloroacetaldehyde di-

ropropylene acetal β -Chloropropionaldehyde

a-Bromopropionaldehyde

a-Bromoi sobutyraldehyde

a-Bromoisobutyraldehyde

chloropropylene acetal Chloroacetaldehyde di-

 β -Bromopropionaldehyde

Acetaldehyde Y-chloro-

formal

formal C₆ 2,3-Dichlorobutanal di-

Dibromoacetaldehyde

ACETALS AND KETALS

Method

129

133

129

133

133

....

129

136

. .. .

129

129

129

129

136

129

66

129

129

55

66

21

136

129

66

66

66

TABLE 23 (continued)

Halo Acetals (continued)

83

90

80

90

90

63

65

45

72

40

56

50

76

64

83

58

77

77

37

50

61

34

70

20

48

Yield (%) Chapter ref.

820

871

8 25

871

871

8 110

824

876

8 110

8 28

824

8 28

822

8 76

821

890

819

820

888

8111

887

876

8 23

8 ¹⁰³

8 83

889

Ch. 8

B.p./mm., nf., (M.p.)

49/14, 1.4450

71/15

134-139

73/10

65/50

78/10

158-162/760

86-90/13, 1.4498

69/28, 1.4468²³

54/10, 1.448025

54/16, 1.4171

49/3, 167-170

65/16, 1.4418

97/12, 1.4790 25

66-71/12

78-85/14

58-62/8

84/12

100/40

79/20, 1.441

65-70/18

65/18

70/8

155-159/740, 1.446525

175/745, 1.4805 25

104/9, 1.535125

TABLE	23.	ACETALS
-------	-----	---------

TABLE 23 (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)				
	Halo Acetals (continued)								
с,	a-Bromo-n-heptaldehyde dimethyl acetal	129	78	8 22	119/17, 1.4520 ²⁵				
	a-Bromo-n-valeraldehyde diethyl acetal	66	80	8 80	92-96/12				
	a-Bromoisovaleraldehyde	66	40	8 ⁸³	93/14, 1.4438 ²⁵				
	diethyl acetal	66	75	8 ⁹¹	89/13, 1.4489				
С <u>10</u>	a-Bromophenylacetal- dehyde dimethyl acetal	129	82	822	135/10, 1.5395 ²⁵				
	a-Bromophenylacetal- dehyde ethylene acetal	133	90	8 71	165/9, 1.5628 ²⁵ , (39)				
C ມ	Diphenoxymethyl chloride	• • • •	64	8 109	132/0.7				
		Et	her Ace	tals					
с,	β -Methoxy- <i>n</i> -butyralde- hyde dimethyl acetal	129	74	835	62/20, 54/16, 1.405 ¹⁵				
C	Ethoxyacetaldehyde di- ethyl acetal	115	20	8 122	64/21, 74/28, 1.3982 ²⁸				
C,	γ -Methoxybutyraldehyde diethyl acetal	131	18	8 ⁵⁵	74/6, 1.4105				
	β -Ethoxypropionalde-	129	52	8 34	97/39				
	hyde diethyl acetal	130	76	8112	73/13, 1.4035 ²⁵				
Сıo	β -Ethoxy- <i>n</i> -butyralde- hyde diethyl acetal	129	60	8 ³⁵	86/18, 1.4080				
	n-Butoxyacetaldehyde diethyl acetal	115	38	8122	86/14, 1.4115 ¹⁴				
C 12	Phenoxyacetaldehyde diethyl acetal	115	77	8 ⁹⁸	134/10				
	p-Methoxybenzaldehyde diethyl acetal	1 30	96	842	263				
C 14	<i>n</i> -Octoxyacetal dehyde diethyl acetal	115	39	899	122/5				
		Аш	ino Aco	etals					
C ₆	Aminoacetaldehyde di- ethyl acetal	435	73	8 102	162, 99-103/100, 1.4182 ²⁵				
	Formaldehyde γ -di- methylaminopropylene acetal	436	60	8 ²⁹	68/21				
с,	eta-Aminopropionaldehyde diethyl acetal	435	80	8 104	71/10				
	Acetaldehyde Y-di- methylaminopropylene acetal	436	47	8 ²⁹	65/17				

E.e.						
1.01	explanations	and	symbols	See	pp.	XI-XII.

ACETALS AND KETALS

Ch. 8

TABLE 23 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.)
		Amino A	cetals	(continued)	
c,	Methylaminoacetaldehyde diethyl acetal	436	40	8 103	165/735, 1.4140 ²²
C ₈	a-Methylaminopropion- aldehyde diethyl acetal	436	40	8 103	74/26, 1.415
C,	<i>m</i> -Aminobenzaldehyde dimethylacetal	425	78	8 119	124/4, 112/1.5
C11	<i>m</i> -Aminobenzaldehyde diethyl acetal	1 30	85	8 ⁴⁹	139/5
C12	Phenylaminoacetaldehyde diethyl acetal	436	46	8120	142/6
		Other Su	bstitute	d Acetals	
C ₆	Glycolic aldehyde di- ethyl acetal	96	95	8 **	167
	Glyoml semidiethyl acetal	160	54	8 48	43/13

	etnyi acetai				
	Glyomal semidiethyl acetal	160	54	8 48	43/13
	β -Keto-n-butyraldehyde dimethyl acetal	137	81	8 117	38/2, 1.4139 ²⁵
	Diethoxyacetamide	352	84	8 ¹⁰⁶	(78)
	Diethoxyacetonitrile	384	79	8 106	70/20, 1.3937 ²⁵
с,	DL-Glyceraldehyde di- ethyl acet <u>al</u>	107	67	8 100	121/8
	β,β -Diethoxypropion- amide	352	80	8 ¹⁰⁵	(53)
	Cyanoacetaldehyde di-	378	14	8 ¹⁰⁷	99/14, 1.4155
	ethyl acetal	384	81	8 ¹⁰⁵	93/11, 1.4153 ²⁵
C.	a-Hydroxyisobutyralde- hyde diethyl acetal	91	70	8 **	75/19, 1.4111 ²¹
	Piperonylic acid	253	84	8 ¹⁰¹	(228)
	Methyl 2-nitrophenyl formal	115	80	8%	154/16, (30.5)
с,	Ethyl β , β -diethoxy- propionate	129	35	8 ³⁹	65/2, 1.4101 ²⁵
	<i>bis</i> -(2-Nitroisobutoxy)- methane	129	95	8**	(62)
	<i>m</i> -Nitrobenzaldehyde di- methyl acetal	129	85	841	143/8
C 10	Ethyl a-formylpropionate diethyl acetal	131	44	8 121	102/20
C 11	<i>m</i> -Nitrobenzaldehyde di- ethyl acetal	129	78	8 ^{so}	178/21

TABLE 24. KETALS

TABLE 23 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> b, (M.p.)
	Ot	her Substit	uted Ac	etals (contin	ued)
С 12	Cyclohexylglyoxal di- ethyl acetal	129	80	8 36	128/18
	Phenylglyoxal diethyl acetal	129	65	8 ³⁷	132/7, 1.5012 ²⁵

For explanations and symbols see pp. xi-xii.

TABLE 24. KETALS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., nf., (M.p.)
			Ketal	S	
С,	Acetone ethylene ketal	132	49	8 ⁶⁹	92, 1.3980
C6	Methyl ethyl ketone ethylene ketal	129	80	8*	116/763, 1.4096
	Acetone trimethylene ketal	129	80	8*	124/758, 1.4201
с,	Methyl ethyl ketone trimethylene ketal	129	80	8*	147/747, 1.4288
	Acetone diethyl ketal	130	75	8 18	113-115
	·	132	55	8 ⁶⁹	113, 1.3891
C.	2-Hexanone dimethyl ketal	134	70	8 ⁵⁹	60/30, 1.4053 ²⁵
	Methyl isobutyl ketone ethylene ketal	129	84	8 ¹⁰	48/10, 1.4180
	Pinacolone ethylene ketal	129	81	8 ¹⁰	139/760, 1.4236
	Cyclohexanone di-	129	79	8 ⁶	65/22.5
	methyl ketal	130	89	8 *7	56/13
	Cyclohexanone ethylene ketal	129	85	810	65/10, 1.4580 ²¹
C,	2-Heptanone ethylene ketal	134	75	8 ⁵⁹	181/745, 1.4224 ²⁷
	Cyclopentanone di- ethyl ketal	1 30	75	8 ⁴⁵	65/20
С <u>10</u>	3-Octanone dimethyl ketal	134	55	8 62	92/26, 1.4171 ²⁵
	Cyclohexanone diethyl ketal	130	83	8 45	78-85/18
	Acetophenone ethylene ketal	1 29	85	810	1 10/30

с,

C.

3, 3-Dimethoxy-2-methyl-

3, 3-Dimethoxy-2-methyl-

2-butanol

2-pentanol C₉ Cyclohexylideneglycerol

ACETALS AND KETALS

TABLE 24 (continued)

Ch. 8

TABLE 2	4. KETALS
---------	-----------

275

TABLE 24 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{rei.}	B.p./mm., n. (M.p.)
		Al	koxy Ke	tals	
с,	β-Methoxyethyl methyl ketone dimethyl ketal	134	56	8 67	65/25, 1.4080 ²⁶
	β -Methoxyethyl methyl ketone dimethyl ketal	134	65	8 54	65/25, 1.4082 ²⁶
C,	Methyl β -methoxyethyl ketone diethyl ketal	134	57	8 62	69/30
C m	β -Ethoxyethyl methyl	131	92	863	75/9, 1.4148
	ketone diethyl ketal	134	55	866	107-111/54, 1.4142
		Other S	Substitu	ted Ketals	
C.	Ethyl acetoacetate ethylene ketal	12 9	87	8 38	101/18
C 10	Ethyl a-keto-n-butyrate diethyl ketal	1 30	89	8 114	87/11, 1.4200 ¹⁸
	β-Diethylaminoethyl methyl ketone ethylene ketal	129	70	8 26	94/13
Сu	Ethyl a-keto- n- valerate diethyl ketal	130	95	8 14	98/11
C13	5,5-Dimethoxy-5- phenyl-1-pentene	134	80	865	118/16, 1.5011 ²³

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., n., (M.p.
		Keta	ls (con	tinued)	
Cıı	Acetophenone diethyl ketal	1 30	75	8 **	101/15, 1.4773
Cıs	Benzophenone ethylene ketal	1 29	81	8 ¹⁰	168/10, 1.5901
		ŀ	lalo Ke	tals	
C,	Chloroacetone ethylene ketal	129	93	8 ²⁶	64/18
	Bromoacetone ethylene ketal	1 29	60	8 ²⁶	78/16
	sym-Dichloroacetone di- methyl ketal	129	85	8 ²⁷	(81.5)
	<i>sym</i> -Dichloroacetone ethylene ketal	129	85	8 ²⁶	105/12
C6	1-Chloro-3-butanone ethylene ketal	129	61	8 ¹²³	55/11, 1.4456 ¹⁶
	1-Bromo-3-butanone ethylene ketal	52	41	8 ¹²³	76/11, 1.4685
	Acetone γ-chloro- propylene ketal	129	71	8 ³⁰	162/757, 1.4487 ¹⁵
C.	Diethyl ketone 7- bromopropylene ketal	136	6 9	8 76	85/2
C,	1-Bromo-2,2-dimethoxy- heptane	134	60	8 115	88/5, 1.4531 ²⁶
С <u>10</u>	ω-Chloroacetophenone ethylene ketal	1 29	95	8 ²⁶	146/15
	ω-Bromoacetophenone ethylene ketal	1 29	92	8 ²⁶	142/11, (61)
С 11	Acetophenone γ-chlo- ropropylene ketal	129	71	8 ²⁶	140/15
C 12	p-Bromoacetophenone diethyl ketal	1 30	65	8113	155/24
С <u>ы</u>	Benzophenone Y-chloro- propylene ketal	136	71	8 ⁷⁶	(44.5)
		Hy	droxy K	etals	
C,	2,2-Dimethoxy-1-propanol	139	34	8 ⁹³	65/12, 1.4216
C6	DL-Isopropylidene- glycerol	129	90	8 32	81/11, 1.4339 ²⁵

8 66

8 92

8 92

8 36

134

139

139

129

80 **7**7

66

64

81/50, 1.4248

161/730, 1.4238

82/100, 1.4088

135/15

REFERENCES FOR CHAPTER 8

¹Adkins and Nissen, Org. Syntheses, Coll. Vol. I, 1 (1941). ² Adams and Adkins, J. Am. Chem. Soc., 47, 1358 (1925); cf. ref. 4. ³ Dunbar and Adkins. J. Am. Chem. Soc., 56, 442 (1934). ⁴Vogel, I. Chem. Soc., 616 (1948). ³Zaganiaris, Ber., 71, 2002 (1938). Voss, Ann., 485, 283 (1931); C. A., 25, 1798 (1931); ref. 7. ⁷ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 188. *Salmi and Rannikko, Ber., 72, 600 (1939); cf. Ber., 71, 1803 (1938). ⁹Salmi et al., C. A., 34, 423 (1940); 41; 5480 (1947); 42, 537 (1948). ¹⁰ Salzbacher, Bergmann, and Pariser, J. Am. Chem. Soc., 70, 2827 (1948). ¹¹ Hibbert and Timm, I. Am. Chem. Soc., 46, 1283 (1924). ¹² Leutner, Monatsh., 60, 317 (1932); cf. 66, 230 (1935). 15 Backer, Rec. trav. chim., 55, 1036 (1936). ¹⁴Natelson and Gottfried, Org. Syntheses, 23, 38 (1943). ¹⁵ Adkins, Semb, and Bolander, J. Am. Chem. Soc., 53, 1855 (1931). ¹⁶ Baudart, Bull. soc. chim. France. (5) 11, 336 (1944). ¹⁷Pingert, Org. Syntheses, 25, 1 (1945). ¹⁸ Hurd and Pollack, J. Am. Chem. Soc., 60, 1905 (1938). ¹⁹ Wizinger and Al-Attar, Helv. Chim. Acta, 30, 197 (1947); Dey, J. Chem. Soc., 1059 (1937). ²⁰ Bedoukian, J. Am. Chem. Soc., 66, 651 (1944); McElvain and Kundiger, Org. Syntheses, 23, 8 (1943). ²¹ Filachione, J. Am. Chem. Soc., 61, 1705 (1939). ²² Bedoukian, J. Am. Chem. Soc., 66, 1325 (1944); Org. Syntheses, 29, 15 (1949). ²³ Witzemann et al., Org. Syntheses, Coll. Vol. II, 137 (1943). ²⁴ Hill and Potter, J. Am. Chem. Soc., 51, 1512 (1929). ²⁵ Hill and Pidgeon, J. Am. Chem. Soc., 50, 2723 (1928). ²⁶ Kühn, J. prakt. Chem., 156, 103 (1940). ²⁷ Prianischnikow and Leontowitsch, Ber., 68, 1866 (1935). ²⁸ Naftali, Bull. soc. chim. France, (5) 4, 338 (1937). ²⁹ Fourneau and Chantalou, Bull. soc. chim. France, (5) 12, 845 (1945). ³⁰ Smith and Lindberg, Ber., 64, 505 (1931). ³¹ Maglio and Burger, J. Am. Chem. Soc., 68, 529 (1946). 32 Renoll and Newman, Org. Syntheses, 28, 73 (1948); ref. 31. ³³ Hill and Hibbert, J. Am. Chem. Soc., 50, 2242 (1928). 34 Simpson, J. Am. Chem. Soc., 71, 754 (1949). 35 Meier, Ber., 76, 1016 (1943); Krausz, Ann. chim., (12) 4, 819 (1949). ³⁶ Rubin, Paist, and Elderfield, J. Org. Chem., 6, 268 (1941). ³⁷ Torrey, Kuck, and Elderfield, I. Org. Chem., 6, 292 (1941). ³⁸Salmi, Ber., 71, 1803 (1938). 39 Dyer and Johnson, J. Am. Chem. Soc., 56, 222 (1934); cf. ref. 105. ⁴⁰ Senkus, J. Am. Chem. Soc., 69, 1380 (1947). ⁴¹ Icke et al., Org. Syntheses, 29, 72 (1949). ⁴⁰ Claisen, Ber., 40, 3903 (1907). ⁴³ Hamer and Rathbone, J. Chem. Soc., 595 (1945). 44 Post, I. Org. Chem., 5, 244 (1940). 45 Böe seken and Tellegen, Rec. trav. chim., 57, 133 (1938); cf. ref. 47.

46 Fuson and Burness, J. Am. Chem. Soc., 68, 1270 (1946); cf. ref. 42. 47 Helferich and Hausen, Ber., 57, 795 (1924); Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 187. 48 Fisher and Baer, Helv. Chim. Acta, 18, 514 (1935). 49 Bottomley, Cocker, and Nanney, J. Chem. Soc., 1891 (1937). ⁵⁰ Haworth and Lapworth, J. Chem. Soc., 121, 76 (1922). ⁵¹ Kranzfelder and Vogt, J. Am. Chem. Soc., 60, 1714 (1938). 52 McElvain, Clarke, and Jones, J. Am. Chem. Soc., 64, 1966 (1942); Bachman, Org. Syntheses, Coll. Vol. II, 323 (1943). 53 Fried and Elderfield, J. Org. Chem., 6, 574 (1941). 54 Kritchevsky, J. Am. Chem. Soc., 65, 487 (1943). ⁵⁵ Palomaa and Kaski, Ber., 72, 317 (1939). ⁵⁶Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 378. ⁵⁷ Smith and Nichols, I. Org. Chem., 6, 489 (1941). ⁵⁸ Nieuwland et al., J. Am. Chem. Soc., 52, 1018, 2892 (1930). ⁵⁹ Hennion et al., J. Am. Chem. Soc., 56, 1130 (1934). 60 Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 56, 1384 (1934). ⁶¹ Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 58, 80 (1936). 62 Hennion and Nieuwland, J. Am. Chem. Soc., 57, 2006 (1935). 63 Dykstra, J. Am. Chem. Soc., 57, 2255 (1935). 64 Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 56, 1786 (1934). ⁶⁵ Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 58, 892 (1936). 66 Norris, Verbanc, and Hennion, J. Am. Chem. Soc., 61, 887 (1939). 67 Norris, Verbanc, and Hennion, J. Am. Chem. Soc., 60, 1159 (1938). 68 Froning and Hennion, J. Am. Chem. Soc., 62, 653 (1940). 69 Croxall, Glavis, and Neher, J. Am. Chem. Soc., 70, 2805 (1948). ⁷⁰ Hallonquist and Hibbert, Can. J. Research, 8, 129 (1933). ⁷¹ McElvain and Curry, J. Am. Chem. Soc., 70, 3781 (1948). ⁷² Alguier, Bull. soc. chim. France, (5) 10, 197 (1943). ⁷³ Woods and Kramer, J. Am. Chem. Soc., 69, 2246 (1947). 74 Parham and Anderson, J. Am. Chem. Soc., 70, 4187 (1948). ⁷⁵ Bogert and Roblin, I. Am. Chem. Soc., 55, 3741 (1933). ⁷⁶Willfang, Ber., 74, 145 (1941); 70, 2167 (1937). ⁷⁷ Witzemann et al., Org. Syntheses, Coll. Vol. II, 17 (1943). ⁷⁸ Mc Elvain and Kundiger, Org. Syntheses, 23, 45 (1943). ⁷⁹ Mc Elvain and Walters, J. Am. Chem. Soc., 64, 1059 (1942). ⁸⁰ Kuhn and Grundmann, Ber., 70, 1894 (1937). ⁸¹ Price and Moos, I. Am. Chem. Soc., 67, 207 (1945). ⁸² Sheehan and Robinson, I. Am. Chem. Soc., 71, 1436 (1949). ⁸³ McElvain, Clarke, and Jones, J. Am. Chem. Soc., 64, 1966 (1942). ⁸⁴ Walters and McElvain, J. Am. Chem. Soc., 62, 1482 (1940). ⁸⁵ McElvain, Anthes, and Shapiro, J. Am. Chem. Soc., 64, 2525 (1942). ⁸⁶McElvain, Kent, and Stevens, J. Am. Chem. Soc., 68, 1922 (1946). ⁸⁷ Beverstedt and McElvain. I. Am. Chem. Soc., 59, 2266 (1937). ⁸⁸ Beyerstedt and McElvain, I. Am. Chem. Soc., 58, 529 (1936). ⁸⁹ Alexander, J. Am. Chem. Soc., 70, 2592 (1948). 90 Hartung and Adkins, J. Am. Chem. Soc., 49, 2517 (1927). ⁹¹ Fisher, Ertel, and Löwenberg, Ber., 64, 30 (1931). ⁹² Aston and Greenburg, J. Am. Chem. Soc., 62, 2590 (1940).

93 Bergmann and Miekeley, Ber., 64, 802 (1931).

⁹⁴McElvain and Stevens, I. Am. Chem. Soc., 68, 1917 (1946); McElvain and Venerable, ibid., 72, 1661 (1950). ⁹⁵ Avy, Bull. soc. chim. France, (4) 49, 12 (1931). ⁹⁶ Brand and Schreber, Ber., 75, 156 (1942). 97 Palomaa and Kantola, Ber., 65, 1593 (1932). 98 Dev. I. Chem. Soc., 1057 (1937). 99 Rotbart, Ann. chim., (11) 1, 458 (1934). ¹⁰⁰ Witzemann et al., Org. Syntheses, Coll. Vol. II, 307 (1943). ¹⁰¹ Shriner and Kleiderer, Org. Syntheses, Coll. Vol. II, 538 (1943). ¹⁰² Allen and Clark, Org. Syntheses, 24, 3 (1944); Woodward and Doering, I. Am. Chem. Soc., 67, 868 (1945). ¹⁰³ Johnson et al., J. Am. Chem. Soc., 69, 2364 (1947). ¹⁰⁴ Albers, Kallischnigg, and Schmidt, Ber., 77, 623 (1944). ¹⁰⁵McElvain and Clarke, J. Am. Chem. Soc., 69, 2657 (1947). ¹⁰⁶ McElvain and Clarke, J. Am. Chem. Soc., 69, 2661 (1947). ¹⁰⁷ Uhle and Jacobs, J. Org. Chem., 10, 81 (1945); Hartung and Adkins, J. Am. Chem. Soc., 69, 1535 (1947). ¹⁰⁸ Wibaut and Beets, Rec. trav. chim., 59, 653 (1940). ¹⁰⁹ Scheibler and Depner, Ber., 68, 2151 (1935). ¹¹⁰ Bergel, Morrison, and Rinderknecht, J. Chem. Soc., 265 (1944). ¹¹¹ Magnani and McElvain, J. Am. Chem. Soc., 60, 2210 (1938). ¹¹² Feazel and Berl, J. Am. Chem. Soc., 72, 2278 (1950). ¹¹³ Kaslow and Lawton, J. Am. Chem. Soc., 72, 1723 (1950). ¹¹⁴Vogel and Schinz, Helv. Chim. Acta, 33, 127 (1950). ¹¹⁵ McCusker and Vogt, J. Am. Chem. Soc., 59, 1307 (1937). ¹¹⁶ McElvain, Chem. Revs., 45, 453 (1949). ¹¹⁷ Price and Pappalardo, J. Am. Chem. Soc., 72, 2613 (1950). ¹¹⁸Lunt and Sondheimer, J. Chem. Soc., 3361 (1950). ¹¹⁹ Icke et al., Org. Syntheses, 29, 6 (1949). 120 Janetzky, Verkade, and Meerburg, Rec. trav. chim., 66, 321 (1947). ¹²¹ Deno, J. Am. Chem. Soc., 69, 2233 (1947). ¹²² Kraus, Ann. chim., (12) 4, 817 (1949). 123 Willimann and Schinz, Helv. Chim. Acta, 32, 2151 (1949).

9

Aldehydes

CONTENTS

DACE

METHOD	FAGE
140. Formylation with Carbon Monoxide (Gattermann-Koch)	280
141. Formylation with Cyano Compounds (Gattermann)	280
142. Formylation with N-Methylformanilide	281
143. Formylation of Phenols with Chloroform (Reimer-Tiemann)	281
144. Formylation of Phenols (or Amines) with Hexamine (Duff)	282
145. Hydroformylation of Unsaturated Compounds	282
146. Formylation of Ketones with Formic Esters	282
147. Interaction of Halomethyl Compounds and Hexamine (Sommelet)	282
148. Interaction of Benzyl Halides and Sodium 2-Propanenitronate	283
149. Decomposition of Arylsulfonohydrazides	283
150. Cleavage of Schiff Bases	284
151. Hydrolysis of gem-Dihalides	285
152. Interaction of Pyridinium Salts and p-Nitrosodimethylaniline	285
153. Hydrolysis of 2-Alkoxy-3,4-dihydro-1,2-pyrans	286
154. Hydrolysis of Aldehyde Derivatives	286
155. Oxidation of Aromatic Side Chains	287
156. Oxidation of Olefinic Compounds	288
157. Oxidation of Methyl Ketones by Selenium Dioxide	288
158. Oxidation of Primary Alcohols	289
159. Dehydrogenation of Primary Alcohols	290
160. Oxidative Cleavage of Glycols	290
161. Selective Reduction of Olefinic Aldehydes	291
162. Reduction of Acyl Chlorides (Rosenmund)	291
163. Reduction of Thiol Esters	292
164. Reduction of Nitriles (Stephen)	292
165. Interaction of Grignard Reagents and Orthoformic Esters	293
166. Interaction of Grignard Reagents and Ethoxymethyleneaniline	293
167. Decomposition of Glycol Monoalkyl Ethers	294
168. Thermal Decomposition of Acids	294
169. Decomposition of a-Hydroxy Acids	294
170, Decarboxylation of a-Keto Acids	295
171. Decarboxylation of Glycidic Acids	295
172. Hydrolysis of Olefin Dibromides	29 6
173. Degradation of Acid Amides and Azides	296
174. Acid Treatment of Primary Acinitroparaffins	29 6
175. Isomerization of Unsaturated Alcohols	29 0
176. Condensation of Aromatic Hydrocarbons with Chloral	297
177. Formylation of Acetylenes	297
A

280

ALDEHYDES

CONTENTS (continued)

Ch. 9

METHOD	PAGE
Table 25. Aldehydes	298
Table 26. Dialdehydes	303
Table 27. Olefinic Aldehydes	303
Table 28. Acetylenic Aldehydes	305
Table 29. Halo Aldehydes	305
Table 30. Hydroxy Aldehydes	306
Table 31. Aldo Ethers	307
References	309

A large number of methods exist for the preparation of aldehydes, many of which are very limited in their scope. The more general methods are given here. An excellent review on the synthesis of aromatic aldehydes has been published.¹²⁰

140. Formylation with Carbon Monoxide (Gattermann-Koch)

$$ArH + CO + HCl \xrightarrow{AiCl_3 - CuCl_2} ArCHO$$

Aromatic aldehydes are prepared by passing carbon monoxide and dry hydrogen chloride through an ether or nitrobenzene solution of an aromatic hydrocarbon in the presence of a catalyst, commonly aluminum chloride with cuprous chloride as a carrier. The process is illustrated by the synthesis of *p*-tolualdehyde (51%).⁷⁰ A convenient procedure for obtaining an equimolar mixture of anhydrous hydrogen chloride and carbon monoxide consists in dropping chlorosulfonic acid on formic acid,²⁶⁶ viz.,

 $HSO_3Cl + HCO_2H \rightarrow HCl + CO + H_2SO_4$

In most reactions at atmospheric pressure the yields are about 30-50%, whereas at a high pressure of carbon monoxide the yields are 80-90%.⁷³ This method is particularly suitable for the reaction of mono- and polyalkylbenzenes. It is not applicable to phenols and aromatic ethers. The reaction has been considered in detail.²⁴⁹

141. Formylation with Cyano Compounds (Gattermann)

ArH + HCN + HCl
$$\xrightarrow{ZnCl_2}$$
 ArCH = NH · HCl $\xrightarrow{H_2O}$ ArCHO

A mixture of hydrogen cyanide and hydrogen chloride in the presence of zinc chloride reacts with an aromatic compound to form an aldimine hydrochloride which on hydrolysis produces the corresponding aldehyde. The reaction can be carried out more conveniently and in equally good yields by substituting zinc cyanide for the hydrogen cyanide (70-90%).^{71, 72} Potassium chloride impurity in this catalyst is necessary.⁷⁵ Sodium cyanide has also been used.⁷⁹ With these modifications, phenols⁷¹ and ethers⁷² as well as hydrocarbons^{74, 78, 79} react (cf. method 140).

142. Formylation with N-Methylformanilide

 $ArH + C_6H_5 N(CH_3)CHO \xrightarrow{POCl_3} ArCHO + C_6H_5 NHCH_3$

This synthesis is applicable to many aromatic compounds, including alkoxyl or N,N-dimethylamino derivatives of benzene¹⁰³ and naphthalene,¹⁰¹ naphthols,¹⁰⁶ indole,¹⁰⁵ and certain reactive hydrocarbons, namely, anthracene,¹⁰¹ 1,2-benzanthracene,¹⁰² 3,4-benzpyrene,¹⁰² and pyrene.¹⁰⁴ The high-melting polynuclear hydrocarbons react best in the presence of a solvent, such as o-dichlorobenzene. For example, a solution of anthracene, methyl formanilide, and phosphorus oxychloride in o-dichlorobenzene is heated 1 hour at 90–95°; then an aqueous solution of sodium acetate is added, and the solvent and N-methylaniline are removed by steam distillation. The solid residue is readily purified to yield 9-anthraldehyde (84%).¹⁰¹ With liquid or low-melting compounds a solvent is not required.

The conversion of thiophene and its derivatives to the corresponding aldehydes by this procedure has been extensively studied, the yield of 2-thiophenealdehyde being 76%.²⁶⁰

unsym-Diarylethylenes react in a similar manner to yield unsaturated aldehydes, $Ar_2C = CHCHO$.²⁰²

Other catalysts and reagents have been used. In the presence of aluminum chloride, 2-naphthol reacts with formamide to give 2-naphthol-1-aldehyde (45%).¹⁰⁶

143. Formylation of Phenols with Chloroform (Reimer-Tiemann)

$$C_6H_5 OH + CHCl_3 \xrightarrow{NaOH;} o \text{ and } p \text{-HOC}_6H_4CHO$$

Substituted phenols react with chloroform and alkali in alcohol solution to yield o- and p-hydroxybenzaldehydes. The yields are often less than 50%, the para- isomer predominating.⁸¹ The procedure involves heating an alkaline ethanolic solution of the reactants for several hours, followed by acidification and isolation of the product by steam distillation or crystallization. An example is the synthesis of 2-hydroxy-1-naphthaldehyde (48%).⁸⁰ 144. Formylation of Phenols (or Amines) with Hexamine (Duff)

 $C_6H_5OH + (CH_2)_6N_4 \rightarrow o-HOC_6H_4CH = NCH_3 \rightarrow o-HOC_6H_4CHO$

This reaction is readily accomplished by heating the phenolic compound at $150-160^{\circ}$ for 10 to 30 minutes with a mixture of glycerol, boric acid, and hexamine. The phenolic aldehyde is liberated by acidification and steam distillation. By this general procedure, sixteen phenolic aldehydes have been prepared. Although the yields are only 15-20%, the method requires little time and furnishes a reasonably pure product which is the *ortho* isomer⁹⁶ (cf. method 143).

The method has been extended to the formation of p-dialkylaminobenzaldehydes in 35-45% yields.⁹⁹

145. Hydroformylation of Unsaturated Compounds

$$RCH = CH_2 + CO + H_2 \xrightarrow{\text{Pressure}} RCH_2CH_2CHO$$

Addition of carbon monoxide and hydrogen to an alkene linkage in the presence of cobalt catalysts gives aldehydes in an average yield of 50%.¹⁹⁰ The reactions may be carried out in the usual hydrogenation apparatus. The poisonous properties of carbon monoxide and cobalt carbonyls call for considerable care. Compounds made by hydroformylation include cyclopentanealdehyde from cyclopentene (65%), β -carbethoxy-propionaldehyde from ethyl acrylate (74%), and ethyl β -formylbutyrate from ethyl crotonate (71%).

146. Formylation of Ketones with Formic Esters

$$CH_{3}COCH_{2}CH_{3} \xrightarrow{HCO_{2}C_{2}H_{5}} CH_{3}COCH(CHO)CH_{3}$$

Acylation of ketones having reactive methylene groups by higher esters has been shown to be an excellent method for preparing β -diketones (method 203). If the acylating ester is an alkyl formate, then a keto aldehyde is formed (50-80%).¹⁷¹⁻¹⁷⁴ The formylation is simply brought about by adding sodium metal to a mixture of the ketone and ester in anhydrous ether. Oftentimes, the product is isolated as the sodium salt of the hydroxymethylene form. The point of attack is unpredictable in unsymmetrical ketones, CH₃COCH₂R.^{173, 174}

147. Interaction of Halomethyl Compounds and Hexamine (Sommelet)

$$ArCH_{2}X \xrightarrow{(CH_{2})_{0}N_{4}} [ArCH_{2}(CH_{2})_{0}N_{4}]^{+}CI^{-} \xrightarrow{H_{2}O} ArCHO$$

Substituted benzyl halides react with hexamine in boiling alcohol to form addition compounds which decompose on heating with water to give aldehydes.⁸⁵⁻⁹⁰ An excellent discussion of the reaction has been presented, and improvements in the conditions have been made.²⁴⁴ Aqueous acetic acid (1:1) is recommended as solvent for the entire process, and there is no need to isolate the intermediate salt. The procedure is illustrated by the synthesis of 1-naphthaldehyde (82%).²⁴⁵ In other instances, the addition compound is first prepared in chloroform solution, isolated, and then decomposed with water or dilute acetic acid, as in the synthesis of 2-thiophenaldehyde (53%).⁸⁴

The reaction is applicable to the formation of m- and p-dialdehydes, but not the *ortho* isomer, from the *bis*-(chloromethyl)-benzenes,²⁴⁶ as well as aldehyde esters, e.g., *p*-carbomethoxybenzaldehyde,⁸⁵ and halo aldehydes, e.g., 1-bromo-2-naphthaldehyde.⁸⁷

A somewhat similar reaction is the conversion of substituted benzylamines to the corresponding benzaldehydes by treating their formaldehyde condensation product with hexamine.⁹⁷

148. Interaction of Benzyl Halides and Sodium 2-Propanenitronate

 $A_{r}CH_{2}Br + [(CH_{3})_{2}CNO_{2}] \rightarrow Na^{+} \rightarrow A_{r}CHO + (CH_{3})_{2}C \implies NOH + NaBr$

A general procedure for the conversion of *p*-substituted benzyl halides to the corresponding benzaldehydes consists in treating the halide with sodium 2-propanenitronate suspended in absolute ethanol. The resulting instable nitronic ester breaks down into acetoxime and the carbonyl compound. The yields are in the range 68-77% for benzaldehydes having a methyl, bromo, carbomethoxyl, cyano, or trifluoromethyl group in the *para* position. However, *p*-nitrobenzyl chloride undergoes C-alkylation to furnish the stable substituted nitropropane, *p*-NO₂C₆H₄CH₂C(CH₃)₂NO₂.²⁶¹ The reaction has been extended to the synthesis of o-tolualdehyde (73%).²⁶²

149. Decomposition of Arylsulfonohydrazides

 $A_{r}CONHNH_{2} \xrightarrow{C_{6}H_{5}SO_{2}C1} A_{r}CONHNHSO_{2}C_{6}H_{5} \xrightarrow{NB_{2}CO_{3}} A_{r}CHO$

Aromatic and heterocyclic aldehydes have been prepared from hydrazides, *via* the arylsulfonyl derivative, in 50-65%¹²³ and 20-40% yields,¹²⁴ respectively; the method fails in the aliphatic series. The hydrazide is treated with benzenesulfonyl chloride in pyridine, and the subsequent product is isolated by precipitation with water and decomposed by heating with sodium carbonate in ethylene glycol or glycerol at 160°. Ch. 9

Benzhydrazides in small quantities have been oxidized to the aldehydes with potassium ferricyanide in excess ammonium hydroxide (30-60%).¹²⁷

150. Cleavage of Schiff Bases

 $ArCH = NR + H_2O \rightarrow ArCHO + RNH_2$

Several preparations of aldehydes have been developed that involve the formation and cleavage of Schiff bases. The condensation of anilines or phenols with formaldehyde and *p*-nitrosodimethylaniline leads to such intermediates. These substances can be isolated and converted by an exchange reaction with formaldehyde in acetic acid to the corresponding aldehydes. *p*-Dimethylaminobenzaldehyde is made in this manner in 59% yield.¹⁸⁷

 $(CH_3)_2NC_6H_5 \xrightarrow{p-(CH_3)_2NC_6H_4NO} p-(CH_3)_2NC_6H_4CH = NC_6H_4N(CH_3)_2 \xrightarrow{CH_2O} p-(CH_3)_2NC_6H_4CHO$

When a methyl group on an aromatic nucleus is activated by a nitro group in the ortho or para position, condensation with nitrosobenzenes can occur to give a Schiff base; subsequent hydrolysis furnishes the aldehyde. An example is the synthesis of 2,4-dinitrobenzaldehyde (32%).¹⁸⁶

 $(NO_2)_2C_6H_3CH_3 \xrightarrow{p-(CH_3)_2NC_6H_4NO} (NO_2)_2C_6H_3CH = NC_6H_4N(CH_3)_2 \xrightarrow{H_2O}$

(NO₂)₂C₆H₃CHO

Condensation of diethylaniline and formaldehyde in the presence of sulfanilic acid gives the structure

 $p - (CH_3CH_2)_2NC_6H_4CH_2NCH_6H_4SO_3H$,

which can be isolated and oxidized with potassium dichromate to the benzylidene compound; the latter on alkaline hydrolysis gives p-diethyl-aminobenzaldehyde in 50% yield.¹⁸⁸

Imino chlorides, which are readily prepared by the action of phosphorus pentachloride on anilides, are reduced by anhydrous stannous chloride to imino intermediates which on hydrolysis yield aromatic aldehydes (50-90%); applications in the aliphatic series are poorly described.¹²⁸⁻¹³²

$$\begin{array}{ccc} Cl & H \\ \downarrow & \downarrow \\ RCONHC_6H_5 \xrightarrow{PCl_5} RC = NC_6H_5 \xrightarrow{SnCl_2} RC = NC_6H_5 \xrightarrow{H_2O} RCHO \end{array}$$

In most cases, the crude imino chloride is treated directly by adding it to a solution of stannous chloride saturated with dry hydrogen chloride; the aldehyde is then liberated by steam distillation. The procedure is illustrated by the synthesis of o-tolualdehyde (70%).¹²⁸ Imino chlorides have also been prepared by treatment of ketoximes with phosphorus pentachloride, viz., RR'C=NOH \rightarrow RCCl=NR', in preparations of benzaldehyde and p-chlorobenzaldehyde (70-85%).¹³³ As in the Stephen reaction (method 164), groups ortho to the imino chloride group hinder the reaction.

Schiff bases from other sources furnish aldehydes (methods 166 and 170).

151. Hydrolysis of gem-Dihalides

ļ

$$ArCH_3 \xrightarrow{X_2} ArCHX_2 \xrightarrow{H_2O} ArCHO$$

Toluenes substituted with chloro, bromo, fluoro, or cyano groups can be dichlorinated or dibrominated and the resulting benzal halides hydrolyzed directly to the corresponding aldehydes in the presence of calcium carbonate or sulfuric acid (50-70%).^{135, 136} o- and p-Xylene have been converted to the corresponding dialdehydes.^{139,140} In the halogenation of certain cresols, the carbonate or acetate esters are used in order to prevent nuclear halogenation.^{141, 216}

Aliphatic gem-dihalides require more vigorous conditions for hydrolysis than do the benzal halides. Examples are found in the treatment of certain 1,1-dichloroalkanes, like 1,1-dichloro-3-methylbutane and 1,1dichloro-3,3-dimethylbutane, with water and, in some cases, magnesium oxide for 4 hours at 200-300°. The aldehydes are formed in 60-96% yields (cf. method 222).

152. Interaction of Pyridinium Salts and p-Nitrosodimethylaniline

$$ArCH_{2}COCH_{2}CI \xrightarrow{P \text{ yridine}} [ArCH_{2}COCH_{2}NC_{8}H_{8}]Br \xrightarrow{+} (CH_{3})_{2}NC_{6}H_{4}NO$$

$$ArCH_{2}COCHO \xleftarrow{H^{+}}_{H_{2}O} ArCH_{2}COCH = NOC_{6}H_{4}N(CH_{3})_{2}$$

Compounds containing reactive halogens (ArCH=CHCH₂X or $ArCOCH_2X$) readily form pyridinium salts. Rearrangement of these prod-

METHODS 154-155

ALDEHYDES

Ch. 9

ucts with *p*-nitrosodimethylaniline to a nitrone followed by hydrolysis with acid gives α , β -unsaturated aldehydes or substituted glyoxals.¹⁸⁹ Substituted benzyl halides, ArCH₂X, undergo the series of reactions to give the corresponding aldehydes, ArCHO. Terephthaldehyde is made in this way in a 70% over-all yield.¹⁸⁹

153. Hydrolysis of 2-Alkoxy-3,4-dihydro-1,2-pyrans

Hydrolysis of 2-alkoxy-3,4-dihydro-1,2-pyrans with dilute hydrochloric acid furnishes a convenient synthesis of glutaraldehyde (R = H) and other 1,5-dicarbonyl compounds. The starting materials are obtained by the 1,4-addition of vinyl ethers to α , β -unsaturated carbonyl compounds. The wide selection of diene systems includes acrolein, crotonaldehyde, methacrolein, cinnamaldehyde, β -furylacrolein, methyl vinyl ketone, benzalacetone, and benzalacetophenone. Ethyl vinyl ether is preferred as the dienophile. The yields in the cyclization step are in the range of 25-87% and in the subsequent hydrolysis step, 59-85%.²⁶⁵

154. Hydrolysis of Aldehyde Derivatives

 $RCH = NOH + C_6H_5CHO \rightarrow RCHO + C_6H_5CH = NOH$

Oftentimes, aldehydes are isolated and purified as their derivatives, and their regeneration is then of importance (cf. method 195). The fission of the oxime, semicarbazone, hydrazone, etc., may be accomplished by acid hydrolysis or by an exchange of the nitrogenous moiety with another carbonyl compound, such as benzaldehyde, for which it has a greater affinity.

Semicarbazones of volatile aldehydes may be hydrolyzed by steam distillation in the presence of phthalic anhydride.¹⁰⁷ A synthetic route for aromatic aldehydes involves the hydrolysis of semicarbazones which have been prepared by the interaction of dithio acids and semicarbazide hydrochloride in pyridine solution.^{17, 28}

$$ArCSSH \xrightarrow{H_2NNHCONH_2} ArCH = NNHCONH_2 \xrightarrow{H_2O} ArCHO$$

The hydrolysis of succinaldehyde dioxime must be carried out with care because of the instability of the dialdehyde. This step has been accomplished in 60% yield by treating the dioxime with ethyl nitrite in dioxane or with sodium nitrite in dilute sulfuric acid.¹⁰⁶

The adducts formed from amine bisulfites and aldehydes are readily purified by crystallization from organic solvents and, like the sodium bisulfite addition products, are readily decomposed by the action of dilute acids.¹²²

Acetals are readily hydrolyzed by dilute mineral acids; however, the yields are not always satisfactory. These substances are not affected by alkaline reagents. The sensitive *dl*-glyceraldehyde acetal is converted to its aldehyde in 80% yield by the action of dilute sulfuric acid under mild conditions.²³⁰ Other procedures are illustrated by the treatment of acetals which are formed by the interaction of Grignard reagents and orthoformic esters (method 165).

Olefinic aldehydes have been prepared by bromination of the diethylacetal derivatives followed by dehydrobromination (cf. Acetals and Ketals); the unsaturated aldehydes are readily liberated by mild acid treatment of their acetals.⁶ Alkoxy aldehydes have also been synthesized through acetal intermediates, which in turn are prepared from sodium alkoxides and bromoacetals.¹¹¹

a-Hydroxy aldehydes have been prepared by hydrolysis of the oximes resulting from the action of Grignard reagents on certain isonitroso ketones.¹⁷⁵

$$RCH_2COCH = NOH \xrightarrow{R'Mgx} R'RCHC(OH)CH = NOH \xrightarrow{H_2O} R'RCHC(OH)CHO$$

155. Oxidation of Aromatic Side Chains

$$ArCH_3 \xrightarrow[(CH_3CO)_2O]{CH_3CO)_2O} ArCH(OCOCH_3)_2 \xrightarrow[H_2O]{HC1} ArCHO$$

Oxidation of the methyl group in substituted toluenes with chromium trioxide in acetic anhydride forms crystalline diacetates, which are stable to further oxidation. These compounds are readily hydrolyzed in acid solution to the corresponding aldehydes (40-50% over-all).^{140, 150} The procedure is generally applicable to the preparation of benzaldehydes carrying nitro, halo, and cyano substituents.

Other oxidative procedures have been described. The heterogeneous liquid-phase oxidation of toluene with manganese dioxide in 65% sulfuric acid is important in the production of benzaldehyde and salicylaldehyde. An example of its application in the laboratory is found in the preparation of 3,5-dimethylbenzaldehyde (48%) from mesitylene.¹⁵³ In a comparison

Ch. 9

of other oxidants, chromyl chloride is outstanding; however, it must be employed with care. The hydrocarbon is added slowly to a chloroform solution of this reagent, and the addition complex is carefully decomposed with dilute sulfurous acid to give the aldehyde. Yields range up to 80% (Etard reaction).²¹⁵ The internal oxidation-reduction of nitrotoluenes can be brought about by refluxing with alkaline sodium polysulfide, e.g., *p*aminobenzaldehyde from *p*-nitrotoluene (75%).¹⁵⁶

Benzyl halides have been oxidized directly with selenium dioxide⁹¹ or copper nitrate.⁹²

156. Oxidation of Olefinic Compounds

$$RCH = CH_2 \xrightarrow[H_2O]{O_3;} RCHO + CH_2O$$

Aldehydes result from the decomposition of certain ozonides. The technique is similar to that used for the preparation of ketones (method 182). High yields are obtained by catalytic hydrogenation of the ozonides.¹¹⁴ This step coupled with Grignard and dehydration reactions has been used as a procedure for the degradation of an aldehyde to its next lower homolog, viz.,

$$\operatorname{RCH}_{2}\operatorname{CHO} \xrightarrow{\operatorname{C_{6}H_{5}MgX;}}_{\operatorname{H_{2}O}} \operatorname{RCH}_{2}\operatorname{CHOHC_{6}H_{5}} \xrightarrow{\operatorname{-H_{2}O}} \operatorname{RCH} \xrightarrow{\operatorname{CHC}_{6}H_{5}} \xrightarrow{\operatorname{O}_{3};}_{\operatorname{H_{2}}} \operatorname{RCHO}$$

Dialdehydes result when cyclic olefins are ozonized.¹¹⁵ Improved directions for the ozonolysis of unsaturated esters in glacial acetic acid to yield aldehyde esters have been given.¹¹⁶ The same procedure is applied to the preparation of aliphatic aldehydes containing halo,¹¹⁷ hydroxyl,¹¹⁸ and ether groups.¹²¹

Oxidation of olefinic side chains with ozone to form aromatic aldehydes gives erratic results and therefore other oxidants are employed.¹²⁰ For this purpose, the most widely used oxidant is nitrobenzene in dilute alkali; the mixture is allowed to react at moderate temperatures for several hours. Thus, hydroxy benzaldehydes may be obtained from propenylphenols, which in turn are readily prepared by the Claisen rearrangement of O-alkyl ethers (method 100). Sodium dichromate in the presence of sulfanilic acid, which removes the aldehyde as it is formed, gives yields as high as 86% in the oxidation of isoeugenol and isosafrole.²⁶⁷

157. Oxidation of Methyl Ketones by Selenium Dioxide

$$ArCOCH_3 \xrightarrow{SeO_2} ArCOCHO$$

The preparation of certain substituted benzils by treatment of aryl benzyl ketones with selenium dioxide is discussed later (method 183). If a methyl ketone is treated under these conditions, the methyl group is oxidized to an aldehyde group.¹⁷⁶ The reaction is carried out by refluxing a mixture of selenium dioxide and ketone in dioxane or alcohol for several hours. Preparative details are found in the procedures for phenylglyoxal (72%)¹⁷⁷ and glyoxal (74%),¹⁷⁸ the latter is isolated as its bisulfite derivative.

4-Methylquinoline and 1-methylisoquinoline, which have reactive methyl groups, are converted to quinoline-4-aldehyde (61%) and isoquinaldehyde (42%), respectively, by means of this reagent.^{183, 184}

158. Oxidation of Primary Alcohols

 $RCH_2OH \xrightarrow{(O)} RCHO$

Controlled oxidation of a primary alcohol with a mixture of sulfuric and chromic acids gives the corresponding aldehyde. In the preparation of low-molecular-weight aldehydes, an aqueous medium is used and the product is removed by steam distillation, thus preventing further oxidation. This procedure is well illustrated by the preparation of propionaldehyde (49%)¹ and isovaleraldehyde (60%).² Certain benzyl alcohols are dissolved in aqueous acetic acid for chromic acid oxidation.⁴ Olefinic aldehydes are produced by a rapid low-temperature (5-20°) oxidative procedure, as illustrated by the preparation of 2-heptenal (75%) from 2heptenol.¹⁰ Aldehyde ethers such as methoxyacetaldehyde and ethoxyacetaldehyde have been prepared by the chromic acid oxidation of the corresponding alcohols in 17% and 10% yields, respectively.¹¹

Aldehydes have been formed from alcohols by the use of other oxidizing agents. Dihydroxyacetone has been oxidized with excess cupric acetate to *hydroxypyruvic aldehyde* in 87% yield.¹² *p*-Cyanobenzyl alcohol treated at 0° with a chloroform solution of nitrogen tetroxide gives practically pure *p*-cyanobenzaldehyde (90%).¹³ Aromatic alcohols containing nitro groups have been oxidized to the corresponding *nitro aldehydes* with concentrated nitric acid, e.g., o- and *p*-nitrobenzaldehydes (80-85%).¹⁴ *m*-Nitrobenzenesulfonic acid in basic media has been used for the oxidation of substituted benzyl alcohols, most satisfactorily for the watersoluble phenolic benzyl alcohols.²¹⁷ Selenium dioxide, or less effectively tellurium dioxide, oxidizes benzyl alcohol slowly to benzaldehyde.²¹⁸

The Oppenauer reaction has been applied in the conversion of aliphatic and aromatic alcohols.²⁶⁹ The alcohol, a high-boiling aldehyde (such as cinnamaldehyde), and aluminum alkoxide catalyst are heated, and the volatile aldehyde is removed as it is formed. 290

Ch. 9

$RCH_{2}OH + R'CHO \xrightarrow[alkoxIde]{Aluminum} RCHO + R'CH_{2}OH$

In this manner, benzaldehyde and *n*-butyraldehyde have been obtained in 95% and 72% yields, respectively.¹⁵ This procedure is employed more extensively in the preparation of ketones (method 180).

159. Dehydrogenation of Primary Alcohols

$$\text{RCH}_2\text{OH} \xrightarrow{\text{Catalyst}} \text{RCHO} + \text{H}_2$$

Catalytic dehydrogenation of primary alcohols in the vapor phase has been studied in detail.²²⁶ Formerly, a copper catalyst³² was used; however, it has been found that this catalyst is easily poisoned.³⁹ A copper chromite catalyst at 300-345° and atmospheric pressure gives improved and consistent yields (50-70%) and retains its activity over long periods.^{33, 34, 38} Side reactions, such as dehydration, condensation, and ester formation, do not occur appreciably under these conditions.³⁸ Preparation of the catalyst and the apparatus have been described.^{34-36, 38}

Catalytic dehydrogenation of alcohols has been conducted with yields as high as 90% by passing the vapor mixed with air over silver or coppersilver catalysts.^{41, 195, 226} A three-step synthesis of DL-glyceraldehyde from glycerol consists in protecting two of the hydroxyl groups by ketal formation with acetone, followed by air oxidation over a silver catalyst and then hydrolysis of the ketal (59% over-all yield).²²¹ Methacrolein, $H_2C = C(CH_3)CHO$, is made by the air oxidation of methallyl alcohol (95%).²²⁷ A laboratory-scale model for the air oxidation of tetrahydrofurfuryl alcohol over a silver gauze catalyst has been described.²²⁸

Liquid-phase dehydrogenation is carried out under a pressure of ethylene, which serves as a hydrogen acceptor.⁴⁰

Ethoxyacetaldehyde, an *aldehyde ether*, is readily prepared in 35% yield from Cellosolve by the vapor-phase dehydrogenation technique.³⁶

Similar techniques are employed for the catalytic dehydrogenation of secondary alcohols (method 181).

160. Oxidative Cleavage of Glycols

$$\operatorname{RCHOHCHOHR}' \xrightarrow{\operatorname{HIO}_4 \text{ or}} \operatorname{RCHO} + \operatorname{R'CHO}_{\operatorname{Pb}(\operatorname{OOCCH}_3)_4} \operatorname{RCHO} + \operatorname{R'CHO}$$

Certain β -amino alcohols and glycols and their dehydroderivatives, i.e., α -ketols, α -ketals, and diketones, are readily oxidized with periodic acid or lead tetraacetate to aldehydes. A review of the method has been made.¹⁴⁴

METHODS 160-162

The reactions are usually carried out at a moderate temperature, using water as the solvent for periodic acid and organic solvents for lead tetraacetate; however, both reagents can be used in aqueous solvents. Addition of the oxidizing reagent to the glycol instead of the reverse gives an improved yield.¹⁶⁹ The yields are high, and the method has found extensive application in both analytical and preparative procedures. It has been applied in the preparation of aldehydes containing a double bond or hydroxyl, carboxyl, ester, or ether groups.^{147, 148, 169} Oxidation of 1,2cyclohexanediols with lead tetraacetate leads to substituted adipic aldehydes in 68% yields.²⁴⁹

Several small-scale synthetic routes for obtaining intermediates for cleavage to aldehydes by lead tetraacetate have been proposed.^{145, 146}

(a)
$$\operatorname{RMgX} \xrightarrow{\operatorname{CH_2} = \operatorname{CHCH_2Br}}_{80\%} \operatorname{RCH_2CH} = \operatorname{CH_2} \xrightarrow{\operatorname{Br_2};}_{KOAc} \operatorname{RCH_2CHOHCH_2OH} \xrightarrow{(O)}_{60\%}$$

RCH_2CHO

(b)
$$\operatorname{RCOCl} \xrightarrow{\operatorname{CH_2N_2}}_{90\%} \operatorname{RCOCHN_2} \xrightarrow{\operatorname{HOAc}}_{90\%} \operatorname{RCOCH_2OAc} \xrightarrow{\operatorname{H^+}}_{80\%}$$

RCOCH_0OH $\xrightarrow{(O)}$ RCHO

161. Selective Reduction of Olefinic Aldehydes

$$RCH = CHCHO \xrightarrow[Catalyst]{H_2} RCH_2CH_2CHO$$

Aldehydes may be prepared by selective hydrogenation of substituted acroleins in much the same manner as the selective reduction of unsaturated ketones (method 196); however, there are few examples adequately described.^{93-95, 100, 236}

162. Reduction of Acyl Chlorides (Rosenmund)

$$\begin{array}{c} \text{RCOCl} \xrightarrow{H_2} & \text{RCHO} + & \text{HCl} \\ \xrightarrow{C_{\text{atalyst}}} & \text{RCHO} + & \text{HCl} \end{array}$$

Selective catalytic hydrogenation of an acyl chloride to an aldehyde can be accomplished with varying yields; the method has been reviewed.⁵⁸ The preferred catalyst is palladium suspended on barium sulfate. The reaction may be carried out in the liquid phase by bubbling hydrogen through a hot solution of the acyl chloride in xylene or tetralin in which the catalyst is suspended, or in the vapor phase by passing the acyl chloride over palladinized asbestos at about 200° .⁶⁴ In the former procedure, the reduction has been arrested at the aldehyde stage by careful control of the temperature ⁶² (lowest point at which hydrogen chloride is evolved) or by use of a catalyst "regulator" which inactivates the catalyst for reduction of the aldehyde. Typical reductions with and without catalyst poisons are found in the preparation of β -naphthaldehyde (81%)⁵⁶ and 2,4,6-trimethylbenzaldehyde (80%),⁵⁷ respectively. The reaction is applicable to acyl chlorides carrying halogen, nitro, or ester groups,^{65, 67, 233} and even a double bond although this may migrate during the reaction.⁶⁶ Hydroxyl groups should be protected by acetylation.

Phosphorus- or sulfur-containing compounds formed in the preparation of the acyl chlorides hinder the reaction and therefore must be removed.²²³

163. Reduction of Thiol Esters

$$\operatorname{RCOSR}' \xrightarrow[Ni]{(H)} \operatorname{RCHO} + \operatorname{H}_2 S + \operatorname{R'H}$$

The reduction of a carboxyl group to an aldehyde group can be effected by a reductive desulfurization of the thiol ester with Raney nickel. The thiol esters are prepared by the reaction of the acyl chloride with an excess of ethyl mercaptan in pyridine or by reaction with lead mercaptide in dry ether. The hydrogenolysis is then carried out by refluxing an ethanolic solution of the thiol ester with Raney nickel for 6 hours. By this new synthesis, propionaldehyde and benzaldehyde have been prepared in 73% and 62% yields, respectively.¹⁶⁰

164. Reduction of Nitriles (Stephen)

$$\operatorname{RCN} \xrightarrow{\operatorname{HC1}} \operatorname{RC}(\operatorname{Cl}) = \operatorname{NH} \cdot \operatorname{HCl} \xrightarrow{\operatorname{SnCl}_2} (\operatorname{RCH} = \operatorname{NH})_2 \operatorname{SnCl}_4 \xrightarrow{\operatorname{H2O}} \operatorname{RCHO}$$

Nitriles may be converted to their imino chloride salts by the action of dry hydrogen chloride in ether. These intermediates are reduced by anhydrous stannous chloride to stannic aldimonium chlorides, which on hydrolysis yield aldehydes. Chloroform may be added to facilitate the solution of the nitrile. The quality of the stannous chloride catalyst is important; the preparation of an active and dependable form has been described.⁴⁹ The yields are usually high for many aromatic nitriles, as in the preparation of β -naphthaldehyde (95%).⁴⁹ The reaction has also been employed in the heterocyclic series, as in the synthesis of 4-methylthiazole-5-aldehyde (40%).⁵¹ The reduction of the cyano group in the presence of an ester group leads to an aldehyde ester, e.g., methyl cyanobenzoate to methyl *p*-formylbenzoate (90%).⁵³

However, it has been shown that the method may not be as general as originally supposed, especially in the preparation of the aliphatic aldehydes.^{50, 52, 55} Also, groups ortho to the nitrile group hinder the reaction.

Instead of reducing the imino chloride with stannous chloride, as indicated above, sodium amalgam may be used in the presence of phenylhydrazine. The resulting phenylhydrazone is then hydrolyzed.⁵⁴

165. Interaction of Grignard Reagents and Orthoformic Esters

 $RMgX + HC(OC_2H_5)_3 \rightarrow RCH(OC_2H_5)_2 \xrightarrow{H^+} RCHO$

The reaction of ethyl orthoformate and Grignard reagents gives acetals which are hydrolyzed readily by dilute acid to aldehydes. This method has been employed extensively for the preparation of aliphatic and aromatic aldehydes. A study of the optimum conditions has been made, using the conversion of bromobenzene to benzaldehyde as a model synthesis (90%).^{17, 21} Comparative studies of various aldehyde syntheses that employ Grignard reagents (methods 154, 166, and 167) show that this one is the most practical;^{16, 17} however, the possibility of a sudden exothermic reaction limits the size of the run. Longer reaction times at room or reflux temperature help overcome this difficulty.^{16, 18} Examples of the better preparative procedures are found in those for *n*-hexaldehyde (50%),¹⁸ *p*-tolualdehyde (79%),¹⁷ and phenanthrene-9-aldehyde (42%).²²⁴

N,N-Dialkylformamide^{16,19} or ethyl formate²⁰ and Grignard reagents have been used with some success; however, the former reaction is complicated and frequently produces tertiary amines as the chief product, and the latter forms secondary alcohols by further reaction of the aldehyde. Substituted benzaldehydes have been prepared from aryllithium compounds and N-methylformanilide in good yields.¹²²

166. Interaction of Grignard Reagents and Ethoxymethyleneaniline

 $ArMgX + C_6H_5N = CHOC_2H_5 \rightarrow ArCH = NC_6H_5 \xrightarrow{H^+} ArCHO$

Aromatic Grignard reagents react smoothly with ethoxymethyleneaniline to give imines which are easily hydrolyzed to aldehydes. The reaction is easy to cary out, is adaptable to large-scale preparations, and gives high yields (65-82%).¹⁷ Its use is limited by the availability of the ethoxymethyleneaniline, which may be prepared in a pure condition from the dry silver salt of formanilide and ethyl iodide. 167. Decomposition of Glycol Monoalkyl Ethers

A large number of symmetrical diaryl- or dialkyl-acetaldehydes, difficult to obtain by other means, have been prepared by the reaction of ethyl ethoxyacetate, or ethyl phenoxyacetate, with Grignard reagents followed by treatment of the resulting glycol monoalkyl ether with anhydrous oxalic acid or dilute sulfuric acid.²⁹ The yield in the first step is 40-80%, and the yield in the subsequent transformation is 50-80%.

Unsymmetrical dialkylacetaldehydes may be obtained by starting with an α -keto ether.³⁰

 $RM_gX + R'COCH_2OC_2H_s \rightarrow RR'C(OH)CH_2OC_2H_s \rightarrow RR'CHCHO$

By this procedure, 2-(α -naphthyl)-propionaldehyde has been obtained in a 74% yield.³¹

The method has been further studied in its application for the synthesis of ketones (method 202).

168. Thermal Decomposition of Acids

 $\text{RCOOH} + \text{HCOOH} \xrightarrow{\text{ThO}_2} \text{RCHO} + \text{CO}_2 + \text{H}_2\text{O}$

The old method of heating the calcium salts of formic and a second carboxylic acid for aldehyde formation has been modified by the use of a catalytic decomposition technique. By this scheme, the acid vapors are passed over thorium oxide, titanium oxide, or magnesium oxide at $300^{\circ,213}$ or the acids are heated under pressure at 260° in the presence of titanium dioxide.²¹⁴ In the latter procedure, non-volatile acids can be used. With aliphatic acids over titanium oxide, reaction occurs only when more than seven carbon atoms are present, the yields increasing with increase in the molecular weight (78–90%). Aromatic acids having halo and phenolic groups are converted in high yields to aldehydes, e.g., salicylaldehyde (92%) and p-chlorobenzaldehyde (89%). Preparation of a thorium oxide catalyst has been described²⁶⁸ (cf. method 186).

169. Decomposition of a-Hydroxy Acids

$$RCHOHCO_2H \xrightarrow{Heat} RCHO + CO + H_2O$$

METHODS 169-171

High-molecular-weight aliphatic aldehydes have been made by the distillation of α -hydroxy acids, which are prepared by the hydrolysis of the corresponding α -bromo acids. The reaction is carried out under diminished pressure or in an atmosphere of carbon dioxide. Details for the procedure are found in the preparation of octanal (57%)⁴³ and undecanal (96%).⁴⁴ Preparation of the α -bromo acid and its subsequent hydrolysis are also described. A later modification has been the distillation of the α -methoxy acid in the preparation of heptadecanal.⁴⁵

Aldehydes have also been prepared from α -hydroxy acids by oxidation with lead tetraacetate in glacial acetic acid, e.g., tridecanal (55%) and pentadecanal (58%)⁴⁶ (cf. method 160).

170. Decarboxylation of a-Keto Acids

$$\begin{array}{c} \text{RCOCOOH} \xrightarrow{C_{6}H_{5}NH_{2}} \text{RCH} \cong \text{NC}_{6}H_{5} \xrightarrow{H_{2}O} \text{RCHO} \\ \xrightarrow{\text{Heat}} \end{array}$$

 α -Keto acids are readily decomposed to aldehydes and carbon dioxide. The decarboxylation may be brought about by heating the α -keto acid or its arylimino derivative. By the latter procedure, a solution of the keto acid in aniline is boiled, which causes the formation of water, carbon dioxide, and a Schiff base, RCH= NC₆H₅; hydrolysis of this product gives the aldehyde.¹⁶⁴ Oftentimes, decarboxylation is accomplished in higher yields by heating the glyoxylic acid in N,N-dimethyl-*p*-toluidine at $170^{\circ 170}$ or in diphenylamine at $150-200^{\circ}$.²⁵⁶

Another modification is the decomposition of the bisulfite-addition compound of the keto acid as illustrated by the synthesis of phthalaldehydic acid (41%).¹⁶⁶

171. Decarboxylation of Glycidic Acids

$$\begin{array}{c} \mathsf{RR'C} \longrightarrow \mathsf{CCO_2H} \xrightarrow{\mathsf{HCI}} \mathsf{RR'CHCHO} \\ \searrow \\ \mathsf{O} \end{array}$$

Aromatic and aliphatic a dehydes have been prepared in good yields by the decarboxylation and isomerization of the corresponding glycidic acids. Esters of the latter are obtained by treating a ketone with ethyl chloroacetate in the presence of sodium amide (method 127). The glycidic esters are first converted to the sodium salts with sodium ethoxide and then treated with aqueous hydrochloric acid under gentle reflux. By this procedure, α -phenylpropionaldehyde has been prepared from acetophenone in an over-all yield of 38%.¹⁵⁷ Other details have been discussed.¹⁶¹ A similar route is the formation and isomerization of substituted ethylene oxides.¹⁵⁹ This synthesis has been carried out without isolating the intermediates.³⁰

$$RCOCH_2CI \xrightarrow{R'MgX} RR'COHCH_2CI \xrightarrow{KOH} RR'C-CH_2 \xrightarrow{HC1} RR'CHCHO$$

172. Hydrolysis of Olefin Dibromides¹¹³

$$(CH_3)_3COH \xrightarrow{Br_2} (CH_3)_2CBrCH_2Br \xrightarrow{H_2O} (CH_3)_2CHCHO$$

Over-all yield 75%

- 173. Degradation of Acid Amides and Azides
 - (a) α -Bromo Azides¹¹² (cf. method 220).

$$\text{RCHBrCON}_{3} \xrightarrow{\text{Heat}} \text{RCHBrNCO} \xrightarrow{\text{H}_{2}\text{O}} (\text{RCHBrNH}_{2}) \xrightarrow{\text{H}_{2}\text{O}} \text{RCHO}$$

(b) Monosubstituted Malonyl Azides.²⁴⁰

$$\operatorname{RCH}_2\operatorname{CH}(\operatorname{CON}_3)_2 \xrightarrow{\operatorname{C_2H}_3\operatorname{OH}} \operatorname{RCH}_2\operatorname{CH}(\operatorname{NHCO}_2\operatorname{C_2H}_3)_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{RCH}_2\operatorname{CHO}$$

(c) α,β -Olefinic Amides.¹⁶⁸

$$RCH = CHCONH_2 \xrightarrow[CH_3OH]{NaOCl} RCH = CHNHCO_2CH_3 \xrightarrow[H_2O]{H_2O} RCH_2CHC$$

174. Acid Treatment of Primary Acinitroparaffins 194

$$\begin{array}{c} \text{RCH}_2\text{NO}_2 \xrightarrow{\text{NaOH}} \text{RCH} = \text{NONa} \xrightarrow{\text{H+}} \text{RCHO} \\ \downarrow \\ 0 \end{array}$$

R = methyl, ethyl, isopropyl, and *n*-butyl.

175. Isomerization of Unsaturated Alcohols 195

$$\begin{array}{c} H_{2}C = C - CH_{2}OH \xrightarrow{H_{2}SO_{4}} (CH_{3})_{2}CHCHO \\ | \\ CH_{3} \end{array}$$

176. Condensation of Aromatic Hydrocarbons with Chloral 120, 197

$$ArCH_3 + Cl_3CCHO \xrightarrow{OH^-} ArCH_2CHOHCCl_3 \xrightarrow{(O)} ArCH_2CHO$$

177. Formylation of Acetylenes^{211, 225}

(a)
$$C_6H_8C \equiv CNa + HCO_2R \xrightarrow{18\%} C_6H_8C \equiv C - CHO$$

(b) $CH_3(CH_2)_3C \equiv CNa + HCO_2R \xrightarrow{20^\circ} CH_3(CH_2)_3C \equiv C - CHO$

298

.

ALDEHYDES

Ch. 9

TABLE 25. ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Al	iphatic and	l Alicyc	lic Aldehydes	······································
C,	Formaldehyde	159	35	9142	-21/760, 169Se, 166Da ?
с,	Acetaldehyde	158	72	9 3	162Se 📍
		158	50	9142	147Da •
		••••	74	9207	20/760, 1.3353 ¹²⁺⁵ , 168Dn
C,	Propionaldehyde	158	49	9 ¹	55, 1.364, 99Se*
		159	67	933	154Se 📍
		163	73	9160	154Dn
		165	B2	921	49
		174	80	91 94	
C4	<i>n</i> -Butyraldehyde	158	72	915	82/760, 1.3843 *, 104Se *
		159	62	933	77, 122Dn *
		165	76	921	75
		174	85	9194	
	Isobutyraldehyde	158	64	9 °	63/741, 125Se •
		172	75 †	9113	65/740, 182Dn *
		175	96	9 ¹⁹⁵	64, 1.3730
C5	n-Valeraldehy de	158	50	9 6	102, 1.3947 *, 106Dn *
		159	72	937	
		159	58	9 ³³	
		165	50	9,25	
	Isovaleraldehyde	158	60	9²	95, 1.3902*, 107Se*
		159	61	9 33	123Dn •
		162	100	9 64	92
	Methylethylacetaldehyde	158	52	9 °	92, 1.3942*, 120Dn*
		159	63	933	
		165	25 t	926	93, 103Se
	m 1	171	35	9 °	91/751
	1 rimethylacetaldehyde	159	66	939	76, 191Se *
		165	35	920	74/730, 1.3791, 210Dn *
		170	40	9256	78
C6	n-Hexaldehyde (caproic	159	53	9 ³³	128 *, 106Se 🕈
	aldehyde)	165	50	918	128/747, 1.4068*, 104Dn*
	Methyl -n- propylacetald e- hyde	161	68	9100	116/737, 102Se •, 103Dn •
	Isobutylacetaldehyde	165	86	923	127Se, 99Dn
		168	86	9213	121/743
	Diethylacetaldehyde	159	55	933	
		167	60 t	9 ²⁹	118, 94Se
	Dimethylethylacetalde- hyde	159	66	939	104
	t-Butylacetaldehyde	151	60	9 ²⁴⁶	103, 1.4150, 147Dn
	Methylisopropylacetalde-	167	61	9 ³⁰	114, 1.3998 ²⁵ , 124Dn
	hyde		14 1	930	114

TABLE 25. ALDEHYDES

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic	and Alicy	clic Alo	lehydes (<i>cont</i>	inued)
C.	Cyclopentylaldehyde	161	60	9 ⁹⁴ 0208	136/758, 34/10, 124Se
с,	nanthol) (from castor oil)	• • •		7	108Da *
	5-Methylhexanal	156	62	9114	144/750, 1.4114, 117Dn, 117Se
	3,3-Dimethylpentanal	151	80	9 ²⁴⁸	134, 1.4292, 102Dn
	Ethylpropylacetaldehyde	167	60 †	9 ²⁹	141
	Ethylisopropylacetalde- hyde	167	60	930	133.5, 1.4086 ²⁵ , 121Dn
	Cyclohexanealdehyde	161	86	9236	63/24, 1.4503 ¹⁸ , 172Dn
C,	n-Octaldehyde	164	100	9 50	65/11, 60-Ox, 98Se, 80pN
-		168	90	9213	1.4217 *
		169	57	94	81/32, 59-Ox, 101Se
	Ethyl-n-butylacetalde- hyde	159	58	933	163*, 254dSe*, 121Dn*
	Di-n-propylacetaldehyde	167	60 t	9 29	161, 1.4142 ¹⁵ , 101Se
	Ethylisobutylacetalde- hyde	167	60 †	9 29	155, 98Se
	Cyclohexylacetaldehyde	165	47	922	58/10, 1.4509 ²⁵ , 159Se, 125Dn
C.	Nonanal (pelargonic	159	90	942	78/3, 1.4273 *
-9	aldehvde)	160	33 t	9147	100/15, 64-Ox, 106Dn
	•	168	78	9214	
		168	85	9213	80/13, 64-Ox, 100Se
	Methyl -n- hexylacetalde- hyde	167	60 †	929	83/20, 80Se
	7-Methyloctanal	156	67	9114	103/140, 94/120, 100Dn, 80Se
	3,5-Dimethylhexahydro- benzaldehyde	171	65	9253	71/14, 171Se
С.,	Decapal	169	40	948	98/13, 102Se •
C 11	Undecanal	169	96	944	120/20, 1.4324 ²³ , 103Se •, 104Dn •
C 13	Dodecanal (lauric alde- hyde)	168	90	9214	238, (39.5), 78-Ox*, 106Dn*
C ₁₃	Tridecanal	169	55	9*	136/8, (15), 106Se, 108Dn
C ₁₄	Tetradecanal (myristalde- hyde	164	100	950	155/10, (23), 83-0x, 107Se, 95pN
		169	35	9 47	166/24, (24), 106Se, 83-Ox
Cυ	Pentadecanal	169	58	946	160/14, (25), 109Se, 108Dn

For explanations and symbols see pp. xi-xii.

300	
-----	--

ALDEHYDES

Ch. 9

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic	and Alicy	clic Al	dehydes (cont	inued)
C 14	Hexadecanal (palmitalde-	164	100	g 50	(34), 88-Ox 107Se 976N
10	hyde	169	47	947	202/29, (34), 107Se, 88-Ox
C 17	Heptadecanal (margaric	160	80	9146	(63)
	aldehyde)	169	52	947	204/26, (36), 108Se, 90-Ox
C 18	Octadecanal (steatalde- hyde	164	100	950	(38), 89-Ox, 109Se, 101pN
		Aror	natic Al	dehydes	
с,	Benzaldehyde	147	70	998	
		148	73	9261	64/13, 1.5446, 235Dn
		149	73	9123	222Se •
		150	85	9133	88/40, 158Ph*
		151	70	9142	179
		155	44	9 ²¹⁵	
		158	95	915	
		162	96	964	
		163	62	9160	235Dn
		165	89	916	
		168	93	9214	
			97	952	
C,	Phenylacetaldehyde	160	72	91 45	84/14, 97-Ox
		162	80 `	965	156Se 🍽
		164	33	9 ⁵²	
		165	58	921	195, 99-0x
		171	50	9158	95/22, 121Dn •
	— • • • • •	173	75	9240	82/12, 58Ph *
	o-Iolualdehyde	147	70	989	88/19, 111Ph
		148	73	9262	72/6, 1.5430 ²⁵ , 193Dn *
		150	/0	9146	93/19, 101Ph =
		155	(0) 71	017	
		165	/ 3 0 1	027	
	m-Tolualdehyde	155	60	0215	84DL •
		164	50	0 230	04FII 108/756 212Dm
	<i>p</i> -Tolualdehyde	140	51	0,70	205
	. ,	140	65	974	114Ph ••
		148	70	9361	72/6. 1.5420. 234Se
		149	60	9127	198 _b N
		155	80	9215	
		164	77	952	106/10, 200pN #
		165	74	9 ¹⁷	• •
		166	82	927	
С,	a-Phenylpropionalde-	171	38 t	9157	93/10, 76/4, 135Dn

TABLE 25. ALDEHYDES

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.), Deriv.
	A	romatic	Aldehyd	es (continued	()
C,	β -Phenylpropionalde-	162	62	9232	119/11
	hyde	165	67	924	100/13, 127Se
	2,6-Dimethylbenzalde- hyde	162	67	963	228/742, 158Se
	3,5-Dimethylbenzalde- hyde	155	48	9153	78/3.5, 1.5385, 201Se
C	3-Phenyl-2-methylpropanal	171	55	9159	90/6, 123Se
~	p-n-Propylbenzaldehyde	170	65	9 ¹⁶⁷	114/13
	p-Isopropylbenzaldehyde	140	60	9243	133/35, 1.5301*, 211Se*
	2,3,6-Trimethylbenzalde- hyde	165	61	917	114/10, 126-Ox, 169Se
	2, 4, 5-Trimethylbenzalde- hyde	165	72	9 ¹⁷	121/10, (44)*, 243Se*, 127Ph*
	2,4,6-Trimethylbenzalde-	140	83	9 ⁷⁸	128/15, 1.5524
	h y de	162	80	9 ⁵⁷	98/6
		162	80	9164	98/6
		165	57	917	188Se
		170	50	91 64	98/6
	1,2,3,4-Tetrahydro-2- naphthaldehyde	162	67	9231	92/0.5, 197Se
С"	<i>p-s</i> -Butylbenzaldehyde	165	66	9122	118/15, 1.5240 ²⁵
• II	2,3,5,6-Tetramethyl- benzaldehyde	165	61	917	135/11, (20), 270dSe, 125-Ox
	a-Naphthaldehyde	147	68	9 ⁸⁸	152/13, 98-Ox, 219Se
	-	147	82	9 ²⁴⁵	107/0.2, 162/18, (2.5)
		158	42	9 5	
	eta -Naphthaldehyde	147	50	990	150/15
		162	81	9 ⁵⁶	(60)
		164	95	9 * 9	(58), 154-Ox *
		165	70	9 ²⁷	(61), 245dSe
С 13	2,4,6-Triethylbenzalde- hyde	140	69	9 ⁷⁸	149/21
	<i>p</i> -Phenvlbenzaldehvde	140	73	9243	(60), 189dPh *
	o-Phenylbenzaldehyde	149	55 t	9241	162/12
	2-(a-Naphthyl)-propion- aldehyde	167	74	931	132/2, 204Se
	1-Acenaphthaldehyde	162	72	9 ⁵⁹	(100.5)
с	Diphenvlacetaldehvde	171	90	9 255	146/5, 114-0x
- 14	9-Formylfluorene	••••	71	9199	172/2
Св	α, β -Diphenylpropion- aldehyde	150	50	9128	170/11, (54), 125Se,
	9-Anthraldehyde	142	84	9101	(105), 187-Ox*, 207Ph*
	l-Phenanthraldehyde	150	75	9134	(111.5), 189-Ox

For explanations and symbols see pp. xi-xii.

. I

302

ALDEHYDES

Ch. 9

	,,,				
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	ł	lomatic .	Aldehyd	es (continued)
Cıs	2-Phenanthraldehyde	150	85	9130	(59)*, 195-Ox*
-		162	70	960	(59.5), 282Se *
	3-Phenanthraldehyde	150	85	9130	275Se •
		162	90	960	(80), 145-Ox •
	9-Phenanthraldehyde	150	90	9131	(101), 223Se
	-	162	90	9 ⁶⁰	(101)
		165	42†	9224	(101)
	1,2,3,4-Tetrahydrophe- nanthrene-9-aldehyde	150	68	9133	(129)
С ₁₆	2,4,6-Triisopropylbenz- aldehyde	140	65	9 ⁷⁸	126/4
C 17	Pytene-3-aldehyde	142	53	9 104	(126)
C 19	1, 2-Benzanthracene-10- aldehyde	142	64	9102	(148)
C 21	3,4-Benzpyrene-5-aldehyde	142	90	9102	(203)
		Hetero	cyclic 4	Aldehydes	
C,	Furfural	560		396	90/65, 159/745
	3-Furaldehyde	162	62	961	68/39, 1.4945*, 211Se
	Tetrahydrofurfuraldehyde	159	60	9228	43/15, 1.4473, 134Dn
	2-Thiophenealdehyde	142	76	9 260	92/25, 1.5888 ²⁵ , 139Ph
		147	53 t	984	91/21, 1.5880 ²⁵ , 242Dn
		158	65	9 ²²³	79/12, 1.5880 ²⁵
		165	70	9 ²⁵⁷	78/20, 1.5950 ¹⁶
		170	45 t	9 ¹⁶²	198, 119Ph
	3-Thenaldehyde	147	32 †	9 ⁸⁶	199/744, 1.5860, 137Ph
	a-Pyrrole aldehyde	143	33	9 ⁸³	109/14, (50)
	4-Methylthiazole-5-	149	40	9124	118/21, (75), 159Ph
	aldehyde	164	65	951	(72.5), 161Ph
C6	5-Methylfurfural	7	22 t	39210	85/15
•		560	22	39 ^s	85/15
	3-Methyl-2-thiophenealde- hyde	142	83	9260	114/25, 1.5833 ²⁵ , 149Ph
	5-Methyl-2-thiophenealde- hyde	142	81	9 260	114/25, 1.5782 ²⁹ , 126Ph
	Nicotinaldehyde	149	23	9 ¹²⁵	99/26, 158Ph
с,	eta - Furyl propional dehyde	161	46	9 ⁹⁵	70/14, 1.4470, 80Se
с,	Thianaphthene-3-aldehyde	147	31	9247	(58)
		162	43	9235	(54)
	Indole-3-aldehyde	142	54	9 ¹⁰⁵	(195)
		143		9 ⁸²	198Ph *
		170	74	9163	(198)
	Coumarin-3-aldehyde	162	75	962	(132)

TABLE 27. OLEFINIC ALDEHYDES

TABLE 25 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{t ef.}	B.p./mm., n ^t _D , (M.p.), Deriv.
]	Heterocyclic	: Aldehy	des (continue	ed)
C ₁₀	Quinoline-2-aldehyde	176	50	91 9	(69)
	Quinoline-4-aldehyde	157	61	9164	(84.5), 182-Ox
		176	36 †	9 ¹⁹⁷	123/4, (51), 179Pi
	lsoquinaldaldehyde	157	42	91 83	(55.5), 197Se
Cu	Dibenzofuran-2-aldehyd	e 140	81	977	(68), 162Ph

For explanations and symbols see pp. xi-xii.

TABLE 26. DIALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
С,	Glyoxal	157	74	9 ¹⁷⁸	51*, 178-Ox*
Ċ,	Malonaldehyde	154	45 t	9 ²⁰⁶	(74)
C₄	Succinaldehyde	154	60	9 106	67/13, 172-Ox, 280Dn
C,	Glutaraldehyde	153	59	9 263	75-81/15, 1.4330 ²⁵ , 169pN
C,	Adipic dialdehyde	156	60	9 ¹¹⁵	94/12, 186-Ox •
-		160	68	9 249	70/3, 1.4350, 206Se *
C,	Phthaldehyde	151	58	91 39	(55.5), 191Ph *
•	lsophthaldehyde	155	31 t	9 ¹⁵¹	(89), 242Ph *, 180-Ox *
	Terephthalaldehyde	147	34	9244	(114), 278dPh *
		151	84	9140	(116), 200-Ox *
		152	70 t	9 ¹⁸⁹	(118)
		158	80	914	(116)

For explanations and symbols see pp. xi-xii.

TABLE 27. OLEFINIC ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.					
	Aliphatic and Alicyclic Olefinic Aldehydes									
C,	Acrolein		48	9 ¹⁹¹	55.5, 171Se*					
		••••	85	9 192	54, 1.4025, 165Dn •					
C₄	Methacrolein (2-Methyl-2-	159	95	9 ²²⁷	73.5/760, 1.4191*, 198Se*					
	propenal)	159	90	9195	206Dn *					
Cs	2-Pentenal	158	50	910	125, 1.4350 ²¹ , 180Se					
		154	70	9 6	125, 123pN *					
	2-Methyl-2-butenal	36	30	2 ³¹⁵	116-119, 216Se					
	eta -Methylcrotonaldehyde	19	40	2 439	130-135, 1.4526*, 223Se					

For explanations and symbols see pp. xi-xii.

.

304

ALDEHYDES

TABLE 27 (continued)

Ch. 9

TABLE 29. HALO ALDEHYDES

TABLE 28. ACETYLENIC ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n _D , Deriv.
с,	Propargyl aldehyde	158	46	9220	55
C₄	2-Butynal	177	28 †	9225	105–110/755, 1.446 ¹⁹ 136Dn
с.	2-Heptynal	177	24	9 225	54/13, 1.4521 ¹⁷ , 74Dn
Ċ.	Phenylpropargyl aldehyde	43	70 t	333	116/17, 1.6032 ²⁵ , 108-Ox*
•		154	81	9 ²³⁸	117/17, 1.6032 ²⁵

For explanations and symbols see pp. xi-xii.

TABLE 29. HALO ALDEHYDES

С _л	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alipha	tic and A	licyclic	Halo Aldehya	les
C,	Trifluoroacetaldehyde		46	9222	-20, 151Dn
	Tribromoacetaldehyde (bromal)	66	57	4513	74/18
c,	β -Chloropropionaldehyde	73	43	4 197	130, 50/10 *
	β, β, β -Trifluoropropion- aldehyde	158	57	9222	56/745, 1.3168 ²² , 151Dn
C₄	a-Bromoisobutyraldehyde	66	18 †	4642	115, 1.4518 ²⁵
·		154	47	9 23 9	108-113
C,	a-Bromo-n-valeraldehyde	66	70	4 514	54/13
•	2, 3-Dibromo-2-methyl- butanal	74	70	4 430	73/3.5, 1.5228
C6	Bromoparacetaldehyde	66	32	4 516	(104)
	2-Methyl-2, 3-dichloro- pentanal	74	81	4 438	67/13, 1.4586 ^{19,5}
c,	a-Bromoheptaldehyde	66	40 t	4 642	92/17, 1.4580-1.4600 ²⁵
	l-Bromocyclohexanealde- hyde	66	80	4 639	91/20, 1.500 ¹⁸
C,	9-Chlorononaldehy de	156	66	9117	100/3, 1.4501 ²⁵
		Aromatic	Halo A	ld ehyde s	
с,	o-Fluorobenzaldehyde	151	71	9137	91/45, 90Ph *, 63-Ox *
	o-Chlorobenzaldehyde	149	61	9242	98/20, 209Dn *
		162	70 ·	9 63	
	o-Iodobenzaldehyde	150	80	9132	129/14, 108-Ox*, 79Ph*
	m- Fluorobenzaldehyde	151	44	9137	93/45, 114Ph •
		162	60	9 ⁶⁷	173/760, 63-Ox
	m- Chlorobenzaldehyde	56	79	4329	86/8, 107/26, 135Ph*
	m- Bromobenzaldehyde	56	67	4329	92/4, 205Se*
	<i>p</i> -Fluorobenzaldehyde	151	49	9137	94/45, 147Ph *
	p-Chlorobenzaldehyde	149	77	9123	75/3, (47) •, 232Se •
		150	81	9133	(47), 220pN *

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic and	Alicyclic	Olefini	c Aldehydes	(continued)
C,	2-Hexenal	158	50	910	150, 1.4470 ¹³ , 176Se, 139pN
	3-Hexenal	160	40	9146	150, 147Dn
	Hexadienal	36	50	2317	65/11, 160-Ox, 102Ph
	a-Isopropylacrolein	24	50	2167	109, 1.4223
		26	53	2167	107, 1.4223, 165Dn
	l-Cyclopentenylformalde- hyde		° 28 †	994	146/760, 48/11, 1.4828 ²¹
с,	2-Heptenal	158	75	9 ¹⁰	85/14, 1.4314, 169Se, 116pN
	l-Cyclohexenealdehyde	20	77	2 451	70/13, 1.4921 ¹⁷ , 213Se, 99 - Ox •
	2-Cyclopentenylacetalde- hyde	159	85	9229	50/15
C.	4-Octenal	158	35	9219	84/13, 1.4463 ²⁵ , 108Dn
Ŷ	Octatrienal	36	40	2317	(55)
	2-Ethyl-2-hexenal	36	58	273	73/30, 152Se, 125Dn
	2-Ethyl-3-hexenal		78	9 ¹⁹⁶	84/52, 156Se
	3,6-Dihydro-o-tolualdehyde	34	31	2520	66/2, 1.5248 ²⁸ , 219Dn, 230Se
C,	2-Nonenal	158	50	910	126/21, 1.4426, 165Se, 113pN
		160	67	9147	58/0.1, 1.4502 ²⁵ , 165Se, 126Dn
CII	11-Undecenal	160	64	9146	103/10, 91Dn
	Aromatic	and Het	erocycli	c Olefinic Al	dehydes
с,	β -Furylacrolein	36	54	2313	95/9, (52)
C,	p-Formylstyrene (p-Vinyl- benzaldehyde	27	52	2 493	93/14, 1.5960 ²⁵ , 131Ph
Съ	a-Methylcinnamaldehyde	36	67	2314	124/14, 208Se •
с"	5-Phenylpentadienal	36	20	2 ³¹⁸	161/12
	a-Ethylcinnamaldehyde	36	58	2312	112/7, 1.582225
C 15	Stilbene-2-aldehyde	149	80	9126	(83)
	a-Phenylcinnamaldehyde	36	25	2316	200/16, (95), 141Ph, 195Se
	β -Phenylcinnamaldehyde	142	60	9202	210/14, 196Dn, 173Ph •

For explanations and symbols see pp. xi-xii.

ALDENYDES

Ch. 9

TABLE 29 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n _D , (M.p.), Deriv.
	Aro	matic Ilal	o Aldehy	des (continue	rd)
с.	p-Chlorobenzaldehvde	151	60	9136	111/25, (47)
- /	P	168	89	9214	
	<i>p</i> -Bromobenzaldehyde	148	75	9 ²⁶¹	(57), 229Se
		151	69	9135	(57)
		155	51 †	91 4	(57)
		164	62	9230	(57), 257Dn
	<i>p</i> -lodobenzaldehyde	56	100	4 330	(77), 121Ph *
	P ,	164	56	9230	(77), 257Dn
C,	p-Trifluoromethylbenz- aldehyde	148	77	9261	67/13, 1.4630
C,	a-Bromobenzylacetalde- hyde hydrate	66	90	4 ^{51 5}	(82)
с"	1-Bromo-2-naphthalde- hyde	147	40	987	(118)

For explanations and symbols see pp. xi-xii.

TABLE 30. HYDROXY ALDEHYDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		liphatic	Hydroxy	Aldehydes	
с,	Glycolaldehyde	156	25 25 96	9118 9205 9212	(76), 162Ph • (87)
C,	a-Hydroxypropionalde- hyde	96	35	5 ⁵⁵⁷	114/9, 127pN
	dl-Glyceraldehyde	154 159	80 59 t	9 237 9 221	139 (133)
	Hydroxypyruvic aldehyde	158	87	912	(160), 135-Ox
C4 C5	4-Hydroxybutanal 5-Hydroxypentanal Methylethylglycolic aldehyde	160 99 154	42 79 50	9 230 5 635 9 ¹⁷⁵	60/8, 1.4403, 118Dn 55/3, 1.4514 ²⁵
	3-Methyl-3-hydroxy- butanal α,α-Dimethyl-β-hydroxy-	156 102	75 80	9 ¹¹⁹ 5 ²⁰⁰	67/13, 142pN 85/15, (97)
C6	propionaldenyde 2-Methyl-3-hydroxy- pentanal	102	86	5 206	86/12, 1.4373
	2-Isopropyl-3-hydroxy- propionaldehyde	102 -	52	5 201	84/10, 1.4603, 126Dn

TABLE 31. ALDO ETHERS

TABLE 30 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphat	ic Hydrox	y Aldeh	ydes (continu	ed)
с,	Methyl-n-butylglycolic	89	15 †	5396	87/35, 143Se
	aldehyde	154	50	9 ¹⁷⁵	88/35, 143Se
C8	2,2,4-Trimethyl-3- hydroxypentanal	102	••••	5202	110/13, 1.4443
C,	9-Hydroxynonanal	160	23 †	9147	120/0.1, (54)
		Aromatic	Hydroxy	Aldehydes	
с,	Salicylaldehyde	143	50	9109	196, 59-Ox *
•		144	20	9 %	197, 142Ph
		149	55	9 123	230Se *
		151	50	91 41	248Dn *
		168	92	9214	
	<i>m</i> -Hydroxybenzaldehyde	93	56	5469	(104), 88-Ox, 130Ph*
	Resorcyl aldehyde	141	95	971	(136)
	3,4-Dihydroxybenzalde-	154	61 †	9264	(154d), 230dSe *
	hyde	97	61	5714	(154), 157d-Ox *
C.	Benzylglycolic aldehyde	96	50	5 555	121/4, (52), 70Bz, 137Se
-	Methylphenylglycolic	89	19 †	5398	101/4, 182Se
	aldehyde	154	36	9175	101/4, 183Se
	2-Ethyl-4-hydroxybenz- aldehyde	141	21	976	145/1, (53)
С.,	Ethylphenylglycolic	89	11 †	5396	110/5, 188Se
	aldehyde	154	28	9 ¹⁷⁵	111/5, 188Se
с"	1-Naphthol-2-aldehyde	141	72	971	(178)
	2-Naphthol-1-aldehyde	141	85	971	(81)
		142	45	9 ¹⁰⁶	161/11, (84)
		143	48	9 ⁸⁰	(80)
		144	20	9 %	(82), 157-Ox
C 14	Diphenylglycolic alde-	89	25 †	5 398	(163), 124-Ox
	hyde	154	65	9 ¹⁷⁵	(163), 242Se

For explanations and symbols see pp. xi-xii.

TABLE 31. ALDO ETHERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphat	ic Aldo	Ethers	
С,	Methoxyacetaldehyde	158	17	911	92, 125Dn
		160	51	91 48	89, 124Dn

For explanations and symbols see pp. xi-xii.

ALDEHYDES

Ch. 9

		TABL	E 31 (c	ontinued)	
C _n	Compound	Method	Yield (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.), Deriv
	Alip	hatic Aldo	Ethers	(continued)	
C₄	γ - Methoxypropionalde- hyde	121	63	61-0	
	Ethoxyacetaldehyde	158	10	911	106, 117Dn
		159	35	986	106/760*, 1.3956*
		160	40	9148	91, 116Da
C,	β -Methoxyisobutyralde- hyde	121	51	61 ®	129, 1.4030 ²⁷ , 102Dn
	<i>n</i> -Propoxyacetaldehyde	160	28	9 ¹⁴⁸	68/100, 119/748, 86Dn
c.	5-Methoxyvaleraldehvde	156	78	9121	59/14.5
-•	a-Methyl-2-methoxy-	171	59	9254	66/55, 1.4280 ²⁵ , 88Dn
	butyraldehyde			-	
C,	2-Methyl-2,3-dimethoxy- pentanal	115	85	650	67/12, 1.4196 ¹⁹
		Aromati	c Aldo E	Ithers	
с.	Phenoxyacetaldehyde	154	60	9111	105/10, 95-0x*
•		160	45	9148	94/6, 146Se, 138Dn
		160	60	9169	83/5, 1.5360
	o-Methoxybenzaldehyde	116	92	691	(37), 205pN *
	m-Methoxybenzaldehyde	116	72 †	6 ⁹⁰	90/3, 171pN *
	p-Methoxybenzaldehyde	141	100	972	248, 203Se *
		149	77	9123	161pN *
C.	o-Ethorybenzaldehyde	116	90	6%	125/15, 59-0x, 219Se*
	3.4-Dimethoxybenzalde-	116	87	694	153/8. (46), 90-0x
	hyde (veratraldehyde)				
C 10	2-Ethyl-4-methoxybenz- aldehyde	141	53	976	134/12, 1.5543 ²⁸
	3-Ethoxy-4-methoxy- benzaldehyde	116	93	6161	155/10
	3-Methoxy-4-ethoxybenz- aldehyde	116	79	6161	(64)
	3,4,5-Trimethoxybenz- aldehyde	162	64	9148	(75)
C11	3,4-Diethoxybenzalde- hyde	116	95	6 ⁹⁵	130/2
Cu	o-Phenoxybenzaldehyde	115	22	61 54	153/1, 215Se
2	2-Ethoxy-1-aaphthalde- hyde	142	84	9 ¹⁰¹	(112), 258Dn •
C14	m-Benzyloxybenzalde- hvde	115	97	6 * `	218/20, (54)

For explanations and symbols see pp. xi-xii.

309

REFERENCES FOR CHAPTER 9

¹Hurd and Meinert, Org. Syntheses, Coll. Vol. 11, 541 (1943). ² Bouveault and Rousest, Bull. soc. chim. France, (3) 11, 300 (1894); Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 143. ³Wertheim, I. Am. Chem. Soc., 44, 2658 (1922). ⁴Smith et al., I. Org. Chem., 4, 323 (1939). ⁵West, J. Am. Chem. Soc., 42, 1663 (1920). ⁶Kühn and Grundmann, Ber., 70, 1897 (1937). 'v. Braun, Ber., 56, 2272 (1923). * Fossek, Montash., 2, 614 (1881); 4, 660 (1883). ⁹ Neustädter, Monatsh., 27, 882 (1906). ¹⁰ Delaby and Guillot-Allegre, Bull. soc. chim. France, 53, 308 (1933); Martin. Schepartz, and Daubert, J. Am. Chem. Soc., 70, 2601 (1948). ¹¹ Hurd and Abernethy, I. Am. Chem. Soc., 63, 1966 (1941). ¹² Evans, Carr, and Krantz, J. Am. Chem. Soc., 60, 1628 (1938). ¹³ Ashlev et al., I. Chem. Soc., 115 (1942). ¹⁴ Helferich, Streech, and Günther, J. prakt. Chem., 151, 251 (1938). ¹⁵ Davies and Hodgson, J. Soc. Chem. Ind. (London), 62, 109 (1943); Lauchenauer and Schinz, Helv. Chim. Acta, 32, 1265 (1949). ¹⁶ Smith and Bayliss, J. Org. Chem., 6, 437 (1941). ¹⁷ Smith and Nichols, J. Org. Chem., 6, 489 (1941). ¹⁸ Bachman, Org. Syntheses, Coll. Vol. II, 323 (1943). ¹⁹ Maxim and Mavrodineanu, Bull. soc. chim. France, (5) 2, 591 (1935). ²⁰ Campbell, J. Am. Chem. Soc., 59, 1980 (1937). ²¹ Wood and Comley, J. Soc. Chem. Ind. (London), 42, 429T (1923). ²² Fried and Elderfield, I. Org. Chem., 6, 574 (1941); cf. ref. 21. ²³ Brunner and Farmer, J. Chem. Soc., 1044 (1937). ²⁴ Cohen, J. Chem. Soc., 432 (1935). ²⁵ Letch and Linstead, J. Chem. Soc., 450 (1932); cf. ref. 21. ²⁶ Linstead and Mann, J. Chem. Soc., 2069 (1930). ²⁷ Sah, Rec. trav. chim., 59, 1024 (1940). ²⁸ Wuyts, Berman, and Lacourt, Bull. soc. chim. Belg., 40, 665 (1931). ²⁹ Behal and Sommelet, Bull. soc. chim. France, (3) 31, 300 (1904); (4) 1, 401 (1907); Stoermer, Ber., 39, 2288 (1906). ³⁰ Barnes and Budde, I. Am. Chem. Soc., 68, 2339 (1946). ³¹ Fieser, Joshel, and Seligman, J. Am. Chem. Soc., 61, 2136 (1939). ³² Bouveault, Bull, soc. chim, France, (3) 11, 300 (1894); (4) 3, 119 (1908). ³³ Dunbar and Arnold, J. Org. Chem., 10, 501 (1945); Ind. Eng. Chem., Anal. Ed., 16, 441 (1944). ³⁴ Dunbar, J. Org. Chem., 3, 242 (1938). ³⁵ Lazier and Arnold, Org. Syntheses, Coll. Vol. II, 142 (1943). ³⁶ Redemann and Icke, J. Org. Chem., 8, 160 (1943). ³⁷ Kraft and Herbst, J. Org. Chem., 10, 492 (1945); cf. ref. 36. 38 Adkins et al., J. Am. Chem. Soc., 55, 2992 (1933). 39 Conant, Webb, and Mendum, J. Am. Chem. Soc., 51, 1246 (1929). 40 Reeve and Adkins, J. Am. Chem. Soc., 62, 2874 (1940). ⁴ Davies and Hodgson, I. Chem. Soc., 282 (1943). ⁴ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 145. 49 Blaise, Bull. soc. chim. France, (3) 31, 483 (1904).

44 Davies and Hodgson, I. Soc. Chem. Ind. (London), 62, 128 (1943). 45 Darzens and Levy, Compt. rend., 196, 348 (1933). 44 Laurer, Gensler, and Miller, J. Am. Chem. Soc., 63, 1153 (1941); cf. ref. 47. 47 Le Sueur, I. Chem. Soc., 87, 1888 (1905); 85, 827 (1904). 40 Pickard and Kenyon, J. Chem. Soc., 103, 1947 (1913). 49 Williams, Org. Syntheses, 23, 63 (1943). ⁵⁰ Stephen, J. Chem. Soc., 1874 (1925). ⁵¹ Harington and Moggridge, J. Chem. Soc., 445 (1939). ¹² Williams, J. Am. Chem. Soc., 61, 2248 (1939). 53 Slotta and Kethur. Ber., 71, 335 (1938). ⁵⁴ Henle, Ber., 35, 3039 (1902); 38, 1362 (1905). ³⁵ Lieber, J. Am. Chem. Soc., 71, 2862 (1949). ⁵⁶ Hershberg and Cason, Org. Syntheses, 21, 84 (1941). ⁵⁷ Barnes, Org. Syntheses, 21, 110 (1941). ⁵⁸ Mosettig and Mozingo in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, p. 362. ³⁹ Fieser and Hershberg, *I. Am. Chem. Soc.*, **62**, 52 (1940); cf. ref. 58. ⁶⁰ Mosettig and van de Kamp, 1. Am. Chem. Soc., 55, 2995 (1933): cf. ref. 58. ⁶¹ Haves, I. Am. Chem. Soc., 71, 2581 (1949). ⁶² Boehm, Schumann, and Hansen, Arch. Pharm., 271, 490 (1933). 63 Lock and Schmidt, 1. prakt. Chem., 140, 231 (1934). ⁶⁴ Weygand and Meusel, Ber., 76, 503 (1943); Fröschl and Danoff, J. prakt., Chem., (2) 144, 217 (1936); Rosenmund, Ber., 51, 585 (1918). 65 Rosenmund and Zetzsche, Ber., 54, 425 (1921). 66 English, Jr., and Velick, J. Am. Chem. Soc., 67, 1413 (1945). ⁶⁷Shoesmith et al., J. Chem. Soc., 2760 (1926). ⁶⁵ Harris et al., J. Am. Chem. Soc., 67, 2098 (1945). ⁶⁹ Glattfeld and Straitiff, J. Am. Chem. Soc., 60, 1386 (1938). ⁷⁰ Coleman and Craig, Org. Syntheses, Coll. Vol. II, 583 (1943). ⁷¹ Adams and Levine, J. Am. Chem. Soc., 45, 2373 (1923). ⁷² Adams and Montgomery, J. Am. Chem. Soc., 46, 1518 (1924). ⁷⁵ Holloway and Krase, Ind. Eng. Chem., 25, 497 (1933). ⁷⁴ Hinkel, Ayling, and Morgan, I. Chem. Soc., 2793 (1932). 75 Arnold and Sprung, J. Am. Chem. Soc., 60, 1699 (1938). ⁷⁶ Baker, J. Am. Chem. Soc., 65, 1576 (1943). ⁷⁷ Hinkel, Ayling, and Beynon, J. Chem. Soc., 778 (1937). ⁷⁸ Fuson et al., J. Am. Chem. Soc., 64, 30 (1942); Org. Syntheses, 23, 57 (1943). "Niedzielski and Nord, J. Org. Chem., 8, 147 (1943). ⁸⁰ Russell and Lockhart, Org. Syntheses, 22, 63 (1942). ⁸¹ Hodgson and Jenkinson, J. Chem. Soc., 469 (1929). ⁸² Boyd and Robson, Biochem. 1., 29, 555 (1935). ⁸³ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 403. ⁸⁴ Dunn, Waugh, and Dittmer, J. Am. Chem. Soc., 68, 2118 (1946); Wiberg, Org. Syntheses, 29, 87 (1949). ⁸⁸ Fuson and Cooke, Jr., J. Am. Chem. Soc., 62, 1180 (1940). ⁸⁶ Campaigne and LeSuer, J. Am. Chem. Soc., 70, 1557 (1948). ⁸⁷ Hewett, J. Chem. Soc., 297 (1940). ⁸⁸Coles and Dodds, J. Am. Chem. Soc., 60, 853 (1938); Mayer and Stieglitz, Ber., 55, 1846 (1922); Rupe and Brentano, Helv. Chim. Acta, 19, 586 (1936);

Ruggli and Bruckhardt, *ibid.*, 23, 443 (1940).

⁸⁹ Weygand, Organic Preparations, Interscience Publishers, New York, 1945. p. 156; Grammaticakis, Bull. soc. chim. France, (5) 7, 537 (1940). 90 Badger, I. Chem. Soc., 536 (1941). ⁹¹ Fisher, J. Am. Chem. Soc., 56, 2056 (1934). ⁹² Baker, Nathan, and Shoppee, j. Chem. Soc., 1848 (1935). 93 Palfrav. Bull. soc. chim. France, (5) 7, 414 (1940). 94 Urion, Ann. chim., (11) 1, 43 (1934). 95 Burdick and Adkins, J. Am. Chem. Soc., 56, 438 (1934). 96 Duff, J. Chem. Soc., 547 (1941). 97 Graymore and Davies, J. Chem. Soc., 293 (1945). 98 Sommelet, Compt. rend., 157, 852 (1913). 99 Duff. 1. Chem. Soc., 276 (1945). 100 Skita, Ber., 48, 1491 (1915). ¹⁰¹ Fieser, Hartwell, and Jones, Org. Syntheses, 20, 11 (1940). ¹⁰² Fieser and Hershberg. 1. Am. Chem. Soc., 60, 2547, 2558 (1938), ¹⁰³ Vilsmeier and Haack, Ber., 60, 119 (1927). ¹⁰⁴ Vollmann et al., Ann., 531, 108 (1937). ¹⁰⁸ Shabica et al., J. Am. Chem. Soc., 68, 1156 (1946). 106 Rugeli and Burckhardt, Helv. Chim. Acta, 23, 447 (1940). 107 Tiemann. Ber., 33, 3721 (1900). ¹⁰⁸ Keagle and Hartung, J. Am. Chem. Soc., 68, 1609 (1946); Mannich and Budde, Arch. Pharm., 270, 283 (1932); and Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 161. ¹⁰⁹ Gattermann and Wieland, Laboratory Methods of Organic Chemistry. The Macmillan Co., New York, 1938, p. 235. ¹¹⁰ Moses, Ber., 33, 2624 (1900). ¹¹¹ Dey, J. Chem. Soc., 1059 (1937); Rotbart, Ann. chim., (11) 1, 439 (1934). ¹¹² Newman, J. Am. Chem. Soc., 57, 732 (1935). ¹¹³ Whitmore et al., *I. Am. Chem. Soc.*, 55, 1136 (1933). ¹¹⁴ Henne and Hill, J. Am. Chem. Soc., 65, 752 (1943); Henne and Perilstein, *ibid.*, 65, 2183 (1943). ¹¹⁵ Fisher and Loewenberg, Ber., 66, 666 (1933); Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 384. ¹¹⁶ Noller and Adams, J. Am. Chem. Soc., 48, 1074 (1926). ¹¹⁷ Noller and Bannerot, J. Am. Chem. Soc., 56, 1563 (1934). ¹¹⁸ Fisher and Feldmann, Ber., 62, 856 (1929). ¹¹⁹ Fisher, Ber., 76, 734 (1943). ¹²⁰ Ferguson, Chem. Revs., 38, 227 (1946). ¹²¹ Pummerer and Schönamseruber, Ber., 72, 1840 (1939). ¹²² Adams and Lipscomb. J. Am. Chem. Soc., 71, 519 (1949). ¹²³ McFadyen and Stevens, J. Chem. Soc., 584 (1936). ¹²⁴ Buchman and Richardson, J. Am. Chem. Soc., 61, 892 (1939). ¹²⁸ Niemann, Lewis, and Hays, J. Am. Chem. Soc., 64, 1678 (1942); Panizzon, Helv. Chim. Acta, 24, 24E (1941). ¹²⁶ Natelson and Gottfried, J. Am. Chem. Soc., 63, 487 (1941); 64, 2962 (1942). ¹²⁷ Kalb and Gross, Ber., 59, 727 (1926). ¹²⁸ Williams, Witten, and Krynitsky, Org. Syntheses, 26, 97 (1946). ¹²⁹ Burton and Shoppee, J. Chem. Soc., 548 (1937).

¹³⁰ Bachmann and Kloetzel, J. Am. Chem. Soc., 59, 2209 (1937).

¹³¹ Shoppee, J. Chem. Soc., 40 (1933).

¹³² Rapson and Shuttleworth, I. Chem. Soc., 488 (1941). 133 Coleman and Pyle, J. Am. Chem. Soc., 68, 2007 (1946). ¹³⁴ Bachmann and Boatner, I. Am. Chem. Soc., 58, 2100 (1936). ¹³⁵ Coleman and Honeywell, Org. Syntheses, Coll. Vol. II, 89 (1943). ¹³⁶ McEwen, Org. Syntheses, Coll. Vol. II, 133 (1943). ¹³⁷ Brooks, J. Am. Chem. Soc., 66, 1296 (1944); Marvel and Hein, ibid., 70, 1896 1948. ¹³⁸ Wiley and Smith, J. Am. Chem. Soc., 70, 1560 (1948). ¹³⁹ Wawzonek and Karll, J. Am. Chem. Soc., 70, 1666 (1948). 140 Snell and Weissberger, Org. Syntheses, 20, 92 (1940). 141 Copisatow, J. Chem. Soc., 588 (1929). 142 Gattermann and Wieland, Laboratory Methods of Organic Chemistry. The Macmillan Co., New York, 1938, Chapter V. 143 Huang, Tarbell, and Amstein, J. Am. Chem. Soc., 70, 4182 (1948). 144 Jackson in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 341. 143 Hershberg, Helv. Chim. Acta, 17, 351 (1934). 146 Grundmann, Ann. chim., 524, 31 (1936). 147 Scanlan and Swern, J. Am. Chem. Soc., 62, 2305, 2309 (1940). 148 Hatch and Nesbitt, J. Am. Chem. Soc., 67, 39 (1945). 149 Lieberman and Connor, Org. Syntheses, Coll. Vol. II, 441 (1943); Walton, Tipson, and Cretcher, J. Am. Chem. Soc., 67, 1501 (1945). ¹⁵⁰ Tsang, Wood, and Johnson, Org. Syntheses, 24, 75 (1944). ¹⁵¹ Johnston and Williams, J. Am. Chem. Soc., 69, 2065 (1947). ¹⁵² Marvel and Hein, J. Am. Chem. Soc., 70, 1897 (1948). ¹⁵³ Marvel, Saunders, and Overberger, J. Am. Chem. Soc., 68, 1085 (1946). ¹⁵⁴ Charlot, Ann. chim., (11) 2, 415 (1934). ¹³⁵ Marek and Hahn, Catalytic Oxidation of Organic Compounds in Vapor Phase. A.C.S. Monograph 61, Chemical Catalog Co., New York, 1932. ¹⁵⁶ Beard and Hodgson, J. Chem. Soc., 4 (1944). ¹³⁷ Allen and Van Allen, Org. Syntheses, 24, 82, 87 (1944); Newman and Closson, J. Am. Chem. Soc., 66, 1554 (1944). ¹⁵⁸ Scheibler and Tutundzitsch, Ber., 64, 2916 (1931); Ruggli and Hegedüs, Helv. Chim. Acta, 25, 1291 (1942). 159 Ramart-Lucas and Labaune, Ann. chim., (10) 16, 282 (1931). ¹⁶⁰ Wolfrom and Karabinos, J. Am. Chem. Soc., 68, 1455 (1946). ¹⁶¹ Newman and Magerlein in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 413-440. 162 Barger and Easson, J. Chem. Soc., 2100 (1938); Biedermann, Ber., 19, 636 (1886). 163 Elks. Elliott. and Hems. I. Chem. Soc., 629 (1944). ¹⁶⁴ Barnes, Pierce, and Cochrane, J. Am. Chem. Soc., 62, 1084 (1940). 165 Fuson, J. Am. Chem. Soc., 48, 1093 (1926). 166 Gardner and Naylor, Jr., Org. Syntheses, Coll. Vol. II, 523 (1943). 167 Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 447. ¹⁶⁸ Weerman, Ann., 401, 1 (1913); Rec. trav. chim., 29, 18 (1910); 37, 1 (1917); Rinkes, Rec. trav. chim., 39, 200, 704 (1920); 45, 819 (1926); 46, 268 (1927); 48, 960 (1929). 169 Speer and Mahler, J. Am. Chem. Soc., 71, 1133 (1949). 170 Guyot and Gry, Bull. soc. chim. France, (4) 7, 911 (1910).

REFERENCES FOR CHAPTER 9

¹⁷¹Levine et al., *I. Am. Chem. Soc.*, 67, 1510 (1945). ¹⁷² Long, I. Am. Chem. Soc., 69, 992 (1947). 173 Mariella, J. Am. Chem. Soc., 69, 2670 (1947); Tracy and Elderfield, J. Org. Chem., 6, 63 (1941). 174 Petrow, J. Chem. Soc., 694 (1942); Plattner, Helv. Chim. Acta, 28, 773 (1945).¹⁷⁵ Freon. Ann. chim., (11) 11, 478 (1939). 176 Rabjohn in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949. pp. 331-386. 177 Riley and Gray, Org. Syntheses, Coll. Vol. II, 509 (1943). 178 Ronzio and Waugh, Org. Syntheses, 24, 61 (1944). ¹⁷⁹ Gray and Fuson, J. Am. Chem. Soc., 56, 739 (1934). 180 Fuson, Gray, and Gouza, J. Am. Chem. Soc., 61, 1938 (1939). ¹⁸¹ Hahn and Schales, Ber., 67, 1821 (1934). 182 Rubin, Paist, and Elderfield, J. Org. Chem., 6, 268 (1941). 183 Barrows and Lindwall, J. Am. Chem. Soc., 64, 2430 (1942). 184 Kwartler and Lindwall, J. Am. Chem. Soc., 59, 524 (1937). 185 Rappen, J. prakt. Chem., 157, 197 (1941). 186 Bennett and Bell, Org. Syntheses, Coll. Vol. II, 223 (1943). 187 Adams and Coleman, Org. Syntheses, Coll. Vol. I, 214 (1941). 188 Dippy et al., J. Soc. Chem. Ind. (London), 56, 346T (1937). 189 Kröhnke and Börner, Ber., 69, 2006 (1936); Kröhnke, ibid., 71, 2583 (1938); Reich, Helv. Chim., Acta, 23, 219 (1940); Karrer and Epprecht, ibid., 24, 1039 $(1941)_{-}$ ¹⁹⁰ Adkins and Krsek, J. Am. Chem. Soc., 70, 383 (1948); 71, 3051 (1949). ¹⁹¹ Adkins and Hartung, Org. Syntheses, Coll. Vol. I, 15 (1941). ¹⁹² Bremner, Jones, and Beaumont, J. Chem. Soc., 1019 (1946). ¹⁹³ Shriner and Wolf, Org. Syntheses, 23, 74 (1943); Ullyot et al., I. Org. Chem., 10, 433 (1945). ¹⁹⁴ Johnson and Degering, J. Org. Chem., 8, 10 (1943). ¹⁹⁵ Hearne, Tamele, and Converse, Ind. Eng. Chem., 33, 805 (1941). ¹⁹⁶ Mannich and Kniss, Ber., 74, 1640 (1941). ¹⁹⁷ Clemo and Hoggarth, J. Chem. Soc., 1241 (1939); Pauly and Schanz, Ber., 56, 979 (1923). ¹⁹⁸ Cooper and Cohen, J. Chem. Soc., 723 (1932). ¹⁹⁹ Von and Wagner, J. Org. Chem., 9, 162 (1944); Brown and Bluestein, J. Am. Chem. Soc., 65, 1082 (1943). ²⁰⁰ Oroshnik and Spoerri, J. Am. Chem. Soc., 63, 3338 (1941). ²⁰¹ Peak, Robinson, and Walker, J. Chem. Soc., 752 (1936). ²⁰² Lorenz and Wizinger, Helv. Chim. Acta, 28, 600 (1945). ²⁰³ Blumenfeld, Ber., 74B, 527 (1941). ²⁰⁴ Jitkow and Bogert, J. Am. Chem. Soc., 63, 1981 (1941). ²⁰⁵ Bell and Hirst, J. Chem. Soc., 1777 (1939); cf. Fischer and Taube, Ber., 1707 (1927). ²⁰⁶ Hüttel, Ber., 74, 1827 (1941); Reitzenstein and Bönitsch, J. prakt. Chem., (2) 86. 36 (1912). ²⁰⁷ Dolliver et al., J. Am. Chem. Soc., 60, 440 (1938). ²⁰⁸ Johnson, J. Am. Chem. Soc., 61, 2486 (1939).

²⁰⁹ Schönberg, Moubasher, and Mostafa, J. Chem. Soc., 176 (1948); Baddar, *ibid.*, S163 (1949).

²¹⁰ Spense and Wild, I. Chem. Soc., 338 (1935); Walker, I. Am. Chem. Soc., 55, 2821 (1933). ²¹¹ Moureu and Delange, Compt. rend. 133, 105 (1901); Chem. Zentr., ii, 461 (1901).²¹² Milas, Sussman, and Mason, J. Am. Chem. Soc., 61, 1844 (1939). ²¹³ Sabatier and Mailhe, Compt. rend., 154, 561 (1912); 158, 986 (1914). ²¹⁴ Davies and Hodgson, I. Chem. Soc., 84 (1943). ²¹⁵ Law and Perkin, J. Chem. Soc., 259 (1907). ²¹⁶ Segesser and Calvin, J. Am. Chem. Soc., 64, 825 (1942). ²¹⁷ Hanus, I. prakt. Chem., 158, 254 (1941). ²¹⁶ Astin, Newman, and Riley, J. Chem. Soc., 391 (1933); Fisher and Eisner, ibid., 6, 169 (1941); Weygand, Kinkel, and Tietjen, Chem. Ber., 83, 394 (1950). ²¹⁹ Jacobson, J. Am. Chem. Soc., 72, 1491 (1950). 220 Wille and Saffer. Ann., 568, 34 (1950). ²²¹ Gresham and Grigsby, J. Org. Chem., 14, 1103 (1949). ²²² Henne, Pelley, and Alm, J. Am, Chem. Soc., 72, 3370 (1950). 228 Emerson and Patrick, J. Org. Chem., 14, 790 (1949). ²²⁴ Dornfeld and Coleman, Org. Syntheses, 28, 83 (1948). ²²⁵ Lunt and Sondheimer, J. Chem. Soc., 3361 (1950). 226 Marek and Hahn, Catalytic Oxidation of Organic Compounds in the Vapor Phase, Chemical Catalog Co., New York, 1932, pp. 37-99. ²²⁷ Church and Lynn, Ind. Eng. Chem., 42, 768 (1950). ²²⁸ Bremner et al., J. Chem. Soc., S25 (1950). ²²⁹ Moureu, Chovin, and Brunet, Bull. soc. chim. France, (5) 15, 96 (1948). ²³⁰ Bowen and Wilkinson, J. Chem. Soc., 750 (1950). ²³¹ Newman and Mangham, J. Am. Chem. Soc., 71, 3342 (1949). ²³² Kumler, Strait, and Alpen, J. Am. Chem. Soc., 72, 1463 (1950). ²³³ Eliel and Burgstahler, I. Am. Chem. Soc., 71, 2251 (1949). ²³⁴ Detweiler and Amstutz, J. Am. Chem. Soc., 72, 2882 (1950). ²³⁵ Elliot and Harington, J. Chem. Soc., 1377 (1949). ²³⁶ Heilbron et al., J. Chem. Soc., 737 (1949). ²³⁷ Witzemann et al., Org. Syntheses, Coll. Vol. II, 304 (1943). ²³⁸ Allen and Edens, Org. Syntheses, 25, 92 (1945). ²³⁹ Alexander, I. Am. Chem. Soc., 70, 2592 (1948). 240 Curtius, J. prakt. Chem., 94, 273 (1917); Smith in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 384. ²⁴¹ Cook et al., I. Chem. Soc., 142 (1950). ²⁴² McCoubrey and Mathieson, J. Chem. Soc., 701 (1949). ¹⁴³ Crounse in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, pp. 290-300. ²⁴⁴ Angyal et al., J. Chem. Soc., 2700, 2704 (1949); 2141 (1950). 245 Angyal, Tetaz, and Wilson, Org. Syntheses, 30, 67 (1950); cf. Gaylord and Becker, J. Org. Chem., 15, 312 (1950). ²⁴⁶ Wood et al., J. Am. Chem. Soc., 72, 2992 (1950). 247 King and Nord, J. Org. Chem., 13, 635 (1948). ²⁴⁶ Schmerling, I. Am. Chem. Soc., 68, 1653 (1946). ²⁴⁹ English and Barber, J. Am. Chem. Soc., 71, 3310 (1949). 250 Paul and Tchelitcheff, Bull, soc. chim. France, (5) 15, 200 (1948). ²⁵¹ Bergmann and Pinchas, J. Org. Chem., 15, 1184 (1950). 252 Horrom and Zaugg, J. Am. Chem. Soc., 72, 723 (1950). 253 Horning, Horning, and Platt. I. Am. Chem. Soc., 71, 1771 (1949).

254 Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1334 (1950). 255 Ecary, Ann. chim., (12) 3, 450 (1948). 256 Trister and Hibbert, Can. J. Research, 14B, 421 (1936). 257 Cagniant, Bull. soc. chim. France, (5) 16, 849 (1949). 258 Kipnis and Ornfelt, J. Am. Chem. Soc., 70, 3948 (1948). 259 Johnson and Shelberg, J. Am. Chem. Soc., 67, 1745 (1945). 260 Weston and Michaels, J. Am. Chem. Soc., 72, 1422 (1950) Org. Syntheses, 31, 108 (1951); cf. refs. 223 and 247. ²⁶¹ Hass and Bender, J. Am. Chem. Soc., 71, 1767 (1949). 262 Hass and Bender, Org. Syntheses, 30, 99 (1950). 263 Ruzicka et al., Helv. Chim. Acta, 31, 433 (1948). ²⁶⁴ Buck and Zimmermann, Org. Syntheses, Coll. Vol. II, 549 (1943). 265 Longlev and Emerson, I. Am. Chem. Soc., 72, 3079 (1950). 266 Bert, Compt. rend., 221, 77 (1945). 267 Davies and Hodgson, J. Soc. Chem. Ind. (London), 62, 90 (1943). 268 Herbst and Manske, Org. Syntheses, Coll. Vol. II, 389 (1943).

²⁶⁹ Djerassi in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 207.

METHOD 1	7	8	
----------	---	---	--

VERVICE

:2

CONTENTS (continued)

METHOD	FUGE
216. β-Keto Nitriles by Acylation of Nitriles	348
217. Hydrogenolysis of 1, 3-Diketones	. 348
218. Acid Treatment of Acinitroparaffins	348
219. Pyrolysis of Glycidic Acids	348
220. Rearrangement of a-Bromo Azides	349
221. Degradation of Disubstituted Glycolic Acids	349
222. Hydrolysis of gem-Dihalides	349
223. Isomerization of Vinyl Carbinols	349
224. Condensation of Furans with Unsaturated Ketones	349
225. Condensation of Anhydrides	349
226. Acylation of Certain Heterocyclic Compounds	349
227. Addition of Aldehydes to Olefins	350
228. Interaction of Hydriodic Acid and Diazo Ketones	350
229. δ-Diketones from Substituted Furans	350
230. a-Diketones by Oxidation of Aryl Acetylenes	350
231. γ-Diketones from Ketones	350
232. Olefinic Ketones from Hydrocarbons and Carbon Monoxide	350
233. a, β -Olefinic Ketones from Diketene and Aldehydes	350
234. β-Keto Esters by the Reformatsky Reaction	351
235. Hydrolysis of β -Iminonitriles	351
Table 32. Monoketones	.352
Table 33. Diketones	363
Table 34. Olefinic Ketones	3 66
Table 35. Acetylenic Ketones	370
Table 36. Halo Ketones	370
Table 37. Hydroxy Ketones	375
Table 38. Keto Ethers	378
Table 39. Keto Aldehydes	381
References	383

178. Acylation of Hydrocarbons (Friedel-Crafts)

ArH + RCOCl $\xrightarrow{Catalyst}$ ArCOR + HCl

Many organic compounds react with carboxylic acids, acyl halides, or anhydrides in the presence of certain metallic halides, metallic oxides, iodine, or inorganic acids to form carbonyl compounds. The reaction is generally applicable to aromatic hydrocarbons. Benzene, alkylbenzenes, biphenyl, fluorene, naphthalene, anthracene, acenaphthene, phenanthrene, higher aromatic ring systems, and many derivatives undergo the reaction. In addition, olefinic and heterocyclic compounds have been converted to ketonic compounds. Therefore, a large number of ketones have been prepared by this reaction. Excellent reviews are available.¹⁰

Benzene is usually acylated by the addition of anhydrous aluminum chloride to a benzene or carbon disulfide-benzene solution of the aliphatic

10

Ketones

CONTENTS

METHOD	PAGE
178. Acylation of Hydrocarbons (Friedel-Crafts)	• 317
179. Oxidation of Secondary Alcohols	· 323
180. Oxidation of Alcohols by Ketones (Oppenauer)	• 324
181. Catalytic Dehydrogenation of Secondary Alcohols	. 325
182. Oxidation of Olefinic Compounds (Ozonolysis)	. 325
183. Oxidation of Methylene Groups	. 326
184. Cleavage of β -Keto Esters	. 327
185. Decarboxylation of Acylmalonic Acids	330
186. Thermal Decarboxylation of Acids	. 331
187. Interaction of Grignard Reagents and Nitriles	. 332
188. Interaction of Organometallic Reagents and Anhydrides	. 333
189. Interaction of Organometallic Reagents and Acyl Chlorides	. 333
190. Interaction of Grignard Reagents and Amides	. 335
191. Interaction of Grignard Reagents and a, &-Olefinic Ketones	. 335
192. Interaction of Grignard Reagents and Halo Ketones	. 335
193. Interaction of Organometallic Reagents and Esters	. 336
194. Interaction of Organometallic Reagents and Salts of Carboxylic Acids.	336
195. Hydrolysis of Ketone Derivatives	· 33 6
196. Selective Reduction of a,β -Olefinic Ketones	. 337
197. Partial Reduction of Phenols	. 338
198. Alkylation of Ketones	. 339
199. Interaction of Diazomethane and Carbonyl Compounds	. 340
200. Catalytic Hydration of Acetylenic Compounds	. 340
201. Dehydration and Rearrangement of a-Diols	. 341
202. Decomposition of Glycol Monoalkyl Ethers	. 341
203. <i>B</i> -Diketones by Acylation of Ketones	. 342
204. a, β -Olefinic Ketones from Acetylenic Carbinols	. 343
205. γ , δ -Olefinic Ketones from Alkenyl Esters of β -Keto Acids	. 343
206. Cyclopentenones from Lactones	. 343
207. β -Halo Ketones from Acyl Chlorides and Olefins	. 343
208. a-Halo Ketones from Alkenyl Esters	. 344
209. Hydroxy Ketones from Phenolic Esters (Fries)	. 344
210. a-Keto Acids from Azlactones	. 344
211. β -Keto Esters by Condensation of Esters	. 345
212. B-Keto Esters by Selective Cleavage of a a-Diacyl Esters	. 346
213. β -Keto Esters by Alkylation of β -Keto Esters	. 346
214. B-Keto Esters from Ethyl t-Butyl Acylmalonic Esters	. 347
215. β -Keto Esters by Acylation of Ester Enolates	. 347

DACE

or aromatic acyl halide, as in the preparation of phenyl benzyl ketone (83%),¹ benzophenone (90%),² and stearoylbenzene (65%).³

The mono- and poly-alkylated benzenes are treated using modifications of the above procedure. Monoalkylbenzenes are added to a preformed complex of acyl halides and aluminum chloride in carbon tetrachloride⁴ (Perrier modification). In this manner, the manipulation is easier, no tars are encountered, and the yields are improved (85-90%). The procedure shows no advantage, however, in the acylation of alkoxy- or chloro-aromatic compounds. The addition of benzoyl chloride to p-alkylbenzenes in the presence of aluminum chloride in cold carbon disulfide is a good procedure for making *p*-alkylbenzophenones (67-87%).⁵ The condensation of homologs of benzene with oxalyl chloride under similar conditions yields p, p'-dialkylbenzophenones (30-55%).²⁷ Polyalkylbenzenes have been acylated with acetic anhydride and aluminum chloride (2.1:1 molar ratio) in carbon disulfide in 54-80% yields.^{6,7} Ferric chloride catalyst has been used under similar conditions.⁸ Acetylation of p-cymene with acetyl chloride and aluminum chloride in carbon disulfide yields 2-methyl-5-isopropylacetophenone (55%).⁹

Studies on the conditions of the reaction have been made using simple compounds as model substances. A comparison of thirty-nine metallic chlorides shows aluminum chloride to be the most effective in the preparation of *p*-methylacetophenone.¹¹ Optimum yields result when the molar ratios of aluminum chloride to anhydride, acyl chloride, and acid are 3.3, 1.0, and 2.5, respectively. Halogen and oxyhalogen carriers are not help-ful.¹² Inconsistent yields in the Friedel-Crafts reaction have been attributed to the presence of ferric chloride or moisture in the aluminum chloride catalyst.¹³ Prolonged heating causes condensation of the ketone product. It has been shown that cessation of hydrogen chloride evolution may not be a satisfactory criterion for judging completeness or optimum period of reaction.¹⁴ For the most part, the success of the reaction depends on the use of mild conditions and pure reagents.¹⁹⁻¹⁷

Other aromatic compounds have been acylated by varying procedures. A general procedure for the preparation of alkyl biphenyl ketones has been described whereby the acyl halide is added to a mixture of biphenyl, aluminum chloride, and carbon disulfide (62-90%).¹⁸ Nitrobenzene or carbon disulfide is used as the solvent in the preparation of 2-acetylfluorene (83%)^{19,31} and the isomeric 2- and 3-acylphenanthrenes.^{20,21} A convenient method for obtaining pure 2-acylphenanthrene is the acylation of 9,10-dihydrophenanthrene followed by sulfur dehydrogenation. In this case, only the 2-position is attacked; the over-all yield is about 48%.²² Anthracene is acylated in the 9-position (60%).³² The isomeric acetylacenaphthenes have been prepared from the hydrocarbon and acetic acid, using hydrogen fluoride as catalyst.^{23,24} Substituted tetralins have been prepared by the Friedel-Crafts reaction under mild conditions. Thus, tetralin or its 7-alkylated derivative reacts with acid anhydrides in the presence of aluminum chloride and nitrobenzene solvent at 0° (60-80%).²³ Naphthalene is acetylated or benzoylated almost exclusively in the alpha position by the action of an acyl chloride and aluminum chloride in methylene or ethylene chloride solution.³⁰ Also, on treatment with benzoyl chloride in the presence of iodine, it is converted predominantly to the α benzoyl isomer (52%).²⁶ Aroyl halides respond better than anhydrides to this treatment.

Heterocyclic ketones derived from furan or thiophene have been prepared similarly using an iodine catalyst. Short reaction time and low temperature are used. Thus, thiophene and acetic anhydride heated for 1 hour with a small quantity of iodine at about 100° yields 2-acetylthiophene (86%); similarly, furan yields 2-acetylfuran (75%).⁵⁹-Other catalysts for the acylation of furan and thiophene have been used, namely, zinc chloride,⁶⁰ silica-metal oxides,⁶¹ stannic chloride,⁶² aluminum chloride,⁶³ boron trifluoride, 64,65,68 and orthophosphoric acid.66 The last-named catalyst has been employed for the preparation of eleven compounds including 2acetylthiophene (94%), 2-benzoylthiophene (99%), and 2-acetyl-5-methylthiophene (91%). Other oxygenated acids have been studied, but orthophosphoric acid is the most effective and produces the fewest side reactions. In general, the acid anhydride as acylating agent is preferred over the acyl halide. In introducing large acyl groups, it is convenient to use merely the organic acid and phosphorus pentoxide. Yields of acylated thiophene range from 45% with acetic acid to 97% with oleic acid.66

 γ -Aryl-substituted acids, Ar(CH₂)₃COOH, or their halides undergo an internal Friedel-Crafts reaction to give 1-tetralones.¹⁵ The acids may be cyclized directly with 85-95% sulfuric acid as in the preparation of 4methyl-1-tetralone (74%).⁸⁰ However, sulfonation by-products may occur. Thus, 1-tetralone from γ -phenylbutyric and sulfuric acid mixture is obtained in 49% yield, whereas it is prepared from the acyl chloride and aluminum chloride in 92% yield.⁷⁹ A better catalyst for direct cyclization is hydrofluoric acid. The organic acid is simply treated at room temperature with 10 parts hydrofluoric acid for several hours. In this manner, 1-tetralone (92%), 1-hydrindone (73%), 1,2-benz-10-anthrone (75%), and other difficultly obtained anthrones have been prepared.²⁴ In preparing acyl chlorides with thionyl chloride for the Friedel-Crafts reaction, care must be taken to remove this reagent completely since it may lead to side reactions. Better results have been obtained by employing phosphorus pentachloride for formation of the acyl halide, but again the harmful phosphorus oxychloride Ch. 10

must be removed. This is readily accomplished by codistillation with benzene. The acyl chloride may be cyclized without further purification. A solution in benzene, nitrobenzene, or chlorobenzene *is added to* aluminum chloride below 25° .¹⁷ Polyphosphoric acid has also been applied in the synthesis of cyclic ketones.⁷⁵

Ring closure of this type has been brought about by the reaction of a lactone, namely, γ , γ -dimethylbutyrolactone, with benzene and aluminum chloride to give 4,4-dimethyl-1-tetralone (70%).⁶⁶ Tetralones containing halogen atoms⁸⁷ or alkoxyl groups^{17,88} have been prepared. Also, β -haloalkyl ketones of the type ArCOCH₂CH₂Cl undergo intramolecular condensation to furnish 1-indanones?⁴

Diketones have been prepared by the Friedel-Crafts method. Both acyl chloride groups in adipyl chloride react with benzene in the presence of aluminum chloride to form the diketo compound, 1,4-dibenzoylbutane (81%).⁸⁹ When diketene is treated with benzene under the conditions of the Friedel-Crafts reaction, benzoylacetone, C_6H_3 COCH₂COCH₃, is formed (73%).⁹⁰

$$CH_2 = C - CH_2 + C_6H_6 \xrightarrow{AICl_3} C_6H_5 COCH_2COCH_3$$
$$| \qquad | \qquad 0 - C = 0$$

This synthesis of 1,3-diketones may be extended by the use of other available diketenes.

Olefinic ketones have been obtained from the reaction of acyl chlorides or anhydrides with olefins using the conditions of the Friedel-Crafts reaction. The intermediate chloro ketones are oftentimes stable and must be treated with sodium bicarbonate or dimethylaniline to complete the dehydrohalogenation. In this manner, 1-acetyl-1-cyclohexene $(62\%)^{92,103}$ and 1-butyryl-1-cyclohexene $(60\%)^{93}$ are prepared.

More recently, it has been shown that acetylation of cyclohexene with acetic anhydride in the presence of stannic chloride is less troublesome and does not necessitate dehydrohalogenation.⁹⁷

The reaction has been investigated in detail using diisobutylene and acetic anhydride whereby methyl octenyl ketones are formed in yields as high as 60%. Studies of catalysts show zinc chloride to be the most effective. It is used in relatively small concentrations compared with

the catalyst requirements for aromatic hydrocarbons. A low temperature (40°) is maintained to prevent polymerization of the olefin. On a small scale, a preformed complex of the anhydride and zinc chloride is prepared and treated with the olefin.^{94,95}

Under these conditions, the addition of acyl chlorides to acetylene leads to β -chlorovinyl ketones (62-80%).⁹⁹

$$RCOCI + HC \equiv CH \xrightarrow{AICI_3} RCOCH = CHCI$$

Ketones containing a double bond have also been prepared by the reaction of unsaturated acyl halides with aromatic hydrocarbons ⁹⁶ in the usual Friedel-Crafts manner. Acylation of benzene and its homologs with β , β -dimethylacroyl chloride leads to dimethylvinyl aryl ketones, (CH₃)₂C = CHCOAr (75-90%).¹⁰⁰ The latter compounds are stable and do not undergo intramolecular condensation.

Three types of *balo ketones*, differing in the position of the halogen atom, have been prepared by the Friedel-Crafts reaction: (1) a halogenated acyl chloride and an aromatic hydrocarbon give a haloalkyl aryl ketone, e.g., β -bromopropiophenone, C₆H₈ COCH₂CH₂Br, (93%)¹¹² from benzene and β -bromoacetyl chloride; (2) an aryl halide upon acylation gives a haloaryl alkyl ketone, e.g., *p*-fluoroacetophenone (74%) from fluorobenzene and a preformed acetic anhydride-aluminum chloride complex¹¹⁰ or *p*-bromoacetophenone (79%)¹¹³ from bromobenzene and acetic anhydride; and (3) an aryl-substituted alkyl halide on acylation gives an aryl alkyl ketone containing a halogenated side chain, e.g., β -(*p*-acetylphenyl)-ethyl bromide, *p*-CH₃COC₆H₄CH₂CH₂Br (83%),¹¹² from β -phenylethyl bromide and acetyl chloride. In general, the reactions are carried out in carbon disulfide with aluminum chloride catalyst.

Phenolic ketones have been prepared by modifications of the Friedel-Crafts reaction. In preparing acyl derivatives of phenol, a preformed complex of phenol and aluminum chloride is treated with an acyl chloride. Ortho and para isomers are formed with the latter predominating.¹²³ On the other hand, in preparing acyl derivatives of the polyhydric phenols and naphthols, a preheated solution of zinc chloride and acylating acid is treated with the hydroxy compound (Nencki reaction).¹²⁴⁺¹²⁶ This procedure gives poor yields when applied to the monohydroxy phenols.¹²⁷ Phloroglucinol, sym-C₆H₃(OH)₃, condenses with acetonitrile in the presence of zinc chloride and hydrochloric acid to give phloroacetophenone (87%) (Hoesch-Houben reaction).^{128,129} An imino chloride is probably formed, viz., CH₃CN + HCl \rightarrow CH₃C(Cl)=NH, which reacts with the phenol to give an intermediate ketimine hydrochloride.

METHODS 178-179

catalyst²⁶ or with acetyl chloride and aluminum chloride catalyst¹⁵⁴ have been reported. o-Nitrophenyl 2-thienyl ketone has been prepared.¹⁵⁵

Use of a-cyanopropionyl chloride results in a cyano ketone, e.g., a-cyanopropiomesitylene, $C_6H_2(CH_3)_3COCHCNCH_3$ (20%).¹⁵⁶

179. Oxidation of Secondary Alcohols

$$R_2$$
CHOH $\xrightarrow{(0)}$ R_2 CC

Oxidation of secondary alcohols to ketones with sulfuric-chromic acid mixture proceeds readily. In general, the reaction is carried out in an aqueous medium keeping the temperature at 20-40°. Occasionally, the reaction temperature is elevated to 50-80° for additional periods. 157, 158 Vigorous stirring is required for slightly soluble alcohols. The yields vary from 60% to 80% for the C₅-C₁₀ aliphatic ketones. Isopropyl s-butyl ketone is prepared by carrying out the oxidation of the alcohol at 40° for 36 hours (68%).¹⁵⁹ Substituted cyclohexanones have been prepared in good yields (70-93%) with widely varying reaction times and temperatures.^{169-172,675} Oxidation of insoluble aromatic carbinols is carried out with acetic acid as the solvent. Thus, m-biphenylmethylcarbinol and 2phenylcyclohexanol are oxidized at $45-50^{\circ}$ to the corresponding ketones in 80% yield.^{173,47} Concentrated nitric acid at reflux temperature for 20 minutes has been used for the preparation of hexamethylacetone (81%).¹⁷⁴ The mechanism of chromic acid oxidation of alcohols has been dis-Cussed. 168, 175, 186

Among the diketones prepared by oxidation of an alcohol group are the the benzils from the corresponding benzoins and aliphatic α -diketones from the acyloins. The oxidation of the former is accomplished with copper sulfate in pyridine, e.g., benzoin to benzil (86%),¹⁹⁰ and the latter with cupric acetate in 70% acetic acid, e.g., 4-hydroxy-3-hexanone to dipropionyl (70%).¹⁹¹ Ferric chloride in a boiling ether-water mixture is also used as an oxidant.¹⁹¹ Certain alicyclic 1,2-diketones are prepared by oxidation of the acyloins with chromic anhydride in glacial acetic acid, e.g., 3,3,6,6-tetramethyl-1,2-cyclohexanedione (64%).²⁰¹ Improvements in carrying out oxidations of benzoins and in processing the reaction mixtures have been described.¹⁹²⁻¹⁹⁴ In one oxidation procedure, a catalytic quantity of cupric acetate is employed, which is continuously regenerated by the action of ammonium nitrate. The reduction product of the latter is ammonium nitrite, which is decomposed simultaneously to nitrogen and water.¹⁹⁴ Benzoins carrying halo,¹⁹⁵ methoxyl,^{198,212} and dialkylamino¹⁹⁹ groups have been oxidized.

Secondary acetylenic alcohols, prepared in good yields from acetylenic Grignard reagents and aldehydes, are oxidized to acetylenic ketones

Ch. 10

sym-(HO)₃C₆H₃ + CH₃C(Cl) = NH $\xrightarrow{Z_nCl_2}_{HCl}$ sym-(HO)₃C₆H₂C(= NH · HCl)CH₃ $\xrightarrow{H_2O}_{Sym}$ -(HO)₃C₆H₂COCH₃

Acylation of aromatic ethers yields the corresponding *keto ethers*.¹³¹ Typical examples are found in the conversion of anisole with aluminum chloride and appropriate acyl halide to *p*-methoxybutyrophenone $(85\%)^{132}$ and *p*-methoxyphenyl benzyl ketone (84%).¹³³ Mild catalysts like iodine²⁶ and phosphorus pentoxide²⁹ are also effective.

Aryl-substituted γ -keto acids are readily obtained by acylation of aromatic compounds with succinic anhydride, e.g., β -benzoylpropionic acid (85%).¹³⁵

$$C_{6}H_{6} + \bigcup_{CH_{2}CO} O \rightarrow C_{6}H_{5}CO(CH_{2})_{2}CO_{2}H$$

$$CH_{2}CO$$

Phenol,¹³⁶ bromobenzene,⁸⁷ t-butylbenzene,¹³⁷ and acenaphthene¹³⁸ give keto acids in good yields. The reaction is applicable to other aliphatic dibasic acid anhydrides like glutaric anhydride,¹³⁹ adipic polyanhydride,¹⁴⁰ and maleic anhydride,¹⁴¹ furnishing ω -aroyl acids. An excellent discussion including experimental conditions and procedures has been given.¹⁴²

Optimum conditions for the reaction of naphthalene,⁶⁷⁰ biphenyl,¹⁴⁴ and chlorobenzene¹⁴⁵ with phthalic anhydride have been determined. The corresponding keto acids are obtained in 90–98% yields. In this type of condensation, nitrobenzene is stated to be far superior to other solvents with respect to solvent power and ability to slow side reactions.¹⁴⁶

Another variation consists in the reaction between an aromatic nucleus and the ester-acyl chloride of a dibasic acid followed by hydrolysis of the resulting keto ester. This synthesis affords ω -aroyl aliphatic acids in 85-95% yields and is applicable to benzene, its alkyl, halo, alkoxy, and alkylalkoxy derivatives as well as to thiophene and naphthalene.^{139,147}

When the interaction of an ester-acyl chloride and an aromatic nucleus is employed for the synthesis of a *keto ester*, then a reesterification step is recommended.¹⁴⁷ Certain α -*keto esters* have been prepared by using ethyl oxalyl chloride, CO₂ClCO₂C₂H₅, as the acylating agent, e.g., ethyl α -thienyl glyoxylate (50%),¹⁵⁰ ethyl α -naphthylglyoxylate (46%),¹⁵¹ and ethyl *p*-biphenylylglyoxylate (70%).¹⁵² An example of acylation of an aromatic ester is found in the preparation of the *para* and *meta* isomers of ethyl acetylphenylacetate (80%).¹⁵³

Nitro- and amino-aromatic compounds do not respond favorably. However, acylations of acetanilide with acetic anhydride using iodine

mole of alkoxide is recommended to remove any water present in the reaction mixture. A high ratio of 40 to 80 moles of ketone for 1 mole of a steroid is desirable. For simpler alcohols, 20 moles of acetone or methyl ethyl ketone, 3-10 moles of cyclohexanone, or 1-3 moles of quinone or benzil are satisfactory. The equilibrium is displaced by the large excess of the ketone reactant to give the desired product. It is preferable to carry out the oxidation at 55-60°. The use of an inert diluent, such as benzene, toluene, or dioxane, minimizes ketone condensation products.

The reaction has been extended to nitrogen-containing compounds by the use of an alkali alkoxide, such as potassium *t*-butoxide.²²⁴

181. Catalytic Dehydrogenation of Secondary Alcohols

$$R_2$$
CHOH $\xrightarrow{-H_2}$ R_2 CC

Ketones are formed in good yields by vapor-phase dehydrogenation of secondary alcohols over copper chromite catalyst. An example is the conversion of cyclohexanol to cyclohexanone (60%).²²⁵ A liquid-phase dehydrogenation using Raney nickel catalyst at 170° has proved successful for preparing C₄-C₉ aliphatic ketones (79-95%).²²⁶ The catalyst can be reused. The procedure has been modified by employing a hydrogen acceptor, such as cyclohexanone. The mixture of catalyst, hydrogen acceptor, alcohol, and toluene is merely refluxed for short periods.²²⁷

The reaction may also be performed over a mixed-oxide catalyst at 280° and 100 atm. of ethylene, which serves as the hydrogen acceptor,³⁶³ as illustrated by the preparation of β -tetralone from 1,2,3,4-tetrahydro-2-naphthol.⁴³⁵ By the same procedure, diisobutyryl, a *diketone*, has been prepared from the acyloin (27%).²²⁸

Dehydrogenation of 1,4-pentanediol over a copper chromite catalyst in the liquid phase yields the corresponding hydroxy ketone, 5-hydroxy-2-pentanone (30%).²²⁹

182. Oxidation of Olefinic Compounds (Ozonolysis)

$$R_2C = CHR \xrightarrow[H_2O]{O_3;} R_2CO + RCHO$$

Ozonolysis of olefins has found little application in the preparation of ketones for synthetic purposes. Since the ozonides may be explosive, the method has been limited to the reaction of small quantities of olefins, mostly for degradation studies and location of double bonds.

Improved conditions for the oxidation of olefins with ozone to ketones (60-70%) have been described.²³¹⁻²³³ The use of Dry Ice temperature and methylene chloride as solvent lessens the loss of volatile olefins in the

P reparations of *balo ketones*, such as α, α' -dichloroacetone $(75\%)^{205}$ and 1-chloro-4-phenyl-2-butanone (82%),¹⁴³ and *keto ethers*, such as 4methoxycyclohexanone $(65\%)^{207}$ and sym-dialkoxyacetones (40-70%),²⁰⁸ have been carried out by the oxidation of the corresponding alcohols with chromic-sulfuric acid mixture. Methyl esters of certain α -hydroxy acids can be oxidized to the α -keto esters with lead tetraacetate in boiling benzene as in the preparation of methyl phenylglyoxylate (84%).²¹³ Also, esters of lactic acid, CH₃CHOHCO₂R, have been converted to pyruvic esters by the action of potassium permanganate.^{218,692} This same reagent has been employed for changing mandelic acid to the α -keto acid, benzovlformic acid (72%).²¹⁴

A general synthesis for γ -keto acids involves the oxidation of γ lactones with bromine in the presence of magnesium hydroxide.^{216,217} The lactones are readily obtained by interaction of oxides and sodiomalonic esters with subsequent hydrolysis and decarboxylation (method 323). The over-all yields are excellent.

Nitro alcohols from the condensation of aromatic aldehydes with sodium salts of nitroparaffins are oxidized to α -nitro ketones with chromicacetic acids, as illustrated by the preparation of α -nitroacetophenone, $C_6H_5 COCH_2NO_2$ (80%).²¹⁹

180. Oxidation of Alcohols by Ketones (Oppenauer)

$$R_2$$
CHOH + R'_2 CO $\underset{alkoxide}{\overset{\text{Metal}}{\longleftarrow}} R_2$ CO + R'_2 CHOH

Oxidation of alcohols by ketones in the presence of a metallic alkoxide has proved especially valuable in the steroid field.^{221,222} The literature to 1951 has been reviewed.⁶⁹³ An extensive investigation of experimental conditions using aluminum *t*-butoxide has been carried out.²²³ The merits of various ketones as hydrogen acceptors have been considered. In general, methyl ethyl ketone and cyclohexanone are best for high-molecular-weight alcohols. The condensation products from these ketones may be removed by steam distillation. Benzil is recommended for preparing aldehydes and ketones capable of being distilled from the reaction mixture below 100°. Benzil or quinone may be used for ketone products boiling from 100° to 200°, especially if they are likely to condense. The optimum temperature, duration of reaction, and concentration of reactants may vary for the alcohol oxidized. In general, 0.5 mole of alkoxide per mole of alcohol gives good results; however, an additional 0.5

Ch. 10

Ch. 10

oxygen stream. The ozonides are decomposed by zinc and water in the presence of acetic acid or by catalytic hydrogenation with 1% palladiumcalcium carbonate catalyst. Ozonides also react with Raney nickel to give aldehydes and ketones.²³⁴ A new ozonizer has been described.²³¹

Several olefinic compounds have been oxidized with potassium permanganate or chromic acid to furnish ketones. An example is the oxidation of diisobutylene to methyl neopentyl ketone (56%).²³⁵

Methylenecyclobutane has been converted to cyclobutanone by oxidation to the corresponding glycol with performic acid and subsequent cleavage of the glycol with lead tetraacetate (75% over-all).²³⁷

183. Oxidation of Methylene Groups

$$\operatorname{ArCOCH}_{2}\operatorname{Ar} \xrightarrow[\operatorname{or Nitrogen oxides}]{\operatorname{SeO}_{2}} \operatorname{ArCOCOAr}$$

Compounds containing reactive methylene groups are readily converted by suitable oxidizing agents to carbonyl derivatives. Reviews of the reaction employing selenium dioxide ⁵⁶⁴ or nitrogen oxides ⁵⁶⁵ are given.

Selenium dioxide is commonly applied to a methylene group activated by a carbonyl group, although an adjacent double bond, aromatic ring, or heterocyclic ring may also subject it to attack. The conversion of aldehydes and methyl ketones leads to glyoxals (method 157). Best results are obtained when only one methylene group is present. For example, aryl benzyl ketones have been oxidized almost quantitatively to substituted benzils by treatment with selenium dioxide and acetic anhydride at 140-150° for 3 to 4 hours.⁵⁶⁶ Dioxane has been used as solvent with this oxidizing agent. The products are purified by activated-charcoal treatment. Other experimental details are illustrated in the preparation of methyl phenyl diketone $(60\%)^{567}$ and 2,4,6-trimethylbenzil (83%).⁵⁶⁸

Cyclic ketones like cyclohexanone 569 and cycloheptanone 570 yield the corresponding a-diketones in 35% and 90% yields, respectively.

Compounds having methylene groups situated between two activating groups—ketone, acid, or ester—are readily oxidized with selenium dioxide to furnish triketones, ⁵⁷¹ keto diesters, ⁵⁷² a,β -diketo esters, ⁵⁷³ or a-keto acids. ⁵⁷⁴

Another procedure utilizes oxides of nitrogen. An example is the oxidation of diethyl malonate to diethyl oxomalonate, $CO(CO_2C_2H_5)_2$, with nitrous anhydride (76%).⁵⁷⁵ Synthesis of alkyl aryl a-diketones has been accomplished under similar conditions (30-40%).⁵⁷⁶

A benzyl side chain is changed to a benzoyl group by vigorous oxidation. For example, 4,4'-diacetylaminodiphenylmethane²⁴⁸ is converted with chromic acid to the benzophenone in 70% yield. Also, 2-benzoylpyridine is made from 2-benzylpyridine in 86% yield by the action of potassium permanganate.²⁴⁴

Oxidation of cyclohexene with chromic anhydride in acetic acid gives a 37% yield of 2-cyclohexenone; likewise, 1-methylcyclohexene goes to 3-methyl-2-cyclohexen-1-one (20%).⁴⁴¹

Certain aromatic compounds containing alkyl groups have been converted to carbonyl derivatives by liquid-phase oxidation of these groups with air in the presence of chromium oxide catalysts.

$$ArCH_2CH_3 \xrightarrow[Catalyst]{O_2} ArCOCH_2$$

By the simple procedure of passing dispersed air through a suspension of *m*-diethylbenzene, 1% chromia, and 4% calcium carbonate at 130° for 40 hours, a 50% yield of *m*-ethylacetophenone is obtained.²³⁸ Likewise, aromatic esters,^{239,246,247} acetophenones,⁴ and halogenated benzenes²⁴⁵ containing alkyl groups yield the corresponding *keto esters*, *diketones*, and *halo ketones*, respectively. Manganese dioxide catalyst has also been used.²⁴⁰ Tetralin can be oxidized to α -tetralone with dispersed air in the absence of a catalyst (56%).²⁴¹

184. Cleavage of β -Keto Esters

The formation of β -keto esters and their cleavage represents an important synthesis for many types of ketones. The methods of synthesis of various β -keto esters are considered under methods 211 to 215 and have been reviewed.⁶¹⁴ Quite often the intermediate β -keto esters are not isolated but are cleaved directly to ketones. With few exceptions (methods 266 and 308), the cleavage always results in the formation of a ketone. Syntheses involving these cleavages are considered here.

Monoalkylation of ethyl acetoacetate and subsequent ketonic hydrolysis gives methyl ketones of the type CH_3COCH_2R (acetoacetic ester synthesis).

$$CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5};} CH_{3}COCHRCO_{2}C_{2}H_{5} \xrightarrow{H^{+}} CH_{3}COCH_{2}R$$

$$\downarrow NaOC_{2}H_{5}; R'X$$

$$H^{+} \qquad \downarrow NaOC_{2}H_{5}; R'X$$

$$CH_{3}COCHRR' + CO_{2} + C_{2}H_{5}OH \xleftarrow{H^{+}} CH_{3}COCRR'CO_{2}C_{2}H_{5}$$

The over-all yields resulting from the use of primary alkyl bromides are 50-70%. The method is illustrated by the preparation of methyl *n*-amyl ketone. (61%).²⁵⁶ Monoalkylation with secondary alkyl bromides is less complete, and the over-all yields are lower (20-30%).

Dialkylation followed by hydrolysis gives methyl ketones of the type $CH_3COCHRR'$ The over-all yields are 30-40%, often depending on which

alkyl group is introduced first when R and R' are different.^{250, 251} For example, in the preparation of methyl methylisopropylacetoacetate, better results are obtained if the methyl group is substituted first (60% ester yield)²⁵² (cf. method 213). Hydrolysis of disubstituted acetoacetic esters, CH₃COCRR'CO₂C₂H₃, in which R and R' are methyl or ethyl groups usually gives ketones in 60 to 80% yields.^{253, 254} When R is a *n*-butyl group and R' is either a *n*- or *s*-butyl group, the ketones are formed in low yields, ester formation being favored (cf. method 308); however, these particular ketones are available in good yields by cleaving the corresponding *t*butyl acetoacetates.²⁵⁵

Sulfuric²⁵⁶ or phosphoric²⁵⁷ acids are used for the ketonic hydrolysis, as in the preparation of methyl *n*-amyl ketone. Also, the hydrolysis is brought about by boiling with acetic-sulfuric acid mixture,²⁵⁸ hot 5% potassium hydroxide solution,²⁵⁹ or hydriodic acid if the hydrolysis is especially difficult.²⁶⁰ Benzylacetone, C₆H₅ CH₂CH₂COCH₃, is formed by hydrolysis of the corresponding β -keto ester with water at 150-250° and 200 atm. Dialkylated β -keto esters are stable to this treatment; therefore, a single ketone can be obtained from a mixture of mono- and di-alkylated β -keto esters.²⁵³

Difunctional compounds have been prepared by this series of reactions. Alkylation with unsaturated halides²⁸⁴⁻²⁸⁷ or alkylation of unsaturated β -keto esters²⁶² leads to *olefinic ketones*. Halogenation of a substituted acetoacetate followed by acetic-sulfuric acid hydrolysis gives a-balo ketones. An example of this transformation is the chlorination of ethyl benzylacetoacetate with sulfuryl chloride (69%) followed by hydrolysis and decarboxylation to give α -benzyl- α -chloroacetone (84%).²⁸⁸ If alkoxy halides are used, keto ethers result. In this manner, δ -ethoxybutyl methyl ketone (35% over-all)²⁹¹ and δ -phenoxybutyl methyl ketone (61%)²⁹² have been prepared. Similarly, alkylation using dialkylamino halides yields dialkylamino ketones in about 60% over-all yield,³⁰⁶ as illustrated by the conversion of γ -diethylaminopropyl chloride and ethyl sodioacetoacetate to 1-diethylamino-5-hexanone (60%),³⁰⁷ An example of the reaction of a halogenated ester leading to a keto acid is found in the preparation of 8-ketononoic acid (68%).²⁹⁷ γ -Keto- α -alkyl acids have been prepared by a one-step hydrolysis and decarboxylation of certain cyanoacetoacetic esters.296

 $RCHCNCH(COCH_3)CO_2C_2H_5 \xrightarrow{H^+} RCH(COOH)CH_2COCH_3 + CO_2 + C_2H_5OH$

 α -Keto acids have also been obtained by treating α -oxalyl esters with boiling dilute sulfuric acid for 6 hours (8-94%).²⁹⁵ These starting materials are prepared by condensation of ethyl oxalate and a second ester (method 211).

$$(CO_{2}C_{2}H_{5})_{2} + RCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5}} C_{2}H_{5}O_{2}CCOCHRCO_{2}C_{2}H_{5}$$

$$\downarrow H^{+}$$

$$RCH_{2}COCO_{2}H + CO_{2} + C_{2}H_{5}OH$$

 β -Keto esters prepared by additional methods (methods 211-215) are cleaved to give other types of ketones. (1) Acylation of the sodium enolates of disubstituted acetic esters followed by hydrolysis and decarboxylation gives ketones of the type R'COCHR₂.

$$HCR_{2}CO_{2}C_{2}H_{5} \xrightarrow{(C_{6}H_{5})_{3}CN_{8}} Na^{+}(CR_{2}CO_{2}C_{2}H_{5})^{-}$$

$$\downarrow R'COCHR_{2} + CO_{2} + C_{2}H_{5}OH \xleftarrow{H^{+}} R'COCR_{2}CO_{2}C_{2}H_{5}$$

The over-all yield from ester and acid chloride is 38-58%.²⁶² (2) Selfcondensation of high-molecular-weight esters and hydrolysis of the resulting β -keto esters gives symmetrical ketones of the type RCH₂COCH₂R.

$$\operatorname{RCH}_2\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5 \xrightarrow{\operatorname{NaOC}_2\operatorname{H}_5} \operatorname{RCH}_2\operatorname{COCHRCO}_2\operatorname{C}_2\operatorname{H}_5 \xrightarrow{\operatorname{H}^+} \operatorname{RCH}_2\operatorname{COCH}_2\operatorname{R}$$

The over-all yields (R equals n-C₃-C₈, n-C₁₁, and n-C₁₂) from the esters vary from 55% to 78%.²⁵⁹ Certain heterocyclic ketones, namely, 8-acetylquinoline and β -acetylpyridine, have been prepared through a mixed ester condensation.^{279,280} (3) If acetoacetic ester is acylated in the form of its sodium enolate and carefully hydrolyzed, a new β -keto ester is formed. Alkylation of this keto ester followed by hydrolysis gives ketones of the type RCOCH₂R'.

$$CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{\text{NaOC}_{2}H_{5};} CH_{3}COCH(COR)CO_{2}C_{2}H_{5}$$

$$RCOCHR'CO_{2}C_{2}H_{5} \xleftarrow{\text{NaOC}_{2}H_{5};} RCOCH_{2}CO_{2}C_{2}H_{5}$$

$$\downarrow H^{+}$$

$$RCOCH_{2}R'$$

The over-all yields are stated to be 13-20% from the acid chloride;³⁰³ however, the directions are not clear.^{304, 305} If the chloride of a dibasic acid is used, a *diketone* results. Thus, terephthalic acid chloride gives *p*-diacetylbenzene (15% over-all).²⁸³ o-Chloroacetophenone, a *balo ketone*, has been prepared from ethyl acetoacetate and o-chlorobenzoyl chloride (54%).²⁹⁰

330

Ch. 10

Aminomethyl ketones have been prepared by the α -oximination of β -keto esters followed by reduction and cleavage.³¹⁰

$$\begin{array}{ccc} \text{RCOCH}_2\text{CO}_2\text{C}_2\text{H}_5 & \xrightarrow{\text{HNO}_3} \text{RCOC(NOH)CO}_2\text{C}_2\text{H}_5 & \xrightarrow{\text{Zn}} \\ & \xrightarrow{\text{(CH}_3\text{CO)}_3\text{O}} \\ & & \text{RCOCH(NHAc)CO}_2\text{C}_2\text{H}_5 & \xrightarrow{\text{HCI}} \text{RCOCH}_2\text{NH}_2 \text{"HCI} \end{array}$$

Symmetrical ketones are sometimes prepared from acyl chlorides by way of diketenes and β -keto acids.⁶⁹¹

$$2RCH_{2}COCI \xrightarrow{(C_{2}H_{3})_{3}N} RCH_{2}COC(R) = C = O \xrightarrow{H_{2}O} (RCH_{3})_{2}CO + CO_{3}$$

The addition of ethyl sodiomalonate to olefinic ketones followed by ring closure and β -keto ester cleavage leads to 1,3-cyclohexanediones. The reaction has been applied to the formation of 2-alkyl-5-phenyl-1,3cyclohexanediones⁵⁸³ and is typified by the preparation of 5,5-dimethyl-1,3-cyclohexanedione (85%).⁵⁸⁴ Other cyclizations for formation of fourand five-membered rings have been described.^{585,586}

185. Decarboxylation of Acylmalonic Acids

$$\text{RCOCI} + \text{C}_2\text{H}_5 \text{OMgCH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow{} \text{RCOCH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow{} \text{H}^+ \text{RCOCH}_3$$

A convenient method for preparing alicyclic or aromatic methyl ketones consists in the acylation of the ethoxymagnesium derivative of diethyl malonate with the appropriate acyl chloride, followed by acid hydrolysis and decarboxylation of the resulting β -keto diester.³¹²⁻³¹⁴ The last step is carried out like the ketonic cleavage of β -keto esters.²⁶² The over-all yields are 60-85%.

The method is especially valuable for the preparation of certain substituted acetophenones, namely, o- and p-nitroacetophenone and o-chloroacetophenone.³¹⁴ Methods involving Grignard, Friedel-Crafts, or nitration reactions are apparently not applicable for the preparation of these nitro compounds, and the Friedel-Crafts reaction is not applicable to the preparation of o-chloroacetophenone. Although the acetoacetic ester synthesis has been used for the preparation of these and other substituted acetophenones, it may be complicated by O-acylation and also by cleavage at either acyl group (cf. method 212).

High-molecular-weight aliphatic ketones of the type RCOCH₂R' are made by acylation of substituted dibenzyl esters of malonic acid followed by hydrogenolysis and decarboxylation.³¹⁶

$$\begin{array}{c} \text{R'CH}(\text{CO}_{2}\text{CH}_{2}\text{C}_{6}\text{H}_{5})_{2} \xrightarrow{\text{NaOC}_{2}\text{H}_{5};} \text{RCOCR'}(\text{CO}_{2}\text{CH}_{2}\text{C}_{6}\text{H}_{5})_{2} \\ \xrightarrow{\text{H}_{3}} \text{RCOCR'}(\text{CO}_{2}\text{H})_{2} \xrightarrow{\text{-CO}_{2}} \text{RCOCH}_{2}\text{R'} \\ \xrightarrow{\text{H}_{4}} \text{RCOCR'}(\text{CO}_{2}\text{H})_{2} \xrightarrow{\text{-CO}_{2}} \text{RCOCH}_{2}\text{R'} \end{array}$$

Decomposition of acylated malonic esters over aromatic sulfonic acids leads to β -keto esters (method 214).

186. Thermal Decarboxylation of Acids

$$RCO_2H \xrightarrow[Heat]{Catalyst} R_2CO + CO_2$$

Symmetrical ketones (R equals ethyl, propyl, isopropyl, *n*-butyl, isobutyl, and *n*-heptyl) have been prepared in nearly "quantitative" yields by passing the acid vapors over thoria at high temperatures. Studies have been made of metallic oxide catalysts and temperature of reaction. In general, a thoria catalyst has been favored at temperatures of 400- 500° .³¹⁸ The apparatus and catalyst preparation have been described.³¹⁹

More recently, it has been shown that a thoria "aerogel" catalyst is superior to the thoria-hydrogel and thoria-on-pumice catalysts. High yields at a lower temperature (310°) and high flow rates are obtained.³²⁰

The distillation of lauric acid (or other high-boiling acids) over the catalyst bed is difficult and gives poor yields; however, when the lower-boiling methyl ester is used, laurone is obtained in a 93% yield.³²¹ Similarly, the ethyl ester of 9-undecenoic acid gives undecylenone (86%).

A large number of unsymmetrical ketones have been prepared by the thermal decarboxylation method;^{322, 323} however, the yields are not recorded. In general, by using a large excess of the short-chain acid (which minimizes formation of the long-chain symmetrical ketone) over thoria at 400°, yields of about 50% are obtained.^{35, 303} Methyl benzyl ketone and other alkyl aryl ketones have been synthesized in this manner (65%).³¹⁹ The use of manganese oxide catalyst at 400° gives about the same results.³²⁴

The thermal decarboxylation of a mixture of barium salts has been used to prepare unsymmetrical ketones; the yields are not stated.³²⁵ The earlier procedure has been modified by carrying out the reaction *in* $vacuo^{326}$ in an iron flask. Glass reaction vessels are inferior. In this manner, a large number of the high-molecular-weight methyl ketones, C₉, C₁₀, C₁₂-C₁₇, and C₁₉, are prepared in 54-67% yields. Cyclopentanone has been synthesized in 80% yield by distillation of adipic acid from barium hydroxide at 295°.³²⁷ In a study of metallic oxides and carbonates, magnesium oxide is preferred for the liquid-phase ketonization of stearic acid at 330-360° (95%).³²⁸ A convenient method for the preparation of dibenzyl ketone is the reaction of phenylacetic acid, acetic anhydride,

and fused potassium acetate at 150° (41%).³³⁰ Several pyridyl ketones have been made in a similar way.^{339, 340}

Acids which have no α -hydrogen atoms may yield unsymmetrical ketones on decarboxylation instead of the anticipated symmetrical compounds.³³¹

187. Interaction of Grignard Reagents and Nitriles

$$R'MgX + RCN \rightarrow RR'C = NMgX \xrightarrow{H_2O} RCOR'$$

Grignard reagents react with nitriles to form ketimine salts which on hydrolysis give ketones. For the most part, the procedure is successful only for high-molecular-weight aliphatic and aromatic nitriles, although the lower-membered aliphatic nitriles respond favorably with aromatic Grignard reagents.^{353,354,388} Poor results have been associated with a competing reaction of the Grignard reagent at the α -hydrogen of the nitrile to form a hydrocarbon and a magnesium derivative which may react further at the nitrile group, viz., RCH₂CN + R'MgX \rightarrow R'H + (RCHCN)MgX.⁶⁷⁷

Alkyl α -naphthyl ketones from α -cyanonaphthalene and RMgX are prepared when R is methyl through *n*-hexyl, cyclohexyl, or phenyl (35-60%).³⁴⁶ The Grignard reagents are treated with the cyanide for 5 hours in boiling toluene or benzene-ether mixture. The intermediate ketimine salt is then hydrolyzed with aqueous ammonium chloride. Acylated aromatic compounds can be prepared readily in this way, avoiding isomeric mixtures encountered by the Friedel-Crafts method. Thus, the pure acetyl-, propionyl-, and benzoyl-phenanthrenes have been synthesized (50-87%).^{21,347,348}

Ketones from fatty acid nitriles and high-molecular-weight Grignard reagents are often contaminated with hydrocarbons.^{349,350} This difficulty can be avoided by discarding the ethereal solution containing the hydrocarbon products before the hydrolysis of the ketimine salt.³⁵¹ The ketone-hydrocarbon mixture has been separated by dissolving the ketone in warm concentrated sulfuric acid, removing the insoluble hydrocarbons, and then reclaiming the ketone by diluting the acid solution with water.³⁰³

The reaction of olefinic Grignard reagents with nitriles to give *ole/inic ketones* is not common. An example is the preparation of 4-hexen-3-one from allylmagnesium bromide and propionitrile (25%).³⁷¹

Nitriles carrying relatively unreactive halogen atoms have been used to prepare *balo ketones*. Thus, 4-chloro-2-ethoxybutyronitrile, $CH_2ClCH_2CH(OC_2H_5)CN$, has been converted to 3-chloro-1-ethoxypropyl alkyl ketones in 40-75% yields.³⁶⁹ Reaction of methyl Grignard reagent and o-bromophenyl cyanide gives o-bromoacetophenone (80%).⁴⁷⁰

Diphenylacetoin, a hydroxy ketone, has been prepared in 45-60% yield by the action of benzyl Grignard reagent on phenylacetaldehyde cyanohydrin.³⁷² An important method for the preparation of *keto ethers* is the reaction of cyano ethers with Grignard reagents. In this manner, a large number of α -alkoxy aliphatic ketones have been made (30-70%).^{208,373-377} Likewise, phenoxymethyl alkyl ketones have been prepared (20-64%).³⁸⁰ When the Grignard reagent contains an ω -alkoxy group, ω -alkoxy ketones are formed.³⁷⁹

Ethyl β -oxovalerate, a β -keto ester, is prepared from ethyl Grignard reagent and ethyl cyanoacetate (58%).^{386,387} Amino ketones are conveniently made by the action of aromatic Grignard reagents on γ -diethyl-aminobutyronitrile, $(C_2H_5)_2NCH_2CH_2CH_2CN$, in 80-90% yields.³⁸⁸

188. Interaction of Organometallic Reagents and Anhydrides

$$(\text{RCO})_{2}O \xrightarrow{\textbf{R}' \text{MgX}} \text{RC} \xrightarrow{-\text{OCOR}} \xrightarrow{\text{H}_{2}O} \text{RCOR}'$$

A large number of ketones have been prepared by treating anhydrides with Grignard reagents. It has been shown that the yields are best at low temperatures (-75°). Primary, secondary, and tertiary aliphatic or aromatic Grignard reagents give high yields when treated with acetic, propionic, or butyric anhydrides.³⁸⁹⁻³⁹¹

A variety of ketones may be made using cadmium alkyls (50-70%). In the preparation of alkyl aryl ketones, reaction of the aliphatic rather than the aromatic anhydride is preferred.³⁹² Keto acids result when phthalic anhydride³⁹²⁻³⁹⁴ or dimethylsuccinic anhydride (60-70%)³⁹⁵ is used.

Acetylenic ketones of the type $RC \equiv CCOCH_3$ are prepared by the reaction of acetic anhydride and acetylenic Grignard reagents. The latter compounds are readily made from acetylenic hydrocarbons and ethylmagnesium chloride, and are added slowly to the anhydride at a low temperature. This procedure prevents a secondary reaction of the desired product with a second molecule of Grignard reagent. In this manner, 3-octyn-2-one (58%) and 3-nonyn-2-one (55%) are prepared.³⁹⁶ Sodium phenylacetylide has been treated with various anhydrides, including acetic, benzoic, cinnamic, and crotonic, to give the corresponding phenylacetylenic ketones.³⁹⁷

189. Interaction of Organometallic Reagents and Acyl Chlorides

$$2RCOCI + R'_2Cd \rightarrow 2RCOR' + CdCl_2$$

Addition of cadmium alkyls to acyl chlorides yields the corresponding ketones. The method has been reviewed,⁴⁰⁰ and the experimental condi-

tions have been studied.⁴⁰¹ The cadmium reagents are readily prepared by adding anhydrous cadmium chloride to Grignard reagents. It is advisable to check the completeness of the cadmium alkyl formation by the standard Gilman test for Grignard reagent. The use of an alkyl bromide for formation of the cadmium reagent and of benzene as solvent during the coupling reaction has improved the yield. A variety of ketones have been prepared, and yields of 50-80% may be expected if highly reactive ketones are not formed and if the cadmium alkyl is not secondary or tertiary.^{401,402} In the preparation of methyl *n*-butyl ketone (74%), *n*-propyl-*n*-heptadecyl ketone (65%), acetophenone (85%), and ethyl α -furyl ketone (61%), the smaller alkyl fragment comes from the cadmium alkyl. Either the aryl or alkyl cadmium compound is satisfactory for formation of alkyl aryl ketones.

The reaction has been extended to the formation of difunctional compounds. High-molecular-weight keto esters and halo ketones are formed by using carbalkoxy acyl chlorides and halogenated acyl chlorides, respectively. Methyl 4-keto-7-methyloctanoate (75%) and 1-chloro-2hexanone (51%) have been prepared in this way.^{401,403} Also, β -aroylpropionic esters are made by the reaction of diarylcadmium reagents with β -carbomethoxypropionyl chloride.⁶⁷⁸ In the preparation of a carbalkoxy acyl chloride having a branched carbon skeleton, an ester interchange may occur to give a mixture of the two possible carbalkoxy acyl chlorides.⁵⁸¹ Alkoxy acyl chlorides react with cadmium alkyls to give keto ethers, as in the preparation of γ -phenoxypropyl methyl ketone (78%) from γ -phenoxybutyryl chloride and methylcadmium²⁹² and of certain 2-alkoxyethyl phenyl ketones from β -alkoxypropionyl chloride and diphenylcadmium.⁴⁰⁴

A large number of methyl and ethyl ketones have been prepared in about 70% yields by employing zinc alkyls; however, full directions are not given.⁴⁰⁵ Reaction of zinc alkyls and unsaturated acyl chlorides in the presence of a zinc-copper couple gives *olefinic ketones* in 75-90% yields. By this procedure, 5-ethyl-4-hepten-3-one (74%) and 3,4-diethyl-4-hexen-2-one (83%) are made.⁴⁰⁶ High-molecular-weight *keto acids* (C_{28} - C_{35}) have been prepared in good yields (77-92%) by adding ethereal Grignard reagents to anhydrous zinc chloride, replacing the ether with benzene as solvent, and then treating with carbethoxy acyl chlorides under reflux.^{407, 408}

In general, the cadmium reagent is preferred to the zinc reagent because it is more readily prepared and is less reactive toward the carbonyl group.

Grignard reagents have been used directly in mono-^{409,410,539} and diketone⁴¹⁵ formation. More recently, it has been found that a catalytic quantity of cuprous chloride greatly increases the yields.^{416,419} An example is the formation of hexamethylacetone in 70-80% yield from *t*butylmagnesium chloride and trimethylacetyl chloride. Diketones have also been prepared by coupling magnesium enolates of certain ketones with high-molecular-weight acyl chlorides.⁵³⁹

190. Interaction of Grignard Reagents and Amides

$$\operatorname{RCONH}_{2} \xrightarrow{2R' \operatorname{MgX}} \operatorname{RC} \xrightarrow{} \operatorname{MgX} \xrightarrow{} \operatorname{H_{2}O} \operatorname{RCOR}$$

This reaction has been used extensively for the preparation of neopentyl and t-butyl ketones from n-alkyl Grignard reagents and t-butylacetamide and trimethylacetamide, respectively, (52-78%).^{427,428} In addition, a large number of *halo ketones* have been prepared by the reaction of aromatic Grignard reagents with chloro-substituted aromatic amides (60-80%).⁴²⁹⁻⁴³² For example, benzyl Grignard reagent and m-chlorophenylacetamide react to give benzyl m-chlorophenyl ketone (80%). In a similar manner, the use of mandelamide or p-methoxyphenylacetamide leads to *hydroxy ketones* or *keto ethers*, respectively.⁴²⁹

191. Interaction of Grignard Reagents and α , β -Olefinic Ketones

 $RCH = CHCOR + R'MgX \rightarrow RR'CHCH = C(OMgX)R \xrightarrow{H_2O} RR'CHCH_2COR$

Aliphatic and aromatic ketones have been prepared by this method. The Grignard reagent adds 1:4 to the conjugated ketone system. This is illustrated by the addition of ethyl Grignard reagent to ethylideneacetone, $CH_sCH=CHCOCH_s$, to give a 75% yield of 4-methyl-2-hexanone.⁴³⁷ Highly branched ketones have been prepared in small yields.^{438,439} The amount of 1:4 addition varies considerably with the Grignard reagent^{440,441} (cf. method 89). Certain methoxy-substituted chalcones, ArCH=CHCOAr, have been treated successfully.¹³²

192. Interaction of Grignard Reagents and Halo Ketones

The most successful application of this method has been the synthesis of 2-substituted cyclohexanones by the action of either aliphatic¹⁴⁴ or aromatic⁴⁴⁵ Grignard reagents on 2-chlorocyclohexanone. An example is the formation of 2-phenylcyclohexanone ($R = C_6H_5$) in 60% yield.⁴⁴³ The

aromatic moiety may also be substituted with alkyl or alkoxyl groups. The method has been extended to the preparation of 2-phenylcyclopentanone (50%).⁴⁴⁶

193. Interaction of Organometallic Reagents and Esters 447-450 (cf. method 91)

$$RCO_{2}C_{2}H_{5} + R'MgX \rightarrow RC - OMgX \xrightarrow{H_{2}O} RCOR'$$

194. Interaction of Organometallic Reagents and Salts of Carboxylic Acids^{449,451}

$$RCO_2Na + RMgX \rightarrow RC - OMgX \xrightarrow{H_2O} RCOR$$

195. Hydrolysis of Ketone Derivatives

$$R_2C = NOH + H_2CO \xrightarrow{H_2O}_{H^+} R_2CO + H_2C = NOH$$

Oximes, which are produced by several synthetic routes (cf. Chapter 27), are readily hydrolyzed to carbonyl compounds. Thus, the acetylbenzoyl monoxime, prepared by the nitrosation of propiophenone, has been converted to the diketone by hydrolysis with dilute sulfuric acid.⁴⁵²

In another instance, the action of aliphatic Grignard reagents on methyl α -nitrosoethyl ketone with subsequent acid hydrolysis furnishes α -hydroxy ketones of the type CH₃(R)COHCOCH₃.⁴⁵⁶ The oxime of 1-methylcyclopenten-5-one is hydrolyzed by dilute sulfuric acid (54%). It is prepared by the action of nitrosyl chloride on 1-methylcyclopentene with subsequent dehydrohalogenation with pyridine.⁵⁹⁸

A method for hydrolyzing *p*-quinone oximes with the aid of cuprous chloride has been described; the yields are excellent.⁴⁵⁹

Aliphatic ketones have been prepared by a five-step synthesis from nitroparaffins.

$$\begin{array}{c} \text{R'CH}_{2}\text{NO}_{2} \xrightarrow{\text{RCHO}} \text{RCHOHCHR'NO}_{2} \\ \downarrow \\ \text{RCH}_{2}\text{COR'} \leftarrow \text{RCH}_{2}\text{CR'} = \text{NOH} \leftarrow \text{RCH} = \text{CR'NO}_{2} \end{array}$$

The nitroparaffins are condensed with aldehydes to yield nitro alcohols (70-80%), which on acetylation and treatment with an aqueous methanolic solution of sodium bicarbonate are converted to nitroölefins (80-84%). These compounds are reduced to the corresponding ketoximes by zinc and acetic acid (50-60%).⁴⁵³ Reduction with iron and dilute hydrochloric acid gives good yields of either ketones or ketoximes, depending upon the amount of hydrochloric acid used.⁶⁷⁹ The ketoximes can be hydrolyzed to ketones by refluxing with dilute sulfuric acid in the presence of formalin, which acts as a hydroxylamine acceptor (80%). The over-all yields from the nitroölefins are 40-60%. In this manner, certain otherwise difficultly obtainable ketones are prepared. Semicarbazones have been converted to ketones by treatment with sodium nitrite in glacial acetic acid,⁴⁵⁴ with aqueous oxalic acid,⁴⁵⁵ or with phthalic anhydride.⁴⁹⁰

a-Keto acids or esters may be prepared by the hydrolysis of the corresponding oximino esters with 85% formic acid and nitrosylsulfuric acid at 0°.⁴⁵⁷ Although a-oximino acids can be obtained in excellent yield from a-halo acids or substituted acetoacetic or malonic esters,⁴⁵⁸ their hydrolysis may proceed poorly.²⁹⁵

Elimination of carbon dioxide from a carboxylic acid in the presence of a diazonium salt leads to an aryl hydrazone (Japp-Klingemann). Subsequent hydrolysis in the presence of pyruvic acid furnishes the carbonyl compound, as illustrated by the preparation of 2-n-butyrylpyridine (81%).⁵³⁵

196. Selective Reduction of α,β -Olefinic Ketones

$$RCH = CHCOR \xrightarrow[Catalyst]{H_2} RCH_2CH_2COR$$

Selective hydrogenation of α , β -olefinic ketones to saturated ketones can be accomplished through careful control of the temperature, duration of reaction, and use of a catalyst active enough to permit low-temperature hydrogenation.⁴⁶⁴ Thus, mesityl oxide, benzalacetone, and benzalacetophenone have been reduced in 90-100% yields to the corresponding saturated ketones.⁴⁶⁵ Preparations of nickel catalysts used in these reductions are described.^{465,466} Other olefinic ketones have been reduced selectively at room temperature and atmospheric pressure over a platinum or palladium catalyst to give good yields of the ketones, namely, 5-methyl-3-heptanone (94%),^{467, 468} diisobutyl ketone (100%),⁴⁶⁹ and α -benzylacetophenone (81–95%).⁶⁸⁸ Selective hydrogenations of some 3-alkyl-2-cyclohexenones have been carried out over palladinized charcoal in essentially quantitative yields.⁴⁷⁵ Preparation of platinum catalyst has been described.⁴⁷⁰ Many olefinic ketones prepared by the aldol condensation or by acylation of olefins have been hydrogenated; however, the yields are not always stated.⁴⁷¹ Benzalacetone, C₆H₅CH=CHCOCH₃, is selectively reduced to benzylacetone in a 63% yield by the action of sodium amalgam in acetic acidalcohol solution.⁴⁷⁶

Unsaturated keto esters obtained by the Knoevenagel condensation have been selectively hydrogenated in good yields with Raney nickel catalyst at room temperature and 45 atm. to saturated *keto esters*, e.g., ethyl α -heptylacetoacetate (97%) from ethyl α -heptylideneacetoacetate.⁶⁸⁹

197. Partial Reduction of Phenols

Phenols can be partially hydrogenated in the presence of alkali to cyclohexanones. An example is the synthesis of dihydroresorcinol, or 1,3-cyclohexanedione, by hydrogenation of resorcinol in the presence of Raney nickel and an equimolar quantity of sodium hydroxide (95%).⁴⁸¹ Under these same conditions, pyrogallol furnishes a stable enediolone.⁴⁸²

Hydrogenation of 2-naphthol in the presence of palladium and an organic base like N-ethylmorpholine gives 2-tetralone (40%);⁴⁸³ other conditions for its reduction lead to other products.^{484,485} By means of Raney nickel and alkali, 1,6-dihydroxynaphthalene has been partially reduced to 6hydroxy-1-tetralone.⁴⁸⁴

Reductions of this type may also be carried out by the action of sodium and ammonia, sodium and alcohol,⁴⁸⁶ or Raney nickel-aluminum alloy and alkali.⁴⁸⁴ 198. Alkylation of Ketones

$$RCH_2COCH_2R \xrightarrow[R]{RenH_2;} RCH_2COCHRR'$$

Many highly branched ketones have been prepared by the alkylation of simpler ketones, sodium amide or sodium alkoxides generally being used to form the enolate ion. For example, ketones of the type RCOR', where R and R' represent many combinations of methyl (Me), ethyl (Et), n-propyl (Pr), isopropyl, n-butyl, s-butyl, t-butyl, isoamyl, Et₂CH--, Et, C-, n-Pr, CH-, n-PrMeCH-, isoPrCH, -, and n-PrMe, C-, have been prepared; however, the yields are not always reported.488 Alkylation of alicyclic ketones like cyclopentanone and cyclohexanone has also been studied. In these reactions all available a-hydrogens may be replaced, disubstitution on one side of the carbonyl group occurring first. 489-493 Alkyl aryl ketones of the types ArCOCH, R, ArCOCHR'R", and ArCOCR'R'R'" are made by alkylating acetophenone and its derivatives with allyl or benzyl halides.⁴⁹⁵ In general, the reactivity of the alkyl halide decreases with increasing carbon content and complexity. Oftentimes, an alkyl sulfate is employed as the alkylating agent. A review of the earlier work has been presented.⁴⁹⁴ The method is illustrated by the conversion of diisopropyl ketone to hexamethylacetone in the presence of sodium amide (52%).¹⁶⁵

Methyl γ -chloropropyl ketone, CH₃CO(CH₂)₃Cl, undergoes intramolecular cyclization to methyl cyclopropyl ketone under the influence of 50% aqueous sodium hydroxide.⁶⁹⁴

The effect of the basic reagent has been studied in the methylation of phenylacetone. Monomethylation proceeds better with sodium isopropoxide than with sodium ethoxide. Introduction of a second alkyl group is accomplished best with potassium *t*-butoxide. Sodium *t*-amylate allows many alkylations that fail or give poor results when carried out with sodium amide.⁴⁹³ 1,1-Disubstituted 2-tetralones are conveniently prepared by alkylation in the presence of sodium hydride, no monosubstituted products being formed with this reagent.⁴⁹⁶

The temperature of the reaction has been shown to be important. For example, in the alkylation of 2-methylcyclopentyl phenyl ketone, the reaction carried out at the temperature of the refluxing benzene solution gives the desired product; however, the use of boiling xylene leads to O-alkylated products, and boiling toluene gives mixtures.⁶⁶⁸

Diketones have been alkylated by a modified procedure.^{500, 501} The monosodio derivative is prepared in ether by treating the diketone with powdered sodium. It is then allowed to react with the alkyl iodide in acetone or dioxane solution. This scheme has been applied in the prep-

Ch. 10

aration of *n*-butylbenzoylacetone, PhCOCH(*n*-Bu)COCH₃, ethylacetylacetone, CH₃COCH(C₂H₅)COCH₃, and other high-molecular-weight compounds. In a similar manner, acyloin enolates are alkylated with primary halides in ethyl ether or toluene to furnish α, α -dialkyl- α' -bydroxy ketones.⁵⁰²

Alkylation with allyl bromide leads to *olefinic ketones*, e.g., 2-allylcyclohexanone (62%) and α -allylethyl ethyl ketone (56%) from the corresponding ketones.^{286, 503} Desoxybenzoin, C₆H₅CH₂COC₆H₅, and β -diethylaminoethyl chloride, (C₂H₅)₂NCH₂CH₂Cl, combine to form the corresponding *amino ketone*.⁵⁰⁴

199. Interaction of Diazomethane and Carbonyl Compounds

$$RCHO + CH_2N_2 \rightarrow RCOCH_3 + N_2$$

Diazomethane reacts with carbonyl compounds to introduce methylene groups.⁵⁰⁵ In the case of aldehydes, nitrogen is lost and the corresponding epoxide, methyl ketone, or higher homolog of the starting aldehyde is formed, depending on the nature of the R group and catalytic influences. Similarly, ketones yield epoxides and homologous ketones. The latter may react further with additional diazomethane. For these reasons, the reaction may be complicated.

Cyclic ketones react to form the higher homologs; for example, cyclohexanone is converted to cycloheptanone (63%).⁵⁰⁶

An extension of this reaction has been the use of other aliphatic diazoalkanes. Benzaldehyde and the appropriate diazo compound give propiophenone, butyrophenone, and valerophenone in almost quantitative yield.⁵⁰⁷ Furylaldehyde also reacts to form furyl alkyl ketones⁵²⁶

200. Catalytic Hydration of Acetylenic Compounds

$$RC \equiv CH + H_2O \xrightarrow{Catalyst} RCOCH_3$$

This method finds commercial application in the production of acetaldehyde from acetylene. Mercuric salts in the presence of dilute sulfuric acid act as the catalyst. The reaction has been extended to higher alkylacetylenes, which are obtained in about 60% yield from sodium acetylide and alkyl halides. These compounds are readily hydrated in aqueous solutions of acetone, methanol, or acetic acid to give 80-90% yields of the corresponding methyl ketones, for example, methyl butyl, methyl amyl, and methyl hexyl ketones.⁵⁰⁶ Hydration has been accomplished by passing the acetylenic hydrocarbon and steam over a phosphoric acid catalyst at 150-204° and atmospheric pressure.⁵⁰⁹

Acetylenic carbinols (from sodium acetylide and a ketone) are readily hydrated in the presence of mercuric sulfate to give the corresponding by droxy ketones in high yields.⁵¹⁰, ⁵¹¹ β -Keto acids have been prepared by hydration of acetylenic acids.⁵¹² α -Acyloxy ketones, R₂C(OCOCH₃)COCH₃, are made by the action of carboxylic acids on acetylenic carbinols.⁶⁵⁷

201. Dehydration and Rearrangement of a-Diols

$$R_2COHCOHR_2 \xrightarrow{H^+} R_3CCOR + H_2O$$

The classical example of this method is the rearrangement of pinacol to pinacolone (72%).⁵¹³ The reaction is usually brought about by dilute sulfuric acid. A second procedure is the passage of a mixture of the pinacol and steam over silica-phosphoric acid at 275-300°; the yield of pinacolone is 94%.⁵¹⁴ Benzopinacol, $(C_6H_5)_2COHCOH(C_6H_5)_2$, is dehydrated and rearranged by iodine in acetic acid (96%).⁵¹⁵ Under the same conditions, diphenyl-(1-hydroxy-1-cyclopentyl)-carbinol undergoes rearrangement accompanied by ring expansion to form 2, 2-diphenylcyclohexanone (98%).⁵¹⁶

The reaction has been extended to other pinacols; however, their preparation may involve lengthy procedures.⁵¹⁷ Certain benzoins on reduction with metals and acids yield diols which are then converted to desoxybenzoins.⁵¹⁸⁻⁵²⁰ These conversions involve the migration of a hydrogen atom rather than an alkyl group. Similarly, aromatic *keto ethers* and *amino ketones* have been prepared.^{520,521}

A modification of this reaction is the hydrolysis and rearrangement of olefin dibromides.⁵²² The most successful of these conversions is the preparation of methylisopropyl ketone (59%) from trimethylethylene dibromide.⁵²³

202. Decomposition of Glycol Monoalkyl Ethers

$$\frac{\text{RCHBrCO}_{2}C_{2}H_{5}}{65\%} \xrightarrow{\text{NeOC}_{2}H_{5}} \text{RCH}(OC_{2}H_{5})CO_{2}C_{2}H_{5} \xrightarrow{\text{R'MgX}} \text{RCH}(OC_{2}H_{5})COHR'_{2}}{65\%} \xrightarrow{\text{RCH}(OC_{2}H_{5})COHR'_{2}}{H^{+} \downarrow 90\%} \text{RCOCHR'}_{2} \xrightarrow{H^{+}} \text{RC}(OC_{2}H_{5}) = CR'_{2}$$

Ketones of the type RCOCHR'2, where R represents methyl, ethyl, isopropyl, *n*-butyl, *n*-hexyl, or phenyl, and R' represents ethyl, *n*-propyl, *n*-butyl, or phenyl, have been prepared by a series of reactions similar to that used in the preparation of aldehydes (method 167).⁵²⁵

In an analogous manner, the monoethyl ether of dihydroresorcinol reacts with alkylmagnesium halides to form 3-alkyl-2-cyclohexenones.⁴⁷⁵

203. β -Diketones by Acylation of Ketones

The acylation of ketones having reactive methylene groups by esters 501, 541 or anhydrides 542, 543 is a common and convenient method for preparing β -diketones. An ester is used in the presence of a base, and an anhydride with boron trifluoride. From an unsymmetrical ketone two types of ketones result, depending on which a-hydrogen atom reacts. In general, the boron trifluoride method leads to the formation of type I ketones, R'COCH, COCH, R, whereas the basic reagent method favors tvDe II ketones, R'COCHRCOCH, Either sodium amide 544, 549 or sodium hydride 545, 549 is preferred as the basic reagent. Unsymmetrical ketones having only one reactive side (such as acetophenone) respond the same by either method,⁵⁴² Also, symmetrical ketones take the same course by both methods, e.g., acetone to acetylacetone.^{546, 547} Many representative ketones-methyl ethyl, methyl isopropyl, methyl isobutyl, methyl t-butyl, diisobutyl, methyl n-amyl, cyclohexanone, and acetophenone-have been converted to diketones. The acylating agents are varied and include ethyl esters or anhydrides of acetic, propionic, n-butyric, isobutyric, n-valeric, n-caproic, benzoic, anisic, phenylacetic, lauric, and nicotinic acids. Thus, a large number of β -diketones have been prepared in varying yields, mostly in the range of 30-60%.

 β -Diketones are also formed by acylation of the enol esters of ketones with anhydrides in the presence of boron trifluoride.⁶⁷³

$$(RCO)_{2}O + R'C = CHR'' \xrightarrow{BF_{3} \text{ then}} RCOCHR''COR'$$

If the acylating ester is diethyl oxalate, then an α, γ -diketo ester, or a substituted glyoxalate, is formed.⁵⁵⁵⁻⁵⁵⁷ These substances are important intermediates in the synthesis of certain β -keto esters (method 307).

$$\text{RCOCH}_3 + (\text{CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow{\text{NaOC}_2\text{H}_5} \text{RCOCH}_2\text{COCO}_2\text{C}_2\text{H}_5$$

204. α , β -Olefinic Ketones from Acetylenic Carbinols

 $RCH,COH(R')C \equiv CH \xrightarrow{HCO_2H} RCH = C(R')COCH,$

Ethynyl carbinols on heating with formic acid are isomerized to α,β olefinic ketones; for example, isohexylmethylethynylcarbinol is taken to 3,7-dimethyl-3-octen-2-one (48%)²⁶⁴ and 1-ethynyl-1-cyclohexanol to 1acetyl-1-cyclohexene (70%).⁵⁹⁴ Small amounts of unsaturated aldehydes may contaminate the product.

205. γ , δ -Olefinic Ketones from Alkenyl Esters of β -Keto Acids

$$CH_{3}COCH_{2}CO_{2}CH_{2}CH_{2}CH_{2} CH_{2} \xrightarrow{170-250^{\circ}} CH_{3}COCH_{2}CH_{2}CH_{2}CH_{2} + CO_{2}$$

Acetoacetates or benzoylacetates of β , γ -unsaturated alcohols-methallyl alcohol, crotyl alcohol, methylvinylcarbinol, cinnamyl alcohol, etc.on heating at 170-250° evolve carbon dioxide and produce γ , δ -olefinic ketones (23-88%).⁵⁹⁵ The unsaturated acetoacetates are readily prepared by the action of diketene on the corresponding unsaturated alcohols.

206. Cyclopentenones from Lactones

 γ -Methyl- γ -lactones having a methylene group adjacent to the γ -carbon are converted conveniently to 2-alkyl-3-methyl-2-cyclopentenones (30-50%). The method is not applicable, however, to the preparation of 2-cyclopentenone and 3-methyl-2-cyclopentenone. The lactone is simply warmed over phosphorus pentoxide, and the product is distilled from the reaction mixture.⁵⁹⁶

207. β -Halo Ketones from Acyl Chlorides and Olefins

R'COCl + RCH=CHR Catalyst RCHClCHRCOR'

Addition of acyl halides to olefins in the presence of catalytic amounts of aluminum chloride, stannic chloride, or zinc chloride gives β -halo ketones.⁵⁹⁹ An example is the addition of propionyl chloride to ethylene Ch. 10

to form ethyl β -chloroethyl ketone (45%).⁹⁸ Sometimes the addition products are very unstable and undergo spontaneous dehydrohalogenation to olefinic ketones¹⁰¹ (cf. methods 20 and 178).

208. a-Halo Ketones from Alkenyl Esters

 $RCO_2CR' = CH_2 \xrightarrow{Br_3} RCO_2CR'BrCH_2Br \rightarrow RCOBr + R'COCH_2Br$

The dibromide derivatives of alkenyl esters spontaneously cleave in the cold to form α -bromo ketones and acyl halides. In this manner, 1bromo-2-hexanone (67%) and 1-bromo-2-heptanone (80%) are prepared. The alkenyl esters are prepared by the catalytic addition of organic acids to alkylacetylenes (30-35%).⁶⁰¹

209. Hydroxy Ketones from Phenolic Esters (Fries)

An ester of a phenol may be converted to the isomeric o or p-hydroxy ketone, or a mixture of both, by treatment with aluminum chloride. Critical discussions of the reaction have been presented⁶⁰² with respect to the influence of temperature, solvents, ester-reagent ratio, and the structure of the acyl⁶⁰³ and phenoxy groups.⁶⁰⁴ By varying the first three factors, it is often possible to prepare predominantly either of the isomeric ketones. The reaction is exemplified in the preparation of o- and p-propiophenol (35% and 40%, respectively)⁶⁰⁸ and 2-hydroxy-4,6-dimethylacetophenone (80%).⁶⁰⁶

210. a-Keto Acids from Azlactones

Hydrolysis of certain unsaturated azlactones with aqueous sodium hydroxide followed by treatment with dilute hydrochloric acid yields α -keto acids. The azlactones are readily prepared from substituted benzaldehydes and hippuric acid.^{608,609} In this manner, phenylpyruvic acid (72% over-all)⁶¹⁰ and *m*-chlorophenylpyruvic acid (52% over-all)⁶¹¹ have been prepared. Other applications have been described.^{608,612,613}

211. β -Keto Esters by Condensation of Esters

$$2RCH_2CO_2C_2H_5 \xrightarrow{NaOC_2H_5} RCH_2COCHRCO_2C_2H_5 + C_2H_5OH$$

The acetoacetic ester condensation consists of a base-catalyzed reaction of two esters (at least one having an α -hydrogen atom) to form a β -keto ester. The scope, limitations, experimental procedures, and applications have been reviewed.^{614, 615, 626}

Variations of the reaction include condensation of the same ester, a mixed ester condensation, and ester cyclizations. Improvement in yield of the self-condensation reaction is obtained by removing the alcohol produced, the reaction being forced to completion. In this manner, methyl esters⁶¹⁶ catalyzed by sodium methoxide and ethyl esters¹⁴⁸ catalyzed by sodium ethoxide are self-condensed (50-85%). Ethyl isobutyrate and ethyl isovalerate do not respond to sodium alkoxide catalysis; however, these compounds are readily self-condensed with the aid of diisopropylaminomagne sium bromide.⁶²⁶ Another promising reagent is sodium hydride.⁵⁴⁵ Mixed ester condensations in which only one ester has an ahydrogen atom are satisfactory. These are less complicated than a condensation of two different esters each having reactive a-hydrogens. Thus methyl benzoate condensed under "forcing" conditions with methyl acetate, propionate, or butyrate forms the a-alkylbenzoylacetates, C₆H₈COCHRCO₂CH₃, in 45%, 61%, and 41% yields, respectively.⁶¹⁶ Similarly, condensation between ethyl oxalate and these esters produces a-ethoxalyl esters. 295,617

 $\operatorname{RCH}_2\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5 + (\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)_2 \xrightarrow{\operatorname{NaOC}_2\operatorname{H}_5} \operatorname{RCH}(\operatorname{COCO}_2\operatorname{C}_2\operatorname{H}_5)\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5 + \operatorname{C}_2\operatorname{H}_5\operatorname{OH}$

An example is the synthesis of ethyl α -ethoxalylpropionate (R = CH₃) in 70% yield.⁶¹⁸ Ethyl oxalate and ethyl succinate form ethyl α -ethoxalylsuccinate (83%).⁶²⁴ In a mixed ester condensation, the use of a more reactive ester, such as the phenyl or biphenyl ester, helps to prevent side reactions.^{619, 620} Simple heterocyclic esters, namely, ethyl nicotinate and ethyl 8-quinolinecarboxylate, undergo the mixed ester condensation in good yields.^{280, 281, 630} The internal condensation of ethyl adipate to give 2-carbethoxycyclopentanone (Dieckmann reaction) is an example of cyclization (81%).⁶²⁷ 212. β -Keto Esters by Selective Cleavage of α , α -Diacyl Esters

$$CH_{3}COCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{NaOC_{2}H_{5};} RCOCH(COCH_{3})CO_{2}C_{2}H_{5} \xrightarrow{NH_{3}}$$

 $RCOCH_2CO_2C_2H_5 + CH_3CONH_2$

The acylation of simple β -keto esters with acyl chlorides to form diacylacetic esters proceeds readily; however, the subsequent cleavage for removing the smaller acyl group is complicated in that the original keto ester may be regenerated. The optimum conditions for the conversion of benzoylacetoacetic ester to benzoylacetic ester with ammonium chloride and ammonium hydroxide have been studied.⁶³¹ The over-all synthesis of this ester has been described (57%).⁶³² An improved procedure for the ammonolysis of ethyl α -acetyl- β -oxocaproate using gaseous ammonia has been described.³⁸⁶ By a similar process, a series of alicyclic β keto esters has been prepared in over-all yields of 20-40%.⁶³³

Variations of the above procedures are sometimes employed. β -Keto esters may be obtained by alcoholysis of the intermediate diacyl esters by sodium methoxide in methanol,⁶³⁴ as in the preparation of methyl β oxocaprylate (88%).⁶³⁵ The starting β -keto ester can be converted to the new β -keto ester in a single step. Thus, in the synthesis of ethyl benzoylacetate (55%), ethyl acetoacetate and ethyl benzoate are converted directly to this keto ester by distilling the lower-boiling product, ethyl acetate, thereby forcing the reaction to completion.⁶³⁶

 $CH_{3}COCH_{2}CO_{2}C_{2}H_{5} + C_{6}H_{5}CO_{2}C_{2}H_{5} \xrightarrow{\text{NaOCH}_{3}} C_{6}H_{5}COCH_{2}CO_{2}C_{2}H_{5} + C_{6}H_{5}COCH_{2}COCH_{2}CO_{2}C_{2}H_{5} + C_{6}H_{5}COCH_{2}COCH$

Finally, the sodium enolate of the new β -keto ester may be alkylated directly to give β -keto esters of the type RCOCHRCO₂C₂H₅.⁶³⁷

213. β -Keto Esters by Alkylation of β -Keto Esters

$$\text{RCOCH}_2\text{CO}_2\text{C}_2\text{H}_5 \xrightarrow[\mathbf{R}]{\text{NaOC}_2\text{H}_5;} \text{RCOCHR'CO}_2\text{C}_2\text{H}_5$$

This reaction has been considered above (method 184) with respect to ease of mono- and di-alkylation. A large number of condensing agents have been compared, including sodium and potassium ethoxide, sodium in dioxane or toluene, sodium hydride, sodium amide, and sodium or potassium *t*-butoxide.⁶⁴² In general, sodium ethoxide is recommended in the alkylation of acetoacetic ester with primary halides (73%); potassium ethoxide with branched halides, such as isobutyl and *s*-butyl halides (61% and 55%); and potassium t-butoxide for introducing a second alkyl group in α -substituted acetoacetic esters (60-80%). The other reagents are successful in certain cases. Alkylation of 2-carbethoxycyclopentanone with methyl, ethyl, or isopropyl iodides gives the corresponding β -keto esters in 82%, 74%, and 59% yields, respectively.^{268,643} Other examples are found in the preparation of ethyl monomethyl- (71%) and dimethylacetoacetic esters (54%)⁶⁴⁴ and ethyl *n*-butylacetoacetate (72%).⁶⁴⁵ Alkylations by ethyl benzenesulfonate,⁶²³ isopropyl acetate or isopropyl alcohol in the presence of boron trifluoride,^{646,647} and dimethyl sulfate ⁶⁴⁸ have proved more successful than those by the corresponding alkyl halides.

 β -Keto esters containing a double bond,²⁸⁴⁻²⁸⁷ an alkoxyl group,^{291, 292} or an amino group ^{306,307} are formed by alkylating acetoacetic ester with a substituted alkyl halide.

214. β -Keto Esters from Ethyl t-Butyl Acylmalonic Esters

 $C_{2}H_{5}OM_{g}CH(CO_{2}C_{2}H_{5})CO_{2}C(CH_{3})_{3} \xrightarrow{\text{RCOC1}} \text{RCOCH}(CO_{2}C_{2}H_{5})CO_{2}C(CH_{3})_{3}$ $\longrightarrow \text{RCOCH}_{2}CO_{2}C_{2}H_{5} + CH_{2} = C(CH_{3})_{2} + CO_{2}$

Olefin elimination and decarboxylation of ethyl *t*-butyl acylmalonates proceeds easily on treatment with toluenesulfonic acid to form β -keto esters of the type RCOCH₂CO₂C₂H₅.^{650, 651} By this procedure, acyl acetates where R is ethyl (63%), cyclohexyl (65%), 2-furyl (70%), benzyl (46%), or propenyl (35%) have been prepared. The limiting factor in this excellent method is the availability of ethyl *t*-butyl malonate; its synthesis has been described.⁶⁵¹

A reaction similar to the above involves the acylation of malonic ester through its magnesium enolate. Thus, the reaction of propionyl chloride with the ester enolate leads to diethyl propionylmalonate. Thermal decomposition of this compound with β -naphthalenesulfonic acid yields ethyl propionylacetate (57%). This modification appears to be general in that it has been extended to the use of aliphatic, aromatic, and carbalkoxy acyl chlorides.⁶⁵²

215. β -Keto Esters by Acylation of Ester Enolates

 $RCOCI + Na^+[CR'_2CO_2C_2H_5]^{\rightarrow} \rightarrow RCOCR'_2CO_2C_2H_5 + NaCI$

The acylation of the sodium enolates of esters (prepared by sodium triphenylmethide) with acyl chlorides gives the corresponding α , α -disubstituted β -keto esters, RCOCR'_2CO_2C_2H_5. The synthesis is direct, and the product is free from monoalkylation products usually encountered

by the dialkylation of β -keto esters. By this procedure, ethyl dimethylacetoacetate (51%), ethyl *n*-butyryldimethylacetate (58%), and ethyl benzoyldimethylacetate (65%) have been prepared.^{523,653} In a similar manner, the acylation of malonic ester is performed through its magnesium enolate.^{652,653,655}

216. β -Keto Nitriles by Acylation of Nitriles

 $RCH_2CN + R'CO_2C_2H_5 \xrightarrow{Base} R'COCHRCN + C_2H_5OH$

In the presence of sodium ethoxide, nitriles having reactive α -methylene groups may be acylated with esters to form β -keto nitriles. The method is general and is illustrated by the reaction of alkyl cyanides, where R is C₁ to *n*-C₄, with ethyl benzoate to form the corresponding alkylbenzoylacetonitriles in 53-60% yield.⁶³⁹ Aliphatic esters also react; for example, phenylacetonitrile with ethyl acetate gives α -phenylacetoacetonitrile, C₆H₃CH(CN)COCH₃ (64%).⁶⁶⁰ In the case of the higher-boiling nitriles, the alcohol product is removed by distillation, thereby increasing the yield and decreasing the reaction time.⁶⁶¹

The method has been extended to the preparation of numerous acylacetonitriles in the benzene, naphthalene, furan, and the thiophene series. Modifications of the procedure including the substitution of commercial sodium methoxide for sodium ethoxide and the use of an inert solvent to facilitate stirring have been employed.⁶⁶²

If the acylating ester is capable of undergoing self-condensation in the presence of sodium ethoxide, sodium triphenylmethide is substituted for the latter. An example is the reaction of acetonitrile with ethyl *n*-butyrate to give *n*-butyrylacetonitrile (52%).⁶⁶³

217. Hydrogenolysis of 1, 3-Diketones⁴⁸⁷

$$CH_{3}COCH_{2}COCH_{2}CH(CH_{3})_{2} \xrightarrow{H_{2}, Catalyst} CH_{3}CH_{2}CH_{2}COCH_{2}CH(CH_{3})_{2}$$

218. Acid Treatment of Acinitroparaffins 540

$$\begin{array}{c} R_{2}CHNO_{2} \xrightarrow{\text{NaOH}} R_{2}C = N - ONa \xrightarrow{H^{+}} R_{2}CO \\ \downarrow & & \\ O \end{array}$$

219. Pyrolysis of Glycidic Acids 341, 342, 367

$$R_{2}C - CR'CO_{2}H \xrightarrow{\text{He at}} R_{2}CHCOR'$$

220. Rearrangement of a-Bromo Azides 83, 343, 344

 $R_2CBrCON_3 \xrightarrow{\text{Heat}} R_2CBrNCO \xrightarrow{H_2O} (R_2CBrNH_2) \xrightarrow{H_2O} R_2CO$

Where R equals ethyl, *n*-butyl, or cyclopentyl, over-all yields of 35%, 77%, and 60%, respectively, have been obtained.

221. Degradation of Disubstituted Glycolic Acids 345

$$R_2COHCO_2H \xrightarrow{Pb(OAc)_4} R_2CO + H_2O + CO$$

222. Hydrolysis of gem-Dihalides 460-463 (cf. method 151)

 $R_2CX_2 \xrightarrow{H_2O} R_2CO$

223. Isomerization of Vinyl Carbinols 528

$$CH_{2} = CHCHO \xrightarrow{RMgX} CH_{2} = CHCHOHR \xrightarrow{Cu} CH_{3}CH_{2}COR$$

224. Condensation of Furans with Unsaturated Ketones

$$\begin{array}{c} HC - CH \\ \parallel & \parallel \\ CH_3C - CH \\ 0 \end{array} + H_2C = CHCOCH_2R \xrightarrow{H^+} & \parallel C - CH \\ H^+ & \parallel & \parallel \\ CH_3C - CH \\ O \end{array}$$

Furans and unsaturated ketones undergo a condensation similar to the Diels-Alder type (cf. method 34) to give furyl-substituted ketones; for example, α -methylfuran and methyl vinyl ketone react under mild acidic conditions to yield 5-methylfurfurylacetone (65%).⁵²⁹

225. Condensation of Anhydrides 533

$$2(\text{RCH}_2\text{CO})_2\text{O} \xrightarrow{\text{BF}_1} (\text{RCH}_2\text{COCHRCO})_2\text{O} \xrightarrow{\text{H}_2\text{O}} \text{RCH}_2\text{COCH}_2\text{F}$$

226. Acylation of Certain Heterocyclic Compounds 534

$$\left(\bigcap_{N} CH_{3}^{+} RCO_{2}R' \xrightarrow{KNH_{2}} \left(\bigcap_{N} CH_{2}COR \right) \right)$$

Ch. 10

227. Addition of Aldehydes to Olefins⁵³⁶

$$RCHO + R'CH = CH_2 \xrightarrow{\text{Diacetyl}} RCOCH_2CH_2R'$$

Typical compounds prepared include 4-decanone (41%), 4-dodecanone (57%), and 7-pentadecanone (75%).

228. Interaction of Hydriodic Acid and Diazo Ketones 537, 538

$$RCOCHN_2 + HI \rightarrow RCOCH_3 + N_2 + I_2$$

229. y-Diketones from Substituted Furans 589-591

$$\begin{array}{c} \text{HC} \longrightarrow \text{CH} \\ \parallel & \parallel \\ \text{CH}_{3}\text{C} \\ \text{CH}_{3}\text{C} \\ O \end{array} \xrightarrow{\text{CH}_{3}\text{O}, \text{H}_{2}\text{SO}_{4}} \text{CH}_{3}\text{COCH}_{2}\text{CH}_{2}\text{CO(CH}_{2})_{5}\text{CH}_{3} \\ \end{array}$$

230. a-Diketones by Oxidation of Aryl Acetylenes ⁸⁹²

$$\operatorname{ArC} \equiv \operatorname{CAr} \xrightarrow{\operatorname{CrO_3} - \operatorname{CH_3} \operatorname{CO_3} H}_{60\%} \operatorname{ArCOCOAr}$$

231. γ -Diketones from Ketones ⁵⁹³

232. Olefinic Ketones from Hydrocarbons and Carbon Monoxide 597

$$3CH_3CH_2CH_3 + CO \xrightarrow{A1C1_3, 125 \text{ atm., } 12 \text{ hr.}} (CH_3)_2CH = CHCH_2COCH(CH_3)_2$$

233. α, β-Olefinic Ketones from Diketene and Aldehydes⁹⁰

$$CH_{2} = C - CH_{2} \xrightarrow{R CHO} CH_{2} = C - C = CHR \xrightarrow{H_{2}O} CH_{3}COC = CHR \xrightarrow{-CO_{3}} \\ | | | | | | | | | | | \\ O - CO O - CO CO_{2}H$$

CH,COCH = CHR

351

234. β -Keto Esters by the Reformatsky Reaction 658,666

$$C_{6}H_{5}CO_{2}C_{6}H_{5} + (CH_{3})_{2}CB_{1}CO_{2}C_{2}H_{5} \xrightarrow{Z_{n}} C_{6}H_{5}COC(CH_{3})_{2}CO_{2}C_{2}H_{5}$$

235. Hydrolysis of β -Iminonitriles⁶⁸²

ArCN + CH₃CN
$$\xrightarrow{\text{NaNH}_2}$$
 ArC(=NH)CH₂CN $\xrightarrow{\text{H}_2\text{O}}$ ArCOCH₂CN
KETONES

Ch. 10

TABLE 32. MONOKETONES

353

TABLE 32 (continued)

C _n	Compound	Method	(%)	Chapterrer.	B.p./mm., $n_{\rm D}$, (M.p.), De
	A	liphatic I	Keton e	s (continued)
C,	Methyl neopentyl ketone	182	56	10 ²³⁵	125/760, 1.4018 ²⁵
		222	96	10 ⁴⁶³	122, 100Dn
	Methyl t-amyl ketone	179	36	10164	130/733, 1.4100, 112Dn
	3,4-Dimethyl-2-pentanone	184	36†	10 252	138, 1.4094*, 113Se*
	Ethyl n-butyl ketone	179	70	10 ¹⁵⁸	148/756, 103Se
		181	89	10 ²²⁶	148, 101Se
		186	46	10 ³⁵	146/767, 1.4092*
		195	48 †	10 ⁴⁵³	
	Ethyl isobutyl ketone	189	70	10 ⁴⁰⁵	135/735, 1.407*, 152Se*
		195	48 †	10 453	
	Ethyl s-butyl ketone	179	63	10 ¹⁶⁸	78Dn
		184	78	10 ²⁶²	136/760, 1.402*, 137Se*
	Ethyl t-butyl ketone	190	78	10 427	125/729, 1.4052, 144Dn
	Di- <i>n</i> -propyl ketone	179	70	10 ¹⁵⁸	144/756, 132Se
		186	50	10324	145/767, 1.4069, 134Se
		225	60	10 533	145
	n-Propyl isopropyl ke-	184	79	10262	136/760, 1.4075, 119Se
	tone	189	60	10 402	132, 119Se
	Diisopropyl ketone	179	74	10 ¹⁶⁵	125/742, 1.4001, 98Dn•
		184	78	10 ²⁶²	125/760, 160Se
		187	58	10 ³⁵⁶	125, 160Se
C,	Methyl n-hexyl ketone	179	96	10 ¹⁶⁶	173, 1.4154
		181	95	10 ²²⁶	172, 121Se
		184	70	10263	172, 122Se*
		200	91	10 ⁵⁰⁸	170
	Methyl isohexyl ketone	184	47 †	10 264	171, 1.4146
		184	77	10 ²⁵⁴	164/746, 154Se
		••••	••••	10 455	164/757, 1.4144 ¹⁹ , 77Dn
	3-Methyl-2-heptanone	179	68	10 ¹⁶⁷	162/760, 1.415, 82Se
	3,4-Dimethyl-2-hexanone	191	20	10 ⁴³⁹	158, 120Se
		196	80	10472	155, 118Se
		196	90	10 468	158, 126Se
	4-Ethyl-2-hexanone	195	48†	10 453	
	3-Methyl-3-ethyl-2-	189	48	10 ¹⁶⁴	79/20, 1.4206*, 74Dn
	Ethyl isoamyl ketone	189	40	10 410	163, 132Se
		196	92	10 472	160, 132Se
	5-Methyl-3-heptanone	196	94	10 ⁴⁶⁷	161
	Ethyl neopentyl ketone	189	51	10 411	92/150, 1.4160*, 136Dn
	n-Propyl n-butyl ketone	201	25	10527	170, 96Se
	<i>n</i> -Propyl isobutyl ketone	217	42	10 ⁴⁸⁷	150/750, 124Se
	n-Propyl t-butyl ketone	179	41	10 ¹⁶⁸	124Dn
		190	67	10 427	145/738, 1.4107, 116Dn
	Isopropyl s-butyl ketone	179	68	10 ¹⁵⁹	65/50, 1.4080, 71Dn
		189	70	10 41 4	145. 1.4059

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alip	hatic K	Letones	
c,	Acetone (purification only)	186	61	10 ³¹⁷ 10 ⁶⁶⁷	56, 1.3592*, 1875e* 56*, 1.3592*, 187Se*
C₄	Methyl ethyl ketone	181	79	10 ²²⁶	82, 1.3791*, 135Se*
C5	Methyl <i>n</i> -propyl ketone	179	74	10 ¹⁵⁷	102
		184	70	10 254	102/747, 110Se
		186	44	10324	102/756, 1.3902, 110Se
	Methyl isopropyl ketone	201	59	10523	94, 1.3879*, 113Se*
	Diethyl ketone	179	57	10 157	103, 156Dn*
	·	186	59	10 ³²⁴	102/751, 1.3922, 139Se
C 6	Methyl n-butyl ketone	179	64	10160	127
-		179	80	10 161	127
		182	60	10 233	124/738, 1,4002, 107Dn
		184	50 t	10 ²⁵⁶	128
		188	56†	10 ³⁹²	126/760, 121Se
		188	83	10 389	
		189	74	10 ⁴⁰²	127, 125Se
		200	80	10 ⁵⁰⁸	127
	Methyl isobutyl ketone	184	20 †	10 ²⁵⁶	119, 1.3956*, 135Se*, 95Dn*
		188	80	10 ³⁸⁹	119
		196	100	10 465	116/740
	Methyl s-butyl ketone	179	81	10 ^{1 63}	116/734, 1.4002
		188	78 †	10 ³⁹⁰	118
	Methyl 1-butyl ketone	188	78	10 ^{3 89}	106
		189	40	10 409	106, 158Se*
		190	52	10 427	105/746, 1.3960, 127Dn, 80-O
		201	72	10513	107
		201	94	10 514	106, 1.4019 ²⁵ , 124Dn
	Ethyl <i>n</i> -propyl ketone	179	85	10162	123, 130Dn*
		181	86	10226	126, 113Se
		186	62	10 324	125/760, 1.4007, 113Se
		190	45	10 433	124
		223	57	10 528	124
с,	Methyl <i>n</i> -amyl keton e	179	70	10 ¹⁵⁸	150/750, 123Se
		179	83	10 ¹⁶⁸	1.4073 ^{25 *} , 74Dn
		184	61 *	10 ²⁵⁶	151/750, 127Se*

10²⁵⁷

10 ⁵⁰⁶

10²⁵⁴

10 **451**

10 **256**

10²⁶¹

10 437

10²⁵¹

10²⁵⁴

150

149

144

142

142/746, 143Se

139, 1.4057²⁵, 120Se

139/746, 1.4073*, 99Se

139/762, 128Se*

137, 70Se*

184

200

184

194

184

184

191

184

184

Methyl isoamyl ketone

4-Methyl-2-hexanone

3-Methyl-2-hexanone

3-Ethyl-2-pentanone

95

87

60

50

30 t

52

75

30 t

45

KETONES

Ch. 10

TABLE 32 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^t ef.	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphatic	Ketone	s (continued	0
C ₈	Isopropyl t-butyl ketone	190	20	10 427	135/744, 1.4065, 144-Ox
		198	54	10 ⁴⁹⁷	135, 132Se*
C,	Methyl <i>n</i> -heptyl ketone	181	83	10226	118Se
		185	93	10 313	80/10, 118Se
		186	54	10 326	192/743, 120Se*
	4-Methyl-2-octanone	182	69	10 233	94/40, 70Se
	3-Methyl-3-ethyl-2-	189	47	10 420	110/86, 1.4222 ³⁰ , 81Dn
	hexanone				
	Ethyl <i>n</i> -hexyl ketone	186	41	10 ³⁵	187/751, 112Se*
		195	48 †	10 453	
	5-Ethyl-3-heptanone	187	40	10 357	173, 134Se
		195	48 †	10 453	
	Di-n-butyl ketone	184	72	10 259	38/22
		186	99	10320	93/24, 90Se*
	n-Butyl isobutyl ketone	188	20	10396	168, 132Se
	n-Butyl t-butyl ketone	190	68	10417	166/745, 1.4167, 145Se
		198	38	10498	166/745
	Diisobutyl ketone	196	100	10 409	56/11, 122Se
	lso butyl s-butyl ketone	184	75	10***	167/760, 133Se
		188	21	10399	169, 132Se
	Isobutyl t-butyl ketone	198	35	10 498	158, 145Se*
	ketone	193	> >	10 ***	107/180, 129Dn
	Isopropyl <i>t</i> -amyl ketone	189	87	10 419	87/35, 1.4214
	Di-t-butyl ketone	179	81	10 249	154, 1.4188 ²²
		185	81	10174	154
		189	80	10 *16	153, 1.4392
		198	52	10 ¹⁶⁵	150/740, 1.4194
C 10	Methyl <i>n</i> -octyl ketone	196	92	10 473	142/100, (14), 126Se
C	sym-Tetraethylacetone	225	57	10 533	104/30
••	Di-n-amyl ketone	225	64	10 533	125/35
	-	184	81	10 ²⁵⁹	106/13, (15)
		184	72†	10 ⁶⁹¹	100/15
		186	6 9	10 ³⁵	223/760
C 12	Methyl <i>n</i> -decyl ketone	185	94	10 ³¹³	107/5, 123Se
Cu	Di-n-hexyl ketone	184	82	10 ²⁵⁹	264, (30)
	Methyl n-undecyl ketone	185	97	10 ³¹³	(28), 117Se
C 15	Di-n-heptyl ketone	184	93	10 ²⁵⁹	178, (42), 120-Ox*
C 17	Di-n-octyl ketone	184	93	10 ^{2 59}	(53), 112-Ox*
C 19	Methyl n-heptadecyl	185	96	10 ³¹³	(56), 77-Ox
	ketone				
	Di-n-nonyl ketone	184	95	10 ²⁵⁹	(59)
C 21	Di-n-decyl ketone	184	90	10265	(64)

TABLE 32. MONOKETONES

TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphatic	Keton	es (continue	d)
C 23	Di-n-undecyl ketone	184	98	10259	(69), 40- Ox*
	(laurone)	184	- 55+	10 691	(69)
		1 8 6	93	10 321	(69)
С 2 7	Di -n- trid ecy l ketone (myristone)	184	97	10 ²⁵⁹	(79), 51-O x *
C 33	Di-n-heptadecyl ketone (stearone)	186	95	10 328	(89), 6 3-0x * .
		Alio	yclic :	Ketones	
C.	Cyclobutanone	182	91	10237	100, 1.4189 ²⁸ , 146Dn
C.	Methyl cyclopropyl	198	83	10694	111. 1.4226 ²⁵
- 3	ketone				,
	Cyclopentanone	186	80	10 ³²⁷	131, 1.4370, 203Se*
C 6	Methyl cyclobutyl ketone	186	60	10 332	137/767, 149Se
		189	66	10 423	136, 1.4283 ²⁸ , 149Se
	2-Methylcyclopentanone	184	80	10 ²⁶⁷	140, 182Se
	1	184	56†	10 266	140/758
	3-Methylcyclopentanone	186	76	10 ³³⁸	145/755, 1.4329, 185Se
	Cycloh exanon e	179	85	10 ¹⁷⁶	155, 160Dn*
		181	60	10225	156, 165Se
С,	Methyl cyclopentyl ketone	179	54†	10 ¹⁷⁷	155, 143Se
	3,3-Dimethyl-1-cyclo- pentanone	1 8 6	30	10 ³³⁴	153/748, 178Se
	1-Ethylcyclopentanone	184	64	10 ²⁶⁸	161/755, 189Se
	2-Methylcýclohexanone	179	85	10 ¹⁶⁹	165, 1.4487, 191Se
	3-Methyl cycloh exanone	179	90	10170	65/30
		179	78	10 ¹⁶⁹	169, 1.4463, 182Se
		179	88	10 ⁶⁷⁵	64/20, 1.4460
		196	100	10 ⁴⁷⁵	93/15, 1.4446, 185Se
	4-Methylcyclohexanone	179	74	1017	168, 1.4448, 193Se
		179	70	10 ¹⁶⁹	172, 1.4462, 196Se
		179	70	10172	170
	Cycloh <i>e</i> ptanon <i>e</i>	186	40	10333	66/15, 163Se
		199	63	10 ⁵⁰⁶	182
Ca	2-Isopropylcyclo- pentanone	196	88	10 ¹⁷⁸	174, 1.4395 ²⁹ , 202Se
	2-Methyl-5-ethylcyclo- pentanone	184	88	10 ²⁶⁹	165/750
	Methyl cyclohexyl ketone	179	85	10 ¹⁶³	67/12, 1.4514
		185	66†	10 ³¹²	65/12
	2-Ethyl cycloh exanon e	179	8 6	10 ⁶⁷⁵	76/20, 1.4522
		184	74	10271	74/35, 162Dn
		192	41	10 ***	42/2, 1.4530 ¹⁶ , 162Se
		198	43	10 493	67/12, 1.4543 ¹⁵ , 163Se

KETONES

Ch. 10

TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alicycli	c Ketor	nes (continu	ed)
C ₈	3-Ethylcyclohexanone	179	84	10171	192, 1.4511, 182Se
		196	100	10 ⁴⁷⁵	41/0.8, 1.4537, 175Se
	2,2-Dimethylcyclohex-	198	30	10 ***	170/761, 1.4482, 201Se
	anone	198	26†	10 493	171/760, 1.4499 ¹⁸ , 193Se
	2,4-Dimethylcyclohex- anone	179	79	10 ¹⁷⁸	176, 1.4430 ²⁵ , 200Se
	2,6-Dimethylcyclohex-	179	93	10 ⁶⁷⁵	69/20, 1.4470
	anone	179	49	10 ¹⁷⁹	174, 1.4500
		184	91	10 ²⁷⁰	58/10
	3,4 Dimethylcyclohex- anone	179	93	10 ⁶⁷⁵	81/20, 1.4520
	3,5-Dimethylcyclohex-	179	92	10 ⁶⁷⁵	75/20, 1.4434
	anone	196	78	10 ⁴⁷⁴	182/750, 1.4427, 201Se
Ċ,	a-Methyl-a-cyclopentyl- acetone	184	69	10272	79/17, 1.4470, 98Se
•	2, 2, 5, 5-Tetramethylcy- clopentanone	198	35	10 ⁴⁹³	155/760, 1.4280
	2-n-Propylcyclohex- anone	192	30	10 ***	88/17, 120Se
	3-n-Propylcyclohex- anone	196	100	10475	42/0.7, 1.4530, 169Se
	3-Isopropylcyclohex- anone	196	100	10 475	51/1, 1.4540, 195Se
	4-n-Propylcyclohez- mone	179	82	10 ¹⁸⁰	212/740, 1.4514 ¹⁵ , 180Se
	4-Isopropylcyclohex- anone	179	82	10 ¹⁸¹	91/13, 1.4560, 188Se
	3-Methyl-5-ethylcyclo- hexanone	196	94	10474	205/747, 1.4452
	2,2,6 Trimethylcyclohex- anone	198	27	10 ⁴⁹¹	179/767, 1.4480, 209Se, 141Dm
C 10	2, 2, 6, 6-Tetramethylcyclo- hexanone	198	26	10 492	184/772, 1.4473, (15)
	cis-a-Decalone	180	80	10 ⁶⁹³	116/18, 1.4939, 220dSe
	2-Decalone	179	94	10182	114/15
с	Dicyclopentyl ketone	220	60	10344	112/12 1625-
- 11	1-Methyl-2-decalone	170	90 90	10185	107/7
C 12	4-Cyclohexylcyclohex- anone	179	87	10 ¹⁸⁴	107/7 100/0.1, (31), 216Se
		Aron	natic K	etones	
C.	Acetophenone	178	83	10 *	88/16. (20)
-	-	178	86	1012	(19), 60-Ox*
		183	63	10240	
		187	70	10 5 53	205/760, 1,541, 199Se

TABLE 32. MONOKETONES

TABLE 32 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromati	c Keto	nes (continue	ed)
C,	Acetophenone (con-	188	75	10 389	202
-	tinued)	188	75†	10 392	104/31, 199Se
		189	85	10 402	91/16, 203Se
с.	Methyl benzyl ketone	178	32	10 ³³	114/22, 188Se
-,		184	86	10 ²⁷³	112/24
		185	71†	10 312	98/13, 190Se
		186	65	10 319	120/22
		188	52†	10 ³⁹⁰	
		190	65	10 434	125/50, 153Dn
		195	77	10 679	216
	Phenyl ethyl ketone	178	58	10 ³⁵	215/763
		178	84	10 ³⁴	220, 189Dn*
		187	83	10 ³⁵⁴	106/17, 1.5270, 173Se
		189	81†	10 ⁴⁰¹	103/16, 179Se
	o-Methylacetophenone	179	60 t	10185	105/20, 203Se
		184	35	10274	95/15, 210Se
		189	60	10 413	108/25
		189	85	10 412	94/13, 206Se
	<i>m</i> -Methyl acetophenone	189	83	10 402	108/19, 203Se
	p-Methylacetophenone	178	88	10 ²⁸	108/18, 1.5348, 88-Ox
		178	89	10 ⁶	93/7, 87-Ox*
		178	93	1012	227/764
		179	50 t	10 ¹⁸⁵	109/12, 197Se
		189	84	10 ⁴⁰²	138/13, 198Se
	1-Indanone (a-hydrin-	178	55	1074	(41)
	done)	178	84	10 76	120/13, 146-Ox*
		178	93	10 77	(38)
		••••	60	10 ⁷⁸	126/17, (41), 233Se*
	2-Indanon e	201	75	10 ⁷⁶	(57), 153-Ox
2 10	Phenyl <i>n</i> -propyl ketone	178	65	10 ³⁶	115/17
		187	82	10354	123/20, 1.5203
	Phenyl isopropyl ketone	179	75	10186	••••
		184	81	10262	102/15, 181Se•
		188	72†	10392	217/760, 57-Ox
	Ethyl benzyl ketone	195	68	10679	102/10
	Ben zylacetone	184	35t	10 ²⁷⁶	110/7, 142Se
	-	184	88	10 ²⁷⁵	124/16
		184	97	10 ²⁵³	
		196	63	10 476	235, 87-Ox*
		196	67	10 477	236/748, 142Se
		196	96	10 ⁴⁶⁸	133/15
	3-Phenyl-2-butanone	198	74	10 ⁴⁹⁹	107/22, 1.5092
	-	187	28	10338	78/1.5. 1.5088 ²⁵ , 158Se

K

358

KETONES

Ch. 10

TABLE 32 (continued)

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n_D^t , (M.p.), Deriv.
		Aromatic	Ketor	es (continue	ed)
C 10	p-Methylpropiophenone	178	86	106	106/8
	o-Ethylacetophenone	186	74	10 ³³⁷	108/18, 180Se
		187	62	10 ³³⁶	118/29, 1.5249
	<i>m</i> -Ethylacetophenone	183	50	10 ²³⁶	116/14, 1.5232 ²⁵
	p-Ethylacetophenone	178	98	104	117/13, 1.5275 ²⁵
		186	38†	10 ³³⁶	125/20, 1.5298
	2,4-Dimethylaceto-	178	48	10 ⁸	97/4, 1.5381, 234Se*
	phenone	178	54	107	113/18, 64-Ox*
		178	74	10 ⁸	94/5, 1.5340, 187Se*
	2,5 Dimethylaceto-	178	68	10 ⁸	94/8, 1.5291, 169Se*
	phenone	186	69	10 ³³⁶	127/31, 1.5306
	3,4-Dimethylaceto-	186	58	10 ³³⁶	132/19, 1.5400
·	3.5-Dimethylaceto-	187	63	10336	129/22 1.527625
	phenone	107	05		12// 22, 11/2/0
	a-Tetralone	178	91	1017	170/49
		178	91 t	1079	107/2 102-0x
		178	92	1024	123/8, 217Se
		183	56	10241	124/9
	β -Tetralone	181	42	10485	121-132/8, 1 5555 ²⁵ (18)
		197	40	10463	194Se
		197	56	10 486	131/11, 88-Ox*
C 11	Phenyl <i>n</i> -butyl ketone	179	93	10 ¹⁸⁶	
		I87	83	10 ³⁵⁴	141/24, 1.5146, 166Se*
		195	50	10 ⁶⁷⁹	107/10
	3-Phenyl-2-pentanone	198	55	10 ***	110/18, 1.5051, 191Se
	4-Phenyl-2-pentanone	178	39	10 ⁵³⁰	115/13, 1.5124, 137Se
	5-Phenyl-2-pentanone	184	25†	10 ²⁷⁶	122/6, 130Se
	Phenyl isobutyl ketone	178	62	10 ³⁶	235, 210Se*
	Phenyl <i>s</i> -butyl keton e	184	69	10 ²⁶²	109/10
	Phenyl <i>t</i> -butyl ketone	179	64	10 ¹⁸⁷	108/16, 150Se*
		189	67	10 417	84/3, 1.5102, 195Dn
		198	77	10 ¹⁸⁷	104/14, 166-Ox
	5-Phenyl-3-pentanone	196	82	10 ⁴⁷⁹	244/760, 1.5125, 80Se
	Pi valophenon e	187	82	10 ³⁵⁵	224/750, 1.5082
	3-Methyl-3-phenyl-2-	187	61	10 ^{3 58}	77/15, 1.5078 ²⁵ , 186Se
	butanone	198	50	10 ⁴⁹⁹	99/12, 1.5083, 186Se
	3-Methyl-4-phenyl-2-		65	10 ⁶⁸¹	106/9, 1.5065 ¹⁸ , 114Se
	butanone	196	83	10 479	130/17, 1.5090 ¹⁹ , 112Se
	2,4,5-Trimethylaceto-	178	75	10 37	124/5, 204Se*
	ph en on e	178	80	107	123/10, 86-Ox*
	2,4,6-Trimethylaceto-	178	72	107	123/18
	phenone	178	83	10 29	102/1
	2-Phenylcyclopentanone	192	50	10 ⁴⁴⁶	135-140/9, (37), 214Se

TABLE 32. MONOKETONES

TABLE 32 (continued)

С _п	Compound	M e thod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^l _D , (M.p.), Deriv.
		Aromati	c Keto	nes (continu	ed)
C 11	2-Methyl-1-tetral one	178	71	1082	138/16, 1.5538 ²⁵
		178	92	10 ⁸¹	80/1, 1.5447, 195Se
		184	95	10 ⁸⁰	116/2.5, 205Se
	3-Methyl-1-tetralone	178	73†	10 ⁸⁴	96/0.3, 123-Ox
		178	86	10 ⁸³	136/14, 242Dn
	4-Methyl-1-tetralone	178	74	10 ⁸⁰	111/1, 211Se
	7-Methyl-1-tetral on e	178	89†	10 44	109/1.5-2, (33)
C12	Phenyl neopentyl ketone	178	87	10 ⁴⁷⁸	116/11, 1.5078, 218Se, 114-Ox
	<i>m</i> -Propyl propiophenone	187	82	10 ³⁶⁰	145/20, 128Se
	Mesitylacetone	185	83†	10312	(60), 205Se
		187	50	10 ^{3,59}	130/10, (60), 197Se
	p-n-Butylacetophenone	178	78	10 ³⁸	141/14, 185Se
	p-Isobutylacetophenone	178	38	10 ³⁸	135/16
	<i>p-s</i> -Butylacetophenone	178	74	10 ³⁹	135/11, 1.5195
	<i>p-t</i> -Butylacetophenone	178	83	104	138/16, 1.5195 ²⁵
	2-Methyl-5-isopropylace- tophenone	178	55	10°	125/12
	Acetodurene	178	80	107	131/10
		178	86	10 ⁴⁰	(73)
	Acetoisodurene	178	81	10 7	137/16
	Acetoprehni ten e	178	70	10 7	124/8
	2-Phenylcyclohexanone	179	80	10 ¹⁷⁵	160/15, (63), 190Se
		192	60	10 443	155/13, (60), 139Dn
		201	80	10 532	150/9, (59)
	4-Phenylcyclohexanone	179	40	10 ¹⁸⁸	(78), 212Se
	Methyl a-naphthyl ketone	178	35	1042	151/7, 237Se*
		178	93	10 ³⁰	163/15, (9.0)
		187	52	10 ³⁴⁶	150/8, 1.6257, 116Pi*
	Methyl β -naphthyl ketone	178	40	10 43	(53), 82Pi
	6-Acetyltetralin	178	74	10 *	115/2
		178	93	104	121/2.0, 1.5591 ²⁵
		178	60	10 ²⁵	156/10, 1.5593 ²⁹ , 234Se
	1,1-Dimethyl-2-tetralone	198	80	10496	96/0.5, 1.538, 204Se
	7-Acenaphthenone	179	65	10 ¹⁸⁹	(121)
		••••	45	10 ⁵³¹	(121)
С13	Benzylpinacolone	196	75	10 ⁴⁷⁸	261/746, 1.4972, 158Se
	<i>p-n</i> -Amylacetophenone	178	73	10 ³⁸	159/17
	p-Isoamylacetophenone	178	73	10 ³⁸	153/16
	p-s-Amylacetophenone	178	58	10 ³⁹	145/11, 1.5150
	p-t-Amylacetophenone	178	59	10 ³⁸	146/13
	Acetopen tame thy l-	178	80	107	145/8, (84)
	ben zen e				
	Ben zoph en on e	178	76	10 44	(49), 167Se*
		178	90	10 2	(48), 144-Ox*
		183	87	10 577	140-Ox

. 360

KETONES

Ch. 10

TABLE 32. MONOKETONES

361

TABLE	32	(continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B. p./mm., n ^t D, (M. p.), Deriv		
Aromatic Ketones (continued)							
С.,	p-Isopropylbenzo-	178	55	10 **	197/16		
10	phenone	187	40	10 ³⁶¹	118/0.04		
	Mesityl phenyl ketone	183	83	10 ⁵⁶⁸	(137), 232Da		
	1- Ac etyl phenanthrene	187	85	10 ³⁴⁷	(113)		
	2- Acetylphenanthrene	178	15	10 ²⁰	(143), 260Se		
		178	53†	10 ²²	(143)		
	3- Ac etyl phenanthrene	178	64	10 20	(72), 230Se		
	9- Ac etylph enanthren e	184	83†	10277	(74), 201Se		
		187	59	10347	170/1, (74)		
	9-Acetylanthracene	178	60	10 ³²	(76)		
C 17	p-n-Butylbenzophenone	178	69	10 ⁵	164/0.65		
	p-s-Butyl ben zoph enone	178	88	10 ³⁹	188/9, 1.5760		
		187	50	10 ³⁶¹	139/0.04		
	p-t-Butylbenzophenone	178	74	10 ⁶	205/15, (37.5)		
	Benzoyli soduren e	178	78	10 54	164/4, (61)		
	Phenyl a-naphthyl ketone	178	52	10 ²⁶	169/1, (75), 161-Ox		
		178	86	10 30	225/15, (73)		
	2-Propionylphenan-	178	23	10 ²¹	(105), 107Pi		
	thren●	178	45†	10 ²²	(104)		
		187	77	1031	(105), 107Pi		
	3-Propionylphenan-	178	23	1021	(57), 113Pi		
	threne	187	22	1021	(57), 113Pi		
	9-Propionylphenan- threne	187	86	10 ²¹	(57), 107Pi		
	9-Propionylanthracene	178	11	10 ⁵⁵	(75)		
C 18	Laurophenone	187	90	10 ³⁶²	(44), 63-Ox		
10	p-s-Amylbenzophenone	178	60	10 ³⁹	190/5, 1.5672		
	2,2-Diphenylcycloher- anone	201	98	10 516	(99)		
^	Dimesitul ketope	1.90	56	10418	(137)		
~ 19	Phenyl 2-biphenylyl	1.87	46	10 5 86	(79)		
	ketone	10,	40	10	(,,,,		
	Phenyl 4-biphenylyl ketone	178	75	10 ¹⁸	(106)		
	1-Ben zovl acen aph thene	190	95	10 ²³	(92)		
	3-Benzoylacenaphthene	178	70	10 ²⁴	(99)		
С,,							
	β, β -Diphenylpropio-	178	85	10 ⁵⁶	(92), 13 3- 0x		
	phenone	191	90	10**2	(96)		
	Di-a-naphthyl ketone	187	75	10 ³⁵¹	(100), 200-Ox*		
	1-Benzoylphenanthrene	178	8	10 ⁵⁸	(149)		
	2-Benzoylphenanthrene	187	85	10 ⁵⁸	(118)		
	3-Benzoylphenanthrene	178	20	10 ⁵⁸	(112)		
		187	60	10 ⁵⁸	(112)		

For explanations and symbols see pp. xi-xii.

500			KLIU	NE3				
	TABLE 32 (continued)							
C _n	Compound	Me thod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n_D^t , (M.p.), Deriv.			
		Aromatic	Ketone	s (continued)			
C 13	Benzophenone (con-	186	87	10 ³²⁹	(48)			
	tinued)	189	57	10 402	172/19			
		222	89	10 460	190/15, (48)			
	Ethyl a-naphthyl ketone	187	37	10 ³⁴⁶	170/11, 1.6109, 58-Ox*			
		187	89	10 ⁶⁸⁵	146/1, 7 9Pi			
	6- Propionyl tetralin	178	68	10 ²⁵	163/11, 1.5508 ²⁹ , 209Se			
	Fluorenone	183	70	10 242	(83.5)			
		186	82	10 ²⁴²	(84), 195-Ox*			
		222	90	10 462	(83.5)			
C14	Phenyl benzyl ketone	178	83	10 ¹	160/5, (56), 148Se*			
	(desoxybenzoin)	190	77	10 429	(57), 98-Ox			
		201	88	10 ⁵¹⁹	(58)			
	p-Methylbenzophenone	178	55	10 ⁴⁶	185/17, 122Se*			
	4-Phenylhexahydroace- tophenone	178	60	10 ⁴⁸	121/1-2, 191Se			
	p-Cyclohexylaceto- phenone	178	91	104	129/1.5, (69)			
	2-Acetyl biphenyl	188	48†	10391	105/1, 197Se			
	3-Acetyl biphenyl	179	81	10 ⁴⁷	138/1, 1.614025			
		188	46†	10 ³⁹¹	151/1, 223Se			
	4-Ac etyl biphen yl	178	70	10 ⁴⁷	150/2, (121)			
		178	80	10 ⁴⁸	(121)			
		178	90	10 ¹⁸	(121)			
	1-Acetoacenaphthene	178	45	10 🥙 /	(105)			
	Anthrone	178	28	10 ^{so} /	(154)			
		••••	83	10 🎫	(153)			
C 15	Benzylacetophenone	196	95	10 ⁶⁸⁸	(73), 144Se*			
	Dibenzyl ketone	186	41	10 ³³⁰	320, (30), 146Se*			
		186	85	10 ³³⁸	187/15			
		187	11	10 ²¹⁰	(35)			
	a,a-Diphenylacetone		57†	10 ⁶⁸⁰	(61)			
	Di-o-tolyl ketone	189	40	10 ⁶⁸⁷	(67), 105-Ox			
	o-Ethylbenzophenone	178	83†	10 ⁸²	165/18			
	p-Ethylbenzophenone	178	80	10 ^{\$}	144/0.2, 315/730			
	p, p'-Dime thylben zo- ph enone	178	55	10 ²⁷	(95), 140Se			
	Ethyl 4-biphenylyl	178	79	1018	(89)			
	ketone							
	2-Acetylfluorene	178	63	1031	192/4, (130)			
	- · · · · ·	178	83	10**	(129)			
	9-Acetyl fluorene	••••	60	10	(75.5), 139Ph			

10⁵³

10⁵

60

67

••••

178

C₁₆ p-n-Propylbenzo-

phenone

(75)

114/0.05

C_n

Compound

KETONES

TABLE 32 (continued)

Aromatic Ketones (continued)

Method Yield (%) Chaptertef. B.p./mm., n_D^t , (M.p.), Deriv.

Ch. 10

TABLE 33.	DIKETONES
-----------	-----------

TABLE 32 (continued)

C _n	Compo un d	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv.
	Не	terocyclic	: Keton	es (<i>continue</i>	rd)
C.	5-Methyl-2-propiofuran	199	100	10 ⁵²⁶	96/14, 164Se
	<i>n</i> -Propyl 2-thienyl ketone	178	89	10 ⁶⁴	96/4
	<i>n</i> -Propyl 3-pyridyl ketone	189	30	10 ³⁶⁵	98/3, 1.5128, 104Pi
	3-Pyridylacetone	186	40	10 ³⁴⁰	123/1, 185Se
C,	2-Furyl 2-thienyl ketone	178	66	10 ⁶⁹	136/3, 1.6694 ²⁴
	2-Furyl 2-pyrryl ketone	189	42	10 ⁶⁹	144/1.5, (70)
	n-Propyl 3-pyridyl ketone	187	40	10365	98/3, 1.5136, 130Ph
	2-n-Butyrylpyridine	195	81	10 ⁵³⁵	217, 1.5078, 75Pi
с.,	Methyl 2-benzofuryl	178	37	1071	119/5, (72), 207Se
- 10	ketone	570	80	3960	136/11, (76), 154Ph
	3-Acetylthianaphthene	178	70	1070	137/3, 250Se
с.,	2-Benzovl furen	178	70	1066	150/3. (44). 122-Ox
-11	Phenyl 2-thienyl ketone	178	90	1063	209/40, (56), 93-Ox
	2-Acetylguinoline	201	62	10518	(46) 54Ph
	2-acetylquinoline	184	95	10311	(98.5)
	8-Acetylquinoline	184	52	10 ²⁸¹	116/0.7, (43.5), 253Dn
с	2-Benzovlovridine	183	86	10244	133/2, 1.6056, 199Dn
C ₁₃	2-Phenacylpyridine	226	57	10 534	150-160/4, (54)
с.	2-Acetvldibenzofuran	178	57	1073	220/18
- 14	2-Acetyldibenzothio-	178	25	1072	(112), 235Se
	phene				
F	or explanations and symbol	s see pp. TABLI	xi-xii. E 33. DI	IKETONES	
C _n	Compound	Method	Yield (%)	Chapter ^{ref} .	• B.p./mm., n ^t _D , (M.p.), Deri
		Aliph	atic Di	ketones	
		203	45	10547	136
C.	ACelviacelone	-			
C,	Acetylacetone	203	54	10 • • •	141/758
C,	Acetylacetolle	203 203	54 85	10 • • • • 10 • • •	141/758 136, 150-Ox*
С ; С,	Dipropionyl	203 203 179	54 85 70	10 ⁵⁴⁵ 10 ⁵⁴⁵	141/758 136, 150-0x* 35/10, 185-0x*

46

60

90

32

51

57

203

203

229

203

203

203

10542

10⁵⁴⁴

10^{59\$}

10542

10545

10544

157/754, 199Cu

158, 198Cu

79/30

80/30

79/15, 89/25

80/30, 210Cu

For explanations and symbols see pp. xi-xii.

Acetonylacetone

C7 Dipropionylmethane

Methyldiacetylmethane

• ~	•
4/h	- 4
ັບ	_

C 21	9-Benzoylphenanthrene	187	65	10 ³⁴⁶	(90)
	9-Anthraphenone	178	65	10 57	(148)
	2,3-Diphenyl-1-indenone	19	71	2 ⁷⁸	238/6, (151)
Сзя	Stearoylbenzene	178	65	10 ³	(65)
C 26	Phenyl triphenylmethyl	201	96	10 ⁵¹⁵	(180)
	ketone				
C 27	sym-Tetraphenylacetone	189	. 52	10 422	(134)
		189	36	10 ²⁷⁸	
			39	10 ²⁷⁸	(134)
C 33	Pentaphenylacetone	189	70	10 422	(181)
		Heter	ocyclic	Ketones	
C4	3-Thiophanone	560	22	39 ⁷	85/24, 192Se
C6	2- Acetyl furan	178	66	10 ⁶⁰	48/5, (32), 150Se*
		178	48	10 ⁶⁵	90/43, 1.5015 ³⁰ , (32)
		178	77	1064	48/5
		178	76	10 ³⁹	48/5, 220Dn
		189	28	10 431	58/3
		199	75	10 ⁵²⁶	169-173, 148Se
	2-Acetylthiophene	178	70	10 ⁶⁸	88/8, 1.5666
		178	83	10 ⁶²	91/9, 1.566
		178	79	10 ⁶⁶	90/10, (10.5), 1.5662
		178	73	10 ⁶⁴	81/7
		178	86	10 ⁵⁹	78/4, 1.5666
Cγ	a-Furylacetone	195	40	10 ⁶⁷⁹	180
	Ethyl 2-furyl ketone	178	52	10 ⁶⁷	77/17, (28), 189Se
		178	81	1064	63/6
		189	61	10 402	82/15, 189Se
		199	100	10 ⁵²⁶	183, (30), 189Se
	2-Acetyl-5-methylfuran	178	42	10 ⁶⁸	73/8, 191Se
	a- Thienyla cetone	219	87	10 ³⁶⁷	106/12, 1.5366 ¹⁴ , 195Se
	Ethyl 2-thienyl ketone	178	79	10 ⁶⁴	89/6
	2-Acetyl-5-methyl- thiophene	178	91	10 ⁶⁶	83/2, 1.5622, 217Se
	Methyl 2-pyridyl ketone	184	50	10 ²⁷⁹	190, 121-Ox*
	Methyl 3-pyridyl ketone	184	81	10 ²⁷⁹	218, 137Ph*
		184	96	10 ²⁸⁰	92/5, (14), 177HCl
		186	36	10 ³⁹⁹	108/23
		187	50	10 ³⁶⁴	220, 113-Ox
	Methyl 4-pyridyl ketone	184	80	10 ²⁷⁹	212, 142-Ox*
C s	<i>n</i> -Propyl 2-furyl ketone	178	93	1064	78/7
	l-(a-Furyl)-2-butanone	195	70	10 ⁶⁷⁹	76/12, 1.4680 ²⁵
	l-(a-Tetrahydrofuryl)-3- butanone	196	73	10 ⁶⁸³	81/2, 1.4459 ¹⁹

KETONES

Ch. 10

	TABLE 33 (continued)						
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv		
	Ali	phatic Di	ketone	s (continued))		
C,	n-Butyrylacetone	203	45	10 500	90/38		
		203	48	10 542	73/20, 165Cu		
	Isobutyrylacetone	203	30	10 541	67/20, 172Cu		
		203	41	10 ⁵⁴⁵	64/19		
		203	54	10 ⁸⁰⁰	164		
	3-Methyl-2,4-hexane-	203	31	10 54	91/30, 177Cu		
	dione	203	45	10 541	183, 177Cu		
		203	60	10 546	184		
	3-Methyl-2,5-hexane- dione	184	83	10 282	71/10, 1.4260, 220Se		
	Diacetylethylmethane	198	30	10 500	178/740		
Ξ.	<i>n</i> -Valerylacetone	203	62	10 500	81/17		
	Propionyl-n-butyryl- methane	203	70	10 544	86/20, 158Cu		
	3-Methyl-2,4-heptanedione	203	44	10 542	96/20, 163Cu		
		203	47	10500	100/45		
	Isovalervlacetone	203	64	10,500	77/17		
	Pivalovlacetone	203	43	10 544	71/20, 192Cu		
	Disobutyryl	181	27	10228	148. 172-Ox*		
	Isopropyl diacetyl- methane	198	35	10 ⁵⁰	183/740		
~_	Caprovlacetone	20.3	54	10 ⁵⁴⁹	98/11, 1,4222 ²⁸		
- 9	Capity Incelone	203	61	10541	105/20, 138Cu		
	Di-z-butyrylmethane	203	76	10544	102/20, 157Cu		
	Methylpropionylbutytyl-	203	46	10 542	108/20, 152Cu		
	Propionyl-isovaleryl-	203	75	10 ⁵⁴⁵	93/19		
	Diisobutyrylmethane	203	28	10 848	63/3		
	<i>n</i> -Butyldiacetylmethane	198	38	10 50L	94/10		
	·····	203	53	10 542	106/20		
		203	67	10 ⁶⁷³	106/20		
	Diacetyl di ethylmethan e	198	32	10 ⁵⁰¹	100/10		
C 10	Dipivaloyl	179	36	10 ¹⁹⁶	73/24		
		179	50	10 ²⁰	62/14, 1.4144		
C 11	2,5-Undecandione	229	8 6	10 ⁵⁹⁰	(33)		
	Diisovalerylmethane	203	76	10 549	116/20, 1.4565 ²⁸		
		Alicy	clic Di	ketones			
C,	Cyclopentan-1,2-dione	184	67	10 54L	97/20		
C ₆	4 Methyl-cyclopentan- 1,2-dione	184	65	10562	98/17		
	1.2-Cyclohexanedione	183	30	10 ⁵⁶⁹	97/25, 188-Ox		

TABLE 33. DIKETONES

TABLE 33 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Ali	cyclic Di	ketones	(continued)	1
C,	1,3-Cyclohexanedione	197	95	10 441	(104), 156-Ox*
	1,4-Cyclohexanedione	184	85	10567	132/20, (79), 188-Ox*
C,	1,2-Cycloheptanedione	183	90	10 ⁵⁷⁰	109/17, 182-Ox
C8	Tetramethyl-1,3-cyclo- butanedione		38	10 ⁵⁸⁵	161, (116)
	2-Acetylcyclohexanone	203	35	1054	115/20
		203	35	10 542	97/10
		203	56	10 548	101/11
	5,5-Dimethyl-1,3-cyclo- hexanedione	184	85	10 ⁵⁸⁴	(148), 176-O ≭ ®
C۹	5-Isopropyl-1,3- cyclo- hexanedione	184	80	10 ⁵⁸⁸	(62)
	2-Propionylcyclohexanone	203	29	10 ⁵⁴⁵	125/20
		203	35	10 542	125/20, 185Cu
C 10	2-Ethyl-4-n-propyl-1,3-cy- clopentanedione		32	10 ⁵⁸⁶	176/1, (120)
		Aroma	tic Dik	etones	
C,	Acetylbenzoyl	183	20	10 576	128/20, 232Se*
		183	60	10 ⁵⁶⁷	115/15
		195	70	10 452	116/20, 240-Ox*
	Ninhydrin (triketohy- drindene)	183	35	10 ⁵⁷¹	(243), 201-Ox
C 10	1-Phenyl-1,2-butan edion e	183	35	10 ⁵⁷⁶	132/20
	Benzoylacetone	178	73	10 ⁹⁰	141/15, (59)
		203	50	10 ⁵⁴²	141/18
		203	66	10 ⁵⁴⁵	(61)
		203	68	10 ⁶⁷³	146/20
		203	70	10 ⁵⁰⁰	136/16, (60)
		203	83	10 ⁵⁴³	(60)
	o-Diacetylbenzene	183	71	10 ²⁴³	147/16, (38.5)
	p-Diacetylben zen e	183	76	104	130/3, (114)
		184	15	10 ²⁸³	(114), 240-Ox*
C11	w-Propionylace-	203	30	10542	152/10, 153Cu
	tophenone	203	55	10 5 4	127/5, 149Cu
		203	61	10 ^{\$\$0}	122/5, 1.5837, 151Cu
	3-Phenyl-2,4-pentane- dione	203	41	10542	134/20, (60), 224Cu
C 12	1,3,5-Triacetylbenzene	••••	51	10 563	(161)
C 14	Benzil	179	8 6	10 ¹⁹⁰	(95), 244Se*
		179	95	10199	(95), 225Ph*
		179	100	10194	(95)
		183	93	10 300	

For explanations and symbols see pp. xi-xii.

KETONES

Ch. 10

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	A	omatic D	liketon	es (continue	d)
C15	Dibenzoylmethane	203	71	10 552	(78)
		202	80	10 ⁵⁵¹	(78)
	Diphenyl triketone	222	59†	10 461	(70)
	4-Methylbenzil	183	75	10 ⁸⁶⁶	221/15
	Mesityl t-butyl ketone	179	83	10 ¹⁹⁷	118/2, 1.5068, 139-Ox•
C 16	1,2-Dibenzoylethane	196	76	10 480	(147), 204-Ox*
	p-Tolil	179	47	10194	(102), 225-Ox*
	p, p'-Diacetyl biph enyl	178	45	10 ¹⁸	(191)
C 18	1,4-Dibenzoylbutane	178	81	10 ⁸⁹	(107)
		Heteroc	yclic [Viketones	
C.	Acetyl-2-furoylmethane	203	43	10 553	110/10, 222Cu
	-	203	45	10 ⁵⁰⁰	110/10
	Tetrahydrofuroylacetone	203	60	10 500	97/8
	Acetyl-2-thenoylmethane	203	81	10 ⁵⁸⁴	131/8, 230Cu
C,	Propionyl-2-thenoylme thane	203	62	10 554	126/4, 194Cu
	Nicotinylacetylmethane	203	63	10 ⁶⁹⁰	135/6, (83.5)
C 10	Furil	179	63	10 ²⁰⁰	(166)
		179	91	10 ¹⁹⁴	(165)
С11	Di-2-thenoylmethane	203	64	10 ⁵⁵⁴	(100), 263Cu
	2-Furoyl-2-thenoyl- methane	203	75	10 ⁵⁶³	195/6, (55.5), 274Cu
C 13	Benzoyl-2-furoylmethane	203	55	10 500	165/3, (68)
	-	203	87	10 558	169/3, 248Cu
	Rearry 1. 2. the annula asha a a	202	59	10554	201 / (78) 279

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphati	c Olefi	nic Ketones	· · · · · ·
C₄	Methyl vinyl ketone	26	81 †	2478	81/734
		36	15†	270	81, 1.4095 ²²
			15	10 ⁶⁶⁵	81, 1.4095 ²² , 140Se*
		181	63	10 ²³⁰	
C,	Methyl propenyl ketone	3 6	42	2 ⁷⁶	119-125
-	Ethyl vinyl ketone	178	22	10 ⁹⁸	102/740, 1.4192, 129Dn
	Methyl isopropenyl	24	98	2488	38/85, 1.4235, 173Se, 181Dn
	ketone	26	92	2 478	97/734

TABLE 34. OLEFINIC KETONES

,

TABLE 34. OLEFINIC KETONES

TABLE 34 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.					
	Aliphatic Olefinic Ketones (continued)									
C,	Methyl isopropenyl ketone (continued)	36 200	80 91	2 ²⁹¹ 10 ⁹⁸	58/200, 1.4232					
C.	5-Hexen-2-one-(allyl-	184	48†	10 284	132/760 1.417027					
v	acetone)	205	31	10 ⁵⁹⁵	128/1.4174 ²⁵ , 108Dp, 102Se*					
	·	188	42	10 590	····, ·····					
	4-Hexen-3-one	187	25	10371	139, 1,4388, 157Se					
	1,2-Diacetylethylene		15	2 521	90/15, (77)					
	2-Methyl-1-penten-3-one	20	65	2 ¹⁴⁹	119/751, 1.4270 ²⁴ , 161Se					
	3-Me thyl-3-pen ten-2-one	36	87	2 487	97/200, 1.4489					
		36	90	2 ⁷	140					
	4-Methyl-3-penten-2-one	36	80	2 ⁶⁷	128					
	(mesityl oxide)	36	100	2 ⁶⁹	129					
C,	trans-3-Hepten-2-one	36	33	272	60/16, 1,4421, 125Se					
	5-Hepten-2-one (crotyl-	184	81†	10284	154/770, 1,4280 ²⁵					
	acetone)	205	80	10595	153, 1,4272 ²⁵ , 105Se					
	3-Methyl-1-hexen-5-one	205	37	10 595	138, 1.4197 ²⁸ , 112Se					
	5-Methyl-4-hexen-3-one	20	30	2 ¹⁵⁰	148/760, 1.4496 ¹⁵ , 163Se					
		178	30 +	10101	148/760, 163Se					
	5-Methyl-5-hexen-2-one	184	69	10 284	$145-150/760, 1.4278^{27}, 137Se$					
	(methallylacetone)	205	26	10 595	149. 1.4285 ²⁸ . 137Se					
	3,4-Dimethyl-3-penten- 2-one	178	54†	10 101	147, 200Se					
	3,4-Dimethyl-3-penten- 2-one	20	54	2 150	147, 1.4506 ¹⁴ , 200Se					
	3,4-Dimethyl-4-penten- 2-one				144, 114Se					
	3,4-Dimethyl-4-penten- 2-one	178	54†	10 ¹⁰¹	144, 114Se					
	4,4-Dimethyl-1-penten- 3-one	20	60	2 149	66/105, 1.4219 ¹⁴					
C.	3-Methyl-3-hepten-2-one	36	93	271	175, 164Se					
-	3-Methyl-3-hepten-5-one	36	72	2 31 9	82-86/42, 1.4488 ²⁵ , 114Se					
	4-Methyl-6-hepten-3-one	198	56	10 206	156. 80Dn					
	2-Me thyl-2,5-h eptadien- 4-one	194	30	1044	72/16, 1.4922 ²¹ , 141Dn					
	3-Ethyl-5-hexen-2-one	184	48	10 286	152, 1.4260 ²⁵ , 53Dn					
	2-Ethyl-1-hexen-3-one	20	55	2149	158/742, 1,4408 ¹⁶ , 119Se					
	3.4-Dimethyl-3-hexen-	36		2322	158, 1.4476 ¹⁵ , 142Se					
	2-one									
	5,5-Dimethyl-3-hexen- 2-one	36	40	2 ²⁹²	79/40, 1.4430, 178 Se					
	4,5-Dimethyl-4-hezen- 3-one	178	57†	10 101	166/750, 209Se					
	4,5-Dimethyl-5-hexen- 3-one	178	57†	10 ¹⁰¹	162/750, 110Se					

3	68	3
~		-

KETONES

Ch. 10

	TABLE 34 (continued)							
C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aliph	atic Ol <i>e</i> fi	inic Ke	tones (conti	nued)			
C,	7-Methyl-5-octen-4-one	36	45	2 74	86/25, 1.4413			
	5-Ethyl-4-hepten-3-one	189	74	10 ***	179/740, 105Se			
	2,3-Dimethyl-2-hepten- 6-one	184	86	10 ²⁸⁵	76/13, 163Se			
	3-Propyl-3-hexen-2-one	19	68	2 ⁷⁸	72/9, 142Se			
	2,4,5-Trimethyl-4- hexen-3-one	178	40 t	10 ¹⁰¹	174/755			
		Alicyclic	: Olefi	nic Ketones				
C6	2-Methyl-2-cyclopen-	179	67	10202	53/12, 220Se			
-	tenone	195	54	10 ⁵⁹⁸	161/760, 1.4771, 127-Ox			
	2-Cyclohexenone	19	35	2 ⁷⁹	68/22, 172Se, 163Dn			
		183	38	10 ⁴⁴¹	67/25, 1.4879, 168Se, 117Dn			
C,	1-Acetyl-1-cyclopen- tene	178	50†	10102	74/12, 211Se			
	2,3-Dimethyl-2-cyclopen- tenone	206	30	10 ⁵⁹⁶	92/25, 1.4830, 250Se			
	3-Methyl-2-cyclohexen-	183	20	10 441	78/14, 1.4938, 201Se, 176Dn			
	1-one	202	34	10 ⁴⁷⁵	40/0.8, 1.4945, 178Dn, 199S			
c.	1-Cyclopentenylacetone	184	90	10 ²⁶⁷	67/12, 150Se			
-	a-Propylidenecyclopen- tanone	3 6	65	2""	80/10, 225Se			
	2,2,3-Trimethyl-4-cyclo- pentenone	206	6	10 ⁵⁹⁶	66/19, 1.4601, 190Se			
	3-Ethyl-2-cyclohexenone	202	75	10 ⁴⁷⁵	57/0.9, 1.4913, 160Dn, 186S			
	3,5-Dimethyl-2-cyclo- hexen-1-one	3 6	55	2 ⁴⁰⁹	85/9			
	1-Ac etyl-1-cycloh exen e	178	50 t	10 105	93/14			
		178	54	10 ⁹⁷	69/5, 1.4883 ²⁵ , 220Se, 59-Ox			
		178	62†	10 92	200, 221Se			
		204	70	10 ⁵⁹⁴	88/22, 1.4892			
С,	3-Methyl-2-n-propyl-1- cyclopentenone	206	32	10 ⁵⁹⁶	58/2, 1.4778, 210Se			
	1-Propionyl-1-cyclo-	178	36†	10 ¹⁰⁴	102/14, 189Se, 78-Ox			
	hexene	178	40†	10 ⁹³	90/10, 195Se			
	2-Allylcyclohexanone	184	66	10 206	79/11, 1.4662 ²⁵ , 70-0x			
		198	62	10 ⁵⁰³	92/17			
	3-n-Propyl-2-cyclohex- enone	202	75	10 ⁴⁷⁵	60/0.4, 1.4876 ²⁸ , 156Dn, 175S			
	3-Isopropyl-2-cyclohex- enone	202	12	10 ⁴⁷⁵	60/0.3, 1.4842, 155Dn, 179S			
	3-Methyl-5-ethyl-2-cyclo- hexen-1-one	36	66	2 ⁴⁰⁹	100/9, 1.4880*			

TABLE 34. OLEFINIC KETONES

TABLE 34 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t D, (M.p.), Deriv.
	Alicy	clic Olefi	nic Ke	tones (conti	inued)
C 10	2,2-Dimethyl-1-acetyl-1- cyclohexene	204	56	10 ⁴⁹⁰	118/49, 1.4810 ²⁸ , 201Se
C12	2-Cyclohe xy lidenecyclo- he xa none	36	70	2 ³²⁰	150/22, 1.5084 ²⁸ , 188Se
	·	Aromati	: Ol e fi	nic Ketones	
С,	Phenyl vinyl ketone	20	78	2148	
C 10	Ph e nyl propenyl ketone	178	61	10 ⁹⁶	95/2
	Benzalacetone	36	78	2 294	128/8, (42)
	a-Methylacrylophenone	26	70	2 26 5	60/3, 1.5354
С.,	Isopropylideneace-	178	35	10 580	106/5. 1.5579 23
	tophenone	178	40	10 100	
	-	194	40	10 ***	121/4, 1,5598 ¹⁹ , 168 <i>p</i> N
C 12	l-Phenyl-l-hexen-5-one	205	88	10 ⁵⁹⁶	99/0.30, 1.5458 ²⁵ , 132Se
	1-Phenyl-4-hexen-1-one	205	83	10 595	97/1, 1.5270 ²⁸ , 130Se
	3-Phenyl-1-hexen-5-one	205	74	10 ⁵⁹⁵	86/1, 1.5193 ²⁵ , 103Dn
	Phenyl 2-methyl-3- butenyl keton e	20 5	76	10 ⁸⁹⁵	100/2.1, 1.5223 ²⁸ , 177Se
	o-Methylstyryl ethyl ketone	36	26	2 ³⁰²	152/14, 178Se
C ₁₁	Benzalpinacolone	36	93	2 296	146/10. (43)
- 10	1-Benzoyl-1-cyclohexene	178	401	10 92	147/8
c	t Nacht-leastere	26	76	- 197	
C ₁₄	- Naphthalacetone	30 36	17	2297	170/1, 1.6665
	2-Naphthalacetone	30	09	2	(104)
C 15	Benzalacetophenone (chalcone)	36	82	2 ²⁹⁵	(55-57)
C16	<i>trans</i> -Dibenzoylethylene	178	83	10 %	(110), 211-Ox*
	2, 4-Diphenyl-2-buten- 4-one	36	82	2 ³²¹	139/1, 1.6273 ²⁸ , 135-Ox
C 17	Dibenzalacetone	36	94	2 298	(111)
]	Heterocyc	lic Ol	efinic Keton	ts
c.	Furfuralacetone	36	66	2 307	116/10, (38)
С11	Furfural ac etofuran	36	89	2 309	(90)
C 13	Furfural ace toph en on e	36	9 0	2 308	179/7, (26)
	2-Thenalacetophenone	36	96	2 482	(59)

KETONES

Ch. 10

TABLE 35. ACETYLENIC KETONES

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C.	Methyl ethynyl ketone	179	40	10 203	86, 181Dn, 143 <i>p</i> N
C _s	3-Pentyn-2-one	179	67	10 ²⁰⁴	74/95, 1.4380 ²³ , 149Dn
C 6	<i>n</i> -Propyl ethynyl ketone	179	70	10 ²⁰³	66/100, 137Da
C8	3-Octyn-2-one	179 188	80 58†	10 ²⁰⁸ 10 ³⁹⁶	76/15, 88Dn, 109Se 76/15, 1.4446 ³⁸
C,	3-Nonyn-2-one Phenyl ethynyl ketone	188 179	55† 80	10 ^{3 96} 10 ²⁰³	87/13, 1.4463 ¹⁵ (51), 214 Dn
C ₁₀	4-Phenyl-3-butyn-2-one	188 188	45† 55	10 ³⁹⁶ 10 ³⁹⁷	102/3, 1.5735 ³⁵ 125/14
C 15	Phenyl phenylethynyl ketone	189 193	74 85	10 ⁴²⁴ 10 ⁴²⁴	(55) (66)

For explanations and symbols see pp. xi-xii.

TABLE 36. HALO KETONES

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic and A	licyd	ic Halo Keto	nes
с,	Chloroacetone	66 184	72	4 ⁴⁹⁵ 10 ⁹⁰	120
	Bromacetone	66	44	483	42/13
	a.a'-Dibromoacetone	66	60	4634	98/22. (26.5)
	α, γ -Dichloroacetone	179	75	10205	175, (45)*
	a.a.a - Tribromoacetone	66	60	4634	116/14, (29)
	Hexafluoroacetone hydrate	182	60	10236	57/93, 1.3288
C₄	Methyl a-chloroethyl ketone	66	62	4 496	113, 1.4171
	Methyl a-bromoethyl ketone	66	50	4484	34/12, 1.4571
	Methyl <i>β</i> -chloroethyl	73	67	4124	50/15
	ketone	207	40	10 ⁵⁹⁹	48/15
	Chloromethyl ethyl ketone	66	21	4 ⁴⁹⁶	138, 1.4372
	Bromomethyl ethyl	57	55	4 ⁵¹⁹	155, 1.4670
	ketone	66	17	4 484	50/12, 1.4670
	Chloromethyl β -chloro- ethyl ketone	207	45	10 ⁵⁹⁹	81/2.5
	Chloromethyl β -iodoethyl ketone	57	84	4 ⁸²³	(55)
	a,a'-Di bromodiacetyl	66	71	4493	(117)

TABLE 36 (continued)

C _n	Compound	Me thod	Yield (%)	Ch apter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic an	nd Alicycl	ic Halo	Ketones (c	ontinued)
C,	Methyl a-chloro-n-propyl	66	44	4 494	66/56
-	ketone	66	37	4 488	38/12
	Methyl <i>y</i> -chloro-n-	184	91	10 694	71/20, 1.4375 ²⁵
	propylketone				-
	Methyl a-bromo-n-	66	50	4 485	78/50, 1.4563 ²²
	propyl ketone	66	53	4 488	53/14, 1.4629
	Chloromethyl <i>n</i> -propyl ketone	179	83	10 ²⁰⁶	66/26
	Bromomethyl n-propyl	57	27	4 519	92/50, 1,4575
	ketone	66	33	4485	$92/50, 1.4620^{23}$
	Methyl a-chloroisopropyl	66	58	A 496	146 1.4390 116Dn
	ketone	00	,0	-	110, 111990, 11004
	Methyl a-bromoi sopropyl ketone	66	35	4 ⁴⁶⁵	84/150, 1.4590 ¹⁶
	Bromomethyl i sopropyl ketone	57	46	4 ⁵¹⁹	86/50, 1.4467 ^{14•5}
	1-Bromo-5-chloro-2- pentanone	57	80	4 ⁵¹⁹	114/13, 1.5009 ^{19•5}
	Ethyl β-chloroethyl ketone	207	45	10 ⁹⁸	33/2.5, 1.4361
	α-Chloroethyl β-chloro- ethyl ketone	207	60	10 ⁵⁹⁹	65/1.5, 1.4631
	$Di-\beta$ -chloroethyl ketone	207	48	10 ⁶⁰⁰	77/2, 1,4710 ¹⁶
	Bromoethyl β -bromoethyl ketone	207	60	10 ⁵⁹⁹	77/0.1
	2, 3-Di bromo-3-methyl- 2-bu tano ne	74	97	4 ***	53/1
	1,5-Dibromoacetyl- acetone	184	67	10 ¹⁸⁹	(7), 152Cu
	Acetyltrifluoroacetone	203	80	10 ⁵⁶⁰	107/760, 1.3893 ¹¹ , 189Cu
C6	6-Bromo-2-hexanone	54	58	4 125	105/15, 1.4713, 81Dn
	1-Chloro-2-hexanone	189	51†	10 401	72.5/15, 1.4370 ²⁴ *
	1-Bromo-2-hexanone	57	50	4 519	108/50, 1.4486 ¹⁵⁻⁵
		208	67†	10 601	88/30
	Bromomethyl i sobutyl ketone	57	70	4 ⁵¹⁹	102/50, 1.4595 ¹⁷
	2-Methyl-1-chloro-3- pentanone	70	50	4 3 48	64/9, 70Se
	2-Chloro-2-methyl-4-	53	74	4 157	52/14
	2, 3-Dibromo-3-methyl-2- pentanone	74	90	4 443	82/5
	1-Chloro-3,3-dimethyl-	66	85	4 ***	76/15, 1.4422, 144Da
	1-Bromo-3,3-dimethyl-2-	66	68	4 ** 9	49/1, 72/10

KETONES

Ch. 10

	TABLE 36 (continued)								
C _n	Compound	Me thod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aliphatic an	nd Alicycl	ic Halo	Ketones (c	ontinued)				
C6	2-Chlorocyclohexanone	66	57	4 498	79/7, (23), 1.4825				
		66	66	4 497	91/15				
	2-Bromocy clohexanone	66	31†	4 643	113/20, 1.5085 ²⁸				
C,	1-Chloro-2-heptanone	57	90	4 522	84/16				
	1-Bromo-2-heptanone	208	851	10 601	110/30, 1.4644 ²⁵				
		57	70	4 ⁵¹⁹	96/14, 1,4645 ¹⁸				
	3-Bromo-2-heptanone	66	21†	4 643	88/20, 1.4620 ²⁵				
		66	43	4 487	80/9, 1.4613				
	2-Chloro-3-heptanone	189	431	10 401	68/15				
	1-Bromo-6-heptanone	51	47	4 67	108/8				
	3-Methyl-6-bromo-2- h exanon e	54	44	4 ³⁷⁰	74/1.5				
	3,4-Dimethyl-4-chloro 2-pentanone	207	42	10 ¹⁰¹	64/14				
C,	Chloromethyl <i>n</i> -hexyl ketone	57	92	4 522	103/16				
	3-Bromo-3-methyl-4- heptanone	66	45	4 486	88/22, 1.4630				
	2- Ethyl- 1- chloro- 3- hexanone	70	50	4 ⁵⁴⁸	92/12, 115Se				
	4,5-Dimethyl-5-chloro- 3-hexanone	207	57	10 ¹⁰¹	78/17				
	Methyl a-bromocyclo- hexyl ketone	66	54	4 635	58-65/3, 1.5027, (-8)				
	Bromomethyl cyclo- hexyl ketone	57	95	4 635	1.5033, (-2), 131Dn				
	1-Acetyl-1,2-dibromo- cyclohexane	74	60	4 442	(48)				
	1-(Dibromoacetyl)-1- bromocyclohexane	66	80	4 645	(74)				
C 13	1-Bromo-2-tridecanone	57	92	4 524	(53)				
		Aromatic	Halo	Ketones					
C,	ω -Fluoroacetophenone	178	46	10 ¹⁰⁵	95/12, (28)				
	ω -Bromoacetophenone	66	96	4 499	(51)				
	ω -Dichloroacetophenone	66	97	4 637	134/13, 144/25				
	ω - Di bromo a cet ophenone	66	50	4 502	160/13, (37)				
	ω - Trifluoro a cetoph enon e	178	64	10 ¹⁰⁰	67/37, 1.4576				
	ω -Trichloroac etophenon e	66	95	4 636	102/3.5, 1.5685				
		178	70	10 115	121/15				
	<i>m</i> -Bromophenacyl bromide	64	40	4 332	174/14, (51), 164Se				
	p-Bromophenacyl bromide	66	72	4 500	(109)				
	o-Chloroacetophenone	184	54†	10 290	229/758				
		185	81†	10 312	87/5, 160Se*				

TABLE 36. HALO KETONES

TABLE 36 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} (M.p.), Deriv
	Ar	omatic Ha	lo Kete	ones (continu	ued)
C.	o-Bromo acetophenone	56	80	4 332	112/10, 177Se
-		187	80	10 370	189Dn
		212	65	10 684	117/12, 177Se*
	<i>m</i> -Chloroa cetophenone	56	83	4 334	113/11, 1.5494*
	_	183	76	10 245	92/3, 232Se*
	m-Bromoacetophenone	56	56	4 331	132/17, 1.5755, 233Se
	m-Iodoa cetophenon e	56	53	4 334	117/4, 1.6220
	p-Fluoroac etophenone	178	74	10 110	79/10, 1.5081 ²⁵
	-	178	76	10 111	196, 219Se
	p-Chloroacetophenone	178	78	10 113	126/24
		178	83	1012	(12), 204Se*
	p-Bromoacetophenone	178	79	10113	117/7, (50.5), 129-Ox*
	p-Iodoacetophenone	56	52	4 335	140/9, (84)
		178	95	10 114	(85)
C,	a-Chloro-a-phenyl- acctone	66	84	4 510	118/16, 1.5373
	a-Bromo-a-phenyl- acetone	66	69	4 504	127/7
	Chloromethyl benzyl ketone	57	85	4 ⁵²⁰	135/19, 98/1
	Bromomethyl benzyl ketone	57	62	4 519	106/0.2, 1.5593 ^{19•5}
	a-Chloropropiophenone	178	66	10 109	133/26
	a-Bromopropiophenone	66	42†	4 643	139/20, 1.5686 ²⁵
	β -Chloropropiophenone	178	65	10 107	(50)
	,	178	85	10 ¹⁰⁶	(48)
	β -Bromopropiophenone	178	93	10 112	(59)
	a, a-Dibromopropio- phenone	66	83	4 ⁶⁵¹	180/64, (30.5)
	α, β -Dibromopropio- phenone	178	98	10 ¹¹⁶	(56)
	o-Chlorobenzyl methyl ketone	189	60	10 66 9	130/15, 120-Ox
	p-Chlorobenzyl methyl ketone	178	16	10 ¹¹⁷	86/1
	o-Chloropropiophenone	56	85	4 333	106/12, 17 3 Se
	o-Bromopropiophenone	56	77	4 333	118/11, 179Se
	m-Chloropropiophenone	56	73	4 333	(46), 180Se
	m-Bromopropiophenone	56	44	4 333	(40), 183Se
	p-Chloropropiophenone	56	76	4 333	118/2, (35), 177Se
	p-Bromopropioph enone	56	58	4 335	140/2, (46), 171Se
	p-Methylphenacyl bromide	66	94	4 ⁵⁰¹	(50)
	p-Acetobenzyl bromide	54	46	4 369	136/5
	<i>m</i> -Trifluoromethylace-	187	50	10 368	202
	toph en on e	189	91	10 368	202

KETONES

Ch. 10

	TABLE 36 (continued)								
C _n	Compound	Method	Yi el d (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aron	natic Halo	Keton	es (continue	d)				
C 10	a-Bromo-n-propyl phenyl ketone	66	98	4 503	154/23				
	Chloromethyl β -phenyl-	57	85	4 510	(40), 146Dn				
	ethyl ketone	179	82	10 143	111/5, (41), 147Dn				
	4-Phenyl-3-chloro-2- butanone	184	60 †	10 ²⁶⁸	99/4, 1.5268, 139Dn				
	4-Ph enyl-3-bromo-2- butanon e	66	81	4 503	155-160/30				
	Benzalacetone dichloride	74	34	440	(93)				
	Benzalacetone dibromide	74	57	4 439	(125)				
	1,3-bis-Chlomacetyl- benzene	57	83	4 526	(98)				
С 11	a-Bromoisobutyl phenyl ketone	66	80	4 503	145-155/20, (52)				
С11	a-Bromo acetyl naph- thal ene	66	80	4 ⁶³⁸	215/15				
C 13	a-Bromoisobutyryl- mesitylene	178	70	10 122	170/24				
	o-Chloroben zophenone	178	86†	10118	180/15, (44)				
	o-Bromobenzophenone	178	52	10 120	153/0.05, 133-Ox*				
	-	178	80	10 121	190/14				
	p-Chlorobenzophenone	178	82	10119	(78), 106Ph*, 185Dn*				
с.,	Phenyl a-chlorobenzyl	53	79	á ¹⁸³	(67)				
	ketone	62	65	4 407	(68)				
	o-Chlorobenzyl phenyl ketone	190	73	10 43 0	(71), 86-Ox				
	m-Chlorobenzyl phenyl ketone	190	42	10 432	(43), 102-Ox				
	p-Chlorobenzyl phenyl ketone	190	70	10 431	(138), 96-0x				
	o-Chlorophenyl benzyl ketone	190	71	10 430	178/5, 132-Ox				
	<i>m</i> -Chlorophenyl benzyl ketone	190	72	10 429	(62), 120-Ox*				
	p-Chloropheny) benzyi ketone	190	77	10 431	(108), 12 3- 0x				
	4-Chlorobenzil	183	93	10 ⁵⁶⁶	(73)				
	4-Bromobenzil	183	94	10 ⁵⁶⁶	(87)				
	2,2'-Dichlorobenzil	179	39†	10195	(129)				
C15	a-Chlorodi ben zyl ketone	66	80	4 511	195/12, (68.5)				
	a-Bromodibenzyl ketone	66	99	4 ⁵⁰⁶	(49)				
	Benzalacetophenone di- chloride	74	96	4 441	(113)				

TABLE 37. HYDROXY KETONES

375

.

TABLE	36	(continued)
-------	----	-------------

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aro	matic Halo	Keton	es (continue	d)
C 15	a-Bromo-4-propionyl- biphenyl	66	75	4 ⁵⁰⁵	(79)
C 16	9-ω-Bromoacetylan- thracene	66	50	4 ⁵⁰⁸	(107)
		Hetero	cyclic	Halo Ketone	s
C.	2-Chloroacetylfuran	57	88†	4 527	9 3- 108/4
	2-Chloroacetyl- thiophene	66	77	4 ⁵¹²	113/5, (48)
	2-Bromoacetyl- thiophene	66	80	4 ⁵⁰⁹	98/1.5, 1.6258
C 10	2-Chloroacetylbenzo- furan	57	95	4 644	(105)
C11	4-Quinolyl chloromethyl ketone	57	50	4 525	(101)

For explanations and symbols see pp. xi-xii.

TABLE 37. HYDROXY KETONES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alipha	ic and Ali	icyclic	Hydroxy Ke	iones
C,	Acetol (1-hydroxy-2- propanone)	95	58	5 522	42/12
C.	1-Hydroxy-3-butanone	84	44 †	5 669	74/13, 1,4302 ¹⁵
- •		102	28	5 207	71/12, 1.43515
C,	1-Hydroxy-2-pentanone	95	15	5 711	152/760
	4-Hydroxy-2-pentanone	79	35	5 158	94/43, 1.4238 ²⁵ , 104Ph
	5-Hydroxy-2-pentanone	99	31	5 623	75/3, 1.4350 25
		181	30	10 229	86/10, 155Se
	3-Methyl-4-hydroxy-2-	102	93	5 ²⁰⁸	84/19
	Dimethylocetyleathinol	90	261	< 398	140 87-0x 1655e
	2-Hydroxy cyclopentanone	104	16	5 ⁷⁶¹	74/10, 1.4701 ²⁵
C.	5 Hydroxy- 2-bexapone	184	69	5 732	61/2, 1,4312 ²⁵ , 151Se
-0	4-Hydroxy-3-hexanone (propionoin)	104	55	5 636	60-65/12
	5-Hydroxy-3-hexanone	79	51	5 158	76/12, 1.4280 ²⁵
	3-Methyl-3-hydroxy-2- pentanone	200	60	10 511	73/50, 1.4200, 150Se

KETONES

Ch. 10

	TABLE 37 (continued)							
C _n	Compound	Method	Yield (%)	Chapter ^t ef.	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aliphatic and	l Alicyclic	: Hydro	xy Ketones	(continued)			
C6	3-Methyl-4-hydroxy-2- pentanone	102	67	5 ⁷³⁸	76/10, 1.4350			
	4-Methyl-4-hydroxy-2- pentanone (diacetone alcohol)	102	71	5 ²⁰⁴	73/23			
	2-Methyl-1-hydroxy-3- pentanone	102	57	5740	94/15, 1.4346			
	3-Ethyl-4-hydroxy-2- butanone	102	55	5 740	96/17, 1.4362 ¹⁸			
	2-Hydroxycyclohexanone	96	76	5 187				
		104	55	5 761	(117)			
С,	4-Hydroxy-2-heptanone	102	80	< 210	95/12 1 4357			
•	2-Hydroxy-4-heptanone	79	58	s 158	101/24 1 4 200 ²⁵			
	3-Methyl-4-hydroxy-2- hexanone	102	61	5 211	95/20, 1.435 ²⁴			
	2-Methyl-5-hydroxy-3- hexanone	79	50	5 158	73/9, 1.4278 ²⁵			
	2-Hydroxymethyl-1-cyclo- hexanone	102	20	5 226	115/16, 129Ph, 145pN			
2.	2-Hydroxy-4-octanone	79	66	5 158	91/8, 1.4333 ²⁵			
	5-Hydroxy-4-octanone (butyroin)	104	70	5 636	80-86/12			
	3- Methyl- 3- hydroxy-2- heptanone	89	46†	5 ³⁹⁸	84/19, 152Se			
	3-Methyl-4-hydroxy-2-	102	45	5 ²¹²	110/16, 1.442			
	heptanone	102	82	5 ²⁰⁹	115/30			
	5-Methyl-5-hydroxy-3- heptanone	102	67	5 ²⁰⁵	86/14, 1.4386 ¹⁴ , 125Se			
	5-Methyl-2-hydroxy-4- heptanone	79	64	5 15e	114/36, 1.4318 ²⁵			
	6-Methyl-2-hydroxy-4- heptanone	79	49	5 ¹⁵⁸	86/9, 1.4294 ²⁵ , 112Ph			
	4-Ethyl-4-hydroxy-3-	193	54	10 502	178/742			
	hexanone	198	59	10 502	89/35, 177Se			
	2,2-Dimethyl-5-hydroxy- 3-hexanone	79	68	5 ¹⁵⁸	73/10, 1.4243 ²⁵			
	2,5-Dimethyl-4-hydroxy- 3-hexanone (iso- butyroin)	104	75	5 636	70-75/14			
	2-(a-Hydroxy-n-propyl)- cyclopentanone	102	45	5 215	105/9			
9	3- Methyl-4-hydroxy-2- octanon e	102	35	5 211	98/16, 1.4404 ²⁹			

TABLE 37. HYDROXY KETONES

.

TABLE 37 (continued)

 C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic and	Alicyclic	Hydros	ry Ketones	(continued)
C 10	2,2,5,5-Tetramethyl-4- hydroxy-3-hexanone (pivaloin)	104	60	5 636	85-95/12
	2-(1'-Hydroxycyclo- pentyl)-cyclopentanone	102	40	5 ²⁰⁵	99/3, (31), 78-0x
	Aro	matic Hyd	гоху Ке	tones	
C,	m-Hydroxyacetophenone	93	48	5 493	(95)
-	2,4-Dihydroxyaceto- phenone	178	65	10 ¹²⁴	(144)
	2,5-Dihydroxyaceto- phenone	209	77	10 ⁶⁰⁷	(203)
	2,3,4-Trihydroxyace- tophenone	178	57	10 125	(172)
	2,4,6-Trihydroxyace- tophenone	178	87	10 ¹²⁹	(219)
C,	Acetylphenylcarbinol	95	72	5 ⁵²³	123/13, 113-Ox, 126Dn
		190	50	10 435	137/24, 194Se, 170Dn
	Methylben zoylcarbinol	95	87	5 523	123/14, 134-0x
	a,β-Dihydroxypropio- phenone	98	90	5 619	(82)
	o-Propioph enol	209 [°]	35	10 605	115/6
	p-Propioph e nol	178	82	10 ¹³⁰	(149), 170Se
		209	50	10 ⁶⁰⁵	(148)
C <u>1</u> 0	Acetylph e nylmethyl- carbinol	105	48	5 ⁶⁵⁰	132/10
C ₁₂	Phenyltrimethylace- tylcarbinol	105	49	5 ⁶⁴⁹	(47)
С.,	2-Hy droxy ben zoph en on e	97	96	5 536	(153)
	3-Hydroxy ben zoph enone	97	88	5 536	(116)
	4-Hydroxyben zophen on e	97	95	5 ⁵³⁶	(134)
с.,	Benzoin	79	93	5 ¹⁵⁶	(134)
14		79	97	5 157	
		104	92	5 640	(129)
		105	90	5 648	(133)
	o.o'-Dichlorobenzoin	104	40	5 646	(57)
	m, m - Dichloroben zoin	104	22	5 646	(76)
	p.p'-Dichlorobenzoin	104	88	5 646	(88)
	4, 4 - Dihydroxybenzil	97	8 9	5 541	(235)
C 15	p-Methoxybenzoin (benzanisoin)	104	31	5 644	(106)

	8		K	ETON	IES	Ch. 16
		TAI	3LE	37 (co	ontinued))
Cn	Compound	Med	hod	Yi eld (%)	Chapter	ref. B.p./mm., n ^t _D , (M.p.), Deriv.
	Arc	matic Hy	ydro	xy Ket	ones (co	ntinued)
C 16	Diphenylacetoin	18	7	45	10 372	(52), 169 Se, 84NBz
	þ,þ'-Dimethoxybenzoin (ani soin)	10	4	73	5 643	(113)
C17	2,4,6-Trimethylbenzoi	n 10	5	63	5 648	(103)
C 22	β -Naphthoin	10	4	78	5 642	(126), 172-Ox
_		Heteroc	ycli	c Hydr	oxy Keto	nes
C ₆	2-Hydroxyacetylfuran	11	4	74	5 764	(82)
C 10	a-Furoin	10	4	38	5 647	(135)
	2, 2 - Thenoin	10	4	30	5 763	(109)
		TABLE	38.	KET) ETHER	S
C _n	Compound	Method	Yie (%	ald ;;) Cha	apter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
-						
	Ali	phatic a	nd A	licycl	ic Keto I	Eth ers
C₄	Ain Mexthoxymethyl methyl	iphatic a 179	nd A 29	licycl)	ic Keto 1 10 ²⁰⁹	Ethers 115/756, 1.3982, 111pN, 163Dn
C₄	Air Mexthoxymethyl methyl ketone	179 187	nd A 29 48	Uicycl) 3	ic Keto 1 10 ²⁰⁹ 10 ³⁷³	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn *, 109pN*
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone	179 187 187	nd A 29 48 37	Micycl) 3 7	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone	179 179 187 187 187	nd A 29 48 37 72	Micycl) 3 7 3	ic Keto] 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone	179 187 187 187 121 195	nd A 29 48 37 72 72	Uicycl 3 7 3 5	ic Keto I 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ⁵⁷⁸	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl	179 187 187 187 121 195 187	nd A 29 48 37 72 79 49	Micycl) 3 7 3 5)	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷³ 6 ¹¹⁰ 10 ⁵⁷⁸ 10 ³⁷³	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone	179 187 187 121 195 187 187	nd A 29 48 37 72 75 49 59	Micycl) 3 7 3 5 5)	ic Keto 1 10 209 10 373 10 373 6 110 10 578 10 373 10 379	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn*
C4 C5	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone sym-Dimethoxyacetone	179 187 187 121 195 187 187 187	nd A 29 48 37 7 59 49 59	Micycl) 3 7 3 5)) 5	ic Keto 1 10 209 10 373 10 373 10 373 10 373 10 578 10 373 10 379 10 208	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se
C₄ C₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone sym-Dimethoxyacetone Ethoxyacetone	iphatic a 179 187 187 121 195 187 187 187 187 187	nd A 29 48 37 72 75 49 59 45 65	Micycl) 3 7 3 5)) 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ³⁷⁸ 10 ³⁷⁹ 10 ²⁰⁸ 10 ³⁸¹	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se*
C ₄ C ₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone Ethoxyacetone 1-Methoxypropyl methyl ketone	iphatic a 179 187 187 121 195 187 187 187 187 187 187	nd A 29 48 37 72 75 49 59 45 65 29	Micycl 33 7 35 5 5 5 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ³⁷⁸ 10 ³⁷⁹ 10 ³⁷⁸ 10 ³⁷⁹ 10 ³⁸¹ 10 ³⁷⁶	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se
C ₄ C ₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone Ethoxyacetone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone	iphatic a 179 187 187 121 195 187 187 187 187 187 187 187	nd A 29948 37 72 79 45 59 45 59 45 65 29 51	Micycl 33 7 35 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ³⁷⁸ 10 ³⁷⁹ 10 ²⁰⁸ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷⁸	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119
C ₄ C ₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone Ethoxyacetone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone Methoxymethyl isopropyl	iphatic a 179 187 187 187 121 195 187 187 187 187 187 187 187 187	nd A 299 48 37 72 75 75 55 45 55 45 55 45 55 259 51 30	Micycl 7 3 5 5 5 5 6 7 1 5 5 5 6 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ⁵⁷⁸ 10 ³⁷³ 10 ³⁷⁹ 10 ³⁰⁸ 10 ³⁷³ 10 ³⁷³	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119 144, 163Dn
C ₄ C ₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone Ethoxyacetone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone Methoxymethyl isopropyl ketone	iphatic a 179 187 187 187 121 195 187 187 187 187 187 187 187 187	nd A 299 48 37 79 79 459 459 459 455 655 299 51 300 44	Micycl 7 3 5 5 5 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹⁰ 10 ⁵⁷⁸ 10 ³⁷³ 10 ³⁷⁹ 10 ³⁰⁸ 10 ³⁷³ 10 ³⁷³ 10 ³⁷³	Ethers 115/756, 1.3982, 111pN, 163Dn 114/746, 1.3980, 159Dn*, 109pN* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119 144, 163Dn 145/748, 1.4078
C4 C5	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone Ethoxyacetone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone Methoxymethyl isopropyl ketone 1-Methoxymethyl ethyl ketone	iphatic a 179 187 187 121 195 187 187 187 187 187 187 187 187	nd A 29 48 37 79 79 59 45 59 45 59 45 59 45 59 51 30 44 22	Micycl 9 3 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 6 ¹¹⁰ 10 ³⁷⁵ 10 ³⁷⁵ 10 ³⁷³ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷³ 10 ³⁷⁴ 10 ³⁷⁵	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119 144, 163Dn 145/748, 1.4078 136/750, 1.4019, 120Se
C4 C5	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone Methoxymethyl isopropyl ketone 1-Methoxymethyl isopropyl ketone 4-Ethoxy-2-butanone	iphatic a 179 187 187 121 195 187 187 187 187 187 187 187 187	nd A 29 48 37 79 49 59 45 59 45 59 45 59 51 30 44 22 77	Micycl 9 3 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 10 ³⁷³ 6 ¹¹⁰ 10 ³⁷⁸ 10 ³⁷⁹ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷³ 10 ³⁷³ 10 ³⁷⁴ 10 ³⁷³ 10 ³⁷⁵ 6 ¹¹¹	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119 144, 163Dn 145/748, 1.4078 136/750, 1.4019, 120Se 150/764, 74/50
C ₄ C ₅	Air Mexthoxymethyl methyl ketone 1-Methoxyethyl methyl ketone 4-Methoxy-2-butanone Methoxymethyl ethyl ketone 5ym-Dimethoxyacetone 1-Methoxypropyl methyl ketone Methoxymethyl n-propyl ketone Methoxymethyl isopropyl ketone 1-Methoxyethyl ethyl ketone 4-Ethoxy-2-butanone Ethoxymethyl ethyl ketone	iphatic a 179 187 187 187 187 187 187 187 187	nd A 29948 37 75 45 55 45 55 45 55 55 55 55 55 55 51 30 44 22 77 84	Micycl 9 3 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ic Keto 1 10 ²⁰⁹ 10 ³⁷³ 6 ¹¹⁰ 10 ³⁷⁵ 10 ³⁷⁵ 10 ³⁷⁵ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷⁸ 10 ³⁷³ 10 ³⁷⁴ 10 ³⁷⁵ 6 ¹¹¹ 10 ³⁷⁷	Ethers 115/756, 1.3982, 111 <i>p</i> N, 163Dn 114/746, 1.3980, 159Dn*, 109 <i>p</i> N* 116/739, 1.3936, 141Se 66/50, 138/745, 1.4050 140/745 133/757, 1.4063 132, 198Dn* 78/18, 1.4174, 120Se 36/28, 1.4000, 96Se* 71/95, 1.4015 ²⁵ , 147Se 153/745, 1.4119 144, 163Dn 145/748, 1.4078 136/750, 1.4019, 120Se 150/764, 74/50 147/752, 1.4068

TABLE 38. KETO ETHERS

TABLE 38 (continued)

.

Cn	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
_	Aliphatic	and Ali	cyclic	Keto Ethers	(continued)
C6	Isopropoxymethyl methyl ketone	187 187	48 53	10 ³⁷⁶ 10 ³⁷⁴	35/10, 1.4004, 144Dn 142, 142Dn
с,	1-Methoxy-5-hexanone Methoxymethyl <i>n</i> -butyl	187 187	23 34	10 ³⁷⁹ 10 ³⁷³	67/8, 1.4180 ³⁵ , 70Dn 169/744, 1.4173
	Methoxymethyl isobutyl ketone	187	30	10 ³⁷³	164/751, 1.4140
	Methoxymethyl s-butyl ketone	187	32	10 373	164/757, 1.4162
	Methoxymethyl <i>t</i> -butyl ketone	187	19	10 ³⁷³	159/743, 1.4193
	1-Methoxyethyl <i>n</i> -propyl	187	33	10 375	155/746, 1.4091, 169Se
	ke ton •	187	73	10 ³⁸²	93/100, 170Se
	1-Methoxyethyl isopropyl ketone	187	13	10 ³⁷⁵	58/31, 1.4092, 146Se
	1-Methoxypropyl ethyl ketone	187	79	10 ³⁷⁸	63/40, 1.4080 ²⁵ , 145Se
	a-Methoxypinacolone	124	59	6173	83/4, 189Dn
	n-Propoxymethyl ethyl ketone	187	46	10 ³⁷⁶	56/4, 1.4122
	Isopropoxymethyl ethyl ketone	187	41	10 ³⁷⁶	47/11, 1.4082, 103Dn
	<i>sym</i> -Diethoxyacetone	187	67	10 ²⁰⁸	105/35, 1.4202, 91Se
	2-Methoxy cycloh exanone	179	46	10210	59/8, 1.4519 ²⁵
	4-Methoxycyclohexanone	179	65 /	10 207	85/14, 1.4560, 178Se, 150Dn
C8	Methoxymethyl <i>n</i> -amyl	187	46	10 ³⁷³	191/753, 1.4220
	Methoxymethyl isoamyl	187	71	10 ³⁷³	186/752, 1.4210
	1-Methoxyethyl <i>n</i> -butyl	187	63	10 ³⁷⁵	82/36, 1.4160, 154Se
	1-Methoxyethyl isobutyl	187	21	10 ³⁷⁵	52/9, 1.4128, 145Se
	1-Methoxyethyl s-butyl	187	43	10 ³⁷⁵	77/36, 1.4158, 127Se
	1-Methoxyethyl t-butyl	187	14	10 ³⁷⁵	64/34, 1.4130, 121Se
	1-Methoxypropyl <i>n</i> -propyl	187	69	10 ³⁷⁸	86/42, 1.4131 ²⁵ , 157Se
	1-Methoxypropyl iso- propyl ketone	187	44	10 ³⁷⁸	66/23, 1.4159, 136Se
	6-Ethoxy-2-hexanone	184	60†	10 291	92/13, 64Dn
	Ethoxymethyl s-butyl ketone	187	29	10 ³⁷⁷	173/743, 1.4158

KETONES

TABLE 38 (continued)

Ch. 10

.

TABLE 38 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{re} f.	B.p./mm., n ^t _D , (M.p.), Deriv.		
Aromatic Keto Ethers (continued)							
C 12	β-Isopropoxyethyl phenyl ketone	189	89	10404	1.5083, 175Dn		
с.,	β-Naphthoxyacetone	115	85	6 ⁵¹	(77)		
C 14	Phenoxymethyl phenyl ketone	187	45	10 ³⁸⁰	187/8, (74), 187Se		
	<i>m</i> -Methoxybenzophenone	179	25†	10211	(38)		
		187	77	10 ³⁸⁵	185/4, (40)		
	p-Methoxy ben zoph enone	178	89	10 ²⁶	(62.5), 180Dn		
	p-Phenoxyacetophenone	178	68	10 ¹⁰⁷	154/2, (49)		
C 15	p-Methoxyphenyl benzyl ketone	190	74	10 429	(77), 118-Ox		
	2-Methoxybenzil	179	60 †	10212	(72)		
	4-Methoxy benzil	179	90	10 ¹⁹⁸	(63), 124-Ox		
C 16	2-Ethoxybenzil	179	60†	10212	(102)		
	4-Ethoxybenzil	179	60 †	10 212	(71)		
	D eso x yani soin	221	98	10 348	(112)		
	2,2'-Dimethoxybenzil	179	40 t	10 21 2	(129)		
	3,3'-Dimethoxybenzil	179	60 †	10212	(83)		
	4,4 -Dimethoxybenzil	179	52†	10212	(133)		
	(anisil)	179	97	10 ¹⁹⁴	(132), 255Se*		
F	or explanations and symbo	ls see p BLE 39.	р. ж і-х кето	ii. Aldehydi	ES		
C _n	$\begin{array}{c} & \text{Yield} \\ n & \text{Compound} & \text{Method} & (\%) \\ \end{array} \begin{array}{c} \text{Yield} \\ \text{Chapterref. B.p./mm., } n_{D}^{t}, (M.p.), \text{ Deriv.} \end{array}$						

n	compound		(%)	on up to:	
с,	Methylglyoxal	157	50	9 ¹⁸¹	52/12, 148Ph, 254Se
C,	3-Formyl-2-butanone	146	75	9 ¹⁷³	
C,	t-Butyl glyoxal	157	` 52	9 ¹⁶⁰	115, 172Dn, 101-Ox
C,	Pivaloylacetaldehyde	146	50	9 ¹⁷¹	45/13, 126Cu
-	Hydroxymethylene- methyl isobutyl ketone	146	80	9 ¹⁷³	
	a-Formylcyclohexanone	146	60	9 ¹⁷⁴	88/14, 1.5130
C,	Cycl oh exyl gly oxal	157	59	9 ¹⁸²	72/17
	1-Methyl-3-hydroxy- methylene-2- <i>c</i> yclo- hexanone	146	45	9263	87/12
	Phenylglyoxal	152	87 t	9 ¹⁸⁹	(73)
		157	72	9 ¹⁷⁷	97/25
C,	p-Acetylbenzaldehyde	162	43	9 ²³⁴	190Ph, 181-Ox

C _n	Compound	Method	Yi eld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic	and Ali	cyclic	Keto Ethers	(continued)
C 8	1-Isopropoxy-3-methyl- 2-butanone	187	17	10 37 4	160, 88Dn
	Methyl a-(s-butoxy)- ethyl ketone	187	69	10 ³⁸³	163/750, 1.4080, 118Se
	Methoxymethyl cyclo- pentyl ketone	187	22	10 ³⁸⁴	87/14, 1.4486 ²⁵ , 129Dn
C,	3-Methyl-6-ethoxy-2- hexanone	184	69 †	10 ²⁹³	99/17
	Methoxymethyl cyclo- hexyl ketone	187	33	10 ³⁸⁴	111/21, 1.4552 ²³ , 102Se
		Aron	natic k	Ceto Ethers	
C,	Phenoxy acetone	115	93	6 ⁵¹	120/19
		187	16	10 ³⁸⁰	112/12, 1.5228, 176Se
	a-Methoxyacetophenone	124	79	6 ¹⁷³	126/19, 129Se
	p-Methoxyacetophenone	178	66	10 ²⁶	125/5, 198Se
		178	96	10 ⁶	139/15, (37), 87-Ox*
C 10	Phenoxymethyl ethyl ketone	187	62	10 ³⁸⁰	100/5, 1.5201, 102Se
	a-Methoxypropiophenone	124	60	6 ¹⁷³	89-95/4, 160Dn
	β-Methoxyethyl phenyl ketone	189	90	10 404	1.5250, 176Dn
	a-Ethoxyacetophenone	124	81	6173	127/11, 128Se
		187	68	10 ³⁷⁷	122/15, 1.5250
	p-Methoxypropiophenone	116	88	6%	152/19
		178	87	10°	125/4
	p-Ethoxyacetophenone	178	77	1019	147/16, 1.5429 25
	2,5-Dimethoxyace-	178	71	10134	160/15
	tophenone 3,5-Dimethoxyace- tophenone	190	57	10 ***	(43)
C11	γ-Phenoxypropyl methyl ketone	189	78	10 ²⁹²	121/2, (50), 110Dn
	Phenoxymethyl <i>n</i> -propyl ketone	187	64	10 ³⁸⁰	112/4, 1.5148, 108Se
	β-Ethoxyethyl phenyl ketone	189	82	10 404	1.5190, 161Dn
	<i>n</i> -Propoxymethyl phenyl ketone	187	37	10 ³⁷⁶	118/6, 1.5150
C 12	δ-Phenoxybutyl methyl ketone	184	61†	10 ²⁹²	130/2, 1.5071 ²⁵ , 101Dn
	β-n-Propoxyethyl phenyl ke tone	189	82	10 404	1.5193, 158Dn

382		Ch. 10			
Cn	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
C 11	Mesitylglyoxal	157	83	9 ¹⁷⁹	106/4, 1.5520 19
	2-Hydroxymethylene-1- tetralone	146	94	9 ²⁵⁹	180/28
C12	β -Naphthyl glyoxal	152	30	9 ¹⁸⁹	(109)
C14	p-Xenylglyoxal	152	90	9 ¹⁸⁹	(121)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 10

383

REFERENCES FOR CHAPTER 10 ¹ Bergmann, Schapiro, and Eschinazi, J. Am. Chem. Soc., 64, 559 (1942); Allen and Barker, Org. Syntheses, Coll. Vol. II, 156 (1943). ²Grummitt and Case, J. Am. Chem. Soc., 64, 880 (1942). ³Seidel and Engelfried, Ber., 69B, 2578 (1936). ⁴Mowry, Renoll, and Huber, J. Am. Chem. Soc., 68, 1105 (1946). ⁵ Bachmann, Carlson, and Moran, J. Org. Chem., 13, 916 (1948). ⁶ Noller and Adams, I. Am. Chem. Soc., 46, 1889 (1924). ⁷ Smith and Guss. J. Am. Chem. Soc., 59, 805 (1937). ^{*}Marvel, Saunders, and Overberger, J. Am. Chem. Soc., 68, 1086 (1946). ⁹ Allen, Org. Syntheses, Coll. Vol. II, 3 (1943). ¹⁰ Groggins, Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New York, 1947, pp. 759-770; Thomas, Anhydrous Aluminum Chloride in Organic Chemistry, Reinhold Publishing Corp., New York, 1941, pp. 205-393. ¹¹ Dermer et al., *I. Am. Chem. Soc.*, **63**, 2881 (1941). ¹² Groggins and Nagel, Ind. Eng. Chem., 26, 1313 (1934). ¹³ Riddell and Noller, J. Am. Chem. Soc., 52, 4365 (1930). 14 Calloway and Green, I. Am. Chem. Soc., 59, 809 (1937). ¹⁵ Johnson in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 114. ¹⁶ Calloway, Chem. Revs., 17, 327 (1935). ¹⁷ Johnson and Glenn, J. Am. Chem. Soc., 71, 1092 (1949). ¹⁸ Long and Henze, J. Am. Chem. Soc., 63, 1939 (1941). ¹⁹ Bachmann and Sheehan, J. Am. Chem. Soc., 62, 2688 (1940). ²⁰ Mosettig and van de Kamp, J. Am. Chem. Soc., 52, 3707 (1930). ²¹ Bachmann and Struve, I. Am. Chem. Soc., 58, 1660 (1936). ²² Riegel, Gold, and Kubico, J. Am. Chem. Soc., 64, 2221 (1942). ²³ Fieser and Cason, I. Am. Chem. Soc., 61, 1742 (1939). ²⁴ Fieser and Hershberg, J. Am. Chem. Soc., 61, 1272 (1939). ²⁵ Smith and Lo, J. Am. Chem. Soc., 70, 2209 (1948). ²⁶ Chodroff and Klein, J. Am. Chem. Soc., 70, 1647 (1948). ²⁷ Fahim, J. Chem. Soc., 520 (1949). 28 Pines, Strehlau, and Ipatieff, J. Am. Chem. Soc., 71, 3536 (1949). 29 Kosolapoff, J. Am. Chem. Soc., 69, 1651 (1947). ³⁰ Baddeley, J. Chem. Soc., S99 (1949). ³¹ Ray and Rieveschl, Org. Syntheses, 28, 3 (1948); cf. ref. 4. ³² Merritt and Braun, Org. Syntheses, 30, 1 (1950). ³³ Mason and Terry, J. Am. Chem. Soc., 62, 1622 (1940). 34 Read, I. Am. Chem. Soc., 44, 1751 (1922). 35 Vogel, J. Chem. Soc., 612 (1948). ³⁰ Fourneau and Barrelet, Bull. soc. chim. France, 47, 77 (1930). ³⁷ Maxwell and Adams, J. Am. Chem. Soc., 52, 2959 (1930). ³⁸ Weygand and Mensdorf, Ber., 68B, 1831 (1935). ³⁹ Hennion and McLease, J. Am. Chem. Soc., 64, 2421 (1942). ⁴⁰ Kadesch and Weller, J. Am. Chem. Soc., 63, 1311 (1941). 41 Kloetzel and Herzog, J. Am. Chem. Soc., 72, 1991 (1950). 42 Williams and Osborn, J. Am. Chem. Soc., 61, 3438 (1939). 43 Immediata and Day, I. Org. Chem., 5, 516 (1940). 44 Sachanen and Caesar, Ind. Eng. Chem., 38, 45 (1946). 45 Johnson and Offenhauer, J. Am. Chem. Soc., 67, 1046 (1945).

⁴⁶ Hughes, Ingold, and Taher, J. Chem. Soc., 953 (1940). ⁴⁷ Huber et al., J. Am. Chem. Soc., 68, 1109 (1946). 48 Drake and Bronitsky, J. Am. Chem. Soc., 52, 3718 (1930). " Fieser and Kilmer, J. Am. Chem. Soc., 62, 1357 (1940). ⁵⁰ Steyermark and Gardner, J. Am. Chem. Soc., 52, 4886 (1930). ⁵¹ Meyer, Org. Syntheses, Coll. Vol. I, 60 (1941). ⁵² Bergmann, J. Org. Chem., 4, 4, (1939). 53 Von and Wagner, J. Org. Chem., 9, 163 (1944). ⁵⁴ Fuson et al., J. Am. Chem. Soc., 66, 682 (1944). ³⁵ May and Mosettig, J. Am. Chem. Soc., 70, 686, 688 (1948). ⁵⁶ Shildneck, Org. Syntheses, Coll. Vol. II, 236 (1943). ⁵⁷ Cook, J. Chem. Soc., 1284 (1926). ³⁸ Bachmann, J. Am. Chem. Soc., 57, 555 (1935). ⁵⁹ Hartough and Kosak, I. Am. Chem. Soc., 68, 2639 (1946). 60 Hartough and Kosak, J. Am. Chem. Soc., 69, 1012 (1947). ⁶¹ Hartough, Kosak, and Sardella, J. Am. Chem. Soc., 69, 1014 (1947). ⁶² Johnson and May, Org. Syntheses, Coll. Vol. II, 8 (1943); cf. ref. 4. 63 Minnis, Org. Syntheses, Coll. Vol. II, 520 (1943); refs. 59 and 60. ⁶⁴Levine et al., J. Org. Chem., 13, 409 (1948); J. Am. Chem. Soc., 71, 1207 (1949). 65 Hartough and Kosak, J. Am. Chem. Soc., 70, 867 (1948). 66 Hartough et al., J. Am. Chem. Soc., 69, 3093, 3096, 3098 (1947); Kosak and Hartough, Org. Syntheses, 28, 1 (1948). ⁶⁷ Emling, Beatty, and Stevens, J. Am. Chem. Soc., 71, 703 (1949). 66 Farrar and Levine, J. Am. Chem. Soc., 72, 3695 (1950). 69 Gilman, Rowe, and Dickey, Rec. trav. chim., 52, 396 (1933). ⁷⁰Hansch and Lindwall, J. Org. Chem., 10, 383 (1945); cf. ref. 71. ⁷¹ Farrar and Levine, J. Am. Chem. Soc., 72, 4433 (1950). 72 Burger and Bryant, J. Org. Chem., 4, 119 (1939). 73 Buu-Hoi and Royer, Rec. trav. chim., 69, 866 (1950). ⁷⁴ Hart and Tebbe, J. Am. Chem. Soc., 72, 3286 (1950). 75 Snyder and Werber, J. Am. Chem. Soc., 72, 2965 (1950). ⁷⁶ Levin, Graham, and Kolloff, J. Org. Chem., 9, 384 (1944). ⁷⁷ Cope and Field, I. Am. Chem. Soc., 71, 1591 (1949). 78 Pacaud and Allen, Org. Syntheses, Coll. Vol. II, 336 (1943). ⁷⁹ Martin and Fieser, Org. Syntheses, Coll. Vol. II, 569 (1943). ⁸⁰ Kloetzel, J. Am. Chem. Soc., 62, 1708 (1940). ⁸¹ Alexander and Mudrak, J. Am. Chem. Soc., 72, 3194 (1950). ⁸² Adkins and Davis, J. Am. Chem. Soc., 71, 2955 (1949). ⁸³ Weygand and Schröder, Ber., 74B, 1847 (1941). ⁸⁴ Bachmann and Struve, J. Am. Chem. Soc., 62, 1618 (1940). ⁸⁵ Newman, J. Am. Chem. Soc., 62, 1685 (1940). ⁸⁶ Arnold, Buckley, and Richter, J. Am. Chem. Soc., 69, 2323 (1947). ⁸⁷ Fieser and Seligman, J. Am. Chem. Soc., 60, 170 (1938). 88 Thomas and Nathan, J. Am. Chem. Soc., 70, 331 (1948). ⁸⁹ Fuson and Walker, Org. Syntheses, Coll. Vol. II, 169 (1943). 90 Boese. Ind. Eng. Chem., 32, 16 (1940). ⁹¹ Lutz, Org. Syntheses, 20, 29 (1940). 92 Christ and Fuson, J. Am. Chem. Soc., 59, 893 (1937). 93 Colonge and Duroux, Bull. soc. chim. France, (5e) 7, 459 (1940). ⁹⁴Colonge and Mostafavi, Bull. soc. chim. France, (5) 5, 1478 (1938).

REFERENCES FOR CHAPTER 10

95 Byrans and Doumani, Ind. Eng. Chem., 35, 349 (1943). ⁹⁶ Fuson, Christ, and Whitman, J. Am. Chem. Soc., 58, 2451 (1936). 97 Royals and Hendry, J. Org. Chem., 15, 1147 (1950). 98 McMahon et al., J. Am. Chem. Soc., 70, 2971 (1948). 99 Price and Pappalardo, J. Am. Chem. Soc., 72, 2613 (1950). ¹⁰⁰ Darzens, Compt. rend., 211, 435 (1940). ¹⁰¹ Colonge and Mostafavi, Bull. soc. chim. France, (5) 6, 341-354 (1939). ¹⁰² Hawthorne and Robinson, J. Chem. Soc., 763 (1936). ¹⁰³ Ruzicka, Koolhaas, and Wind, Helv. Chim. Acta, 14, 1157 (1931). ¹⁰⁴ Jones and Ramage, J. Chem. Soc., 1856 (1938). ¹⁰⁵ Truce and Sack, J. Am. Chem. Soc., 70, 3959 (1948). ¹⁰⁶ Campbell, LaForge, and Campbell, J. Org. Chem., 14, 348 (1949). ¹⁰⁷ Conant and Kirner, J. Am. Chem. Soc., 46, 239 (1924). ¹⁰⁸ Cohen, Wolosinski, and Scheuer, J. Am. Chem. Soc., 71, 3440 (1949). ¹⁰⁹ Baker and Barkenbus, J. Am. Chem. Soc., 58, 263 (1936). ¹¹⁰ Renoll, I. Am. Chem. Soc., 68, 1160 (1946). ¹¹¹ Fosdick and Campaigne, J. Am. Chem. Soc., 63, 974 (1941); Buu-Hoi, Hoan, and Jacquignon, Rec. trav. chim., 68, 784 (1949). ¹¹² Foreman and McElvain, J. Am. Chem. Soc., 62, 1436 (1940). ¹¹³ Adams and Noller. Org. Syntheses. Coll. Vol. I, 109 (1941). ¹¹⁴ Kimura, Ber., 67, 395 (1934). ¹¹⁵ Houben and Fischer, *I. prakt. Chem.*, **123**, 313 (1929). ¹¹⁶ Davis, I. Am. Chem. Soc., 63, 1677 (1941). 117 Patrick, McBee, and Hass, J. Am. Chem. Soc., 68, 1135 (1946). ¹¹⁸ Berliner, J. Am. Chem. Soc., 66, 534 (1944). ¹¹⁹ Newton and Groggins, Ind. Eng. Chem., 27, 1397 (1935). ¹²⁰ Bergmann, J. Org. Chem., 4, 9 (1939). ¹²¹ Borsche and Scriba, Ann., 540, 90 (1939). ¹²² Fisher, Oakwood, and Fuson, J. Am. Chem. Soc., 52, 5038 (1930). ¹²³ Sandulesco and Girard, Bull. soc. chim. France, (4) 47, 1300 (1930); cf. Close, Tiffany, and Spielman, J. Am. Chem. Soc., 71, 1265 (1949). ¹²⁴ Cooper, Org. Syntheses, 21, 103 (1941). 125 Badhwar and Venkataraman, Org. Syntheses, Coll. Vol. II, 304 (1943). 126 Brewster and Watters, J. Am. Chem. Soc., 64, 2578 (1942). 127 Coulthard, Marshall, and Pyman, J. Chem. Soc., 280 (1930). 128 Spoerri and Dubois in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 387. 129 Gulati, Seth, and Venkataraman, Org. Syntheses, Coll. Vol. II, 522 (1943). ¹³⁰ v. Auwers, Potz, and Noll, Ann., 535, 228 (1938). ¹³¹ Ungnade, Chem. Revs., 38, 419 (1946). 132 Stuart and Tallman, J. Am. Chem. Soc., 65, 1579 (1943); Skraup and Nieten, Ber. 57, 1294 (1924). 133 Buck and Ide, J. Am. Chem. Soc., 54, 3012 (1932). ¹³⁴ Villani and Lang, J. Am. Chem. Soc., 72, 2301 (1950). 135 Somerville and Allen, Org. Syntheses, Coll. Vol. II, 81 (1943). ¹³⁶ Fieser, Gates, and Kilmer, J. Am. Chem. Soc., 62, 2968 (1940). ¹³⁷ Fieser and Price, I. Am. Chem. Soc., 58, 1841 (1936). ¹³⁸ Fieser and Peters, J. Am. Chem. Soc., 54, 4347 (1932). ¹³⁹ Fieser et al., I. Am. Chem. Soc., 70, 3197 (1948). 140 Hill, J. Am. Chem. Soc., 54, 4105 (1932). 141 Papa et al., I. Am. Chem. Soc., 70, 3356 (1948).

142 Berliner in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 229. 143 Henze and Holder, J. Am. Chem. Soc., 63, 1943 (1941). 144 Groggins, Ind. Eng. Chem., 22, 620 (1930). 145 Groggins and Newton, Ind. Eng. Chem., 21, 369 (1929). 146 Fieser, Org. Syntheses, 20, 1 (1940). 147 Papa, Schwenk, and Hankin, J. Am. Chem. Soc., 69, 3018 (1947). 140 McElvain, J. Am. Chem. Soc., 51, 3124 (1929); Roberts and McElvain, ibid., 59, 2007 (1937). 149 Sengupta, J. prakt. Chem., 151, 87 (1938). ¹⁵⁰ Blicke and Tsao, J. Am. Chem. Soc., 66, 1645 (1944). ¹⁵¹ Blicke and Feldkamp, J. Am. Chem. Soc., 66, 1089 (1944). ¹⁵² Blicke and Grier, J. Am. Chem. Soc., 65, 1726 (1943). 153 Papa et al., I. Am. Chem. Soc., 68, 2133 (1946). ¹⁵⁴ Ferber and Brückner, Ber., 72B, 999 (1939). 155 Steinkopf and Günther, Ann., 522, 31 (1936). ¹³⁶ Fuson, Ullyot, and Gehrt, J. Am. Chem. Soc., 60, 1200 (1938). 157 Yoke, Louder, and Smith, J. Chem. Education, 10, 374 (1933). 158 Sherrill, J. Am. Chem. Soc., 52, 1990 (1930). ¹⁵⁹ Young and Roberts, J. Am. Chem. Soc., 67, 321 (1945). ¹⁶⁰ Bennett and Elder, J. Chem. Education, 13, 273 (1936). ¹⁶¹ Grignard and Fluchaire, Ann. chim., (10) 9, 14 (1928). ¹⁶² Smith et al., J. Am. Chem. Soc., 61, 3082 (1939). ¹⁶³ Wagner and Moore, J. Am. Chem. Soc., 72, 974 (1950). 164 Whitmore and Lewis, J. Am. Chem. Soc., 64, 2965 (1942). 165 Whitmore and Stahly, J. Am. Chem. Soc., 55, 4155 (1933). 166 Mann and Porter. J. Chem. Soc., 456 (1944). ¹⁶⁷ Powell, J. Am. Chem. Soc., 46, 2516 (1924). 168 Mosher and Langerak, J. Am. Chem. Soc., 71, 286 (1949). 169 Signaigo and Cramer, J. Am. Chem. Soc., 55, 3329 (1933). 170 Macbeth and Mills, J. Chem. Soc., 711 (1945). ¹⁷¹ Unenade and McLaren, J. Org. Chem., 10, 30 (1945). ¹⁷² Pezold and Shriner, J. Am. Chem. Soc., 54, 4709 (1932). ¹⁷³ Price and Karabinos, J. Am. Chem. Soc., 62, 1160 (1940). 174 Bartlett and Schneider, J. Am. Chem. Soc., 67, 143 (1945). 175 Westheimer, Chem. Revs., 45, 419 (1949). ¹⁷⁶ Osterburg and Kendall. I. Am. Chem. Soc., 42, 2618 (1920). 177 Gredy, Ann. chim., (11) 4, 22 (1935). 178 Kornfeld, Jones, and Parke, J. Am. Chem. Soc., 71, 150 (1949). ¹⁷⁹ Carlin, J. Am. Chem. Soc., 67, 932 (1945). 180 Ungnade and Ludutsky, J. Org. Chem., 10, 521 (1945). 181 Frank, Berry, and Shotwell, J. Am. Chem. Soc., 71, 3889 (1949). 182 Adkins and Hager, J. Am. Chem. Soc., 71, 2965 (1949). 183 Adkins and Hager, J. Am. Chem. Soc., 71, 2967 (1949). 184 Shunk and Wilds, J. Am. Chem. Soc., 71, 3946 (1949). 185 Lock and Schreckeneder, Ber., 72B, 516 (1939). 186 Neidig et al., J. Am. Chem. Soc., 72, 4617 (1950). ¹⁸⁷ Tsatsas, Ann. chim., (12) 1, 348 (1946). 100 Ungnade, J. Org. Chem., 13, 364 (1948). 189 Fieser and Cason, J. Am. Chem. Soc., 62, 434 (1940). ¹⁹⁰Clarke and Dreger, Org. Syntheses, Coll. Vol. I, 87 (1941).

¹⁹¹ Rugeli and Herzog, Helv. Chim. Acta. 29, 111 (1946). 192 Kinney, J. Am. Chem. Soc., 51, 1596 (1929). 193 Pearl and Dehn, J. Am. Chem. Soc., 60, 57 (1938). ¹⁹⁴ Weiss and Appel, J. Am. Chem. Soc., 70, 3666 (1948); Klein, ibid., 63, 1474 (1941). 195 Gilman and Broadbent, J. Am. Chem. Soc., 70, 2619 (1948). 196 Backer, Rec. trav. chim., 57, 978 (1938). ¹⁹⁷ Fuson and Robertson, I. Org. Chem., 7, 469 (1942). ¹⁹⁸ Kinney, J. Am. Chem. Soc., 51, 1596 (1929); cf. ref. 190. 199 Jenkins, Buck, and Bigelow, J. Am. Chem. Soc., 52, 4496 (1930). 200 Hartman and Dickey, J. Am. Chem. Soc., 55, 1229 (1933). ²⁰¹ Leonard and Mader, J. Am. Chem. Soc., 72, 5390 (1950). 202 Dane, Schmitt, and Rautenstrauch, Ann., 532, 37 (1937). 203 Bowden, Heilbron, Jones, and Weedon, J. Chem. Soc., 39 (1946). ²⁰⁴ Braude et al., J. Chem. Soc., 612 (1949). 205 Conant and Quayle, Org. Syntheses, Coll. Vol. I. 211 (1941). ²⁰⁶ Elderfield and Ressler, J. Am. Chem. Soc., 72, 4067 (1950). ²⁰⁷ Marvel and Walton, J. Org. Chem., 7, 88 (1942). 208 Henze and Rodgers, J. Am. Chem. Soc., 61, 433 (1939); 62, 1759 (1940). 209 Mariella and Leech, J. Am. Chem. Soc., 71, 3558 (1949). ²¹⁰ Adkins et al., I. Am. Chem. Soc., 71, 3629 (1949). ²¹¹ Lea and Robinson, J. Chem. Soc., 2354 (1926). ²¹² Leonard et al., J. Am. Chem. Soc., 71, 2997 (1949). 213 Baer and Kates, J. Am. Chem. Soc., 67, 1482 (1945). ²¹⁴ Hurd and McNamee, Org. Syntheses, Coll. Vol. I, 244 (1941), note 11. 215 Dimroth and Resin, Ber., 75B, 322 (1942), ²¹⁶ Russell and Vanderwerf, J. Am. Chem. Soc., 69, 11 (1947). ²¹⁷ McRae, Charlesworth, and Alexander, Can. J. Research, 21B, 1 (1943). ²¹⁸ Colonge, Watteau, and Cumet, Bull. soc. chim. France, (5) 14, 246 (1947). ²¹⁹ Long and Troutman, J. Am. Chem. Soc., 71, 2469 (1949); Parkes and Williams. J. Chem. Soc., 67 (1934). ²²⁰ Ford-Moore and Rydon, J. Chem. Soc., 679 (1946). ²²¹ Bersin in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 143. ²²² Oppenauer, Org. Syntheses, 21, 18 (1941). 223 Adkins and Franklin, J. Am. Chem. Soc., 63, 2381 (1941). 224 Woodward, Wendler, and Brutschy, J. Am. Chem. Soc., 67, 1425 (1945); Lutz. Jordan, and Truett, ibid., 72, 4085 (1950). 225 Hurd, Greengard, and Roe, J. Am. Chem. Soc., 61, 3359 (1939). 226 Paul, Bull, soc. chim. France, (5e) 8, 514-518 (1941). ²²⁷ Kleiderer and Kornfeld, J. Org. Chem., 13, 455 (1948). 228 Speck and Bost, J. Org. Chem., 11, 788 (1946). 229 Kyrides and Zienty, J. Am. Chem. Soc., 68, 1385 (1946). ²³⁰ Kolfenbach et al., Ind. Eng. Chem., 37, 1178 (1945). ²³¹ Henne and Perilstein, J. Am. Chem. Soc., 65, 2183 (1943). ²³² Church, Whitmore, and McGrew, J. Am. Chem. Soc., 56, 181 (1934). ²³³ Henne and Hill, J. Am. Chem. Soc., 65, 752 (1943). ²³⁴ Cook and Whitmore, J. Am. Chem. Soc., 63, 3540 (1941). ²³⁵ Moersch and Whitmore, J. Am. Chem. Soc., 71, 819 (1949); Mosher and Cox, ibid., 72, 3701 (1950). ²³⁶Henne, Shepard, and Young, J. Am. Chem. Soc., 72, 3577 (1950).

387

237 Roberts and Sauer. I. Am. Chem. Soc., 71, 3928 (1949). ²³⁸ Mowry, I. Am. Chem. Soc., 67, 1050 (1945). ¹³⁹ Emerson et al., J. Am. Chem. Soc., 68, 1666 (1946). ²⁴⁰ Senseman and Stubbs, Ind. Eng. Chem., 25, 1286 (1933). ¹⁴¹ Thompson, Org. Syntheses, 20, 94 (1940). ²⁴² Huntress, Hershberg, and Cliff, J. Am. Chem. Soc., 53, 2720 (1931). 243 Winkler, Chem. Ber., 81, 256 (1948). ²⁴⁴ Huntress and Walter, I. Am. Chem. Soc., 70, 3704 (1948). ²⁴⁵ Emerson and Lucas, *I. Am. Chem. Soc.*, 70, 1180 (1948). ¹⁴⁶ Emerson et al., J. Am. Chem. Soc., 68, 674 (1946). ²⁴⁷ Emerson et al., I. Am. Chem. Soc., 69, 1905 (1947). 248 Rivier and Farine, Helv. Chim. Acta, 12, 865 (1929). 249 Bartlett and Schneider, J. Am. Chem. Soc., 67, 141 (1945). 250 Clarke, I. Am. Chem. Soc., 34, 679 (1911). ²⁵¹ Clarke, J. Am. Chem. Soc., 33, 529 (1911). 252 Willstätter and Hatt, Ann., 418, 152 (1919). 253 Connor and Adkins, J. Am. Chem. Soc., 54, 3420 (1932). ²⁵⁴ Renfrow, J. Am. Chem. Soc., 66, 144 (1944). 255 Renfrow and Walker, J. Am. Chem. Soc., 70, 3957 (1948). ²⁵⁶ Johnson and Hager, Org. Syntheses, Coll. Vol. 1, 351 (1941). ²⁵⁷ Dehn and Jackson, I. Am. Chem. Soc., 55, 4284 (1933). 258 Adams, Abramovitch, and Hauser, J. Am. Chem. Soc., 65, 552 (1943). 259 Briese and McElvain, J. Am. Chem. Soc., 55, 1697 (1933). ²⁶⁰ Leuchs, Heller, and Hoffman, Ber., 62, 875 (1929). ²⁶¹ Cope, Hofmann, and Hardy, I. Am. Chem. Soc., 63, 1855 (1941). ²⁶² Hudson and Hauser, I. Am. Chem. Soc., 63, 3163 (1941). ²⁶³ Bouveault and Locquin, Bull. soc. chim. France, (3) 31, 1153 (1940). ²⁶⁴ Price and Meisel, J. Am. Chem. Soc., 69, 1497 (1947). 265 Strating and Backer, Rec. trav. chim., 55, 904 (1936). 266 Hückel and Kindler. Chem. Ber., 80, 203 (1947). 267 Shive, Crouch, and Lochte, J. Am. Chem. Soc., 63, 2983 (1941). 268 Case and Reid, J. Am. Chem. Soc., 50, 3064 (1928). 269 Cornubert and Borrel, Bull. soc. chim. France, (4) 47, 307 (1930). ²⁷⁰ Comubert et al., Bull. soc. chim. France, (5e) 12, 371 (1945). ²⁷¹ King, Barltrop, and Walley, J. Chem. Soc., 279 (1945). 272 Rydon, J. Chem. Soc., 1549 (1939). ²⁷³ Julian and Oliver, Org. Syntheses, Coll. Vol. II, 391 (1943). ²⁷⁴ Mercer, Robertson, and Cahn, J. Chem. Soc., 999 (1935). ²⁷⁵ Heilbron et al., I. Chem. Soc., 1338 (1931). 276 Ramart-Lucas and Labaune, Ann. chim., (10) 16, 295 (1931). ²⁷⁷ Mosettig and van de Kamp, J. Am. Chem. Soc., 55, 3445 (1933). ²⁷⁸ Dean, Dickinson, Quayle, and Lester, J. Am. Chem. Soc., 72, 1740 (1950). 279 Kolloff and Hunter, J. Am. Chem. Soc., 63, 492 (1941). 280 Strong and McElvain, J. Am. Chem. Soc., 55, 816 (1933). 281 Campball et al., J. Am. Chem. Soc., 68, 1845 (1946). 282 Youtz and Perkins, J. Am. Chem. Soc., 51, 3514 (1929). 283 Ruggli and Gassenmeier, Helv. Chim. Acta, 22, 501 (1939). 284 Schechter, Green, and LaForge, J. Am. Chem. Soc., 71, 3165 (1949). 285 Ruzicka and Schinz, Helv. Chim. Acta, 23, 964 (1940). 286 Cope, Hoyle, and Heyl, I. Am. Chem. Soc., 63, 1843 (1941). ²⁸⁷ v. Braun and Rudolph, Ber., 67, 278 (1934).

REFERENCES FOR CHAPTER 10

288 McPhee and Klingsberg, J. Am. Chem. Soc., 66, 1132 (1944). 289 Becker, Helv. Chim. Acta. 32, 1584 (1949). 290 Sharp, Sutherland, and Wilson, J. Chem. Soc., 346 (1943). ²⁹¹ Anderson, Crawford, and Sherrill, J. Am. Chem. Soc., 68, 1294 (1946). 292 Brown and Partridge, I. Am. Chem. Soc. 67, 1423 (1945). ²⁹³ Finkelstein and Elderfield, I. Org. Chem., 4, 371 (1939). 294 Howard and Fraser. Org. Syntheses. Coll. Vol. 1, 475 (1941). 295 Adickes and Andresen, Ann., 555, 41 (1943). 296 Huan. Bull. soc. chim. France, (5e) 5, 1341 (1938). ²⁹⁷ Gaubert, Linstead, and Rydon, I. Chem. Soc., 1977 (1937). 298 Ames and Bowman, J. Chem. Soc., 329 (1950). 299 Kögl, Halberstadt, and Barendregt, Rec. trav. chim., 68, 387 (1949). 300 Openshaw and Robinson, J. Chem. Soc., 944 (1937). ³⁰¹ Fieser et al., J. Am. Chem. Soc., 57, 1852 (1935); 58, 2320 (1936). 302 Friedmann. I. prakt. Chem., 146, 159 (1936). 303 Oldham and Ubbelohde, J. Chem. Soc., 201 (1939). 304 Bouveault and Bongert, Bull. soc. chim. France, (3) 27, 1038, 1046, 1088 $(1902)_{-}$ 305 Bouveault and Locquin, Bull. soc. chim. France, (3) 31, 588, 1153 (1940). 306 Breslow et al., J. Am. Chem. Soc., 66, 1921 (1944). 307 Elderfield et al., I. Am. Chem. Soc., 69, 1258 (1947). 308 Mannick and Margotte, Ber., 68B, 278 (1935). 309 Elderfield et al., I. Am. Chem. Soc. 68, 1584 (1946). ³¹⁰ Jackman et al., J. Am. Chem. Soc., 70, 2884 (1948). ³¹¹ Jones et al., J. Am. Chem. Soc., 70, 2846 (1948). 312 Walker and Hauser, J. Am. Chem. Soc., 68, 1386 (1946); cf. ref. 313. ³¹³ Bowman, I. Chem. Soc., 322 (1950). ³¹⁴ Revnolds and Hauser, Org. Syntheses, 30, 70 (1950). ³¹⁵ Long and Troutman, J. Am. Chem. Soc., 71, 2473 (1949). ³¹⁶ Bowman, I. Chem. Soc., 325 (1950). ³¹⁷ Novce. I. Chem. Education, 26, 275 (1949). ³¹⁸ Sabatier and Mailhe, Compt. rend., 158, 831 (1914); Senderens, Ann. chim., (8) 28, 243-343 (1913). ³¹⁹ Herbst and Manske, Org. Syntheses, Coll. Vol. 11, 389 (1943). ³²⁰ Kistler, Swann, and Appel, Ind. Eng. Chem., 26, 388 (1934). ³²¹ Swann, Appel, and Kistler, Ind. Eng. Chem., 26, 1014 (1934). 322 Senderens, Bull. soc. chim. France, (4) 3, 824 (1908). 323 Perkins and Kenyon, J. Chem. Soc., 99, 57 (1911); 101, 629 (1912); 103, 1936 (1913). 324 Cowan, Jeffery, and Vogel, J. Chem. Soc., 171 (1940). 325 Krafft, Ber., 15, 1712 (1879). 326 Morgan and Holmes, J. Soc. Chem. Ind. (London), 44, 109T (1925). 327 Thorpe and Kon, Org. Syntheses, Coll. Vol. I, 192 (1941). 328 Curtis, Dobson, and Hatt, J. Soc. Chem. Ind. (London), 66, 402 (1947). 329 Dougherty, J. Am. Chem. Soc., 50, 571 (1928). 330 Hurd and Thomas, I. Am. Chem. Soc., 58, 1240 (1936). 331 Miller, Cook, and Whitmore, J. Am. Chem. Soc., 72, 2732 (1950). 332 Wibaut et al., Rec. trav. chim., 58, 362 (1939). 333 Vogel, I. Chem. Soc., 912 (1931). 334 Henshall, I. Soc. Chem. Ind. (London), 62, 127 (1943). 335 Vogel, J. Chem. Soc., 2033 (1928).

KETONES

336 Birch et al., J. Am. Chem. Soc., 71, 1362 (1949). ³³⁷ Winkler. Chem. Ber., 81, 258 (1948). 336 Maeder, Helv. Chim. Acta, 29, 124 (1946). 339 Webb and Webb, 1. Am. Chem. Soc., 71, 2285 (1949). 340 Burger and Walter, J. Am. Chem. Soc., 72, 1988 (1950). 341 Yarnall and Wallis, J. Org. Chem., 4, 270 (1939). ³⁴² Newman and Magerlein in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 421. 343 v. Braun and Kroper, Ber., 62, 2880 (1929); v. Braun and Teuffert, ibid., 62, 235 (1929). . ³⁴⁴ v. Braun, Ber. 67, 218 (1934); Newman, J. Am. Chem. Soc., 57, 732 (1935). 345 Rohrmann, Jones, and Shonle, J. Am. Chem. Soc., 66, 1856 (1944). 346 Nunn and Henze, 1. Org. Chem., 12, 541 (1947). 347 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2098 (1936); Callen, Dornfeld, and Coleman, Org. Syntheses, 28, 6 (1948). 348 Bachmann, I. Am. Chem. Soc., 56, 1365 (1934). 349 Whitmore et al., J. Am. Chem. Soc., 67, 2059 (1945). 350 Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2239 (1945). 351 Blicke, I. Am. Chem. Soc., 49, 2847 (1927). 352 Gilman and Jacoby, J. Org. Chem., 3, 108 (1938). 353 Shriner and Turner, J. Am. Chem. Soc., 52, 1268 (1930). ³³⁴ Hauser, Humphlett, and Weiss, J. Am. Chem. Soc., 70, 426 (1948). 355 Pearson, J. Am. Chem. Soc., 72, 4169 (1950). 336 Hauser and Renfrow, J. Am. Chem. Soc., 59, 1823 (1937). 357 Rhinesmith, J. Am. Chem. Soc., 58, 596 (1936). 334 Kumler, Strait, and Alpen, J. Am. Chem. Soc., 72, 1463 (1950). 339 Alpen, Kumler, and Strait, J. Am. Chem. Soc., 72, 4560 (1950). 360 Baddeley and Kenner, J. Chem. Soc., 303 (1935). ³⁶¹ Bachmann, Carlson, and Moran, J. Org. Chem., 13, 920 (1948). 362 Whitmore et al., 1. Am. Chem. Soc., 69, 236 (1947). 363 Reeve and Adkins, J. Am. Chem. Soc., 62, 2874 (1940). 364 LaForge, J. Am. Chem. Soc., 50, 2477 (1928). 365 Frank and Weatherbee, J. Am. Chem. Soc., 70, 3482 (1948). 366 Vogel and Schinz, Helv. Chim. Acta, 33, 123 (1950). ³⁶⁷ Cagniant, Bull. soc. chim. France, (5) 16, 847 (1949). 368 Behrens et al., J. Am. Chem. Soc., 70, 2837 (1948). 369 Wilson and Henze, J. Am. Chem. Soc., 63, 2112 (1941). ³⁷⁰ Borsche and Herbert, Ann., 546, 297 (1941). ³⁷¹ Young, McKinnis, Webb, and Roberts, J. Am. Chem. Soc., 68, 295 (1946). ³⁷² Ruggli and Hegedus, Helv. Chim. Acta, 25, 1292 (1942); Ruggli and Zeller, ibid. 28, 744 (1945). ³⁷³ Henze and Rigler, I. Am. Chem. Soc., 56, 1350 (1934). 374 Barnes and Budde, J. Am. Chem. Soc., 68, 2339 (1946). 375 Wallace and Henze, I. Am. Chem. Soc., 64, 2882 (1942). 376 Henze et al., J. Am. Chem. Soc., 64, 1222 (1942). 377 Rigler and Henze, J. Am. Chem. Soc., 58, 474 (1936). ³⁷⁸ Henze, Benz, and Sutherland, I. Am. Chem. Soc., 71, 2122 (1949). 379 Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1334 (1950). 380 Whitney and Henze, J. Am. Chem. Soc., 60, 1148 (1938). ³⁰¹ Cross and Henze, J. Am. Chem. Soc., 61, 2730 (1939). 382 Niemann, Benson, and Mead, I. Org. Chem., 8, 397 (1943).

REFERENCES FOR CHAPTER 10

383 Speer and Henze, J. Am. Chem. Soc., 61, 1226 (1939). 384 Rubin, Paist, and Elderfield, J. Org. Chem., 6, 260 (1941). 385 Bachmann and Ferguson. J. Am. Chem. Soc., 56, 2082 (1934), 386 Anderson et al., J. Am. Chem. Soc., 67, 2197 (1945). ³⁸⁷ Decombe, Ann. chim., (10) 18, 92 (1932). ³⁸⁸ Humphlett, Weiss, and Hauser, J. Am. Chem. Soc., 70, 4020 (1948). 389 Newman and Smith. J. Org. Chem., 13, 592 (1948). ³⁹⁰ Newman and Booth, J. Am. Chem. Soc., 67, 154 (1945). ³⁹¹ Campaigne and Reid, J. Am. Chem. Soc., 68, 1663 (1946). 392 de Benneville, J. Org. Chem., 6, 462 (1941). 393 Ullyot et al., J. Org. Chem., 10, 440 (1945). 394 Weizmann et al., J. Chem. Soc., 1367, 1371 (1935). ³⁹⁵ Fieser and Daudt, J. Am. Chem. Soc., 63, 785 (1941). 396 Kroeger and Nieuwland, J. Am. Chem. Soc., 58, 1861 (1936). 397 Nightingale and Wadsworth, J. Am. Chem. Soc., 67, 416 (1945). 398 Hopff, Nenitzescu, Isacesu, and Cantuniau, Ber., 69, 2249 (1936). ³⁹⁹ Hopff et al., Ber., 69B, 2249 (1936). 400 Cason, Chem. Revs., 40, 15 (1947). 401 Cason. J. Am. Chem. Soc., 68, 2078 (1946); cf. ref. 426. 402 Gilman and Nelson, Rec. trav. chim., 55, 520 (1936). 403 Bunnett and Tarbell, J. Am. Chem. Soc., 67, 1944 (1945). 404 Leslie and Henze, J. Am. Chem. Soc., 71, 3480 (1949). 405 Michael, J. Am. Chem. Soc., 41, 411 (1919). 406 Colonge and Joly, Ann. chim., (11) 18, 314 (1943). ⁴⁰⁷ Jones, J. Am. Chem. Soc., 69, 2350 (1947). 404 Schmidt and Shirley, J. Am. Chem. Soc., 71, 3804 (1949). 409 Badertscher and Whitmore, J. Am. Chem. Soc., 55, 1564 (1933). 410 Thoms, Arch. Pharm., 263, 246 (1925). ⁴¹¹ Whitmore et al., J. Am. Chem. Soc., 60, 2790 (1938). 412 Baker, J. Chem. Soc., 447 (1938). 413 Kadesch, J. Am. Chem. Soc., 66, 1211 (1944). 414 Whitmore, Whitmore, and Cook, J. Am. Chem. Soc., 72, 51 (1950). ⁴¹⁵ Hurd and Kelso, J. Am. Chem. Soc., 62, 2184 (1940). ⁴¹⁶ Cook and Percival. J. Am. Chem. Soc., 71, 4141 (1949). 417 Ford, Thompson, and Marvel, J. Am. Chem. Soc., 57, 2621 (1935). 418 Kohler and Baltzly, J. Am. Chem. Soc., 54, 4023 (1932). 419 Stehman, Cook, and Whitmore, J. Am. Chem. Soc., 71, 1509 (1949). 420 Lester and Proffitt, J. Am. Chem. Soc., 71, 1877 (1949). 421 Kipnis and Omfelt, J. Am. Chem. Soc., 70, 3948 (1948). 422 Kantor and Hauser, J. Am. Chem. Soc., 72, 3290 (1950). 423 Pinson and Friess, J. Am. Chem. Soc., 72, 5333 (1950). 424 Hurd and Cohen, J. Am. Chem. Soc., 53, 1071 (1931). 425 McKennis and du Vigneaud, J. Am. Chem. Soc., 68, 832 (1946); cf. ref. 426. 426 Cason and Prout, Org. Syntheses, 28, 75 (1948). 427 Whitmore, Noll, and Meunier, J. Am. Chem. Soc., 61, 683 (1939). 428 Whitmore et al., J. Am. Chem. Soc., 60, 2462 (1938). 429 Jenkins, J. Am. Chem. Soc., 55, 703 (1933). 430 Jenkins. J. Am. Chem. Soc., 55, 1618 (1933). ⁴³¹ Jenkins, J. Am. Chem. Soc., 56, 682 (1934). 432 Jenkins, J. Am. Chem. Soc., 55, 2896 (1933). ⁴³³ Montagne, Ann. chim., (10) 13, 53 (1930).

434 Whitmore and Sloat, J. Am. Chem. Soc., 64, 2969 (1942). 435 Hev. J. Chem. Soc., 1232 (1930). 436 Adams, Harfenist, and Loewe, J. Am. Chem. Soc., 71, 1628 (1949). 437 Kohler, Am. Chem. J., 38, 511 (1907). 438 Colonge, Bull. soc. chim. France, (5) 3, 413 (1936). 439 Colonge, Bull. soc. chim. France, (5) 2, 754 (1935). 440 Smith, Chase, and Rhodes, J. Am. Chem. Soc., 66, 1547 (1944). 441 Whitmore and Pedlow, I. Am. Chem. Soc., 63, 758 (1941). 442 Kohler, Am. Chem. J., 29, 352 (1902). 443 Newman and Farbman. J. Am. Chem. Soc., 69. 1550 (1944); Bachmann et al., 72, 1997 (1950). 444 Dice, Loveless, and Gates, J. Am. Chem. Soc., 71, 3546 (1949). 445 Newman and Booth, J. Org. Chem., 12, 737 (1947); Mueller and May, J. Am. Chem. Soc., 71, 3313 (1949). 446 Amold, Buckley, and Dodson. J. Am. Chem. Soc., 72, 3154 (1950). 447 Whitmore and Forster, J. Am. Chem. Soc., 64, 2967 (1942). 448 Sah, Rec. trav. chim., 59, 1025 (1940). 449 Braude and Coles. I. Chem. Soc., 2012 (1950). 450 Wieland, Chem. Ber., 81, 314 (1948). 451 Salkind and Beburuschwili, Ber., 42, 4500 (1909). 452 Hartman and Roll, Org. Syntheses, 23, 1 (1943). 453 Nightingale and Janes, J. Am. Chem. Soc., 66, 352 (1944). 454 St. Goldschmidt and Veer, Rec. trav. chim., 65, 796 (1946); Hey and Morris, J. Chem. Soc., 2319 (1948); Keagle and Hartung, J. Am. Chem. Soc., 68, 1608 (1946). 455 Hey and Morris, 1. Chem. Soc., 48 (1948). 456 Freen, Ann. chim., (11) 11, 465 (1939). 457 Locquin, Bull. soc. chim. France, (3) 31, 1147 (1904). 458 Barry and Hartung, J. Org. Chem., 12, 460 (1947). 459 Sumerford and Dalton, J. Am. Chem. Soc., 66, 1330 (1944). 460 Marvel and Sperry, Org. Syntheses, Coll. Vol. I, 95 (1941). 461 Bigelow and Hanslick, Org. Syntheses, Coll. Vol. II, 244 (1943). 462 Wittig and Vidal, Chem. Ber., 81, 368 (1948). 463 Schmerling, J. Am. Chem. Soc., 68, 1650 (1946). 464 Adkins, Reactions of Hydrogen, U. of Wisconsin Press, 1937, p. 129. 465 Covert, Connor, and Adkins, J. Am. Chem. Soc., 54, 1658 (1932). 466 Covert and Adkins, J. Am. Chem. Soc., 54, 4116 (1932). 467 Powell and Secoy, J. Am. Chem. Soc., 53, 765 (1931). 468 Colonge, Bull. soc. chim. France, (4) 49, 444 (1931). 469 Vavon, Ann. chim., (9) 1, 144, 196 (1914); Skita, Ber., 43, 3393 (1910). 470 Adams, Voorhees, and Shriner, Org. Syntheses, Coll. Vol. I, 463 (1941). ⁴⁷¹ Colonge, Bull. soc. chim. France, (4) 49, 441 (1931); (4) 41, 327 (1927); (5) 3, 416 (1936); (5) 6, 335, 342 (1939); Morgan and Hardy, J. Soc. Chem. Ind. (London), 11, 518 (1933); Thoms, Arch. Pharm., 263, 241 (1925); Powell, Murray, and Baldwin, I. Am. Chem. Soc., 55, 1153 (1933). 472 Haeussler and Dijkema, Ber., 77, 601 (1944). 473 Rupe and Willi, Helv. Chim. Acta, 15, 845 (1932). 474 Henze, Wilson, and Townley, J. Am. Chem. Soc., 65, 964 (1943). 475 Woods et al., J. Am. Chem. Soc., 71, 2028 (1949). 476 Dippy and Lewis, Rec. trav. chim., 56, 1000 (1937). 477 Raiford and Peterson, J. Org. Chem., 1, 549 (1937).

REFERENCES FOR CHAPTER 10

⁴⁷⁸ Berliner and Berliner, J. Am. Chem. Soc., 72, 222 (1950).
 ⁴⁷⁹ Metayer, Ann. chim., (12) 4, 201 (1949).

480 Bailey and Lutz, J. Am. Chem. Soc., 70, 2412 (1948).

481 Thompson, Org. Syntheses, 27, 21 (1947).

482 Pecherer, Jampolsky, and Wuest, J. Am. Chem. Soc., 70, 2587 (1948).

493 Stork and Foreman, J. Am. Chem. Soc., 68, 2173 (1946).

⁴⁸⁴ Papa, Schwenk, and Breiger, J. Org. Chem., 14, 366 (1949); Papa, J. Am. Chem. Soc., 71, 3246 (1949).

485 Adkins, Rossow, and Camahan, J. Am. Chem. Soc., 70, 4247 (1948).

486 Cornforth, Cornforth, and Robinson, J. Chem. Soc., 690 (1942).

487 Sprague and Adkins, J. Am. Chem. Soc., 56, 2670 (1934).

⁴⁸⁸ Haller and Bauer, Ann. chim., (8) 29, 313 (1913); Nasarow, Ber., 70, 594 (1937).

⁴⁸⁹ Cornubert et al., Bull. soc. chim. France, (4) 49, 1260, 1498-1528 (1931); (5) 2, 195 (1935).

⁴⁹⁰ Chanley, J. Am. Chem. Soc., 70, 244 (1948); Fischer and Wunderlich, Ber., 74, 1546 (1941).

⁴⁹¹ Sobotka and Chanley, J. Am. Chem. Soc., 71, 4136 (1949).

⁴⁹²Colonge, Bull. soc. chim. France, (5e) 5, 99 (1938); cf. ref. 491.

⁴⁹³Conia, Bull. soc. chim. France, (5) 17, 537 (1950).

⁴⁹⁴ Haller and Bauer, Ann. chim., (8) 28, 373 (1913).

495 Haller, Bull. soc. chim. France, (4) 31, 1073-1144 (1922).

⁴⁹⁶ Soffer et al., J. Am. Chem. Soc., 72, 3704 (1950).

497 Whitmore and Laughlin, J. Am. Chem. Soc., 55, 3732 (1933).

498 Haller, Ann. chim., (8) 29, 313 (1913).

⁴⁹⁹ Suter and Weston, J. Am. Chem. Soc., 64, 534 (1942).

⁵⁰⁰ Sprague, Beckman, and Adkins, J. Am. Chem. Soc., 56, 2665 (1934).

⁵⁰¹ Adkins, Kutz, and Coffman, J. Am. Chem. Soc., 52, 3218 (1930).

⁵⁰² Speck and Bost, J. Org. Chem., 11, 788 (1946).

⁵⁰³ Vanderwerf and Lemmerman, Org. Syntheses, 28, 8 (1948).

⁵⁰⁴Eisleb, Ber., 74, 1437 (1941).

⁵⁰⁵ Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 513.

⁵⁰⁶ Kohler et al., J. Am. Chem. Soc., 61, 1059 (1939).

⁵⁰⁷ Adamson and Kenner, J. Chem. Soc., 184 (1939).

⁵⁰⁸ Thomas, Campbell, and Hennion, J. Am. Chem. Soc., 60, 719 (1938).

⁵⁰⁹ Schaad and Ipatieff, J. Am. Chem. Soc., 62, 178 (1940).

^{\$10}Leers, Bull. soc. chim. France, 39, 423 (1926).

⁵¹¹Hennion, Davis, and Maloney, J. Am. Chem. Soc., 71, 2813 (1949).

⁵¹² Moureu and Delange, Bull. soc. chim. France, (3) 29, 666 (1903).

⁵¹³Hill and Flosdorf, Org. Syntheses, Coll. Vol. I, 462 (1941).

⁵¹⁴ Emerson, J. Am. Chem. Soc., 69, 1212 (1947).

⁵¹⁵ Bachmann, Org. Syntheses, Coll. Vol. II, 73 (1943).

⁵¹⁶ Burger and Bennet, J. Am. Chem. Soc., 72, 5414 (1950).

⁵¹⁷ Bouveault and Locquin, Bull. soc. chim. France, (3) 35, 629-649 (1906); Leers, ibid. (4) 35, 597 (1924); (4) 39, 421, 423, 433, 655 (1926); Party, J. Chem.

Soc., 107, 108 (1915); Meerwein, Ann., 396, 201, 250 (1913).

⁵¹⁸ Kohler and Nygaard, J. Am. Chem. Soc., 52, 4133 (1930).

^{\$19} Ballard and Dehn, I. Am. Chem. Soc., 54, 3969 (1932).

⁵²⁰ Jenkins, Buck, and Bigelow, J. Am. Chem. Soc., **52**, 4495, 5198 (1930). ⁵²¹ v. Wacek, Ber., **77B**, 85 (1944). 393

522 Evers et al., I. Am. Chem. Soc., 55, 1136 (1933). 523 Whitmore, Evers, and Rothrock, Org. Syntheses, Coll. Vol. II, 408 (1943). 524 Brown, J. Chem. Soc., 2577 (1949). 525 Bardan, Bull. soc. chim. France, (4) 49, 1426, 1551, 1875 (1931); (5) 1, 141 368, 370 (1934); Elphimoff-Felkin, ibid., (5) 17, 497 (1950). ⁵²⁶ Ramonczai and Vargha, J. Am. Chem. Soc., 72, 2737 (1950). 527 Bouveault, Bull. soc. chim. France, (3) 35, 629-649 (1906). ⁵²⁸ Delaby and Dumoulin, Bull. soc. chim. France, (4) 33, 602 (1923); (4) 39, 1583 (1923). 529 Alder and Schmidt, Ber., 76, 192 (1943). 530 Nenitzescu and Gavat, Ann., 519, 260 (1935). ⁵³¹ Rule and Thompson, J. Chem. Soc., 1762 (1937). 532 Goldschmidt and Veer, Rec. trav. chim., 67, 504 (1948). 533 Man and Hauser, J. Am. Chem. Soc., 72, 3294 (1950). 534 Weiss and Hauser, I. Am. Chem. Soc., 71, 2023 (1949). 535 Frank and Phillips, J. Am. Chem. Soc., 71, 2804 (1949). 536 Kharasch, Urry, and Kuderna, J. Org. Chem., 14, 248 (1949). 537 Wolfrom et al., J. Am. Chem. Soc., 65, 1516 (1943); 67, 1793 (1945); 71, 3509 (1949). 538 Truitt et al., J. Am. Chem. Soc., 71, 3511 (1949). 539 Whitmore and Randall, J. Am. Chem. Soc., 64, 1244 (1942). 540 Johnson and Degering, J. Org. Chem., 8, 10 (1943). ⁵⁴¹Levine, Conroy, Adams, and Hauser, J. Am. Chem. Soc., 67, 1510 (1945). 542 Adams and Hauser, J. Am. Chem. Soc., 67, 284 (1945); 66, 345 (1944). 543 Meerwein and Vossen. J. prakt. Chem., 141, 157 (1934). 544 Adams and Hauser, J. Am. Chem. Soc., 66, 1220 (1944). 545 Swamer and Hauser, J. Am. Chem. Soc., 72, 1352 (1950). ⁵⁴⁶ Denoon, Org. Syntheses, 20, 6 (1940). 547 Adkins and Rainey, Org. Syntheses, 20, 7 (1940). ⁵⁴⁸ Smith and King, J. Am. Chem. Soc., 65, 442 (1943). 549 Green and LaForge, J. Am. Chem. Soc., 70, 2287 (1948); cf. ref. 545. ⁵⁵⁰ Smith and Engelhardt, J. Am. Chem. Soc., 71, 2671 (1949). ⁵⁵¹ Allen, Abell, and Normington, Org. Syntheses, Coll. Vol. I, 205 (1941). ⁵⁵¹ Magnani and McElvain, Org. Syntheses, 20, 32 (1940). 553 Harris and Levine, J. Am. Chem. Soc., 71, 1120 (1949). ⁵⁵⁴ Harris and Levine, J. Am. Chem. Soc., 70, 3360 (1948). 555 Royals, J. Am. Chem. Soc., 67, 1508 (1945). 556 Dessert and Halverstadt, J. Am. Chem. Soc., 70, 2595 (1948). 357 Snyder, Brooks, and Shapiro, Org. Syntheses, Coll. Vol. II, 531 (1943). 558 Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948). 559 Elks, Elliott, and Hems, J. Chem. Soc., 629 (1944). 560 Reid and Calvin, J. Am. Chem. Soc., 72, 2948 (1950). ⁵⁶¹ Hesse and Bücking, Ann., 563, 31 (1949). 362 Hesse and Bockmann, Ann., 563, 37 (1949). 363 Frank and Varland, Org. Syntheses, 27, 91 (1947); Mowry and Ringwald, J. Am. Chem. Soc., 72, 2037 (1950). 564 Waitkins and Clark, Chem. Revs., 36, 235 (1945); Rabjohn in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 331. ses Riebsomer, Chem. Revs., 36, 157 (1945). see Hatt. Pilgrim, and Hurran, J. Chem. Soc., 93 (1936). 567 Wegmann and Dahn, Helv. Chim. Acta, 29, 1248 (1946).

⁵⁰ Weinstock and Fuson. J. Am. Chem. Soc., 58, 1233 (1936); Fuson and Hoch, ibid., 71, 1585 (1949). ⁵⁶⁹ Rauh, Smith, Banks, and Diehle, J. Org. Chem., 10, 199 (1945). ⁵⁷⁰ Harr, Voter, and Banks, J. Org. Chem., 14, 836 (1949). ⁵⁷¹ Teeters and Shriner, J. Am. Chem. Soc., 55, 3026 (1933). ⁵⁷² Astin, Newman, and Riley, J. Chem. Soc., 391 (1933); ref. 573. ⁵⁷³ Müller, Ber., 66, 1668 (1933). ⁵⁷⁴ Chakravarti and Swaminathan, I. Indian Chem. Soc., 11, 715 (1934): C. A. 29, 1080 (1935). 575 Dox, Org. Syntheses, Coll. Vol. 1, 266 (1941). ⁵⁷⁶ Coles, Manske, and Johnson, J. Am. Chem. Soc., 51, 2269 (1929). ⁵⁷⁷ Postowsky and Lugowkin, Ber., 68, 852 (1935). 578 Killian, Hennion, and Nieuwland, J. Am. Chem. Soc., 56, 1786 (1934). ⁵⁷⁹ Muller and Krauss, Monatsh., 61, 206 (1932). 580 Franke, Kroupa, and Schmid, Monatsh., 66, 412 (1935). ³⁰¹Cason, J. Org. Chem., 13, 227 (1948). 582 Yale, J. Am. Chem. Soc., 69, 1547 (1947). 583 Mattar, Hastings, and Walker, J. Chem. Soc., 2455 (1930). 584 Shriner and Todd, Org. Syntheses, Coll. Vol. II, 200 (1943). ⁵⁰⁵ Erickson and Kitchens, *I. Am. Chem. Soc.*, 68, 492 (1946). 586 Woodward and Blout, J. Am. Chem. Soc., 65, 562 (1943). 587 Vincent, Thompson, and Smith, J. Org. Chem., 3, 606 (1939). 388 Frank and Hall, J. Am. Chem. Soc., 72, 1645 (1950). ³⁸⁹ Lutz and Wilder, I. Am. Chem. Soc., 56, 978 (1934). ⁵⁹⁰ Hunsdiecker, Ber., 75B, 452 (1942). ⁵⁹¹ Young and Allen, Org. Syntheses, Coll. Vol. II, 219 (1943); note 2. ⁵⁹² Ruggli and Zaeslin, Helv. Chim. Acta, 18, 848 (1935). 593 Kharasch, McBay, and Urry, J. Am. Chem. Soc., 70, 1269 (1948). ⁵⁹⁴ Saunders, Org. Syntheses, 29, 1 (1949). ⁵⁹⁵ Kimel and Cope. J. Am. Chem. Soc., 65, 1992 (1943). ⁵⁹⁶ Frank, Armstrong, Kwiatek, and Price, J. Am. Chem. Soc., 70, 1379 (1948). ³⁹⁷ Pines and Ipatieff, J. Am. Chem. Soc., 69, 1337 (1947). 598 Gaddis and Butz. J. Am. Chem. Soc., 69, 1203 (1947). ⁵⁹⁹ Catch et al., J. Chem. Soc., 278 (1948). 600 Cardwell and McQuillin, J. Chem. Soc., 714 (1949); cf. ref. 599. 601 Slanina, Hennion, and Nieuwland, J. Am. Chem. Soc., 58, 891 (1936). ⁶⁰² Blatt in Organic Reactions, Vol. 1, John Wiley & Sons, New York, Chapter 11; Blatt, Chem. Revs., 27, 413 (1940). 603 Tarbell and Fanta, J. Am. Chem. Soc., 65, 2169 (1943). 604 Ralston, McCorkle, and Baurer, J. Org. Chem., 5, 645 (1940). ⁶⁰⁵ Miller and Hartung, Org. Syntheses, Coll. Vol. II, 543 (1943). 606 Smith and Opie, J. Org. Chem., 6, 427 (1941). 607 Amin and Shah, Org. Syntheses, 28, 42 (1948). 608 Carter in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 198. 609 Buck and Ide, Org. Syntheses, Coll. Vol. II, 55 (1943). ⁶¹⁰ Herbst and Shemin, Org. Syntheses, Coll. Vol. II, 1, 519 (1943). 611 Buck and Ide, I. Am. Chem. Soc., 54, 3307 (1932). 612 Buck, Baltzly, and Ide, J. Am. Chem. Soc., 60, 1789 (1938). ⁶¹³ Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 253.

⁶¹⁴ Hauser and Hudson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 266. 613 Shivers, Dillon, and Hauser, J. Am. Chem. Soc., 69, 119 (1947); Hamell and Levine, 1. Org. Chem., 15, 162 (1950). 616 Royals, J. Am. Chem. Soc., 70, 489 (1948). 617 Flovd and Miller, J. Am. Chem. Soc., 69, 2354 (1947). ⁶¹⁶ Cox and McElvain, Org. Syntheses, Coll. Vol. 11, 272 (1943); Steck, Hallock, and Holland, I. Am. Chem. Soc., 68, 131 (1946). ⁶¹⁹ Shivers, Hudson, and Hauser, I. Am. Chem. Soc., 65, 2051 (1943), 620 Abramovitch and Hauser, 1. Am. Chem. Soc., 64, 2271 (1942). 621 Inglis and Roberts, Org. Syntheses, Coll. Vol. 1, 235 (1941). 622 Hauser and Walker, I. Am. Chem. Soc., 69, 295 (1947). 623 Hudson and Hauser, I. Am. Chem. Soc., 63, 3156 (1941). 624 Friedman and Kosower, Org. Syntheses, 26, 42 (1946). 625 Albertson, J. Am. Chem. Soc., 70, 669 (1948). 626 Frostick and Hauser, J. Am. Chem. Soc., 71, 1350 (1949). 627 Pinkney, Org. Syntheses, Coll. Vol. II, 116 (1943). 628 Zanetti and Beckmann, J. Am. Chem. Soc., 50, 1438 (1928). 629 Barger, Robinson, and Smith, J. Chem. Soc., 721 (1937). 630 Gilman and Broadbent, J. Am. Chem. Soc., 70, 2755 (1948); Bloom, Breslow, and Hauser, ibid., 67, 2206 (1945). 631 Shriner and Schmidt, J. Am. Chem. Soc., 51, 3636 (1929). 632 Shriner, Schmidt, and Roll, Org. Syntheses, Coll. Vol. 11, 266 (1943). 633 Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948). 634 Hunsdiecker, Ber., 75B, 447, 455, 460 (1942). 635 Soloway and LaForge, J. Am. Chem. Soc., 69, 2677 (1947). 636 McElvain and Weber, Org. Syntheses, 23, 35 (1943). 637 Bouveault and Locquin, Bull. soc. chim. France, (5) 31, 388 (1940). 638 Spassow, Org. Syntheses, 21, 46 (1941). 639 Coulson, J. Chem. Soc., 1409 (1934). 640 Cardwell, J. Chem. Soc., 719 (1949). 641 Newman and Walborsky, J. Am. Chem. Soc., 72, 4296 (1950). 642 Renfrow and Renfrow, J. Am. Chem. Soc., 68, 1801 (1946). 643 Bartlett and Bavley, J. Am. Chem. Soc., 60, 2416 (1938). 644 Folkers and Adkins, I. Am. Chem. Soc., 53, 1416 (1931). 645 Marvel and Hager, Org. Syntheses, Coll. Vol. I, 248 (1941). 645 Breslow and Hauser, J. Am. Chem. Soc., 62, 2611 (1940). 647 Adams, Levine, and Hauser, Org. Syntheses, 27, 35 (1947). 648 Bowden, I. Am. Chem. Soc., 60, 131 (1938). ⁶⁴⁹ Wallingford, Thorpe, and Homeyer, J. Am. Chem. Soc., 64, 580 (1942). 630 Miller, Dessert, and Anderson, J. Am. Chem. Soc., 70, 500 (1948). 651 Breslow, Baumgarten, and Hauser, J. Am. Chem. Soc., 66, 1286 (1944). 652 Riegel and Lilienfeld, J. Am. Chem. Soc., 67, 1273 (1945). 653 Hauser and Renfrew, Org. Syntheses, Coll. Vol. II, 268 (1943). 654 Lund, Ber., 67, 935 (1934). 655 Hunter and Hogg, I. Am. Chem. Soc., 71, 1924 (1949). 656 von Doering and Wiberg, J. Am. Chem. Soc., 72, 2608 (1950). 657 Froning and Hennion, J. Am. Chem. Soc., 62, 653 (1940). 638 Bloom and Hauser, J. Am. Chem. Soc., 66, 152 (1944). 639 Dorsch and McElvain, J. Am. Chem. Soc., 54, 2960 (1932). 660 Julian et al., Org. Syntheses, Coll. Vol. II, 487 (1943).

REFERENCES FOR CHAPTER 10

661 Wiley and Adkins, J. Am. Chem. Soc., 60, 914 (1938). 662 Long, J. Am. Chem. Soc., 69, 990 (1947). 663 Abramovitch and Hauser, J. Am. Chem. Soc., 64, 2720 (1942). 664 Kroeker and McElvain, J. Am. Chem. Soc., 56, 1172 (1934). 665 Milas et al., J. Am. Chem. Soc., 70, 1602 (1948). 666 Shriner in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 9. 667 Livingston, J. Am. Chem. Soc., 69, 1220 (1947). 668 Wash. Shive. and Lochte. J. Am. Chem. Soc., 63, 2975 (1941). 669 Johns and Burch, J. Am. Chem. Soc., 60, 919 (1938). 670 Groggins and Newton, Ind. Eng. Chem., 22, 157 (1930). ⁶⁷¹ Adams, Chiles, and Rassweiler, Org. Syntheses, Coll. Vol. I, 10 (1941). ⁶⁷² Winterfeld and Rönsberg, Arch. Pharm., 274, 40 (1936). 673 Young et al., J. Am. Chem. Soc., 72, 3635 (1950). 674 Bergmann and Sulzbacher, J. Org. Chem., 15, 918 (1950). 675 Nickels and Heintzelman, J. Org. Chem., 15, 1142 (1950). 676 Shapiro, J. Org. Chem., 15, 1030 (1950). 677 Hauser and Humphlett, J. Org. Chem., 15, 359 (1950). 678 Dauben and Tilles, J. Org. Chem., 15, 785 (1950). 679 Hass, Susie, and Heider, J. Org. Chem., 15, 10 (1950). 680 Schultz and Mickey. Org. Syntheses, 29, 38 (1949). 681 Colonge and Pichat, Bull. soc. chim. France, (5) 16, 177, 853 (1949). 682 Dornow. Kuhlcke, and Baxmann, Chem. Ber., 82, 254 (1949). 663 Kaufmann and Adams. J. Am. Chem. Soc., 45, 3043 (1923). 664 Helberger, Ann., 529, 214 (1937). 665 Kloetzel and Wildman, J. Org. Chem., 11, 391 (1946). 686 Hatt, Pilgrim, and Stephenson, J. Chem. Soc., 481 (1941). 687 Cook. J. Chem. Soc., 1091 (1930). 688 Adams, Kern, and Shriner, Org. Syntheses, Coll. Vol. I, 101 (1941); cf. ref. 465. 689 Leonard. Herbrandson. and Van Heyningen, J. Am. Chem. Soc., 68, 1281 (1946).690 Kuick and Adkins, J. Am. Chem. Soc., 57, 143 (1935). 691 Sauer, Org. Syntheses, 31, 68 (1951) including note 5. 692 Cornforth, Org. Syntheses, 31, 59 (1951). 693 Djerassi in Organic Reactions, Vol. 6. John Wiley & Sons, New York, 1951. p. 207.

694 Cannon, Ellis, and Leal, Org. Syntheses, 31, 74 (1951).

237. Oxidation of Phenols, Aminophenols, and Aryl Diamines

 $p-HOC_6H_4OH \xrightarrow{(O)} O = C_6H_4 = O$

Derivatives of phenol or aniline can be oxidized to quinones, the yield and ease of oxidation depending on the substituents. If an amino or hydroxyl group is in the *para* position, the reaction proceeds readily, as illustrated by the synthesis of quinone from hydroquinone by oxidation with a sodium chlorate-vanadium pentoxide mixture (96%)⁷ or with chromicsulfuric acid mixture (92%).¹³ A *para* halogen atom usually has a favorable effect. Any group in the *para* position is eliminated or oxidized. o-Quinones are usually prepared from the corresponding catechols. A survey of procedures for the synthesis of benzoquinones by oxidation has been made.³⁵

Polymethylquinones and certain polycyclic quinones are prepared by the oxidation of aminophenols and their polycyclic analogs. The latter substances are readily obtained by coupling the corresponding phenolic compound with diazotized sulfanilic acid followed by a reductive cleavage of the azo compound.

Oxidation of the crude aminophenol is carried out with chromic acid^{14,15} or manganese dioxide.¹⁷ The over-all yields are good (50-90%). For the preparation of 1,2-naphthoquinone, ferric chloride is a milder and a better oxidant than chromic acid (94%).²¹ Similarly, diamines are oxidized with ferric chloride, as in the synthesis of duroquinone (90%).²⁰

238. Oxidation of 2-Hydroxy-1,4-naphthoquinones

The conversion of 2-hydroxy-3-alkyl-1,4-naphthoquinones by the action of alkaline permanganate into the next lower homolog has been extensively studied.³³ A modified procedure involves the treatment of the naphthoquinone with hydrogen peroxide in dioxane-soda solution followed

11

Quinones

CONTENTS

METHOD	PAGE
236. Oxidation of Aromatic Hydrocarbons	398
237. Oxidation of Phenols, Aminophenols, and Aryl Diamines	399
238. Oxidation of 2-Hydroxy-1,4-naphthoquinones	399
239. Alkylation of Quinones	400
240. Quinones by Ring Closure	400
Table 40. Quinones	402
References	403

236. Oxidation of Aromatic Hydrocarbons

Polycyclic quinones are prepared by careful oxidation of the corresponding hydrocarbons with chromic-sulfuric acid mixture in acetic acid solution or as an agitated aqueous suspension, e.g., 2,3-dimethyl-1,4naphthoquinone (80%),¹ 9,10-phenanthroquinone (80%),² and acenaphthenequinone (60%).⁴ A laboratory reactor has been described in which an acetic acid solution of chromic acid and another solution of hydrocarbon are mixed as a film at 90°. The reaction mixture is then fed into water to prevent further oxidation. By this procedure, the yield of 2-methyl-1,4-naphthoquinone has been raised from 29% by the usual process to 45%.^{5,6}

Other oxidizing agents have been used. Sodium chlorate with vanadium pentoxide catalyst attacks anthracene readily but is not powerful enough for the conversion of hydrocarbons of the naphthalene and phenanthrene series.^{7,8} An acetic acid solution of 30% hydrogen peroxide has also been used.^{9,10}

QUINONES

Ch. 11

by the action of copper sulfate and alkali on an intermediate acid (93% over-all). It has been established that the hydroxyl and alkyl groups change places in the course of the oxidation. The method has been found valuable in the synthesis of certain homologs difficult to obtain by direct alkylation (method 239).³²

239. Alkylation of Quinones

Diacyl peroxides are good agents for the alkylation of *p*-benzo- and 1,4-naphthoquinones having a free position in the quinoid ring, particularly when the normal- or iso-alkyl chains are desired (30-60%).^{11, 32} The method has been widely applied in the synthesis of 2-hydroxy-1,4-naphthoquinones substituted in the 3-position. The procedure consists in adding slowly a solution of the diacyl peroxide in ether to a solution of the quinone in acetic acid at 90-95°.

Alkyl groups in the low-molecular-weight range are also introduced by heating the quinone with the corresponding acid, excess red lead, and a promoter, which is a compound containing an active hydrogen, such as malonic ester or acetoacetic ester.¹²

240. Quinones by Ring Closure

The intramolecular condensation of o-aroylbenzoic acids in the presence of concentrated sulfuric acid gives substituted anthraquinones. The acid strength, reaction temperature, and period of heating are carefully controlled to insure optimum yields and to avoid sulfonation products.^{22,23} Boric acid has been added as a sulfonation inhibitor.²² Substitution in the *para* position of the aroyl group leads to 2-alkyl-,²³ 2-chloro-,²⁵ and 2-bromo-anthraquinones.²⁶

A number of anthraquinones have been synthesized by adding dienes to aroylacrylic acids, dehydrogenating the adducts in the form of the esters, and cyclizing as before.²⁷

The diene synthesis^{28, 30} with quinones is valuable in providing hydroaromatic systems which are readily dehydrogenated, as illustrated by the synthesis of 2,3-dimethylanthraquinone (90% over-all).²⁹

The synthesis has been adapted to the preparation of 1,2-naphthoquinone and its derivatives by an improved procedure.³⁰

C _n	Compound	Method	Yield (%)	Chapterref.	(M.p.)
C.	Benzoguinone	237	96	117	(112)
•		237	92	11 13	
	Chlorobenzoguinone	237	92	118	(54-64)
	Bromobenzoquinone	237	94	118	(56)
C.	Methylbenzoquinone	237	90	118	(69)
c.	o-Xvloguinone	237	62	11 17	(57.5)
- •	-Xyloquinone	237	75 t	1114	(75)
	n-Xyloguinone	237	81 †	11 ¹⁹	(124)
	p,	237	40	11 18	(125)
C •	Trimethylbenzoguinone	237	95 t	1114	(26)
C y	4,7-Hydrindenequinone	237	93	1117	(205)
С "	Duroquinone	237	90	11 ²⁰	(110)
Ξ.		237	60 t	1114	(112)
	1.2-Naphthoguinone	237	94	1121	(147)
	1.4-Naphthoguinone	237	81	1116	(125)
	1,4 Huphinoquinone	240	88	11 ³⁰	(124)
	1 2 3 4-Tetrahydro-5.8-naphthoguinone	237	60 t	1117	(56)
	2-Chloro-1 4-naphthoguinone	66	75 t	11 ³⁰	(118)
	2-Hydroxy-1 4-naphthoguinone	97	46 +	11 31	(192)
	2 Hydroxy 2, Chaptino quidone	240	95	1130	(196)
с.,	2-Methyl-1, 4-naphthoquinone	236	29	115	(106)
- 11		236	45	11.6	(105)
с.,	2-Ethyl-1.4-naphthoguinone	236	39	115	(87)
- 14	2.3-Dimethyl-1.4-naphthoguinone	236	78	119	(127)
	-,,,,, - ,,,	236	80	111	(127)
	Acenaphthenequinone	236	60	114	(245)
с.,	2-Methyl-3-ethyl-1,4-naphthoquinone	239	41	1112	(73)
C	1.2-Phenanthraguinone	237	96 †	1115	(222)
-	9.10-Phenanthraquinone	236	80	112	(207)
	9,10-Anthraguinone	236	91	118	(275)
	a-Chloroanthraquinone		98	1134	(160)
	β -Chloroanthraquinone	240	99	11 26	(209)
	β -Bromoanthraguinone	240	95	1125	(209)
	β -Aminoanthraquinone	240	96	11 25	(306)*
	• ••••	435	97	11 36	
C 15	β -Methylanthraquinone	240	90	11 23	(174)
C ₁₆	2,3-Dimethylanthraquinone	240	96	11 29	(210)
C .	β -t-butylanthraquinone	240	75	1124	(104)
<u> </u>	2 3-Diphenyl-1 4-naphthoguinone	236	50	11 ³	(139)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 11

¹Smith and Webster, J. Am. Chem. Soc., 59, 662 (1937).

²Linstead et al., J. Am. Chem. Soc., 64, 1998, 2023 (1942); Moore and Hunt-

ress, ibid., 49, 1328 (1927); Steck and Day, ibid., 65, 454 (1943). ³ Crawford and Nelson, J. Am. Chem. Soc., 68, 134 (1946).

⁴Maxwell and Allen, Org. Syntheses, 24, 1 (1944).

⁵ Fieset et al., J. Am. Chem. Soc., 61, 3218 (1939); Sah, Rec. trav. chim., 59, 1027 (1940).

⁶ Veldstra and Wiardi, Rec. trav. chim., 62, 82 (1943).

⁷ Underwood and Walsh, Org. Syntheses, Coll. Vol. II, 553 (1943).

⁸ Underwood and Walsh, J. Am. Chem. Soc., 58, 646 (1936); cf. ref. 7.

⁹ Arnold and Larson, J. Org. Chem., 5, 250 (1940).

¹⁰ Green span, Ind. Eng. Chem., 39, 848 (1947).

¹¹ Fieser and Oxford, J. Am. Chem. Soc., 64, 2060 (1942).

¹² Fieser and Chang, J. Am. Chem. Soc., 64, 2043 (1942).

¹³ Vliet, Org. Syntheses, Coll. Vol. I, 482 (1941).

¹⁴Smith et al., J. Org. Chem., 4, 318 (1939).

¹⁵ Fieser, J. Am. Chem. Soc., 51, 1900 (1929).

¹⁶ Fieser, Org. Syntheses, Coll. Vol. I, 383 (1941).

¹⁷ Arnold and Zaugg, J. Am. Chem. Soc., 63, 1317 (1941); Emerson and Smith, *ibid.*, 62, 141 (1940).

¹⁸ James, Snell, and Weissberger, J. Am. Chem. Soc., 60, 2084 (1938).

¹⁹ Smith and Nichols, J. Am. Chem. Soc., 65, 1742 (1943); cf. ref. 14.

²⁰ Smith, Org. Syntheses, Coll. Vol. II, 254 (1943); Smith and Denyes, J. Am. Chem. Soc., 58, 304 (1936).

²¹ Fieser, Org. Syntheses, Coll. Vol. II, 430 (1943).

²² Groggins and Newton, Ind. Eng. Chem., 22, 157 (1930).

²³ Fieser, Org. Syntheses, Coll. Vol. I, 353 (1941).

²⁴ Peters and Rowe, J. Chem. Soc., 181 (1945).

²⁵ Groggins, Stirton, and Newton, Ind. Eng. Chem., 23, 893 (1931).

²⁶ Groggins and Newton, Ind. Eng. Chem., 21, 369 (1929).

²⁷ Fieser and Fieser, J. Am. Chem. Soc., 57, 1679 (1935).

²⁸ Butz and Rytina in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 136.

²⁹ Allen and Bell, Org. Syntheses, 22, 37 (1942).

³⁰ Fieser, J. Am. Chem. Soc., 70, 3165 (1948).

³¹ Fieser and Martin, Org. Syntheses, 21, 56 (1941).

³² Fieser et al., J. Am. Chem. Soc., 70, 3174 (1948).

³³ Fieser and Fieser, J. Am. Chem. Soc., 70, 3215 (1948).

³⁴ Scott and Allen, Org. Syntheses, Coll. Vol. II, 128 (1943).

³⁵Cason in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, pp. 305-361.

³⁶ Groggins, Stirton, and Newton, Ind. Eng. Chem., 23, 893 (1931).

242. Decomposition of Malonic Acid Derivatives

Ketenes and Ketene Dimers

CONTENTS

PAGE

METHOD	
241. Pyrolysis of Acids, Anhydrides, Ketones, and Esters	404
242. Decomposition of Malonic Acid Derivatives	405
243. Dehalogenation of α -Haloacyl Halides	406
244. Decomposition of Diazo Ketones	406
245. Dehydrohalogenation of Acyl Halides	407
246. Depolymerization of Ketene Dimers	407
Table 41. Ketenes	409
References	410

A critical discussion of methods for the preparation of ketenes and ketene dimers including many experimental procedures has been elegantly presented.¹ For the most part, the methods are modifications of those used for the synthesis of olefins. Ketenes are very reactive substances and are prepared for immediate consumption. The simplest member, ketene, reacts with various groups which contain hydrogen to form acetyl derivatives.^{25,27,28} Even *t*-butyl alcohol reacts readily to form *t*-butyl acetate when a small amount of sulfuric acid is present as a catalyst.²⁸

241. Pyrolysis of Acids, Anhydrides, Ketones, and Esters

$$CH_3COCH_3 \xrightarrow{550^\circ} H_2C = C = 0 + CH_4$$

Ketene, $H_2C = C = 0$, has been obtained by the pyrolysis of many compounds containing the $CH_3CO - group.^1$ However, its preparation from acetone has been the most successful from the standpoint of the laboratory and is carried out by passing the vapors through a combustion furnace at $650^{\circ} (30\%)^2$ or over a hot Chromel A wire filament at 700- $750^{\circ} (90\%).^{3,4}$ The product is contaminated with ethylene, carbon monoxide, and methane. It may be purified by dimerization ²⁶ followed by depolymerization (cf. method 246).²⁵ More often than not, since ketene dimerizes readily, it is passed directly from the generator into a reaction vessel for immediate consumption.

This method has no value for the synthesis of higher homologs.

$$\begin{array}{c} R & CO \\ C & O \\ R & CO \end{array} \xrightarrow{\text{Heat}} R_2 C = C = O + CO_2$$

The thermal decomposition of disubstituted malonic anhydrides gives ketoketenes, $R_2C=C=0$. A similar synthesis of an aldoketene, RHC=C=0, from a monosubstituted malonic anhydride has never been accomplished.

The anhydrides can be prepared by the action of acetic anhydride on the corresponding malonic acid in the presence of a small amount of sulfuric acid, followed by neutralization of the mineral acid with powdered barium carbonate and evaporation to dryness in a high vacuum. The residual malonic anhydride is then heated to the decomposition point at a low pressure, and the ketene is collected in a cold receiver. This procedure has been applied to the synthesis of low-molecular-weight dialkylketenes (R is methyl, ethyl, *n*-propyl, or isopropyl) in 50-80% yields.⁵

A second procedure consists in heating mixed anhydrides prepared from disubstituted malonic acids and diphenylketene.

$$R_{2}C(CO_{2}H)_{2} \xrightarrow{(C_{6}H_{5})_{2}C - CO} R_{2}C$$

$$CO \cdot O \cdot COCH(C_{6}H_{5})_{2} \xrightarrow{Heat}$$

$$CO \cdot O \cdot COCH(C_{6}H_{5})_{2} \xrightarrow{Heat}$$

 $R_2C = C = 0 + [(C_6H_5)_2CHCO]_2O$

The high-boiling ketenes are separated from the diphenylacetic anhydride by extraction rather than by distillation in order to avoid a ketene interchange. In this manner, many types of ketoketenes have been formed, including dimethylketene (49%), diallylketene (80%), dibenzylketene (74%), ethylchloroketene $C_2H_5ClC=CO$ (50%), and methylphenylketene (75%).^{6,7}

Malonic acid and its esters yield carbon suboxide, O = C = C = C = 0, when treated with excess phosphorus pentoxide at 300° (10-12%).⁸ Better yields are obtained by the pyrolysis of diacetyltartaric anhydride at 200° (41%).⁹ A review of the chemistry of this interesting substance has been made.¹⁰ 243. Dehalogenation of α -Haloacyl Halides

 $R_2CXCOX + Zn \rightarrow R_2C = C = O + ZnX_2$

The dehalogenation of α -haloacyl halides with zinc occurs readily, particularly for the formation of aromatic ketoketenes like methylphenylketene (90%),¹¹ diphenylketene (95%),¹² and di-*p*-xenylketene (60%).¹³ The dehalogenation is carried out in anhydrous ether solution under reflux with excess zinc. The ether-soluble zinc chloride is then precipitated by the addition of petroleum ether. The resulting solution may be used directly or distilled to obtain the pure ketene.

An interesting extension of the reaction is the preparation of a ketene carrying an ester group, such as ethylcarbethoxyketene, from a malonic ester derivative (34%).¹⁷

It is becoming increasingly apparent that the action of zinc on monosubstituted α -haloacetyl halides is not a general reaction for the formation of aldoketenes. It has been shown that the treatment of the various dihalo compounds of acetic acid—bromoacetyl bromide, chloroacetyl bromide, bromoacetyl chloride, and chloroacetyl chloride—gives poor or negative results.¹⁴ Likewise, monosubstituted ketenes, such as methylketene, ethylketene, and phenylketene, can be obtained only in low yields (4-13%).

244. Decomposition of Diazo Ketones

$$\begin{array}{c} \operatorname{ArCCOAr} \xrightarrow{\operatorname{HgO}} \operatorname{ArCOCN}_{2}\operatorname{Ar} \xrightarrow{\operatorname{Heat}} \operatorname{Ar}_{2}C = C = 0 + N_{2} \\ \| & CaSO_{4} \\ \operatorname{NNH}_{4} \end{array}$$

Although this method has had limited application, it represents the most convenient synthesis for the important diphenylketene. This consists in converting benzil monohydrazone to the diazo compound by the action of mercuric oxide suspended in benzene. The presence of anhydrous calcium sulfate is needed to remove the water formed in the oxidation. The benzene solution is then dropped slowly into a distilling flask maintained at 100-110°, whereby the benzene distils and the diazo

compound is transformed to diphenylketene (64%).¹⁵ In a similar manner, di-*p*-tolylketene has been prepared.¹⁶

 β -Keto esters, such as methyl acetoacetate and methyl benzoylacetate, have been converted to carbethoxyketenes by nitrosation, reduction, diazotization, and finally decomposition of the intermediate diazoketo ester.^{18,19}

$$\begin{array}{c} \text{RCOCH}_2\text{CO}_2\text{CH}_3 \rightarrow \text{RCOCHCO}_2\text{CH}_3 \rightarrow \text{RCOCHCO}_2\text{CH}_3 \rightarrow \\ | & | \\ \text{NO} & \text{NH}_2 \\ \\ \text{RCOCN}_2\text{CO}_2\text{CH}_3 \rightarrow \text{RC} = C = O \\ | \\ \text{CO}_2\text{CH}_3 \end{array}$$

245. Dehydrohalogenation of Acyl Halides

 $R_2CHCOCI + R'_3N \rightarrow R_2C = C = O + R_3'N \cdot HCI$

Certain disubstituted acetyl chlorides readily undergo dehydrohalogenation with tertiary amines to yield ketoketenes. For example, in the preparation of di-*n*-heptylketene, di-*n*-heptylacetyl chloride is added under anhydrous conditions to excess trimethylamine dissolved in benzene. After the mixture has stood at room temperature for 29 hours, the precipitated amine hydrochloride is filtered with exclusion of moisture, the solution is concentrated in vacuum, and diheptylketene is distilled (60%).¹ Trimethylamine is preferred in the preparation of aliphatic ketoketenes because of the low solubility of its hydrochloride in organic solvents. In a similar manner, diphenylacetyl chloride is treated with tripropylamine in ether to give diphenylketene (83%).²⁰

The method is apparently limited to the preparation of certain aryl and high-molecular-weight ketoketenes, which are relatively resistant to dimerization. Thus, the dehydrohalogenation of a low-molecular-weight acyl chloride such as isobutyryl chloride gives dimethyl ketene dimer (60%).²² It is quite possible that the tertiary amine salt catalyzes the dimerization.²³

Monoalkylacetyl halides, RCH₂COX, are converted to aldoketene dimers. These materials are useful in the synthesis of β -keto acid derivatives.²⁴

246. Depolymerization of Ketene Dimers

The depolymerization of diketene by pyrolysis is a rapid and convenient method for obtaining high-purity ketene (cf. method 241). The conversion can be carried out in high yields by decomposition over hot filaments or in tubes at $550-600^{\circ}$.²⁵ Ch. 12

Examples for the treatment of other ketenes are few. The ordinary ketene lamp has been modified for the depolymerization of dimethylketene dimer (86%).¹ Ethylcarbethoxyketene can be obtained from its dimer in 80-90% yields by heating at 180-200° under a pressure of 15 mm.¹⁷

TABLE 41. KETENES

C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., <i>n</i> ^t _D , (M.p.)
С,	Ketene	241	29	121	- 41/760
-		246	100	12 ²⁵	
C4	Dimethylketene	242	80	12 ⁵	34
		242	49	12 ⁶	
		246	86	12 1	
	Ketene dimer	245	50	1224	96/400
			55	12 ²⁶	69/92
	Ethylchloroketene	242	50	12 ⁶	
C5	Methylethylketene	242	65	12 ⁵	
C,	Diethylketene	242	64	12 ⁶	
		242	55	12 ³	92 *
	Methylketene dimer	245	74	1224	58/12, 1.4280 ²⁵
	Ethylethoxyketene	246	85	1217	48/15
c,	Ethylcarboethoxyketene	243	34	1217	
C,	Di- <i>n</i> -propylketen e	242	32	127	30/11
•		242	50	12 ⁵	
	Dii sopropylk eten e	242	50	12 ⁵	
	Ethylketene dim e r	245	70	1224	96/32, 1.4387 ²⁵
	Dimethylketene dimer	245	60	1222	
	Diallylketene	242	80	127	30/9
	Phenoxyketene	245	32	1228	(93)
c,	Methylph en ylk et en e	242	75	127	78/15*
		243	90	1211	74/12
C 10	<i>n</i> -Propylketene dimer	245	93	1224	135/30, 1.4433 ²⁵
	Isopropylketene dimer	245	57	1224	110/35, 1.4343 ²⁵
	Phenyl carbomethoxyk et en e	244	70	12 ¹⁹	80-85/0.2
С1,	<i>n</i> -Butylketene dimer	245	65	121	116/4, 1.4513
C14	Diphenylketene	243	95	1212	146/12
		244	64	1215	121/3.5
		245	83	12 ²⁰	
	Ethyl carboethoxyk etene dimer	243	61	1217	116/0
C 16	Di- <i>n</i> -heptylketene	245	60	12 ¹	135/5
	Diben zylk eten e	242	74	127	122/0.08
C 17	Mesi tylphenylk eten e	245	78 [†]	1221	150/12
C 🙀	Di- <i>t</i> -xenvlketene	243	60	1213	(197)

REFERENCES FOR CHAPTER 12

¹ Hanford and Sauer in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 108. ² Hurd, Org. Syntheses, Coll. Vol. I, 330 (1941). ³ Williams and Hurd, J. Org. Chem., 5, 122 (1940); Wang and Schueler, J. Chem. Education, 26, 323 (1949). ⁴ Dunbar and Bolstad, *J. Org. Chem.*, 9, 219 (1944). ⁵ Staudinger, Helv. Chim. Acta, 8, 306 (1925); cf. ref. 1, p. 135. ⁶ Staudinger, Anthes, and Schneider, Ber., 46, 3539 (1913). ⁷ Staudinger et al., Helv, Chim, Acta, 6, 291 (1923); cf. ref. 1, p. 135. ^a Diels and Wolf, Ber., 39, 689 (1906); Diels and Meyerheim, ibid., 40, 355 (1907). 9 Ott and Schmidt, Ber., 55, 2126 (1922). ¹⁰ Reverson and Kobe, Chem. Revs., 7, 479 (1930). ¹¹ Staudinger and Ruzicka, Ann., 380, 298 (1911). 12 Staudinger, Ann., 356, 71 (1907). 13 Schilow and Burmistrow, Ber., 68, 582 (1935). 14 Hurd, Cashion, and Perletz, J. Org. Chem., 8, 367 (1943). ¹⁵ Smith and Hoehn, Org. Syntheses, 20, 47 (1940). ¹⁶ Gilman and Adams, Rec. trav. chim., 48, 464 (1929). ¹⁷ Staudinger and St. Bereza, Ber., 42, 4908 (1909); cf. ref. 1, p. 138. ¹⁸ Schroeter, Ber., 49, 2738 (1916). 19 Staudinger and Hirzel, Ber., 49, 2522 (1916). 20 Staudinger, Ber., 44, 1619 (1911). ²¹ Fuson et al., J. Am. Chem. Soc., 66, 1464 (1944); cf. ref. 1, p. 139. ²² Miller and Johnson, J. Org. Chem., 1, 135 (1936). ²³ Staudinger and Klever, Ber., 41, 594 (1908). ²⁴ Sauer, J. Am. Chem. Soc., 69, 2444 (1947). 25 Boese, Ind. Eng. Chem., 32, 16 (1940). ²⁶ Williams and Krynitsky, Org. Syntheses, 21, 64 (1941). ²⁷ Rice et al., J. Am. Chem. Soc., 56, 1760 (1934). 28 Morey, Ind. Eng. Chem., 31, 1129 (1939). 29 Hill, Senter, and Hill, J. Am. Chem. Soc., 72, 2286 (1950).

13

Carboxylic Acids

CONTENTS

VETHOD

METHOD	PAGE
247. Hydrolysis of Nitriles	
248. Hydrolysis of Amides	
249. Hydrolysis of Esters	
250. Hydrolysis of Acyl Halides and Anhydrides	
251. Hydrolysis of Trihalides	
252. Hydrolysis of Primary Nitro Compounds	
253. Oxidation of Primary Alcohols and Aldehydes	
254. Oxidation of Ketones and Quinones	
255. Oxidation of the Double Bond	
256. Ozonization of the Double Bond	
257. Oxidation of Alkyl Groups to Carboxyl Groups	
258. Oxidation of 5-Alkyl-2-furoic Acids	
259. Oxidation and Decarboxylation of a -Keto Acids	
260. Haloform Reaction	
261. Intermolecular Oxidation-Reduction of Aldehydes (Ca	annizzaro) 423
262. Carbonation of Organometallic Compounds	
263. Direct Carboxylation of the Aromatic Nucleus	
264. Decarboxylation of Di-and Poly-basic Acids (Malonic	Ester Synthesis) 426
265. Hydrolysis and Decarboxylation of a-Cyano Acids (C	yanoacetic Ester
Synthesis)	
266. Cleavage of eta -Keto Acids (Acetoacetic Ester Synthe	esis) 430
267. Reduction of Unsaturated Acids	
268. Reduction of Hydroxy Acids	
269. Reduction of Keto Acids	
270. Reduction of Aromatic Acids	
271. Hydrolysis and Rearrangement of Diazoketones (Arno	dt-Eistert) 433
272. Alkali Fusion of Unsaturated Acids (Varrentrapp)	
273. Friedel-Crafts Reaction	
274. Alkaline Cleavage of eta -Ketoalkylpyridinium Iodides	
275. Substituted Glutaric Acids by the Guareschi Reactio	n 434
276. a-Hydroxy Acids by the Benzilic Acid Rearrangemen	1t 435
277. a-Isopropoxy Acids by Reductive Cleavage of Dioxo	lones 435
278. a-Amino Acids by Hydrolysis and Decarboxylation	of Acylaminoma-
lonic Acids (Modified Sörensen Reaction)	
279. Reduction of Azlactones	
280. Hydrolysis of Hydantoins	
281. Carboxymethylation of Amines	
282. Carboxylation of Olefins	

METHOD 247

CARBOXYLIC ACIDS

Ch. 13

CONTENTS (continued)

METHOD	PAGE
283. Keto Acids by Oxidation of Tertiary Alcohols	437
284. Cleavage of Acylcyclohexanones	438
Table 42. Monocarboxylic Acids	439
Table 43. Dicarboxylic Acids	447
Table 44. Olefinic Acids	451
Table 45. Acetylenic Acids	455
Table 46. Halo Acids	455
Table 47. Hydroxy Acids	458
Table 48. Alkoxy and Aryloxy Acids	460
Table 49. Aldo and Keto Acids	462
References	465

Thirty-eight methods for the preparation of carboxylic acids are described in this chapter. No special emphasis has been given to highermolecular-weight aliphatic acids, the chemistry of which has been elegantly reviewed.⁵⁷⁷⁻⁵⁷⁹ Another field abounding in well-organized literature is that of amino acids.^{33, 584-587} Also worthy of mention is a review of syntheses of α -keto acids.¹⁶

247. Hydrolysis of Nitriles

412

$$RCN + H_2O \xrightarrow[OH^+]{H^+ \text{ or }} RCO_2H + (NH_3)$$

Hydrolysis of nitriles to carboxylic acids is best effected by refluxing with concentrated solutions of sulfuric acid or sodium hydroxide. The progress of the reaction with the latter reagent is indicated by the evolution of ammonia gas.²²⁸ Excellent directions are numerous. Hydrolysis by concentrated alkali is described for valeric acid (81%)¹³⁸ and isocaproic acid (82%).⁸¹ A solution of potassium hydroxide in glycol monomethyl ether is used for 2-phenanthroic acid (98%),²²⁸ and alcoholic bases are employed for the preparation of nicotinic acid (90%)²⁵³ and tetrahydrofurylacetic acid (75%).²⁶² Acid hydrolysis has been used for phenylacetic acid (78%),¹⁴⁸ o- and m-toluic acids (96%),^{137,150} mesitylacetic acid (87%),¹⁷⁸ and 3-quinolinecarboxylic acid (97%).²⁷⁴ Acetic acid is sometimes added to increase the solubility of the nitrile as in the preparations of o-tolylacetic acid (73%)¹⁵⁹ and 1-naphthoic acid (98%).¹⁸⁵ Di-o-substituted benzonitriles are sometimes difficult to hydrolyze. Several of these compounds have been successfully converted to acids by heating with 100% phosphoric acid.192 Occasionally, the intermediate amide is formed, but this compound then resists further hydrolysis. Complete conversion can usually be accomplished by the action of nitrous acid on the amide as in the preparation of 2,2-diphenylbutanoic acid (81% over-all).596

A convenient method for preparing acids from halides is through the cyanides. It is usually unnecessary to isolate or purify the cyanide.^{65, 81} By this method the carbon content is increased by one carbon atom. Primary aliphatic nitriles are readily formed in high yields from the halides; however, secondary and tertiary cyanides are less easily made in this manner.^{23, 74, 88}

Another promising procedure for lengthening the carbon chain by one carbon atom is a five-step conversion of an aldehyde to an acid (rhodanine synthesis, method 385). Yields of 90% or better are obtained for each step including an alkaline hydrolysis of a nitrile as the last reaction in the series.²⁴⁸

Several dibasic acids have been made from dicyanides by refluxing with concentrated hydrochloric acid. Among those prepared in this manner are glutaric acid $(85\%)^{269}$ and suberic acid $(92\%)^{312} \alpha$ - β -Diphenylsuccinic acid $(86\%)^{362}$ is prepared similarly using a mixture of water, acetic acid, and sulfuric acid, whereas alkaline hydrolysis is employed for 1,13-tride-canedicarboxylic acid $(93\%)^{326}$ Preparations of malonic acid $(80\%)^{264}$ and $\beta_{*}\beta$ -dimethyladipic acid $(48\%)^{315}$ illustrate a process for making dibasic acids from halo acids through the intermediate cyano acids. Alkaline reagents are used in both cases to effect the hydrolysis. Methylsuccinic acid is made in 70% yield by hydrolysis of ethyl β -cyanobutyrate with barium hydroxide.²⁹² The most economical preparation of phenylsuccinic acid is the hydrolysis of the β -cyano ester obtained by the addition of aqueous potassium cyanide to benzalmalonic ester; the over-all yield is 70%.¹⁶⁶

$$C_{6}H_{5}CH = C(CO_{2}C_{2}H_{5})_{2} \xrightarrow{KCN} C_{6}H_{5}CH(CN)CH_{2}CO_{2}C_{2}H_{5} \xrightarrow{HC1}$$

C₆H₈CH(CO₂H)CH₂CO₂H

Acid hydrolysis of the simpler olefinic nitriles to olefinic acids occurs without appreciable migration of the double bond. Acrylic acid is made by hydrolysis of acrylonitrile with sulfuric acid (78%).³⁶³ Concentrated hydrochloric acid is used to convert allyl cyanide to vinylacetic acid (75-82%).³⁶⁵ Similarly, 3-pentenonitrile furnishes a 70% yield of 3-pentenoic acid, but the isomeric 2-methyl-3-butenonitrile is not hydrolyzed under the same conditions.³⁷⁰ The alkaline hydrolysis of higher-molecularweight branched α , β -olefinic nitriles gives mixtures of isomeric α , β - and β , γ -olefinic acids.²

A series of *acetylenic acids* has been made from the corresponding acetylenic chlorides by way of the cyanides in over-all yields of 52-84%.⁶²

Few halo acids have been made by this method because of the reactivity of the halogen atom; e.g., hydrogen chloride is removed from γ -chloro-

butyronitrile to give cyclopropanecarboxylic acid (79%),¹²⁸ and the bromine atom of *p*-cyanobenzyl bromide is replaced by a hydroxyl group during hydrochloric acid hydrolysis to give *p*-hydroxymethylbenzoic acid (90%).⁴⁶⁰ However, *p*-chloromethylbenzoic acid (78%) and *p*-bromomethylbenzoic acid (73%) may be made from the halo cyanides by refluxing with the appropriate halogen acid.⁴³⁵ Halogens directly attached to an aromatic nucleus are stable to hydrolysis.^{430, 433} Both carboxyl and halogen groups are introduced in one operation in the preparation of β -bromopropionic acid (83%) from ethylene cyanohydrin and 40% hydrobromic acid.⁴¹⁷

The cyanohydrin synthesis of α -hydroxy acids is very often carried out without isolation or purification of the cyanohydrins. The various techniques for the preparation of the cyanohydrins are discussed elsewhere (method 390). Hydrolysis to the α -hydroxy acids is usually effected by heating with concentrated hydrochloric acid. Excellent directions are given for mandelic acid (52% over-all from benzaldehyde),⁴⁵⁷ α -methyl- α -hydroxybutyric acid (65% from methyl ethyl ketone),⁴⁴⁴ and eighteen dialkyl- and alkylphenyl-glycolic acids (60-80%).⁴⁴⁷ Sodium hydroxide solution is used in the preparation of β -hydroxypropionic acid from the β -hydroxy nitrile (80%).⁴⁴²

The preparation of γ -phenoxybutyric acid (61%) by acid hydrolysis of the phenoxycyanide is a typical example of the formation of an *ether acid* by this method.⁴⁴³ Nine alkoxypropionic acids, ROCH₂CH₂CO₂H, have been made in 49–86% yields by acid hydrolysis of the alkoxy nitriles. Basic hydrolysis gives readily polymerizable material propably because of partial decomposition of the alkoxy nitrile into the alcohol and acrylonitrile.⁴⁷³

Two aldehyde acids, $R(C_2H_s)C(CHO)CH_2CH_2CO_2H$, where R is C_2H_s or *n*-C₄H₉, have been prepared by the alkaline hydrolysis of the cyano aldehydes obtained by direct cyanoethylation (method 388) of the corresponding aldehydes by acrylonitrile.⁵¹¹

Several α -keto acids are easily obtained by hydrolysis of acyl cyanides. An improved procedure using cuprous cyanide in the preparation of the acyl cyanides is described.^{496, 508} Hydrolysis of the acyl cyanides by cold concentrated hydrochloric acid is described for pyruvic acid (73%),⁴⁹⁶ α -ketobutyric acid,⁴⁹⁶ and benzoylformic acid (77%).⁵⁰⁸ Isovaleryl cyanide is not hydrolyzed under these conditions. Alkaline hydrolysis has been found to be more successful than acid hydrolysis in the preparation of the γ -keto acid, α -phenyl- β -benzoylpropionic acid (76%).²³²

Similar to the cyanohydrin synthesis for hydroxy acids is the Strecker synthesis of α -amino acids. Aldehydes and ketones are converted to α -amino cyanides by ammonia and hydrogen cyanide⁵¹⁹ or by aqueous ammonium chloride and sodium cyanide solutions.^{543, 551, 553} Amino cyanides may also be obtained by the action of gaseous ammonia on cyanohydrins⁵³¹ (cf. method 391). The preparation of DL-alanine (60%) is typical.⁵²⁰

$$CH_{3}CHO \xrightarrow{NH_{4}C1} CH_{3}CH(NH_{2})CN \xrightarrow{H_{2}O} CH_{3}CH(NH_{3}C1)CO_{2}H \xrightarrow{Pb(OH)_{2}} H_{C1}$$

CH3CH(NH2)CO2H

Hydrolysis of the amino cyanides has been critically discussed.⁵¹⁹ Acid hydrolysis is preferred. The free amino acids have been obtained from the hydrohalide salts by the use of yellow lead oxide,⁵²⁰ lead hydroxide,⁵⁴³ ammonia,⁵⁵¹ pyridine,^{531, 553} and anion-exchange resins.⁵²¹ Substitution of methylamine hydrochloride for ammonium chloride gives N-methylamino acids.⁵³⁷ Formaldehyde, sodium cyanide, and ammonium chloride give methyleneaminoacetonitrile, $CH_2 = NCH_2CN$, from which aminoacetonitrile is readily obtained by alcoholysis. Glycine is formed by hydrolysis of the amino nitrile with barium hydroxide (87%)^{55, 516} or 40% sulfuric acid (92%).⁵¹⁹ When ethoxyacetaldehyde is used, the ethoxyl group in the amino cyanide is converted to hydroxyl during hydrolysis by hydrobromic acid to give serine (51%).⁵²⁸

The addition of ammonia to acrylonitrile gives β -aminopropionitrile and bis- $(\beta$ -cyanoethyl)-amine. The former is hydrolyzed directly to β -aminopropionic acid (90%) by barium hydroxide, ⁵²¹⁻⁵²³ and the latter may also be converted through the intermediate phthalimide to the same amino acid (69%).⁵²⁵ A variation of this procedure involves condensation of phthalimide and acrylonitrile to β -phthalimidopropionitrile. Both amino and carboxyl groups are formed during the subsequent hydrolysis by hydrochloric acid. The free β -alanine (75%) is liberated from the hydrochloride by lithium hydroxide.⁵²⁴

$$\underbrace{\bigcirc}_{CO}^{CO} \text{NH} \xrightarrow{\text{H}_{3}C - CHCN} \underbrace{\bigcirc}_{CO}^{CO} \text{N(CH}_{2})_{2}\text{CN} \xrightarrow{\text{HCI};}_{\text{LiOH}} \text{NH}_{2}(\text{CH}_{2})_{2}\text{CO}_{2}\text{H}$$

Nitro acids such as *m*- and *p*-nitrophenylacetic acids are prepared in 62% and 95% yields, respectively, by acid hydrolysis of the corresponding nitrobenzyl cyanides.^{569, 570}

248. Hydrolysis of Amides

$$\text{RCONH}_2 + \text{H}_2\text{O} \xrightarrow[\text{OH}^-]{} \text{RCO}_2\text{H} + (\text{NH}_3)$$

Hydrolysis of amides may be carried out in acid or alkaline medium. For example, the former is used for α -phenylbutyric acid $(90\%)^{164}$ and the latter for 2- and 4-dibenzofurylacetic acids $(87\%)^{279, 280}$ A mixture of hydrochloric and acetic acids is employed for insoluble amides.²³⁷ Amides obtained

METHOD 249

from the Willgerodt and Arndt-Eistert reactions (methods 361 and 360) are excellent sources of acids.

Certain amides are hydrolyzed with difficulty. Some success has been achieved by heating with 100% phosphoric acid.¹⁹² It is usually advantageous to convert these compounds to acids by treatment with nitrous acid at room temperature; the yields are excellent.^{39, 597}

 $\text{RCONH}_2 + [\text{HONO}] \rightarrow \text{RCO}_2\text{H} + \text{N}_2 + \text{H}_2\text{O}$

A large number of trialkylacetic acids have been made by the following process, which involves treatment of the corresponding amides with nitrous acid.¹⁰⁰

$$C_{6}H_{5}COCRR'R'' \xrightarrow{NaNH_{2}} RR'R''CCONH_{2} \xrightarrow{(HONO)} RR'R''CCO_{2}H$$

A phenyl alkyl ketone is subjected to two successive alkylations by sodium amide and an alkyl iodide. Higher-molecular-weight acids containing two large alkyl groups are best made by introducing a small and then a large alkyl group into a phenyl ketone already containing a large alkyl group. Cleavage of the trialkylacetophenones by sodium amide in boiling benzene gives trialkylacetamides. The method fails for the preparation of acids containing more than twelve carbon atoms unless two of the alkyl groups are methyl groups. Several of these compounds have been obtained, however, by hydrolysis of trisubstituted acetonitriles.⁵⁹⁷

*p-Methoxy*phenylacetic *acid* (85%) is obtained by hydrolysis of the corresponding amide by alcoholic potassium hydroxide.⁴⁰³

 α -Keto acids, RCOCO₂H, have been prepared from N,N-diethyl amides obtained by the action of Grignard reagents on ethyl N,N-diethyloxamate, C₂H₅O₂CCON(C₂H₅)₂.¹⁸

Oximes of cyclopentanone and cyclohexanone undergo the Beckmann rearrangement to cyclic amides from which *amino acids* may be obtained, e.g., δ -aminovaleric acid (71-80%)^{533, 534} and ϵ -aminocaproic acid (92%).^{540, 541}

249. Hydrolysis of Esters

The hydrolysis of esters is accomplished by refluxing with aqueous or alcoholic alkali hydroxides. Acid-catalyzed hydrolysis is an equilibrium reaction usually favoring ester formation. High-molecular-weight esters with branching in either acid or alcohol portions are sometimes hydrolyzed with difficulty.

Saponification of an ester is the last step in an elegant synthesis of highly branched trialkylacetic acids from acetoacetic ester. An α , α dialkylacetoacetate is reduced to the β -hydroxy ester, which, in turn, is dehydrated to a β , γ -olefinic ester. Catalytic hydrogenation followed by saponification then gives the desired product.²⁷³

Partial saponification of malonic ester occurs with cold alcoholic potassium hydroxide to give potassium ethyl malonate in 82% yield.²³⁴ Esters of dibasic acids having the carboxyl groups farther apart are cleaved in a similar manner under these conditions, e.g., the preparation of the halfester of α -methylpimelic acid (59%).²³⁵

Mild conditions should be employed in alkaline hydrolysis of *olefinic* esters. Double bonds in many acids migrate readily during saponification. Aqueous alcoholic sodium hydroxide is used in the preparations of 3-ethyl-3-pentenoic acid $(56\%)^{383}$ and β -methylcinnamic acid $(41\%)^{403}$.

 α -Bromo- β -alkoxy acids are obtained from the corresponding esters by stirring at room temperature with aqueous sodium hydroxide.^{422, 424} However, the halogen atom of ethyl 3-bromocrotonate is hydrolyzed during saponification by aqueous potassium carbonate to give 3-hydroxycrotonic acid (28%).³⁶⁸ α -Methoxypropionic acid (79%) is prepared by refluxing the methyl ester with 25% aqueous sodium hydroxide.⁴⁷¹ The opening of a lactone ring with aqueous base is sometimes an important step in the preparation of bydroxy acids.^{264, 443, 450}

 α -Keto esters are sensitive to alcoholic hydroxide solutions.³⁵ However, excellent results are obtained by shaking the esters with cold, dilute, aqueous sodium hydroxide ⁵¹⁰ or by refluxing with alcoholic sodium carbonate.^{203, 503} A mixture of glacial acetic and hydrochloric acids has been successfully employed in the conversion of high-molecular-weight β -keto esters to the corresponding acids.²³⁶

Low-molecular-weight α - and β -amino esters are easily hydrolyzed merely by boiling with water.³⁴ Also, aqueous barium hydroxide is employed in the preparation of several *amino acids*, e.g., β -aminopropionic acid (72%)⁵²⁷ and α -methyl- γ -dimethylaminobutyric acid (90%).⁵⁴⁹

m-Nitrobenzoic acid (96%) is best prepared from the corresponding methyl ester by boiling for 10 minutes with 20% sodium hydroxide. Longer heating gives a colored product, and the use of a more dilute base is unsatisfactory.⁵⁶⁴ γ -Nitrovaleric acid is obtained from its methyl ester by hydrolysis with concentrated hydrochloric acid.³⁰¹

250. Hydrolysis of Acyl Halides and Anhydrides

RCOCl or (RCO)₂O $\xrightarrow{H_2O}$ RCO₂H

Although hydrolysis of acyl halides and anhydrides is infrequently used in the preparation of acids, several important examples are noted. The acyl chlorides, $Ar_2C = CHCOCl$, from the action of oxalyl chloride on diarylethylenes are hydrolyzed to β , β -diarylacrylic acids by stirring with ice-cold sodium carbonate solution.¹ α -Halo acids prepared by the Hell-Volhard-Zelinsky reaction are obtained from the α -halo acid halide by stirring with cold water (method 67).

Citraconic anhydride is hydrolyzed to the *cis unsaturated dibasic acid*, citraconic acid, by heating with the theoretical amount of water until the mixture is homogeneous.²⁹⁴ Hydrolysis by dilute nitric acid gives the *trans* acid, mesaconic acid.²⁹⁵

251. Hydrolysis of Trihalides

$$C_6H_5CCl_3 \xrightarrow{H_2O} C_6H_5CO_2H_5CO$$

Few simple acids are prepared by this method because the corresponding trihalides are not readily available. Several modifications are important in the preparation of acids containing an additional functional group.

Di-(p-chlorophenyl)-acetic acid is prepared in 70% yield from 1,1-di-(pchlorophenyl)-2,2,2-trichloroethane, (p-ClC₆H₄)₂CHCCl₃ (DDT). This reaction differs from a straightforward hydrolysis since hydrogen chloride is eliminated and an intermediate, 1,1-di-(p-chlorophenyl)-2,2-dichloroethylene, (p-ClC₆H₄)₂C=CCl₂, is readily isolated in 97% yield.⁴⁴¹

Twelve α -alkoxyisobutyric acids have been made by alkaline alcoholysis of the trichlorohydrin formed by the condensation of acetone and chloroform.

$$(CH_3)_2C(OH)CCl_3 \xrightarrow{KOH} (CH_3)_2C \xrightarrow{-CCl_2} \xrightarrow{KOH} (CH_3)_2C(OR)CO_2H$$

The oxide intermediate is postulated to account for the alkylation.475

Chloral, Cl₃CCHO, reacts with α -naphthylmagnesium bromide to give the corresponding trichloro alcohol, which may be hydrolyzed by sodium carbonate to α -naphthylglycolic acid in 50% over-all yield.³⁹⁶

252. Hydrolysis of Primary Nitro Compounds

$$\operatorname{RCH}_2\operatorname{NO}_2 \xrightarrow[H^+]{H_2O} \operatorname{RCONHOH} \xrightarrow{H_2O} \operatorname{RCO}_2H$$

METHODS 252-253

Propionic, butyric, and isobutyric acids have been prepared in better than 90% yields by heating the corresponding nitro compounds for 8 hours at 120-140° with 85% sulfuric acid.⁶⁰ The reaction may be stopped at the hydroxamic acid stage by using milder conditions. This peculiar rearrangement of the nitro compound to the hydroxamic acid has been reviewed.³⁷ α -Nitroölefins are hydrolyzed to α -hydroxy acids.³⁹⁷

253. Oxidation of Primary Alcohols and Aldehydes

$RCH_2OH \xrightarrow{(O)} RCHO \xrightarrow{(O)} RCO_2H$

Although aldehydes are more easily oxidized than alcohols, reagents and conditions are similar in the conversion of both substances to acids. Sulfuric-chromic acid mixture has been used to prepare propionic acid from the alcohol (65%),⁶¹ heptanoic acid from the aldehyde (70%),⁸⁶ and furoic acid from furfural (75%).²⁴⁰ Alkaline permanganate is employed in the preparation of methyldiphenylacetic acid from the aldehyde (45%)²¹⁹ and ethyl*n*-butylacetic acid from the aldehyde or alcohol (74%).¹⁰² Acid permanganate is used for the oxidation of heptaldehyde to heptanoic acid (78%)⁸⁷ and 6-methyl-1-octanol to 6-methyloctanoic acid (66%).³⁹⁹

Oxidation of alcohols by acidic reagents gives appreciable quantities of ester formed from the acid obtained and the original alcohol. For this reason, alkaline permanganate is sometimes preferred.

Oxidations are usually carried out at room temperature or with cooling by an ice bath. Vigorous stirring is important. The yields are seldom quantitative; carbon dioxide and lower acids are the principal by-products. The first step in this degradation is an oxidation of the α -carbon atom at the aldehyde stage.¹⁰

Silver oxide, easily prepared from silver nitrate and sodium hydroxide, is probably the best reagent for the preparation of pure acids from aldehydes. An additional advantage is that it does not attack other easily oxidizable groups in the molecule. Typical examples are 3-thiophenecarboxylic acid (97%),²⁴⁵ palmitic acid (98%),⁴¹ and anthracene-9-carboxylic acid (72%).²²³ Its use in the preparation of *ole/inic acids* from olefinic aldehydes is illustrated by the preparation of 2-methyl-2-pentenoic acid (60%).³⁶⁹ Organic peracids have also been used in the oxidation of aldehydes to carboxylic acids.^{477, 565}

Low yields of *acetylenic acids* are obtained by direct oxidation of the corresponding acetylenic alcohols by chromic-sulfuric acid mixture.⁴⁰⁹

Halo acids, such as β -chloropropionic acid (81%)^{414, 415} or α,β -dihalopropionic acids (85%),⁴¹⁹⁻⁴²¹ have been made by nitric acid oxidation of the halo aldehydes or alcohols.

 β -Phenoxypropionic acid (45%) is made from the phenoxy alcohol by permanganate oxidation in magnesium sulfate solution at 15-20°.⁴⁷⁹

Ch. 13

Alanine,⁵²⁶ a-amino-n-butyric acid, and a-aminoisobutyric acid⁵²⁹ are prepared by permanganate oxidation of the N-benzoyl derivatives of the corresponding amino alcohols. The free *amino acids* are obtained from the benzoyl derivatives by hydrolysis with hydrochloric acid followed by treatment with aniline. Over-all yields for the four step process are 45-60%.

254. Oxidation of Ketones and Quinones

$$H_{2}$$

$$H_{2}C$$

$$C = 0$$

$$C =$$

Cleavage of ketones by oxidation is infrequently used for preparation of monocarboxylic acids. Trimethylacetic acid is made in 75% yield from pinacolone, (CH₃)₃CCOCH₃, by oxidation with chromic anhydride in aqueous acetic acid.⁷¹ Cleavage on only one side of the carbonyl group is possible in this case.

The *dibasic acids*, glutaric acid (85%),²⁹⁰ adipic acid (60%),²⁹⁶ and related substituted adipic acids,^{306, 334, 336} are prepared from the cyclic ketones or corresponding alcohols by nitric acid oxidation using vanadium pentoxide catalyst. It is important to add the ketone dropwise to the hot acid since the reaction may become violent if the ketone is not instantaneously oxidized.

Diphenic acid (70-85%) is obtained by acid chromate oxidation of phenanthraquinone^{355, 356} or phenanthrene.^{357, 358} It is unnecessary to isolate or purify the quinone in the latter process.

255. Oxidation of the Double Bond

$$RCH = CH_2 \xrightarrow{(0)} RCO_2H$$

Several compounds are best prepared by this reaction, although it has been used chiefly for proof of organic structure. The Barbier-Wieland degradation is a classical method for the removal of one carbon atom from a chain.

In this way, pentadecanoic acid has been prepared in 58% over-all yield from palmitic acid.¹²⁰ A modification of the process, whereby three carbon atoms may be removed, has been reviewed.³¹ In this procedure, the olefin is brominated in the 'allylic position' by N-bromosuccinimide. Dehydrohalogenation then gives a diene, $R'CH=CH=C(C_6H_5)_2$, which is oxidized with the loss of three carbon atoms.

Alkaline permanganate oxidation is frequently employed. Examples are 2,6-dimethylheptanoic acid $(45\%)^{113}$ from 3,7-dimethyl-1-octene, *m*-ethyl-phenylacetic acid $(24\%)^{160}$ from *m*-ethylallylbenzene, and azelaic acid $(36\%)^{320}$ from ricinoleic acid.

Degradation of the carbon chain does not always occur. Dichromate oxidation of triisobutylenes gives acids with the same carbon content as the olefins.¹⁵ The *keto acid*, benzoylformic acid (55%), is made by hot alkaline permanganate oxidation of styrene.⁵⁰⁹

256. Ozonization of the Double Bond

$$\operatorname{RCH} = \operatorname{CH}_2 \xrightarrow{O_3} \operatorname{RCH} - \operatorname{CH}_2 \xrightarrow{\operatorname{Ag_2O}} \operatorname{RCO_2H}$$

The literature of this reaction to 1940 has been adequately reviewed.¹⁶ The emphasis up to that time was placed on obtaining higher yields of carbonyl compounds by hydrolysis of the ozonides. Several methods have been described for the oxidative cleavage of ozonides to acids. These procedures may prove valuable in the synthesis of certain acids. By adding the ozonide of 1-tridecene to an alkaline silver oxide suspension at 95°, a 94% yield of lauric acid is obtained.⁴¹ Decomposition of ozonides with 30% hydrogen peroxide is described for the preparation of 5-methylhexanoic acid (67%) from 6-methyl-1-heptene and of adipic acid (60%) from cyclohexene.⁹³ A study of solvents for ozonolysis has been made.³⁶

257. Oxidation of Alkyl Groups to Carboxyl Groups

 $ArCH_3 \xrightarrow{(O)} ArCO_2H$

As a preparative method, this reaction has found limited use. One methyl group of o- or p-xylene is oxidized by dilute nitric acid to give the corresponding toluic acid (55%).^{149, 152} Similarly, oxidation of mesitylene by concentrated nitric acid gives a 20% yield of 3,5-dimethylbenzoic acid.¹⁶⁵ Catalytic oxidation by oxygen gas in the liquid phase appears very promising.¹⁵¹ Butyric acid serves as a solvent, and acetates of cobalt, lead, and manganese are catalysts. Yields of 25-68% of aromatic acids are obtained from the corresponding alkylbenzenes and their chloro, nitro, or alkoxyl derivatives.²⁵⁹ Permanganate oxidation of α - and γ -picolines is used to prepare picolinic and isonicotinic acids (45-60%).^{249, 256, 257} The ethyl group of 4-ethylpyridine is converted to a carboxyl group with equal ease.²⁵⁸ The acetyl and methyl groups of *p*-methylacetophenone are both oxidized to carboxyl groups by refluxing first with dilute nitric acid then with alkaline permanganate. The yield of the resulting *dibasic acid*, terephthalic acid, is 88%.³³⁹ The *t*-butyl group is resistant to most oxidizing agents.⁵⁰⁶

An oxidizable alkyl group is not necessarily attached to an aromatic nucleus. Oxidation of a methyl group of trimethylacetic acid by heating for 7 hours with alkaline permanganate gives dimethylmalonic acid (35%).¹²³ Other examples include the *a-keto acids*, trimethylpyruvic acid $(40\%)^{502}$ from pinacolone and β -naphthylglyoxylic acid $(40\%)^{517}$ from β -acetylnaphthalene.

Halo and nitro groups on the benzene ring are unaffected by the oxidation of an alkyl group. o- and p-Nitro-,^{562, 566} o-chloro-,⁴²⁹ and p-iodobenzoic acids⁴³² have been made from the substituted toluenes.

258. Oxidation of 5-Alkyl-2-furoic Acids

$$\begin{array}{cccc} HC - CH & HC - CH \\ HC & C - CO_2C_2H_5 \xrightarrow{R_3CX} & HC - CH \\ HC & C - CO_2C_2H_5 \xrightarrow{R_3CL_3} & R_3CC & C - CO_2C_2H_5 \xrightarrow{NaOH;} & H^+ \\ O & O \end{array} \xrightarrow{KMnO_4} & R_3CCO_2H \\ \end{array}$$

Ethyl furoate undergoes a Friedel-Crafts condensation with tertiary chlorides in carbon disulfide solution. The free alkylfuroic acids are oxidized by alkaline potassium permanganate to trialkylacetic acids. Dimethylethylacetic acid (65%) and 1-methyl-1-cyclohexylcarboxylic acid (44%) have been prepared in this manner.⁸³

259. Oxidation and Decarboxylation of α -Keto Acids

$$RCOCO_2H \xrightarrow{H_2O_2} RCO_2H$$

Oxidative degradation of substituted pyruvic acids is accomplished by treating an aqueous solution of the sodium salt with 30% hydrogen peroxide (Superoxol) at 0-15°. Good descriptions have been published for the preparations of o-hydroxyphenylacetic acid (34%),⁶⁴⁶ 3,4-dimethoxyphenylacetic acid (60%),⁴⁸⁶ m-chlorophenylacetic acid (57%),⁴³⁴ and o-nitrophenylacetic acid.⁵⁶⁶

260. Haloform Reaction

$$RCOCH_3 + 4NaOH + 3X_2 \rightarrow RCO_2Na + CHX_3 + 3NaX + 3H_2O$$

By this method an acetyl group is converted to carboxyl by substitution of halogen for the three hydrogen atoms followed by cleavage of the resulting trihaloketone. For preparative purposes, it is desirable that no similarly replaceable hydrogen atom be present in the R radical.

It has been observed, however, that methylene groups are not as easily substituted as might be expected. For example, β -phenylisovaleric acid is obtained in 84% yield ⁵⁹² from 4-methyl-4-phenyl-2-pentanone, $(CH_3)_2C(C_6H_5)CH_2COCH_3$, and β -methoxyisovaleric acid is formed to the extent of 38% from 4-methyl-4-methoxy-2-pentanone.⁵⁸⁸

It has recently been shown that higher alkyl ketones are cleaved in a somewhat similar manner.⁵⁹¹

$$\operatorname{ArCOCH_2R} \xrightarrow{\operatorname{NaOBr}} \operatorname{ArCOCBr_2R} \xrightarrow{\operatorname{NaOH}} \operatorname{ArCOCOR} \xrightarrow{\operatorname{NaOBr}} \operatorname{ArCO_2Na} + \operatorname{RCO_2Na}$$

Common reagents for the substitution are bromine in sodium hydroxide solution at 0°,^{72, 85, 516} chlorine in sodium hydroxide solution at 55-80°,^{145,188, 376} aqueous sodium or potassium hypochlorite,^{375, 515} and commercial bleaching agents.^{176, 208, 366} Cleavage of the carbon chain by base usually occurs during the steam distillation of the haloform. This distillation is necessary for complete conversion of pinacolone to trimethylacetic acid (74%).⁷²

Olefinic acids prepared by this method include β , β -dimethylacrylic acid (53%) from mesityl oxide,^{375, 376} cinnamalacetic acid (70%) from cinnamalacetone,¹⁷⁶ and *trans-* α -alkylcinnamic acids from the corresponding methyl ketones (80%).⁴⁰⁵

A halo acid, $p \cdot (\beta$ -bromoethyl)-benzoic acid (87%),⁴³⁹ a hydroxy acid, β -hydroxyisovaleric acid (9%),³⁷⁶ and an acetylated amino acid, $p \cdot (\beta$ -acetylaminoethyl)-benzoic acid (78%),⁵⁵⁸ have been made by this method. Attempts to prepare 3-nitro- and 4-hydroxy-benzoic acids from the corresponding acetophenones have failed.¹⁴⁵ Oxidation of the methylene group of 2-acetylfluorene occurs during the reaction to give fluorenone-2-carboxylic acid (60%).⁵⁸⁹

261. Intermolecular Oxidation-Reduction of Aldehydes (Cannizzaro)

 $2R_3CCHO + NaOH \rightarrow R_3CCH_2OH + R_3CCO_2Na$

This dismutation occurs to a small extent with most aldehydes in the presence of a strong base. It is the primary reaction only with aldehydes that lack an α -hydrogen atom and, therefore, cannot undergo aldol condensation. The reaction has been reviewed^{29, 582} (cf. method 81). It is used in the preparation of 2-furancarboxylic acid (63%),²⁴¹ nitrobenzoic

422
METHODS 262-263

Ch. 13

acids (91%), and halobenzoic acids (84-96%).⁵⁶³ Aldehydes with halogen atoms in both ortho positions lose the carbonyl group as potassium formate to give excellent yields of *m*-dihalobenzenes.⁴⁵ The three hydroxybenzaldehydes are completely converted into the potassium salts of the corresponding acids by fusion with potassium hydroxide. This complete conversion is due to the following reaction.

m-HOC₆H₄CH₂OH + 2KOH $\xrightarrow{190^{\circ}}$ m-KOC₆H₄CO₂K + 2H₂ + H₂O

The *m*-hydroxybenzoic acid is obtained in 94% yield.⁵⁸³ *m*- and *p*-Dimethylaminobenzaldehydes are unaffected by concentrated potassium hydroxide solution.

262. Carbonation of Organometallic Compounds

$$RLi \xrightarrow{CO_2} RCO_2Li \xrightarrow{H_2O} RCO_2H$$
$$RMgX \xrightarrow{CO_2} RCO_2MgX \xrightarrow{H_2O} RCO_2H$$

This is an excellent reaction for the conversion of most halides to acids containing one additional carbon atom. Carbonation of Grignard reagents and organoalkali compounds gives acids in yields of 50-85%. Ether solutions of the organometallic compounds formerly were treated with carbon dioxide gas at 10° to -10° .^{67, 72, 183} A more recent technique involves pouring the solution onto excess crushed Dry Ice.^{184, 224, 277} Carbon dioxide under pressure is sometimes required for tertiary Grignard reagents.⁶¹⁵ Factors influencing the yield have been studied.⁶⁶ A low temperature and vigorous stirring are important. The yield of *n*-valeric acid from *n*-butylmagnesium bromide decreases from 79% at 0° to 47% at the reflux temperature of the ether solution.⁶⁶ Small amounts of magnesium alcoholates greatly inhibit the reaction.²¹

The chief by-products of the reaction are symmetrical ketones and tertiary alcohols formed by the action of the organometallic compound on the carboxylic acid salt. The amount of these products is greatly diminished by jetwise addition of the organometallic reagent to excess powdered Dry Ice (spray technique).^{17, 54}

Allylic rearrangements occur in the carbonation of Grignard reagents from 3-furylmethyl chloride⁶¹² and *m*-methylbenzyl bromide;⁶¹³ part of the product in each case contains a nuclear carboxyl group.

Appreciable quantities of *dibasic acids* are sometimes obtained as a result of α -metalation of the monobasic salt.^{24,571} In fact, it is possible

to prepare phenylmalonic acid $(60\%)^{342}$ and t-butylmalonic acid $(45\%)^{311}$ from the corresponding monobasic acids by this method.

The only *olefinic acid* isolated from the carbonation of the Grignard reagent prepared from the isomeric mixture of crotyl and methylvinylcarbinyl bromides is 2-methyl-3-butenoic acid (70%).^{373, 374} Separation of the halides is unnecessary because of this fortunate allylic isomerization.

a-Acetylenic acids, $RC \equiv CCO_2H$, where R is ethyl to *n*-amyl, are prepared in 40-49% over-all yields from sodium acetylide by alkylation, conversion to the sodio derivative, and carbonation.⁴⁰⁸ Carbonation of the magnesium compound formed from 1-hexyne and ethylmagnesium bromide gives 72% *n*-butylpropiolic acid. In a similar manner, acetylenic bydroxy acids are obtained in good yields from hydroxyacetylenic Grignard reagents in benzene solution. Carbonations are carried out at room temperature in an autoclave.⁴¹⁰

$$CH_{3}C(OH)C \equiv CH \xrightarrow{C_{2}H_{5}MgBr} CH_{3}C(OMgX)C \equiv CMgX \xrightarrow{CO_{2};}_{H^{+}}$$
$$CH_{3}C(OH)C \equiv CCO_{2}H$$

Grignard reagents have been prepared from β -acetylenic bromides, RC=C-CH₂Br. Carbonation of these compounds gives mixtures of acetylenic acids, RC=CCH₂CO₂H, and allenic acids, RC(CO₂H)=C=CH₂.⁶¹⁸

Highly branched ketones enolize in the presence of Grignard reagents to give bromomagnesium enolates. These compounds resemble true Grignard reagents, giving β -keto acids upon carbonation.⁵⁷² Several ketones have been converted to sodium enolates by sodium triphenylmethide in ether solution. The enolates are carbonated by pouring onto Dry Ice, and the β -keto acids are isolated as the methyl esters.⁵⁷³

$$\text{RCOCH}_3 \xrightarrow{(C_6H_5)_3CN_8} [\text{RCOCH}_2]^- \text{Na}^+ \xrightarrow{CO_2;} \text{RCOCH}_2CO_2H$$

263. Direct Carboxylation of the Aromatic Nucleus

 $C_6H_6 \xrightarrow{\text{COCl}_2 \cdot \text{AlCl}_3} C_6H_5\text{COCl} \cdot \text{AlCl}_3 \xrightarrow{\text{H}_2\text{O}} C_6H_9\text{CO}_2\text{H}$

Direct introduction of the carboxyl group into an aromatic ring is accomplished with urea hydrochloride, phosgene, oxalyl chloride, or carbon dioxide.^{11,221} Carboxylation of benzene is effected in 15-58% yields by treating with liquid phosgene and aluminum chloride.¹⁴⁴ No catalyst is required in the conversion of dimethylaniline and phosgene to *p*-dimethylaminobenzoic acid (50%).⁶¹⁹ 9-Anthroic acid (67%) is prepared from anthracene by heating to 240° with oxalyl chloride and nitrobenzene.²²¹ Ch. 13

A similar carboxylation affords a general method for the preparation of β , β -diarylacrylic acids. Oxalyl chloride attacks the terminal carbon atom of 1,1-diarylethylenes, giving acyl chlorides of the type Ar₂C=CHCOC1. Hydrolysis to the corresponding acids is effected by stirring with cold sodium carbonate solution.¹

o-Xylene is carboxylated to 3,4-dimethylbenzoic acid through 3,4-dimethylbenzodiphenylamide.¹⁶²

$$o - (CH_3)_2 C_6 H_4 \xrightarrow{(C_6H_5)_2 NC OC1} (CH_3)_2 C_6 H_3 CON(C_6H_5)_2 \xrightarrow{H_2 O} (CH_3)_2 C_6 H_3 CO_2 H_3 C$$

More active aromatic compounds, such as resorcinol and α -naphthol, are carboxylated in excellent yields by heating their alkali salts with carbon dioxide (Kolbe reaction).^{455, 466} The carboxyl group of salicylic acid migrates to the *para* position when this compound is heated to 240° with potassium carbonate; the *p*-hydroxybenzoic acid is obtained in 80% yield.⁴⁵⁴

264. Decarboxylation of Di- and Poly-basic Acids (Malonic Ester Synthesis)

$$CH_{2}(CO_{2}C_{2}H_{5})_{2} \xrightarrow{NaOC_{2}H_{5};} CHR(CO_{2}C_{2}H_{5})_{2} \xrightarrow{NaOH;} RCH_{2}CO_{2}H_{5}$$
$$CHR(CO_{2}C_{2}H_{5})_{2} \xrightarrow{NaOC_{2}H_{5};} CRR'(CO_{2}C_{2}H_{5})_{2} \xrightarrow{NaOH;} RR'CHCO_{2}H_{5}$$

Many high-molecular-weight branched acids are best prepared from alkyl halides by this method. Monoalkylation of malonic ester proceeds readily (75-90%) with primary and some secondary halides.^{20, 78, 110} The second hydrogen atom may be replaced by an alkyl group in 60-85% yield. Even α -naphthylmalonic ester may be further alkylated in 55-80% yields when R' equals CH₃ to n-C₄H₉.²⁰³ Excess malonic ester favors the formation of the monalkyl ester.^{19, 449} Thus, the use of twice the theoretical quantity of malonic ester increases the yield of β -phenylethylmalonic ester from 50% to 95%.⁴⁰ Dialkylated esters may be separated from the monoalkylated compounds by refluxing for 2 hours with 50% potassium hydroxide solution. Under these conditions the monoalkylmalonates are saponified whereas the dialkylated compounds are unaffected.⁸

It is usually recommended that substitution by the larger radical be made first.^{27, 69} However, ethylisopropylacetic acid is best prepared by first introducing the ethyl group.⁹⁸ Also, *n*-butylisopropylacetic acid (77%)¹¹⁶ and methylisohexylacetic acid (52%)¹¹² have been prepared by introducing the smaller of the two groups first. Direct substitution of both hydrogen atoms by isopropyl groups is difficult.^{7, 97} Tertiary and higher secondary halides give inferior results. A further discussion of the alkylation of malonic ester appears elsewhere (method 299). The substituted malonic esters are saponified and the free acids decarboxylated in excellent yields by refluxing with concentrated hydrochloric acid⁶⁵ or by heating to 170–190° until the evolution of carbon dioxide ceases.^{78, 110} Monoalkylmalonic acids begin to decompose at lower temperatures (98–123°) than malonic acid (129°), whereas the dialkylated acids require temperatures higher than those for the corresponding monoalkylated compounds.⁸ α -Naphthylalkylmalonic acids decompose spontaneously at room temperature.²⁰³

The malonic ester synthesis has been applied successively to build up the even-carbon fatty acids from C_{22} to C_{30} .¹²⁷ Several series of branched acids have also been made.^{9, 122}

 $5-(\alpha-Furyl)$ -pentanoic acid $(50\%)^{267}$ and 3-tetrahydrofurfurylpropionic acid $(75\%)^{262}$ may be prepared without destruction of the heterocyclic ring.

 β,β,β -Triphenylpropionic acid is made by merely heating triphenylcarbinol and malonic acid at 160° until the evolution of gas ceases (64%).²³⁸

Dicarboxylic acids may be synthesized in three ways by this method.

1. Hydrolysis of alkylmalonic esters leads to alkylmalonic acids and is invariably carried out with aqueous or alcoholic potassium hydroxide.

2. Dicarboxylic acids having the carboxyl groups farther apart are made by alkylation of malonic esters with a halo ester^{324, 352} or halo cyanide³⁵⁴ followed by hydrolysis and decarboxylation; e.g., alkylation of ethylmalonic ester, $C_2H_5CH(CO_2C_2H_5)_2$, with ethyl δ -iodovalerate gives heptane-1,5,5tricarboxylic ester, C2H5O2C(CH2)4C(C2H5)(CO2C2H5)2, which is hydrolyzed and decarboxylated to heptane-1,5-dicarboxylic acid (85%).³²² A series of a-alkylglutaric acids have been prepared by this process from alkylmalonic esters and ethyl β -iodopropionate.⁶²¹ In a modification of this process acrylonitrile is condensed with an alkylmalonic ester by the Michael reaction (method 301) and the resulting cyanodicarboxylic ester is hydrolyzed and decarboxylated to a-alkylglutaric acids.⁶²² In another variation, equimolar quantities of an alkylmalonic ester and trimethylene bromide are used, whereby only one bromine atom in the latter is attacked. The other bromine atom is replaced by a cyanide group, and the resulting cyanodicarboxylic ester is hydrolyzed and decarboxylated to an α -alkyladipic acid.^{316, 325} Preparation of certain branched homologs is complicated. For example, alkylation of ethyl malonate by ethyl a-bromoisobutyrate gives 33% of the carbethoxyglutaric ester, CH₃CH(CO₂C₂H₅)CH₂CH(CO₂C₂H₅)₂, in addition to the expected isomeric carbethoxysuccinic ester, (CH₃)₂C(CO₂C₂H₅)CH(CO₂C₂H₅)₂.¹⁴

3. Alkylation of malonic ester by one-half equivalent of an α, ω -polymethylene bromide gives an $\alpha, \alpha, \omega, \omega$ -tetracarboxylic ester which is hydrolyzed and decarboxylated to an α, ω -dicarboxylic acid having four more carbon atoms than the dibromide. Good descriptions include those for 1,12-

METHODS 264-265

Ch. 13

dodecanedicarboxylic acid (64%) from 1,10-dibromodecane,³²⁶ pimelic acid (64%) from trimethylene bromide,³⁰⁶ and α, α' -dimethylpimelic acid (45%) from trimethylene bromide and methylmalonic ester.³²¹ Equimolar portions of trimethylene bromide and ethyl sodiomalonate give intramolecular alkylation to form the cyclobutane ring. Hydrolysis then gives 1,1-cyclobutanedicarboxylic acid (23%).¹³¹ Glutaric acid (80%) is prepared by hydrolysis and decarboxylation of the tetracarboxylic ester obtained by condensing two moles of malonic ester with one mole of formaldehyde.²⁹¹

Olefinic halides may be used as alkylating agents in the malonic ester synthesis. The olefinic malonic acids are decarboxylated to *olefinic acids* at lower temperatures (140-160°) than those employed for alkylmalonic acids. Examples include the conversion of 4-pentenylmalonic acid to 6-heptenoic acid (67%),³¹⁸ allylmalonic acid to allylacetic acid (70%),³⁷¹ and 2-cyclopentenylmalonic acid to 2-cyclopentenylacetic acid (99%).³⁹⁴ γ , δ -Olefinic acids are usually contaminated with appreciable amounts of γ - or δ -lactones, into which they are readily converted in acid medium. Lactone formation is reduced by employing an immiscible solvent during the final acidification. In this way 5-methyl-4-hexenoic acid (52%) is obtained free from lactone.³⁷¹ Isobutylideneacetic acid is removed from isocaprolactone by fractional distillation.³⁸¹

Olefinic dicarboxylic acids and esters from the Knoevenagel condensation are readily decarboxylated to olefinic acids. Decarboxylation frequently occurs during the condensation and is discussed elsewhere (method 37).

 α -Halo acids are readily prepared by chlorinating ⁶²³ or brominating alkylmalonic acids before decarboxylation. Bromination is rapid at room temperature in ether solution. Crude malonic acids may be used. Decarboxylations are effected by heating the α -bromomalonic acids at 130°. Excellent directions are given for α -bromocaproic acid (71%),⁴²⁵ α -bromo- β -methylvaleric acid (67%),⁴²⁶ and α -bromoisovaleric acid (66%).⁴²³

The bydroxy acid, trans-cyclopentanol-2-acetic acid (57%), is made by refluxing trans-cyclopentanol-2-malonic acid for 10 minutes in pyridine solution.⁴⁴⁹

A number of substituted mandelic acids have been prepared in fair yields by the following series of reactions (Ando synthesis), where 7 may be alkyl, aryl, acyl, or halogen.^{462, 468}

Among the *ether acids* prepared by the malonic ester synthesis are 6-phenoxycaproic acid (65% over-all) from δ -phenoxybutyl bromide⁴⁹³ and γ -(o-anisyl)-butyric acid (80%) from β -(o-anisyl)-ethyl bromide.⁴⁸⁹

Use of α -bromoethyl methyl ketone as alkylating agent for malonic ester gives a 74% yield of ethyl α -carbethoxy- β -methyllevulinate. The second α -hydrogen atom may be replaced by a methyl group in 76% yield. The *keto acids*, β -methyllevulinic acid (40%) and α , β -dimethyllevulinic acid (83%), are then obtained by decarboxylation of the dibasic acids at 140° and 120°, respectively.⁵⁰¹

An amino acid, β -amino- β -phenylpropionic acid (70%), is made by adding ammonia to benzalmalonic ester (45%) followed by hydrolysis and decarboxylation by boiling hydrochloric acid.^{46, 555} A single-step process to achieve the same result involves heating a mixture of malonic acid, benzaldehyde, and ammonium acetate on the steam bath until evolution of carbor. dioxide ceases.⁵⁵⁴

265. Hydrolysis and Decarboxylation of α-Cyano Acids (Cyanoacetic Ester Synthesis)

$$\mathrm{NCCH}_{2}\mathrm{CO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{NaOC}_{2}\mathrm{H}_{5};} \mathrm{NCCHRCO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{NaOC}_{2}\mathrm{H}_{5};} \mathrm{NCCRR'CO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{NaOH}_{2};}_{\mathrm{H}^{+}} \mathrm{NCCRR'CO}_{2}\mathrm{C}_{2}\mathrm{H}_{5} \xrightarrow{\mathrm{NaOH}_{2};}_{\mathrm{H}^{+}}$$

NCCRR'CO₂H
$$\xrightarrow{\text{HC1}}$$
 RR'CHCO₂H

Few acids have been prepared by this method. It is important in the preparation of diisopropylacetic acid, which is made with difficulty by the malonic ester synthesis. Ethyl cyanoacetate is readily alkylated²⁸ (method 386). *n*-Propyl and isopropyl groups are substituted in 65-75% yields.^{6,7} Alkaline hydrolysis of diisopropylcyanoacetate gives diisopropylmalonamidic acid, $[(CH_3)_2CH]_2C(CONH_2)(CO_2H)$, which is stable to further hydrolysis or decarboxylation⁷ but may be converted to diisopropylacetic acid by treatment with nitrous acid¹⁰⁸ (cf. method 248). On the other hand, the cyano ester may be hydrolyzed and decarboxylated directly to diisopropylacetic acid by refluxing with concentrated hydrochloric acid (90%).¹⁰⁹

The cyanoacetic ester synthesis with ethylene bromide is preferred to the malonic ester synthesis for the preparation of cyclopropanecarboxylic acid.¹²⁹

Indirect substitution by a cyclopentyl group in 80% yield may be accomplished by hydrogenation of the unsaturated ester formed by condensation of cyclopentanone and cyanoacetic ester (Knoevenagel reaction) (method 37). Alkaline hydrolysis followed by thermal decarboxylation gives cyclopentylacetic acid (82%).¹³²

428

Ch. 13

The dibasic acid, a-methylsuccinic acid (85%), is prepared by using ethyl a-bromopropionate as the alkylating agent followed by hydrolysis and decarboxylation by boiling with concentrated hydrochloric acid.²⁹³ Phenylsuccinic acid (95%) is obtained from the a,β -dicyano ester, $C_6H_5CH(CN)CH(CN)CO_2C_2H_5$, made by adding hydrogen cyanide to the Knoevenagel condensation product, $C_6H_5CH = C(CN)CO_2C_2H_5$, of benzaldehyde and cyanoacetic ester.^{56, 346} This synthesis has been extended to succinic acids of the type HO₂CCR₂CH₂CO₂H.¹¹⁵

Substituted malonic acids are obtained by alkaline hydrolysis of alkylcyano esters prepared either by direct alkylation or by reduction of unsaturated cyano esters from the Knoevenagel reaction.³⁰⁰

The Guareschi reaction (method 275) is a modification of this method.

266. Cleavage of β -Keto Acids (Acetoacetic Ester Synthesis)

Contrary to popular belief, the acetoacetic ester synthesis is not a good general method for the preparation of acids. Alkylation of acetoacetic ester is discussed elsewhere (method 213). Cleavage of the substituted esters by concentrated alkali gives salts of carboxylic acids. This reaction is always accompanied by varying amounts of ketonic cleavage (method 184). Factors influencing the ratio of ketone to acid formation have been studied.¹² Cleavage to acids is very sensitive to small changes in alkali concentration. Thus, the yield of caproic acid decreases from 60% to 28% when the alkali concentration is reduced from 60% to 50%.⁷⁸ Increased branching of butyl radicals in α - α -dialkylacetoacetates favors cleavage to dialkylacetic esters.⁶²⁸ Methylethylacetic acid (60%)⁷⁰ is the only other simple acid for which an adequate preparation by this method is described.

A concentrated solution of sodium hydroxide in methanol is used to open the ring of 2-carbethoxycyclohexanone to give the dibasic acid, pimelic acid (88%).^{302, 303} 1-Hydroxyhydrindene-2-acetic acid (60%) is prepared by alkylating acetoacetic ester with the bromohydrin followed by cleavage with 43% potassium hydroxide.⁴⁶⁵ Preparation of γ -phenoxy- α -methylbutyric acid (87%) is accomplished using phenoxyethylbromide as alkylating agent and 20% alcoholic sodium hydroxide for the cleavage.⁴⁸⁵ More concentrated alkali is used in the preparation of 6-phenoxyhexanoic acid (50%).⁶²⁶

An alternative method for the introduction of the carboxyl group by the acetoacetic ester synthesis involves alkylation by a bromo ester followed by a ketonic cleavage (method 308). In this manner, the keto acid, cyclopentanone-2-acetic acid (87%), is made from cyclopentanone-2-carboxylic acid and ethyl bromoacetate.³⁰⁴

267. Reduction of Unsaturated Acids

$$\mathsf{RCH} = \mathsf{CHCO}_2\mathsf{H} + \mathsf{H}_2 \xrightarrow{\mathsf{Catalyst}} \mathsf{RCH}_2\mathsf{CH}_2\mathsf{CO}_2\mathsf{H}$$

Olefinic acids have been reduced to saturated acids in excellent yields by a variety of methods. Catalytic hydrogenation at room temperature over platinum oxide catalyst is described for 4-phenyl-3-pentenoic acid (98%).¹⁷⁵ Behenic and undecanoic acids are prepared from the naturally occurring erucic and undecylenic acids with this catalyst.^{121, 126} New and "aged" platinum oxide catalysts have been compared.⁴⁶ Reduction by nickelaluminum alloy has been preferred to catalytic hydrogenation over platinum catalyst in the preparation of γ -isopropylvaleric acid.⁶²⁹

 β -Phenylpropionic acid is conveniently prepared from cinnamic acid by electrolytic reduction (90%),¹⁵⁷ by high-pressure hydrogenation over copper chromite catalyst (100%),¹⁵⁵ or by reduction with phosphorus and potassium iodide in phosphoric acid (80%).¹⁵⁶

A palladium catalyst has been used for the quantitative hydrogenation of β , β -diphenylacrylic acid to β , β -diphenylpropionic acid.¹

Sodium amalgam serves to reduce selectively the double bond in an olefinic acid containing the thiophene or furan ring.^{263, 268, 628} This reagent is also employed to prepare *ole/inic acids* by partial reduction of certain polyenoic acids, e.g., 3-pentenoic acid (60%) from vinylacrylic acid.³⁶⁹

Among the *dibasic acids* prepared by this method are succinic acid from maleic acid (98%) by catalytic hydrogenation over Raney nickel catalyst²⁰⁵ and alkylsuccinic acids from alkenylsuccinic acids made by the Diels-Alder reaction of simple olefins and maleic anhydride.³¹⁰

268. Reduction of Hydroxy Acids

 $ArRCOHCO_2H \rightarrow ArRCHCO_2H$

Aryl-substituted glycolic acids have been successfully reduced in high yields by several procedures. Refluxing with phosphorus and iodine in glacial acetic acid is described for the preparations of diphenylacetic acid (97%),²¹³ 4-fluorenecarboxylic acid (92%),²²⁰ and a series of α -naphthylalkylacetic acids²⁰³ and biphenylalkylacetic acids.²¹² In a slight variation of this procedure, a mixture of potassium iodide, phosphorus, and phosphoric acid is used.¹⁵⁶ Stannous chloride in a mixture of hydrochloric, hydriodic, and acetic acids has been employed in the preparation of Ch. 13

o-methoxyphenylacetic acid (90%) from o-methoxybenzaldehyde cyanohydrin.⁴⁸⁰ Catalytic hydrogenation of mandelic acid, C₆H₅CHOHCO₂H, over palladium catalyst in the presence of hydrobromic⁴⁸² or perchloric¹⁴⁶ acids gives a 90% yield of phenylacetic acid. Similar hydrogenations of O-benzoyl or O-acetyl derivatives give satisfactory results for preparations of various aromatic acids.^{22, 136, 161}

Catalytic hydrogenation of the γ -hydroxy acid over copper chromite catalyst has been employed for the preparation of γ -(p-tolyl)-valeric acid.¹⁹³

269. Reduction of Keto Acids

 $RCOCH_2CH_2CO_2H \xrightarrow{(H)} RCH_2CH_2CH_2CO_2H$

Preparation of acids by the reduction of keto acids is possible when the carbonyl group is in the *alpha* or gamma positions or further removed from the carboxyl group. The α -keto acid, phthalonic acid, is reduced to o-carboxyphenylacetic acid (homophthalic acid) in excellent yield by phosphorus and potassium iodide in phosphoric acid³⁴⁵ or by constant-boiling hydriodic acid.³⁴⁶

The Martin modification of the Clemmensen reduction (cf. method 3) gives good results with a number of γ -keto acids.^{168, 191} In this method zinc amalgam and hydrochloric acid are used in the presence of an immiscible solvent such as toluene. The concentration of organic acid in the aqueous reducing phase is small, and the formation of resinous products which coat the surface of the zinc is avoided. β -Benzoylpropionic acid gives γ -phenylbutyric acid in 90% yield.^{5, 169} The thiophene nucleus is unaffected in the conversion of β -(α -thienoyl)-propionic acid to γ -(α thienyl)-butyric acid (83%).²⁶⁶ Partial removal of halogen from the aromatic ring occurs in the preparation of γ -p-bromophenylbutyric acid (75%).⁴⁴⁰ Hydroxyl groups on the benzene ring are unaffected.⁴⁶⁴ In preparing methoxy acids, the methoxyl group is partially cleaved during the reduction but is easily replaced by treating the crude product with dimethyl sulfate.⁵

Catalytic hydrogenation over palladium-on-charcoal with perchloric acid promoter is more satisfactory than the Clemmensen method for the reduction of α -phenyl- β -benzoylpropionic acid to α , γ -diphenylbutyric acid (83%).²³² Several other keto acids have been successfully hydrogenated over this catalyst.⁶³¹

A modified Wolff-Kishner reduction employing hydrazine in glycol has been used to prepare 10-phenyldecanoic acid from the 10-keto acid $(70\%)^{191}$ and palmitic acid labeled with C₁₄ at carbon atom 6 from the corresponding 5-keto acid.¹²⁵ As in the Clemmensen reduction, the thiophene nucleus is unaffected.²⁶⁶ 270. Reduction of Aromatic Acids

 $C_6H_5CO_2H \xrightarrow{(H)} C_6H_{11}CO_2H$

Several catalytic hydrogenations of aromatic rings in compounds containing free carboxyl groups are described (cf. method 4). Low-pressure hydrogenation over platinum oxide catalyst has been used. *p*-Toluic acid in acetic acid at 60° gives 4-methylcyclohexanecarboxylic acid (95%). The reaction is rapid at first, but the catalyst is quickly exhausted.¹³⁵ *p*-Hydroxybenzoic acid gives 4-hydroxycyclohexanecarboxylic acid (49%) and cyclohexanecarboxylic acid (27%).⁴⁴⁶ Less success is achieved in the preparation of aminocyclohexanecarboxylic acids.⁵² Rates of hydrogenation of eleven phenyl-substituted aliphatic acids have been studied.⁴ With increased molecular complexity, higher pressures and larger amounts of catalyst are required.⁶³³

Hexahydronicotinic acid (90%) is obtained by catalytic hydrogenation of nicotinic acid at 3 atm. pressure over colloidal platinum. Preparation of the catalyst is described.²⁵⁴ The 9,10 double bond in the acridine nucleus is reduced at 10° by sodium amalgam in dilute sodium carbonate solution to give 9,10-dihydroacridine-9-carboxylic acid in 70% yield.²²⁴ 2-Phenylcyclohexanecarboxylic acid (96%) is prepared by the selective reduction of 2-phenylbenzoic acid by a large excess of sodium in refluxing amyl alcohol.²⁰⁴

271. Hydrolysis and Rearrangement of Diazoketones (Arndt-Eistert)

$$\operatorname{RCOC1} \xrightarrow{\operatorname{CH}_2 \operatorname{N}_2} \operatorname{RCOCHN}_2 \xrightarrow{\operatorname{H}_2 \operatorname{O}} \operatorname{RCH}_2 \operatorname{CO}_2 \operatorname{H}$$

This valuable method for the conversion of an acid to its next higher homolog has been used to prepare aliphatic, aromatic, and heterocyclic acids. Excellent reviews of the reaction have been published.^{47, 49} Diazomethane preparations are described elsewhere (method 500). The acyl chloride is added to an excess of diazomethane in ether or benzene solution. Diazoketones are usually not purified.

Rearrangement to acids is accomplished by adding a dioxane solution of diazoketone to a suspension of silver oxide in warm aqueous sodium thiosulfate solution. Examples include biphenyl-2-acetic acid (86%),²¹⁰ 1-acenaphthylacetic acid (64%),²¹⁵ decane-1,10-dicarboxylic acid (72%),³¹⁴ and o-bromophenylacetic acid (63%).²¹⁵

Rearrangement to amides (method 360) or esters (method 295) often gives higher yields.

432

272. Alkali Fusion of Unsaturated Acids (Varrentrapp)

$$CH_3(CH_2)_n CH = CHCO_2H \xrightarrow{KOH}_{300^\circ} CH_3(CH_2)_n CO_2K$$

Olefinic acids are cleaved by heating with alkali hydroxides and a small amount of water. The other products of the reaction are hydrogen gas and potassium acetate. The double bond may be in any position in the chain of the original olefinic acid, but it is isomerized to the α , β -position before cleavage. Examples are *n*-decanoic acid (74%) from dodecenoic acid¹¹⁹ and palmitic acid from 9-octadecenoic acid (oleic acid).^{438, 576} The reaction is of little value in preparative work.

273. Friedel-Crafts Reaction

 $2C_{\mathfrak{s}}H_{\mathfrak{s}} + CH_{\mathfrak{z}}C(C1) = CHCO_{\mathfrak{z}}H \xrightarrow{\mathsf{AlCI}_{\mathfrak{z}}} CH_{\mathfrak{z}}C(C_{\mathfrak{s}}H_{\mathfrak{s}})_{\mathfrak{z}}CH_{\mathfrak{z}}CO_{\mathfrak{z}}H$

Benzene may be alkylated by certain unsaturated,⁵⁸¹ halo,^{233, 594} hydroxy,⁵⁹⁵ and keto^{218, 596} acids. The yields of phenyl-substituted acids are usually low (18-65%). In the alkylation of benzene by cinnamic and crotonic acids the major products are 3-phenyl- and 3-methyl-hydrindones, respectively, formed by subsequent ring closures by Friedel-Crafts acylation.²³³

274. Alkaline Cleavage of β -Ketoalkylpyridinium Iodides

$$ArCOCH_3 \xrightarrow{I_2} (ArCOCH_2 NC_5H_5)I \xrightarrow{NaOH} ArCOONa$$

Methyl aryl ketones react with iodine in the presence of excess pyridine to give pyridinium salts. Cleavage of the salts is readily accomplished by heating with aqueous-alcoholic sodium hydroxide. Over-all yields of 60-83% are reported.^{187, 635} This two-step procedure affords a method similar to the haloform reaction for degradation of certain methyl ketones to acids with one less carbon-atom.

Nine hydroxyacetophenones have been converted to the corresponding hydroxybenzoic acids by this method.⁴⁵² Some nuclear iodination occurs with the m- and p-hydroxy compounds.

275. Substituted Glutaric Acids by the Guareschi Reaction

METHODS 275-278

Ethyl cyanoacetate condenses with ketones and ammonia in absolute ethanol at 0-5° to give 44-73% yields of cyclic dicyanoimides. Endocyclic ketones may be used, giving imides in which the two radicals are part of an alicyclic ring. The imides are hydrolyzed and decarboxylated in almost theoretical yields to β , β -disubstituted glutaric acids.³⁰⁹ A similar reaction takes place between aldehydes or ketones and cyanoacetamide, NCCH₂CONH₂, in the presence of piperidine^{42, 297} or potassium hydroxide.²⁹⁸ When aldehydes are used, the condensation products are dicyanoamides, RCH[CH(CN)CONH₂]₂, rather than cyclic imides.

276. a-Hydroxy Acids by the Benzilic Acid Rearrangement

$$RCOCOR + KOH \rightarrow R_2C(OH)CO_2K$$

This reaction is exhibited by a number of alkyl and alkoxy benzils, phenanthraquinone,⁴⁶⁹ and certain aliphatic ⁵⁰ and alicyclic ²⁶ α -diketones. A similar rearrangement occurs when α -epoxyketones are refluxed with 30% aqueous sodium hydroxide.⁴⁷⁰ Best directions are those for benzilic acid (90%) from benzoin, sodium bromate, and sodium hydroxide.⁴⁶⁷ Oxidation of the benzoin to benzil and rearrangement of benzil to benzilic acid are accomplished in one step. α -Ketoaldehydes⁴⁴⁶ and potential α -ketoaldehydes⁴⁵⁶ undergo a similar internal oxidation-reduction reaction in excellent yields, viz.,

$$C_6H_5COCHCl_2 \xrightarrow{NaOH} C_6H_5CHOHCO_2Na$$

277. a-Isopropoxy Acids by Reductive Cleavage of Dioxolones

Six α -isopropoxy acids have been made in 20-80% yield by the hydrogenolysis of dioxolones by t-butylmagnesium chloride. The Grignard reagent is oxidized to isobutylene. An improved procedure for preparing the dioxolones from α -hydroxy acids and acetone is described.⁴⁹²

278. α-Amino Acids by Hydrolysis and Decarboxylation of Acylaminomalonic Acids (Modified Sörensen Reaction)

$$\text{RCONHCH}(\text{CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow[\text{R'x}]{\text{R'x}} \text{RCONHCR'}(\text{CO}_2\text{C}_2\text{H}_5)_2 \xrightarrow[\text{H}_2\text{O}]{\text{H}_2\text{O}} \text{K'CH}(\text{NH}_2)\text{CO}_2\text{H}$$

A large number of α -amino acids have been prepared by various modifications of the Sörensen method ^{205, 539} in which acylaminomalonic esters are alkylated and degraded. Ethyl acetamidomalonate (R=CH₃),^{538, 542, 557} ethyl benzamidomalonate (R=C₆H₅),^{53, 561} and ethyl formamidomalonate (R=H)⁵³² have been used. The acetyl group is more easily introduced and removed than the benzoyl group.^{542, 548, 557}

C-Alkylation of the sodio derivative is accomplished by a technique similar to the alkylation of malonic ester. Primary halogen compounds,^{542, 548, 557} quaternary ammonium salts,^{560, 561} and an alkene oxide⁴³ have been used as alkylating agents. Alkylation by secondary halides has been less successful.^{557, 644} Hydrolysis of the substituted esters to acetylated amino acids is described for leucine (64%) and phenylalanine (83%).⁵⁵⁷ Hydrolysis with deacylation has been used to prepare histidine (45%) and phenylalanine (67%).⁵⁴² Glutamic acid (75%) is obtained from substituted acylaminomalonates prepared by the Michael condensation of methyl acrylate and the acylated amino esters.^{535, 557}

A more recent modification of the Sörensen process employs acylaminocyanoacetic esters, RCONHCH(CN)CO₂C₂H₅, in place of the malonates.⁴⁴ An alkylated acetylaminocyanoacetate may be hydrolyzed to an amino acid in acidic or basic medium.⁵⁴⁸

Ole finic amino acids ⁵⁴⁸ and alkoxy amino acids ^{51, 559} are obtained by this method from olefinic halides and halo ethers, respectively.

279. Reduction of Azlactones

 β -Aryl- α -aminopropionic acids are obtained by reduction of azlactones with phosphorus and 50% aqueous hydriodic acid in glacial acetic acid.⁵⁵⁶ Many other reducing agents have been used. Reviews of this synthesis and related reactions have been made.^{32, 33, 586, 587} The azlactones are conveniently prepared in good yields from aromatic aldehydes and N-acyl derivatives of glycine.^{39, 556} Rotassium carbonate has been found to be a superior catalyst for this condensation.⁶⁴⁵ Ketones cannot be substituted for the aromatic aldehydes.⁶⁴⁷ 280. Hydrolysis of Hydantoins

A variety of aldehydes—aliphatic, aromatic, and heterocyclic—have been condensed with hydantoin. Sodium acetate in a mixture of acetic acid and acetic anhydride³⁰ as well as pyridine containing traces of piperidine³ serves as condensing agent. Reduction of the double bond is accomplished with phosphorus and hydriodic acid,³⁰ ammonium sulfide,³ or stannous chloride.⁵⁵² In a more recent modification, the hydantoins are synthesized from aldehyde or ketone cyanohydrins and ammonium carbonate.⁶⁵⁰

$$\operatorname{RCOR}' \xrightarrow{\operatorname{KCN}} \operatorname{RR}' \xrightarrow{\operatorname{CO}} \operatorname{CO}$$

Hydrolysis to α -amino acids is effected by various reagents in acid or basic medium. Barium hydroxide is used for α -aminopelargonic acid (92%),⁵⁵² and 60% sulfuric acid for α -aminoisobutyric acid (76%).⁵³⁰ Highermolecular-weight dialkylhydantoins require treatment with concentrated hydrochloric acid in a sealed tube at 160–180°.⁶⁴⁸ The over-all process has been reviewed for certain important α -amino acids.^{32, 33, 650}

281. Carboxymethylation of Amines 600

 $RNH_2 + 2NaCN + 2CH_2O + 2H_2O \rightarrow RN(CH_2CO_2Na)_2 + 2NH_3$

282. Carboxylation of Olefins 601

$$RCH = CH_2 + CO + H_2O \xrightarrow{\text{Catalyst}}_{\text{Pressure}} RCH(CH_3)CO_2H$$

283. Keto Acids by Oxidation of Tertiary Alcohols⁶⁰⁵

.

Ch. 13

284. Cleavage of Acylcyclohexanones 606

TABLE 42. MONOCARBOXYLIC ACIDS

TABLE 42. MONOCARBOXYLIC ACIDS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^l _D , (M.p.), Deriv
		Aliphatic	Monoca	arboxylic Acid	ls
C_2	Acetic acid (anhydrous)			13 57	118*, (16.635), 114An*
			· · · · ·	13 ⁵⁸	1.3721 * (16.55), 147To *
C,	Propionic acid	247	90	13 ⁵⁹	141, 1.3862*, 80Am
-		252	96 †	1360	124To *
		253	65	13 61	141, 106An
C₄	n-Butyric acid	252	94 †	13 60	163, 1.3983*, 116Am
	-	253	74	1363	96 An
	Isobutyric acid	252	90 t	13 60	155, 1.3920 *, 129Am
		253	84	13 64	105An
C,	n-Valeric acid	247	81	1365	187 *, 70To *
-		262	80	1366	87/15, 106Am
	Methylethylacetic acid	262	86	1367	174, 1,4050 *, 112Am
		262	86	1368	175, 110An
		264	84	1369	
		266	60	13 70	
	Trimethylacetic acid	254	75	1371	164/760. 129An
	(pivalic acid)	260	74	1373	78/20. (35)
	······································	262	70	13 72	112/124, 154Am*
C.	n-Caproic acid	247	100	1374	101/16, 101Am
v	··	264	74	1365	205, 1.4168 *. 96An *
		266	60	1375	110/16
	Methyl-n-propylacetic	264	63	1369	103/12, 1,4140 *, 78Am *
	acid	264	50	13 76	105/12, 95An *
		264	63	13 77	103/12
	3-Methylpentanoic acid	253	60	1379	92/10, 125Am
		264	65	1378	196/743. 1.4159*. 112An*
	Isobutylacetic acid	247	82	1381	94/15, 1,4144*, 120Am
	-	264	70	13 ⁸⁰	111An *
	Dimethylethylacetic acid	258	79	1383	81/11, 1.4141*, 104Am*
		262	60	1382	86 pP *
	Methylisopropylacetic	260	70	13 84	90/16, 1.4146, 129 Am
	acid	264	80	1369	
	t-Butylacetic acid	260	89	13 ⁸⁵	96/26, 1.4096, (7), 132Am
C,	Heptanoic acid (enanthic	253	70	13 ⁸⁶	115/13, 1.4243*, 96Am
	acid	253	98	13 41	98/3, 71 An *
		253	78	13 ⁸⁷	161/100, 72 <i>p</i> B *
	2-Methylhexanoic acid	247	25	1388	98 An *
		264	80	1369	209 *, 1.4189 ²⁵ *, 73Am *
	3-Methylhexanoic acid	264	42 †	13 ⁸⁹	112/16, 1.4222, 98Am
	4-Methylhexanoic acid	26 2	67	1390	115/16, 1.4211*, 98Am
	5-Methylhexanoic acid	256	6 7	13 ⁹³	207/752, 1.4220, 100Am
		264	100	1391	110/10, 103Am
		264	92	1392	212/762, 75An *

C_n

Compound

CARBOXYLIC ACIDS

TABLE 42 (continued)

Method $\frac{\text{Yield}}{(\%)}$ Chapter^{ref.} B.p./mm., n_D^l , (M.p.), Deriv.

Ch. 13

TABLE 42. MONOCARBOXYLIC ACIDS

TABLE 42 (continued)

С л	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphan	ic Monoc	arboxyli	c Acids (con	tinued)
C9	Isopropyl -n- butylacetic acid	264	77	13 116	223, 93Am
	Dimethylneopentylacetic acid	262	34	13 117	230/732, (45), 71Am
	3,3,4,4-Tetramethyl- pentanoic acid	262	59	13118	(67), 138Am
	<i>n</i> -Propylisobutylacetic acid	264	76	13 ¹⁰⁸	127/12, 121Am
C 10	Decanoic (capric) acid	272	74	13 119	164/12 (31) 108Am *
C ₁₁	Undecanoic (hendecanoic)	247	80	13 120	158/11 (29) $103 Am$
-	acid	267	84	13 121	122/1 5
C 12	Dineopentylacetic acid	253	80	1 3 123	(88) 140 Am
C 13	Tridecanoic acid	247	75	13120	177/10, (43), 75bB*
C 14	Tetradecanoic (myristic) acid	249	95	13124	(53), 102Am •
Ċ 15	Pentadecanoic acid	255	71	13120	(51), 77+B *
C 16	Hexadecanoic acid	253	98	1341	106Am *
2 17	Heptadecanoic (margaric) acid	253	54 t	13 120	(60), 106Am *
C 19	Nonadecanoic acid	247	35	13120	230/10, (66)
⊇ 2 0	Eicosanoic (arachidic) acid	264	55	13126	(75), 109Am *
22	Docosanoic (behenic) acid	267	84	13126	(80), 111Am *
2	Tetracosanoic acid	264	98	13 127	(85)
	Ali	icyclic Mo	onocarbo	xylic Acids	
24	Cyclopropanecarboxylic	247	79	13 128	95/26
	acid	247	96	13 130	81/13, 125Am
		260	64	13 590	97/27, (17)
		265	49	13 129	186
5	Cyclobutanecarboxylic acid	264	60 t	13131	105/21, 153Am *
	Cyclopropylacetic acid	264	90	13 281	190/750, 1.4320 ²⁵ , 83pP
6	Cyclopentanecarboxylic	262	50 t	13 574	110/14 179Am *
	acid	313	53	13 132	123/27
7	Cyclohexanecarboxylic	262	55 t	13133	(31), 186Am *
	acid	262	83	13 617	131/20, (30), 142An *
	2-Methylcyclopentane- carboxylic acid	260	81	13 134	107/9, 1.4504 ²² , 148Am
	Cyclopentylacetic acid	265	82	13 132	137/27
				-	

A	Â	1
-	-	

c.	3-Ethylpentanoic acid	264	40 t	13 620	105/13, 1.4250
- 1	2,3-Dimethylpentanoic acid	264	46	1394	92/15, 102Am
	Methyldiethylacetic acid	262	42	13 %	204*, 1.4250*, 78Am
	Ethyli sopropylacetic acid	264	48 t	13 ⁹⁷	105/15, 119Ar
		264	80	1398	101/14, 135Am
С,	Methyl-n-amylacetic acid	264	82	1399	122/13
	4-Methylheptanoic acid	262	86	13%	132/22
	5-Methylheptanoic acid	262	50	13%	128/20
	2,2-Dimethylhexanoic acid	248	20	13100	218, 89Am
	4,5-Dimethylhexanoic acid	262	59	13 101	92/1
		267	64	13 029	81/1, 1.431525
	Ethyl-n-butylacetic acid	253	74	13102	121/14
	3-Ethylhexanoic acid	262	50	13 ¹⁰³	159/79
	Methylneopentylacetic acid	262	52	13 104	108/14, 123Am
	3,4,4-Trimethylpentanoic acid	267	83	13 ¹⁰⁵	98/4, 1.4320 ²¹ , 167Am
	Ethylisobutylacetic acid	264	72	13106	115/20, 89Am
	Di-n-propylacetic acid	264	61	13107	124Am
	<i>n</i> -Propylisopropylacetic acid	265	60	13 108	116/12, 131Am
	Methylethyl -n- propyl- acetic acid	262	25 †	13615	82/1
	Diisopropylacetic acid	265	90	13 109	109/12, 149Am
	Triethylacetic acid	247	82	1382	105/5, (35)
C,	Nonanoic acid (pelargonic acid)	264	75 t	13110	142/12, 57An *
	3-Methyloctanoic acid	265	82	13 222	141/20
	4-Methyloctanoic acid	262	80	13%	149/22
	5-Methyloctanoic acid	264	68 t	13 ⁹⁰	127/5
	6-Methyloctanoic acid	253	66	13 399	149/23, 1.4337, 91Am
		264	68 t	13 ⁹⁰	139/20
	7-Methyloctanoic acid	269	79	13111	105/2, 106Am
	Dimethyl-n-amylacetic acid	262	22	13%	118/10, 103Am
	2,6-Dimethylheptanoic	255	45	13113	115/3, 143Sb
	acid	264	90	13112	136/14, 100Am
	3-Ethylheptanoic acid	264	42 †	1390	130/12
	2-Ethyl-3-methylhexanoic acid	264	64	13114	232, 1.4302 ²⁵
	2-Methyl-2-ethylhexanoic acid	248	24	13 100	125/22
	2-Ethyl-5-methylhexanoic	264	66	13114	110 A m

442

CARBOXYLIC ACIDS

TABLE 42 (continued)

Ch. 13

TABLE 42. MONOCARBOXYLIC ACIDS

443

TABLE 42 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aromatic Monocarboxylic Acids (continued)								
с,	3,4-Dimethylbenzoic acid	248	100	13 162	(166), 108An				
		257	21	13163	(166), 130Am *				
C 10	a-Phenylbutyric acid	247	85 t	13165	86 Am *				
10		248	90	13164	138/3, (42)				
	β -Phenylbutyric acid	267	80	13167	157/12, 107Am *				
	7-Phenylbutyric acid	248	36 t	13211	(51), 84Am *				
		264	52 t	13171	130/3, (52)				
		269	89	13169	181/19, (48)				
		271	60	13170	(50)				
	<i>m</i> -Ethylphenylacetic acid	255	24	13160	(63)				
	p-Ethylphenylacetic acid	255	27	13 ¹⁶⁰	(89)				
		247	50	13172	170/11, (90)				
		268	50	13146	(93)				
	2,4,6-Trimethylbenzoic acid	262	61	13614	(152)				
	l-Indenecarboxylic acid	262	20 1	13174	(161)				
		262	53 t	13224	(157)				
	5-Indanecarboxylic acid	274	75	13 635	(183)				
С.,	2-Phenylpentanoic acid	247	70 t	13165	(52)*, 85Am*				
	4-Phenylpentanoic acid	267	98	13175	166/12				
	5-Phenylpentanoic acid	264	86	13176	189/19, (60)				
		248	14 †	13211	(59), 90An *				
		267	70	13176	150/3, 109Am *				
		269	63	13 630	166/5, (53)				
	2-Methyl-2-phenylbutanoic acid	262	43 †	13 177	137/3, (58)				
	2-Methyl-3-phenylbutanoic acid	267	95	13175	125/0.2, (132)				
	2-Methyl-4-phenylbutanoic acid	269	85	13631	130/0.2, 1.5115, 64 <i>p</i> P				
	β -Phenylisovaleric acid	260	84	13 592	162/13, (59)				
	Mesitylacetic acid	247	87	13178	(168), 210Am *				
	p-n-Butylbenzoic acid	260	100	13179	(101)				
	p-s-Butylbenzoic acid	262	56 t	13180	(92)				
	p-t-Butylbenzoic acid	262	78 t	13181	(164)				
	a-Naphthoic acid	247	98	13 ¹⁸⁵	(161)				
		260	87	13515	(160)				
		262	70 t	13183	(161), 205Am *				
		262	90 †	13184	135pB*				
		27 3	10	13186	(161), 164An				
		274	90	13187	(161)				
	eta-Naphthoic acid	247	20 †	13190	(186)				
		260	88	13188	(185), 195Am *				
		26 2	63	13189	173An *				

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Alicyclic	Monocar	boxylic	Acids (contin	uued)
C,	l-Methylcyclohexane-l- carboxylic acid	258	44	13 ⁸³ .	(37)
	<i>cis</i> -4-Methylcycloh <i>e</i> xane- carboxylic acid	270	95	13135	130/13, 175Am
	trans-4-Methylcyclohex- anecarboxylic acid	270	60	13135	(111), 226Am
	Cyclohexylacetic acid	268	81	13146	100/15, 172Am *
	-,	268	95	13136	237
	β -Cyclopentylpropionic acid	269	71	13 ¹³⁸	135/15, 162Phz
c	Y-Cycloherylbutytic acid	272	9	13139	139/4, (28)
~ 10	5-Cyclopentylpentanoic acid	264	85	13140	123/4.5, (14), 136Am
Cıı	Decalin-2-carboxylic acid	262	50 t	13141	(101)
	A	romatic !	Monocarl	boxylic Acids	
с,	Benzoic acid	257	49	13259	(122)
		260	85	13145	(121), 128Am *
		263	58	13144	160An *
с.	Phenylacetic acid	247	78	13148	(76)
- 6		248	84	13147	(77), 117An *
		268	90	13 ¹⁵⁶	139/13, (76), 156Am
		268	88	13 ¹⁴⁶	(76), 89p B *
	o-Toluic acid	247	89	13137	(103)
		257	55	13 ¹⁴⁹	(101), 142Am *
		257	56	13 ²⁵⁹	(105)
	<i>m</i> -Toluic acid	247	96	13 ¹⁵⁰	(111), 97Am *
		257	49	13 ²⁵⁹	(112)*
	p-Toluic acid	257	56	13 ²⁵⁹	(182)
		257	17	13151	(179), 158Am *
		257	51	13152	(177), 140An *
		260	68	13153	(181), 153pB*
		260	96	13 ¹⁴⁵	(177)
C,	β -Phenylpropionic (hydro-	248	65 t	13211	129/6, (47), 92An *
-	cinnamic) acid	267	90	13157	147/18, (48), 95pP*
		267	80	13 ¹⁵⁶	170/18, (40), 82Am *
		267	100	13 ¹⁵⁵	
	o-Tolylacetic acid	247	65 †	13158	(88), 161Am
		247	7 3	13159	(90)
	p-Tolylacetic acid	247	45	13160	159/15, (94), 185Am *
		268	60	13 101	(91)

444

CARBOXYLIC ACIDS

TABLE 42 (continued)

Ch. 13

TABLE 42. MONOCARBOXYLIC ACIDS

TABLE	42	(continued)
-------	----	-------------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aromat	ic Monoca	arboxyli	c Acids (<i>cont</i>	inued)
C 15	a,a-Diphenylpropionic	247	66	13 ¹⁵⁴	(175)
	acid	273	55	13218	(171), 149Am *
	Methyldiphenylacetic acid	253	45	13 ²¹⁹	(174)
	2-Fluoreneacetic acid	248	98	13220	(187), 266Am
	4-Fluoreneacetic acid	271	89	13220	(179)
	9-Fluoreneacetic acid	264	89	13220	(132)
	1-Phenanthroic acid	248	77	13 ²²⁵	(232)*, 284Am*
	2-Phenanthroic acid	260	70	13226	(260), 243Am
	3-Phenanthroic acid	260	75	13226	(270), 234Am
	9-Phenanthroic acid	12	93	13602	(250)
		247	98	13228	(253)
		247	90	13229	(252)
		262	30	13227	(251), 233Am *
	1-Anthroic acid	274	80	13 ¹⁸⁷	(252), 260Am *
	9-Anthroic acid	253	72	13 ²²³	(216)
		262	72	13222	(216)
		263	67	13 ²²¹	(212)
	9, 10-Dihydroanthracene- 9-carboxylic acid	262	75 t	13 ²²⁴	(209)
C 16	a.a-Diphenvlbutyric	247	71	13154	(175)
~	acid	248	88	13 596	(174)
	α, γ -Diphenvlbutyric	247	95	13231	(72)
	acid	265	100	13230	(76)
		269	83	13232	(75)
	β , β -Diphenvlbutyric acid	273	37	13233	225/20. (103)
	2-Phenanthrylacetic acid	248	81	13638	(188)
	3-Phenanthrylacetic acid	248	76	13637	(178), 176Am
С,	β, β, β -Triphenylpropionic	264	64 †	13 238	192Am
	acid			-	
	Hete	rocyclic	Monocar	boxylic Acid	S
C,	2-Furancarboxylic (2-	253	75	13 ²⁴⁰	141Am *
	furoic) acid	260	59	13 591	(132)
		261	63	13241	77/15, 123An *
	3-Furoic acid	264	80	13242	169Am
		264	75	13 612	(121)
	Tetrahydro-2-furoic acid	554	40	39 97	132/14, (21), 1.4585 ¹⁹
	2-Thiophenecarboxylic	260	85	13 516	(129)
	(2-thenoic) acid	262	60	13243	(129), 180Am *
	3-Thiophenecarboxylic	247	62 †	13247	(138)
	acid	253	97	13245	(138), 180Am
		262	42 †	13246	(138), 130 ₇ B *

For explanations and symbols see pp. xi-xii.

a-Tetrahydropyrrylcar-

boxylic acid (proline)

560

20 t

3915

(204), 151HC

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromat	ic Monoca	arboxylic	Acids (cont	inued)
С 11	1,2,3,4-Tetrahydro-2- naphthoic acid	270	53	13634	(97), 139Am
c	a-Naphthylacetic acid	247	92	13 ¹⁹⁷	(135), 160An
C11		271	45	13 ¹⁹⁵	(131), 181Am
		273	34	13 ^{59 4}	(132)
	β -Naphthylacetic acid	248	81 †	13198	(143), 205Am
	here Amylben zoic acid	260	100	13179	(88)
	Pentamethylbenzoic acid	262	40 †	13 ¹⁹⁹	(210), 206Am *
Сu	2,4,6-Triethylbenzoic	262	66	13 ²⁰⁷	(113), 156Am
	acid		06	1 2 204	(113) 177Am *
	o-Phenylbenzoic acid	262	90 50 t	12 206	(221) 223Am *
	p-Phenylbenzoic acid	202	, U(72	12204	(107)
	2-Phenylcyclohexane- carboxylic acid	270	75	15	(107)
	a-(1-Naphthyl)-propionic acid	264	91	13 205	(149)
	β -(1-Naphthyl)-propionic	264	92	13 ²⁰²	(156), 104Am
	1-Acenaphthoic acid	260	96	13 ²⁰⁸	(256), 228Am
Сы	γ -1-Naphthylbutyric acid	269	80	13 ¹⁶⁸	(113)
-	γ -2-Naphthylbutyric acid	269	87	13168	(102)
	β -(1-Naphthyl)-isobutyric	264	73	13 ²⁰⁹	(93)
	o-Biphenylylacetic (o-	271	86	13 21 0	(116)
	m-Biphenylylacetic (m- xenylacetic) acid	248	45	13 ⁶⁴⁰	(137)
	n-Biphenylacetic (n=	248	89 t	13211	(165)
	xenvlacetic) acid	268	70	13212	(162)
	Diphenylacetic acid	262	90	13214	(148), 167Am *
	2	268	94	13 ¹⁵⁶	(147), 180An *
		268	97	13213	(145)
	1-Acenaphthylacetic	271	64	13215	(164)
	acid 7-Acenaphthylacetic acid	264	96	13 ²¹⁶	(117)
	2-Fluorenecarboxylic acid	269	43	13 ⁵⁸⁹	(275)

13220

13 514

13214

13223

13 ⁵⁹⁵

92

95

89 t

75 t

83

268

259

262

262

273

4-Fluorenecarboxylic

9-Fluorenecarboxylic

acid

acid

(190)

(225)

(230)

(229)

(227), 251Am

acid

acid

3-Indoleacetic acid

3-Quinolinecarboxylic

CARBOXYLIC ACIDS

TABLE 42 (continued)

Ch. 13

TABLE 43. DICARBOXYLIC ACIDS

TABLE 42 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{tef,}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Heterocyc	lic Monoc	arboxyl	ic Acids (con	tinued)
Сю	8-Quinolinecarboxylic acid	575	53	39131	(189)
	4-lsoquinolinecarboxylic	247	90	13276	(266)
	acid	247	90	13275	
	6-Isoquinolinecarboxylic acid	247	90	13276	(360)
	7-lsoquinolinecarboxylic acid	247	90	13276	(297)
	8-lsoquinolinecarboxylic acid	247	90	13276	(294)
C	6-Quinolineacetic acid	575	39	39 ¹³⁸	(220)
C	4-Dibenzofurancarboxylic acid	262	58 t	13277	(208)
	3-Carbazolecarboxylic acid	260	92 †	13 ²⁷⁸	
Си	2-Dibenzofurylacetic acid	248	87	13279	(163), 210Am
	4-Dibenzofurylacetic acid	248	82	13 280	(214), 212Am
	4-Dibenzothienylacetic acid	248	89	13279	(162), 206Am
С 15	β-Dibenzofuran-3-acrylic acid	38	95	2 ³⁹²	(240)

For explanations and symbols see pp. xi-xii.

TABLE 43. DICARBOXYLIC ACIDS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Desiv.
		Aliphatic	Dicarb	oxylic Acids	
C2	Oxalic acid (anhydrous)		90	13282	257An •
		• • • •	100	13 283	242 p B •
C,	Malonic acid	247	80 t	13284	(130), 170Am *
C₄	Succinic acid	267	98	13285	(185), 242Am *
Ċ,	Glutaric acid	247	85	13288	(98), 174Am *
		247	85	13 ²⁸⁹	(98), 137 _b B •
		253	75	13 ³⁹⁸	(91)
		254	85	13 290	(94), 152pP *
		264	80	13 ²⁹¹	(97)
	Methylsuccinic acid	247	70 t	13 ²⁹²	(111), 225Am *
		265	85	13293	(109)

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Heterocyclic Monocarboxylic Acids (continued)								
C ₆	a-Furylacetic acid	247	96	13248	(67), 85An *				
•	2-Tetrahydrofurylacetic	247	75	13262	140/11				
	acid								
	2-Thienylacetic acid	248	77	13 641	(64), 148Am				
	3-Thienylacetic acid	247	25 t	13245	(80)				
	2-Pyridinecarboxylic	257	63	13249	(138), 107Am •				
	(picolinic) acid								
	3-Pyridinecarboxylic	247	90	13 ²⁵³	(232), 85An *				
	(nicotinic) acid	257	77	13 ²⁵¹	(235), 122Am *				
	4-Pyridinecarboxylic	257	64	13 ²⁵⁷	(324), 156Am				
	(isonicotinic) acid			a a 117	a (a), al				
	Piperidine-4-carboxylic acid	554	100	3911/	242HCl				
	Hexahydronicotinic acid	270	90	13254	(240)				
C,	3-a-Furvlpropionic acid	262	25 1	13260	(58)				
- /	2,5-Dimethyl-3-furoic acid	561	68	3923	163/20				
	3-Pyridylacetic acid	248	74	13639	(146), 155HCl				
	4-Pyridylacetic acid	248	86	13 639	131HCl				
	Piperidinoacetic acid	554	100	39 ¹¹⁶	216HCI				
Cå	γ-(α-Thienyl)-butyric acid	269	72	13 266	134/1.5, (15)				
	2-Thenvlmalonic acid	267	85	13 628	(137)				
	β -(4-Piperidyl)-propionic	554	100	39122	(242)				
_				1 . 367					
C,	5-a-Furylvaleric acid	264	50	13487	(43), 76An				
	γ-(2-Pyridyl)-butyric acid	264	58 7	39145	(85), 112HCI				
	γ-(2-Piperidyl)-butyric acid	554	97	39123	(171d), 195HCl				
	Indole-2-carboxylic acid	571	58	3966	(204)				
		572	65	39 63	(204)				
	2-Thianaphthenecar- boxylic acid	262	56 †	13270	(236), 177Am *				
	3-Thianaphthenecar-	262	60 t	13272	(175), 198Am				
	boxylic acid	262	70	13271	(175), 173An •				
С.,	2-Benzofurvlacetic acid	749	75	13 ³³⁷	(99), 164Am				
~ 10	Thianaphthene-2-acetic	247	93	13148	(142)				
	Thianaphthene-3-acetic	247	52	13 ²⁷¹	(109)				

13217

13274

13²⁵⁰

168

(272)

(272), 198Am*

88†

52†

98

248

247

262

448

acid

a-n-Butylglutaric acid

CARBOXYLIC ACIDS

Ch. 13

TABLE 43. DICARBOXYLIC ACIDS

449

С _л	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic Dicar	boxylic	Acids (contin	nued)
C,	β -Methyl- β - <i>n</i> -propyl-glutaric acid	275	64 †	13309	(93)
	β , β -Diethylglutaric acid	275	44 🕇	13 ³⁰⁹	(106)
	n-Hexylmalonic acid	264	58 t	13 ³²³	(106), 208Am
C ₁₀	<i>n</i> -Hexylsuccinic acid	264	75	13324	(89)
Cıı	1,10-Decanedicarboxylic acid	271	72	13 ³¹⁴	(128), 185Am
	a -n- Hexyladipic acid	264	80 t	13325	175/0.2, (65)
C 14	1,12-Dodecanedicar- boxylic acid	264	64	13 ³²⁶	(123)
C 15	1,13-Tridecanedicar- boxylic acid	247	93	13 ³²⁶	(114)
C 16	1,14-Tetradecanedicar- boxylic acid	264		13 ³²⁷	(126), 163An
	ds				
C,	1, 1-Cyclopropanedicar- boxylic acid	265		13 ³²⁸	(134)
C 6	1, 1-Cyclobutanedicar- boxylic acid	264	23	13 ¹³¹	(158), 277Am *
	Cyclopropylmalonic acid	249	83	13281	(175)
с.	<i>cis</i> -1,3-Cyclopentanedi- carboxylic acid	254	20	13 ³³⁰	(122), 226Am *
-	trans-1,2-Cyclopentane- dicarboxylic acid	264	30	13 329	(161)
	trans-1,1-Dimethylcyclo- propane-2,3-dicar- boxylic acid	249	80	13331	(213)
C,	trans-1,2-Cyclohexane-	270	44	13 632	(228)
	dicarboxylic acid	254		13 ³³³	(222)
	<i>cis</i> -1,3-Cyclohexanedi- carboxylic acid	270	30	13632	(168)
	l-Carboxycyclopentane- l-acetic acid	247	81	13 ³⁰⁰	(156)
	Cyclopentylmalonic acid	265	10 0	13 ³⁰⁰	(165)
	trans-2,2-Dimethylcyclo- butane-1,3-dicarboxylic acid	264	100	13332	
с,	l-Carboxycyclohexane- l-acetic acid	247	86	13300	(134)
	<i>cis-</i> o-Carboxycyclohex- aneacetic acid	254	••••	13333	(147)
	Cyclohexylmalonic acid	265	100	13300	(178)

For explanations and symbols see pp. xi-xii.

Yield Chapterref. B.p./mm., n^t_D, (M.p.), Deriv. Compound Method C_n (%) Aliphatic Dicarboxylic Acids (continued) 13123 269 Am * C۶ Dimethylmalonic acid 257 32 13296 (152), 220Am * 55 C 6 Adipic acid 254 56 1 13297 (86) β -Methylglutaric acid 275 13298 275 95 (87) 13115 60 (100)Ethylsuccinic acid 265 13**115** 76 (139) 265 a,a-Dimethylsuccinic acid 13300 Isopropylmalonic acid 265 75 (89) 13305 247 94 (106)* C7 Pimelic acid 13306 264 64 148pP* 13302 266 85 (105), 155An * 13303 (104), 137pB* 266 88 13304 50 (105). .. . 13³⁰⁷ β -Methyladipic acid 254 45 (85), 200An* 13³⁰⁸ 254 35 223/18, (91) 66 13621 264 (61) a-Ethylglutaric acid 90 13289 (73) B-Ethylglutaric acid 275 13484 β,β -Dimethylglutaric acid 254 98 (99) 13651 260 96 (101)13³⁰⁹ 275 68 t (101)1311s Isopropyl succinic acid 265 78 (116) 13115 73 (102)a-Methyl-a-ethylsuccinic 265 acid 13311 (157) t-Butylmalonic acid 262 45 13312 (143), 216Am* 247 92 C₈ Suberic acid 13313 (140), 187An* 255 13305 264 95 (141) 271 13314 (141) 75 13338 a-Methylpimelic acid 249 44 (57) 13³¹⁶ 167/1, (53) a-Ethyladipic acid 264 13³¹⁵ β,β -Dimethyladipic acid 247 48 t (87) 13621 (70) a-n-Propylglutaric acid 264 72 13⁵⁷⁵ 275 85 (52) β -*n*-Propylglutaric acid 13²⁹⁸ 275 90 (52) 89 t 13317 264 (95) a-Isopropylglutaric acid 13³⁰⁹ 275 63 t (85) β -Methyl- β -ethylglutaric acid 13 320 (106), 131pB* 255 36 C₉ Azelaic acid 65 t 13319 (105), 175Am* 264 13338 249 45 168/1, (42) a-Ethylpimelic acid 223/17, (43), 145An * 13322 264 85 13³²¹ 95 a,a-Dimethylpimelic 264

13 621

(41)

46

264

TABLE 43 (continued)

CARBOXYLIC ACIDS

Ch. 13

С л	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv				
	Alicyclic Dicarboxylic Acids (continued)								
с,	Cyclopentane-1, l-diacetic acid	275	55 t	13 ³⁰⁹	(177)				
C m	Cycloheptylmalonic acid	265		13300	(165)				
-	l-Carboxycycloheptane- l-acetic acid	247	86	13300	(159)				
	Cyclohexane-1, 1-diacetic acid	275	73 t	13 ³⁰⁹	(181)				
	cis-Cyclohexane-1,2-	254	30	13334	(160)				
	diacetic acid	254	40	13335	(164)				
	trans-Cyclohexane-1,2-	254	47	13336	(162)				
	diacetic acid	254	59	13334	(167)				
Cս	<i>trans</i> -Decahydronaphthyl- malonic acid	265	100	13 ³⁰⁰	(122)				
		Aromatic	Dicarb	oxylic Acids					
с.	Terephthalic acid	257	88	13339					
Ċ,	Phenylmalonic acid	262	65	13341	(153)*. 233Am*				
- y		262	60 t	13342					
	o-Carboxyphenylacetic	247	75	13348	(181)				
	(homophthalic) acid	247	70	13347	(185), 228Am				
	•	255	77	13 490	(181)				
		269	85	13345	(180)				
		269	100	13 ³⁴⁶	(181)				
			58	13344	(180)				
	1,3,5-Benzenetricar- boxylic acid	260	94	13 ⁵⁸⁰	(375)				
с.,	Phenyl succinic acid	247	70	13166	(166)				
сю	i nenyisuccinic acia	247	95	13 348	(166) 210 Am *				
	1,2,4,5-Benzenetetra- cathorylic acid			13 604	(271)				
с	β -Phenylelutaric acid	264	85	13.56	(140)*				
- 11	Benzylsuccinic acid	264	91	13352	(161)				
		266	80	13 627	(160)				
	o-Phenyleneaceticpro- pionic acid	248	67	13353	(140)				
C "	a-Phenyladipic acid	264	43 t	13354	(133)				
	β -Phenyladipic acid	247	33 t	1356	(146)				
	4-1-Butylphthalic acid	257	35	13 506	(154)				
с.,	Biphenvl-2,2'-dicar-	254	70	13355	(227), 212Am *				
- 14	boxvlic (diphenic) acid	254	85	13356	(228)				
	, (pronie) acid	254	51	13357	(228)				
		254	35	13358	· · ·				

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromat	ic Dicarb	oxylic A	cids (continu	ed)
C 14	Biphenyl-2,2'-dicat- boxylic (diphenic) acid (continued)		84 † 21 †	13 ³⁵⁹ 13 ⁵⁶⁰	(228) (233)
	Biphenyl-4,4'-dicar- boxylic acid	247	95	13361	
С ₁₆	α,β-Diphenylsuccinic acid	247	86	13 ³⁶²	(220)

For explanations and symbols see pp. xi-xii.

TABLE 44. OLEFINIC ACIDS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Alipha	tic Ole	inic Acids	
с,	Acrylic acid	24	75	13 603	70/50
		247	74	13 363	104An *
		297	78	13 603	55/25
C₄	<i>cis</i> -2-Butenoic (isocro- tonic) acid	7	48	13 ⁶⁰⁷	55/5, 1.4450, (14)
	trans-Crotonic acid	20	75	2156	
		37	86	2 323	(72), 157Am
	Vinylacetic acid	247	66	13 ³⁶⁴	78/19, 73Am *
		247	82	13365	70/12, 58An *
	Methacrylic acid	247	67	13173	104/92
		248	91	13 367	
		249	87	13173	92/52
		260	41	13 ³⁶⁶	63/10, 1.429, 106Am *
	Fumaric acid		58	13286	(284), 270Am •
C,	2-Pentenoic acid	37	55	2324	(9)
-	3-Pentenoic acid	247	70	13370	93/14, 1.4362
	•	267	60	13369	98/19, 75An
	Allylacetic acid	264	70	13371	92/18, 1.4283, 94Am *
	cis-2-Methyl-2-butenoic	19	17	2 ⁸³	95/12, (64)*, 77An*
	(tiglic) acid	247	53	13372	(64)
	trans-2-Methyl-2-butenoic	7	61	13372	(46)
	(angelic) acid	19	25	2 ⁸³	86/12, (46)*, 126An*
	2-Methyl-3-butenoic acid	262	70	13374	102/50, 1.4233
	3-Methyl-3-butenoic acid	262	40 +	13 61 6	69/5, 1.4308, (21)
	β , β -Dimethylactylic acid	260	44	13376	(67)
		260	44	13375	106/20, (67), 108Am *
	Mesaconic acid	250	52	1 3 ²⁹⁵	(205), 176Am *
	Citraconic acid	250	94	13294	(93), 187Am *

C_n

C6

Compound

C. Vinylacrylic acid

2-Hexenoic acid

3-Hexenoic acid

4-Hexenoic acid

5-Hexenoic acid

acrylic acid

acrylic acid

acid

acid

acid

acid

acid

acid

acid

acid

Ca 2-Octenoic acid

7-Octenoic acid

C7 4-Heptenoic acid

6-Heptenoic acid

4-Methyl-2-hexenoic

4-Methyl-3-hexenoic

5-Methyl-4-hexenoic

3-Ethyl-2-pentenoic acid

3-Ethyl-3-pentenoic acid

Y-Butenylmalonic acid

Muconic acid

cis-3-Hexenoic acid

trans-3-Hexenoic acid

cis-a-Methyl-B-ethyl-

trans-a-Methyl-B-ethyl-

4-Methyl-2-pentenoic

4-Methyl-3-pentenoic

2,4-Hexadienoic (sorbic)

4-Methyl-2, 4-pentadienoic

1,2,3-Propenetricarboxylic

CARBOXYLIC ACIDS

19

19

253

37

264

31

37

37

20

19

247

262

264

30

264

37

37

264

19

249

264

37

30

30

20

60

66

75

32

50

43

44

79

68

81

67

80

40

52

72

56

75

78

64 1

52 1

21 1

Ch. 13

TABLE	44	(continued)

453

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	A	liphatic O	lefinic	Acids (contin	ued)
C,	2-Ethyl-2-hexenoic acid	253	53	13384	108/3, 1.4590
	2-Ethyl-3-hexenoic acid	253	74	13385	132/19, 80Am
	3,4,4-Trimethyl-2-pen- tenoic acid	19	85	2161	(85)
	4-Pentenylmalonic acid	264	63 [°] †	13318	(87)
С,	2-Nonenoic acid	37	85	2 372	131/2
	8-Nonenoic acid	264	83	13318	118/1, 1.4492 ¹⁵
Сю	3-Methyl-2-nonenoic acid	19	63	2171	121/1, 1.4636 ²⁵
	3-Methyl-3-nonenoic acid	19	90	2171	104/0.3, 1.451225
C 11	ω-Undecylenic acid	••••	10	13386	145/3, (24)
		Alicyc	lic Ole	finic Acids	
C ₆	1-Cyclopentenylcar-	253	65	13389	(121), 126An *
,'	boxylic acid	247	90	13 ³⁹⁰	(121), 122To*
7	2-Cyclopentenylcar- boxylic acid	247	35	13 ³⁹¹	(118)
C,	2-Cyclopentenylacetic acid	264	99	13 ³⁹⁴	95/3, 1.4682
	l-Cyclohexenylcarboxylic acid	247	79	13392	107/3, (38), 128Am*
	3-Cyclohexenylcarboxylic acid	253	63	13393	126/13
C,	Cyclohexenylacetic acid	19	80	2 **	82/2
	Cyclohexylideneacetic acid	19	68	286	(92)
	4-Methyl-1-cyclohexene- carboxylic acid	19	37	2 ⁸⁰	(132)
	2-Cyclopentenylmalonic acid	264	85 t	13394	(149)
с,	eta-Cyclohexylacrylic acid	37	86	2 ³³²	154/11, (60), 159Am
	β -Cyclohexylidenepro- pionic acid	37	36	2 ³³¹	158/16, (48)
	2,3,3-Trimethyl-1-cyclo- pentene-1-carboxylic acid	••••	65	13395	(134)
C ₁₀	γ-Cyclohexylcrotonic acid	37	88	2 ³³³	(55), 144Am
		Aroma	tic Olef	inic Acids	
C , _	Cinnamic acid	38	60	2384	(132)
		247	55	13 400	(134), 147Am *
	p-Vinylbenzoic acid	247	67	13401	(144)

For explanations and symbols see pp. xi-xii.

TA	BLE 44	(continued)	
Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
Aliphatic	Olefini	c Acids (cont	inued)
37	60	2336	(72), 47Di
37	76	2 ³²⁶	(32), 110An
31	11	2 510	108/15, 1.4397 ¹⁴ , 75An
37	42	2327	110/15, (12), 1.4391
262	56	13 610	111/20, 1.4400, 62An
37		13 610	109/19, 1.4387, 87An
262	65	13611	118/24, 1.4380
264	75	13377	112/20, 1.4367 ¹⁹ , 87An
267	19	13378	107/16, 1.4385, 103To
247	89	13142	104/13, 1.4318 ²⁵
264		13379	107/17, 1.4343
264	96	13300	103/12, 1.4337, 58To

284

284

13369

13381

2328

2 510

2337

2338

2154

2⁸¹

13382

13 611

13382

2462

13³¹⁸

2329

2329

13371

2419

13³⁸³

13³⁸⁰

2330

2 462

94/10, 1.448825, 46pP

112/12, (23), 80Am

113/20, 119An

99/10, 104An

(134)

(57)

(297)

(199)

109/5

117/14

124/20, 1.4407

82/1, 1.435527, 58To

125/13, 1.4526, 110An

116/10, 1.468914, 80To

115/13, 1.454714, 95To

102/5, 1.4588, 93pB

91/1, 1.4340²⁷, 57To

125/15, 1.440415

118/12, 1.451217

95/1, 1.4461

(92)

115/18, 1.446625

107/10, 1.4578, (24), 91pP

A	۲	Á
-	2	-

CARBOXYLIC ACIDS

Ch. 13

.

TABLE 46. HALO ACIDS

455

TABLE 45. ACETYLENIC ACIDS

С <i>"</i>	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^l _D , (M.p.), Deriv.
C,	Propiolic acid	264	90	13407	70/13, 62Am *
C₄	2-Butynoic (tetrolic) acid	262	65	13 609	(76)
	Ethynylacetic acid	253	28	13 409	(83), 153Sb
	Acetylenedicarboxylic	43	88	3 51	(176)
	acid	253	23	13 ⁴⁰⁹	(177)
C,	2-Pentynoic (ethyl- propiolic) acid	262	49 t	13 408	100/10, (50), 146Am
	3-Pentynoic acid	43	15	353	80/1. (53)
	4-Pentynoic acid	43	40	3 53	102/17, (58)
C6	2-Hexynoic acid	262	42 †	13 408	110/10, (25), 82Am
		262	48 †	13 408	122/10, 1.4619, 69 Am
		262	72 †	13 410	128/12, 1,463316
C,	3-Heptynoic acid	262	16	13 618	102/2, 1,4635 ²⁵ , (14), 67Am
	6-Heptynoic acid	247	63	1362	94/1, 1.4495 ²⁵ , 85To
C,	2-Octynoic acid	262	40 t	13 408	133/10, 1,4595, 90Am
		247	52	13 64	97/1, 1.4506 ²³ , 60An
C,	Phenylpropiolic acid	43	80	3 52	(137)
Сıı	6-Hendecynoic acid	247	38 t	13 411	125/0.2. 1.456625
Сu	a-Naphthylptopiolic acid	43	85	3 54	(139)
С <u>18</u>	Stearolic acid	43	42	3 50	(46)

For explanations and symbols see pp. xi-xii.

TABLE 46.	HALO	ACIDS
-----------	------	-------

с,	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
_	A	liphatic ar	d Alicy	clic Halo Aci	ids
C,	Fluoroacetic acid	249	90 t	13239	168. (32)
	Dichloroacetic acid	62	80	4 406	102/20
		••••	92	13 412	104/23, 118An •
	Trifluoroacetic acid	255	87	13 413	72*
	Bromoacetic acid	67	85	4 544	110/30
C,	a-Fluoropropionic acid	248	67	13200	60/8. 76Am
	eta-Fluoropropionic acid	253	80	13 463	79/12
	eta-Chloropropionic acid	247	75	13 ⁹⁵	116/32
		253	65 t	13 414	107/20, (40)
		253	81	13 415	115/25
		253	56	13 416	127/35
		309	91	13244	(42)
	eta-Bromopropionic acid	309	58	13244	88/0.5, (62)
		247	83	13417	(63)
	eta-lodopropionic acid	309	62	13244	(83)

For explanations and symbols see pp. xi-xii.

TABLE 44 (continued)

с "	Compound	Method	Table (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Ar	omatic O	lefinic	Acids (<i>contin</i>	ued)
C 10	a-Methylcinnamic acid	38	70	2384	(74), (81)
- 10		260	93	13 402	(81), 128Am *
	trans-B-Methylcinnamic	19	27	2 408	136/1, (99)
	acid	249	41	13 ⁴⁰³	136/1
	4-Phenyl-3-butenoic acid	37	60	2 ³⁵⁰	(87)
	o-Methylcinnamic acid	37	75	2 341	(169)
	n-Methylcinnamic acid	37	75	2 3 41	(199)
	o-Carboxycinnamic acid	254	71	13 ³⁴⁹	(205)
Сu	4-Phenyl-3-pentenoic	19	75 t	2 ⁸²	(76)
	Ciscomolocetic acid	259	90	13 404	(166)
	Cimiamatacette actu	260	70 t	13176	(163)
	a-Vinvlcinnamic acid	38	40	2389	(92)
c	a - Brosulainnamic acid	260	80	13 405	(93)
C 12	<i>a</i> - <i>p</i> -riopylerimanic acid	37	56	2344	(208)
Cu	G-Deputying action	38	56	2388	(172)
្រផ	o-Carboxystilbene	19	100	285	(160)
6		247	67	12,406	(106)
C 16	Stilbene-2-acetic acid	247	100	2351	(262)
C 17	β-(I-Phenanthryl)-acrylic	57	100	Z	(202)
	acid β-(2-Phenanthryl)-acrylic acid	37	100	2 ³⁵¹	(246)
	β-(3-Phenanthryl)-acrylic acid	37	100	2 ³⁵¹	(274)
	β-(10-Phenanthryl)-actylic acid	37	100	2351	(233)
		Heter	ocyclic	Olefinic Acid	s
C.	2-Furvlacrylic acid	37	92	2354	(141)
~1	,,	38	70	2 ³⁹⁰	(139)
	2-Thienylacrylic acid	37	85	2352	(144)
c.	3-Pyridylactylic acid	37	73	2353	(233), 148Am

 C_8 3-Pyridylacrylic acid
 37
 73
 2³⁵³
 (233),

 C_9 α -Ethylfurylacrylic acid
 38
 80
 2⁴⁰²
 (97)

 C_{13} α -Phenyl- β -furylacrylic
 38
 80
 2³⁹¹
 (144)

 acid
 α α α α α α

456

Сп

С,

C5

Compound

 a,β -Dicaloropropionic

 a,β -Dibromopropionic

a-Chloroacrylic acid

a-Bromoacrylic acid

Y-Bromobutyric acid

2-Iodoisobutyric acid

 α,β -Dibromosuccinic

δ-Bromovaleric acid

5-Iodopentanoic acid

a-Bromoisovaleric acid

 α,β -Dibromovaleric acid

a, a 'Dibromoglutaric acid

a-Bromo-n-caproic acid

 β -Chlorohexanoic acid

6-Bromohexanoic acid

2-Bromo-3-methylpen-

a-Bromoisocaproic acid

a-Bromo-t-butylacetic

 γ -Bromo- β , β -dimethyl-

2,6-Dibromohexanoic

a,a'-Dibromoadipic acid

a,a'-Dibromosuberic acid

a-Bromo-a-carboxycyclo-

pentaneacetic acid

butyric acid

C₇ 7-Bromoheptanoic acid

2-Bromoöctanoic acid

8-lodooctanoic acid

a-Ethyl-\$-iodobutyric acid

tanoic acid

acid

acid

C_R

2,5-Dibromopentanoic

C. a-Chlorocaproic acid

a-Bromo-n-butyric acid

C. a-Chlorobutyric acid

acid

acid

acid

acid

CARBOXYLIC ACIDS

Method

249

253

253

249

253

20

20

264

67

54

62

74

51

54

54

67

264

74

67

67

264

67

264

73

54

253

67

264

67

73

67

309

54

67

67

51

67

54

67

67

TABLE 46 (continued)

Aliphatic and Alicyclic Halo Acids (continued)

65

85 t

70

72

76

62

70

100

90

70

50

84

18 t

64

68

89

41

91

54

100

89

80

62

91

54

67 1

66

60

81

19

87

80

70

60 t

76

71

66

71 +

66 t

13 418

13 419

13420

13418

13 421

2¹⁵⁸

2¹⁵⁸

13625

4 531

4371

4 408

4 434

4 68

4 372

4374

4 528

13**423**

4 622

4 540

4 541

13 623

4 530

13425

4199

4372

4 532

4 529

4200

4 534

13 599

4 591

4372

4 542

4 572

4 533

4 604

4 543

4 538

13 427

13 426

Yield Chapter^{ref.} B.p./mm., n^t_D, (M.p.), Deriv.

133/26, (50)

118/15, (50)

115/12, (50)

160/20, 130Am*

98/14, 1.43525

(60)

(65)

(72)

110/14

127/7

119/3

(56)

145/13, (39)

110-125/15

(134), (174)

128-131/10

168/18, (35)

125-131/12

102-109/2, (73)

160/4, 1.524521

(139), (191)

(121), (170)

142/1.5, (29)

153/30

98/4

130/5

100/23

140/20

127/12

146/2

140/25

(44)

(135)

(30)

153/40, 133Am*

90/0.02, 1.527217

152/5, 1.534725

122/12, 1,44125

(39)

Ch. 13

TABLE 46. HALO ACIDS

457

INDLE 40 (continuea	T,	\BL	E 46	(cont in	nued
---------------------	----	------------	------	----------	------

С <i>п</i>	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Alipha	tic and A	licyclic	Halo Acids	(continued)
C,	a-Bromo-a-carboxycyclo- hexaneacetic acid	67	88	4 538	(142)
С <u>10</u>	a-Bromohexahydrobenzy)- malonic acid	67	92	4 535	(138)
Cu	ω-Bromoundecanoic acid	73	70	4 201	(50)
		Aro	matic H	alo Acids	
с,	o-Chlorobenzoic acid	257 257	58 78	13 ²⁵⁹ 13 ⁴²⁹	(141) (140) 139Am *
	o-Bromobenzoic acid	14	34	1325	(150)*
	o-Iodobenzoic acid	261	88	13 563	(167), 184Am *
	m-Chlorobenzoic acid	257	48	13259	(157)
		261	88	13 563	(157), 134Am *
	<i>m</i> -Bromobenzoic acid	14	32	1325	
		261	89	13 563	(155), 155Am *
	<i>m</i> -Iodobenzoic acid	14	47 †	13 491	(188), 147 _b P*
		64	75	4 593	(186)
	p-Fluorobenzoic acid	56	69	4 ³²⁸	(186)
		262	41 †	13428	(182), 154Am *
	p-Chlorobenzoic acid	257	44	13259	(243)
		260	93	13145	(236), 179Am *
	p-Bromobenzoic acid	260	91	13145	(251), 189Am *
	p-Iodobenzoic acid	59	81	4361	(267)
		247	60	13 433	(270)
		257	50	13432	(270), 217Am *
		261	84	13 563	147pB *
	2,4-Dibromobenzoic acid	247	90	13 ⁴³⁰	(174), 198Am*
C,	o-Chlorophenylacetic acid	248	63	13147	(95), 138An *
	o-Bromophenylacetic acid	64	30	4 286	(109)
		271	63 t	13215	(105), 187Am *
	<i>m</i> -Chlorophenylacetic acid	259	57	13 434	(74)
	p-Fluorophenylacetic acid	247	60	13 196	(85)
	<pre>p-Chlorophenylacetic acid</pre>	248	59	13147	(100), 175Am *
	p-Iodophenylacetic acid	64	45	4 285	(135)
	p-Chloromethylbenzoic acid	247	78	13 435	(202), 173Am *
	p-Bromomethylbenzoic acid	247	73	13 435	(224)
29	α-Bromo-β-phenylpro- pionic acid	264		13 437	(52)*

CARBOXYLIC ACIDS

Ch. 13

TABLE 47. HYDROXY ACIDS

TABLE 47 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphati	c and Ali	cyclic I	Hydroxy Acid	s (continued)
с,	Methyl -n- butylglycolic acid	247	80 †	13 447	(33), 58Am
	4-Hydroxycyclohexane- carboxylic acid	270	49	13 448	(104)
	trans-Cyclopentanol-2- acetic acid	264	80	13 440	(54)
C.	a-Hydroxycaprylic acid	95	80	5 526	163/10, (70)
	Methyl-n-amylglycolic acid	247	80 t	13 447	(45), 65Am
	Methylneopentylglycolic acid	247	80 t	13 447	(109), 116Am
	trans-Cyclohexanol-2- acetic acid	250	98	13 ⁴⁵⁰	(106)
	l-Hydroxy-4-methylcyclo- hexanecarboxylic acid	247	79 †	13 ⁴⁵¹	(130)
с,	Methyl -n- hexylglycolic acid	247	80 †	13 447	(40), 59Am
	2,3-Dihydroxynonanoic acid	107	51	5 ⁵⁹⁹	(118)
_		Aroma	tic Hydu	oxy Acids	
С,	o-Hydroxybenzoic (sali-	257	80	13 453	(158), 140 ₀ B *
	cyclic) acid	274	85	13 452	(158), 139Am *
	<i>m</i> -Hydroxybenzoic acid	92	91	5 720	(200)
		93	87	5 494	(200)
		274	40	13 452	(201), 170Am *
	p-Hydroxybenzoic acid	93	82	5 495	(212)
		263	80	13 454	(212), 162Am *
		274	98	13452	(213), 202An *
	2,4-Dihydroxybenzoic (β-resorcylic) acid	263	60	13 455	(217), 222Am *
	2,5-Dihydroxybenzoic	96	72	5 ⁷¹⁸	(205)
	acid	97	65	5712	(191)
	3,4-Dihydroxybenzoic (protocatechuic) acid	261	75	13 593	(200)
C,	a-Hydroxyphenylacetic	247	52 +	13 457	(118), 133Am *
	(mandelic) acid	247	50 t	13 458	(118)
		276	90	.13 456	(117), 151An *
	o-Hydroxyphenylacetic	97	75	5 539	(149)
	acid	248	81	13459	(147). 118Am *
		248	59	13147	(141)
		259	34	13 646	(146)
	<i>m</i> -Hydroxyphenylacetic	9 7	7 2	5 540	(134)
	acid	248	7 2	13636	(134)

For explanations and symbols see pp. xi-xii.

TABLE 46	(continued)
----------	-------------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aromatio	: Halo /	Acids (continu	wed)
C,	a-Iodo-β-chloro-β-phenyl- propionic acid	74	92	4433	(126)
	p-Chlorocinnamic acid	20		2 ¹³⁷	(241)
C 🗤	o-Chlorophenyl succinic	264	53 t	13 ³⁵⁰	(174)
	a-Bromobenzylmalonic acid	67	90	4 536	(110)
C 11	α-Bromo-βphenylethyl- malonic acid	67	90	4 539	(158)
C 15	2, 2-Diphenyl-3-chloro- propionic acid	273	65	13 596	(203)

For explanations and symbols see pp. xi-xii.

TABLE 47. HYDROXY ACIDS

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	A	iphatic a	und Alic	yclic Hydroxy	Acids
<u>c.</u>	Hydroxyacetic (glycolic)	249	88	13287	(79)
~1	acid	96	89	5 556	(78)
C,	β -Hydroxypropionic acid	247	80	13 442	
c.	Y-Hydroxybutyric acid	250	40	13 443	
	dl-threo-2,3-Dihydroxy-	107	70	5 602	(75)
	dl-erythro-2,3-Dihydroxy- butyric acid	107	80	5 602	(81), 124Phz
с.	δ. Hydroxyvaleric acid	250	47	13 443	56Am *
~,	a-Hydroxy-a-methylbutyric acid	247	65	13***	(72)
	β -Hydroxyisovaleric acid	260	9	13 ³⁷⁶	
	2.3-Dihydroxypentanoic	107	75	5 606	(106), 119Phz
	acid	107	80	5 ⁶⁰⁸	(75), 141Phz
с.	a-Hydroxycaproic acid	95		5 526	(60)
~0		96	60	5 ⁵⁵⁴	(62)
	E-Hydroxycaproic acid	250	20	13 443	
	a-Hydroxy-a-methyl-	247	60 †	13445	(54)
	$\beta_{,\beta},\beta_{-}$ Trimethyllactic	276	93	13 ⁴⁴⁶	(87)
	2 3-Dihudroxyhexapoic	107	46	5 608	(100), 121Phz
	acid	107	86	5 608	(109), 142Phz

460

 C_n

Compound

p-Hydroxymethylbenzoic

Ca p-Hydroxyphenylacetic

acid

acid

CARBOXYLIC ACIDS

TABLE 47 (continued)

Yield (%)

100

50

62

90

Aromatic Hydroxy Acids (continued)

s 496

13147

13459

13 460

Method

93

248

248

247

Ch. 13

Chapter^{ref.} B.p./mm., n_D^t, (M.p.), Deriv.

(147), 175Am

(148)

(148)

(180)

TABLE 48. ALKOXY AND ARYLOXY ACIDS

TABLE 48 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Alt	phatic Al	koxy Ad	ids (continue	ed)
C _s	eta-Methoxybutyric acid	253	25	13438	108/13
	7-Methoxybutyric aci d	264	26 †	13 472	105/7, 1.4251
	eta-Methoxyisobutyric acid	264	82	13616	83/3, 1.4192
	a-Ethoxypropionic acid	115	77	657	93/10
	eta-Ethoxypropionic acid	247	86 t	13 473	120/17, 1.4216, 51Am *
	eta-(Methoxyethoxy)-acetic acid	115	44	6 ⁵⁵	149/18
C ₆	γ-Methoxy-a-methyl- butyric acid	264	85 t	13474	120/11
	eta-Methoxyisovaleric acid	260	38	13 ⁵⁸⁸	88/2, 1.4348 ²² , 55pP
	a-Ethoxyisobutyric acid	251	70	13 475	97/19
	β -(Ethoxyethoxy)- acetic acid	115	55	6 55	155/18
с,	6-Methoxycaproic acid	247	87	1 3 476	132/6 1 4247
c,	n-Heptyloxyacetic acid	115	60	654	157/19 1 4260
<u> </u>	Aromatic	Alkoxy a	and Arvl		
<u>с,</u>	a-Methoxyphenylacetic	116	42 †	6162	(71)
	acid				(· -)
	o-Methoxyphenylacetic	248	70	13147	(121)
	acid	268	90	13480	(124)
	<i>m</i> -Methoxyphenylacetic	248	82	13147	(69)
	acid	248	60	13 ⁴⁸¹	
	p-Methoxyphenylacetic	248	36	13147	(84)
	acid	248	85	13 483	(87), 189Am
		268	90	13161	(86)
	o-Ethoxybenzoic acid	115	63	698	216-229/90
	m-Ethoxybenzoic acid	115	90	698	(135)
	eta-Phenoxypropionic acid	253	45	13 479	(98), 119Am
C ₁₀	Y-Phenoxybutyric acid	247	61	1348	197/18, 80 Am
	3,4,5-Trimethoxybenzoic acid	116	78	699	(165)
сп	a-Isopropoxyphenyl-	277	57	13 492	(59), 11 <u>5</u> pP
	δ -Phenoxyvaleric acid	264	90	12322	(56)
		264	93 t	13 487	175/4 (66)
	Y-Phenoxy-a-methyl-	266	87	12,488	(80)
	butyric acid	200	07	1.7	(00)
Cu	6-Phenoxycaproic acid	264	91	13 493	(69)
С 13	7-Phenoxyheptoic acid	264	72	13 495	(55)
C 14	Diphenoxyacetic acid	115	62	656	(91)

For explanations and symbols see pp. xi-xii.

í	6	1	
-	~	-	

13458 (97) 60 t 247 $C_{9} \beta$ -Phenyl-a-hydroxy-(96), 112Am* 13461 247 32 † propionic acid 13462 (145) 264 58 p-Methylmandelic acid 5400 (131) 83 89 C10 Phenylethylglycolic acid 20 t 13 458 (122) 247 β -Phenyl-a-hydroxybutyric acid 13458 50 t (105) 247 γ -Phenyl-a-hydroxybutyric acid 13464 96 (67) 269 γ -(o-Hydroxyphenyl)butyric acid 13 447 (94), 132Am 80 t C₁₁ Phenyl-n-propylglycolic 247 acid 13264 95 (104) 4-Hydroxy-4-phenyl-249 pentanoic acid 50 5 335 (99) C₁₂ a-Naphthylglycolic acid 88 13396 (99), 135Am 50 251 13 467 (150), 154Am* 90 276 C14 Benzilic acid 97 5159 (203) p-Xenylhydroxyacetic 79 13 468 (192) 247 63 acid 13469 (166) 60 9-Hydroxyfluorene-9-276 carboxylic acid 13387 C₁₅ a, a-Diphenyl- β -hydroxy-(158) 83 249 propionic acid 5159 (177) .71 89 C16 Ethyl-p-xenylhydroxyacetic acid For explanations and symbols see pp. xi-xii.

TABLE 48.	ALKOXY	AND	ARYLOXY	ACIDS
-----------	--------	-----	---------	-------

с <u></u>	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alipi	natic Al	koxy Acids	
C₄	a-Methoxypropionic acid	249	79	13471	89/10, 81Am *
	Ethoxyacetic acid Dimethoxyacetic acid	2 4 9	74 86	13 ²⁹⁹	

с**"**

C2 Ċ, C4

C5

C6

C,

C,

5-Methyl-7-ketoöctanoic

acid

CARBOXYLIC ACIDS

TABLE 49. ALDO AND KETO ACIDS

Ch. 13

TABLE 49. ALDO AND KETO ACIDS

463

TABLE 49 (continued)

с <u></u>	Compound	Method	Y1eld (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic a	nd Alicycl	ic Aldo	and Keto Aci	ds (continued)
C,	3-Heptanone-1,5-dicar- bo x ylic acid	249	92	13268	(84)
	β -(2-Cyclohexanone)- propionic acid	184	90	10 ³⁰⁰	(55)
С ₃₀	12-Ketotriacontanoic acid	189	79 †	10 ⁴⁰⁷	(102)
	Aromat	ic and Het	erocycl	ic Aldo and K	ieto Acids
C ₆	a-Thienylglyoxylic acid	249	70	13 503	(91), 88Am *
C,	o-Carboxybenzaldehyde	155	22 🕇	9352	(99.5)
		170	41	9166	(95)
		170	65 t	9165	(97)
		249	68	13 505	(96)
			83	9193	(96)
	Benzovlformic acid	179	67	10314	(61) 197Dn •
	·	247	77	13 508	(66)
		249	90	13510	105/0.1 (65) 164Pb
		255	55	13 509	(61)
	3-(a-Thenoyl)-propionic acid	178	75	10147	(121)
с,	2-(β-Carboxyethyl)-2- ethylbutanal	247	89	13 ⁵¹¹	142/3, 1.4550 ²⁵
	8-Carboxyoctanal	160	64	9147	197/15, (42), 162Se
	Phenylpyruvic acid	210	94	10 610	(154), 159-Ox*
	<i>m</i> -Chlorophenylpyruvic acid	210	77	10611	(145)
	o-Nitrophenylpyruvic acid	210	83	10 613	(120)
	o-Acetobenzoic acid	188	62	10 392	(115), 159-0x
		••••	49	10 582	(115), 186Dn
	p-Acetobenzoic acid	247	40	13513	(205), 269Se *
	o-Carboxyphenylglyoxylic	183	80	10 574	
	(phthalonic) acid	254	82	13346	
		254	85	13 512	
C 10	eta-Benzoylpropionic acid	178	84 †	10147	(114), 150A *
		178	95	10 135	(115)
		179	83	10216	(115)
	o-Propionylbenzoic acid	188	67	10392	(88), 117-Ox
	2-Methoxyphenylpyruvic acid	210	90	10 613	(161)
211	α-Keto-δ-phenylvaleric acid	184	63 †	10 ³⁰¹	(69.5)

For explanations and symbols see pp. xi-xii.

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.					
	Aliphatic and Alicyclic Aldo and Keto Acids									
C,	Glyoxylic acid	157	54	9185	135-Ox					
с,	Pyruvic acid	184	55	10 ²⁹⁴	80/25, 218Dn *					
		247	73	13496	108/126, 1.4138, 145Am*					
C_	a-Ketobutyric acid	184	65	10 366	(31), 194pN					
		247	••••	13 496	78/25, 1.3972, 117Am *					
C,	a-Ketovaleric acid	184	85	10 295	66/6, 145-Ox *					
	γ-Ketovaleric (levulinic) acid	••••	42	13 ⁴⁹⁹	108/2, 108Am *					
	a-Ketoglutaric acid	184	65	10 ²⁹⁹	(109)					
	eta-Ketoglutaric acid		90	10 671						
	$^{lpha}, \gamma$ -Diketovaleric acid	249	70	13 ⁵⁰⁰	(98), 132Am *					
C₄	a-Ketocaptoic acid	184	70	10295	102/20, 140-Ox*					
v	4-Ketohexanoic (homo- levulinic) acid	179	80	10 ²¹⁶	89/0.4, (40), 176Se					
	5-Ketocaptoic acid	283	68	13605	141-149/2					
	a-Methyl-Y-ketovaleric acid	184	67	10 296	141/11					
	eta-Methyllevulinic acid	264	40 t	13 501	118/3, 197Se*					
	γ -Acetylbutyric acid	184	75	10 672	155/12					
	γ -Acetobutyric acid	184	85	10 625	109/5					
	Methylethylpytuvic acid	193	20 †	10 450	80/12, (30)					
	Trimethylpyruvic acid	257	40	13502	85/20, 157Ph					
с,	2-Ketoheptanoic acid	184	65	10 ²⁹⁵	111/17, (30), 127-Ox					
	6-Ketoheptanoic acid	185	50	10579	167/9, (33), 146Se*					
		254	85	13 ⁴⁸⁵						
		254	55	13652	123/1, (35)					
		283	57	13605	156/2, 144Se					
	a, β -Dimethyllevulinic acid	264	83 †	13 ⁵⁰¹	122/4					
	Cyclopentanone-2-acetic acid	266	87	13504	(53)					
C,	a-Ketocaptylic acid	184		10295	104/6, (33)					
	7-Ketooctanoic acid	284	60	13606	161/4					
	a -n- Propyl-Y-keto valeric acid	184	48	10 ²⁹⁶	165/15					
	eta-Pivalylpropionic acid	264	80	13 624	(69), 141-Ox					
	2-Ketocyclohexylacetic acid	179	32	10217	(74)					
	l-Methylcyclopentyl- glyoxylic acid	257	30	13507	114/10, 168Se					
C.	8-Ketononoic acid	184	68	10 ²⁹⁷	148/0.8, (40)					
y .										

10²⁹⁸

184

75

114/0.1, 1.4528, 147Se

464

CARBOXYLIC ACIDS

Ch. 13

TABLE 49 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromatic and H	eterocycl	ic Aldo	and Keto Aci	ds (continued)
C ₁₁	a-Phenyl-y-ketovaleric	184	83	10296	(127)
	acio γ-Benzoyl-n-butyric acid	178	85	10135	(126)
		178	83	10148	(132), 110-Ox*
	a-Methyl-β-benzoyl- propionic acid	178	60	10 ⁸¹	(140)
c	δ-Benzoylvaleric acid	178	78 †	10147	(71)
Cu		178	75	10140	(71)
	a,a-Dimethyl- β -benzoyl-	178	60	10149	(171)
	propionic acid a-Naphthylglyoxylic acid B-Naphthylglyoxylic acid	249 257	96 40	13 ²⁰⁸ 13 ⁵¹⁷	(113), 151Am • (171), 230Se
C 14	o-Benzoylbenzoic acid	188	64	10392	(91), 127 -Ox
	Etwaren en 2- carbo vulic	254	74	13478	(341)
	acid	260	60	13 589	(335)
С ₁₆	a-Phenyl-β-benzoyl- propionic acid	247	90	13232	(151)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 13

REFERENCES FOR CHAPTER 13

¹ Bergmann et al., J. Am. Chem. Soc., 70, 1612 (1948). ²Osman and Cope, J. Am. Chem. Soc., 66, 885 (1944). ³ Bovd and Robson. Biochem. 1., 29, 542 (1935). *Smith, Alderman, and Nadig, J. Am. Chem. Soc., 67, 272 (1945). ⁵ Martin in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 160, 166, 167. ⁶ Fischer and Flatau, Ber., 42, 2983 (1909). ⁷ Marshall, J. Chem. Soc., 2754 (1930). ⁸ Norris and Tucker, J. Am. Chem. Soc., 55, 4697 (1933). ⁹Chargaff, Ber., 65, 745 (1932). ¹⁰ Conant and Aston, J. Am. Chem. Soc., 50, 2783 (1928). ¹¹ Calloway, Chem. Revs., 17, 356 (1935). ¹² Burton, Am. Chem. J., 3, 385 (1882). ¹³ Gränacher, Helv. Chim. Acta, 5, 610 (1922); 6, 458 (1923). ¹⁴ Rydon, J. Chem. Soc., 1444 (1936); Bond and Sprankling, ibid., 75, 839 (1899). ¹⁵ Whitmore and Laughlin, J. Am. Chem. Soc., 56, 1128 (1934); Whitmore and Wilson, ibid., 56, 1397 (1934). ¹⁶ Long, Chem. Revs., 27, 437 (1940). ¹⁷ Gilman and Harris, Rec. trav. chim., 50, 1055 (1931). ¹⁸ Waters, Chem. Revs., 41, 585 (1947). ¹⁹ Leuchs, Ber., 44, 1507 (1911). ²⁰ Adams and Kamm, Org. Syntheses, Coll. Vol. I, 250 (1941). ²¹ Kinney and Mayhue, J. Am. Chem. Soc., 53, 190 (1931). ²² Rosenmund and Schindler, Arch. Pharm., 266, 281 (1928). ²³ Butlerow, Ann., 170, 158 (1873). ²⁴ Morton, LeFevre, and Heckenbleikner, J. Am. Chem. Soc., 58, 1024 (1936). ²⁵ Kornblum in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 313. 26 Wallach, Ann., 414, 296 (1918); 437, 166 (1924). ²⁷ Burrows and Bentley, J. Chem. Soc., 67, 511 (1895). ²⁸ Hessler, J. Am. Chem. Soc., 35, 990 (1913). 29 Alexander, I. Am. Chem. Soc., 69, 289 (1947). 30 Wheeler and Hoffman, Am. Chem. J., 45, 369 (1911). ³¹ Djerassi, Chem. Revs., 43, 271, 276 (1948). ³² Johnson in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 210, 231, 232. 33 Block, Chem. Revs., 38, 526-533 (1946). 34 Fischer, Ber., 34, 445 (1901); Morsch, Monatsh., 60, 61-68 (1932). 35 Bouveault, Bull, soc, chim. France, 15, 1017 (1896). ³⁶ Greenwood, J. Org. Chem., 10, 414 (1945). 37 Hass and Riley, Chem. Revs., 32, 395 (1943). 38 Whitmore and Langlois, J. Am. Chem. Soc., 54, 3438 (1932). ³⁹ Herbst and Shemin, Org. Syntheses, Coll. Vol. II, 1 (1943). 40 Cohen, Marshall, and Woodman, I. Chem. Soc., 895-896 (1915). 41 Asinger, Ber., .75, 656 (1942). 42 Kon and Thorpe, J. Chem. Soc., 686 (1919). 43 Dakin, J. Biol. Chem., 154, 549 (1944). 44 Albertson and Tullar, J. Am. Chem. Soc., 67, 502 (1945); Ehrhart, Ber., 82, 60 (1949).

45 Lock, Ber., 66, 1527 (1933); 68, 1505 (1935). 46 Rodionow and Postovskaja, J. Am. Chem. Soc., 51, 841 (1929). ⁴⁷ Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, London, 1948, p. 513. 46 Farmer and Galley, J. Chem. Soc., 687 (1933). ⁴⁹ Bachmann and Struve in Organic Reactions, Vol. 1, John Wiley & Sons, New York. 1942. p. 38. ⁵⁰Nicolet and Jurist, J. Am. Chem. Soc., 44, 1136 (1922). ⁵¹ Abderhalden and Heyns, Ber., 67, 530 (1934). ⁵² Greenstein and Wyman, I. Am. Chem. Soc., 60, 2341 (1938). 53 Redemann and Dunn, I. Biol. Chem., 130, 341 (1939). ⁵⁴ Gilman and Van Ess, J. Am. Chem. Soc., 55, 1258 (1933). 55 Anslow and King, 1. Chem. Soc., 2463 (1929). ⁵⁶ Manske, I. Am. Chem. Soc., 53, 1106 (1931). ⁵⁷ Hess and Haber, Ber., 70, 2205 (1937). ⁵⁸ Winstein, Hanson, and Grunwald, J. Am. Chem. Soc., 70, 815 (1948). ⁵⁹ Beckurts and Otto, Ber., 10, 262 (1877). 60 Lippincott and Hass, Ind. Eng. Chem., 31, 118 (1939). ⁶¹ Pierre and Puchot, Ann. chim., (4) 28, 75 (1873). 62 Taylor and Strong, J. Am. Chem. Soc., 72, 4264 (1950); Newman and Wouz. ibid. 71, 1292 (1949). ⁶³ Fournier, Bull. soc. chim. France, 7, 25 (1910) 64 Fournier, Bull. soc. chim. France. (4) 5, 920 (1909). 65 Adams and Marvel, J. Am. Chem. Soc., 42, 310 (1920). 66 Gilman and Parker, J. Am. Chem. Soc., 46, 2816 (1924). ⁶⁷ Gilman and Kirby, Org. Syntheses, Coll. Vol. I, 361 (1941). 68 Marvel, Blomquist, and Vaughn, J. Am. Chem. Soc., 50, 2810 (1928). 69 Levene and Bass, I. Biol. Chem., 70, 211 (1926). ⁷⁰ Cumming, Hopper, and Wheeler, Systematic Organic Chemistry, 2nd ed., D. Van Nostrand Co., New York, 1931, p. 194. ⁷¹ Mosher and Whitmore, J. Am. Chem. Soc., 70, 2544 (1948). ⁷² Puntambeker and Zoellner, Org. Syntheses, Coll. Vol. I, 524 (1941). ⁷³ Sandborn and Bousquet, Org. Syntheses, Coll. Vol. I, 526 (1941). 74 Hass and Marshall, Ind. Eng. Chem., 23, 352 (1931). ⁷⁵ Drake and Riemenschneider, J. Am. Chem. Soc., 52, 5005 (1930). ⁷⁶ Bergmann and Hartrott, J. Chem. Soc., 1218 (1935). "Olivier, Rec. trav. chim., 55, 1030 (1936). ⁷⁸ Vliet, Marvel, and Hsueh, Org. Syntheses, Coll. Vol. II, 416 (1943). 79 Bohnsack, Ber., 74, 1583 (1941). ⁸⁰ Bentley and Perkin, J. Chem. Soc., 73, 48 (1898). ⁸¹ Noyes, J. Am. Chem. Soc., 23, 393 (1901). ⁸² Schuerch and Huntress, J. Am. Chem. Soc., 70, 2824 (1948); Corson, Thomas, and Waugh, ibid., 51, 1950 (1929). ⁸³ Reichstein, Rosenberg, and Eberhardt, Helv. Chim. Acta, 18, 721 (1935). ⁸⁴Nenitzescu and Chicos, Ber., 68, 1587 (1935). ⁸⁵ Homeyer, Whitmore, and Wallingford, J. Am. Chem. Soc., 55, 4211 (1933). ⁸⁶ Darapsky and Engels, J. prakt. Chem., 146, 238 (1936). ⁸⁷ Ruhoff, Org. Syntheses, Coll. Vol. II, 315 (1943). ⁸⁸ Hecht, Ann., 209, 313 (1881). ⁸⁹ Levene and Marker, J. Biol. Chem., 91, 687 (1931). 90 Levene and Marker, J. Biol. Chem., 95, 1, 153 (1932).

⁹¹ Paal and Hoffmann, Ber., 23, 1498 (1890). 92 Curtius. 1. prakt. Chem., 125, 157 (1930). 93 Henne and Hill, J. Am. Chem. Soc., 65, 753 (1943). ⁹⁴ Levene and Marker, J. Biol. Chem., 91, 405 (1931). 95 Barnes, Kraft, and Gordon, J. Am. Chem. Soc., 71, 3525 (1949). ⁹⁶ Whitmore and Badertscher, J. Am. Chem. Soc., 55, 1566 (1933). 97 Shivers, Hudson, and Hauser, J. Am. Chem. Soc., 66, 309 (1944). 98 Crossley and LeSueur, J. Chem. Soc., 77, 89 (1900); Drischerl and Nahm, Ber., 76, 639 (1943). 99 Karrer et al., Helv. Chim. Acta, 13, 1297 (1930). ¹⁰⁰ Carter and Slater, J. Chem. Soc., 131 (1946). ¹⁰¹ Levene and Marker, J. Biol. Chem., 111, 299 (1935). 102 Kenyon and Platt, J. Chem. Soc., 636 (1939). ¹⁰³ Levene, Rothen, and Meyer, J. Biol. Chem., 115, 401 (1936). ¹⁰⁴ Whitmore et al., J. Am. Chem. Soc., 63, 2028 (1941). ¹⁰⁵ Newman and Rosher, J. Org. Chem., 9, 221 (1944). 106 Curtius and Nadenheim, J. prakt. Chem., (2) 125, 171 (1930). ¹⁰⁷ Kroll, Pfeiffer, and Rosenberg, Ber., 69, 465 (1936). ¹⁰⁸ Fisher et al., Ber., 45, 253, 256 (1912). ¹⁰⁹ v. Braun and Fisher, Ber., 66, 101 (1933). ¹¹⁰ Reid and Ruhoff, Org. Syntheses, Coll. Vol. II, 474 (1943). ¹¹¹Cason, J. Am. Chem. Soc., 64, 1108 (1942). 112 Kögl and Boar, Rec. trav. chim., (4) 54, 793 (1935). ¹¹³ Smith and Rouault, J. Am. Chem. Soc., 65, 747 (1943). ¹¹⁴ Cope and McElvain, J. Am. Chem. Soc., 54, 4319 (1932). ¹¹⁵ Smith and Horwitz, J. Am. Chem. Soc., 71, 3418 (1949); Cragoe, Robb, and Sprague, J. Org. Chem., 15, 381 (1950); cf. ref. 300. ¹¹⁶ Jones and Pyman, J. Chem. Soc., 127, 2597 (1922). ¹¹⁷ Whitmore, Wheeler, and Surmatis, J. Am. Chem. Soc., 63, 3237 (1941). ¹¹⁸ Whitmore, Marker, and Plambeck, J. Am. Chem. Soc., 63, 1628 (1941). ¹¹⁹ Kao and Ma, J. Chem. Soc., 2047 (1931). ¹²⁰ Fierz-David and Kuster, Helv. Chim. Acta, 22, 87 (1939). ¹²¹ Strating and Backer, Rec. trav. chim., 55, 904 (1936). 122 Polgar and Robinson, J. Chem. Soc., 393 (1945). ¹²³ Bartlett, Fraser, and Woodward, J. Am. Chem. Soc., 63, 495 (1941). ¹²⁴ Beal, Org. Syntheses, Coll. Vol. I, 379 (1941). ¹²⁵ Dauben, J. Am. Chem. Soc., 70, 1376 (1948), 126 Backer and Strating, Rec. trav. chim., 59, 938, 939 (1940). ¹³⁷ Blevberg and Ulrich, Ber., 64, 2504 (1931). 128 McCloskey and Coleman, Org. Syntheses, 24, 36 (1944). 129 Jones and Scott. J. Am. Chem. Soc., 44, 413 (1922). ¹³⁰ Schlatter, J. Am. Chem. Soc., 63, 1735 (1941). ¹³¹Cason and Allen, J. Org. Chem., 14, 1036 (1949); Heisig and Stodola, Org. Syntheses, 23, 16 (1943). ¹³² Jackman, Bergman, and Archer. I. Am. Chem. Soc., 70, 497 (1948). ¹³³ Neunhoeffer, Ann., 509, 125 (1934). ¹³⁴Nenitzescu and Ionescu, Ann., 491, 207 (1931). 135 Delepine and Badoche, Ann. chim., (11) 17, 180 (1942). ¹³⁶ Kindler, Ber., 74, 315 (1941). ¹³⁷Clarke and Taylor, Org. Syntheses, Coll. Vol. II, 588 (1943). 138 King. J. Chem. Soc., 984 (1935).

¹³⁹ Cairns, Joyce, and Schreiber. J. Am. Chem. Soc., 70, 1689 (1948). 140 Coleman, Callen, and Dornfeld, J. Am. Chem. Soc., 68, 1102 (1946). 141 Tsatsas, Ann. chim., (11) 19, 262 (1944). 142 LaForge, Green, and Gersdorff, J. Am. Chem. Soc., 70, 3709 (1948). 143 Blicke and Sheetz, I. Am. Chem. Soc., 71, 2856 (1949). 144 Rueggeberg, Frantz, and Ginsburg, Ind. Eng. Chem., 38, 624 (1946). 145 VanArendonk and Cupery. I. Am. Chem. Soc., 53, 3184 (1931). 146 Kindler and Kwok. Ann., 554, 9 (1943). 147 King and McMillan, J. Am. Chem. Soc., 68, 2335 (1946). 148 Adams and Thal. Org. Syntheses, Coll. Vol. I, 436 (1941); Wenner, J. Org. Chem., 15, 548 (1950). 149 Zaugg and Rapala, Org. Syntheses, 27, 84 (1947). 150 Tomisek et al., J. Am. Chem. Soc., 68, 1588 (1946). 131 Senseman and Stubbs, Ind. Eng. Chem., 23, 1129 (1931). 152 Tuley and Marvel. Org. Syntheses, 27, 86 (1947). ¹⁵³ Coulson. I. Chem. Soc., 1408 (1934). ¹⁵⁴Larsen et al., J. Am. Chem. Soc., 71, 532 (1949). 155 Adkins and Connor. J. Am. Chem. Soc., 53, 1091 (1931). 156 Miescher and Billeter, Helv. Chim. Acta, 22, 606, 607 (1939). 157 Ingersoll, Org. Syntheses, Coll. Vol. I, 311 (1941). ¹³⁶ Julian et al., J. Am. Chem. Soc., 70, 180 (1948). 159 Hill and Short, J. Chem. Soc., 1125 (1935). 160 Lewis and Elderfield, J. Org. Chem., 5, 290 (1940). 161 Kindler and Gehlhaar, Arch. Pharm., 274, 377 (1936). 162 Morgan and Coulson, J. Chem. Soc., 2326 (1931). 163 Snyder, Adams, and McIntosh, J. Am. Chem. Soc., 63, 3281 (1941). 164 Chu and Marvel, J. Am. Chem. Soc., 55, 2842 (1933). ¹⁶⁵ Wegler, Ann., 510, 80 (1934). 166 Allen and Johnson, Org. Syntheses, 30, 83 (1950). 167 Woodruff and Pierson, J. Am. Chem. Soc., 60, 1076 (1938). ¹⁶⁸ Martin. I. Am. Chem. Soc.. 58, 1438 (1936); Fieser et al., ibid., 70, 3200 $(1948)_{-}$ 169 Martin, Org. Syntheses, Coll. Vol. II, 499 (1943). 170 Litvan and Robinson, J. Chem. Soc., 1999 (1938). ¹⁷¹ Horne and Shriner, J. Am. Chem. Soc., 55, 4652 (1933). ¹⁷² Bogert and Stamatoff, Rec. trav. chim., 52, 586 (1933). 173 Heyboer and Staverman, Rec. trav. chim., 69, 790 (1950). ¹⁷⁴ Knowles, Kuck, and Elderfield, J. Org. Chem., 7, 374 (1942). ¹⁷⁵ Kloetzel, I. Am. Chem. Soc., 62, 1708 (1940). 176 Plati, Strain, and Warren, J. Am. Chem. Soc., 65, 1273 (1943). 177 Wallis and Bowman, J. Org. Chem., 1, 389 (1936). 178 Fuson and Rabjohn, Org. Syntheses, 25, 65 (1945); Lutz and Hinkley, J. Am. Chem. Soc., 72, 4091 (1950). 179 Zaki and Fahim, J. Chem. Soc., 307 (1942). 180 Marvel, Frank, and Prill, J. Am. Chem. Soc., 65, 1649 (1943). ¹⁸¹ Marvel et al., I. Am. Chem. Soc., 66, 915 (1944). 182 Hanby, Waley, and Watson, J. Chem. Soc., 3243 (1950). 183 Gilman, St. John, and Schulze, Org. Syntheses, Coll. Vol. II, 425 (1943). 184 Jacobs et al., J. Org. Chem., 11, 229 (1946). 185 Whitmore and Fox, J. Am. Chem. Soc., 51, 3363 (1929); Bassilios, Bull. soc. chim, France, (5) 17, 757 (1950).

¹⁸⁶ Price et al., I. Am. Chem. Soc., 63, 1857 (1941). ¹⁸⁷ King. I. Am. Chem. Soc., 66, 894 (1944). 188 Newman and Holmes, Org. Syntheses, Coll. Vol. II, 428 (1943). 189 Gilman and St. John, Rec. trav. chim., 48, 743 (1929). ¹⁹⁰ Colver and Noyes, J. Am. Chem. Soc., 43, 902 (1921). ¹⁹¹ Papa, Schwenk, and Hankin, J. Am. Chem. Soc., 69, 3021 (1947). ¹⁹² Berger and Olivier, Rec. trav. chim., 46, 600 (1927). ¹⁹³ Johnson and Jones, J. Am. Chem. Soc., 69, 793 (1947). ¹⁹⁴ Sengupta, I. prakt. Chem., 151, 88 (1938). ¹⁹⁵ Arndt and Eistert, Ber., 68, 200 (1935). ¹⁹⁶ Pattison and Saunders, I. Chem. Soc., 2748 (1949). ¹⁹⁷ Olivier and Wit. Rec. trav. chim., 56, 857 (1937). ¹⁹⁸ Newman, J. Org. Chem., 9, 518 (1944). ¹⁹⁹ Clement, Bull. soc. chim. France, (5) 5, 1013 (1938). 200 Gryszkiewicz-Trochimowski, Bull. soc. chim. France, (5) 16, 929 (1949). ²⁰¹ Fusier, Ann. chim., (12) 5, 887 (1950). ²⁰² Fieser and Gates, J. Am. Chem. Soc., 62, 2338 (1940). ²⁰³ Blicke and Feldkamp, J. Am. Chem. Soc., 66, 1087 (1944). ²⁰⁴ Gutsche and Johnson, J. Am. Chem. Soc., 68, 2242 (1946). ²⁰⁵ Sörensen, Z. physiol. Chem., 44, 448 (1905); Bull. soc. chim. France, (3) 33, 1042, 1052 (1905), ²⁰⁶ Thompson and Cromwell, J. Am. Chem. Soc., 61, 1375 (1939). ²⁰⁷ Fuson and Corse. J. Am. Chem. Soc., 60, 2065 (1938). ²⁰⁸ Fieser and Cason, J. Am. Chem. Soc., 61, 1742 (1939). 209 Fieser and Novello, I. Am. Chem. Soc., 62, 1857 (1940). ²¹⁰ Schönberg and Warren, J. Chem. Soc., 1840 (1939). ²¹¹ Schwenk and Papa, I. Org. Chem., 11, 798 (1946). ²¹² Blicke and Grier, I. Am. Chem. Soc., 65, 1726 (1943). ²¹³ Marvel, Hager, and Caudle, Org. Syntheses, Coll. Vol. I, 224 (1941). ²¹⁴ Yost and Hauser, J. Am. Chem. Soc., 69, 2326 (1947). ²¹⁵ Fieser and Kilmer, J. Am. Chem. Soc., 62, 1354 (1940). ²¹⁶ Bachmann and Sheehan. I. Am. Chem. Soc., 63, 204 (1941). ²¹⁷ Snyder and Pilgrim, J. Am. Chem. Soc., 70, 3770 (1948). ²¹⁸ Wegmann and Dahn, Helv. Chim. Acta. 29, 425 (1946). ²¹⁹ Bateman and Marvel, I. Am. Chem. Soc., 49, 2917 (1927), 220 Bachmann and Sheehan, I. Am. Chem. Soc., 62, 2687 (1940). ²²¹ Latham, May, and Mosettig, J. Am. Chem. Soc., 70, 1079 (1948). ²²² Bachmann and Kloetzel, J. Org. Chem., 3, 60 (1938). ²²³ Burtner and Cusic, J. Am. Chem. Soc., 65, 265 (1943). ²²⁴ Burtner and Cusic, J. Am. Chem. Soc., 65, 1582 (1943). 225 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2101 (1936). ²²⁶ Mosettig and van de Kamp. I. Am. Chem. Soc., 52, 3708 (1930). ²²⁷ Shoppee, I. Chem. Soc., 40 (1933). 228 Goldberg, Ordas, and Carsch, J. Am. Chem. Soc., 69, 261 (1947). ²²⁹ Mosettig and van de Kamp, J. Am. Chem. Soc., 54, 3334 (1932). ²³⁰ Plentl and Bogert, I. Am. Chem. Soc., 63, 994 (1941). ²³¹ Newman, J. Am. Chem. Soc., 62, 872 (1940). ²³² Baker and Jenkins, J. Am. Chem. Soc., 68, 2102 (1946). ²³³ Koelsch, Hochmann, and Le Claire, J. Am. Chem. Soc., 65, 59 (1943). ²³⁴ Breslow, Baumgarten and Hauser, J. Am. Chem. Soc., 66, 1287 (1944). ²³⁵ Fieser, Leffler, et al., J. Am. Chem. Soc., 70, 3208 (1948).

²³⁶ Mitz. Axelrod. and Hofmann. I. Am. Chem. Soc., 72, 1231 (1950). 237 Bachmann and Carmack, J. Am. Chem. Soc., 63, 2499 (1941). 238 Hellerman, I. Am. Chem. Soc., 49, 1737 (1927). ²³⁹ Saunders and Stacev. I. Chem. Soc., 1777 (1948). 240 Hurd, Garrett, and Osborne, J. Am. Chem. Soc., 55, 1082 (1933). ²⁴¹ Wilson, Org. Syntheses, Coll. Vol. I, 276 (1941). 242 Gilman and Burtner, J. Am. Chem. Soc., 55, 2903 (1933). 243 Schick and Hartough, J. Am. Chem. Soc., 70, 286 (1948). ²⁴⁴ Gresham et al., J. Am. Chem. Soc., 70, 999, 1003 (1948); 72, 72 (1950). 245 Campaigne and LeSuer, J. Am. Chem. Soc., 70, 1555 (1948). 246 Steinkopf and Schmitt, Ann., 533, 267 (1938). 247 Rinkes, Rec. trav. chim., 55, 992 (1936). 248 Plucker and Amstutz, J. Am. Chem. Soc., 62, 1512 (1940). 249 Singer and McElvain, Org. Syntheses, 20, 79 (1940); Black, Depp. and Corson, J. Org. Chem., 14, 14 (1949). ²⁵⁰ Gilman and Spatz, J. Am. Chem. Soc., 62, 446 (1940). ²⁵¹ McElvain, Org Syntheses, Coll. Vol. I, 385 (1941); cf. refs. 249 and 252. 252 Woodward, Badgett, and Kaufman, Ind. Eng. Chem., 36, 544 (1944); Rohrlich, Arch. Pharm. 283, 122 (1950). ²⁵³ McElvain and Goese, J. Am. Chem. Soc., 63, 2283 (1941). ²⁵⁴ Barnes and Adams, J. Am. Chem. Soc., 49, 1309 (1927). 255 Burrus and Powell, I. Am. Chem. Soc., 67, 1468 (1945). 236 Leis and Curran, I. Am. Chem. Soc., 67, 79 (1945). 237 Koelsch, J. Am. Chem. Soc., 65, 2464 (1943); Malan and Dean, ibid., 69, 1797 (1947): cf. refs. 249, 255-258. 238 Wibaut and Arens, Rec. trav. chim., 60, 137 (1941). ²⁵⁹ Emerson, Lucas, and Heimsch, J. Am. Chem. Soc., 71, 1742 (1949). 260 Amstutz and Plucker, J. Am. Chem. Soc., 63, 206 (1941). ²⁶¹ Kirner and Richter, J. Am. Chem. Soc., 51, 3131 (1929). ²⁶² Barger, Robinson, and Smith, J. Chem. Soc., 718 (1937). 263 Barger and Easson, J. Chem. Soc., 2103 (1938). 254 Amold and Buckley, J. Am. Chem. Soc., 71, 1782 (1949). 265 Southwick and Seivard, J. Am. Chem. Soc., 71, 2536 (1949). 266 Fieser and Kennelly, J. Am. Chem. Soc., 57, 1615 (1935); Buu-Hoi et al., J. Org. Chem., 14, 807 (1949). 267 Hofmann, J. Am. Chem. Soc., 66, 51 (1944). 266 Carter, J. Am. Chem. Soc., 50, 2299 (1928). ²⁶⁹ Fuson, Kneisley, and Kaiser, Org. Syntheses, 24, 33 (1944). 270 Schönberg, Petersen, and Kaltschmitt, Ber., 66, 235 (1933). 271 Blicke and Sheets. J. Am. Chem. Soc., 70, 3768 (1948); Crook and Davies, I. Chem. Soc., 1698 (1937). 272 Komppa and Weckman, J. prakt. Chem., 138, 116 (1933). ²⁷³ Doering and Wiberg, J. Am. Chem. Soc., 72, 2608 (1950). ²⁷⁴ Gilman and Spatz, J. Am. Chem. Soc., 63, 1553 (1941). 275 Koelsch, J. Org. Chem., 10, 34 (1945). ²⁷⁶ Tyson, J. Am. Chem. Soc., 61, 183 (1939). ²⁷⁷ Gilman, Wallis, and Swislowsky, J. Am. Chem. Soc., 61, 1372 (1939). 278 Dunlop and Tucker, J. Chem. Soc., 1953 (1939). ²⁷⁹ Gilman and Avakian, J. Am. Chem. Soc., 68, 2104 (1946). ²⁸⁰ Gilman et al., J. Am. Chem. Soc., 61, 2844 (1939). 281 Smith and McKenzie, J. Org. Chem., 15, 74 (1950).

²⁸² Clarke and Davis, Org. Syntheses, Coll. Vol. I. 421 (1941). ²⁸³ Hultman, Davis, and Clarke, I. Am. Chem. Soc., 43, 368 (1921). ²⁸⁴ Weiner, Org. Syntheses, Coll. Vol. II, 376 (1943). ²⁸⁵ Allen, Wyatt, and Henze, J. Am. Chem. Soc., 61, 843 (1939). 286 Milas, Org. Syntheses, Coll. Vol. II, 302 (1943). 287 Sporzynski, Kocay, and Briscoe, Rec. trav. chim., 68, 614 (1949). 288 Vogel, J. Chem. Soc., 336 (1934). ²⁸⁹ Marvel and Tuley. Ore. Syntheses. Coll. Vol. I. 289 (1941). 290 Allen and Ball, Org. Syntheses, Coll. Vol. I. 290 (1941). ¹⁹¹Otterbacher, Org. Syntheses, Coll. Vol. I, 290 (1941). ²⁹² Brown, Org. Syntheses, 26, 54 (1946). ²⁹³Linstead, Noble, and Wright, I. Chem. Soc., 915 (1937). ²⁹⁴ Shriner, Ford, and Roll, Org. Syntheses, Coll. Vol. II, 140 (1943). ²⁹⁵ Shriner, Ford, and Roll, Org. Syntheses, Coll. Vol. II, 382 (1943). ²⁹⁶ Ellis. Org. Syntheses, Coll. Vol. I, 18 (1941). ²⁹⁷ Kent and McElvain, Org. Syntheses, 23, 60 (1943). ²⁹⁸ Day and Thorpe, J. Chem. Soc., 1465 (1920). ²⁹⁹ Scheibler, Schmidt, and Kenntnis, Ber., 69B, 14 (1936). 300 Vogel, I. Chem. Soc., 2010 (1928). ³⁰¹ Theilacker and Wendtland, Ann., 570, 50 (1950). 302 Meyer, Helv, Chim. Acta, 16, 1293 (1933). ³⁰³ Snyder, Brooks, and Shapiro, Org. Syntheses, Coll. Vol. II, 531 (1943). ³⁰⁴ Müller, Org. Syntheses, Coll. Vol. II, 535 (1943). 305 Cason, Wallcave, and Whiteside, I. Org. Chem., 14, 41 (1949). ³⁰⁶ Altman, Rec. trav. chim., 57, 950 (1938). ³⁰⁷ Godchot, Cauguil, and Calas, Bull. soc. chim. France, (5) 6, 1355 (1939). ³⁰⁸ Vogel, I. Chem. Soc., 911 (1931); Desai, ibid., 1218 (1931). 309 Vogel, I. Chem. Soc., 1758 (1934). ³¹⁰ Alder, Pascher, and Schmitz, Ber., 76, 45 (1943). ³¹¹ Bush, J. Am. Chem. Soc., 61, 637 (1939). ³¹² Müller and Bleier, Monatsh., 56, 397 (1930). ³¹³ Vogel, J. Chem. Soc., 2033 (1928); Baker and Ingold, ibid., 123, 122 (1923). ³¹⁴ Walker, I. Chem. Soc., 1306 (1940). 315 Rydon, J. Chem. Soc., 1340 (1937). ³¹⁶ Franke and Kroupa, Monatsh., 69, 182 (1936). 317 Rydon, J. Chem. Soc., 593 (1936). ³¹⁸ Gaubert, Linstead, and Rydon, J. Chem. Soc., 1971 (1937). ³¹⁹ Grunfeld, Ann. chim., (10) 20, 338 (1933). ³²⁰ Hill and McEwen, Org. Syntheses, Coll. Vol. II, 53 (1943). ³²¹ Arbusow and Schapschinskaja, Ber., 68, 440 (1935). 322 Carter, J. Am. Chem. Soc., 50, 1967 (1928). 323 Dox. I. Am. Chem. Soc., 46, 1707 (1924). ³²⁴ Bernhard and Lincke, Helv. Chim. Acta, 29, 1462 (1946). ³²⁵ Franke, Kroupa, and Hadzidimitriu, Monatsh., 62, 125 (1933). ³²⁶ Jones, J. Am. Chem. Soc., 69, 2350 (1947). ³²⁷ Schmid and Kemeny, Monatsh., 66, 3 (1936). 328 Jones and Scott, J. Am. Chem. Soc., 44, 413 (1922). 329 Fuson and Cole, J. Am. Chem. Soc., 60, 1237 (1938). ³³⁰ Ingold and Mohrhenn, J. Chem. Soc., 950 (1935). ³³¹ Guha and Sankaran, Ber., 70, 1688 (1937). ³³² Guha and Ganapathi, Ber., 69, 1189 (1936).

333 Kon and Khuda, J. Chem. Soc., 3071 (1926). 334 Kandiah, J. Chem. Soc., 935, 947 (1931). ³³⁵ Thakur, J. Chem. Soc.. 2151 (1932). 336 Tudor and Vogel, J. Chem. Soc., 1251 (1934). 337 Wagner and Tome, I. Am. Chem. Soc., 72, 3477 (1950). 338 Ivanoff, Bull. soc. chim. France. (5) 15. 661 (1948). 339 Koelsch, Org. Syntheses, 26, 95 (1946). 340 Huntress, Shloss, and Ehrlich. Org. Syntheses, Coll. Vol. II, 457 (1943). 341 Ivanoff and Spassoff, Bull. soc. chim. France, 49. 19 (1931). 342 Morton, Fallwell, and Palmer, J. Am. Chem. Soc., 60, 1426 (1938). 343 Price, Org. Syntheses, 22, 61 (1942). 344 Whitmore and Cooney, J. Am. Chem. Soc., 66, 1239 (1944). 345 Miescher and Billeter, Helv. Chim. Acta, 22, 601 (1939). 34 Davies and Poole, J. Chem. Soc., 1617 (1928). 347 Komppa et al., Ann., 521, 247 (1935). 348 Lapworth and Baker, Org. Syntheses, Coll. Vol. I, 452 (1941). 349 Greenspan, Ind. Eng. Chem., 39, 847 (1947). 330 Naps and Johns. J. Am. Chem. Soc., 62, 2450 (1940). 331 Wood and Cox, Org. Syntheses, 26, 24 (1946). 352 Weizmann, J. Org. Chem., 8, 285 (1943). 353 Fry and Fieser, J. Am. Chem. Soc., 62, 3490 (1940). 354 Case, J. Am. Chem. Soc., 55, 2927 (1933). 355 Underwood and Kochmann. I. Am. Chem. Soc., 46. 2071 (1924). 356 Bischoff and Adkins, J. Am. Chem. Soc., 45, 1031 (1923). 357 Roberts and Johnson, J. Am. Chem. Soc., 47, 1399 (1925). 358 Bell and Briggs, J. Chem. Soc., 1563 (1938). 339 Atkinson and Lawler, Org. Syntheses, Coll. Vol. I, 222 (1941). 360 Linstead and Doering, I. Am. Chem. Soc., 64, 1998 (1942). 361 Work, I. Chem. Soc., 1317 (1940). 362 Wawzonek, J. Am. Chem. Soc., 62, 747 (1940). 363 Kaszuba, J. Am. Chem. Soc., 67, 1227 (1945). 364 Jeffery and Vogel, J. Chem. Soc., 661 (1948). 365 Rietz, Org. Syntheses, 24, 96 (1944). 366 White, J. Chem. Soc., 238 (1943). 367 Crawford, J. Soc. Chem. Ind. (London), 64, 231 (1945). ³⁶⁸ Glattfeld and Lee, J. Am. Chem. Soc., 62, 354 (1940). 369 Goldberg and Linstead, J. Chem. Soc., 2343 (1928). ³⁷⁰ Lane, Fentress, and Sherwood, J. Am. Chem. Soc., 66, 547 (1944). ³⁷¹ Linstead and Rydon, J. Chem. Soc., 580 (1933). 372 Buckles and Mock. J. Org. Chem., 15, 680 (1950). ³⁷³Lane, Roberts, and Young, J. Am. Chem. Soc., 66, 543 (1944). 374 Roberts and Young, J. Am. Chem. Soc., 67, 148 (1945); cf. ref. 373. 375 Smith, Prichard, and Spillane, Org. Syntheses, 23, 27 (1943). 376 Pressman and Lucas, J. Am. Chem. Soc., 62, 2069 (1940). 377 Eccott and Linstead, J. Chem. Soc., 2163 (1929). 378 Letch and Linstead, J. Chem. Soc., 1994 (1934). 379 Michael and Mason, J. Am. Chem. Soc., 65, 683 (1943). 300 Linstead and Rydon. 1. Chem. Soc., 1998 (1934). ³⁸¹ Foreman and McElvain, I. Am. Chem. Soc., 62, 1439 (1940). 382 Hunsdiecker, Ber., 75, 460 (1942). 383 Colonge and Joly, Ann. chim., (11) 18, 312 (1943).

³⁸⁴ Lichtenberger and Naftali, Bull. soc. chim. France, (5) 4, 332 (1937). 385 Mannich and Kniss. Ber. 74, 1641 (1941). 386 Oskerko, Ber., 70, 56 (1937). 387 Zaugg, I. Am. Chem. Soc., 72, 3002 (1950). 388 Moser and Gompf. 1. Org. Chem., 15, 585 (1950). 389 Urion, Ann. chim., (11) 1, 45 (1934). ³⁹⁰ Cook and Linstead, I. Chem. Soc., 959 (1934). ³⁹¹ David, Dupont, and Paquot, Bull. soc. chim. France, (5) 11, 563 (1944). ³⁹² Boorman and Linstead, I. Chem. Soc., 258 (1935). ³⁹³ Fiesselmann, Ber., 75, 889 (1942). ³⁹⁴ Noller and Adams, J. Am. Chem. Soc., 48, 2447 (1926). ³⁹⁵ Shive, Horeczy, and Lochte, J. Am. Chem. Soc., 62, 2744 (1940). ³⁹⁶ McKenzie and Dennler, J. Chem. Soc., 1600 (1926). ³⁹⁷ Heath and Rose, I. Chem. Soc., 1485 (1947), ³⁹⁸ English and Dayan, Org. Syntheses. 30, 38 (1950). 399 Crombie and Harper, J. Chem. Soc., 2688 (1950). 400 Koelsch, J. Am. Chem. Soc., 65, 57 (1943). 401 Marvel and Overberger, J. Am. Chem. Soc., 67, 2250 (1945). 402 Woodruff and Conger, J. Am. Chem. Soc., 60, 465 (1938). ⁴⁰³ Lipkin and Stewart, J. Am. Chem. Soc., 61, 3295 (1939). 404 Friedmann and Mai, Helv. Chim. Acta. 14, 1213 (1931). 405 Bogert and Davidson, I. Am. Chem. Soc., 54, 334 (1932). 406 Natelson and Gottfried, J. Am. Chem. Soc., 64, 2962 (1942). 407 Alder and Stein, Ann., 525, 209 (1936); Owen and Sultanbawa, J. Chem. Soc., 3111 (1949). 408 Zoss and Hennion, J. Am. Chem. Soc., 63, 1151 (1941). 409 Heilbron, Jones, and Sondheimer, I. Chem. Soc., 606 (1949). 410 Haynes and Jones, J. Chem. Soc., 504 (1946). ⁴¹¹ Ahmad and Strong, J. Am. Chem. Soc., 70, 1699 (1948). ⁴¹² Cope, Clark, and Connor, Org. Syntheses, Coll. Vol. II, 181 (1943). 413 Henne and Trott, J. Am. Chem. Soc., 69, 1820 (1947). ⁴¹⁴ Moureu and Chaux, Org. Syntheses, Coll. Vol. I, 166 (1941). ⁴¹⁵ Fieser and Seligman, J. Am. Chem. Soc., 58, 2484 (1936). 416 Powell, I. Am. Chem. Soc., 46, 2879 (1924). ⁴¹⁷ Kendall and McKenzie, Org. Syntheses, Coll. Vol. I, 131 (1941). 418 Marvel et al., J. Am. Chem. Soc., 62, 3495 (1940). 419 Yarnall and Wallis, I. Org. Chem., 4, 287 (1939). 420 Koelsch, J. Am. Chem. Soc., 52, 3364 (1930). 431 Davis, J. Am. Chem. Soc., 63, 1677 (1941); Kohler, Am. Chem. J., 42, 382 (1909). 422 Carter and West, Org. Syntheses, 20, 81 (1940). ⁴²³ Marvel and du Vigneaud, Org. Syntheses, Coll. Vol. II, 93 (1943). 424 Carter and Ney, J. Am. Chem. Soc., 64, 1223 (1942). 425 Adams and Marvel, J. Am. Chem. Soc., 42, 310 (1920). ⁴²⁶ Marvel, Org. Syntheses, 21, 60 (1941). 427 Degering and Boatright, I. Am. Chem. Soc., 72, 5138 (1950). 428 Fosdick and Campaigne, J. Am. Chem. Soc., 63, 974 (1941). ⁴²⁹ Clarke and Taylor, Org. Syntheses, Coll. Vol. II, 135 (1943). 430 Olivier, Rec. trav. chim., 48, 568 (1929). ⁴³¹ Wallingford and Krueger, Org. Syntheses, Coll. Vol. II, 353 (1943).

432 Sah and Hsu, Rec. trav. chim., 59, 351 (1940); Gaudemaris and Dubois, Bull. soc. chim. France. (5) 17, 64 (1950). 433 Sah and Wang, Rec. trav. chim. 59. 365 (1940). ⁴³⁴ Buck and Ide. 1. Am. Chem. Soc., 54, 3308 (1932). 435 Case, J. Am. Chem. Soc., 47, 3004 (1925). 436 Snyder and Brewster, J. Am. Chem. Soc.. 71. 1062 (1949]. 437 Marvel, Org. Syntheses. 21, 99 (1941). 438 Krausz, Ann. Chim. (12) 4, 820 (1949). 459 Foreman and McElvain. I. Am. Chem. Soc.. 62. 1435 (1940): Blicke and Lilienfeld, ibid. 65, 2283 (1943). 440 Fieser and Seligman. I. Am. Chem. Soc.. 60, 170 (1938). 441 Grummitt, Buck, and Egan. Org. Syntheses. 26. 21 (1946). 442 Read, Org. Syntheses, Coll. Vol. I. 321 (1941). 443 Marvel and Birkhimer, I. Am. Chem. Soc., 51. 260 (1929). 444 Young, Dillon, and Lucas, J. Am. Chem. Soc., 51, 2528 (1929). 445 Lucas and Prater. I. Am. Chem. Soc. 59, 1682 (1937). 446 Fuson, Gray, and Gouza. I. Am. Chem. Soc., 61, 1937 (1939). 447 Stoughton, I. Am. Chem. Soc., 63, 2376 (1941). 448 Levin and Pendergrass, J. Am. Chem. Soc., 69, 2436 (1947): cf. Campbell and Hunt, J. Chem. Soc., 1379 (1950). 449 Grigsby et al., J. Am. Chem. Soc., 64, 2606 (1942). 430 Newman and Vanderwerf. 1. Am. Chem. Soc., 67, 233 (1945). 451 Bardhan and Banerii, J. Chem. Soc., 477 (1935). 452 King, McWhirter, and Barton, J. Am. Chem. Soc., 67, 2089 (1945). 453 Lock and Stitz. Ber., 72, 80 (1939). 454 Buehler and Cate. Org. Syntheses, Coll. Vol. II. 341 (1943). 455 Nierenstein and Clibbens, Org. Syntheses, Coll. Vol. II, 557 (1943). 456 Aston, Newkirk, Jenkins, and Dorsky, Org. Syntheses, 23, 48 (1943). 457 Corson et al., Org. Syntheses. Coll. Vol. I. 336 (1941). 458 Biguard, Ann. chim., (10) 20, 135-150 (1933). 459 Ott. Mattano, and Coleman. I. Am. Chem. Soc., 68, 2633 (1946). 460 Case, J. Am. Chem. Soc., 47. 1145 (1925). 461 Blicke and Kaplan, J. Am. Chem. Soc., 65, 1969 (1943). 452 Riebsomer, Irvine, and Andrews, J. Am. Chem. Soc., 60, 1015 (1938); Riebsomer et al., ibid., 60, 2974 (1938). 453 Gryszkiewicz-Trochimowski, Rec. trav. chim., 66, 430 (1947). 464 Fieser, Gates, and Kilmer, I. Am. Chem. Soc., 62, 2966 (1940). 465 Peacock and Menon, J. Chem. Soc., 1299 (1934). 466 Arnold and Sprung, J. Am. Chem. Soc., 60, 1163 (1938). 467 Ballard and Dehn, Org. Syntheses, Coll. Vol. I, 89 (1941). 468 Riebsomer et al., J. Am. Chem. Soc., 64, 2080 (1942). 469 Staudinger, Ber., 39, 3062 (1906). 470 Rohrmann, Jones, and Shonle, J. Am. Chem. Soc., 66, 1856 (1944). ⁴⁷¹ Niemann, Benson, and Mead, I. Org. Chem., 8, 401 (1943). 472 Palomaa and Kenetti, Ber., 64, 800 (1931). 473 Christian and Hixon, J. Am. Chem. Soc., 70, 1333 (1948): Leslie and Henze, ibid. 71. 3480 (1949). 474 Prelog and Zalan, Helv. Chim. Acta, 27, 534 (1944). 475 Weizmann, Sulzbacher, and Bergmann, J. Am. Chem. Soc., 70, 1153 (1948). 476 Palomaa, Ber., 74, 297 (1941).

⁴⁷⁷ Swern, Chem. Revs., 45, 38 (1949).

REFERENCES FOR CHAPTER 13

478 Rieveschl and Ray, Org. Syntheses, 28, 63 (1948). 479 Powell, I. Am. Chem. Soc., 45, 2710 (1923). ⁴⁸⁰ Levine. Eble. and Fischbach. *J. Am. Chem. Soc.*, 70, 1930 (1948). 481 Kornfeld, I. Am. Chem. Soc., 70, 1373 (1948). 482 Weidlich and Meyer-Delius, Ber. 73, 327 (1940). 483 Burger and Avakian, J. Org. Chem., 5, 606 (1940). 484 Tschudi and Schinz, Helv. Chim. Acta. 33, 1868 (1950). 485 Ruzicka et al., Helv. Chim. Acta. 31, 427 (1948). 486 Buck and Ide, Org. Syntheses, Coll. Vol. II, 333 (1943). 487 Merchant. Wickert, and Marvel, J. Am. Chem. Soc., 49, 1829 (1927). 488 King and Robinson, I. Chem. Soc., 272 (1933). 489 Hardegger, Redlich, and Gal, Helv. Chim. Acta. 28, 632 (1945). ⁴⁹⁰ Grummitt, Egan, and Buck, Ore. Syntheses, 29, 49 (1949). ⁴⁹¹ Haworth and Sheldrick, I. Chem. Soc., 1951 (1934). 492 Fuson and Rachlin, J. Am. Chem. Soc., 64, 1567 (1942). 493 Marvel et al., I. Am. Chem. Soc., 46, 2841 (1924). 494 Brown. I. Soc. Chem. Ind. (London), 66, 168 (1947). 495 Gaubert, Linstead, and Rydon, J. Chem. Soc., 1976 (1937). 496 Tschelinzeff and Schmidt, Ber., 62, 2210 (1929). ⁴⁹⁷ Sah and Ma. I. Am. Chem. Soc., 52, 4880 (1930). ⁴⁹⁶ McKenzie. Org. Syntheses, Coll. Vol. I, 335 (1941). ⁴⁹⁹ Thomas and Schuette, I. Am. Chem. Soc., 53, 2324 (1931). ⁵⁰⁰ Lehninger and Witzemann, I. Am. Chem. Soc., 64, 874 (1942). ⁵⁰¹ Adams and Long, J. Am. Chem. Soc., 62, 2289 (1940). 502 Berger. J. prakt. Chem., 152, 322 (1939). 503 Blicke and Tsao, I. Am. Chem. Soc., 66, 1645 (1944). ⁵⁰⁴Linstead and Meade, I. Chem. Soc., 940 (1934). 505 Shriner and Wolf. Org. Syntheses. 23, 74 (1943). 506 Contractor and Peters, J. Chem. Soc., 1314 (1949). ⁵⁰⁷Nenitzescu and Curcaneanu. Ber., 71, 2064 (1938). 508 Oakwood and Weisgerber, Org. Syntheses, 24, 14, 16 (1944). ⁵⁰⁹ Hurd. McNamee, and Green, J. Am. Chem. Soc., 61, 2979 (1939). ⁵¹⁰ Baer and Kates, J. Am. Chem. Soc., 67, 1482 (1945). ⁵¹¹ Bruson and Riener, I. Am. Chem. Soc., 66, 56 (1944). 512 Fuson, I. Am. Chem. Soc., 48, 1095 (1926). ⁵¹³ Langenbeck and Baltes, Ber., 67, 1207 (1934). ⁵¹⁴Campbell and Tucker, J. Chem. Soc., 2624 (1949). ⁵¹⁵ Short and Wang, J. Chem. Soc., 992 (1950). ⁵¹⁶ Buu-Hoi and Nguyen-Hoan, Rec. trav. chim., 68, 19 (1949). ⁵¹⁷ Popovici, Ann. chim., (10), 18, 198 (1932). ⁵¹⁸ Anslow and King, Org. Syntheses, Coll. Vol. I, 298 (1941). ⁵¹⁹ Cocker and Lapworth, I. Chem. Soc., 1391 (1931). ^{\$20} Kendall and McKenzie, Org. Syntheses, Coll. Vol. I, 21 (1941). ⁵²¹ Buc, Ford, and Wise, I. Am. Chem. Soc., 67, 92 (1945). 522 Ford, I. Am. Chem. Soc., 67, 876 (1945). 523 Ford, Org. Syntheses, 27, 1 (1947). 524 Galat, I. Am. Chem. Soc., 67, 1414 (1945). 525 Chodroff, Kapp, and Beckmann, J. Am. Chem. Soc., 69, 256 (1947). 526 Billman and Parker, J. Am. Chem. Soc., 65, 2455 (1943). 527 Wegand, Ber., 74, 257 (1941). 528 Redemann and Icke, I. Org. Chem., 8, 159 (1934).

⁵²⁹ Billman and Parker, J. Am. Chem. Soc., 66, 538 (1944). 530 Jacobson, J. Am. Chem. Soc., 68, 2628 (1946). ⁵³¹ Clarke and Bean, Org. Syntheses, Coll. Vol. II, 29 (1943). 532 Galat, J. Am. Chem. Soc., 69, 965 (1947). 533 Fox, Dunn, and Stoddard, J. Org. Chem., 6, 410 (1941). 534 Schniepp and Marvel, I. Am. Chem. Soc., 57, 1557 (1935). 535 Marvel and Stoddard, J. Org. Chem., 3, 198 (1938). 536 King, Org. Syntheses, Coll. Vol. I, 286 (1941). 537 Steiger, Helv. Chim. Acta, 17, 559 (1934); Gabriel, Ber., 46, 1355 (1913). ⁵³⁸ Goldsmith and Tishler, J. Am. Chem. Soc., 68, 144 (1946). ⁵³⁹ Booth, Burnop, and Iones, J. Chem. Soc., 666 (1944). 540 Galat and Mallin, J. Am. Chem. Soc., 68, 2729 (1946). 541 Eck. Org. Syntheses, Coll. Vol. II, 28 (1943). 542 Albertson and Archer, J. Am. Chem. Soc., 67, 308 (1945). 545 Steiger, Org. Syntheses, 22, 13 (1942). 544 Foster and Shemin, Org. Syntheses, Coll. Vol. II, 330 (1943). 545 Gortner and Hoffman, Org. Syntheses, Coll. Vol. I, 194 (1941). 546 Merrill, J. Am. Chem. Soc., 43, 2692 (1921). ⁵⁴⁷ Brand and Sandberg, Org. Syntheses, Coll. Vol. II, 49 (1943). 548 Albertson, I. Am. Chem. Soc., 68, 450 (1946). 549 Kobayashi, Ann., 536, 158 (1938). ⁵⁵⁰ Marvel and Noyes, J. Am. Chem. Soc., 42, 2275 (1920). ⁵⁵¹ Steiger, Org. Syntheses, 22, 23 (1942). 552 Johnson, J. Am. Chem. Soc., 61, 2485 (1939). 553 Steiger, Org. Syntheses, 24, 9 (1944). 554 Johnson and Livak, J. Am. Chem. Soc., 58, 299 (1936). 555 Scudi, J. Am. Chem. Soc., 57, 1279 (1935). ⁵⁵⁶ Gillespie and Snyder, Org. Syntheses, Coll. Vol. II, 489 (1943). 557 Snyder, Shekleton, and Lewis, J. Am. Chem. Soc., 67, 310 (1945). 556 Blicke and Lilienfeld, J. Am. Chem. Soc., 65, 2377 (1943). 559 Painter, J. Am. Chem. Soc., 69, 232 (1947). 560 Snyder and Smith, J. Am. Chem. Soc., 66, 350 (1944). 361 Albertson, Archer, and Suter, J. Am. Chem. Soc., 67, 36 (1945). 562 Sah and Yin, Rec. trav. chim., 59, 240 (1940). ⁵⁶³ Lock, Ber., 63, 855 (1930). 564 Kamm and Segur, Org. Syntheses, Coll. Vol. I, 391 (1941). 565 Wacek and Bezard, Ber., 74, 857 (1941). 366 Kamm and Matthews, Org. Syntheses, Coll. Vol. I, 392 (1941). 567 Storrie, J. Chem. Soc., 1746 (1937). 568 May and Mosettig, J. Org. Chem., 11, 435 (1946). 569 Yabroff and Porter, J. Am. Chem. Soc., 54, 1199 (1932). ⁵⁷⁰ Robertson, Org. Syntheses, Coll. Vol. I, 406 (1941); Lewis et al., J. Am. Chem. Soc., 71, 3751 (1949). ⁵⁷¹ Morton and Heckenbleikner, J. Am. Chem. Soc., 58, 754 (1936). ⁵⁷² Whitmore and Randall, J. Am. Chem. Soc., 64, 1246 (1942); Whitmore and Lester, ibid., 64, 1251 (1942). 573 Baumgarten, Levine, and Hauser, J. Am. Chem. Soc., 66, 862 (1944). 574 Neunhoeffer and Schlüter, Ann., 526, 70 (1936). 575 Jeffery and Vogel, J. Chem. Soc., 447 (1939). 576 Varrentrapp, Ann., 35, 196 (1840).

⁵⁷⁷ Ralston, Fatty Acids and Their Derivatives, John Wiley & Sons, New York, 1948, p. 474. 576 Hilditch, The Chemical Constitution of Natural Fats, John Wiley & Sons. New York, 1947. ⁵⁷⁹ Markley, Fatty Acids, Interscience Publishers, New York, 1947. 580 Mowry and Ringwald, I. Am. Chem. Soc., 72, 2038 (1950). ⁵⁶¹ Wislicenus and Eble, Ber., 50, 253 (1917). 582 Geissman in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 94; Kharasch and Snyder, J. Org. Chem., 14, 819 (1949). ³⁶³ Lock, Ber., 62, 1177 (1929). 584 Dunn, Ann. Rev. Biochem., 10, 91 (1941). 565 Clarke in Gilman's Organic Chemistry, Vol. 2, John Wiley & Sons, New York, 1943. p. 1079. ⁵⁶⁶ Carter and Hooper in Sahyun's Amino Acids and Proteins, Reinhold Publishing Corp., New York, 1944, p. 94. 587 Dunn in Schmidt's Amino Acids and Proteins, 2nd ed., Charles C. Thomas, Springfield, Ill., 1944., p. 21. 588 Tarbell and Noble, J. Am. Chem. Soc., 72, 2660 (1950). ⁵⁶⁹ Schiessler and Eldred, J. Am. Chem. Soc., 70, 3958 (1948). ⁵⁹⁰ Jeffery and Vogel, J. Chem. Soc., 1805 (1948); cf. ref. 281. ⁵⁹¹Levine et al., J. Am. Chem. Soc., 71, 1496 (1949), 72, 1642 (1950). ⁵⁹² Colonge and Pichat, Bull. soc. chim. France, (5) 16, 180 (1949). 593 Pearl, Org. Syntheses, 29, 85 (1949). ⁵⁹⁴Ogata and Ishiguro, J. Am. Chem. Soc., 72, 4302 (1950). 595 Arnold, Parham, and Dodson, I. Am. Chem. Soc., 71, 2439 (1949). 596 Zaugg and Horrom, J. Am. Chem. Soc., 72, 3006 (1950). ⁵⁹⁷ Sperger, Papa, and Schwenk, I. Am. Chem. Soc., 70, 3091 (1948). 598 McElvain and Vozza, J. Am. Chem. Soc., 71, 897 (1949). ⁵⁹⁹ Pattison and Saunders, J. Chem. Soc., 2747 (1949). 600 Berswerth et al., J. Org. Chem., 14, 355 (1949), 15, 46, 255 (1950). ⁶⁰¹ Adkins and Rosenthal, J. Am. Chem. Soc., 72, 4550 (1950); Ford, Jacobson, and McGrew, ibid. 70, 3793 (1948): Newitt and Momen, J. Chem. Soc., 2945 (1949). 602 Hickinbottom, Reactions of Organic Compounds, 2nd ed., Longmans, Green & Co., New York, 1948, p. 378, 603 Ratchford, Org. Syntheses, 29, 2 (1949); Rehberg, ibid., 29, 5 (1949). ⁶⁰⁴ Philippi and Thelen, Org. Syntheses, Coll. Vol. II, 551 (1943). ⁶⁰³ Fieser and Szmuszkovicz, J. Am. Chem. Soc., 70, 3352 (1948); Adkins and Roebuck, ibid., 70, 4044 (1948). 606 Hauser, Swamer, and Ringler, I. Am. Chem. Soc., 70, 4023 (1948). 607 Hatch and Nesbitt, I. Am. Chem. Soc., 72, 730 (1950). 608 Gaudry, Can. I. Research, 27B, 21 (1949). 609 Henbest, Iones, and Walls, I. Chem. Soc., 3650 (1950). 610 Crombie and Harper, I. Chem. Soc., 1157 (1950). 611 Crombie and Harper, I. Chem. Soc., 1720, 1721 (1950). 612 Sherman and Amstutz, J. Am. Chem. Soc., 72, 2195 (1950). 613 Moser and Sause, J. Org. Chem., 15, 631 (1950). 614 Barnes, Org. Syntheses, 21, 77 (1941). 615 Lester and Proffitt, J. Am. Chem. Soc., 71, 1878 (1949). 616 Wagner, I. Am. Chem. Soc., 71, 3216 (1949).

617 Wagner and Moore, J. Am. Chem. Soc., 72, 975 (1950). 618 Wotiz, J. Am. Chem. Soc., 72, 1639 (1950). ⁴¹⁹ Breslow, J. Am. Chem. Soc., 72, 4245 (1950). 620 Kepner, Winstein, and Young, J. Am. Chem. Soc., 71, 118 (1949). 621 Roberts and Shaw, I. Chem. Soc., 2842 (1950). 611 Ansell and Hey, J. Chem. Soc., 1683 (1950). 623 Horn, Miller, and Slater, J. Chem. Soc., 2900 (1950). 624 Hill, Salvin, and O'Brien, J. Am. Chem. Soc., 59, 2385 (1937). 625 Renfrow and Walker, J. Am. Chem. Soc., 70, 3957 (1948). 626 Sayles and Degering, J. Am. Chem. Soc., 71, 3163 (1949). 627 Beech and Legg, J. Chem. Soc., 1888 (1949). 628 Owen and Nord, J. Org. Chem., 15, 991 (1950). 629 Levin, Papa, and Schwenk, J. Am. Chem. Soc., 69, 1830 (1947). 630 Freedman and Doak, J. Am. Chem. Soc., 71, 779 (1949). 631 Horning and Reisner, J. Am. Chem. Soc., 71, 1036 (1949); Alexander and Mudrak, ibid., 72, 3195 (1950). ⁶³² Smith and Byrne, J. Am. Chem. Soc., 72, 4406 (1950). 633 Smith and Schmehl, J. Org. Chem., 13, 859 (1948). 634 Newman and Mangham, J. Am. Chem. Soc., 71, 3343 (1942). 635 Arnold, Murai, and Dodson, J. Am. Chem. Soc., 72, 4194 (1950). 636 Kornfeld, J. Am. Chem. Soc., 70, 1375 (1948). 637 Bachmann and Cottes, J. Am. Chem. Soc., 65, 1332 (1943). 638 Jones et al., J. Am. Chem. Soc., 70, 2846 (1948). 639 Malan and Dean, J. Am. Chem. Soc., 69, 1797 (1947). 640 Turner, J. Am. Chem. Soc., 72, 3823 (1950). 641 Crowe and Nord, J. Org. Chem., 15, 86 (1950). 642 Barger and Weichselbaum, Org. Syntheses, Coll. Vol. II, 384 (1943); cf. refs. 538 and 539. 643 Dunn and Smatt, Org. Syntheses, 30, 7 (1950); cf. ref. 532. 644 Atkinson and Scott, J. Chem. Soc., 1041 (1949). 645 Galat, J. Am. Chem. Soc., 72, 4438 (1950). 646 Offe and Jatzkewitz, Chem. Ber., 80, 472 (1947). 647 Boekelheide and Schramm, J. Org. Chem., 14, 298 (1949). 644 Elks, Hems, and Ryman, J. Chem. Soc., 1386 (1948). 649 Rogers et al., J. Am. Chem. Soc., 71, 1837 (1949). 650 Ware, Chem. Revs., 46, 403 (1950). 651 Smith and McLoed, Org. Syntheses, 31, 40 (1951). 652 Scheaffer and Snoddy, Org. Syntheses, 31, 3 (1951).

14

Carboxylic Esters

METHOD

CONTENTS

METHOD	PAGE
285. Esterification of Carboxylic Acids by Hydroxy Compounds	480
286. Action of Acyl Halides on Hydroxy Compounds	481
287. Action of Anhydrides on Hydroxy Compounds	482
288. Action of Ketenes on Hydroxy Compounds	483
289. Action of Phosgene on Hydroxy Compounds	483
290, Action of Halides on Salts of Carboxylic Acids	484
291. Action of Alkyl Chlorosulfites or Alkyl Sulfates on Salts of Carbox-	
ylic Acids	484
292. Action of Diazomethane on Carboxylic Acids	485
293, Alcoholysis of Nitriles	485
294. Alcoholysis of Esters	486
295. Alcoholysis and Rearrangement of Diazoketones (Arndt-Eistert)	487
296. Alcoholysis of Trihalo Ketones (Haloform Reaction)	488
297. Acidolysis of Esters	488
298. Carbethoxylation of Compounds Containing an Active Hydrogen Atom	ı 488
299. Alkylation of Esters	489
300. Addition of Carboxylic Acids to Unsaturated Compounds	491
301. Addition of Compounds Containing an Active Hydrogen Atom to Ole-	
finic Compounds (Michael)	492
302. Addition of Grignard Reagents to Olefinic Esters	492
303, Reduction of Olefinic Esters	493
304, Reduction of Aromatic Esters	493
305. Direct Oxidation of Aldehydes and Ketones	494
306. Intermolecular Oxidation-Reduction of Aldehydes (Tischenko)	494
307. Cleavage of a-Keto Esters	494
308, Cleavage of β -Keto Esters	495
309. Cleavage of Lactones	495
310. Decarboxylation of Alkyl Hydrogen Malonates and Dialkyl Malonates	496
311. Action of Carboxylic Acids on Diazoketones	496
312. Action of Organometallic Reagents on Alkyl Carbonates	497
313. Rearrangement of a-Halo Ketones (Favorsky)	497
14. Pyrolysis of Tetramethylammonium Salts	497
315. Addition of Acyl Halides or Anhydrides to Aldehydes	498
bl6. Cleavage of Ethers by Acyl Halides	498
317. Electrolysis of Acid Esters	498
318. Addition of Diazoacetic Ester to Unsaturated Compounds	498
19. Decomposition of Diazonium Salts by Carboxylic Acids	498
20. Reduction of a-and B-Keto Esters	498

ME	TH	ODS	285-	286
				A

CARBOXYLIC ESTERS

Ch. 14

_ _ _

CONTENTS (continued)

METHOD	PAGE
321. Alcoholysis of Benzotrihalides	499
322. Reduction of Arylchloromalonates	499
Table 50. Monocarboxylic Esters	500
Table 51. Dicarboxylic Esters	503
Table 52. Olefinic Esters	506
Table 53. Halo Esters	509
Table 54. Hydroxy Esters	513
Table 55. Alkoxy and Aryloxy Esters	516
Table 56. Aldo Esters	517
Table 57, Keto Esters	517
Table 58. Carboxy Esters	522
References	523

285. Esterification of Carboxylic Acids by Hydroxy Compounds

 $RCO_2H + R'OH \rightleftharpoons RCO_2R' + H_2O$

This method is applicable to the preparation of esters from most acids and primary alcohols. Over one hundred of the simpler aliphatic esters of mono- and di-basic acids have been made in this way for a study of their physical properties.²⁶ The yields of esters from secondary alcohols are only fair. Tertiary alcohols and phenols do not react to an appreciable extent.

Esterification is usually effected by refluxing the acid and alcohol with a small amount of sulfuric acid, hydrogen chloride, or arylsulfonic acid. The equilibrium is shifted to the right by an excess of one of the reactants or by removal of water either by azeotropic distillation or by means of a suitable drying agent. The necessity for continuous drying is eliminated when methylene or ethylene chlorides are used as solvents for the reaction.¹⁹ A small amount of an acid chloride such as thionyl chloride, acetyl chloride, or stearoyl chloride has proved superior to hydrogen chloride as a catalyst for certain esterifications at room temperature.²¹ No catalysts are necessary for the preparation of esters of benzyl alcohol¹⁴ or formic acid.²⁶

The use of boron trifluoride as an esterification catalyst is increasing.^{2,4,5} This substance is particularly useful in the preparation of esters of substituted benzoic acids. The time of refluxing and ratio of catalyst to reactants have been studied. Yields are in the range of 55% to 100% for esters of primary alcohols and benzoic acids containing such groups as *p*-nitro, o-amino, o-hydroxy, and o-chloro.¹ A modification of this catalytic process employs the amide in place of the acid as the acylating agent. Yields are somewhat lower than with the corresponding acids.⁴ *t*-Butyl alcohol and phenol are converted to their acetates in 38% and 50% yields, respectively.³ Alcohols and amino alcohols are quantitatively converted to the corresponding acetates by a solution of boron trifluoride in glacial acetic acid.⁵

Trifluoroacetic anhydride has found use as an esterification catalyst. It is particularly suited to esterifications of phenols and glycosides.³⁹⁷

Oxidation of primary alcohols in acid media is often accompanied by esterification. By the use of the proper proportions of reactants, fair yields of esters may be obtained directly from the alcohols; e.g., *n*-butyl *n*-butyrate (47%) by chromic acid oxidation of *n*-butyl alcohol.¹⁹ Aqueous acid chlorate solutions in the presence of vanadium pentoxide have been used for this purpose.¹³

Substituents in the ortho positions of aromatic acids generally retard esterification. Such sterically hindered acids may be esterified by dissolving in 100% sulfuric acid and pouring the solutions into the desired alcohol. This reaction is limited to those acids which dissociate in sulfuric acid to give a positive acyl ion, RCO⁺¹⁸ (cf. method 314).

By the above procedures, esterifications have been accomplished for long-chain aliphatic acids,^{11,23,24} polybasic acids,^{12,15,19,33-39} heterocyclic acids,²⁷⁻³² and acids containing the following groups: double bonds;^{40-42,401} triple bonds;⁴⁴ halogen atoms in the *alpha*,^{4,6,16,50} *beta*,^{47,49,51,52} and *omega*^{229,288} positions; hydroxyl groups in the *alpha* and *beta* positions^{20,43,45,54-56} and on the aromatic nucleus;^{57,58} alkoxyl groups;^{59-64,66} keto groups in the *alpha*,^{19,67,69,71} *beta*,⁶⁸ and gamma⁷⁰ positions; and cyano,⁷⁷ amino,^{1,7,72-74} dialkylamino,^{290,291} and nitro groups.^{1,19,75,76}

High yields of esters of straight-chain acids and glycol or glycerol may be obtained by heating the fatty acids and polyhydric alcohols at 200° in the presence of zinc dust, which acts as a catalyst.¹⁰⁶ More specialized methods are required to make mono- and di-glycerides.³⁹⁷

286. Action of Acyl Halides on Hydroxy Compounds

$RCOCI + R'OH \rightarrow RCO_{R'} + HCI$

This reaction has wide application for the preparation of esters. The difficulties encountered in method 285 because of a reversible reaction are avoided. Esters of tertiary alcohols and phenols are best prepared in this way. The formation of tertiary halides from tertiary alcohols is prevented by carrying out the reaction in the presence of powdered magnesium⁸⁰ or dimethylaniline⁷⁹ which react with the hydrogen chloride as it is formed. The esterification of phenols is effected in the same manner. Magnesium⁸⁸ or pyridine⁷⁸ is added to combine with the hydrogen halide. Pyridine has replaced aqueous alkali formerly used for this purpose

Ch. 14

(Schotten-Baumann).⁸⁷ The acylation of phenols without a basic solvent is promoted by small amounts of sulfuric acid⁸³ or stannic chloride.^{86,89} Care must be exercised to prevent rearrangement of the phenolic ester to a phenolic ketone (Fries reaction, method 209).

A variety of other functional groups may be present in both the acyl halide and the alcohol. Olefinic acyl chlorides,^{93,94} α - and β -acetoxyacyl halides,^{90,91} halomethylbenzoyl chlorides,^{97,98,102} and 2-furanacrylyl chloride⁹⁵ are converted to esters by this method. The α -halo acyl halides from the Hell-Volhard-Zelinsky reaction (method 67) give α -halo esters. Glycerol and palmityl chloride in pyridine give glyceryl tripalmitate (76%).⁹² Esters containing hydroxyl¹⁰⁴ and halo^{96,99-103} groups in the alcoholic portion of the molecule may be made by the action of acyl halides on diols and halohydrins, respectively. Cyanomethyl esters, RCO_2CH_2CN , are formed by the action of the acyl halide on an aqueous solution of formaldehyde and sodium cyanide; glycolonitrile, HOCH₂CN, is formed and acylated immediately by a typical Schotten-Baumann reaction.¹⁰⁵

Esters of the enolic forms of β -keto esters and β -diketones are prepared from the corresponding carbonyl compounds and acyl halides in pyridine solution. In this manner, the enol acetate of benzoylacetone, $C_6H_3COCH=C(OCOCH_3)CH_3$, is formed in 70% yield.¹⁰³ 287. Action of Anhydrides on Hydroxy Compounds

 $(\text{RCO})_2\text{O} + \text{R'OH} \rightarrow \text{RCO}_2\text{R'} + \text{RCO}_2\text{H}$

All types of alcohols and phenols are acylated by anhydrides. The reaction is catalyzed by a small amount of sulfuric acid,^{115,117} zinc chloride,^{116,118} acetyl chloride,¹²¹ sodium acetate,^{113,114} or pyridine. *t*-Butyl alcohol gives *t*-butyl acetate in 60% yield.¹¹⁶ Acetylation of phenols may be accomplished in an aqueous alkaline solution, the acylation proceeding more rapidly than the hydrolysis of the anhydride. The yields are above 90%. Phenol, dihydroxybenzenes, naphthols, and phenols carrying nitro, amino, halo, carboxyl, or carbomethoxyl groups are acetylated by this procedure.^{119,132}

Cyclic anhydrides of dibasic acids are cleaved by alcohols to monoacid esters.^{122,128,129} Similarly, the anhydride ring is opened by alkalimetal and halomagnesium alkoxides to give the corresponding salts of the acid esters.^{111,126}

$$\begin{array}{c|c} \text{RCH}-\text{CO} & \text{RCH}-\text{CO}_2\text{H} \\ & & & \\ & & & \\ & & & \\ & & & \\ \text{RCH}-\text{CO} & \text{RCH}-\text{CO}_2\text{R}' \end{array}$$

Anhydrides have been used in the acylation of hydroxy compounds containing halo,^{112,119} aldehyde,¹²⁴ keto,^{112,123} and nitro^{125,133} groups.

288. Action of Ketenes on Hydroxy Compounds

$$H_2C = C = O + ROH \xrightarrow{H^+} CH_3CO_2R$$

Acetylation of alcohols and phenols by ketene has limited use.¹³⁴ Unless apparatus for the preparation of ketene is readily available, less troublesome methods can usually be found. Worthy of mention, however, are the acetylations of lactic esters in 94-98% yields¹³⁶ and of tertiary alcohols and phenols in 89-96% yields.^{137,139} Catalysts are necessary even to convert a high percentage of *n*-butyl alcohol to *n*-butyl acetate.¹³³ Sulfuric and *p*-toluenesulfonic acids are commonly used. Certain aldehydes and ketones are attacked by ketene.^{137,138} Acetates of enol forms of ketones may be made in this way.¹⁴⁰ Under certain conditions β lactones are formed (cf. method 327).

An important method for the preparation of β -keto esters is by the action of alcohols on ketene dimers in the presence of acid catalysts. Diketene and alcohols give acetoacetic esters in 60-80% yields.^{141,143} Dimers of higher ketenes are made by dehydrohalogenation of acyl halides and are converted to β -keto esters in one operation¹⁴² (cf. method 245).

$$\operatorname{RCH}_2\operatorname{COCl} \xrightarrow{R'_3N} (\operatorname{RCH}=C=0) \to \operatorname{RCH}_2\operatorname{COC}(R)=C=0 \xrightarrow{R'OH}$$

RCH_COCHRCO,R"

289. Action of Phosgene on Hydroxy Compounds

$$\operatorname{COCl}_{2} \xrightarrow[\operatorname{Amines}]{\operatorname{ROH}} \operatorname{ROCOCl} \xrightarrow[\operatorname{Base}]{\operatorname{ROH}} (\operatorname{RO}) (\operatorname{R'O}) \operatorname{CO}$$

The reaction of phosgene with alcohols or phenols gives *chlorocar*bonates (chloroformates) or *carbonates*, depending upon the experimental conditions. The reaction can be stopped at the chlorocarbonate stage in good yield if carried out at about $0-15^{\circ}$.^{360,362} Benzene, toluene, and ether have been used as solvents. The reaction is catalyzed by tertiary amines such as dimethylaniline^{361,371} and quinoline.³⁶⁵ The hydroxy compound may contain various other functional groups including the double bond³⁶¹ and halo,³⁷⁰ alkoxyl,³⁶⁴ and nitro³⁶¹ groups. *t*-Butyl chloroformate decomposes at 10° . It is prepared from sodium *t*-butoxide and phosgene in butane solution at -60° .³⁶³ Chloroformic esters of phenols are formed to protect the phenolic hydroxyl group in certain reactions.³⁷³

The preparation of a carbonate is usually accomplished by treating phosgene or a chloroformate with an alcohol dissolved in a tertiary

482

amine^{368,373} or with a sodium^{363,366} or halomagnesium³⁶⁷ alkoxide or phenoxide.^{369,373} The disadvantages of phosgene are circumvented in the preparation of diphenyl carbonate from phenol and carbon tetrachloride.³⁷²

$$2C_{6}H_{5}OH + CCl_{4} \xrightarrow{Z_{n}Cl_{4}} (C_{6}H_{5}O)_{2}CCl_{2} \xrightarrow{H_{2}O} (C_{6}H_{5}O)_{2}CCCl_{2} \xrightarrow{H_{2}O} (CCL_{2}O)_{$$

290. Action of Halides on Salts of Carboxylic Acids

$$RCO_2Na + R'X \rightarrow RCO_2R' + NaX$$

Reactive halogen compounds such as benzyl chloride,¹⁹² 2-thenyl chloride,⁴⁰⁶ 2-bromoacetylthiophene, $(C_4H_3S)COCH_2Br^{191}$, and 2-chloromethylthianaphthene $(C_9H_5S)CH_2Cl^{189}$ are readily converted to esters by treatment with the sodium salts of carboxylic acids. A small amount of triethylamine has proved to be an effective catalyst.^{189,192} Acetates are oftentimes made by heating halides with fused sodium acetate in glacial acetic acid,¹⁹¹ e.g., *p*-ethylbenzyl acetate (93%).¹⁸⁸ The reaction is of little value for the preparation of simple aliphatic esters. Secondary and tertiary halides give increasing amounts of olefin by dehydrohalogenation.

1,2-Diacyloxy compounds are intermediates in the conversion of olefins and 1,2-dihalides to glycols (method 95). Although the *diesters* are seldom isolated, yields are good where their isolation has been attempted.^{195,200}

The well-known reaction of an alkyl halide with a silver salt of an acid is used infrequently. It is sometimes valuable in making esters from acids which isomerize during direct esterification.^{26,194,401} Thus, the labile double bond of 3-methyl-3-butenoic acid is unaffected by conversion to the methyl ester by this method.¹⁹⁰

A number of 1-alkoxyalkyl esters (acylals) such as 1-methoxyethylacetate, $CH_3CO_2CH(OCH_3)CH_3$, have been made from 1-alkoxyalkyl chlorides and sodium salts of carboxylic acids.¹⁹⁹

Ether,^{196,196} keto,¹⁹⁸ ester,¹⁹³ and nitro¹⁹⁷ groups have been present in the halogen compounds during ester formation by this method.

291. Action of Alkyl Chlorosulfites or Alkyl Sulfates on Salts of Carboxylic Acids

 $RCO_{2}Na + R'OSOCI \rightarrow RCO_{2}R' + SO_{2} + NaCl$

This reaction has been developed as a new method of esterification. The chlorosulfites are prepared from the corresponding alcohols and thionyl chloride. A vigorous exothermic reaction occurs between the chlorosulfites and the acid salts. Further heating to $100-150^{\circ}$ results in the evolution of sulfur dioxide and the formation of the esters in 61-82% yields. Aliphatic and aromatic acids including the hindered 2,4,6trialkylbenzoic acids have been esterified.³⁹⁶

Di-(β -chloroethyl) sulfate, (ClCH₂CH₂O)₂SO₂, reacts with sodium salts of acids to give β -chloroethyl esters.³⁹³

292. Action of Diazomethane on Carboxylic Acids

 $RCO_2H + CH_2N_2 \rightarrow RCO_2CH_3 + N_2$

This reaction for the preparation of methyl esters takes place in ethereal solution at room temperature. The completion of the reaction is noted by the cessation of the evolution of nitrogen and a permanent yellow color of excess diazomethane. The method is excellent for the conversion of small amounts of expensive acids to their methyl esters. The relatively unstable β -keto acids are converted to the corresponding methyl esters by this reagent.³²² The reaction of diazomethane with various types of acidic hydrogen atoms has been reviewed.³⁰² α -Amino acids and diazomethane give betaines, (CH₃)₃NCH(R)CO₂⁻, in addition to amino esters, RCH(NH₂)CO₂CH₃.³⁰¹ Certain conjugated olefinic esters add diazomethane to give pyrazolines which are pyrolyzed to cyclopropylcarboxylic esters.⁴¹³

293. Alcoholysis of Nitriles

$$\operatorname{RCH}_{2}\operatorname{CN} \xrightarrow{\mathbb{R}' \circ H} \operatorname{RCH}_{2}\operatorname{C}(\operatorname{OR'}) = \operatorname{NH} \cdot \operatorname{HX} \xrightarrow{\operatorname{H}_{2} \circ O} \operatorname{RCH}_{2}\operatorname{CO}_{2}\operatorname{R'}$$

Nitriles are directly converted to esters by heating with an alcohol and sulfuric or hydrochloric acid.¹⁵⁰ When water is absent, the imino ester salt is readily isolated (method 402). Aliphatic,¹⁵¹ aromatic,^{144,147} and heterocyclic^{146,148,405} cyano compounds react in this manner. Most of the aromatic compounds contain a cyanomethyl group although the cyanide radical may be attached directly to the aromatic nucleus.¹⁵³ Monosubstituted malonic esters free from unsubstituted and disubstituted malonic esters are made from the corresponding α -cyano esters by this method.^{154,155} Malonic ester¹⁵⁸ and disubstituted malonic esters have been similarly prepared.¹⁵⁶

No isomerization of the double bond is reported in the conversion of 3-pentenonitrile to the *ole/inic ester*, methyl 3-pentenoate, by hydrogen chloride in methanol.⁴⁹

Aliphatic and aromatic *halo* groups are unaffected by the alcoholysis, as in the preparations of methyl γ -chlorobutyrate⁵¹ and various halophenylacetates.⁶⁵

METHODS 294-295

CARBOXYLIC ESTERS

Ch. 14

a-Hydroxy and a-acetoxy groups are common in esters made by this method because the cyanohydrins are readily available from aldehydes.^{159,162,163} For example, the combination of acrolein and hydrogen cyanide followed by treatment with alcoholic hydrogen chloride gives ethyl vinylglycolate, $CH_2 = CHCH(OH)CO_2C_2H_5$, in 61% over-all yield.¹⁶⁴ Both halogen and hydroxyl groups are present during the conversion of 2-hydroxy-3-halobutyronitrile to the corresponding ester.¹⁶⁵ Alkoxy¹⁶⁷ and phenoxy¹⁶⁶ esters have been prepared in a similar manner.

Both a^{-169} and $\beta^{-168,170,172,173,176}$ keto cyanides undergo alcoholysis leading to *keto* esters. The β -keto cyanides are formed by the acylation of nitriles (method 216), thus providing a convenient route to the formation of β -keto esters.

The ethyl ester of glycine is obtained by alcoholysis and hydrolysis of methyleneaminoacetonitrile.¹⁷¹

$$H_{2}C = NCH_{2}CN \xrightarrow{C_{2}H_{5}OH, H_{2}O} Cl^{-} H_{3}CH_{2}CO_{2}C_{2}H_{5}$$

The nitrile is readily formed from formaldehyde, sodium cyanide, and ammonium chloride (method 391). Other *amino esters* such as those containing β -¹⁷⁵ and γ ¹⁷⁴ dialkylamino groups are formed from the corresponding dialkylamino cyanides by alcoholysis.

294. Alcoholysis of Esters

$$RCO_{2}R' + R''OH = RCO_{2}R'' + R'OH$$

The interchange of ester components occurs in acid^{180,181} or alkaline^{8,185,187} medium. The reaction is reversible, and the equilibrium is shifted in the desired direction by removing the lower-boiling alcohol or by employing an excess of one component. The relative replacing power of a large number of primary and secondary alcohols in this reaction has been determined.¹⁸⁶ Solutions of potassium alkoxides in the corresponding alcohols at room temperature convert methyl benzoate and certain *p*-substituted derivatives to a variety of esters. This conversion fails with secondary and tertiary alcohols.¹⁸⁵ Ethyl esters of oxalic, malonic, succinic, and terephthalic acids are prepared from the corresponding methyl esters. Dimethyl phthalate does not react. Esters of higher-molecularweight fatty acids are best obtained from natural fats, waxes, and oils by this method.^{179,180}

Esters of acids that are unstable in an acidic medium are conveniently prepared by this reaction. Alkyl acrylates having two to sixteen carbon atoms in the alkyl group are made in high yields by the alcoholysis of methyl acrylate over acid catalysts.¹⁶¹ Halomagnesium alkoxides of primary and secondary alcohols undergo a similar interconversion with esters. A series of acrylates and *carbonates* have been obtained in fair yields in this manner.¹⁸² Ester interchange is the most convenient of four

$$RCO_2R' + R'OMgX \rightarrow RCO_2R'' + R'OMgX$$

methods for the preparation of ethylene carbonate, OCH_2CH_2O . Ethylene glycol, diethyl carbonate, and a small amount of potassium carbonate are heated until the theoretical amount of ethanol distils.¹⁸³ Higher cyclic glycol esters of carbonic acid are prepared in a similar manner.¹⁸⁴

This reaction furnishes the best method for the preparation of nineteen esters of γ -diethylamino- α -phenylbutyric acid.¹⁷⁴

295. Alcoholysis and Rearrangement of Diazoketones (Arndt-Eistert)

$$RCOCI \xrightarrow{CH_2N_2} RCOCHN_2 \xrightarrow{R'OH} RCH_2CO_2R'$$

This rearrangement leads to carboxylic acids (method 271), their esters, or amides (method 360), depending upon the manner in which the diazoketone is decomposed. The carbon chain is lengthened by one carbon atom. The esters are prepared by adding silver oxide catalyst to a hot solution of the diazoketone in anhydrous alcohol. The progress of the reaction is followed by measuring the amount of nitrogen evolved. Ethyl α -thienylacetate is prepared in 68% over-all yield from α -thenoyl chloride.²⁰⁵ A survey of the literature to November, 1941, lists only seven esters prepared by this method although more than half of the rearrangements have been carried out *via* the ester as the primary product.²⁰¹ The several additional examples since then include the methyl and ethyl esters of thianaphthene-2-acetic acid.²⁰⁴ and benzofuran-2-acetic acid.⁴⁰⁸

The Amdt-Eistert synthesis has been extended to the preparation of disubstituted acetic acids and derivatives through the use of higher diazo hydrocarbons.

Improved procedures for the rearrangement of diazo ketones have been developed. In one of these, the readily hydrolyzable benzyl ester is formed by heating the diazo ketone with benzyl alcohol in the presence of a tertiary amine.²⁰³

$$RCOCI \xrightarrow{R'CHN_2} RCOCR'N_2 \xrightarrow{C_6H_5CH_2OH} RR'CHCO_2CH_2C_6H_3$$

Another modification employs silver benzoate catalyst in a homogeneous reaction medium containing the alcohol and triethylamine.⁴⁰⁷

CO

METHODS 298-299

296. Alcoholysis of Trihalo Ketones (Haloform Reaction)

$$\text{RCOCH}_3 \xrightarrow[\text{CH}_3\text{OH}, \text{ KOH}]{} \text{RCOCCl}_3 \xrightarrow[\text{KOH}]{} \text{RCO}_2\text{CH}_3 + \text{CHCl}_3$$

An 80% yield of a methyl ester has been obtained directly by the haloform reaction on an acetyltetralin, ArCOCH₃, in aqueous methanolic solvent.³⁷⁹ The intermediate trihalo ketone apparently reacts more rapidly with methanol than with water. Another example is the cleavage of α, α, α -trichloroacetophenone, C₆H₅COCCl₃, by alcoholic sodium ethoxide solution to give ethyl benzoate (85%).³⁸²

297. Acidolysis of Esters

 $C_{2}H_{5}O_{2}C(CH_{2})_{n}CO_{2}C_{2}H_{5} + HO_{2}C(CH_{2})_{n}CO_{2}H \stackrel{H^{+}}{\rightleftharpoons} C_{2}H_{5}O_{2}C(CH_{2})_{n}CO_{2}H$

The acid-catalyzed equilibrium of a dibasic acid with its mono- and di-esters furnishes a means of preparation of alkyl hydrogen esters of most aliphatic α, ω -dibasic acids.^{356,356} A mixture of the acid and its dialkyl ester is refluxed with concentrated hydrochloric acid and dibutyl ether, and the acid ester is isolated by fractional distillation or extraction techniques. Excellent directions are given for the acid esters of adipic,³⁵⁷ sebacic,³⁵⁵ and azelaic⁴¹⁷ acids.

298. Carbethoxylation of Compounds Containing an Active Hydrogen Atom

 $\text{RCOCH}_2\text{R}' \xrightarrow{\text{NaH}} (\text{RCOCHR}')^{-}\text{Na}^+ \xrightarrow[\text{CO(OC}_2\text{H}_5)_2]{i} \xrightarrow{\text{RCOCH}(\text{R}')\text{CO}_2\text{C}_2\text{H}_5} \text{RCOCH}(\text{R}')\text{CO}_2\text{C}_2\text{H}_5$

This is an excellent general method for the introduction of a carbethoxyl group in place of an active hydrogen atom in a molecule. Most ketones give moderate yields of β -keto esters by heating with sodium ethoxide in a large excess of dialkyl carbonate.³²⁵ The stronger bases, sodium triphenylmethide³²² and sodium amide,^{320,329} are useful in carbethoxylations of certain less reactive ketones. Sodium hydride has been employed extensively in this reaction.^{326,327,336} An excess of basic reagent gives improved yields. An olefinic ketone, 5-hepten-2-one, has been converted to ethyl 3-oxo-6-octenoate in 85% yield by the action of sodium hydride and ethyl carbonate.³²⁸

The enolates of simple esters add to diethyl carbonate to give malonic esters.^{321,324,336} The reaction is valuable in the preparation of "mixed" malonic esters.³²³

$$\operatorname{RCH}_{2}\operatorname{CO}_{2}\operatorname{R}' \xrightarrow[(C_{3}H_{5}O)_{2}CO]{\operatorname{RCH}(CO_{2}R')CO_{2}C_{2}H_{5}}}_{(C_{3}H_{5}O)_{2}CO} \operatorname{RCH}(CO_{2}R')CO_{2}C_{2}H_{5}$$

Excess diethyl carbonate acts as an alkylating agent under certain conditions, thus replacing the remaining active hydrogen of the malonic ester by an ethyl group.³³⁴

 α -Cyano esters are synthesized by this method from nitriles. Phenylacetonitrile, C₆H₅CH₂CN, is carboxylated in 79% yield by diethyl carbonate and sodium ethoxide or sodium amide.³³¹ Simple aliphatic nitriles give lower yields of the corresponding α -cyano esters.^{333,335}

Methyl groups in the *alpha* and *gamma* positions on the pyridine and quinoline nuclei are carbethoxylated in low yield by sodium amide and diethyl carbonate.³³⁰

1-Acetylenes condense with diethyl carbonate in the presence of sodium ethoxide to substitute a carbethoxyl group in place of the acetylenic hydrogen atom. The condensation is followed, however, by the addition of alcohol to the triple bond.³³²

Carbethoxylations of esters^{217,337} and nitriles³³⁸ are also effected by treating their enolates with ethyl chlorocarbonate (ethyl chloroformate), $ClCO_2C_2H_5$. In this manner, triethyl methanetricarboxylate, $CH(CO_2C_2H_5)_3$, is prepared from malonic ester through the magnesium enolate,^{339,431}

299. Alkylation of Esters

$$R_{2}CHCO_{2}C_{2}H_{5} \xrightarrow{(C_{6}H_{5})_{3}CNa}{R'x} R_{2}R'CCO_{2}C_{2}H_{5}$$

Alkylation of disubstituted acetic esters has become an important new route to trisubstituted acetic acids and their derivatives. Sodium triphenylmethide 216 , 217 or potassium triphenylmethide 215 is used to convert the ester to its enolate ion, which, in turn, is allowed to react with an alkyl iodide to form the trialkylated ester. The yields are in the range of 42-61%. Potassium hydroxide in acetal solvents serves as basic reagent in the alkylation of certain esters by reactive halides.⁴⁰⁹ An interesting preparation of diethyl tetramethylsuccinate involves alkylation of ethyl isobutyrate with ethyl α -bromoisobutyrate. The yield is 30%.²¹⁷

Esters having two a-hydrogen atoms give poor yields of alkylated product partly because of their greater tendency for self-condensation to β -keto esters (method 211). Ethyl isovalerate, however, has been ethylated in 33% yield by treatment with sodium triphenylmethide and ethyl benzenesulfonate.²¹⁷

Monoalkylation of malonic ester proceeds much more readily than alkylation of simple esters. The enolate is formed from diethyl malonate and alcoholic sodium ethoxide solution. Alkylation is effected in good yield by the use of primary bromides,^{233,235} diethyl sulfate,²³⁶ or ethyl *p*-toluenesulfonate.²³⁹ In addition to the simpler primary alkylmalonates listed in Table 51, many higher members have been prepared. The list includes substituted malonates made from diethyl malonate and the following

METHODS 299-300

halides in the yields stated: s-butyl (84%),²³⁴,²³⁸, *n*-amyl (80%),²⁴⁰ isoamyl (54%),²³⁶, *n*-hexyl (73%),²³⁷ cyclopentyl (56%),^{236,252} cyclohexyl (44%),²⁵¹ γ -cyclopentylpropyl (83%),²⁴⁹ benzyl (57%),²⁴¹ β -phenylethyl (65%),²⁵³ α -naphthylmethyl (82%),²⁴² furfuryl (76%),²⁴⁴ tetrahydrofurfuryl (70%),³² and 2-pyridyl (19%).²⁴³

Dialkylation of malonic ester proceeds in most cases almost as readily as monoalkylation. Diethyl ethylmalonate is alkylated equally well by s-octyl²⁴⁷ and n-butyl²⁵⁴ halides. Di-n-propylmalonic ester is prepared in one step from malonic ester and n-propyl bromide.²⁴⁸ Methylmalonic ester is alkylated by β -phenylethyl bromide,²⁴⁶ and even α -naphthylmalonic ester may be further alkylated by n-alkyl iodides.¹⁴⁷ Difficulty is encountered, however, in introducing two s-alkyl groups into malonic ester. A 23% yield of diisopropylmalonic ester is obtained from isopropylmalonic ester, sodium triphenylmethide, and isopropyl iodide.²⁴⁵

Alkylation of malonic ester with an equimolar portion of ethylene bromide or trimethylene bromide produces ring closure to give diethyl esters of 1,1-cyclopropane- and 1,1-cyclobutane-dicarboxylic acids, respectively.^{257,259} Five- and six-membered rings also have been formed in this manner.²⁶⁰

$$CH_{2}(CO_{2}C_{2}H_{5})_{2} \xrightarrow[Br(CH_{2})_{3}Br]{} \xrightarrow{H_{2}C - CH_{2}} H_{2}C - C(CO_{2}C_{2}H_{5})_{2}$$

The yields are low because of a competing reaction between two molecules of malonic ester and one molecule of the dihalide to give open-chain tetracarboxylic esters, $(C_2H_5O_2C)_2CH(CH_2)_nCH(CO_2C_2H_5)_2$. The latter esters may be made in fair yields by using an excess of malonic ester in the reaction.²⁶² Unique ring closures are produced by further alkylation reactions of these open-chain esters.^{261,264}

An improved yield of diethyl 1,1-cyclobutanedicarboxylate is obtained by preparing the intermediate haloalkylmalonic ester, $Br(CH_2)_3CH(CO_2C_2H_5)_2$, by the "reverse" addition of hydrogen bromide to allylmalonic ester. Cyclization is then effected by sodium ethoxide.²⁵⁸

Alkylation of malonic esters by halo esters leads to tricarboxylic esters. The halogen atom of the alkylating halo ester has been in the *alpha*,^{282,284} *beta*,²⁸⁵ and *delta*²⁷⁴ positions.

Ole/inic malonic esters are obtained directly by alkylation with olefinic halides ^{252, 255} or by alkylation of alkylidenemalonic esters obtained from the Knoevenagel condensation ²⁵⁶ (method 37).

$$\operatorname{RCH}_{2}\operatorname{CH} = \operatorname{C}(\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5})_{2} \xrightarrow{\operatorname{NaOC}_{2}\operatorname{H}_{5};}_{\operatorname{R}'X} \operatorname{RCH} = \operatorname{CHC}(\operatorname{R}') (\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5})_{2}$$

An interesting preparation of 2-cyclohexenylmalonates involves alkylation of malonic esters with 1,2-dibromocyclohexane. Dehydrohalogenation accompanies alkylation to give the olefinic malonates in 55-65% yields.^{230,307}

Fair yields of *halomalonic esters* are obtained by alkylation of malonic esters with ethylene bromide,^{263,266} o-chlorobenzyl halides,²⁶⁴ and 1-bromo-4-chlorobutane.²⁶⁵

Other groups which may be present in the alkylating agent include alkoxyl, keto, cyano, diethylamino, and nitro. Many alkylations have been made with halo ethers in which the ether group is in the alpha, 267 , 272 , 275 beta, 273,276 gamma, 274 delta, 279 or epsilon 277 positions of an aliphatic chain or on an aromatic nucleus. 278 Similarly, α -halo ketones such as chloroacetone, 269 bromopinacolone, 271 and α -bromoethyl methyl ketone 270 give good yields of γ -ketomalonic esters. α -Bromoisobutyraldehyde also has been used as an alkylating agent, 268 as have p-nitrobenzyl chloride, 283 diethylaminopropyl bromide hydrobromide, 281 δ -bromovaleronitrile, 280 and 2-chloro-2-nitropropane. 410

300. Addition of Carboxylic Acids to Unsaturated Compounds

 $(CH_3)_2C = CH_2 + RCO_2H \rightleftharpoons RCO_2C(CH_3)_3$

Several acids have been esterified by reaction with propene,³⁰⁶ isobutylene, and trimethylethylene.³⁰³ The reaction is reversible and catalyzed by sulfuric acid or boron trifluoride. The optimum conditions for maximum conversion are low reaction temperature, large quantity of catalyst, and anhydrous conditions.³⁰³ By this method, the *keto ester*, *t*butyl o-benzoyl benzoate,³⁰³ and the *balo esters*, *t*-butyl and isopropyl trichloroacetates,^{304,306} have been prepared.

The addition of carboxylic acids to acetylenes leads to alkenyl esters in 30-68% yields.³⁰⁵

CARBOXYLIC ESTERS

Ch. 14

 $RCO_2H + R'C \equiv CH \rightarrow RCO_2C(R') = CH_2$

Reaction takes place at $0-30^{\circ}$ in the presence of boron trifluoride and mercuric oxide. The reaction is reversible in the presence of mercury salts and allows the preparation of vinyl esters from vinyl acetate and higher-molecular-weight carboxylic acids.⁴¹⁸

301. Addition of Compounds Containing an Active Hydrogen Atom to Olefinic Compounds (Michael)

 $C_{s}H_{s}COCH = CHC_{s}H_{s} + CH_{2}(CO_{2}C_{2}H_{s})_{2} \xrightarrow{\text{Base}}$

 $C_{5}H_{5}COCH_{2}CH(C_{6}H_{5})CH(CO_{2}C_{2}H_{5})_{2}$

The addition of malonic ester to benzalacetophenone is an illustration of a very general base-catalyzed condensation. The olefinic compound taking part in the reaction may be one in which the double bond is in the *alpha* position of an aldehyde,³¹¹ketone,^{308,312,315,316,416}ester,^{308-310,317-319,415} cyanide (method 388), sulfone,³⁴⁰ or nitro compound.⁴¹⁴ The vinyl group in the *alpha* or gamma positions on the pyridine nucleus also undergoes this type of addition.³¹⁴ The activity of the labilizing group is transmitted to the terminal double bond of a vinylogous system. Thus, methyl vinylacrylate reacts with malonic ester as follows:³¹³

 $CH_2 = CHCH = CHCO_2CH_3 + CH_2(CO_2CH_3)_2 \rightarrow$

 $CH_2[CH(CO_2CH_3)_2] CH = CHCH_2CO_2CH_3$

In addition to malonic, acetoacetic, and cyanoacetic esters, compounds furnishing the active hydrogen atom are nitro paraffins,^{310,414-416} benzyl cyanide,³¹⁸ malononitrile,³¹⁶ cyanoacetamide,³¹⁶ sulfones,³¹² methylpyridines,³¹⁹ and ketones.³¹⁵

Five experimental procedures employing sodium alkoxide or piperidine catalysts are compared for a number of varied condensations.³⁰⁸ Secondary amines are mild catalysts which seldom lead to by-products but which do not always effect condensation. Sodium ethoxide catalyst sometimes gives rearranged products.³¹⁵ Potassium hydroxide in acetal solvents is the most convenient reagent for a number of condensations.⁴⁰⁹

302. Addition of Grignard Reagents to Olefinic Esters

$$\begin{array}{c} CHCO_2C_2H_5 \\ \parallel \\ CHCO_2C_2H_5 \end{array} \xrightarrow{R_2CHMgX_2} R_2CHCHCO_2C_2H_5 \\ H_2O \end{array} \begin{array}{c} CH_2CO_2C_2H_5 \end{array}$$

METHODS 302-304

Organometallic reagents react with olefinic esters by both 1,2 and 1,4 addition. The latter process leads to saturated esters and is exhibited by diethyl fumarate and to a greater extent by ethylenetetracarboxylic ester, $(C_2H_5O_2C)_2C=C(CO_2C_2H_5)_2$. These substances are starting materials for the synthesis of alkyl- and aryl-substituted succinic esters.^{421,423}

This reaction serves as an indirect method for the introduction of a tertiary alkyl group into malonic and cyanoacetic esters. The yields are 42-75%.⁴²⁰

$$R_{2}C = C(CN)CO_{2}C_{2}H_{5} \xrightarrow{\frac{R'MgX_{3}}{H_{2}O}} R_{2}R'CCH(CN)CO_{2}C_{2}H_{5}$$

Direct alkylation of these esters by tertiary halides is unsatisfactory because the halides undergo dehydrohalogenation.

303. Reduction of Olefinic Esters

$$RCH = CHCO_{3}C_{3}H_{5} \xrightarrow[Pt]{H_{3}} RCH_{2}CH_{3}CO_{3}C_{3}H_{5}$$

Olefinic esters are quantitatively hydrogenated over platinum catalysts.^{231,293,296} Palladium catalysts have been used with equal success in the hydrogenation of substituted cinnamic esters.²⁹⁷

Catalytic hydrogenation of the olefinic esters obtained in the Knoevenagel and Stobbe condensations (method 37) is valuable for the preparation of alkylmalonates and alkylsuccinates, particularly for those having branching in the alkyl group.

$$R_{2}C = C(CO_{2}C_{2}H_{5})_{2} \xrightarrow[Ni]{H_{3}}{H_{3}} R_{2}CHCH(CO_{2}C_{2}H_{5})_{2}$$

Hydrogenation is effected over Raney nickel at 100-130 atm.²⁹² Lowpressure hydrogenation over palladium catalysts has also been used for the succinates.²⁹⁴

304. Reduction of Aromatic Esters

$$C_6H_5CO_2C_2H_5 \xrightarrow[Ni \text{ or Pt}]{H_2} C_6H_{11}CO_2C_2H_5$$

Ester groups in compounds containing an aromatic nucleus are stable during the catalytic hydrogenation of the nucleus over platinum catalysts at low temperatures and pressures or over nickel catalysts at high temperatures and pressures (method 4). Cyclohexanecarboxylic ester^{218,219} and cyclohexanedicarboxylic esters^{220,221} are made in this manner. Phenolic esters are best reduced by Raney nickel catalysts in alcoholic solution containing sodium ethoxide²²⁴ (method 86).

CARBOXYLIC ESTERS

305. Direct Oxidation of Aldehydes and Ketones

RCOR' $\xrightarrow{C_6H_5CO_3H}$ RCO₂R'

An unusual oxidation of certain aldehydes and ketones occurs with *peracids*. A carbon-to-carbon linkage of the carbonyl compound is broken and an oxygen atom introduced between the two resulting fragments. Esters have been prepared in 63-73% yields from several simple cyclo-alkyl and aryl alkyl ketones by reaction at room temperature with perbenzoic acid.³⁷⁴ The larger radical of the ketone appears as the alcohol fragment of the ester. Cyclic ketones are oxidized by potassium persulfate and sulfuric acid to esters from which ω -hydroxy aliphatic esters are obtained upon hydrolysis and reesterification.³⁷⁵ Peracetic acid in acetic anhydride converts salicylaldehyde to *o*-hydroxyphenyl formate (88%).³⁷⁶

306. Intermolecular Oxidation-Reduction of Aldehydes (Tischenko)

$2\text{RCHO} \xrightarrow{\text{AI(OC}_{2}\text{H}_{5})_{3}} \text{RCO}_{2}\text{CH}_{2}\text{R}$

This dismutation resembles the Cannizzaro reaction (cf. method 81) but is applicable to aldehydes which also contain an α -hydrogen atom. Aluminum alkoxides are the most effective catalysts for the reaction; only a few mole per cent is required. The yields of esters from aliphatic aldehydes containing two to eight carbon atoms are in the range of 69-100%.²⁰⁹,²⁰⁹ With more basic catalysts such as Mg(OC₂H₅)₂ or Mg[Al(OC₂H₅)₄]₂ aldol condensation occurs followed by a crossed Tischenko reaction between and the aldol and the original aldehyde. The products are mono esters of 1,3-diols, RCH₂CHOHCHRCH₂O₂CCH₂R.²⁰⁸ The highly basic sodium alkoxides produce only aldol-condensation products with these aldehydes. However, with benzaldehyde, which does not have an α -hydrogen atom, dismutation to benzyl benzoate occurs in 93% yield.²⁰⁷ Similarly, furfural is condensed to furfuryl furoate in 78% yield.²¹⁴

307. Cleavage of a-Keto Esters

$$\operatorname{RCH}(\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)\operatorname{COCO}_2\operatorname{C}_2\operatorname{H}_5 \xrightarrow{160-175^\circ} \operatorname{RCH}(\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)_2 + \operatorname{CO}$$

The Claisen condensation of diethyl oxalate with esters of fatty acids (cf. method 211) produces α -ethoxalyl esters which are thermally decarbonylated to *alkylmalonic* esters. The over-all yields range from 78% to 91% for the conversion of fatty esters up to ethyl stearate.³⁴⁶ Phenylmalonic ester is made in 85% yield.³⁴¹ Powdered glass is sometimes used

METHODS 307-309

as a catalyst for the decarbonylation.^{147,345} α -Furylacetates²⁸ and α -thienylacetates³⁴⁵ undergo the condensation and thermal cleavage to give the corresponding malonates in 34–38% yields.

Acylation of ketones by diethyl oxalate (cf. method 203) gives α, γ diketo esters from which β -keto esters are obtained by pyrolysis at 175° over powdered glass and powdered iron.^{343,344}

$$RCOCH_2COCO_2C_2H_5 \xrightarrow{Powdered glass} RCOCH_2CO_2C_2H_5 + CO$$

and iron, 175°

308. Cleavage of β -Keto Esters

$$\operatorname{RCOCH}_{2}\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5} \xrightarrow{\operatorname{NaOC}_{2}\operatorname{H}_{5};} \operatorname{RCOCHCO}_{2}\operatorname{C}_{2}\operatorname{H}_{5} \xrightarrow{\operatorname{H}_{2}\operatorname{O}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5} \xrightarrow{\operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5} \operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{5} \operatorname{C}_{2}\operatorname{H}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{C}_{2}\operatorname{H}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}_{5}\operatorname{OH}, \operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}_{5}\operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}_{5}\operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}, \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}_{2}\operatorname{H}, \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+};} (\operatorname{H}^{+}; \operatorname{H}^{+}$$

The introduction of an ester group by the acetoacetic ester synthesis (cf. methods 184 and 213) is possible by alkylation of β -keto esters with halo esters.^{347,348} Cleavage of the alkylated products by mineral acids furnishes an important route to γ -keto acids and esters.^{349,350}

 α, α -Dialkylacetoacetic esters are cleaved to esters by a hot solution of sodium ethoxide in absolute ethanol.

$$CH_{3}COCRR'CO_{2}C_{2}H_{5} \xrightarrow{NBOC_{2}H_{5}} RR'CHCO_{2}C_{2}H_{5}$$

The yields of *dialkylacetates* are 74-82% when R and R' are combinations of *n*-, *iso*-, and *s*-butyl groups.³⁵³ This interesting cleavage has been used to prepare *ethoxy esters* from ethoxy halides of the type $C_2H_sO(CH_2)_nX^{351,332}$ as well as α -methyladipic ester from the corresponding cyclic β -keto ester (83%).³⁵⁴

309. Cleavage of Lactones

METHODS 311-314

CARBOXYLIC ESTERS

Alcoholysis of lactones leads to hydroxy esters. The reaction is well illustrated by the conversion of α -ethyl- γ -butyrolactone to ethyl α -ethyl- γ -hydroxybutyrate (84%).²²⁵ The lactone is allowed to stand with ethanol saturated with dry hydrogen chloride. By treating the appropriate lactones with ethanolic hydrogen bromide, halo esters having bromine in the gamma,²²⁶ delta,²²⁷ or epsilon²²⁸ positions are obtained. Phosphorus pentabromide is sometimes used for this purpose; bromoacyl bromides are formed, and are esterified by mixing with alcohol.^{226,230} Chlorine is substituted for tertiary hydroxyl groups when ethanolic hydrogen chloride is used to open the lactone ring. Chloro esters having a tertiary γ -chlorine atom are best prepared, however, by treating the lactones with thionyl chloride in refluxing benzene followed by stirring with alcoholic hydrogen chloride.²³¹

 β -Propiolactone, CH₂CH₂CO, is an important source of β -substituted

propionic acids and esters,²³² Aqueous solutions of sodium halides give β -halo acids, and aqueous sodium acetate gives β -acetoxypropionic acid. Alcohols open this lactone ring in either of two ways, depending upon the nature of the catalyst; β -hydroxypropionic esters are formed by basic catalysts and β -alkoxypropionic acids by acid catalysts.

310. Decarboxylation of Alkyl Hydrogen Malonates and Dialkyl Malonates

$$RCHO + CH_{2}(CO_{2}H)CO_{2}C_{2}H_{5} \xrightarrow{-CO_{2}}{C_{5}H_{5}N} RCH = CHCO_{2}C_{2}H_{5}$$

Olefinic esters are obtained directly by the Knoevenagel condensation (cf. method 37) of ethyl hydrogen malonate with an aliphatic²⁸⁹ or aromatic²⁸⁶ aldehyde.

Certain dialkylmalonates may be partially saponified to the acid esters, which decarboxylate to esters upon heating.²⁴⁵ Decarbethoxylation of dialkylmalonic esters may also be effected by heating at 220-230° with sodium ethoxide.

$$R_2C(CO_2C_2H_5)_2 \xrightarrow{NaOC_2H_5} R_2CHCO_2C_2H_5$$

This method is illustrated by the preparation of ethyl diethylacetate (67%).²⁸⁷ A similar modification involves the treatment of the disubstituted malonic ester with metallic sodium or potassium in ether. In this way di*n*-propylacetic ester is obtained in 61% yield.²⁹⁹

311. Action of Carboxylic Acids on Diazoketones

$$RCOCHN_{2} + R'CO_{2}H \rightarrow RCOCH_{2}O_{2}CR' + N_{2}$$

Esters of α -hydroxymethyl ketones are formed by heating diazoketones with organic acids.^{202,388} The crude diazoketones prepared from acyl halides and diazomethane may be used. The over-all yields of acetoxy ketones, ArCOCH₂O₂CCH₃, from benzoyl and β -naphthoyl chlorides are 55% and 72%, respectively.³⁸⁸

312. Action of Organometallic Reagents on Alkyl Carbonates

$$CO(OC_2H_5)_2 \xrightarrow{RMgX_i} RCO_2C_2H_5$$

This reaction has been used infrequently for the preparation of esters. Simultaneous reaction of the Grignard reagent with the ester formed leads to tertiary alcohols (method 91). However, if the organometallic reagent is relatively unreactive^{210,213} or if it is added to an excess of ethyl carbonate,^{211,212} esters may be isolated. A typical example is the preparation of ethyl α -naphthoate (73%).²¹⁰

313. Rearrangement of a-Halo Ketones (Favorsky)

$$R_2CBrCOR + NaOR' \rightarrow R_3CCO_2R' + NaBr$$

Certain α -halo ketones undergo rearrangement with sodium alkoxides in anhydrous ether to form esters.^{329,390,419} Methyl α -bromoisopropyl ketone and sodium ethoxide give ethyl trimethylacetate (61%).³⁹¹ Ring contraction occurs with α -chlorocyclohexanone to give cyclopentanecarboxylic ester (53%).³²⁹

When α, α' -dibromo ketones are treated under the same conditions, rearrangement and dehydrohalogenation take place; α, β -ole/inic esters are formed in 46-84% yield.³⁸⁹

$$RR'CBrCOCHBrR'' \xrightarrow{\text{NaOCH}_3} RR'C = CR''CO_{\circ}CH,$$

Similarly, α,β -dibromo ketones yield β,γ -olefinic esters in most cases.³⁹²

$$RCHBrC(CH_3)BrCOCH_3 \xrightarrow{N_BOCH_3} RCH = C(CH_3)CH_2CO_2CH_3$$

Action of other basic reagents on the halo ketones is complicated by accompanying metathetical reactions.^{394,395}

314. Pyrolysis of Tetramethylammonium Salts

$$ArCO_2 \overset{\dagger}{N}(CH_3)_4 \xrightarrow{250^\circ} ArCO_2CH_3$$

Methyl esters of sterically hindered *ortho* substituted benzoic acids are prepared in 63-90% yields by this reaction⁴²⁶ (cf. method 285).

496

Ch. 14

$$RCHO + (R'CO)_2O \xrightarrow{\text{BF}_3} RCH(OCOCH_3)_2$$

Acylals are formed by the addition of simple anhydrides to aliphatic or aromatic aldehydes.¹⁹⁹ The reaction occurs at $0-5^{\circ}$ in the presence of boron trifluoride etherate. Yields are in the range of 65% to 81%.³⁸³

A similar addition of acyl chlorides to aldehydes produces a-haloalkyl esters in 40-70% yield.^{344,385}

316. Cleavage of Ethers by Acyl Halides 424

$$ROR \xrightarrow{\mathbf{R'COCI}}_{\mathbf{BF}_3} \mathbf{R'CO_2R}$$

317. Electrolysis of Acid Esters 425

 $RCO_2H + HO_2C(CH_2)_nCO_2CH_3 \longrightarrow R(CH_2)_nCO_2CH_3 \longrightarrow CH_3O_2C(CH_2)_{2n}CO_2CH_3$

318. Addition of Diazoacetic Ester to Unsaturated Compounds 386, 387

$$C_{6}H_{5}CH = CH_{2} \xrightarrow{N_{2}CHCO_{2}C_{2}H_{3}} C_{6}H_{5}CH - CHCO_{2}C_{2}H_{5}$$

319. Decomposition of Diazonium Salts by Carboxylic Acids (cf. method 93)

$$\operatorname{ArN}_{2}\operatorname{Cl}^{-} \xrightarrow{\operatorname{HBF}_{4}} \operatorname{ArN}_{2}^{+}\operatorname{BF}_{4}^{-} \xrightarrow{\operatorname{CH}_{3}\operatorname{CO}_{2}\operatorname{H}} \operatorname{ArO}_{2}\operatorname{CCH}_{3}$$

320. Reduction of α - and β -Keto Esters⁴²⁷

$$\text{RCOCH}_2\text{CO}_2\text{C}_2\text{H}_5 \xrightarrow[\text{CH}_3\text{SH}]{2 \text{nCl}_3} \text{RC(SCH}_3)_2\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \xrightarrow[\text{NI}]{\text{C}_2\text{H}_5\text{OH}} \text{RCH}_2\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5$$

321. Alcoholysis of Benzotrihalides 428

$$\operatorname{ArCX}_{3} \xrightarrow[H_{2}SO_{4}]{\operatorname{RoH}} \operatorname{ArCO}_{2} \mathbb{R}$$
 (52-90%)

322. Reduction of Arylchloromalonates 430

$$CO(CO_{2}C_{2}H_{5})_{2} \xrightarrow{\text{ArMgX};} \text{ArCOH}(CO_{2}C_{2}H_{5})_{2} \xrightarrow{\text{SOCI}_{2};} \text{ArCH}(CO_{2}C_{2}H_{5})_{2}$$

boxylate

Cycloheryl acetate

CARBOXYLIC ESTERS

Ch. 14

TABLE 50. MONOCARBOXYLIC ESTERS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv
	Alij	phatic Mor	nocarb	oxylic Esters	
с,	Ethyl formate	285	70	14 402	55
24	Ethyl acetate	285	85	14 22	78
	<i>n</i> -Propyl formate	285	84	14 402	80-83
-6	Methyl trimethylacetate	286	50	14 ⁸²	100/731, 1.3895
-	n-Butyl acetate	285	90	14 ⁵⁰	125/756
	t-Butyl acetate	286	68	14 ⁷⁹	97
	-	286	55	14 ⁸⁰	96/740
		287	60	14 ¹¹⁶	96
		288	89	14137	95
		300	85	14303	97/766, 1.3842 ²⁶
7	Ethyl <i>n</i> -valerate	293	90	14 ¹⁵¹	1 42 14 6
	Methyl dimethylethyl-	313	57	14 ³⁹¹	126/730, 1.4021, 106Am
	Methyl <i>t</i> -butylacetate	286	94	14 ⁸²	128/735, 1,3997
	Ethyl trimethylacetate	299	55	14216	117, 153Am
		313	61	14 ³⁹¹	116/725, 1.3912, 154Am
	t-Butyl propionate	286	61	1479	118
	t-Amyl acetate	288	89	14137	124
8	Methyl methyl- <i>t</i> - butylacetate	313	73	14 ³⁹⁰	95/150, 1.4116
	Ethyl diethylacetate	310	67	14 ²⁸⁷	149
	Ethyl dimethylethyl-	286	63	14 ⁸¹	141/744, 1.4025
	acetate	299	58	14 ²¹⁵	141, 102Am
	n-Butyl n-butyrate	285	47†	14 ¹⁰	162-166
		306	82	14 ²⁰⁸	
	t-Butyl isobutyrate	286	71	14 79	128
	2-Ethylbutyl acetate	287	80	14120	161/750, 1.4119 ¹⁷
9	Ethyl a-ethylisoval-	299	33	14 ²¹⁷	165
	Ethyl methyldiethyl-	286	64	14 ⁸¹	73/35, 1.4130
	<i>t</i> -Butyl isovalerate	286	26	1479	156
	Methyl myristate	294		14 ¹⁸⁰	160/10. 1.4353 ²⁵
• 15	Methyl palmitate	294		14 ¹⁸⁰	181/10, (30)
	A15	cvclic Mor	10carb	orvlic Esters	 }
				1 (412	122/745 1 417623
-6	Methyl cyclopropylacetate	292	79	14	$132/(4)$, $1.41/2^{}$
_	Cyclopentyl formate	285	46	14	100/757 1 4421
-7	Cyclohexyl formate	285	60	14	100/737, 1.44431
C.	Ethyl cyclopentanecar-	312	49	14	07/47, 1.4300

53

67

285

305

14²⁵

14³⁷⁴

172/752, 1.4417

76/23, 1.4401²⁵

TABLE 50. MONOCARBOXYLIC ESTERS

TABLE 50 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapt er^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Alicyclic	Monocarl	xylic	Esters (con	tinued)
C,	Methyl cyclohexylacetate	285	93	1419	65/18, 1.4450 ²⁵
	Methyl 1-methyl-1-cyclo- hexanecarboxylate	313	79	14 419	35/3, 1.4456
	Ethyl cyclohexanecarbox- ylate (ethyl hexahydro- benzoate)	304	100	14 ²¹⁸	85/16
С 11	Ethyl β-cyclohexyl- propionate	304	97	14222	110/11
	Aro	omatic Mo	nocarb	oxylic Esters	
C,	Methyl benzoate	285	90	1420	83/12
		285	85	14 ¹	196
		285	95	14 ¹⁹	1.5155 ²⁵
		321	90	14 428	200
	Phenyl acetate	286	92	1488	76/8
		287	99	14119	195/764
		288	89	14 ¹³⁷	191
		305	63	14 374	93/22, 1.5200 ²⁵
C,	Methyl phenylacetate	285	90	144	220, 102Am
	Phenyl propionate	286	92	14 ⁸⁸	100/16
		305	73	14 ³⁷⁴	99/18, 1.5003
C 10	Ethyl phenylacetate	293	87	14144	125/18
	n-Propyl ben zoate	321	81	14 428	230
	Isopropyl benzoate	285	60	14 ¹	208
		300	88	14 ³⁰⁶	216/747, 1.4890 ²⁵
	Phenyl <i>n</i> -butyrate	286	98	14 ⁸⁸	107/13
	Phenyl isobutyrate	286	83	1486	211/707
	p-Ethylphenyl acetate	287	92	14113	121/20, 1.4970 ²⁵
C 11	Methyl a-phenylbutyrate	293	90	14 ¹⁵⁰	226
	Methyl 2,4,6-trimethyl- benzoate	285	78	14 ¹⁸	115/7, 1.5083
	Ethyl p-ethylbenzoate	285	96	14 ³⁸⁰	127/16, 1.5065 ²⁵
	n-Butyl benzoate	285	87	14 ¹	248
	s-Butyl benzoate	285	27	14 ¹	232
	Isobutyl benzoate	285	81	14 ¹	235
	t-Butyl benzoate	286	80	14 ⁷⁸	112/18, 1.4896 ²⁵
		300	35	14303	79/3, 1.4893 ²³
	p-Ethylbenzyl acetate	290	93	14 ¹⁸⁸	131/15, 1.504225
C 12	Ethyl 2-phenylcyclopro- panecarboxylate	318	68	14 ³⁸⁶	131/10
	a-Naphthyl acetate	286	96	14 ⁸⁸	(47)
		287	9 9	14119	(49)

CARBOXYLIC ESTERS

Ch. 14

TABLE 51. DICARBOXYLIC ESTERS

TABLE 50 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Heterocyclic Monocarboxylic Esters (continued)								
C ₈	3-Carbethoxypiperidine	554	80	39°5	85/5				
с,	Ethyl β -(tetrahydrofuryl)- propionate	285	69	14 ³²	105/11, 1.4425 ¹⁵				
	Ethyl 2-(a-tetrahydrofuryl)- propanoate	554	92	39 ⁹⁸	106/10				
	Ethyl a-(1-pyrrolidyl)- propionate	436	92	24 ¹⁶⁹	84/12, 1.4450 ²⁵				
	Ethyl 2-pyridylacetate	285	40 †	14 ³⁹⁹	136/28, 1.4979 ²⁵				
		298	25	14 ³³⁰	130/21				
	Ethyl β -piperidylacetate	293	30	14 ¹⁴⁹	102/6, 1.4643 ²⁵				
	Ethyl piperidinoacetate	554	100	39 ¹¹⁶	212/736				
C 10	Furfuryl furoate	306	78	14214	121/1.5, 1.5280				
C 11	Ethyl 5-(a-furyl)-valerate	285	90	14 ³⁰	133/16				
	Ethyl 5-(a-tetrahydro- furyl)-valerate	554	90	39 ⁹⁸	131/10				
	Methyl thianaphthene-2- acetate	295	65	14204	112/0.01				
	Ethyl indole-2-carboxylate	572	80	39 ⁶⁵	(123)				
C 13	Ethyl 2-benzofurylacetate	295	64	14 ⁴⁰⁸	148/8, 1.5400, (18), 164Am				
C	Ethyl a-quinolylacetate	298	36	14 ³³⁰	176/10, 153Pi				
	Ethyl 8-quinolineacetate	293	91	14 ¹⁴⁸	159/3				
C 15	1-Carbethoxycarbazole	557	75	39 ¹⁵⁸	(107)				

For explanations and symbols see pp. xi-xii.

TABLE 51. DICARBOXYLIC ESTERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.)
	Aliph	atic Dicarb	oxylic E	sters	
с,	Ethylene carbonate	294	55	14 183	
C₄	Dimethyl oxalate	285	76	14 34	(53)
-	Trimethylene carbonate	294	65	14 ¹⁸⁴	135/4, (48)
C,	Tetramethylene carbonate	294	54	14 ¹⁸⁴	(59)
C,	Diethyl oxalate	285	83	14 ³³	107/25
°.		285	95	1415	106/25
	Methyl a-acetoxypropionate	287	82	14 117	77/12, 1.4111
		288	96	14 ¹³⁶	68-73/14
	Ethylidene diacetate	315	65	14383	55/10
	Glycol diacetate	290	73	14195	186
	Pentamethylene carbonate	294	63	14184	(46)

For explanations and symbols see pp. xi-xii.

		TABLE	: 50 (a	ontinued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aromatic	c Monocarl	oxylic	Esters (con	tinued)
C12	β -Naphthyl acetate	286	96	14 ⁸⁸	(70)
		287	100	14119	(72)
		305	67	14374	(68)
С13	Ethyl p-isopropylphenyl- acetate	293	56	14 ¹⁵²	135/12
	Ethyl a-Naphthoate	312	73	14210	144/3
	Phenyl benzoate	286	93	1488	(70)
		321	83	14 428	(70)
	a-Naphthyl propionate	286	95	14*3	135/2, 1.581125
C ₁₄	Ethyl p-t-butylphenyl-	285	18†	14 ⁶⁵	95/0.5
	Ethyl consolthylacetate	202	67	14147	181/15
	Ediyi a napitnyiacciate	205	82	14206	177/11
	Dhenyl phenylocetate	295	01	1 4 88	(40)
	Priery preny accure	200	95 03	1 4 207	(40)
	A Acetoxybiphenyl	287	100	14 14 ¹¹⁰	(88)
		207	100	1-7	
C 16	Methyl diphenylmethyl-	286	70	14**	150/3, 1.5691
	acetate Ethyl dinhenylacetate	210	Q 1	1 / 287	187/20 (61)
	Emyr apharynaectate	312	52	1 4 213	(59)
	Ethyl 2 hinhenyla catate	202	100	14145	180-185/15
	E diyi 2-Diphenyracetate	275	100	14	(134)
	-Acetoxyphenanurene	207	100	14 1 4 109	(134)
	4. Acetoxyphenantitene				(00)
	Hete	rocyclic M	onocar	boxylic Este	rs
C,	Methyl furoate	285	73	14 ²⁹	76/20, 1.4875
C,	Methyl a-furylacetate	285	80	14 ²⁸	75/11
	Ethyl tetrahydrofuran-2- carboxylate	554	97	39 ⁹⁵	82/11, 1.4445 ¹⁶ *, 80Am*
	Furfuryl acetate	287	93	14114	70/7
	2 Thenyl-acetate	290	56	14 ⁴⁰⁶	97/12, 1.5140 ²⁵
	N-Carbethoxypyrrole	558	88	39 ¹⁷¹	180
	Methyl nicotinate	285	60	14 ³¹	72/3
c.	Ethyl 2-methyl-3-furoate	562	60	39 42	85-89/25
	Ethyl 2-thienylacetate	293	66	14146	120/23
	• • •	295	68	14 ²⁰⁵	124-129/26
	Ethyl a-pyssoleacetate	318	16	14387	129/15, 1,4963 ¹⁹
	Ethyl picolinate	285	30	14 27	95/5
		293	40	14 405	126/15, 1.5108
	Ethyl nicotinate	285	61	14 27	84/5
		286	90	14 84	104/5

90

30

20†

14 27

14 377

286

285

••••

Ethyl isonicotinate

104/5

79/5, (23)

107-113/16

Ch. 14

TABLE 51 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)				
	Aliphatic Dicarboxylic Esters (continued)								
C 6	Methyl a-carbomethoxyethyl carbonate	289	73	14 ³⁶⁸	92/12, 1.4102				
C,	Diethyl malonate	293	62	14 ¹⁵⁸	195				
	Methyl a-acetoxyisobutyrate	286	90	14 ⁹⁰	77/18, 1.413				
	Ethyl α -acetoxypropionate	288	98	14 ¹³⁶	75/11				
	Ethyl β -acetoxypropionate	286		14 ⁹¹	34/0.3, 1.4163				
	Propylidene diacetate	315	73	14 ³⁸³	69/12				
	Hexamethylene carbonate	294	67	14184	(60)				
	Tricarbomethoxymethane	298	42	14 432	(45)				
C,	Dimethyl adipate	285	87	14 19	113/13, 1.4265 ²⁵				
	Diethyl methylmalonate	293	93	14 ¹⁵⁵	105/27				
		299	83	14 ²³⁵	96/16				
		303	95	14 ²⁹²	198				
	Isopropyl a-acetoxypropionate	288	97	14 ¹³⁶	76/9				
	Iso butylidene diacetate	315	80	14 ³⁸³	75/10				
	Tetramethylene acetate	290	95	14 ²⁰⁰	106-112				
C,	Diethyl methylsuccinate	303	98	14 292	109/16				
	Diethyl ethylmalonate	298	48	14 ³³⁶	95/10				
		298	45	14 ³²⁴	95/13, 1.4170				
		299	88	14 ²³⁶	98/12, 1.4171				
		299	61	14 ⁴⁰⁹	200				
		303	93	14 ²⁹²	207				
		307	78	14 ³⁴⁶	89/10, 1.4157 ²⁵				
	Diethyl dimethylmalonate	298	75	14217	88/15				
	Ethyl t-butyl malonate	298	54	14323	94/17				
	Di-s-butyl carbonate	294	30	14182	75/18, 1.4039				
	Di-t-butyl carbonate	289	41	14 ³⁶³	158/767, (41)				
	Methyl a-acetoxyhexoate	290	100	14 ¹⁹³	9 0- 95/6				
	1,4-Diacetoxy-2-methylbutane	303	100	14 ²⁹⁸	116/17, 1.4330				
	Propylidene dipropionate	315	73	14 ³⁸³	111/10				
C 10	Diethyl adipate	285	97	14 ³⁵	138/20				
	Diethyl β -methylglutarate	285	92	1437	122/16				
	Diethyl isopropylmalonate	298	29	14 ³³⁶	105/15				
		299	56	14 ²⁴⁵	218				
	Ethyl t-butyl a-methylmalonate	298	72	14 ³²³	95/14				
	Di-n-butyl oxalate	285	95	14 39	100/2				
	Tri carbethoxymethane	298	93	14 431	132/10, (29)				
		298	90	14 ³³⁹	137/12				
C 11	Diethyl pimelate	285	38 t	14 ³⁶	152/22				
	Diethyl a-methyladipate	308	83	14 ³⁵⁴	134/18				
	Ethyl a,a-dimethylglutarate	285	54	14 ³⁸	113/9, 1.4249 ³²				
	Diethyl isopropylsuccinate	302	30	14 421	124/20, 1.4284				
		303	97	14 ²⁹²	111/8, 1.4237 ²⁵				

TABLE 51. DICARBOXYLIC ESTERS

TABLE 51 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic Dic	arboxylic	Esters	(continued)	
C 11	Diethyl <i>n</i> -butylmalonate	298	26	14 324	137/21, 1.425
- 11		299	90	14233	130-135/20
		303	95	14 292	129/17
		307	91	14 ³⁴⁶	132/17, 1.4218 ²⁵
	Diethyl <i>s</i> -butylmalonate	299	84	14 ²³⁴	110-120/18-20
	Diethyl diethylmalonate	298	36	14334	103/11, 1.4240
C 12	Diethyl tetramethylsuccinate	299	30	14217	120/15
	Alicycl	ic Dicarbo	xylic E	lsters	
c,	Dimethyl <i>cis</i> -cyclopentan e 1,2- dicarboxylate	290	80	14 ¹⁹⁴	117/12
	Diethyl 1,1-cyclopropanedi- carboxylate	299	40	14 ²⁵⁹	114/22, 1.4331
С 10	Dimethyl 1,3-cyclohexane- dicarboxylate	304	90	14221	
	Dimethyl 1,4-cyclohexane- dicarboxylate	304	95	14 ²²⁰	133/13
	Diethyl 1,1-cyclobutanedi-	299	74	14 ²⁵⁸	119-126/23, 1.433 ²⁶
	carbo x yl ate	299	42	14 ²⁵⁷	102/11, 1.4359
	Diethyl cyclopropylmalonate	288	43	14404	78/3, 1.4315 ²⁴
C 12	Diethyl cyclohexane-1, l- dicarboxylate	303	94	14 ²⁹⁵	112/5, 1.4438 ²⁵
	cis-Diethyl hexahydrophthalate	287	70	14 ¹⁰⁸	131/9, 1.4543 ¹⁷
	Aromatic and He	terocyclic	: Dicarb	oxylic Ester	S
C 10	Methyl acetylsalicylate	287	95	14107	(49)
-	o-Diacetoxybenzene (o-phenyl- ene diacetate)	287	100	14 119	(65)
	<i>m</i> -Diacetoxybenzene (<i>m</i> -	286	92	14 ⁸⁸	154/12
	phenylene diacetate)	287	95	14119	279/753
	p-Diacetoxybenzene	286	95	14 ⁸⁸	(120)
		287	98	14115	(122)
C ₁₁	Dimethyl phenylmalonate	307	61	14 341	(49)
	Benzylidene diacetate	315	80	14 ³⁸³	135/10, (44)
	Diethyl a-thienylmalonate	307	38	14 ³⁴⁵	147/5
	2, 3- Dicarbethoxypiperidine	554	77	39 ⁹⁵	121/3
	2,6-Dicarbethoxypiperidine	554	66	39 ⁹⁵	156/11
с	Ethyl a-acetoxyphenylacetate	293	85	14159	160/28
- 14	2.4-Dimethyl-3.5-dicarbeth-	563	64	3938	(137)
	oxypyrrole		- •	•••	

For explanations and symbols see pp. xi-xii.

C_n

CARBOXYLIC ESTERS

TABLE 51 (continued)

Method Yield (%)

78

64

85

66

81

73

33

69

17

Aromatic and Heterocyclic Dicarboxylic Esters (continued)

293

298

307

289

293

293

307

307

••••

Ch. 14

Chaptertef. B.p./mm., n^t_D, (M.p.)

165/18

129/2

160/10

175-182/10

182/3, (62)

193/5, (63)

(81)

(57)

(104)

14¹⁵⁴

14 321

14341

14 367

14¹⁵⁷

14157

14 342

14147

14 287

507

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic Olefi	inic Est	ers (continu	ed)
C7	Methyl <i>trans</i> -3-methyl- 3-pentenoate	313	55	14 392	74/50, 1.4306, 131Am
	Methyl β-methyl-β- ethylacrylate	20	80	2 ¹⁵⁹	49•5/11
	Allyl methacrylate	23	90	2 ⁵⁰³	82/17
C8	Methyl β-methyl-β- propylacrylate	20	90	2 ¹⁵⁹	57/12
	Ethyl 2-hexenoate	285	94	14 🐴	73/15
	Methyl β,β -diethylacrylate	20	87	2 ¹⁵⁹	57/11
	Ethyl 3-methyl-2- pentenoate	19	77	2 ⁵⁹	62/13
	Ethyl 4-methyl-2-	285	79	1442	$60/13, 1.4341^{17}$
	pentenoate	285	84	14 ⁴⁰	$172, 1.4301^{25}$
	Ethyl 3-methyl-3- pentenoate	19	43	2 ⁴²¹	58-63/14
	Ethyl a-ethylcrotonate	20	80	2155	63/12, 1,4339 ¹⁷
	Ethyl 2,3-dimethyl-2- butenoate	19	19	2 ⁴³⁰	99/82, 1.4430
	Ethyl 2,3-dimethyl-3- butenoate	19	25	2 420	85/83, 1.4210
	t-Butyl methacrylate	286	48	14 ⁴⁰³	74/96
	Vinyl caproate	300	40	14 418	99/100, 1,4159 ³⁰
	2-Acetoxy-1-hexene	300	31	14 ³⁰⁸	75/39, 1.4176 ²⁶
	Methyl β -methylsorbate	19	57	2 415	82/12, 1.5010 18
	Diethyl methylenemalonate	37	45	2 ³⁶⁰	210/760, 1.432 ²⁵
C,	Methyl-2-octenoate	292	91	14 ³⁰⁰	97/18
	Ethyl 2-heptenoate	37	78	2 362	59/3, 1.4355 ²⁵
		310	78	14 ²⁸⁹	58/3, 1.4355 ²⁵
	Ethyl 3-ethyl-3- pentenoate	19	75	2 41 9	80/16, 1.4350
	Ethyl 3-methyl-2-ethyl- 2-butenoate	19	33	2 ⁹⁴	67/13, 1.4430
	Ethyl 3-methyl-2-ethyl- 3-butenoate	19	31	2 ⁹⁴	57/13, 1.4250
	2-Acetoxy-1-heptene	300	34	14 ³⁰⁵	93/40, 1.4217 ²⁵
C 10	Diethyl propylidene- malonate	37	46	2 ³⁵⁷	120/15, 1.4402 ²⁵
	Diethyl isopropylidene- malonate	37	52	2 ³⁷⁰	112/9, 1.4478 ²⁵
C 11	Diethyl isopropylidene- succinate	37	41	2 ³⁵⁸	115-122/7
	Diethyl butylidene- malonate	37	59	2 ³⁵⁷	123/10, 1.4425 ²⁵

For explanations and symbols see pp. xi-xii.

Compound

C₁₃ Diethyl phenylmalonate

Diphenyl carbonate

C14 Diethyl m-phenylenediacetate

C₁₅ Dimethyl a-naphthylmalonate

C₁₇ Diethyl a-naphthylmalonate

C₁₉ Diethyl diphenylmalonate

Diethyl p-phenylenediacetate

TABLE 52. OLEFINIC ESTERS

C _n	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., n ^l _D , (M.p.), Deriv.
		Aliphatic	Ol efin	ic Esters	
C,	Methyl acrylate	24	84	2 ²³⁵	80*
•		35	79	2 527	
C,	Methyl methacrylate	285	99	14 ⁴⁰⁰	97-101
	Ethyl acrylate	24	33	2 ²³⁴	
		294	99	14 ¹⁸¹	43/103, 1.4068
	2- Acetoxy-1-propene	300	30	14 ³⁰⁵	93/736, 1.4033
C,	Methyl 3-pentenoate	293	73	14 ⁴⁹	128/625, 1.4217
•	Methyl tiglate	285	65	14 401	138/757, 1.4371
	Methyl angelate	290	63	14 ⁴⁰¹	128/745, 1.4330
	Methyl 3-methyl-3- butenoate	290	47	14 ¹⁹⁰	41/27, 1.4168
	Methyl β,β -dimethyl- acrylate	313	58	14 ³⁸⁹	60/50, 1.4382, 131An
	Ethyl methacrylate	23	90	2 ⁵⁰³	120/760
	Allyl acrylate	24	43	2 237	122/760, 1.4295
	Dimethyl maleate	287	92	14 121	205
c,	Methyl 2-hexenoate	285	98	14 -	57/13
•	Ethyl a-methylcrotonate	20	78	2 ¹⁵⁵	56/15, 1.4347 ¹⁷
	(ethyl tiglate)	285	80	14 401	155/760, 1.4347
	Methyl 3-methyl-2- pentenoate (cis)	313	29	14 ³⁸⁹	74/50, 1.4420, 82Am
	Methyl 3-methyl-2- pentenoate (trans)	313	22	14 ³⁸⁹	79/50, 1.4446, 98Am

Ch. 14

	TABLE 52 (continued)							
°C _n	Compound	M eth o d	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aliph	atic Ol e fi	nic Es	ters (continu	ed)			
С11	Diethyl isobutylidene- malonate	37	92	2 ³⁵⁷	136/27, 1.4398 ²⁵			
	Diethyl (1-methylpropyl- idene)-malonate	37	19	2 ⁴⁰⁵	120/9, 1.4479 ²⁵			
	Diethyl ethylvinyl- malon ate		54	14 ³⁸¹	123/30, 1.4341			
		Alicycli	c Olefi	nic Esters				
<u> </u>	Ethyl lagyclopenteryla	10	95	291	02/25			
C.	catboxvlate	293	75	14 160	92/25			
c,	Methyl cyclohexyl-	313	46	14 ³⁸⁹	78/5, 1.4838			
	Ethyl 1-cyclohexene- carboxylate	286	90	14 ⁹⁴	96/15, 1.4716 ¹⁶			
	4-Carbomethoxy-4- methylcyclohexene	34	84	2 497	65/10, 1.4600			
	Ethyl 1-cyclopentenyl- acetate	19	82	2 ⁹⁰				
C 10	Ethyl 1-cyclohexenyl- acetate	19	90	2 ⁹²				
C 12	Diethyl 3-cyclohexene- 1,1-dicarboxylate	34	67	2 ⁴⁹⁸	107/3, 1.4540 ²⁵			
		Aromatic	: Olefin	ic Esters				
C,	Phenyl acrylate	24	80	2 236	64/2, 1.5210			
	Ethyl β -(2-furyl)- acrylate	37	81	2 ⁴⁰⁶	115/10			
	Ethyl β-(2-thienyl)- acrylate	37	49	2 ³⁵²	110-116/3.5			
C 10	Methyl p-vinylbenzoate	19	49	2 ⁹⁶	90/2, (36)			
	p-Vinylphenyl acetate	19	45	2 ⁹⁷	105/4, 1.5356 ²⁵			
С,,	Ethyl cinnamate	37	74	2394	130/6			
	Methyl p-methyl-	37	65	2 ³⁹⁵	157/22, (58)			
	cinnama te o-Allylphenyl acetate	288	74	14 ¹³⁹	110/11			
C 12	Ethyl β methylcinnamate	19	70	2 411	140/13, 1.5451*			
С13	Ethyl α, β -dimethyl- cinnamate	19	55	2 410	130/12			
	Ethyl 4,β-dimethyl- cinnamate	19	94	2 ⁴¹⁶	152/10, 1.5458			
	t-Butyl cinnamate	286	58	1479	144/8			

TABLE 52 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.					
	Aromatic Olefinic Esters (continued)									
C 14	Ethyl 2-phenylcyclo- hexenylacetate	19	77	2 ⁹⁵	153/3					
	Ethyl benzalmalonate	37	91	2 ³⁵⁵	141/4					
C 15	Phenyl cinnamate	286	75	14 ⁹³	(76)					
C 16	4-Carbomethoxystilbene	28	52	2272	(159)					
C17	4-Carboethoxy stilbene	28	36	2 ²⁷²	(106)					
C ₂₀	Diethyl 4,4-stilbene- dicarboxylate	293	67	14 ¹⁵³	(131)					

For explanations and symbols see pp. xi-xii.

4

TABLE 53. HALO ESTERS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic and a	Alicycl	ic Halo Este	16
с,	Methyl fluoroformate	55	40	4 ³⁸⁰	38
с,	Methyl fluoroacetate	55	90	4 ³⁸⁰	105, 1.3679
-	Methyl chloroacetate	285	64	144	131, 118Am
	Methyl dichloroacetate	285	71	144	143, 98Am
	Methyl trichloroacetate	285	88	144	153, 141Am
с.	Methyl a-fluoropropionate	55	50	4 ³⁸⁰	108
•	Methyl a-chloropropionate	53	71	4 ¹⁶⁹	1 30 / 748
	Methyl a-bromopropionate	52	50	4131	56.5/21
	Methyl β -bromopropionate	73	84	4 202	66/18
	• • • • •	285	76	1451	83/40, 1.4542
	Methyl α, β -dichloropro- pionate	74	85	4 ⁴³⁵	75/21
	Methyl a,β -dibromopro-	74	88	4 43 5	98/22
	Methyl α -chloroa crylate	20	73	2162	58/55, 1.4400
	Methyl a-bromoacrylate	20	82	2162	74/78, 1.4840
	Ethyl fluoroacetate	55	75	4360	118
	Ethyl bromoacetate	285	70	14 ¹⁶	155/759
	Ethyl difluoroacetate		60	14 ³⁷⁸	100
	Ethyl trifluoroacetate	285	90	14 ⁶	61, 75Am
	•		93	14429	62
	1-Chloro-2-acetoxyethane	285	53	1448	142/738, 1.4235
	$(\beta$ -chloroethyl acetate)	286	82	14100	144
		291	96	14394	145
	β -Bromoethyl chloro- acetate	286	90	14 ⁹⁶	113/22

.

Ch. 14

TABLE	53	(continued)
-------	----	-------------

С п	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic as	nd Alicyc	lic Hal	o Esters (co	ntinued)
C ₆	a-Chloro-n-butyl ace ta te	315	68	14 384	52/10, 1.4198
	4-Chlorobutyl acetate	54	76	4416	79/15, 1.4344
	Neopentyl chloroformate	289	83	14361	52/27, 1,4091
	Ethyl δ-chlorovalerate	285	58	14 ²⁸⁸	84/8, 1.4355
	Ethyl δ-bromovalerate	51	52†	4 ²⁰⁷	103/12, 1.4577
	Ethyl δ-iodovalerate	55	85	4 ⁶⁰⁹	125/17, 1.4970
	Ethyl methylethylbromo- acetate	286	8 6	1494	75/14
	Methyl β-methyl-β-ethyl- β-chloropropionate	52	42	4 ¹³²	48/16
	1-Chloro-4-acetoxypentane	287	82	14 113	102-106/30, 1.4309 ²⁵
	5-Chloroamyl a cetate	54	88	4 566	112/24
	2-Chloro-3-acetoxypentane	285	65	14 ⁴⁸	74/20, 1.4299
	2-Methyl-2-ac etoxy-3- chlorobutan e	285	22	14**	100/100, 1.4320
	2, 2-Dimethyl-1-bromo-3- acetoxypropane	285	84	14 ⁵³	90/16
	Diethyl bromomalonate	67	75	4 551	121-125/16
	Ethyl a-bromo- β , β - dimethylacrylate	20	80	2 ¹⁸⁴	89/13
C,	Methyl 7-bromoheptanoate	61	69	4 392	112/5
•	Ethyl 6-chlorohexoate	53	80	4 168	$106/14, 1.4398^{18}$
	Ethyl 6-Bromohexoate	52	80	4168	125/12
		309	551	14228	120-125/14 1-4566 ²¹
	Ethyl α,δ-dibromo- caproate	285	96	14229	136/11
	Methyl a-bromoiso- heptylate	67	70	4 540	90/10
	Ethyl 2-bromocyclo- hexanoate	52	50	4 ¹³⁵	76/0.1, 1.4909 ²⁵
	Ethyl β-bromoisocaproate	73	87	4 135	64/0.1, 1.4557 ²⁵
	Ethyl a-ethyl-γ-bromo- butyrate	52	78	4133	93/8
	Methyl β-methyl-β-π- propyl-β-chloropro- pionate	52	60	4132	59/13
	Methyl β , β -diethyl- β - chloropropionate	52	59	4 132	58/11
	3-Chloro-4-acetoxyhexane	285	59	1 4⁴⁸	125/100, 1.4340
	Dimethyl a,a'-dibromo- adipate	67	93	4 ⁵⁴⁹	163/3
	Diethyl iodosuccinate	5 5	100	4 ³⁸⁹	144/18

For explanations and symbols see pp, xi-xii.

TABLE 53	(continued)	

C _n	Compound	Method	Yi eld (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic a	nd Alicyc	lic Hal	o Esters (<i>c</i> o	ntinued)
C.	β -Methoxyethyl chloro- formate	289	9 3	14364	59/13, 1.4163 ²⁵
	Allyl chloroformate	289	90	14 ⁸⁶¹	56/97, 1.4223
	Isopropyl chloroformate	289	83	14 ³⁶¹	47/100, 1.3981
	γ-Chloropropyl chloro- fotmate	289	80	14 ³⁷⁰	177, 1.4456
	Ethylen <i>ebis</i> -chloro- formate	289	77	14 ³⁶¹	113/25, 1.4498
с.	Methyl 7-chlorobutyrate	54	84	4 505	174/749
- 5		293	80	1451	90/45, 1.4319
	Methyl a-bromoisobutyrate	67	84	4546	55/21, 1.4410*
	Methyl β -bromoiso butyrate	73	100	4 203	67/17, 1.4551
	Ethyl a-bromopropionate	67	70	4 543	70/25
	Ethyl B-chloropropionate	285	59	1452	161
	Ethyl B-bromopropionate	73	90	4 202	79/19
		285	87	1447	65/15
	Ethyl &-Iodopropionate	55	80	4387	85/13
	Ethyl <i>a</i> -bromoacrylate	39	77	2147	25/1.5, 1.4660 ²⁵
	Isoptopyl chloroacetate	300	34	14 306	150/747, 1.4175 ²⁵
	γ -Chloropropyl acetate	285	95	14 ⁴⁶	168, 1,4295 ²²
	/	286	80	14101	166
	2-Bromonronyl acetate	286	90	14101	89/22
	2-Indopropyl acetate	285	88	14101	99/15
	1-Chlom-2-acetoxy-	77	72	4 629	149/745, 1.4223
		285	72	1448	148/745, 1,4223
	- Buryl chloroformate	289	85	14362	36/13
	s-Buryl chloroformate	289	70	14365	25/13, 1,4093 ¹⁹
	s-Buryl chloroformate	280	20	14363	4/1
	β-Ethoxyethyl chloro- formate	289	77	14364	67/14, 1.4169 ²⁵
C.	Methyl 5-bromopentanoate	61	68	4 ⁵⁹³	80/4
·		285	71	14 ⁵¹	96/13, 1.4618
	Methyl 3,4-dibromo-	285	94	14 ⁴⁹	123/17, 1.5105
	Ethyl >= bromobutyrate	285	721	14161	105/28, 1,4539 ²⁵
	20,17, 20,000,200	309	74†	14 411	84/13, 1.4545 ²⁵
	Ethyl a,β-dibromo-n-	74	95	4437	104/17
	Fibyl & bromocrotonate	52	51	4134	84.5/6
	Ethyl 2-chlorocrotonate	20	65	2160	72-80/10
	E thyl v-btomocrotonate	20	60	2 ¹⁶⁰	78-82/2
	n-Burd chloros setete	20	07	1450	94/38
	- Burgi chloroscetate	20)	62	14 ⁷⁹	49/11, 1,4260
	t-Buryl Chloroacetate	200	70	1479	74/25
	t-Butyl trichloroacetate	30 0	80	14504	37/1, 1.4398 ²⁵

.

.

Ch. 14

513

TABLE 53 (continued)

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aron	natic Halo	Ester	s (continued)
C,	p-Carbomethoxybenzyl	64	65	4 288	117/3, (55)
	bromide	28 6	60	14 ⁹⁷	116/3, (55)
	p-Carbomethoxybenzyl iodide	55	80	4 ²⁶⁸	(77)
	a-Chloroethyl benzoate	315	60	14 ³⁸⁵	120/8
	β -Chloroethyl benzoate	291	62	14 ³⁹³	125-130/14
		286	91	14 ⁹⁹	103/2, 1.5298 ¹⁹
	2-Iodoethyl benzoate	55	81	4 ⁶⁰⁸	136/2.5, 1.5820 ¹⁵
C 10	Methyl a-iodo- β -chloro- β - phenylpropionate	74	77	4 43 3	(98)
	Ethyl a-chlorophenyl- acetate	67	92	4 ⁵⁵⁰	132/8
	Ethyl a-bromophenyl- acetate	67	96	4 ⁵⁵⁰	113/1.5
	Ethyl o-fluorophenyl- acetate	293	52†	14 ⁶⁵	124/24
	Ethyl <i>m</i> -fluorophenyl- acetate	293	22†	14 ⁶⁵	128/28
	Ethyl p-fluorophenyl- acetate	293	48†	14 ⁶⁵	129/31, 1.4776 ²⁵
	Ethyl p-(chloromethyl)- benzoate	28 6	90	14 ⁹⁸	140-150/15
	Ethyl m-(chloromethyl)- benzoate	28 6	89	14 ¹⁰²	140-150/12
	γ-Chloropropyl benzoate	286	84	1499	134/2
c	Ethyl a-bromo-B-phenyl-	67	80	4 552	159/15, 1,5180 ²⁵
- 11	propionate	67	77 1	4 536	152/13
	Ethyl α, β -dibromo- β - phenyl propionate	74	85	4436	(75)
C 16	Ethyl diphenyl-a- fluoroacetate	55	6 3	4 ³⁸⁸	116/0.1, (34)

TABLE 54. HYDROXY ESTERS	TABLE	54.	HYDROXY	ESTERS
--------------------------	-------	-----	---------	--------

C _n	Compound	M e tho d	Yi e ld (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.)		
Aliphatic Hydroxy Esters							
C4	Methyl lactate	285	88	14 56	<u>_</u>		
		285	69	1420	144		
	Methyl β -hydroxypropionate	309	85	14232	71/13, 1.4225		

For exp	lanations	and	symbols	see	pp.	xi-xii.
---------	-----------	-----	---------	-----	-----	---------

		TABLE	53 (co	ntinued)	
C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic a	and Alicyc	lic Hal	o Esters (co	ntinued)
C.	Ethyl α-bromo-β- isopropylacrylate	39	86	2147	31/0.1, 1.4688 ²⁵
C,	Methyl 8-bromooctanoate	61	70	4392	124/6
.,	Ethyl γ,γ-dimethyl-β- bromovalerate	73	75	4 ¹³⁵	66/0.1, 1.4588 ²⁵
	Ethyl δ-bromo-β,β- dimethylvalerate	309	93	14 ²²⁷	90/1.8
	Ethyl β , β -diethyl- β - chloropropionate	52	62	4 ¹³²	68/12
	1-Chloro-2-acetoxy- heptane	285	56	144	120/20, 1.4367
	Ethyl-2-bromocyclo- pentylacetate	3 09	73	14 ²²⁶	125/15
	Diethyl a-bromoglutarate	67	92	4 ⁵⁵⁰	124/2
C 10	Methyl 9-bromononanoate	61	75	4392	131/2
	Ethyl a-bromocyclohexyl- acetate	67	98	4 ⁵⁵⁰	98/1, 1.4708 ²⁵ *
	Ethyl a-chloroadipate	67	9 0	4 ⁵⁵⁰	121/5
	Ethyl a-bromoadipate	67	90	4 550	135/5
	Diethyl y-bromopropyl- malonate	73	79	4 380	140/5, 1.455**
	Diethyl methyl-β-bromo- ethylmalonate	299	32	14200	136/12
С11	Methyl 10-brom <i>o</i> - decanoate	61	71	4 ³⁹²	165/12
	Diethyl 4-chlorobutyl- malonate	299	65	14 ²⁶⁵	147/10
C12	Ethyl γ -bromocaprate	75	57	4 ⁵⁵⁹	94/0.2, 1.4599
		Aromati	c Halo	Esters	
2,	Phenyl chloroformate	289	58	14 361	75/13, 1.5131
C.	Benzyl chloroformate	289	94	14360	
	Methyl o-chloroben zo ate	285	70	14 ¹	119/19
	Methyl p-chlorobenzoate	321	78	14 438	(43)
	Methyl p-bromoben zoa te	294	93	14185	(74)
	Chloromethyl benzoate	315	60	14305	115/8
~	Bromomethyl benzoate	315	50	14.303	136/18
C9	Methyl phenylchloro- acetate	52	62	4 130	130/15
	Ethyl p-bromoben zoate	294	82	14 ¹⁸⁵	262
	Ethyl 4-iodobenzoate	56	69	4 ³²⁷	135/5, 1.5854 ²⁵
	<i>m</i> -Carbometh oxy benzyl bromi de	64	65	4 ²⁸⁸	114/3, (47)

4²⁸⁸

55 78

m-Carbomethoxybenzyl

iodide

(53)

514

C.

C,

Ethyl 2-ethyl-3-hydroxy-

1-Acetoxy-4-pentanol

Ethyl 6-hydroxyhexoate

Ethyl a-methyl- β -hydroxy-

Ethyl 3-methyl-3-hydroxy-

Ethyl a-ethyl-y-hydroxy-

Ethyl 2,2-dimethyl-3-hydroxy-

Methyl 3.3-diethyl-3-hydroxy-

Methyl 3methyl-3-propyl-3-

E thyl 3-methyl-2-(hydroxy-

methyl)-butyrate

hydroxy propionate

Ethyl 2-propyl-3-hydroxy-

Ethyl 2-(hydroxymethyl)-

methylpentanoate

Ethyl 3-ethyl-3-hydroxy-

Ethyl 2,3-dimethyl-3-hydroxy-

Methyl 3-hydroxy-3,4,4-tri-

propionate

valerate

butyrate

butanoa te

propionate

propionate

h exanoa te

pentanoate

pentanoate

pentanoa te

CARBOXYLIC ESTERS

Ch. 14

100/16

134/15

84/16

79/3

98/20

112/20

80/11

81/12

121/22

120/10

89/14

102/18, 1.433617

90/13, 1.4319

119/18, 1.4314

5235

5164

14375

5⁹⁹

5227

14225

5 236

5²⁵⁵

5²³³

5233

5²³⁵

5235

5757

5 228

5²³¹

TABLE 54. HYDROXY ESTERS

515

TABLE	54	(continued)
-------	----	-------------

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic H	lydroxy E	sters (C	ontinued)	
C,	Ethyl 3-hydroxy-2-ethyl-3- methyl butanoate	103	31	5223	77/3, 1.4310
	Ethyl β -hydroxyglutarate	79	76	5 ¹⁶¹	133/8, 1.4381
	Diethyl β -methylmalate	79	92	5163	123/10, 1.4335
	Alicy	clic Hydr	oxy Est	ers	
C,	Methyl <i>cis</i> -2-cyclohexanol-1- carboxylate	} 79	80	5671	105/14
	Methyl <i>trans</i> -2-cyclohexanol-1- carboxylate	J			115/14
C,	Ethyl 2-hydroxycyclohexane- carboxylate	3 04	85	14224	99/7, 1.4625
	Ethyl 3-hydroxycyclohexane- carboxylate	304	75	14 ²²⁴	133-138/9, 1.4665
	Ethyl 4-hydroxycyclohexane- carboxylate	304	87	14223	136/8, 1.4698
	Ethyl cyclopentanol-1-acetate	103	55	5224	91/4
C 10	Ethyl cyclohexanol-1-acetate	103	70	5224	90/3
- 10	Ethyl 4-hydroxycyclohexyl- acetate	304	89	14224	140/7, 1.4705
	Arom	atic Hydro	oxy Est	ers	
С,	o-Hydroxyphenyl formate	305	88	14376	125/12
c,	Methyl o-Hydroxybenzoate	285	55	141	224
		285	92	1419	105/14, 1.5360 ²⁵
	Methyl p-hydroxybenzoate	285	84	14 ⁵⁸	(128)
C,	Methyl a-hydroxyphenylacetate (methyl mandelate)	285	87	14 ⁵⁵	100/0.01, (56)
	Ethyl p-hydroxybenzoate	285	81	14 ⁵⁰	(115)
с <u>1</u> 1	Ethyl β-phenyl-β-hyd∞xy- propionate	103	64	5 ²³⁶	154/12
	Ethyl p-(a-hydroxyethyl)- benzoate	79	63	5 ¹⁶⁰	113/3, 1.5240 ²⁵
	3-Hydroxybutyl benzoate	286	52	14104	133/3, 1.5130

For explanations and symbols see pp. xi-xii.

	TABLE 54 (continued)							
C _n	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)			
	Aliphatic I	Hydroxy E	sters (C	ontinued)				
C,	Methyl a, β -dihydroxybutyrate	285	72	1443	109/10			
	Ethyl β -hydroxypropionate	309	80	14 ²³²	75/8, 1.4222			
C,	Ethyl β -hydroxybutyrate	79	97	5 ¹⁶⁵	78/15			
•		79	100	5111	78/15, 1.4200 ²⁵			
		79	100	5 99				
	Ethyl 2,3-dihydroxybutyrate	107	56	5 604	124/18			
		285	79	14 ⁴³	113/10			
	Methyl 2,3-dihydroxy-3- methylbutyrate	107	61	5 ⁶⁰⁶	59/0.2			
	Isopropyl lactate	285	68	1454	75-80/32			
с,	Ethyl γ-hydroxyvalerate	79	85	5 137	85/3			
-1	Ethyl α-methyl-β-hydroxy- butyrate	79	71	5 ¹⁶⁵	86/22			
	Methyl 3-methyl-3-ethyl-3- hydroxypropionate	103	60	5233	67/10			

103

79

305

79

103

309

103

103

103

103

103

103

103

103

103

46

70

45

42

84

70

41

59

60

67

52

66

76

75

100

Ch. 14

TABLE 55. ALKOXY AND ARYLOXY ESTERS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	$B.p./mm., n \frac{t}{D^2} (M.p.$
	Alip	hatic Alko	oxy Este	ers	
C,	Methyl a-methoxyptopionate	115	63	659	129/747
3	Methyl β -methoxypropionate	121	91	6113	55/23, 1.4022
	1-Methoxyethyl acetate	290	51	14199	25/15, 1.3870
C.	Methyl a-methoxyi sobutyrate	285	80	14 ⁵⁹	135
	Methyl B-ethoxypropionate	121	91	6113	60/20, 1.4050
	Ethyl a-methoxypropionate	285	54	1460	141/760
	Ethyl B-methoxypropionate	121	27	6113	60/20, 1.4049
	Ethyl ethoxyacetate	285	72	1466	154
	Methyl diglycolate	285	76	14 ⁶³	120/13, (38)
	(CH ₃ O ₂ CCH ₂ OCH ₂ CO ₂ CH ₃)	,			,
	Ethyl a-ethoxypropionate	115	65	6 ⁵⁸	68/27
- /	Ethyl β -ethoxypropionate	121	84	6113	67/17, 1.4070
	Ethyl a-ethoxy-n-butyrate	115	65	6 ⁵⁸	68/16
•	Ethyl a-ethoxyi sobutyrate	285	88	14 59	55/13
2,9	Ethyl β,β -diethoxypropionate	121	84	6114	65/2, 1.4108 ²⁵
10	Ethyl a-methyl-8-ethoxy- valerate	308	54	14351	97/13
	Ethyl a-ethyl-Y-ethoxybutyrate	308	30	14352	94/15
	Diethyl methoxymethylmethyl-	299	50	14 ²⁶⁷	116/16, 1.4220
	malonate				
	Aromatic A	lkoxy and	d Arylox	y Esters	
	o-Methoxyphenyl formate	305	99	14376	109/12
2,9	Methyl o-methoxy benzoate	116	71	6 ¹⁰⁰	133/15
10	Methyl β -phenoxypropionate	121	59	6 ¹⁶⁴	85/0.4, 1.5071
-	Ethyl y-phenoxycrotonate	20	20	2153	183/12
	p-Methoxy ben zyl acetate (anisyl acetate)	290	54†	14196	115-120/4
	Ethyl B-phenoxypropionate	121	53	6 ¹⁶⁴	92/0.7, 1.5002
- 11		285	90	1462	170/40
	Ethyl m-methoxyphenylacetate	285	86	1464	142/12
2	Ethyl y-phenoxybutyrate	293	80	14 ¹⁶⁶	160-165/25
- 13	Ethyl a-ethoxyphenylacetate	115	60	6 ⁵⁸	157/26
	Ethyl <i>b</i> -ethoxyphenylacetate	285	81†	1461	130/3
	Ethyl g-phenoxyphenylacetate	115	68	660	156/0.8, 1.5452

For explanations and symbols see pp. xi-xii.

TABLE 57. KETO ESTERS

TABLE 56. ALDO ESTERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C₄	Ethyl glyoxylate		50	9 200	138, 131Ph, 218Se
C,	β -Carbomethoxy- propional dehyde	162	65	9 56	70/14
C,	Methyl γ -formylbutyrate	162	52	9 ⁶⁸	106Dn
	γ -Aceto xy butyral dehy de	145	84	9190	60/1, 1,4245 ²⁵ , 181Dn
	β -Carbethoxypropion-	145	71	9 190	69/7. 1.4212 ²⁵ , 137Se
	aldehyde		50	9 ²⁰¹	87/10, 1.425 ¹⁴
с,	Ethyl β -formylbutyrate	145	65	9 ¹⁹⁰	59/0.01, 1.4236 ²⁵ , 88Dn
C8	DL- <i>erytbro-a,β</i> -Diace- toxybutyric aldehyde	162	87	969	87/4
с,	Methyl <i>m</i> -formylben zoate	164	84	955	153/15. (58)
	Methyl p-formylbenzoate	148	72	9261	(63), 144Pb
		164	90	9 ⁵³	135/12. (60)
	p-Acetoxy benzaldehyde	288	91	14138	120/6, $241Dn$
	Methyl phthalaldehydate	162	84	9233	138/13, 1,5411, 195Se
	Methyl terephthaldehydate	147	53	9 85	97/2, (62)
C 10	Methyl 8-aldehydoöc- tanoate	156	60	9 ¹¹⁶	112/3, 1.4384, 105Se
	γ, γ -Dicarbethoxy- butyraldehyde	30 1	50	14 ³¹¹	78/0.06, 1.4340 ²⁵ , 76Dn
	Ethyl m-formylbenzoate	164	86	9 ⁵³	164/13
	Ethyl p-formylben zoate	164	86	953	142/13
Cıı	Methyl 9-aldehydonona- noate	156	60	9 116	121/3, 1.4410, 100Se
C13	Methyl 11-aldehydo- undecanoate	145	74	9 190	147/0.1, 1.4432 ²⁵ , 70Dn
C14	Methyl 12-al dehydodo- decanoate	156	60	9 116	153/3, 1.4469, 118Se

For explanations and symbols see pp. xi-xii.

TABLE 57. KETO ESTERS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ¹ _D , (M.p.), Deriv.
		Aliphan	ic Keto	Esters	
C.	Methyl pyruvate	285	73	1419	136-140, 1,4046 ²⁵
		285	71	1467	136-140
C,	Ethyl pyruvate	285	59	1471	146-150
		179	54	10 692	57/20. 1.4053
	Methyl acetoacetate	211	50	10 516	74/12*, 152Se*
C,	Methyl γ-ketovalerate (methyl levulinate)	285	85	1470	1.4223

518

Cn

C.

Compound

Ethyl acetoacetate

Ethyl a, B-diketo-

butyrate

C7 Methyl a-propionyl-

propionate

Methyl acetopyruvate

Ethyl a-ketovalerate

Ethyl y-ketovalerate (ethyl levulinate)

Ethyl a-methylaceto-

1-Acetoxy-4-pentanone

2-Acetoxy-2-methyl-3-

Diethyl oxomalonate

Ethyl *n*-butyrylacetate

Ethyl *B*-propionyl-

Methyl B-oxo-y, y-

Ethyl a-propionyl-

dimethylvalerate

Ethyl isobutyrylacetate

Ethyl 2,2-dimethyl-

s-Butyl acetoacetate

Methyl butyropyruvate

Ethyl diacetylacetate

Methyl 3-oxooctoate

Methyl 4-ozoöctoate

Ethyl Goxoheptanoate

acetoacetate

propionate

propionate

Methyl propionopyruvate

acetate

Butyl pyruvate

butanone

C.

C,

Ethyl propionylacetate

CARBOXYLIC ESTERS

TABLE 57 (continued)

Aliphatic Keto Esters (continued)

Ch. 14

TABLE 57. KETO ESTERS

TABLE 57 (continued)

Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.	- C	n Compound	Method	Yield (%)	Chaptertef.	B.p./mm., n ^t _D , (M.p.), Deriv.
atic Ket	o Esters	(continued	0		Ali	phatic Ke	o Este	ts (continued	d)
211	29	10 621	80/18, 129Se*	c	9 Ethyl isovalerylacetate	298	64	14 320	98/14, 122Cu
211	68	10 148	80/16			298	60	14 ³²⁵	97/14, 1.4270 ²⁴
203	70	10 555	97/12, (63), 132Am*		Ethyl γ, γ, γ -trimethy	298	45	14 ³³⁶	98/15
183	35	10 573	68/9, (148)		acetylacetate				
					Ethyl a-isopropylaceto-	213	42	10 ⁶⁴⁶	203
211	71	10 616	76/10, 1.4211 ²⁵ , 82Am [•]		acetate	213	67	10 647	98/20
211	/-				Methyl isovaleropyruvate	203	84	10 ⁵⁵⁵	103/4
194	881	10 366	72/11, 1.4170 ¹⁸ , 116Dn		Methyl pivalopyruvate	203	75	10 ⁵⁵⁵	113/11, 1.4720
107	58	10 386	77/8.5. 149Cu		Ethyl a-ethoxalyl-	211	70	10 ⁶¹⁸	116/10, 78/2, 1.4313
211	44	10 620	92/17		propionate				
211	60	10 681	93/17		Dimethyl B-keto-a-	212	50	10 ⁶⁴⁰	94/0.1, 1.4458 ¹⁶
214	81	14 70	94/18, 1.4212		methyladipate				
20)	01	**			Diethyl β -oxoglutarate	285	43	1468	146/17
21.2	71	10 644	76/15, 73Am*		Diethyl acetylmalonate	215	86	10 ⁶⁵⁴	120/12
215	/1	10		с.	Methyl 4-kem-5-methyl-	190	22	10 426	121/01
170	70	10 218	71/11		Octanoate	109	~ ~ ~	10	131/21
1/9	70	16113	107/18, 1,4259		Methyl & keto-6-methyl-	1 90	60	10 426	104/14
287	20	10657	93/50. 1.4180		octanoate	109	00	10	134/16
200	49	10	/3/ /0, 11100		Methyl A-keto-7-methyl-	180	76	10426	107/00
1.0.0	10	10 572	(57)		Octanoate	109	75	10 -	137/20
185	74	10 575	108/15		Ethyl capmylacetate	200	80	10.580	
183	/0	10555	95/4		Ethyl any-butyryl-m	200	80 76	10148	112/10
203	42	10	<i>55</i> /4		butwate	211	76	10-~	105/12
212	39	10 386	94/15		Ethyl asies burrerla	211		1 0 636	04.445
293	64	14170	95/15, 125Cu		isobutyrate	211)) 66	10	94/15
298	60	14 327	95/14, 126Cu [±]		Ethyl z butyruldi-	215	,,	10623	95/18
•···•	23	14 433	103/15, 1.4311		methylacetate	215	28	10	111/29
184	82	10302	107/12, 106Se*		Ethyl a-m-butylaceto	212	72	10645	117/1/ 1 /0000
203	80	10653	93/20		acetate	213	72	10642	117/16, 1.4283*
307	80	14343	92/20		Ethyl arisobutylaceto-	215	19	10 542	113/17
211	81	1014	90/12		acetate	215	60	10.656	102/13
211	76	10 622	92/19, 82Am•		Ethyl a-s-butylaceto-	213	67	10 642	112/21
288	65	14143	86/11		acetate	215	62	10***	109/18.5
298	20	14325	105/32, 1.419-4		Ethyl arethoxalyler-	211	00	10 295	0.5 (0. 7. 00.0
293	81	14173	92/16, 1.4245**		butvrate	211	80	10	85/0.7, 99Dn
298	37	14327	85/16		Ethyl geethoxalyliso	21.1	(1	10 623	100 /15 070
213	54	10644	73/14, 187Se*		buwrate	211	01	10	123/15, 9/Se
215	51	10 623	76/15		Diethyl B-ketoadinate	214	40	10653	126/0 5
211	66	10 255	82/15		Diethyl acetosuccinate	214	40	10	126/0.5
203	52	10 ⁵³⁵	112/8		Diethyl acetopylmalonate	200	02	14-"	123/5
212	52	10 638	97/12			299	01	14-07	111/3
212	88	10 635	116/14, 1.4315 ²⁶ , 114Cu*	C 11	Ethyl a-isoamylaceto- acetate	213	58	10 **	86/5, 1.4289 ²¹
189 189	80 59	10 ⁻⁰¹ 10 ⁻⁴²⁵	11//14 123/13, 107Se*		Ethyl a-methyl-a-i so- butylacetoacetate	213	72	10 ⁶⁵⁶	117/21, 1.4309 ²⁵

For explanations and symbols see pp. xi-xii.

519

520

CARBOXYLIC ESTERS

Ch. 14

~	(Markad	Yield	Chanter ef.	B.p./mm., n ^l (M.p.). Deriv.
-n 	Compound	Method	(%)		D. (
	Alip	hatic Ket	o Ester	s (continued	d)
211	Ethyl a-ethoxalyl-n- valerate	211	85	10 ²⁹⁵	86Da
	Diethyl β -ketopimelate	215	30	10 ⁶⁵⁵	121/0.15
	Diethyl a-acetoglutarate	308	52	• 14 ³⁴⁸	133/4
12	Ethyl a-ethoxalyl- succinate	211	83	10 ⁶³⁴	115/1
—		Alicycl	lic Keto	Esters	
	2- Acetowycyclohezanone	179	45	10 215	118/11.5
- 8	2Cashethowycyclor	211	81	10 627	88/5, 1.4526 ²⁵ *, 143Se*
	2 Carbellogy Cyclo	288	40	14242	104/11, 144Se
	Ethyl β-cyclopropyl-β-	298	57	14 ³²⁹	100/11
	Reapiopiozzi		27	1 4 336	106/11
Ξ,	2-Carbethoxycyclohex-	298	3/	14 344	106/11
	anone	307	627	14	106/14
	a-Methyl-a-carbethoxy-	213	/0	10 265	100/14 107/17 1 4464* 153Se
	cyclopentanone	213	82	10	107/17, 1.4461
		213	80	10 633	116/10
	Ethyl β -cyclobutyl- β -	212	19	10	115/19
	ketopropionate	202		10 558	149/23
	Ethyl y-cyclopropyl-	205	22	10	A3// =>
	a, y-diketobutiyate			10 541	100/4 1 4401 36
C 10	2-Methyl-2-carbethoxy-	213	90	1000	100/4, 1.4491
	cy cloh exan on e		-	10.268	100/7 14050
	a-Ethyl-a-carbethoxy-	213	74	10	100/7, 14956
	cyclopentanone		26	10633	04/18
	Ethyl β -cyclopentyl- β -	212	30	10	94/1.0
	ketopropionate	20.2	67	10 557	105-165/10-15
	Ethyl 2-cyclohexanone-	203		10	109 109 10 19
_	giyoxalate	212	50	10268	137/34, 142Se
C ₁₁	a-isopropyi-a-carbemoxy-	215	79	10	1377 3 17 1 1 2 1 2 1
					111/6 00Ph
с,	Methyl phenylglyoxylate	179	85	10	122/25 1 5255 ²² 112 Am ⁴
C 10	Methyl benzoylacetate	211	45	10 239	162/12
	p-Acetylphenyl acetate	183	79	10.00	102/13
	Ethyl ben zoylformate	285	40	14**	118/ <i>)</i> 145/4 (95 4)
	Methyl p-acetylbenzoate	183	54	10	142/4, (72+4)
	ω -Acetoxyacetophenone	311	551	14	120/0.7, (47)
C 11	Methyl a-benzoylpropion-	211	61	10 ⁶¹⁶	127/0.3, 1.5206 ²⁵ , 146Am ³

TABLE 57. KETO ESTERS

TABLE 57 (continued)

<u></u>	Compound	Method	(%)	Chapter ^{ref} .	B.p./mm., n_D^t , (M.p.), Deriv.
	Arc	matic Ket	o Este	rs (continued	l)
C11	Methyl β-benzoyl- propionate	189	51	10 578	120/0.4, 1.5260 ¹⁸
	Ethyl benzoylacetate	212	78	10 632	137/4
		212	55	10636	106/1
		214	44	10 ⁶⁵²	145/3. 182Cu
		293	72	14 ¹⁷⁶	119/1
		298	81	14336	151/12, 1.526 ²⁴ *, 180Cu
	p-Acetylbenzyl acetate	183	55	10 247	163/11, 1,5225 ²⁵ , 1678e
	Ethyl p-acetylbenzoate	183	41	10245	168/13, (49)
C 12	Methyl a-benzoylbutyrate	211	41	10 516	129/3.0 1.521525 149Am*
		211	65	10 545	134/4
	Ethyl α-phenylacetoace- tate	293	81	14168	141/12
	Ethyl a-methylbenzoyl- acetate	293	64	14 176	129/1
	Ethyl m-acetylphenyl- acetate	178	40	10 ¹⁵³	118/0.5, 1.5185
	Ethyl p-acetylphenyl- acetate	178	40	10153	(68)
C 13	Ethyl ben zoyldimethyl-	215	55	10653	135/9
	acetate	215	65	10 623	148/15
		234	52	10 656	135/9
	Ethyl benzylacetoacetate	213	61	10 674	160/13
	Ethyl a-benzoylaceto- acetate	212	75	10 632	148/6
- 14	Ethyl benzoylmethyl- ethylacetate	215	52	10 ⁶²³	164/18
	β-Naphthyl acetoxymethyl ketone	311	72†	14588	(80)
	Ethyl α-naphthylgly- oxylate	178	4 6	10 151	167/3
	Diethyl benzoylmalonate	215	95	10 654	190/12
15	Ethyl β -naphthoylacetate	298	25	14 ³²⁵	(34)
16	Ethyl p-biphenylylgly- oxylate	178	70	10152	205/5, (39)
	Benzoin acetate	287	90	14123	(82)
17	Ethyl a-phenylbenzoyl- acetate	293	63	14172	(90)
		leterocycl	ic Ken	Esters	
8	Methyl 2-furoylacetate	211	50	10628	145/20
	Ethyl a-thienvielvoxviate	178	50	10150	120/2

Ch. 14

TABLE 57 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.					
	Heterocyclic Keto Esters (continued)									
<u> </u>	Ethyl 2-furovlacetate	211	98	10 629	114/1, 132-Ox*					
Ο,		214	70	10 651	139/10					
	Ethyl picolinoylacetate	211	70	10 ⁶³⁰	120/0.4, 1.5184					
С.,	Ethyl <i>B</i> -pyridoylacetate	211	67	10 630	123/0.4, 138/3					
- 10		211	70	10 280	157HCl					
	Ethyl 7-pyridoylacetate	211	85	10 630	120/0.4, (55)					
C12	Ethyl indole-3-glyoxylate	203	50	10 ⁵⁵⁹	(178)					

For explanations and symbols see pp. xi-xii.

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.)
<u> </u>	Methyl hydrogen succinate	287	96	14122	(58)
-,	Potassium ethyl malonate	249	82	13 ²⁵⁴	
	a-Acetoxypropionic acid	285	78	14 ⁹	90/1
	B-Acetoxypropionic acid	309	73	14232	84/0.4, 1.4311 ²⁵
C.	Merbyl bydrogen glutarate	287	92	14 127	158-165/23
<u> </u>	Methyl hydrogen adipate	297	70	14 ³⁵⁹	178/30, (9)
C7	Ethyl hydrogen glutarate	287	86	14130	159-165/17
с.	Ethyl hydrogen adipate	297	84	14357	140-145/2, (29)
0	Ethyl a,β-dimethylhydrogen succinate	287	88	14 ¹²⁹	116/3, 1.4345
с.	Methyl hydrogen phthalate	287	83	14128	(83)
۰,	t-Acetoxybenzoic acid	287	91	14132	(186)
C	Ethyl hydrogen azelate	297	63	14 417	170/1, (29)
~11	Ethyl 1-carboxycyclohexane-	287	84	14 ¹³¹	17 5- 180/11

TABLE 58. CARBOXY ESTERS

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 14

¹Sowa and Nieuwland, J. Am. Chem. Soc., 58, 271 (1936). ²Hinton and Nieuwland, J. Am. Chem. Soc., 54, 2017 (1932). ³Sowa and Nieuwland, J. Am. Chem. Soc., 55, 5052 (1933). ⁴ Toole and Sowa, J. Am. Chem. Soc., 59, 1971 (1937). ⁵Smith, Mitchell, and Hawkins, J. Am. Chem. Soc., 66, 715 (1944). ⁶Reid. I. Am. Chem. Soc., 69, 2069 (1947); Gilman and Iones, ibid., 65, 1458 (1943). ⁷ Brewer and Herbst. J. Org. Chem., 6, 870 (1941). *Reid, Ind. Eng. Chem., 29, 1344 (1937). ⁹ Filachione and Fisher, Ind. Eng. Chem., 36, 472 (1944). ¹⁰ Robertson, Org. Syntheses, Coll. Vol. I, 138 (1941). ¹¹Ruhoff, Org. Syntheses, Coll. Vol. II, 292 (1943). ¹² Mitchovitch, Bull. soc. chim. France, (5) 4, 1661 (1937). ¹³ Milas. I. Am. Chem. Soc., 50, 493 (1928); Wagner, ibid., 50, 1233 (1928). 14 Thompson and Leuck, J. Am. Chem. Soc., 44, 2894 (1922). ¹⁵ Hultman, Davis, and Clarke, J. Am. Chem. Soc., 43, 366 (1921). ¹⁶Natelson and Gottfried, Org. Syntheses, 23, 37 (1943). ¹⁷ Zaganiaris and Varvoglis, Ber., 69B, 2277 (1936). ¹⁸ Newman. J. Am. Chem. Soc., 63, 2431 (1941). ¹⁹ Clinton and Laskowski, J. Am. Chem. Soc., 70, 3135 (1948). ²⁰ Rinderknecht and Niemann, J. Am. Chem. Soc., 70, 2605 (1948). ²¹ Freudenberg and Jakob, Ber., 74, 1001 (1941). ²² Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 141. ²³ Barkovsky, Ann. chim., (11) 19, 489 (1944). ²⁴ Backer and Strating. Rec. trav. chim., 55, 903-912 (1936); 59, 936-939 (1940). ²⁵ Vogel, J. Chem. Soc., 1811 (1948). ²⁶ Vogel, J. Chem. Soc., 624, 644, 654 (1948); Jeffery and Vogel, ibid., 658, 674 (1948). ²⁷ Burrus and Powell. I. Am. Chem. Soc., 67, 1469 (1945); Gilman and Broadbent, ibid., 70, 2757 (1948); LaForge, ibid., 50, 2479 (1928), 28 Reichstein and Morsman, Helv. Chim. Acta, 17, 1123 (1934). ²⁹ Price et al., J. Am. Chem. Soc., 63, 1859 (1941). 30 Hofmann, J. Am. Chem. Soc., 67, 421 (1945). ³¹ Kaufman, J. Am. Chem. Soc., 67, 497 (1945). 32 Barger, Robinson, and Smith, J. Chem. Soc., 719, 720 (1937). ³³Clarke and Davis, Org. Syntheses, Coll. Vol. I, 261 (1941); Jewel and Butts, J. Am. Chem. Soc., 53, 3560 (1931). ³⁴ Bowden, Org. Syntheses, Coll. Vol. II, 414 (1943). 35 Micovic, Org. Syntheses, Coll. Vol. II, 264 (1943). ³⁶ Müller, Org. Syntheses, Coll. Vol. II, 536 (1943). 37 Karrer and Lee, Helv. Chim. Acta, 17, 544 (1934). 38 Bardhan, Banerji, and Bose, J. Chem. Soc., 1127 (1935). ³⁹ Skinner, J. Am. Chem. Soc., 55, 2038 (1933). 40 Foreman and McElvain, J. Am. Chem. Soc., 62, 1439 (1940). ^{A1} Baker et al., J. Org. Chem., 12, 144 (1947). 42 Linstead, J. Chem. Soc., 2505 (1929). 43 Glattfeld and Straitiff, J. Am. Chem. Soc., 60, 1386 (1938). 44 Lindstrom and McPhee, J. Am. Chem. Soc., 65, 2387 (1943).

45 Rehberg, Org. Syntheses, 26, 4 (1946). ⁴⁶ Allen and Spangler, Org. Syntheses, 29, 33 (1949). 47 Kendall and McKenzie, Org. Syntheses, Coll. Vol. I, 246 (1941). 48 Irwin and Hennion. I. Am. Chem. Soc., 63, 858 (1941). 49 Goering, Cristol, and Dittmer, J. Am. Chem. Soc., 70, 3314 (1948). ⁵⁰ Liston and Dehn, I. Am. Chem. Soc., 60, 1264 (1938). ⁵¹Campbell and Campbell, J. Am. Chem. Soc., 60, 1372 (1938). ⁵² Conant and Kirner. J. Am. Chem. Soc., 46, 243 (1924). 53 Fourneau, Benoit, and Firmenich, Bull. soc. chim. France, 47, 875 (1930). ⁵⁴ McDermott, Org. Syntheses, Coll. Vol. II, 365 (1943). ⁵⁵ Baer and Kates, J. Am. Chem. Soc., 67, 1483 (1945). ⁵⁶ Filachione, Lengel, and Fisher, Ind. Eng. Chem., 37, 388 (1945). ⁵⁷ Ault et al., J. Am. Chem. Soc., 69, 2003 (1947). 58 Cavill and Vincent, J. Soc. Chem. Ind. (London), 66, 175 (1947); Rohmann and Koch, Arch. Pharm., 276, 161 (1938). ³⁹ Weismann, Sulzbacher, and Bergmann, J. Am. Chem. Soc., 70, 1154, 1156 (1948). 60 Reeve and Sadle, J. Am. Chem. Soc., 72, 1253 (1950). 61 Carter and Hey, J. Chem. Soc., 152 (1948). 62 Powell, J. Am. Chem. Soc., 45, 2710 (1923). 63 Backer and Stevens, Rec. trav. chim., 59, 426 (1940). 64 Hunter and Hogg, J. Am. Chem. Soc., 71, 1923 (1949). 65 Corse et al., J. Am. Chem. Soc., 70, 2840 (1948). ⁶⁶Fuson and Wojcik, Org. Syntheses, Coll. Vol. II, 261 (1943). 67 Weissberger and Kibler, Org. Syntheses, 24, 72 (1944); cf. ref. 71. 68 Adams and Chiles. Org. Syntheses, Coll. Vol. I, 237 (1941); cf. ref. 71. ⁶⁹ Corson et al., Org. Syntheses, Coll. Vol. I, 241 (1941). ⁷⁰ Schuette and Cowley, J. Am. Chem. Soc., 53, 3485 (1931); Frank et al., ibid., 66, 4 (1944). ¹¹ Archer and Pratt, J. Am. Chem. Soc., 66, 1656 (1944). ⁷² Jacobson, J. Am. Chem. Soc., 68, 2628 (1946). ⁷³ McElvain and Pryde, J. Am. Chem. Soc., 71, 326 (1949). ⁷⁴ Marvel and Noyes, J. Am. Chem. Soc., 42, 2265 (1920); cf. ref. 7. ⁷⁵ Shriner and Cross. J. Am. Chem. Soc., 60, 2339 (1938). ⁷⁶ Tindall, Ind. Eng. Chem., 33, 65 (1941). ⁷⁷ Inglis, Org. Syntheses, Coll. Vol. 1, 254 (1941). ⁷⁸ Cohen and Schneider, J. Am. Chem. Soc., 63, 3386 (1941). ⁷⁹ Hauser et al., Org. Syntheses, 24, 19 (1944); Abramovitch et al., J. Am. Chem. Soc., 65, 986 (1943). ⁸⁰ Spassow, Org. Syntheses, 20, 21 (1940); Ber., 70, 1926 (1937). ⁸¹ Whitmore and Lewis, J. Am. Chem. Soc., 64, 2964 (1942). 82 Whitmore and Forster, J. Am. Chem. Soc., 64, 2967 (1942). 83 Stoughton, J. Am. Chem. Soc., 57, 203 (1935). ⁸⁴ Huber, Boehme, and Laskowski, J. Am. Chem. Soc., 68, 189 (1946); McElvain and Adams, ibid., 45, 2744 (1923). ⁸⁵ Bateman and Marvel, J. Am. Chem. Soc., 49, 2917 (1927). 86 Huber and Brunner, Monatsh., 56, 325 (1930). ⁸⁷ Menalda, Rec. trav. chim., 49, 967 (1930). ** Spassow, Ber., 75, 779, 780 (1942). ⁸⁹ Adickes, Brunnert, and Lücher, J. prakt. Chem., 130, 163 (1931). 90 Burns, Jones, and Ritchie, J. Chem. Soc., 714 (1935).

91.Gresham, Jansen, and Shaver, J. Am. Chem. Soc., 70, 1003 (1948). ⁹² Dauben. I. Am. Chem. Soc., 70, 1377 (1948). "Womack and McWhirter, Ore. Syntheses, 20, 77 (1940). 94 Gardner and Rydon, J. Chem. Soc., 52, 53 (1938). 95 Bartlett and Ross, J. Am. Chem. Soc., 69, 460 (1947). ⁹⁶ Work. I. Chem. Soc., 191 (1941). ⁹⁷ Fuson and Cooke, J. Am. Chem. Soc., 62, 1180 (1940). 98 Blicke and Lilienfeld, J. Am. Chem. Soc., 65, 2282 (1943). 99 Kirner, I. Am. Chem. Soc., 48, 2751 (1926); Ford-Moore, Org. Syntheses, 30, 11 (1950). ¹⁰⁰ Blicke and Blake, J. Am. Chem. Soc., 53, 1018 (1931); cf. ref. 101. ¹⁰¹ Bogert and Slocum, J. Am. Chem. Soc., 46, 766 (1924). ¹⁰² Morgan and Porter, J. Chem. Soc., 1258 (1926). 103 Roll and Adams, J. Am. Chem. Soc., 53, 3469 (1931). ¹⁰⁴ McElvain and Carney, J. Am. Chem. Soc., 68, 2599 (1946). ¹⁰⁵ Mowry, J. Am. Chem. Soc., 66, 371 (1944). ¹⁰⁶ Verkade, Van der Lee, and Meerburg, Rec. trav. chim., 51, 850 (1932); Flaschenträger and Allemann, Ann., 552, 106 (1942). ¹⁰⁷ Stahmann, Wolff, and Link, J. Am. Chem. Soc., 65, 2287 (1943); cf. ref. 119. ¹⁰⁸ Price and Schwarcz, J. Am. Chem. Soc., 62, 2894 (1940). ¹⁰⁹ Duvall and Mosettig, J. Am. Chem. Soc., 60, 2411 (1938). ¹¹⁰ Cheetham and Hey, J. Chem. Soc., 771 (1937); Hazlet and Kornberg, J. Am. Chem. Soc., 61, 3037 (1939). ¹¹¹ Auwers, Ann., 292, 178, 179 (1896); Fessler and Shriner, J. Am. Chem. Soc., 58, 1384 (1936). 112 Elderfield et al., J. Am. Chem. Soc., 68, 1579 (1946). ¹¹³ Emerson et al., J. Am. Chem. Soc., 68, 1665 (1946). ¹¹⁴ The Miner Laboratories. Org. Syntheses, Coll. Vol. I, 285 (1941). 115 Prichard, Org. Syntheses, 28, 68 (1948); cf. ref. 119. ¹¹⁶ Baker and Bordwell, Org. Syntheses, 24, 18 (1944). ¹¹⁷ Burns, Jones, and Ritchie, J. Chem. Soc., 403 (1935). ²¹⁸ Perkin and Simonsen, J. Chem. Soc., 858 (1905). ¹¹⁹ Chattaway, J. Chem. Soc., 2495 (1931). ¹²⁰ Colonge, Bull. soc. chim. France, (5) 9, 731 (1942). ¹²¹ Adickes, J. prakt. Chem., 161, 275 (1943); Clemo and Graham, J. Chem. Soc. 215 (1930). ¹²²Cason, Org. Syntheses, 25, 19 (1945). ¹²³ Corson and Saliani, Org. Syntheses, Coll. Vol. II, 69 (1943). 124 Malkin and Nierenstein, J. Am. Chem. Soc., 53, 241 (1931); Slotta and Lauersen, J. prakt. Chem., 139, 224 (1934). ¹²⁵Hurd, Drake, and Fancher, J. Am. Chem. Soc., 68, 789 (1946). ¹²⁶ Lavine and Herkness, J. Am. Chem. Soc., 70, 3951 (1948); Anderson and Kenyon, ibid., 70, 3952 (1948). ¹²⁷ Harris et al., J. Am. Chem. Soc., 67, 2098 (1945). ¹²⁸ Eliel and Burgstahler, J. Am. Chem. Soc., 71, 2252 (1949). 129 Adams and Wilkinson, J. Am. Chem. Soc., 65, 2207 (1943). ¹³⁰ Bachmann, Kushner, and Stevenson, J. Am. Chem. Soc., 64, 977 (1942). ¹³¹ Rothstein and Thorpe, J. Chem. Soc., 2015 (1926). 132 Marshall, Kuck, and Elderfield, J. Org. Chem., 7, 450 (1942); cf. ref. 119. ¹³³Galatis, J. Am. Chem. Soc., 69, 2062 (1947). ¹³⁴Rice, Greenberg, Waters, and Vollrath, J. Am. Chem. Soc., 56, 1764 (1934).

135 Morey, Ind. Eng. Chem., 31, 1132 (1939). 136 Claborn and Smith. I. Am. Chem. Soc., 61, 2727 (1939). ¹³⁷ Hurd and Roe, J. Am. Chem. Soc., 61, 3357 (1939). 138 Williams and Sadle, I. Am. Chem. Soc., 62, 2801 (1940). ¹³⁹ Hurd and Hoffman, J. Org. Chem., 5, 217 (1940). 140 Gwynn and Degering, I. Am. Chem. Soc., 64, 2216 (1942). ¹⁴¹ Kimel and Cope, J. Am. Chem. Soc., 65, 1995 (1943). 142 Sauer, I. Am. Chem. Soc., 69, 2444 (1947). ¹⁴³ Boese, Ind. Eng. Chem., 32, 16 (1940). 144 Adams and Thal, Org. Syntheses, Coll. Vol. I, 270 (1941). 145 Geissman and Tess, J. Am. Chem. Soc., 62, 515 (1940). 146 Blicke and Leonard, J. Am. Chem. Soc., 68, 1934 (1946). 147 Blicke and Feldkamp, J. Am. Chem. Soc., 66, 1087 (1944). 148 Jones et al., J. Am. Chem. Soc., 70, 2846 (1948). 149 Merchant and Marvel. J. Am. Chem. Soc., 50, 1199 (1928). 150 Rising and Zee, I. Am. Chem. Soc., 50, 1211 (1928). 151 Adams and Marvel, J. Am. Chem. Soc., 42, 310 (1920). 152 Slater, I. Chem. Soc., 69 (1941). 153 Hager, Van Arendonk, and Shonle, J. Am. Chem. Soc., 66, 1982 (1944). ¹⁵⁴Nelson and Cretcher, J. Am. Chem. Soc., 50, 2758 (1928). ¹⁵⁵ Steele, I. Am. Chem. Soc., 53, 286 (1931). 156 Rising and Zee, J. Am. Chem. Soc., 49, 541 (1927). 157 Ruggli, Bussemaker, and Müller, Helv. Chim. Acta, 18, 617, 620 (1935). 158 Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 254. 159 Kindler, Ber., 74, 316 (1941). 160 Cook and Linstead, J. Chem. Soc., 959 (1934). 161 Prill and McElvain, J. Am. Chem. Soc., 55, 1237 (1933). ¹⁶² Fosdick and Wessinger, J. Am. Chem. Soc., 60, 1466 (1938). 163 Ladenburg, Folkers, and Major, J. Am. Chem. Soc., 58, 1294 (1936). 164 Glattfeld and Lee, J. Am. Chem. Soc., 62, 355 (1940). 165 Braun, J. Am. Chem. Soc., 52, 3170, 3173 (1930). 166 Marvel and Tanenbaum, J. Am. Chem. Soc., 44, 2647 (1922). 167 Bennett and Hock, J. Chem. Soc., 475 (1927). 168 Kimball, Jefferson, and Pike, Org. Syntheses, Coll. Vol. II. 284 (1943): Kimball, J. Am. Chem. Soc., 58, 1968 (1936). ¹⁶⁹ Smith et al., J. Am. Chem. Soc., 71, 3772 (1949). ¹⁷⁰ Abramovitch and Hauser, J. Am. Chem. Soc., 64, 2721 (1942). 171 Marvel, Org. Syntheses, Coll. Vol. II, 310 (1943). 172 Howk and McElvain, J. Am. Chem. Soc., 54, 286 (1932). 173 Kroeker and McElvain, J. Am. Chem. Soc., 56, 1172 (1934). 174 Billman, Smith, and Rendall, J. Am. Chem. Soc., 69, 2059 (1947). 175 Weisel, Taylor, Mosher, and Whitmore, I. Am. Chem. Soc., 67, 1071 (1945). 176 Dorsch and McElvain, J. Am. Chem. Soc., 54, 2963 (1932). 177 Ferber and Bendix, Ber., 72, 841 (1939); Ferber and Leonhardt, ibid., 67, 245 (1934). 178 McElvain and Schroeder, J. Am. Chem. Soc., 71, 43 (1949). ¹⁷⁹ Reid et al., Org. Syntheses, Coll. Vol. II, 469 (1943). 180 Sauer, Hain, and Boutwell, Org. Syntheses, 20, 67, 69 (1940). 181 Rehberg, Org. Syntheses, 26, 18 (1946); Rehberg and Fisher, J. Am. Chem. Soc., 66, 1203 (1944).

REFERENCES FOR CHAPTER 14

¹⁸² Frank et al., J. Am. Chem. Soc., 66, 1509 (1944). ¹⁸³ Carlson and Cretcher. I. Am. Chem. Soc., 69, 1954 (1947); Morgan and Cretcher, ibid., 68, 783 (1946). 184 Carothers and Van Natta, J. Am. Chem. Soc., 52, 322 (1930). 185 Reimer and Downes, J. Am. Chem. Soc., 43, 945 (1921). ¹⁸⁶ Hatch and Adkins. *I. Am. Chem. Soc.*, **59**, 1694 (1937); Fehlandt and Adkins, ibid. 57, 193 (1935). ¹⁸⁷ Fischer, Ber., 53, 1634 (1920). ¹⁸⁸ Emerson et al., J. Am. Chem. Soc., 69, 1906 (1947). 189 Blicke and Sheets, J. Am. Chem. Soc., 71, 2857 (1949). ¹⁹⁰ Wagner, J. Am. Chem. Soc., 71, 3214 (1949). ¹⁹¹ Kipnis, Soloway, and Omfelt, J. Am. Chem. Soc., 71, 10 (1949), ¹⁹² Tharp. Herr. et al.. Ind. Eng. Chem., 39, 1300 (1947); Ruegeberg, Ginsburg. and Frantz. ibid., 38, 207 (1946). ¹⁹³ Guest, J. Am. Chem. Soc., 69, 301 (1947). ¹⁹⁴Ingold and Mohrhenn, J. Chem. Soc., 1484 (1935). 195 Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 114. ¹⁹⁶Ofner. Helv. Chim. Acta, 18, 955 (1935). ¹⁹⁷ Hartman and Rahrs, Org. Syntheses, 24, 79 (1944). ¹⁹⁸ Kindler and Blaas, Ber., 77, 589, 590 (1944). ¹⁹⁹ Hurd and Green, J. Am. Chem. Soc., 63, 2201 (1941). ²⁰⁰ Hill and Hibbert. J. Am. Chem. Soc., 45, 3130 (1923). ²⁰¹ Bachmann and Struve in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, pp. 38, 52. 202 Plattner and Heusser, Helv. Chim. Acta, 28, 1047 (1945); Ruggli and Knecht, ibid. 27, 1113 (1944). ²⁰³ Wilds and Meader, J. Org. Chem., 13, 763 (1948). ²⁰⁴ Blicke and Sheets. I. Am. Chem. Soc., 70, 3769 (1948). 205 Blicke and Zienty. J. Am. Chem. Soc., 63, 2945 (1941). ²⁰⁶ Arndt and Eistert, Ber., 68B, 204 (1935); cf. ref. 201. ²⁰⁷ Kamm and Kamm, Org. Syntheses, Coll. Vol. I, 104 (1941). 206 Villani and Nord, J. Am. Chem. Soc., 69, 2605 (1947); Kulpinski and Nord, J. Org. Chem., 8, 256 (1943). ²⁰⁹ Child and Adkins, J. Am. Chem. Soc., 45, 3013 (1923); 47, 798 (1925). ²¹⁰ Loder and Whitmore, J. Am. Chem. Soc., 57, 2727 (1935); Org. Syntheses, Coll. Vol. 11, 282 (1943). ²¹¹ Whitmore et al., I. Am. Chem. Soc., 64, 1802 (1942). ²¹² Haynes and Jones, J. Chem. Soc., 505 (1946). ²¹³ Yost and Hauser, J. Am. Chem. Soc., 69, 2326 (1947). ²¹⁴Nielsen, J. Am. Chem. Soc., 66, 1230 (1944). 225 Levine, Baumgarten, and Hauser, J. Am. Chem. Soc., 66, 1231 (1944); cf. ref. 216. ²¹⁶Hudson and Hauser, J. Am. Chem. Soc., 62, 2457 (1940). ²¹⁷ Hudson and Hauser, J. Am. Chem. Soc., 63, 3161 (1941). ²¹⁸Covert, Connor, and Adkins, J. Am. Chem. Soc., 54, 1659 (1932); Adkins and Cramer, ibid., 52, 4355 (1930); cf. ref. 219. ²¹⁹ Gray and Marvel, J. Am. Chem. Soc., 47, 2799 (1925). 220 Fichter and Holbro, Helv. Chim. Acta, 21, 141 (1938). 221 Skita and Rössler, Ber., 72, 269 (1939).

²²² Kindler and Blaas, Ber., 76, 1215 (1943). 223 Owen and Robins, I. Chem. Soc., 330 (1949); cf. ref. 224. ²²⁴ Ungnade and Morriss. J. Am. Chem. Soc., 70, 1898 (1948). 225 Meincke and McElvain. J. Am. Chem. Soc., 57, 1444 (1935). ²²⁶Linstead and Meade. 1. Chem. Soc., 943 (1934). 217 Rydon, I. Chem. Soc., 1341 (1937). 228 Brown and Partridge. I. 4m. Chem. Soc., 66, 839 (1944). 229 Winterfeld and Rönsberg, Arch. Pharm., 274, 44 (1936). ³³⁰ Jones and Tattersall, J. Chem. Soc., 85, 1693 (1904). 231 Cason et al., J. Am. Chem. Soc., 66, 1764 (1944). ²³² Gresham et al., J. Am. Chem. Soc., 70, 999-1004 (1948); 72, 72 (1950). 233 Adams and Kamm, Org. Syntheses, Coll. Vol. I, 250 (1941); cf. ref. 151. ²³⁴ Marvel, Org. Syntheses, 21, 60 (1941). 235 Weiner, Org. Syntheses, Coll. Vol. II, 279 (1943). 236 Hurd. Iones. and Blunck. J. Am. Chem. Soc., 57, 2034 (1935). 237 Dox, J. Am. Chem. Soc., 46, 1708 (1924). 238 Shonle, Keltch, and Swanson, J. Am. Chem. Soc., 52, 2445 (1930). 239 Peacock and Tha, J. Chem. Soc., 2304 (1928). 240 Karrer et al., Helv. Chim. Acta, 13, 1296 (1930). 241 Marvel, Org. Syntheses, 21, 99 (1941). 242 Fieser and Gates. I. Am. Chem. Soc., 62, 2338 (1940). 243 Walter and McElvain, J. Am. Chem. Soc., 57, 1891 (1935). 244 Kirner and Richter. I. Am. Chem. Soc., 51, 3132 (1929); cf. ref. 32. 245 Shivers, Hudson, and Hauser, J. Am. Chem. Soc., 66, 309 (1944); Marshall, J. Chem. Soc., 2336 (1931). 246 Adkins and Davis, J. Am. Chem. Soc., 71, 2957 (1949). 247 Hsueh and Marvel, J. Am. Chem. Soc., 50, 858 (1928). 248 Koller and Kandler, Monatsh., 58, 233 (1931). 249 Coleman, Callen, and Dornfeld, J. Am. Chem. Soc., 68, 1102 (1946). ²⁵⁰ Kolloff et al., J. Am. Chem. Soc., 70, 3862 (1948). ²⁵¹ Hiers and Adams. J. Am. Chem. Soc., 48, 2390 (1936). 252 Yohe and Adams, J. Am. Chem. Soc., 50, 1507 (1928); Arvin and Adams, ibid, 50, 1793 (1928); 49, 2941 (1927). 253 Levy, Ann. chim., (11) 9, 66 (1938); Cohen, Marshall, and Woodman, J. Chem. Soc., 895, 896 (1915). ²⁵⁴Berger, I. prakt. Chem., 152, 302 (1939). 255 Linstead et al., J. Chem. Soc., 580 (1933); 1971 (1937); 1998 (1934); 2163 (1929); Noller and Adams. J. Am. Chem. Soc., 48, 2446 (1926). 256 Cope et al., J. Am. Chem. Soc., 62, 314 (1940); 60, 2645 (1938). ²⁵⁷ Heisig and Stodola, Org. Syntheses, 23, 16 (1943); Jeffery and Vogel, J. Chem. Soc., 1805, 1806 (1948); Dox and Yoder, J. Am. Chem. Soc., 43, 680 (1921). 258 Walborsky, J. Am. Chem. Soc., 71, 2941 (1949). 259 Dox and Yoder, J. Am. Chem. Soc., 43, 2097 (1921); Cason and Allen, J. Org. Chem., 14, 1036 (1949); cf. ref. 257. 260 Dox and Yoder, J. Am. Chem. Soc., 43, 1368 (1921); Jacobs and Florsheim, ibid., 72, 258 (1950); Skinner, Limperos, and Pettebone, ibid., 72, 1649 (1950). ²⁶¹ Guha and Ranganathan, Ber., 69, 1202 (1936). ²⁶² Guha and Seshadriengar, Ber., 69, 1215 (1936); Arbusow and Schapschinskaja, ibid., 68, 440 (1935); Altman, Rec. trav. chim., 57, 950 (1938). 263 Rosenberg, Kneeland, and Skinner, J. Am. Chem. Soc., 56, 1340 (1934). 264 Barnes and Gordon, J. Am. Chem. Soc., 71, 2646 (1949).

REFERENCES FOR CHAPTER 14

265 Sayles and Degering, J. Am. Chem. Soc., 71, 3162 (1949). 266 Kobavashi, Ann., 536, 156, 157 (1938). 267 Wagner, J. Am. Chem. Soc., 71, 3217 (1949); Elks, Elliott, and Hems, J. Chem. Soc., 627 (1944); cf. ref. 275. ²⁶⁸ Franke and Groeger, Monatsh., 43, 55 (1922). 269 Hurd and McAuley, J. Am. Chem. Soc., 70, 1651 (1948). 270 Adams and Long. I. Am. Chem. Soc., 62, 2291 (1940). ²⁷¹ Hill, Salvin. and O'Brien. I. Am. Chem. Soc. 59, 2385 (1937). ²⁷² McElvain and Burkett. J. Am. Chem. Soc., 64, 1831 (1942). ²⁷³ Work. I. Chem. Soc., 198 (1946). ²⁷⁴ Carter. J. Am. Chem. Soc., 50, 1968, 1969 (1928). ²⁷⁵ Hill and Keach, J. Am. Chem. Soc., 48, 257 (1926). ²⁷⁶ Swallen and Boord, J. Am. Chem. Soc., 52, 658 (1930); Palomaa and Kenetti, Ber., 64, 800 (1931); Prelog and Zalan, Helv. Chim. Acta, 27, 534 (1944). 277 Prelog et al., Ann., 545, 257 (1940); Gaubert, Linstead, and Rydon, J. Chem. Soc., 1976 (1937). ²⁷⁸ Hardegger, Redlich, and Gal, Helv. Chim. Acta, 28, 632 (1945). ²⁷⁹ Marvel et al., J. Am. Chem. Soc., 46, 2840 (1924). 280 Karrer. Keller, and Usteri, Helv. Chim. Acta, 27, 239 (1944). ²⁶¹ Marvel, Zartman, and Bluthardt, J. Am. Chem. Soc., 49, 2302 (1927). 262 Curtius and Sandhaas, I. prakt. Chem., 125, 95 (1930); Weizmann, I. Org. Chem., 8, 287 (1943). 283 Curtius. 1. prakt. Chem., 125, 291 (1930). ²⁸⁴ Bernhard and Lincke, Helv. Chim. Acta, 29, 1462 (1946); Rydon, J. Chem. Soc., 1444 (1936). 285 Rydon, I. Chem. Soc., 595 (1936). ²⁶⁶ Galat, J. Am. Chem. Soc., 68, 376 (1946). 287 Cope and McElvain, J. Am. Chem. Soc., 54, 4323 (1932). 286 Cheney and Piening, J. Am. Chem. Soc., 67, 733 (1945). 289 Martin, Schepartz, and Daubert, J. Am. Chem. Soc., 70, 2601 (1948). ²⁹⁰ Kobayashi, Ann., 536, 158 (1938). ²⁹¹ Magidson and Strukow, Arch. Pharm., 271, 573, 575 (1933). 292 Wojcik and Adkins, J. Am. Chem. Soc., 56, 2424 (1934); Marvel, Myers, and Saunders, ibid. 70, 1695 (1948); cf. ref. 294. ²⁹³ Baker and Dodson, J. Am. Chem. Soc., 68, 1284 (1946). ²⁹⁴ Overberger and Roberts, J. Am. Chem. Soc., 71, 3618 (1949). 295 Cope, Kovacic, and Burg, J. Am. Chem. Soc., 71, 3659 (1949). ²⁹⁶ Cymerman, Heilbron, and Jones, J. Chem. Soc., 147 (1944). ²⁹⁷ Robinson and Walker, J. Chem. Soc., 193 (1936); van der Zanden, Rec. trav. chim., 57, 245 (1938). ²⁹⁸ Shepard and Johnson, J. Am. Chem. Soc., 54, 4389 (1932). ²⁹⁹ Krollpfeiffer and Rosenberg, Ber., 69, 465 (1936). 300 Anker and Cook, J. Chem. Soc., 312 (1945). ³⁰¹ Kuhn and Brydowna, Ber., 70, 1333 (1937); Weinstock and May, J. Am. Chem. Soc., 62, 3266 (1940). ³⁰² Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 518. 303 Johnson, McCloskey, and Dunnigan, J. Am. Chem. Soc., 72, 516 (1950); Altschul, ibid., 68, 2605 (1946). 304 Scovill, Burk, and Lankelma, J. Am. Chem. Soc., 66, 1039 (1944). 305 Hennion and Nieuwland, J. Am. Chem. Soc., 56, 1802 (1934).

531

343 Dessert and Halverstadt, J. Am. Chem. Soc., 70, 2595 (1948). 344 Snyder, Brooks, and Shapiro, Org. Syntheses, Coll. Vol. II, 531 (1943). 345 Blicke and Zienty, J. Am. Chem. Soc., 63, 2946 (1941). 346 Floyd and Miller, J. Am. Chem. Soc., 69, 2354 (1947). 347 Adkins, Isbell, and Wojcik, Org. Syntheses, Coll. Vol. II, 262 (1943); J. Am. Chem. Soc., 54, 3685 (1932). 348 Linstead and Rydon. J. Chem. Soc., 2000 (1934); Clemo and Welch, ibid. 2626 (1928); cf. ref. 347. 349 Chuang and Ma, Ber., 68, 872 (1935). 350 Franke and Kroupa. Monatsh., 69, 192 (1936). 351 Finkelstein and Elderfield, J. Org. Chem., 4, 371 (1939). 352 Elderfield, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1344 (1950). 353 Renfrow and Walker, J. Am. Chem. Soc., 70, 3957 (1948). 354 Cornubert and Borrel, Bull. soc. chim. France, 47, 305 (1930). 355 Swann, Oehler, and Buswell, Org. Syntheses, Coll. Vol. II, 276 (1943). 356 Jones, J. Am. Chem. Soc., 69, 2352 (1947). 357 Brown, Baker, et al., J. Org. Chem., 12, 163 (1947); cf. ref. 71. 358 Fourneau and Sabetay, Bull. soc. chim. France, 43, 859 (1928), 45, 834 (1929). 359 Morgan and Walton, J. Chem. Soc., 91 (1933). 360 Carter, Frank, and Johnston, Org. Syntheses, 23, 13 (1943); Farthing, J. Chem. Soc., 3215 (1950). 361 Strain et al., J. Am. Chem. Soc., 72, 1254 (1950). 562 Slimowicz and Degering, J. Am. Chem. Soc., 71, 1044 (1949). 363 Choppin and Rogers, J. Am. Chem. Soc., 70, 2967 (1948). 364 Ashburn, Collett, and Lazzell, J. Am. Chem. Soc., 60, 2933 (1938). 365 Kenyon, Phillips, and Pittman, J. Chem. Soc., 1079 (1935). 366 Bowden and Butler, J. Chem. Soc., 78 (1939). 367 Bowden and John, J. Chem. Soc., 317 (1939); cf. ref. 372. 368 Ritchie, J. Chem. Soc., 1054 (1935). 369 Robinson and Smith, J. Chem. Soc., 394 (1926). 370 Pierce and Adams, J. Am. Chem. Soc., 45, 791 (1923). ³⁷¹Oesper, Broker, and Cook, J. Am. Chem. Soc., 47, 2609 (1925). 372 Gomberg and Snow, J. Am. Chem. Soc., 47, 201 (1925). ³⁷³ Hickinbottom, Reactions of Organic Compounds, 2nd ed., Longmans, Green and Co., New York, 1948, p. 99. ³⁷⁴ Friess, J. Am. Chem. Soc., 71, 14 (1949). 375 Robinson and Smith, J. Chem. Soc., 373 (1937). 376 von Wacek and von Bezard, Ber., 74, 845 (1941). 377 Van Dorp and Arens, Rec. trav. chim., 66, 189 (1947). 378 Young and Tarrant, J. Am. Chem. Soc., 72, 1860 (1950). 379 Arnold, Buckles, and Stoltenberg, J. Am. Chem. Soc., 66, 208 (1944). 380 Emerson et al., J. Am. Chem. Soc., 68, 674 (1946). 381 Cope and McElvain, J. Am. Chem. Soc., 54, 4315 (1932). 382 Houben and Fischer, Ber., 64, 244 (1931). 383 Man, Sanderson, and Hauser, J. Am. Chem. Soc., 72, 847 (1950). 384 Spath and Schmid, Ber., 73, 248 (1940); cf. ref. 385. 385 Ulich and Adams, J. Am. Chem. Soc., 43, 660 (1921).

386 Burger and Yost, J. Am. Chem. Soc., 70, 2198 (1948).

³⁶⁷ Clemo and Metcalfe. J. Chem. Soc., 607 (1936); Nenitzescu and Solomonica, Ber., 64, 1927 (1931).

306 Dorris, Sowa, and Nieuwland, J. Am. Chem. Soc., 56, 2689 (1934). 307 Moffett, Hart, and Hoehn, J. Am. Chem. Soc., 69, 1855 (1947); Buu-Hoi and Cagniant, Bull. soc. chim. France, (5) 9, 102 (1942). ³⁰⁸ Connor and McClellan, J. Org. Chem., 3, 570 (1939); Michael and Ross, J. Am. Chem. Soc., 55, 1632 (1933). ³⁰⁹ Michael and Ross, J. Am. Chem. Soc., 53, 1150 (1931); 52, 4598 (1930). ³¹⁰ Kloetzel, I. Am. Chem. Soc., 70, 3571 (1948); Leonard and Beck, ibid., 70, 2506 (1948). ³¹¹ Warner and Moe, J. Am. Chem. Soc., 70, 3470 (1948); 71, 2586 (1949). ³¹² Connor, Fleming, and Clayton, J. Am. Chem. Soc., 58, 1386 (1936). ³¹³ Kohler and Butler, J. Am. Chem. Soc., 48, 1040 (1926). ³¹⁴ Doering and Weil, J. Am. Chem. Soc., 69, 2461 (1947); Boekelheide and Rothchild, ibid., 71, 882 (1949). ³¹⁵ Connor and Andrews, J. Am. Chem. Soc., 56, 2713 (1934); Bartlett and Woods, ibid., 62, 2937 (1940); Mannich and Koch, Ber., 75, 803 (1942); Dey and Linstead, J. Chem. Soc., 1065 (1935); Kohler, J. Am. Chem. Soc., 44, 843 (1922); Holden and Lapworth, J. Chem. Soc., 2368 (1931). ³¹⁶ Kohler, Graustein, and Merrill, J. Am. Chem. Soc., 44, 2536 (1922); Kohler and Souther, ibid., 44, 2903 (1922). ³¹⁷ Lin et al., J. Chem. Soc., 72 (1937); Rapson and Robinson, ibid., 1538 (1935); Cook and Linstead, ibid., 959 (1934). ³¹⁸ Koelsch, J. Am. Chem. Soc., 65, 437 (1943). ³¹⁹ Weiss and Hauser, J. Am. Chem. Soc., 71, 2026 (1949). 320 Levine and Hauser, J. Am. Chem. Soc., 66, 1768 (1944); cf. ref. 327. 321 Walker et al., J. Am. Chem. Soc., 68, 672 (1946). 322 Baumgarten, Levine, and Hauser, J. Am. Chem. Soc., 66, 862 (1944). 325 Hauser, Abramovitch, and Adams, J. Am. Chem. Soc., 64, 2714 (1942). 324 Wallingford, Homeyer, and Jones, J. Am. Chem. Soc., 63, 2056 (1941). 325 Wallingford, Homeyer, and Jones, J. Am. Chem. Soc., 63, 2252 (1941). 326 Soloway and LaForge, J. Am. Chem. Soc., 69, 2677 (1947); Green and La-Forge, ibid., 70, 2287 (1948). 327 Jackman et al., J. Am. Chem. Soc., 70, 2885 (1948); cf. ref. 320. ³²⁸ LaForge, Green, and Gersdorff, J. Am. Chem. Soc., 70, 3708 (1948). 329 Jackman, Bergman, and Archer, J. Am. Chem. Soc., 70, 499 (1948). 330 Weiss and Hauser, J. Am. Chem. Soc., 71, 2023 (1949). 331 Horning and Finelli, Org. Syntheses, 30, 43 (1950); J. Am. Chem. Soc., 71, 3204 (1949); Chamberlain et al., ibid., 57, 353 (1935); cf. refs. 154 and 333. 332 Croxall and Schneider, J. Am. Chem. Soc., 71, 1257, 1261 (1949). 333 Wallingford, Jones, and Homeyer, J. Am. Chem. Soc., 64, 576 (1942). 334 Wallingford and Jones, J. Am. Chem. Soc., 64, 578 (1942). 335 Levine and Hauser, J. Am. Chem. Soc., 68, 760 (1946). 336 Swamer and Hauser, I. Am. Chem. Soc., 72, 1352 (1950). 337 Rising and Zee, J. Am. Chem. Soc., 50, 1212 (1928). 338 Rising and Zee, J. Am. Chem. Soc., 49, 544 (1927); Flürscheim and Holmes, I. Chem. Soc., 2237 (1928). 339 Lund, Ber., 67, 938 (1934). 340 Buckley, Charlish, and Rose, J. Chem. Soc., 1514 (1947); Kohler and Potter,

I. Am. Chem. Soc., 57, 1318 (1935).

341 Levene and Meyer, Org. Syntheses, Coll. Vol. 11, 288 (1943); Souther, J. Am. Chem. Soc., 46, 1303 (1924).

342 Keach, J. Am. Chem. Soc., 55, 3440 (1933); cf. ref. 147.

388 Linville and Elderfield, J. Org. Chem., 6, 271 (1941). 389 Wagner and Moore, J. Am. Chem. Soc., 72, 974 (1950); cf. ref. 392. ³⁹⁰ Aston et al., J. Am. Chem. Soc., 64, 301 (1942). 391 Aston and Greenburg, J. Am. Chem. Soc., 62, 2590 (1940). 392 Wagner, J. Am. Chem. Soc., 71, 3214 (1949). 393 Suter and Evans, J. Am. Chem. Soc., 60, 537 (1938). 394 Wagner and Moore, J. Am. Chem. Soc., 72, 1873 (1950). 395 Faworsky, J. prakt. Chem., 88, 641 (1913). 396 Newman and Fones, J. Am. Chem. Soc., 69, 1046 (1947). 397 Bourne et al., I. Chem. Soc., 2976 (1949). 398 Feuer, Hass, and Warren, J. Am. Chem. Soc., 71, 3078 (1949). 399 Woodward and Kornfeld, Org. Syntheses, 29, 44 (1949). 400 Church and Lynn, Ind. Eng. Chem., 42, 772 (1950). 401 Buckles and Mock, J. Org. Chem., 15, 680 (1950). 402 Wagner, J. Chem. Education, 27, 245 (1950). 403 Heyboer and Staverman, Rec. trav. chim., 69, 794 (1950). 404 Smith and McKenzie, J. Org. Chem., 15, 74 (1950). 405 Frank and Reiner, J. Am. Chem. Soc., 72, 4183 (1950). 406 Emerson and Patrick, J. Org. Chem., 14, 792 (1949). 407 Newman and Beal, J. Am. Chem. Soc., 72, 5163 (1950). 408 Wagner and Tome. J. Am. Chem. Soc., 72, 3477 (1950). 409 Weizmann, Bergmann, and Sulzbacher, J. Org. Chem., 15, 919 (1950). ⁴¹⁰ van Tamelen and Van Zyl, J. Am. Chem. Soc., 72, 2979 (1950). 411 Avison and Morrison, J. Chem. Soc., 1473 (1950). 412 Smith and McKenzie, J. Org. Chem., 15, 78 (1950). 413 Siegel and Bergstrom, J. Am. Chem. Soc., 72, 3816 (1950). 414 Bahner and Kite, J. Am. Chem. Soc., 71, 3597 (1949). 415 Leonard and Felley, J. Am. Chem. Soc., 71, 1758, 1760 (1949); 72, 2542 (1950). ⁴¹⁶ Smith and Engelhardt, I. Am. Chem. Soc., 71, 2678 (1949); Kloetzel, ibid., 69, 2272 (1947). 417 Schmidt and Shirley, J. Am. Chem. Soc., 71, 3804 (1949). ⁴¹⁸ Adelman, J. Org. Chem., 14, 1057 (1949); Swern and Jordan, Org. Syntheses, 30, 106 (1950). 419 Wagner and Moore, J. Am. Chem. Soc., 72, 2887 (1950). 420 Alexander, McCollum, and Paul, J. Am. Chem. Soc., 72, 4791 (1950). 421 Marvel, Myers, and Saunders, J. Am. Chem. Soc., 70, 1695 (1948). 422 Hsing and Li, J. Am. Chem. Soc., 71, 774 (1949). 423 Moffatt, Newbery, and Webster, J. Chem. Soc., 452 (1946). 424 Hennion, Hinton, and Nieuwland, J. Am. Chem. Soc., 55, 2858 (1933). 425 Linstead et al., J. Chem. Soc., 3326-3335 (1950); Swann, Oehler, and Pinkney, Org. Syntheses, 21, 48 (1941); Fichter and Holbro, Helv. Chim. Acta, 21, 141 (1938). 426 Fuson, Corse, and Horning, J. Am. Chem. Soc., 61, 1290 (1939). 427 Newman and Walborsky, J. Am. Chem. Soc., 72, 4236 (1950). 428 Le Fave and Scheurer, J. Am. Chem. Soc., 72, 2464 (1950). 429 Norton, J. Am. Chem. Soc., 72, 3527 (1950). 430 Cope and Field, J. Org. Chem., 14, 856 (1949). 431 Lund and Voigt, Org. Syntheses, Coll. Vol. II, 594 (1943). 432 Corson and Sayre, Org. Syntheses, Coll. Vol. II, 596 (1943).

15

Lactones

CONTENTS

D 1 0 **D**

	PAGE
323. Intramolecular Esterification of Hydroxy Acids	533
324. Cyclization of Olefinic Acids	534
325. Cyclization of Halo Acids	535
326. Reduction of Anhydrides	535
327. Condensation of Ketene with Carbonyl Compounds	536
328. Dehydrogenation of Diols	536
329. Olefinic Lactones by Pyrolysis of 7-Keto Acids	537
330. Keto Lactones by Condensation Reactions	537
Table 59. Lactones	538
References	540

323. Intramolecular Esterification of Hydroxy Acids

METHOD

 $RCH(OH)CH_2CH_2CO_2H \stackrel{H^+}{\longleftrightarrow} RCHCH_2CH_2CO + H_2O$

The equilibrium between a hydroxy acid and its lactone is catalyzed by hydrogen ion. This equilibrium favors lactone formation from γ - and δ -hydroxy acids; removal of the water formed completes the reaction. β -Lactones are not obtained directly by this method. Under forced conditions γ -lactones are formed from certain β -hydroxy acids, presumably by dehydration of the latter to olefinic acids followed by lactonization according to method 324.^{19, 20} Direct lactonization of hydroxy acids having the hydroxyl group in the *epsilon* or a more remote position in the chain is difficult. Competing interesterification reactions occur which lead to dimers and polyesters. Under certain conditions, however, ϵ -caprolactone has been obtained in 63% yield.¹¹

Many of the methods listed for the preparation of hydroxy acids (Table 47) have been used to prepare lactones directly. Reduction of levulinic acid, CH₃COCH₂CH₂CO₂H, by sodium and alcohol or by catalytic hydrogenation over Raney nickel leads to γ -valerolactone.¹ δ -Caprolactone is prepared in a similar manner from γ -acetobutyric acid.⁵ Other δ -lactones have been formed by catalytic hydrogenation of the corresponding aldehydo

acids.²² A number of γ -substituted- γ -lactones are best made by the action of Grignard reagents on levulinic esters followed by acid hydrolysis.^{2-4, 6}

 $CH_{3}COCH_{2}CH_{2}CO_{2}R \xrightarrow{\mathbb{R}'MgX} CH_{3}C(\mathbb{R}')(OMgX)CH_{2}CH_{2}CO_{2}R \xrightarrow{H_{2}O}_{H^{+}} CH_{3}C\mathbb{R}'CH_{2}CH_{2}CO_{2}R \xrightarrow{H_{2}O}_{H^{+}} CH_{3}C\mathbb{R}'CH_{2}$

Sodiomalonic esters behave like organometalic reagents toward alkene oxides. Acid hydrolysis of the adduct accompanied by decarboxylation and lactonization furnishes α -substituted lactones in high yields.^{12, 30} γ -Substituted γ -butyrolactones result from sodiomalonic ester and substituted ethylene oxides.^{13, 15, 17, 29}

$$\operatorname{RCH}(\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)_2 \xrightarrow[R'CH-CH_2]{\operatorname{NaOC}_2\operatorname{H}_5;}_{O} \operatorname{NaOCHR'CH}_2\operatorname{CR}(\operatorname{CO}_2\operatorname{C}_2\operatorname{H}_5)_2 \xrightarrow[H^+]{\operatorname{H}_2\operatorname{O}}_{H^+}$$

Cyanoacetic ester may be used in place of malonic ester. The intermediate α -cyano lactones are isolated in good yields.¹⁶

Other functional groups can be present in the molecule during lactonization. Thus, *olefinic*,^{13, 24} *halo*,¹⁷ *hydroxy*,^{8-10, 27} and *carboxy*⁷ lactones have been prepared by this method.

324. Cyclization of Olefinic Acids

$$RCH = CHCH_2CO_2H \rightarrow RCHCH_2CH_2CO$$

 β , γ -Olefinic acids are readily converted to γ -lactones by the action of boiling 50% sulfuric acid.^{23, 34-36} Branching on the γ -carbon atom greatly increases the ease of lactonization. The same lactones are obtained from the more readily available α , β -olefinic acids, which are isomerized and lactonized under the same conditions.

Vinylacetic acid, $CH_2 = CHCH_2CO_2H$, is converted mainly to its α , β -isomer rather than to γ -butyrolactone.²³

The lactonization of allylacetic acid, $CH_2 = CHCH_2CH_2CO_2H$, gives γ -valerolactone free from the δ -isomer, whereas lactonization of γ , δ -iso-heptenoic acid, $(CH_3)_2C = CHCH_2CH_2CO_2H$, involves six-membered ring

formation to give the corresponding δ -lactone. In the latter case the lactonization is an equilibrium reaction above 200° .³⁸

325. Cyclization of Halo Acids

$$XCH_2CH_2CH_2CO_2H \xrightarrow{NaOC_2H_5} CH_2CH_2CH_2CC$$

Several variations of this reaction are possible. The halo acid is boiled with a solution of sodium in absolute alcohol as in the formation of γ -butyrolactone (67%),³⁹ or the dry sodium salt of a halo acid is heated under vacuum as in the preparation of δ -valerolactone (30%).³⁶ The corresponding esters are sometimes refluxed with alcoholic potassium hydroxide³⁹ or decomposed thermally at 150-180° whereby a molecule of an alkyl halide is eliminated.⁴² The latter process is valuable in making α -alkyl- γ -lactones of higher-molecular-weight acids since the γ -bromo esters are available by the free-radical addition of α -bromo esters to 1-olefins.

$$R_{2}CBrCO_{2}CH_{3} \xrightarrow{R'CH=CH_{2}} R'CHBrCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{180^{\circ}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{180^{\circ}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{R'CH=CH_{2}CR_{2}CO_{2}CH_{3}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{R'CH=CH_{2}CR_{2}CO_{2}CH_{3}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{R'CH=CH_{2}CR_{2}CO_{2}CH_{3}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{R'CH=CH_{2}CR_{2}CO_{2}CH_{3}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} \xrightarrow{R'CHCH_{2}CR_{2}CO_{2}CH_{3}} R'CHCH_{2}CR_{2}CO_{2}CH_{3} R'CHCH_{2}CR_{2}CO_{2}CH_{3}} R'CHCHCH_{2}CR_{2}CO_{2}CH_{3}} R'CHCHCH_{2}CR_{2}CO_{2}CH_{3}} R'CHCHCH$$

The α -bromine atom is stable during lactone formation from α , γ -dibromobutyryl bromide; the yield of α -bromo lactone is 94%.²⁵ Under similar conditions the β -bromine atom of β , γ -dibromohexanoic acid is eliminated as hydrogen bromide to give the lactone of 4-hydroxy-2-hexenoic acid.²⁶

Cyclization of alkali salts of 15-bromopentadecanoic acid has been studied using various solvents and concentrations. Best yields of the ω -lactone are obtained from the potassium salt in methyl ethyl ketone.⁴¹

A related reaction which probably involves silver salts of ω -halo acids as intermediates is useful in the preparation of β -substituted- γ -lactones (cf. method 61). The silver salts of β -substituted glutaric acids are treated with iodine at 100-150°, whereby the lactones are produced in 30-50% yields.⁴⁰

326. Reduction of Anhydrides

$$(CH_2)_3 \cap \xrightarrow{Na}_{C_2H_3OH} (CH_2)_3 O \xrightarrow{CH_2}_{CO}$$

Substituted δ -valerolactones are formed by reduction of the corresponding glutaric anhydrides by sodium in absolute ethanol. Most of the product

is hydrolyzed during the isolation procedure, but the resulting hydroxy acid is lactonized by refluxing with mineral acid. In general, the yields are poor (25-50%), although β , β -dimethyl- δ -valerolactone is reported in 76% yield by this method.⁴⁴

The dihydroxy lactone from L-threonic acid is prepared from L-dibenzoyltartaric anhydride by catalytic hydrogenation over palladium.⁴³ The substituted anhydride is formed from tartaric acid and benzoyl chloride.

327. Condensation of Ketene with Carbonyl Compounds

 $CH_{3}CHO + CH_{2} = C = O \xrightarrow{ZnCl_{2}} CH_{3}CHCH_{2}CO$

In the presence of suitable catalysts, β -lactones are formed by the action of ketene on aldehydes and ketones. Many catalysts have been used; those preferred for aldehydes include boric acid, triacetyl borate, zinc thiocyanate, and zinc chloride. Ketones require stronger catalysts such as boron trifluoride etherate. The reactions are conducted at low temperatures (0-10°) to minimize polymerization of the product. Yields of β -lactones from formaldehyde and acetaldehyde are 85%.⁴⁷ The β -lactones formed from conjugated olefinic ketones decompose to dienoic acids which isomerize to olefinic δ -lactones.⁴⁸

 $RCH = CHC(CH_3)CH_2CO \rightarrow RCH = CHC(CH_3) = CHCO_2H \rightleftharpoons O$

328. Dehydrogenation of Diols

$$CH_{3}CH(OH)CH_{2}CH_{2}CH_{2}CH_{2}OH \xrightarrow{CuCrO} CH_{3}CHCH_{2}CH_{2}CH_{2}CO$$

Aliphatic glycols having one primary hydroxyl group and a second hydroxyl group in the 4- or 5-position dehydrogenate to γ - and δ -lactones, respectively. Loss of hydrogen occurs at 200-210° over copper chromite catalyst. γ -Butyrolactone and γ - and δ -valerolactones have been prepared by this procedure.^{28, 32} The reaction may go through the lactole form of the hydroxy aldehyde since δ -valerolactone is readily prepared by air oxidation of the corresponding hydroxy aldehyde.³³ 329. Olefinic Lactones by Pyrolysis of 7-Keto Acids 49

$$CH_{3}COCH_{2}CH_{2}CO_{2}H \rightarrow CH_{3}C = CHCH_{2}CO + H_{2}O$$

330. Keto Lactones by Condensation Reactions 50

(1)
$$RCHO + CH_3COCH_2COCO_2C_2H_5 \xrightarrow{Base} RCHCH(COCH_3)COCO$$

(2)
$$CH_3CH_2CO_2C_2H_5 \xrightarrow{(CO_2C_2H_5)_2} CH_3CH(CO_2C_2H_5)COCO_2C_2H_5 \xrightarrow{HCHO;} HCI$$

$$CH_2CH(CH_3)COCO + CO_2 + C_2H_5OH$$

536

C_n

C4

C₃ Propionolactone

 β -Butyrolactone

 γ -Butyrolactone

Isocrotonolactone

bromide

C. Y-Valerolactone

lactone

lactone

lactone

 $C_6 \gamma$ -Caprolactone

δ-Caprolactone

€-Caprolactone

lactone

acid lactone

butyrolactone

 δ -Valerolactone

 α -Bromo- γ -butyrolactone

 β -Hydroxybutyrolactone

 β -Methyl- γ -butyrolactone

 δ -Chloro- γ -valerolactone

4-Hydroxy-2-pentenoic acid

5-Hydroxy-2-pentenoic acid

a-Hydroxy-Y-valerolactone

a-Hydroxy-8-valerolactone

a-Keto-\$-methyl->-butyro-

a-Methyl-Y-valerolactone

 β -Methyl- δ -valerolactone

 α -Ethyl- γ -butyrolactone

 β -Ethyl- γ butyrolactone

a, a-Dimethylbutyrolactone

 γ, γ -Dimethylbutyrolactone

4-Hydroxy-2-hexenoic acid

 γ -Vinyl- γ -butyrolactone

a-Hydroxy- β , β -dimethyl- γ -

a-Amino- γ , γ -dimethyl- γ butyrolactone

 α -Cyano- γ -valerolactone

 β,β -Dimethyl- γ -butyrolactone

4-Hydroxy-4-methyl-2-pentenoic

a-Amino-Y-butyrolactone hydro-

Compound

LACTONES

TABLE 59. LACTONES

Method

327

327

323

325

325

19

67

325

323

79

323

328

323

328

325

323

323

323

323

323

330

324

323

323

324

326

323

325

323

325

323

325

323

323

323

324

323

Yield

(%)

84

85

72 1

67

30 t

53

82

94

35

55

81

94

87

100

71

35

67

68 t

61 +

45

64

83

74

50 t

63

81

25

88 t

40

55 t

30

62 t

20 1

60 t

64 †

81

85

61 t

15.47

1547

15³¹

15 ³⁹

1523

1510

1545

15²⁵

1510

15²⁵

5²

15¹

15 28

1514

15 32

1540

1517

1524

1524

15°

15⁹

15 50

1534

155

1511

1536

1540

1512

1540

1518

15 40

156

15 26

1524

1513

15⁸

15 37

1516

Ch. 15

Chapterref. B.p./mm., n^t_D, (M.p.)

61/10

84/12

148/4

(218)

1.431925

80-86/7

201-205

28/3, 1.4135

202-206, 1.434327

131/8, 1.509425

90/10, 1,430125

91/16, 1.4290²⁶

105/8, 1.4553 25

84/10, 1.453221

103/10, 1.482717

133/7, (53)

88/12

89/0.2

124/10

230

90/12

99/12

196

214/740

89/12, (56)

201-206/760

95/11, 1.462²¹

80/10, 1.4470 18

75/2, 1.460325

109/0.35, 1.455825

120/15

(209)

129/12, (92)

86/10, 1.4387

99/2, 1.460824

81/10, 1.4289

134

130-135/20

TABLE 59. LACTONES

TABLE 59	(continued,
----------	-------------

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., $n_{\rm D}^{t}$, (M.p.
с,	γ -Pimelolactone	323	96	157	174/13
C,	β -Ethyl- δ -valerolactone	326	28	15 **	104/13
	β , β -Dimethyl- δ -valerolactone	326	76	15 **	119/20, (29)
	a-n-Propyl-y-butyrolactone	323	70 t	15 ³⁰	107/15, 1.4410
	eta -Methyl- eta -ethyl- γ -butyro- lactone	325	40	15 ⁴⁰	98/10
	γ -Methyl- γ -ethylbutyrolactone	323	65 t	154	103/15, 1,4412
	Cyclopentanol-2-acetic acid lactone	324	78	15 ³⁵	124/17
	β -Methyl- β , γ -hexeno- δ -lactone	327	95	15 ⁴⁸	85/5, 1.4640 ³⁰
	4-Hydroxy-2-heptenoic acid lactone	323	82 †	1524	73/0.05, 1.4596 ¹⁸
	α-Hydroxy-β-methyl-β-ethyl-γ- butyrolactone	323	76 †	1527	140/20
	δ -Ethoxy- γ -valerolactone	115	90	1517	128/14
	a-Cyano- γ -isocaprolactone	323	82†	1516	131/1.4, 1.4515 ²⁵
C ₈	γ -Caprylolactone	323	70 t	15 ²⁹	127/16, 1,4451 ¹⁹
	eta -Methyl- eta -ethyl- δ -valero- lactone	326	30	15**	122/10
	β -t-Butyl- γ -butyrolactone	323	94	15 20	117/22. (100)
	γ-Methyl-γ-propylbutyro- lactone	323	73 t	15 ³	129/25
	eta,eta -Diethyl- γ -butyrolactone	325	50	15 ⁴⁰	117/12
	trans-Cyclohexanol-2-acetic acid lactone	323	77 †	15 15	119/6
	3-Methyl-3-hydroxycyclohexane- carboxylic acid lactone	324	77	1536	(44)
	Phthalide	323	71†	15 21	(73)
C,	eta,eta -Diethyl- δ -valerolactone	326	50	15 ⁴⁰	144/15
	γ , γ -Diethyl- δ -valerolactone	323	80 †	15 22	101/2.5, 1.4634 ²⁵
	γ-Methyl-γ- <i>n</i> -butylbutyro- lactone	323	60 t	154	86/2, 1.4452
C 10	γ -Decanolactone	325	48	15 42	84/0.2, 1.4489
	eta-Cyclohexylbutyrolactone	323	79	15 ¹⁹	125/1.2, 1.4794 25
	γ -Phenyl- γ -butyrolactone	323	72 †	15 13	130/1.5, (46)
CII	γ -Methyl- γ -phenylbutyrolactone	323	50 t	15 ²	129/3, 1.5310
C 15	ω -Pentadecanolactone	325	85	15 41	122/0.1, (37)
	a,a -Diphenyl- β -propiolactone	325	61	15 52	178/15, (92)
	Benzylphthalide		100	15 ⁴⁶	190-200/5, (61)

REFERENCES FOR CHAPTER 15

¹Schuette and Sah, J. Am. Chem. Soc., 48, 3163 (1926); Christian, Brown, and Hixon, ibid., 69, 1961 (1947). ²Amold and Buckley, J. Am. Chem. Soc., 71, 1782 (1949). ³Cason et al., J. Am. Chem. Soc., 66, 1765 (1944). ⁴Frank et al., J. Am. Chem. Soc., 70, 1380 (1948). ⁵ Winterfield and Rönsberg, Arch. Pharm., 274, 44 (1936). ⁶ Arnold, Buckley, and Richter, J. Am. Chem. Soc., 69, 2323 (1947). 'Tchitchibabine, Bull. soc. chim. France, (5) 8, 672 (1941. *Carter and Ney, J. Am. Chem. Soc., 63, 313 (1941); Stiller et al., ibid., 62, 1787 (1940); cf. ref. 9. ⁹ Reichstein and Grüssner, Helv. Chim. Acta, 23, 650 (1940). ¹⁰ Glattfeld and Rietz, I. Am. Chem. Soc., 62, 974 (1940). ¹¹ Van Natta, Hill, and Carothers, J. Am. Chem. Soc., 56, 455 (1934); 58, 183, (1936); Stoll and Rouve, Helv. Chim. Acta, 18, 1087 (1935). ¹² Meincke and McElvain, J. Am. Chem. Soc., 57, 1444 (1935). ¹³ Russell and Vanderwerf, J. Am. Chem. Soc., 69, 11 (1947). ¹⁴Guest, J. Am. Chem. Soc., 69, 301 (1947). ¹⁵Newman and Vanderwerf, J. Am. Chem. Soc., 67, 235 (1945). ¹⁶ Glickman and Cope, J. Am. Chem. Soc., 67, 1012 (1945). ¹⁷ Winterfeld and Holschneider, Arch. Pharm., 277, 227 (1939). ¹⁸Hudson and Hauser, J. Am. Chem. Soc., 63, 3162 (1941). ¹⁹ Blout and Elderfield, J. Org. Chem., 8, 29 (1943). ²⁰ Newman and Rosher, 1. Org. Chem., 9, 221 (1944). ²¹ Gardner and Naylor, Org. Syntheses, Coll. Vol. II, 526 (1943). ²² Bruson and Riener, J. Am. Chem. Soc., 66, 58 (1944). ²³ Boorman and Linstead, J. Chem. Soc., 578 (1933). 24 Havnes and Jones. J. Chem. Soc., 954 (1946). 25 Plieninger, Chem. Ber., 83, 267 (1950); cf. ref. 45. ²⁶ Kuhn and Jerchel, Ber., 76, 417 (1943). ²⁷ Wieland and Möller, Chem. Ber., 81, 321 (1948). ²⁸ Kyrides and Zienty, J. Am. Chem. Soc., 68, 1385 (1946). 29 Rothstein, Bull. soc. chim. France, (5) 2, 1940 (1935). ³⁰ Rothstein, Bull. soc. chim. France, (5) 2, 85 (1935). ³¹Nelson and Cretcher, J. Am. Chem. Soc., 52, 3703 (1930). ³² Schniepp and Geller, J. Am. Chem. Soc., 69, 1545 (1947). ³³ Bremmer, Jones, and Taylor, U. S. pat. 2,429,799 (1947); C. A. 42, 923 (1948). ³⁴Linstead, J. Chem. Soc., 115 (1932). ³⁵ Linstead and Meade, J. Chem. Soc., 942 (1934). ³⁶ Boorman and Linstead, J. Chem. Soc., 258 (1935). ³⁷ Fillman and Albertson, J. Am. Chem. Soc., 70, 171 (1948). ³⁸ Linstead and Rydon, I. Chem. Soc., 580 (1933). ³⁹ Marvel and Birkhimer, J. Am. Chem. Soc., 51, 261 (1929); Blicke, Wright, and Zienty, ibid., 63, 2488 (1941). 40 Sircar, J. Chem. Soc., 898 (1928); Pattison and Saunders, ibid., 2747 (1949). ⁴¹ Stoll, Helv. Chim. Acta, 30, 1393 (1947). 42 Kharasch, Skell, and Fisher, J. Am. Chem. Soc., 70, 1059 (1948). 43 Micheel and Peschke, Ber., 75, 1603 (1942). 44 Rydon, J. Chem. Soc., 595 (1936). 45 Livak et al., J. Am. Chem. Soc., 67, 2219 (1945); cf. ref. 25.

⁴⁶ Natelson and Gottfried, J. Am. Chem. Soc., 58, 1434 (1936); Weiss, Org. Syntheses, Coll. Vol. II, 61 (1943). 47 Hagemeyer, Ind. Eng. Chem., 41, 765 (1949).

44 Young, I. Am. Chem. Soc., 71, 1346 (1949).

* Thiele. Ann., 319. 144 (1901).

- ⁵⁰ Nield, J. Am. Chem. Soc., 67, 1147 (1945); Fleck et al., Helv. Chim. Acta, 33, 130 (1950); Puetzer, Nield, and Barry, J. Am. Chem. Soc., 67, 832 (1945).
- ⁵² Cavallito, Fruehauf, and Bailey, J. Am. Chem. Soc., 70, 3724 (1948).

52 Zaugg, J. Am. Chem. Soc., 72, 2999 (1950).

METHODS 332-334

decomposition of the imino ester hydrochloride to an amide and an alkyl chloride.^{10,12} This reaction may be minimized by keeping the temperature of alcoholysis below 40°. Imino esters of the type $C_6H_sCHRC(OCH_3)=NH\cdotHCl$ undergo alcoholysis with methanol to give dimethyl ether and esters, $C_6H_sCHRCO_2CH_3$, in addition to orther esters.¹² Ortho esters with chloro⁹ or ethoxyl⁷ groups in the *alpba* position or a cyano group in the *alpba* or *beta* position have been made. A variation in the procedure allows the preparation of a diortho ester from succinonitrile.⁵

333. Interaction of Trihalides and Sodium Alkoxides

$$CHCl_3 + 3NaOR \rightarrow CH(OR)_3 + 3NaCl$$

This reaction is similar to the Williamson synthesis of ethers (method 115). Orthoformates in which the alkyl group is methyl, ethyl, *n*-propyl, isopropyl, *n*-butyl, isobutyl, and isoamyl have been prepared from chloroform.² The yield of ethyl orthoformate is 45%.³ Mixed esters are obtained from a mixture of sodium alkoxides and chloroform.⁴ Benzotrichloride, $C_6H_5CCl_3$, is converted to methyl orthobenzoate in 86% yield by sodium methoxide in methanol.¹⁸

334. Halogenation of Ortho Esters

$$RCH_2C(OR')_3 \xrightarrow{Br_2} RCHBrC(OR')_3$$

Ortho esters may be brominated in pyridine solution. The reaction takes place rapidly at 10-30° to give good yields of α -bromoörtho esters.^{9,14} Higher yields are obtained when a mixture of carbon tetrachloride and pyridine is used as solvent.¹¹ The reaction fails for ethyl orthoisobutyrate.¹⁶ Two α -hydrogen atoms of ethyl orthoacetate have been replaced by bromine atoms to give ethyl orthodibromoacetate (53%).⁷ Bromine is replaced by iodine when an orthobromo ester is heated with sodium iodide in absolute alcohol.⁹ (cf. method 55).

Ortho Esters

CONTENTS

METHOD	PAGE
331. Alcoholysis of Orthothioformates	542
332. Alcoholysis of Imino Ester Hydrochlorides	542
333. Interaction of Trihalides and Sodium Alkoxides	543
334. Halogenation of Ortho Esters	543
Table 60. Ortho Esters	544
References	545

The chemistry of aliphatic ortho esters has been reviewed to 1943, and their preparation by the following four methods, as well as several lesser used reactions, has been treated in detail.¹⁹

331. Alcoholysis of Orthothioformates

 $HC(SC_2H_5)_3 + 3ROH \xrightarrow{Z_nCl_2} HC(OR)_3 + 3C_2H_5SH$

This interchange reaction is a convenient process for making orthoformates.¹ The equilibrium is shifted to the right by removal of the volatile mercaptan to give high yields of the ortho esters. The reaction is catalyzed by Friedel-Crafts type catalysts. The ethyl orthothioformate is available in nearly quantitative yield from ethyl formate and ethyl mercaptan.

332. Alcoholysis of Imino Ester Hydrochlorides

$$\operatorname{RCN} \xrightarrow{\operatorname{R'OH}} \operatorname{RC}(\operatorname{OR'}) = \operatorname{NH} \cdot \operatorname{HCl} \xrightarrow{\operatorname{R''OH}} \operatorname{RC}(\operatorname{OR'})(\operatorname{OR''})_2$$

This is the best reaction for the preparation of ortho esters. The imino ester hydrochlorides are available in excellent yields by partial alcoholysis of nitriles (method 402). In early procedures, the hydrochlorides and excess alcohol were allowed to stand at room temperature for 5 to 40 days.¹³ The time of reaction can be reduced to 6 to 28 hours by carrying out the alcoholysis in refluxing ether solution.⁵ Good yields are common for both steps in the process.¹⁷ The principal side reaction is the thermal

ORTHO ESTERS

Ch. 16

TABLE 60. ORTHO ESTERS

с "	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
С.	Methyl orthobromoacetate	334	70	1615	75/17, 1.450125
C.	Methyl orthopropionate	332	69	16 13	127
	Methyl ortho- β , β , β -trichlo- ropropionate	332	84	16 ^s	92/4, 1.4578 ²⁵
	Methyl orthocyanoacetate	332	65	16 ^s	100/13, 1.421525
C,	Methyl orthoisobutyrate	332	43	16 ¹⁸	136, 1.4003 ²⁵
	Methyl ortho- β -cyanopropionate	332	77	16 ^s	74/0.5, 1.4269 25
	Ethyl orthoformate	331	66	16 ¹	145, 1.3917 ²⁴
		333	45	16 3	
C,	Methyl orthovalerate	332	79	16 11	165, 1.4090 ²⁴
•	Methyl ortho-a-bromovalerate	334	79	1611	95/14, 1.4507 ²⁵
	Methyl ortho-β-carbomethoxy- propionate	332	63	16 °	65/1, 1.4230 ²⁵
	Ethyl orthoacetate	332	78	16 ⁶	145/740
	Ethyl orthochloroacetate	332	73	16 °	69/10
		332	15	16 °	75/13, 1.4199 ²⁵
	Ethyl orthobromoacetate	334	74	16°	78/9, 1.4393 ²⁵
	Ethyl orthodibromoacetate	334	53	167	103/8, 1.4691 ²⁸
	Ethyl orthoiodoacetate	55	60	16 °	97/10, 1. 4660²⁵
C.	Ethyl orthopropionate	332	78	16 °	71/32
•,		332	48	16 ⁸	44/9, 1.4000
	Ethyl ortho-a-bromopropionate	334	67	16 ⁸	73/8, 1.4338 ²⁵
	Ethyl orthocyanoacetate	332	62	16 ^s	84/2, 1.4189 ²⁵
C	Ethyl orthoethoxyacetate	332	47	16 ⁷	70/10, 1.4055 ²⁵
υ n	Methyl orthoben zoate	333	86	16 ¹⁸	115/25, 1.4858 ²⁵
с.,	Ethyl ortho-a-bromoisovalerate	334	67	16 14	64/1.3, 1.4408 ²⁵
- 11	Ethyl orthocarboethoxyacetate	332	82	16 ⁵	121/18, 1.4220 ²⁵
	Methyl orthophenylacetate	332	46	16 ¹⁸	74/0.5
с.,	Methyl appenviorthopropionate	332	21	16 1 2	71/0.5, 1.4928 ²⁵
C 12	Phenyl diethyl orthochlo-	332	69	16 10	79/10, 1.4988
	roacetate Phenyl diethyl orthobromo- acetate	332	54	16 ¹⁰	85/2, 1.5048

For explanations and symbols see pp. xi-xii,

REFERENCES FOR CHAPTER 16

REFERENCES FOR CHAPTER 16

¹ Mochel, Agre, and Hanford, J. Am. Chem. Soc., 70, 2268 (1948). ²Sah and Ma, J. Am. Chem. Soc., 54, 2964 (1932). ³Kaufmann and Dreger, Org. Syntheses, Coll. Vol. I, 258 (1941). ⁴Post and Erickson, J. Am. Chem. Soc., 55, 3851 (1933). ⁸ McElvain and Schroeder, J. Am. Chem. Soc., 71, 40 (1949). ⁶ Mc Elvain and Nelson, J. Am. Chem. Soc., 64, 1825 (1942). 'McElvain and Walters, J. Am. Chem. Soc., 64, 1963 (1942). * Walters and McElvain, J. Am. Chem. Soc., 62, 1483 (1940). ⁹ Beyerstedt and McElvain, J. Am. Chem. Soc., 59, 1273 (1937). ¹⁰ McElvain and Fajardo-Pinzon, J. Am. Chem. Soc., 67, 690 (1945). ¹¹ Mc Elvain, Kent, and Stevens, J. Am. Chem. Soc., 68, 1922 (1946). ¹² McElvain and Stevens, J. Am. Chem. Soc., 69, 2663 (1947). ¹³Sah, J. Am. Chem. Soc., 50, 516 (1928); Brooker and White, ibid., 57, 2485 (1935). 14 McElvain, Clarke, and Jones, J. Am. Chem. Soc., 64, 1969 (1942). ¹⁵ McElvain, Anthes, and Shapiro, J. Am. Chem. Soc., 64, 2529 (1942).

¹⁶ McElvain and Stevens, J. Am. Chem. Soc., 69, 2667 (1947). ¹⁷ McElvain, Chem. Revs., 45, 463 (1949).

¹⁸ McElvain and Venerable, J. Am. Chem. Soc., 72, 1661 (1950).

¹⁹ Post, Aliphatic Orthoesters, Reinhold Publishing Corp., New York, 1943, pp. 11-44.

METHODS 335-336

Oxalyl chloride is the simplest diacyl balide. It is obtained in 55% yield from oxalic acid and phosphorus pentachloride.⁶⁸ Other diacyl halides are made in good yields by the thionyl chloride procedure.^{22,27} Succinic and glutaric acids, however, give anhydrides, which are then converted to the halides by method 337.

Olefinic acyl balides are made from the corresponding acids by treatment with thionyl chloride^{28-30,32} or phosphorus pentachloride.^{63,67}

A variety of *balo acyl balides* have been made by use of the above reagents. Table 61 includes examples of compounds containing halogen atoms in *alpha*, *beta*, *gamma*, and *delta* positions of an aliphatic carbon chain as well as on the aromatic nucleus. All four halogen elements are represented.

Alkoxy and phenoxy^{10,39} acyl balides in which the ether group is on an aromatic nucleus¹⁰ or an aliphatic chain^{19,36,41} are made with thionyl chloride.

Carboalkoxy acyl balides are made from mono esters of dibasic acids and thionyl chloride or phosphorus pentachloride. Examples are numerous.^{46,47,52,62} Halides with the ester group in the *beta* position are unstable to prolonged heating. Alkyl halide is eliminated with the formation of an anhydride.^{46,54} Under certain conditions a "rearrangement" occurs in the preparation of ester acid chlorides. The product obtained is a mixture of the expected compound and its isomer in which the ester and acid chloride groups are interchanged, viz., RO₂CCHR'(CH₂)_nCO₂H \rightarrow RO₂C(CH₂)_nCHR'COCI. The cyclic anhydride is a likely intermediate.^{48,69}

Nitro^{4, 45, 59} and cyano⁶⁴ groups may be present in the carboxylic acid during its conversion to the halide.

336. Action of Inorganic Acid Halides on Carboxylic Esters or Salts

$$RCO_2Na \xrightarrow{PCi_3, PCi_5, POCi_3,} RCOCI$$

In this procedure no possibility of the formation of water exists at any stage of the reaction. The method has been used for the preparation of several α,β -olefinic acyl balides from phosphorus oxychloride,⁷³ although the procedure is said to be less satisfactory than treatment of the free acid with phosphorus trichloride (method 335).⁶⁷

The method is applied to the greatest extent in making *fluoro acyl* balides such as fluoroacetyl chloride from sodium fluoroacetate and phosphorus pentachloride.⁷⁵ The products are distilled from a mixture of the dry reagents, usually without a solvent. Phosphorus trichloride⁷⁴ and phosphorus oxychloride⁷⁶ have also been used for the preparation of compounds of this type.

Acyl Halides

CONTENTS

METHOD	PAGE
335. Interaction of Carboxylic Acids and Inorganic Acid Halides	. 546
336, Action of Inorganic Acid Halides on Carboxylic Esters or Salts	. 547
337. Action of Inorganic Acid Halides on Anhydrides	. 548
338. Action of Hydrogen Halide or Metallic Halides on Acyl Halides	. 548
339. Interaction of Carboxylic Acids and Acyl Halides	. 549
340. Chlorination of Aldehydes	. 549
Table 61. Acyl Halides	. 550
References	. 555

335. Interaction of Carboxylic Acids and Inorganic Acid Halides

$RCO_2H \xrightarrow{SOCl_2, PX_3, etc.} RCOX$

The conversion of a carboxylic acid to its halide is usually accomplished by thionyl chloride or phosphorus halides. Phosphorus trichloride and glacial acetic acid give acetyl chloride (67%).¹⁵ The other product is phosphorus acid. Phosphorus pentachloride is converted to phosphorus oxychloride (b.p. 105°), from which the acyl halide is sometimes separated with difficulty. This reagent, however, finds use in the preparation of certain higher-molecular-weight halides.^{53,65,79} Most acyl bromides are made from phosphorus tribromide.^{56,57}

The most convenient reagent for the preparation of acyl chlorides is thionyl chloride. The halides are formed in excellent yields at room temperature or upon refluxing gently for a short time. The other products of the reaction are the gases hydrogen chloride and sulfur dioxide. Good directions are given for the preparations of benzoyl chloride (91%),¹⁸ ethylphenylacetyl chloride (94%),³ and mesitoyl chloride (97%).¹ Benzene is used as a solvent,^{9,14,24} and sometimes a few drops of pyridine are added.⁶ Thionyl chloride has been used to prepare aliphatic acyl halides containing eleven to nineteen carbon atoms.^{21,25}

Acyl halides free from traces of phosphorus or sulfur compounds may be made from carboxylic acids and silicon tetrachloride⁵⁸ or oxalyl halides (method 339). Ch. 17

Ethoxalyl chloride, $C_2H_sO_2CCOCl$, is made either by the action of phosphorus pentachloride on ethyl oxalate or from thionyl chloride and potassium ethyl oxalate. The former procedure gives almost quantitative yields,⁷² but the latter gives a better product.⁷⁷

Aceryl chloride adds to β -propiolactone in the presence of sulfuric acid to give β -acetoxypropionyl chloride, CH₃CO₂CH₂CH₂COCl (67%).⁷⁰ The lactone ring is also opened by thionyl chloride to give β -chloropropionyl chloride, from which acrylyl chloride may be obtained by heating with anhydrous barium chloride.

Ethyl acetoacetate and phosphorus pentachloride give β -chlorocrotonyl chloride (84%).⁷¹

337. Action of Inorganic Acid Halides on Anhydrides

$$(RCO)_2O \xrightarrow{SOCI_2} 2RCOCI + SO_2$$

This reaction has limited value because most anhydrides are obtained from acyl halides. Acetyl chloride⁵¹ and acetyl bromide⁵⁷ have been made in this way from the corresponding phosphorus trihalides.

Several dibasic acid balides are best prepared by this method from the readily available anhydrides. Thionyl chloride in the presence of a small amount of zinc chloride converts succinic and phthalic anhydrides to succinyl chloride (74%)⁸⁰ and phthalyl chloride (86%),⁸² respectively. Phosphorus halides are used in similar preparations of phthalyl bromide (83%)⁸³ and diphenic acid chloride (71%).⁸⁵

Phthalyl chloride is obtained in almost quantitative yield by passing dry chlorine gas into molten thiophthalic anhydride, $C_6H_4(CO)_2S$, at 245° until sulfur monochloride no longer distils. Thioanhydrides are made from the oxygen analogs and sodium sulfide.⁸⁴

338. Action of Hydrogen Halide or Metallic Halides on Acyl Halides

$$RCOC1 + HX \rightarrow RCOX + HC1$$

Interchange of halogen is a means of synthesis of certain acyl halides which cannot be conveniently prepared by other methods. Acetyl fluoride is made from acetyl chloride and sodium hydrogen fluoride in acetic anhydride solution.⁸⁶ By passing a stream of hydrogen bromide through oxalyl chloride an 85% yield of oxalyl bromide, (COBr)₂, is obtained.⁸⁷ The bromide cannot be made by the action of phosphorus pentabromide on oxalic acid. The method has also been applied to the preparation of acetyl bromide and iodide and other acyl iodides.^{88, 89} 339. Interaction of Carboxylic Acids and Acyl Halides

 $C_{6}H_{5}COCI + RCO_{2}H \rightarrow RCOCI + C_{6}H_{5}CO_{7}H$

Exchange of acyl groups on a halogen atom has frequently been applied to the synthesis of acyl halides. An excellent procedure for the preparation of volatile acyl halides involves their distillation from a reacting mixture consisting of a higher-boiling acyl halide and a carboxylic acid. Benzoyl chloride has been employed in this procedure to make a variety of aliphatic acyl halides including olefinic, halo, and methoxy acyl halides.^{4,90}

Oxalyl chloride, (COCl)₂, and oxalyl bromide are similarly used to make acyl chlorides and bromides in excellent yield. The only other products of these reactions are the gases hydrogen halide, carbon monoxide, and carbon dioxide.⁶⁰ For the preparation of acyl bromides, sodium salts rather than the free acids have been treated with oxalyl bromide. This procedure requires a smaller excess of reagent.

Oxalyl chloride is recommended as the best reagent for the preparation of high-molecular-weight olefinic acyl chlorides.^{55,79}

Phthalyl chloride, $C_6H_4(COCl)_2$, converts butyric acid to butyryl chloride (92%)⁸² and maleic anhydride to fumaryl chloride (95%).⁹¹

340. Chlorination of Aldehydes 97

$$ArCHO + Cl_2 \rightarrow ArCOCl + HCl$$

ACYL HALIDES

Ch. 17

TABLE 61. ACYL HALIDES

TABLE 61 (continued)

с _п	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aromatic and Heter	ro <i>c</i> yclic A	cyl Hali	ides (continue	ed)
с,	Benzoyl chloride	335	91	1715	194
		339	98	17 ⁶⁰	93/20
	Benzoyl bromide	3 3 9	90	17 ⁶⁰	219/739
	Benzoyl iodide	338	95	17 ⁸⁸	109/10
C,	Phenylacetyl chloride	335	95	17 ⁸	95/12
		339	74	17 ⁶⁰	100/12
	Phenylacetyl bromide	339	90	17 ⁶⁰	153/50
	o-Methylbenzoyl bromide	339	90	17 ⁶⁰	135/37
	<i>m</i> -Methylbenzoyl bromide	339	90	1760	137/52
	p-Methyl benzoyl chloride	335	92	177	119/24
	p-Methylbenzoyl bromide	339	90	1760	147/42
		335	66	1756	173/113
C,	β -Phenylpropionyl chloride	335	85	1711	118/17
		339	98	17 ⁶⁰	116/15
	3,4-Dimethylbenzoyl chloride	335	86	1716	185/126
C 10	Ethylphenylacetyl chloride	335	94	173	114/15
	p-Isopropylben zoyl chloride	335	87	1710	121/10
	Mesitoyl chloride	335	97	17 ¹	146/60
Cıı	p-Isopropylphenylacetyl chloride	3 3 5	91	174	128/15
	p-s-Butylbenzoyl chloride	335	89	176	136/15
Св	2-Phenanthroyl chloride	335	100	1718	(101)
-	3-Phenanthroyl chloride	335	100	17 18	(101)
	9-Phenanthroyl chloride	335	91	17 °	(104)
	D	Diacyl Hal	ides		
с,	Oxalyl chloride	335	55	17 68	64/763
-	Oxalyl bromide	338	85	17 ⁸⁷	17/10
C₄	Succinyl chloride	337	74	17 ⁸⁰	74/9
C 6	Adipyl chloride	335	90	17 ²⁷	85/2
C,	<i>cis</i> -1,4-Cyclohexanedicarbonyl chloride	335	73	17 22	97/0.5, 1.5026
	trans-1,4-Cyclohexanedicarbonyl chloride	335	49	1722	(67)
	Phthalyl chloride	337	8 6	17 ⁸²	122/5
	Phthalyl bromide	337	83	17 ⁸⁵	185-193/24, (80)
	Isophthaloyl chloride	335	92	17 23	136/11. (43)
2 14	Diphenic acid chloride	337	71	17 ⁸⁵	(94)
	Olefi	inic Acyl	Halides		
с,	Acrylyl chloride	20	74	17 70	73. 1.4337
		335	66	17 67	75, 1,4343
_		336	6 0	17 ⁷³	77

TABLE 61. ACYL HALIDE

C _n	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., nf., (M.p.)
	Aliphatic a	nd Alicyc	lic Acyl	Halides	
с,	Acetyl fluoride	338	66	1786	20-23
	Acetyl chloride	335	85	17 ⁵⁸	
		335	67	17 ¹⁵	51
		337	89	1781	52
		339	85	17 ⁹⁰	50
	Acetyl bromide	335	80	1757	75/740
		337	82	1757	75/740
		338	80	17 ⁸⁸	84
	Acetyl iodide	338	70	17 ⁸⁸	105/735, 1.5491
с,	Propionyl chloride	3 39	89	17 ⁹⁰	78
C,	n-Butyryl chloride	335	85	17 ²	101/730, 1.4117*
-		339	87	17%	102
		339	92	17 ⁸²	
	Isobutyryl chloride	335	75	1712	91, 1.4070
		339	88	17 ⁹⁰	92
	Cyclopropanecarbonyl chloride	335	95	17 3	119/763
C.	n-Valeryl chloride	339	84	17 ⁹⁰	126
•		339	95	17 ⁶⁰	109/756
	Isovaleryl chloride	3 39	84	17 ⁹⁰	115
	Trimethylacetyl chlotide	339	92	17 ⁹⁰	104
		335	80	1712	71/250, 1.4118
	Cyclobutanecarbonyl chloride	335	90	175	137/762
C.	Caproyl chloride	335	95	1721	152/725
-		339	80	1790	153
	Diethylacetyl chlotide	335	80	174	140, 1.4234
	t-Butylacetyl chloride	335	8 6	1713	68/100, 1.4226
с,	Heptanoyl chloride	335	99	1721	60/11
C,	Octanoyl chloride	335	96	1721	75/11
		335	82	17 65	83/15
	Methyl-n-amylacetyl chloride	335	84	17 ²⁰	180/727
	Cyclohexylacetyl chloride	335	59	17 99	96/21
C,	Nonanoyl chloride	335	94	1721	95/11
	3,3,4,4-Tetramethylpentanoyl	335	80	1714	88/20, 1.4557
C 18	Stearyl chloride	335	70	17 ⁵³	182/3, (23)
	Aromatic an	d Heteroc	yclic Ad	yl Halides	
<u> </u>	Eurovi chloride	335	90	1724	60/7
÷ 5	a-Thienovl chloride	335	60	1710	85/14
с.	2-Thienvlacetyl chloride	335	70	174	64/3
~6	Nicotinyl chloride	335	91	17 ²⁶	
		335	84	174	90/15

552

C_n

Compound

ACYL HALIDES

Ch. 17

TABLE 61. ACYL HALIDES

TABLE 61 (continued)

с "	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., nf., (M.p.)
	Halo Ac	yl Halide	s (conti	nued)	
C₄	a-Bromoisobutyryl chloride	335	90	17%	52/30, 1.4750 ²³
	β -Chlorocrotyl chloride	336	84	1771	122-140
C,	5-Bromopentanoyl chloride	335	80	17 33	103/15, 1,487926
	β -Chlorotrimethylacetyl chloride	67	80	17 ⁹³	86/60, 1,4539
C6	a-Bromocaproyl chloride	335	67	17 ³⁸	102-105/30
с,	a-Bromo cy cloh exan ecarbonyl bromide	67	93	4 548	125/20, 1.5429
	o-Chlorobenzoyl chloride	340	72	17 97	94/10
	o-Bromobenzoyl chloride	339	93	1760	125/20
	o-Chlorobenzoyl bromide	339	90	17 60	144/37
	o-Bromobenzoyl bromide	339	90	17 ⁶⁰	167/18
	m-Chlorobenzoyl chloride	335	91	174	105/14
	m-Chlorobenzoyl bromide	339	90	17 ⁶⁰	145/40
	p-Chlorobenzoyl chloride	335	76	17 ¹⁰	107/10
	p-Bromobenzoyl chloride	335	95	1710	155/12
		339	94	17 ⁶⁰	182/125. (42)
	p-Chlorobenzoyl bromide	339	90	17 ⁶⁰	142/27
	p-Bromobenzoyl bromide	339	90	17 ⁶⁰	136/18
	p-lodobenzoyl bromide	339	90	17 ⁶⁰	(55)
C,	p-(Chloromethyl)-benzoyl chloride	67	89	17'	155-160/35
C,	a-Bromo-β-phenylpropionyl chloride	67	69	17 ¹¹	114/5, 1.5768
C <u>1</u> 0	a-Bromo-a-phenylbutyryl chloride	67	74	17 ⁹⁴	152/22
C ₁₄	a-Chlorodiphenylacetyl chloride	335	75	17 ⁶⁶	(49)
	Alkoxy and	d Aryloxy	Acyl H	alides	
c,	Methoxyacetyl chloride	335	45	1719	51/69. 1.4195
		339	57	174	113
C4	β -Methoxypropionyl chloride	335	85	1741	64/44
		335	60	1719	27/3, 1.4237
C,	γ -Methoxybutyryl chloride	335	30	1719	47/7 1 4299
-		335	81	1736	47/7
	β -Methoxyisobutyryl chloride	335	90	1740	48-50/15
	β -Ethoxypropionyl chloride	335	96	1741	78/52
C.	Phenoxyacetyl chloride	225	80	1 710	112/10
•	o-Methoxybenzov) chloride	325	09	1710	112/10
	p-Methoxybenzovi chloride	335	20	1710	1 5 3/ 10
		325	72 90	1743	143/15
	p-Methoxybenzoyl bromide	339	90	1760	120/4 185/27

TABLE 61 (continued) Method % Chapter^{tef.} B.p./mm., n_D^t, (M.p.) ontim ~~**** Olafinia And Halides (co

	Olefinic Ac	yl Halide	s (contin	iea)	
<u>с.</u>	Acrylyl chloride	339	72	174	74
~3	(continued)	339	72	17 ⁹⁵	73/740
c.	Crotonyl chlaride	335	86	1732	125
~4		339	80	17 ⁹⁰	122
	Vinvlacetvl chloride	335	76	17 ²⁹	99/774
	Methacrylyl chloride	335	80	17 ⁶⁷	96, 1.4435
		336	64	17 ⁷³	95
	Fumaryl chloride	339	95	17 ⁹⁰	63/13
C,	β,β -Dimethylactyloyl chloride	335	81	17 ²⁸	60/30
C,	cis-3-Hexenoyl chloride	335	97	17 ⁹⁸	52/28, 1.4496
	4-Methyl-2-pentenoyl chloride	335	89	17 ³¹	59/18
	Dimethylfumatyl chloride	335	92	17 ^{6\$}	80/22
c.	Cinnamoyl chloride	335	94	17 ¹⁰	1 37/ 10
	Cinnamoyl bromide	339	90	1760	182/40, (48)
C "	Undecenoyl chloride	335	76	17 ³⁰	128/13
C ₁₀	Oleyl chloride	339	90	17 ⁵⁵	163/2
	На	lo Acyl H	lalides		
<u>c.</u>	Fluoroacetyl chloride	335	68	1761	72/760
~ <u>1</u>		336	52	17 ⁷⁵	71/755, 1.3835 ²⁷
	Difluoroacetyl chloride	336	6 9	17 ⁷⁶	32-35
	Trifluoroacetyl chloride	336	53	1774	-27
	·	336	90	17 ⁷⁶	
	Chlorodifluoroacetyl chloride	336	80	17 ⁷⁶	
	Chloroacetyl chloride	335	55	1717	
	·	339	80	17 ⁶⁰	105/750
		339	76	17 ⁹⁰	1 0 6
	Dichloroacetyl chloride	339	73	17 ⁹⁰	106
	Trichloroacetyl chloride	335	60	17 ¹⁹	11 8/754, 1.4695
		339	56	17 90	118
	Trifluoroacetyl bromide	336	59	17**	-5
	Bromoacetyl bromide	67	6 8	17	147
	Chloroacetyl iodide	3 38	6 8	17 **	37/4, 1.5903
	Dichloroacetyl iodide	338	58	17**	55/15, 1.5/54
	Trichloroacetyl iodide	338	72	17**	/4/30, 1.3/11
c,	a-Chloropropionyl chloride	67	34	17 ⁹³	53/100, 1.440
C 3	β -Chloropropionyl chloride	67	42	1793	83/100, 1.454
		335	96	17 34	53/23
		336	87	1770	80/100, 1.4566
	eta-Iodopropionyl chloride	335	⁹⁰	1738	/1-75/11
	a, β -Dichloropropionyl chloride	335	53	1737	53/16
	α, β -Dibromopropionyl chloride	335	77'	17**	83/18
C.	γ -Chlorobutyryl chloride	335	82	1736	61/12
	γ -Bromobutyryl chloride	335	60	1710	101/37

ACYL HALIDES

Ch. 17

c _n	Compound	Method	Yield %	Chapter ^{ref.}	B.p./mm., n ^f _D , (M.p.)
	Alkory and Ary	loxy Acyl	Halide	s (continued)	
<u> </u>	a Fithomyben zoyl chloride	335	90	1710	144/10
C,	2 Phenoxybutyryl chlotide	335	75	17 ³⁹	155/20
C10	β -Methoxy- β -phenylpropionyl		70	17 ⁸⁹	101/3
	3,4,5-Trimethoxybenzoyl	335	84	17**	130/2, (78)
	Carbalkoxy	and Acyl	oxy Ac	yl Halides	
<u> </u>	Methoralyl chloride	336	65	17**	119
C,	Ethovalyl chloride (ethyl	336	100	1771	40/18
~ 4	chloroglyoxalate)	336	70	17 ⁷⁸	
		336	59	17 77	134
C s	β -Carbomethoxypropionyl	335	93	17 ⁴⁶	87/13
	Chioride		67	1770	80/12, 1.4365
c,	γ -Carboethoxybutyryl chloride	335	75	1744	52-57/1
Ċ	a. Cashathamwaleryl chloride	335	8 6	17 ^{so}	140/16
C.	Carbethonyvaleryl chloride	335	98	1752	121/13
	a-Carbethoxyisovaleryl	335	29	1762	72/8
	chloride β -Carbetho xy- α , β -dimethyl- propionyl chloride	335	52	17 ⁵⁴	97/15, 1.4462
	a B Diaceto rybutyryl chloride	335	97	17 ⁵¹	79/3
Сц	ω-Carbethoxyoctanoyl chloride	335	84	17 ⁴⁷	155/14
	Cyan	and Nitr	o Acyl I	Halides	
\overline{c}	Cyanoacetyl chloride	335	54	1764	57/0.5
с ,	o-Nitrobenzovl chloride	335		17 ⁴⁵	Explosive
~1	m-Nitroben zoyl bromide	339	90	17 ⁶⁰	166/18, (43)
	n-Nitrobenzovl chloride	335	9 6	17 ⁵⁹	155/20, (73)
	p-Nitroben zoyl bromide	339	90	17 ⁶⁰	(64)
	3.5-Dinitrobenzoyl bromide	339	90	17 ⁶⁰	(60)
C.	p-Nitrophenylacetyl chloride	335	54	174	(48)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 17

REFERENCES FOR CHAPTER 17

¹ Barnes, Org. Syntheses, 21, 77 (1941). ² Helferich and Schaefer, Org. Syntheses, Coll. Vol. I, 147 (1941). ⁹ Pierce, Haden, and Gano, J. Am. Chem. Soc., 67, 408 (1945). ⁴ Miller, Dessert, and Anderson, J. Am. Chem. Soc., 70, 502 (1948). ⁸ Jeffery and Vogel, J. Chem. Soc., 1804 (1948). ⁶ Marvel, Frank, and Prill, J. Am. Chem. Soc., 65, 1650 (1943). 'Blicke and Lilienfeld, J. Am. Chem. Soc., 65, 2282 (1943); cf. ref. 10. * Truitt, Mark, Long, and Jeanes, J. Am. Chem. Soc., 70, 4214 (1948). ⁹ Goldberg, Ordas, and Carsch, J. Am. Chem. Soc., 69, 261 (1947). ¹⁰ McElvain and Carney, J. Am. Chem. Soc., 68, 2599 (1946). ¹¹ Shriner and Damschroder, J. Am. Chem. Soc., 60, 895 (1938). ¹² Greenwood, Whitmore, and Crooks, J. Am. Chem. Soc., 60, 2028 (1938). ¹³ Whitmore et al., J. Am. Chem. Soc., 60; 2462 (1938). 14 Whitmore, Marker, and Plambeck, J. Am. Chem. Soc., 63, 1628 (1941). ¹⁵ Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 121. 16 Morgan and Coulson, J. Chem. Soc., 2326 (1931). 17 McMaster and Ahmann, J. Am. Chem. Soc., 50, 145 (1928). 18 Mosettig and van de Kamp, J. Am. Chem. Soc., 55, 2995 (1933). 19 Leimu, Ber., 70B, 1049 (1937). ²⁰ Karrer et al., Helv. Chim. Acta, 13, 1298 (1930). ²¹ Fierz-David and Kuster, Helv. Chim. Acta, 22, 86, 89 (1939). ²² Malachowski et al., Ber., 71B, 761 (1938). 28 Ruggli and Knecht, Helv. Chim. Acta, 27, 1111 (1944). ²⁴ Hartman and Dickey, Ind. Eng. Chem., 24, 151 (1932); Douglass and Dains, J. Am. Chem. Soc., 56, 720 (1934). ²⁵ Ralston, Segerbrecht, and Bauer, J. Org. Chem., 4, 503 (1939). 26 Ingersoll and Robbins, J. Am. Chem. Soc., 48, 245 (1926). 27 Lieser and Macura, Ann., 548, 243 (1941). 28 Smith and Engelhardt, J. Am. Chem. Soc., 71, 2672 (1949). 29 Jeffery and Vogel, J. Chem. Soc., 661 (1948). 30 Kapp and Knoll, J. Am. Chem. Soc., 65, 2063 (1943). ³¹ Linstead, J. Chem. Soc., 2505 (1929). 32 Fuson, Christ, and Whitman, J. Am. Chem. Soc., 58, 2450 (1936). 33 Merchant, Wickert, and Marvel, J. Am. Chem. Soc., 49, 1830 (1927). 34 Fieser and Seligman, J. Am. Chem. Soc., 58, 2484 (1936). 35 Marvel and Noyes, J. Am. Chem. Soc., 42, 2273 (1920). ³⁶ Blicke, Wright, and Zienty, J. Am. Chem. Soc., 63, 2488 (1941). ³⁷ Marvel et al., J. Am. Chem. Soc., 62, 3496 (1940). 38 Karrer and Schmid, Helv. Chim. Acta, 27, 119 (1944). 39 Hanford and Adams. J. Am. Chem. Soc., 57, 922 (1935). 40 Wagner, J. Am. Chem. Soc., 71, 3217 (1949). 44 Leslie and Henze, J. Am. Chem. Soc., 71, 3481 (1949). 42 Reeve and Sterling, J. Am. Chem. Soc., 71, 3657 (1949). 43 Nauta and Mulder, Rec. trav. chim., 58, 1064 (1939). 44 Clark et al., J. Am. Chem. Soc., 68, 99 (1946); Harris et al., ibid., 67, 2098 (1945). 45 Bonner and Hurd, J. Am. Chem. Soc., 68, 344 (1946). 46 Cason, Org. Syntheses, 25, 20 (1945); J. Am. Chem. Soc., 64, 1107 (1942).

47 Schmidt and Shirley, J. Am. Chem. Soc., 71, 3805 (1949).

48 Ställberg-Stenhagen, J. Am. Chem. Soc., 69, 2568 (1947).

⁵⁰ Lin et al., J. Chem. Soc., 72 (1937).

" Papa, Schwenk, and Hankin, J. Am. Chem. Soc., 69, 3021 (1947).

REFERENCES FOR CHAPTER 17

⁵¹ Glattfeld and Straitiff, J. Am. Chem. Soc., 60, 1386 (1938). 52 Duschinsky and Dolan, J. Am. Chem. Soc., 67, 2082 (1945); cf. ref. 49. 53 Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2239 (1945). 54 Adams and Wilkinson, J. Am. Chem. Soc., 65, 2207 (1943). ⁵³ Daubert, Fricke, and Longenecker, J. Am. Chem. Soc., 65, 2143 (1943). 56 Coulson, J. Chem. Soc., 1409 (1934). 57 Burton and Degering, J. Am. Chem. Soc., 62, 227 (1940). 58 Montonna, J. Am. Chem. Soc., 49, 2115 (1927). ⁵⁹ Adams and Jenkins, Org. Syntheses, Coll. Vol. I, 394 (1941). 60 Adams and Ulich, J. Am. Chem. Soc., 42, 599 (1920). 61 Saunders and Stacey, J. Chem. Soc., 1773 (1948). 62 Brown and Ferger, J. Am. Chem. Soc., 68, 1507 (1946). ⁶³ Lutz and Taylor, I. Am. Chem. Soc., 55, 1589 (1933). ⁶⁴ Weissberger and Porter, J. Am. Chem. Soc., 65, 52 (1943). ⁶⁵ Paquette, Lingafelter, and Tartar, J. Am. Chem. Soc., 65, 686 (1943). 66 Billman and Hidy, J. Am. Chem. Soc., 65, 760 (1943). 67 Rehberg, Dixon, and Fisher, J. Am. Chem. Soc., 67, 209 (1945). 68 Staudinger, Ber., 41, 3563 (1908). 69 Cason, J. Am. Chem. Soc., 69, 1548 (1947). ⁷⁰ Gresham, Jansen, and Shaver, J. Am. Chem. Soc., 72, 72 (1950). ⁷¹ Shriner and Keyser, J. Am. Chem. Soc., 60, 287 (1938). ⁷² Kindler, Metzendorf, and Dschi-yin-Kwok, Ber., 76B, 310, 311 (1943); Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 105. 73 Haworth, Gregory, and Wiggins, J. Chem. Soc., 490 (1946); cf. ref. 67. 74 Simons and Ramler, J. Am. Chem. Soc., 65, 389 (1943); cf. ref. 76. ⁷⁸ Truce, J. Am. Chem. Soc., 70, 2828 (1948). ⁷⁶ Cohen, Wolosinski, and Scheuer, J. Am. Chem. Soc., 71, 3439 (1949). ¹⁷ Southwick and Seivard, J. Am. Chem. Soc., 71, 2535 (1949). 78 Adickes, Brunnert, and Lücker, J. prakt. Chem., 130, 168 (1931). ⁷⁹ Bauer, Oil & Soap, 23, 1 (1946). ⁸⁰ Ruggli and Maeder, Helv. Chim. Acta, 26, 1486 (1943). ⁸¹ Hurd and Thomas, J. Am. Chem. Soc., 55, 279 (1933). ⁸² Kyrides, J. Am. Chem. Soc., 59, 206 (1937). ³³ Davies, Hambly, and Semmens, J. Chem. Soc., 1312 (1933). ⁸⁴ Ott, Langenohl, and Zerweck, Ber., 70B, 2360 (1937). ¹⁵ Roberts and Johnson, J. Am. Chem. Soc., 47, 1399 (1925). ⁸⁶Calloway, J. Am. Chem. Soc., 59, 1476 (1937); Nesmejanow and Kahn, Ber., 67B, 370 (1934). ⁸⁷ Staudinger and Anthes, Ber., 46, 1431 (1913). ⁸⁸ Gustus and Stevens, J. Am. Chem. Soc., 55, 374 (1933); Staudinger and Anthes, Ber., 46, 1417 (1913). ⁸⁹ Blomquist, Holley, and Sweeting, J. Am. Chem. Soc., 69, 2357 (1947). 90 Brown, J. Am. Chem. Soc., 60, 1325 (1938). ⁹¹ Kyrides, Org. Syntheses, 20, 51 (1940); cf. ref. 82. 92 Arens and van Dorp, Rec. trav. chim., 66, 409 (1947). ⁹³ Kharasch and Brown, I. Am. Chem. Soc., 62, 925 (1940).

94 Phillips, J. Chem. Soc., 222 (1942).

⁹⁵ Stempel et al., J. Am. Chem. Soc., **72**, 2299 (1950).

⁹⁶ Tarbell and Noble, J. Am. Chem. Soc., 72, 2659 (1950).

"Clark and Taylor, Org. Syntheses, Coll. Vol. I, 155 (1941).

⁹⁸ Crombie and Harper, J. Chem. Soc., 1158 (1950).

⁹⁹ Mihina and Herbst, J. Org. Chem., 15, 1086 (1950).

METHODS 342-344

342. Interaction of Acyl Halides and Salts of Carboxylic Acids

 $RCO_2Na + R'COC1 \rightarrow (RCO)(R'CO)O + NaC1$

Although this is the classical method of anhydride formation it has been replaced to a large extent by the acylation of free carboxylic acids (method 341). The conditions employed and the solvents used in this reaction vary widely. Excellent directions are given for the preparations of nicotinic anhydride (89%)³² and acetic propionic anhydride (60%)³⁰ from the respective potassium and sodium salts of the carboxylic acids. Silver salts of acids have also been used.³³ The reaction has been extended to the preparation of mixed anhydrides of short- and long-chain fatty acids³¹ but has failed in the preparation of mixed anhydrides of substituted benzoic acids.²⁶

343. Dehydration of Carboxylic Acids

 $2\text{RCO}_2\text{H} \xrightarrow{-\text{H}_2\text{O}} (\text{RCO})_2\text{O}$

The formation of cyclic anhydrides from dibasic acids is often possible by means of simple distillation. Water is removed as an azeotrope with tetrachloroethane in the preparation of maleic anhydride (90%).¹⁵ Vacuum distillation of 1-carboxycyclohexane-1-acetic acid gives the corresponding five-membered anhydride in 76% yield.¹⁶ More often, dehydration is accomplished by heating the dibasic acid with acetyl chloride,⁸⁻¹⁴ phosphorus oxychloride,^{8,9} or acetic anhydride.^{18-20, 24, 49} The cyclic anhydrides having five- and six-membered rings are very stable compounds, whereas those with larger rings polymerize readily at low temperatures.²⁵ This method has been applied with somewhat less success to the synthesis of simple and mixed²⁸ anhydrides from aliphatic^{21, 27, 29} and aromatic^{17, 22, 23, 26} acids.

344. Addition of Carboxylic Acids to Ketenes

 $2RCO_2H + H_2C = C = O \rightarrow (RCO)(CH_3CO)O$

Acetic acid is quantitatively converted to acetic anhydride by reaction with ketene.⁴⁶ Mixed anhydrides are formed when homologs of acetic acid or aromatic acids are used in the reaction. Upon distillation at atmospheric pressure, the mixed anhydrides disproportionate into acetic anhydride and the symmetrical anhydride corresponding to the carboxylic acid. Yields of propionic, *n*-butyric, and *n*-caproic anhydrides prepared by this method are in the range of 80% to 87%.⁴⁵

18

Anhydrides

CONTENTS

PAGE

METHOD	PAGE
2 (1 Aculation of Carboxylic Acids by Acyl Halides	558
341. Revisition of Carboxylic Acids	559
342. Interaction of Carboxylic Acids	559
244 Addition of Carboxylic Acids to Ketenes	559
345. Addition of Cyclic Olefinic Anhydrides to Dienes (Diels-Alder)	560
346. Interaction of Acyl Halides and Esters	560
347. Interaction of Acyl Halides and Anhydrides	560
Table 62 Aphydrides	561
Table 02. Millyondes	563
References	<i>J</i> 0 <i>J</i>

341. Acylation of Carboxylic Acids by Acyl Halides

 $RCO_2H + R'COC1 \xrightarrow{C_5H_5N} (RCO)(R'CO)O$

This is the best procedure for the preparation of simple^{1,3} and mixed⁵ anhydrides. Benzoic anhydride is prepared simply by heating an equimolar mixture of benzoic acid and benzoyl chloride.⁶ The reaction is general when carried out in the presence of pyridine. The acyl halides react with pyridine to give pyridinium salts, which are powerful acylating agents. The pyridinium salt formed from the acyl halide and pyridine in the absence of a carboxylic acid is able to diacylate water and hydrogen sulfide at -20° to give simple anhydrides and diacyl sulfides, respectively.²

 $2C_{6}H_{5}COCl \cdot C_{5}H_{5}N + H_{2}O \rightarrow (C_{6}H_{5}CO)_{2}O + 2C_{5}H_{5}NHCl$

By means of these procedures anhydrides of aromatic acids containing nuclear halo, methoxyl, and nitro groups have been made.

TABLE 62. ANHYDRIDES

с "	Compound	Me thod	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
с,	Formic acetic anhydride	343		1828	29/17
C4	Succinic anhydride	343	95	18 ⁸	(119)
	Maleic anhydride	343	90	18 ¹⁵	198, 83/15
	Trifluoroacetic anhydride	343	74	1847	39
C5	Acetic propionic anhydride	342	60	18 ³⁰	154/760, 70 - 75/40
	Glutaric anhydride	343	93	1814	165-170/20, (55)
	Methylmaleic (citraconic) anhydride		66	18 ³⁵	105-110/22, (8)
C 6	Propionic anhydride	344	87	18 45	169 *
	a,a-Dimethylsuccinic anhydride	343	82	18 ⁹	223
	α,β -Dimethylsuccinic anhydride	343	79	18 12	233, (88)
	Dimethylmaleic anhydride	343	20 †	18 ³⁷	(96)
с,	a-Ethylglutaric anhydride	343	51†	18 ¹³	164/13
C,	n-Butyric anhydride	344	87	18 ⁴⁵	198 *
-	a,β -Diethylsuccinic anhydride	343	91	1811	101/1
	cis-Cyclohexanedicarboxylic anhydride		93	18 ⁴⁰	162/25, (31)
	<i>trans-</i> Cyclohexanedicarboxylic anhydride	343	70	18 ⁴⁰	(142)
	1,2,3,6-Tetrahydrophthalic anhydride	345	90	18 ³⁹	(104)
	Phthalic anhydride		76	18 ⁴²	(131)*
	4-Bromophthalic anhydride	343	80	18 43	305-309. (107)
	3-Nitrophthalic anhydride	343	93	18 ²⁴	(164)
с,	a-n-Butylglutaric anhydride	343	76	18 ⁴⁹	171/12
	Anhydride of 1-carboxy-1-	343	76	18 ¹⁶	(55)
	cyclohexaneacetic acid				
	Homophthalic anhydride	343	88	18 ¹⁸	(141)
C 10	Phenylsuccinic anhydride	343	80	18 ¹⁰	192/6, (54)
	Furoic anhydride	341	64	18²	(73)
C 11	a-Phenylglutaric anhydride	343	86	18 ¹⁹	(96)
	Benzylsuccinic anhydride	343	95	18 ⁴⁸	185/2
C12	n-Caproic anhydride	344	87	18 45	120/6
	Nicotinic anhydride	342	89	18 ³²	(123)
C 13	eta-Naphthoic acetic anhydride	341	83	18 ⁵	(51)
C 14	Heptoic anhydride	341	83	18 ¹	172/15
	Benzoic anhydride	341	85	18 ⁶	215-219
	-	341	85	18²	(42)
		343	74	1817	(43)
		347	80	18 44	(40)
	Mono-p-chlorobenzoic anhydride	341	6 9	18 ⁵	(70)
	p-Chlorobenzoic anhydride	341	90	18 ¹	(193)

For explanations and symbols see pp. xi-xii.

345. Addition of Cyclic Olefinic Anhydrides to Dienes (Diels-Alder)

Maleic anhydride and several related derivatives have been added to a large number of dienes. Reaction of butadiene with maleic anhydride occurs at 50° in benzene solution to give 1,2,3,6-tetrahydrophthalic anhydride (97%).^{39, 41} This method furnishes many important partially hydrogenated aromatic anhydrides, most of which are outside the scope of this book. An excellent discussion of the reaction and survey of the literature to 1945 has been made³⁸ (cf. method 34).

346. Interaction of Acyl Halides and Esters 34

 $ArCO_2C_2H_8 + ArCOCl \xrightarrow{ZnCl_2}_{270-290^\circ} (ArCO)_2O + C_2H_8Cl$

347. Interaction of Acyl Halides and Anhydrides 44

 $(CH_{3}CO)_{2}O + 2C_{6}H_{8}COCl \rightarrow (C_{6}H_{8}CO)_{2}O + 2CH_{3}COCl$

ANHYDRIDES

Ch. 18

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.)
	Monorp-bromohenzoic anhydride	341	80	185	(83)
C 14	a-Bromobenzoic anhydride	343	82	18 ²⁶	(218)
	Managenitrobenzoic anhydride	341	75	18 ^s	(65)
	Mono-pointrobenzoic anhydride	341	75	18 ⁵	(103)
	monom-indocenzoic anhydride	343	90	18 ²⁶	(160)
	Magaztanittobenzoic anhydride	341	65	18 ^s	(130)
	Diphenic anhydride	343	97	18 ²⁰	(217)
C 15	Mono-o-methoxybenzoic	341	77	18 ^s	(77)
c	annyariae Di sulanaria aphydride	343	70	18 23	(72)
C 16	Thenylacetic annyulue	343	60	18 ²⁶	(39)
	o- Toluic annyaide	343	65	18 ²⁶	(71)
	m- foluic annyulide	343	96	18 ²⁶	(95)
	p-foluic annyalide	341	98	187	(99)
c	Acatio palmitic anhydride	342	70	18 ³¹	(63)
Cu	g-Norbthoic benzoic anhydride	341	69	18 ⁵	(90)
	p-Ethoxybenzoic anhydride	343	80	18 ²⁶	(108)
c	g-Naphthoic anhydride	341	80	184	(146)
C 22	L'auric anhydride	343	75	18 21	(44)
	Diphenylacetic anhydride	343	92	18 22	182/3, (98)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 18

REFERENCES FOR CHAPTER 18

¹Allen et al., Org. Syntheses, 26, 1 (1946). ² Adkins and Thompson, I. Am. Chem. Soc., 71, 2242 (1949). ³Lewis and Archer, I. Am. Chem. Soc., 71, 3753 (1949). ⁴Blicke, I. Am. Chem. Soc., 49, 2848 (1927). ⁵Zeavin and Fisher, J. Am. Chem. Soc., 54, 3739, 3740 (1932). Böeseken, Tellegen, and Plusje, Rec. trav. chim., 57, 75 (1938). ⁷Heap and Robinson, J. Chem. Soc., 69 (1929). * Fieser and Martin, Org. Syntheses, Coll. Vol. II, 560 (1943). ⁹Conn et al., J. Am. Chem. Soc., 64, 1749 (1942). ¹⁰ Price and Tomisek, J. Am. Chem. Soc., 65, 440 (1943). ¹¹ Baker, J. Am. Chem. Soc., 65, 1577 (1943). ¹² Fieser and Daudt, J. Am. Chem. Soc., 63, 784 (1941); cf. ref. 9. ¹³ Kornfeld, Jones, and Parke, J. Am. Chem. Soc., 71, 158 (1949). ¹⁴ Bachmann, Kushner, and Stevenson, J. Am. Chem. Soc., 64, 977 (1942). ¹⁵Mason, J. Chem. Soc., 701 (1930). ¹⁶ Rothstein and Thorpe, J. Chem. Soc., 2015 (1926). ¹⁷ Clarke and Rahrs, Org. Syntheses, Coll. Vol. I, 91 (1941); cf. ref. 26. ¹⁸ Grummitt, Egan, and Buck, Org. Syntheses, 29, 49 (1949). ¹⁹ Horning and Finelli, J. Am. Chem. Soc., 71, 3205 (1949); Org. Syntheses, 30, 81 (1950), ²⁰ Roberts and Johnson, J. Am. Chem. Soc., 47, 1399 (1925). ²¹ Mannich and Nadelmann, Ber., 63, 797 (1930). ²² Hurd, Christ, and Thomas, J. Am. Chem. Soc., 55, 2591 (1933). 23 Heilbron, Hey, and Lythgoe, J. Chem. Soc., 297 (1936); cf. ref. 26. ²⁴ Nicolet and Bender, Org. Syntheses, Coll. Vol. I, 410 (1941). ²⁵Hill, J. Am. Chem. Soc., 52, 4113 (1930); Hill and Carothers, ibid., 55, 5023 (1933). ²⁶ Autenrieth and Thomae, Ber., 57, 423 (1924). ²⁷ Fournier, Bull. soc. chim. France, (4) 5, 922 (1909). 28 Béhal, Ann. chim., (7) 20, 411 (1900). 29 Wallace and Copenhaver, J. Am. Chem. Soc., 63, 699 (1941). ³⁰ Polya and Spotswood, I. Am. Chem. Soc., 71, 2938 (1949). ³¹ Ralston and Reck, J. Org. Chem., 11, 624 (1946). ³² Badgett, J. Am. Chem. Soc., 69, 2231 (1947). 33 Whitby, I. Chem. Soc., 1462 (1926). 34 Kyrides and Dvornikoff, J. Am. Chem. Soc., 55, 4630 (1933). ³⁵Shriner, Ford, and Roll, Org. Syntheses, Coll. Vol. II, 140 (1943). ³⁶Hershberg and Fieser, Org. Syntheses, Coll. Vol. II, 423 (1943). ³⁷ Tarbell and Bartlett, J. Am. Chem. Soc., 59, 409 (1937); Ott, Ber., 61, 2131 (1928). ³⁶ Kloetzel, Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, pp. 1, 41.

³⁹ Diels and Alder, Ann., 460, 113 (1928); Fieser and Novello, J. Am. Chem. Soc., 64, 806 (1942); cf. refs. 40 and 41.

40 Kohler and Jansen, J. Am. Chem. Soc., 60, 2144, 2145 (1938).

⁴¹Cope and Herrick, J. Am. Chem. Soc., 72, 984 (1950); Org. Syntheses, 30, 93 (1950).

42 Shreve and Welborn, Ind. Eng. Chem., 35, 279 (1943).

49 Waldmann, J. prakt. Chem., 126, 66 (1930).

44 Zetzsche et al., Helv. Chim. Acta, 9, 181 (1926). 45 Williams and Krynitsky, Org. Syntheses, 21, 13 (1941), note 5. ⁴⁶Hurd and Dull, J. Am. Chem. Soc., 54, 3427 (1932). 47 Bourne et al., J. Chem. Soc., 2977 (1949). 48 Beech and Legg, J. Chem. Soc., 1888 (1949).

49 Roberts and Shaw, J. Chem. Soc., 2844 (1950).

Amides, Imides, Hydrazides, Hydroxamic

Acids, and Azides

CONTENTS

METHOD
348. Acylation of Ammonia or Amines by Acyl Halides
349. Acylation of Ammonia or Amines by Carboxylic Acids
350. Acylation of Ammonia or Amines by Anhydrides
351. Acylation of Amines by Amides
352. Reaction of Esters with Ammonia and Its Derivatives
353. Acidolysis of Amides
354. Hydrolysis of Nitriles
355. Addition of Olefins to Nitriles
356. Addition of Amines to Ketenes
357. Addition of Grignard Reagents to Isocyanates
358. Alkylation of Amides and Imides
359. Rearrangement of Oximes (Beckmann)
360. Ammonolysis and Rearrangement of Diazoketones (Arndt-Eistert)
361. Willgerodt Reaction
362. Action of Hydrazoic Acid on Ketones (Schmidt)
363, Cleavage of Ketones by Sodium Amide
364. Acyl Azides by the Action of Nitrous Acid on Hydrazides
365. Acyl Azides by Interaction of Sodium Azide and Acyl Halides
366. Condensation of Carbonyl Compounds with α-Halo Amides (Refor- marsky)
367. Condensation of Aldehydes with Amides and Imides
368. Condensation of Aldehydes with Malonmonoamide
369. Condensation of Amides
370. Coupling of Diethylaminocarbonyl Chloride with Organometallic Com-
pounds
371. Pyrolysis of Imino Ester Hydrochlorides
372. Acylation of Amides
373. Action of Diazomethane on Isocyanates
374. Action of Ammonia or Amines on Lactones
375. Hydroxamic Acids by Oxidation of Aldoximes
376. Hydroxamic Acids by Rearrangement of Nitroparaffins
377. Hydroxamic Acids by Interaction of Aldehydes and Sodium Nitro-
hydroxamate
Table 63 Amides
Table 64. Imides
Table 65. Hydrazides and Acyl Azides
References
welclences

565

348. Acylation of Ammonia or Amines by Acyl Halides

$$RCOC1 \xrightarrow[R' NH_2]{NH_3} RCONH_2$$

This reaction represents the best general method for amide preparation. Cold, concentrated aqueous ammonia is used as in the preparation of isobutyramide (83%),³⁸ or the reaction may be carried out by passing dry ammonia into a solution of the acyl halide in anhydrous ether as in the formation of cyclopropanecarboxamide (91%).⁴³ Separation of the amide from ammonium chloride is usually accomplished by extraction of the amide by organic solvents. Aqueous sodium hydroxide is employed to take up the hydrogen chloride when amine hydrochlorides are used in place of the free amines as in the preparation of N-methylisobutyramide (75%).⁴¹ When phosphorus trichloride is added to a mixture of an amine and a carboxylic acid, phosphazo compounds, RN=PNHR, rather than acyl halides, are believed to be intermediates. These compounds have been shown to react with carboxylic acids to give amides.⁷

 $RN = PNHR + 2R'CO_2H \rightarrow 2R'CONHR + HPO_2$

Olefinic amides have been made by this method.³⁹ The best laboratory preparation of oleamide consists in the reaction of oleyl chloride with aqueous ammonia.³

 α -Halo acyl halides are treated with concentrated ammonium hydroxide at 0-10° to give α -halo amides.^{48, 50, 52, 55} In another procedure the appropriate primary or secondary amine and the acyl halide are allowed to react in carbon tetrachloride,^{48, 53} ethylene dichloride,^{45, 46, 49} or ether⁵¹ solution. In general, the yields are exceptionally good.

Acyl chlorides of various phenolic carboxylic acids are converted to the corresponding *bydroxy* N,N-diethylamides with diethylamine.⁶⁰

The reaction of ammonia with the acyl chloride grouping is much more rapid than with a methyl ester, as is shown in the preparation of methyl sebacamate, $NH_2CO(CH_2)_8CO_2CH_3$, in 95% yield from ω -carbomethoxypelargonyl chloride.⁵⁸

Benzoylation of α -amino acids is carried out in aqueous sodium hydroxide solution, which neutralizes the hydrogen chloride formed.^{56, 57} The literature of this reaction has been reviewed and an improved procedure described.⁵⁹

 $RCH(NH_2)CO_2H + C_6H_5COC! + 2NaOH \rightarrow C_6H_5CONHCH(R)CO_2Na + NaCl$

Hydroxamic acids may sometimes be prepared from acyl halides and hydroxylamine.¹⁸⁴

349. Acylation of Ammonia or Amines by Carboxylic Acids

$$RNH_2 + R'CO_2H \rightleftharpoons R'CONHR + H_0$$

The pyrolysis of an ammonium or an amine salt of a carboxylic acid is an equilibrium reaction. Good yields of amides and N-substituted amides are obtained by using an excess of one of the reactants and distilling water from the mixture during the heating period. Acetamide is prepared in 90% yield by heating ammonium acetate in excess glacial acetic acid at $110^{\circ.1}$ Higher-molecular-weight aliphatic amides are formed by passing excess ammonia or amine through the molten acid at $160-210^{\circ.17, 18}$ Water and aniline are distilled from a mixture of benzoic acid and aniline at $180-190^{\circ}$ to give benzanilide, C₆H₈CONHC₆H₈, in 84% yield.² Water is removed as an azeotrope with toluene in the preparation of N-methylformanilide, HCON(CH₈)C₆H₈, from formic acid and methylaniline.¹² The cyclic amide, phenanthridone, is formed spontaneously from the corresponding amino acid prepared by the Hofmann degradation¹⁹ (cf. method 446).

Internal oxidation-reduction of chloral hydrate is accompanied by amide formation when the hydrate is treated with ammonium hydroxide in the presence of potassium cyanide. The yield of a,a-dichloroacetamide is 78%.¹⁰ Distillation of ammonium succinate gives the cyclic *imide*, succinimide, in 83% yield.⁵

350. Acylation of Ammonia or Amines by Anhydrides

$$RNH_2 + (R'CO)_2O \rightarrow RNHCOR' + R'CO_2H$$

This method has been used chiefly for the preparation of acyl derivatives of aromatic primary and secondary amines. The anhydride and amine are heated together, sometimes with a small amount of sulfuric acid as in the preparation of o-nitro-N-methylacetanilide (73%).¹³⁰ Catalytic hydrogenation of nitriles in acetic anhydride solvent leads to high yields of
METHODS 352-353

Ch. 19

acetyl derivatives of primary amines.¹⁷⁴ N-Acylcarbazoles are obtained by refluxing a mixture of carbazole and the anhydride for 24 hours.¹²⁶

Cyclic anhydrides of dibasic acids react with ammonia and certain amines to give cyclic *imides*, such as phthalimide $(97\%)^{123}$ and α -ethylglutarimide (85%).¹³⁵ Aqueous ammonia, ammonium carbonate, and dry ammonia gas have been used. 2-Aminopyridine and phthalic anhydride react at 180° to yield N-(2-pyridyl)-phthalimide (76%).¹²⁷ *t*-Butylphthalimide is made by the action of phthalic anhydride on *t*-butylurea at 200-240°.¹⁴ The use of alkylureas in this reaction is general.¹³⁸

Acetylation of α -amino acids with acetic anhydride takes place in aqueous solution at room temperature.¹²⁴

 $RCH(NH_2)CO_2H + (CH_3CO)_2O \rightarrow RCH(NHCOCH_3)CO_2H + CH_3CO_2H$

In the presence of pyridine or sodium acetate, carbon dioxide is evolved and two acyl groups are introduced, one attached to the nitrogen and one to the α -carbon atom. The products are α -acylamido ketones.^{136, 139}

$$RCH(NH_2)CO_2H + (R'CO)_2O \xrightarrow{C_5H_5N} RCHNHCOR'$$

351. Acylation of Amines by Amides

 $RNH_2 + R'CONH_2 \rightarrow R'CONHR + NH_3$

By heating methylamine hydrochloride and acetamide for a few minutes, ammonium chloride is precipitated and N-methylacetamide is obtained in 75% yield.¹³ The reaction has been extended to the preparation of N-alkylamides of higher-molecular-weight mono- and di-basic acids.⁶ The free amine and amide are heated to 150-200° until the evolution of ammonia ceases. A series of mono- and di-alkylamides have been obtained by this process in the presence of boron trifluoride, which removes the ammonia as monoamminoboron trifluoride, $NH_3 \cdot BF_3$.⁹

352. Reaction of Esters with Ammonia and Its Derivatives

$$RCO_2C_2H_5 + NH_3 \rightarrow RCO_2NH_2 + C_2H_5OH$$

The conversion of esters to the corresponding amides is usually carried out by shaking with concentrated ammonium hydroxide, as in the preparations of chloroacetamide (67%),³⁰ cyanoacetamide (88%),³¹ and nicotinamide (78%).²⁵ The reaction is catalyzed by water and other hydroxylated solvents.²¹ Malonic ester gives a practically quantitative yield of the corresponding *diamide* by heating for 2 days with 20% ammonium hydroxide.²⁴ Malonmonoamide is prepared similarly from the potassium salt of monomethyl malonate.⁴ Monoalkylmalonic esters are best converted to diamides by the action of ammonia in methanol.²³ This reaction is catalyzed by sodium methoxide. Dialkylmalonic esters do not react to an appreciable extent.

Lactic esters are converted to α -hydroxy amides by liquid ammonia²² or amines.²⁶ Hydroxyl groups may be present also on aromatic nuclei (salicylamides)²⁶ and on the alkyl groups of the amine (ethanolamides).²⁷

Acetal esters such as diethoxyacetic ester and β , β -diethoxypropionic ester are readily converted to amides with concentrated ammonium hydroxide.²⁹ The former ester gives an N,N-dimethylamide by reaction with dimethylamine.³³

Ethyl benzoylacetate, $C_6H_5COCH_2CO_2C_2H_5$, reacts with concentrated ammonium hydroxide in the cold or with aniline in xylene at 150° to give the corresponding β -keto amides, benzoylacetamide (81%)³² and benzoylacetanilide (76%),³⁴ respectively.

Esters of α -amino acids undergo ammonolysis by methanolic ammonia to give good yields of *amino* acid amides.³⁵ This procedure represents an improvement over the bomb reaction using liquid ammonia.

The following is the most important method for the preparation of hydrazides:

$$RCO_2C_2H_5 + NH_2NH_2 \rightarrow RCONHNH_2 + C_2H_5OH$$

The reaction is carried out by heating the ester with 40% aqueous hydrazine hydrate solution. The yields of hydrazides are usually excellent from aliphatic and aromatic esters.^{112, 113, 116} The procedure is well illustrated by the conversion of methyl *p*-nitrophenylacetate to *p*-nitrophenylacethydrazide (97%).³⁶ Mono- and di-hydrazides of dibasic acids also have been made.¹¹⁵

Interaction of an ester with hydroxylamine is the most general synthetic route to hydroxamic acids.^{110, 120}

$$RCO_2C_2H_5 \xrightarrow{NH_2OH \cdot HC1} RCO_2NHOH$$

353. Acidolysis of Amides

$$RCONH_2 + R'CO_2H \rightleftharpoons RCO_2H + R'CO_2NH_2$$

This little-used exchange reaction presents certain possibilities. Equilibrium is shifted to the right at 230° by removal of formic acid from

a reacting mixture of oleic acid and formamide. Oleamide is isolated in 50% yield.³ The reaction likewise goes to completion when urea is employed as the amide.

 $RCO_2H + NH_2CONH_2 \rightarrow RCONH_2 + CO_2 + NH_3$

Thus, formamide, acetamide, benzamide, and nicotinamide have been made in 60-95% yields,²⁰ and adipamide and sebacamide in better than 85% yields.^{6, 15}

354. Hydrolysis of Nitriles

$$RCN + H_2O \rightarrow RCONH_2$$

Hydrolysis of a nitrile oftentimes can be stopped at the amide stage. A series of trisubstituted acetamides have been made by hydrolysis at 100° with 80% sulfuric acid.⁶⁸ Vigorous stirring with aqueous concentrated hydrochloric acid at low temperatures converts arylacetonitriles to arylacetamides.¹⁷¹ Nicotinonitrile is hydrolyzed to nicotinamide in 90% yield by boiling with basic IRA-400 resin and in 73% yield by the action of concentrated ammonium hydroxide at 108° .⁷¹ Optimum conditions have been determined for the dehydration and partial hydrolysis of acetone cyanohydrin to the *olefinic* amide, methacrylamide (70%).⁶⁹ Several cyanides containing *alkylamino* groups have been hydrolyzed by dissolving in concentrated sulfuric acid and, after a time, pouring the resulting solutions onto ice.^{72, 73, 169}

Hydrogen peroxide reacts with aliphatic and aromatic nitriles in alkaline solution at 50° to give amides in 50-95% yields.

$$2RCN + 2H_2O_2 \xrightarrow{NaOH} 2RCONH_2 + O_2$$

The reaction is exothermic and may be followed by the evolution of oxygen. The hydrogen peroxide is used in concentrations varying from 3% to 30%.^{66, 67} o-Substituted benzonitriles which are difficult to hydrolyze require the higher concentrations. Partial hydrolysis of adiponitrile and sabaconitrile to the corresponding ω -cyanocarboxamides has been achieved in 6-31% yields by this procedure.¹⁷⁰ Certain olefinic nitriles are converted to glycidamides by this reagent (cf. method 126).⁷⁰

$$RCH = C(C_6H_5)CN \xrightarrow[NaOH]{H_2O_2} RCH - C(C_6H_5)CONH_2$$

355. Addition of Olefins to Nitriles

$$(CH_3)_2C = CH_2 \xrightarrow{RCN}_{H_2SO_4} \begin{array}{c} RC = NC(CH_3)_3 \xrightarrow{H_2O} RCONHC(CH_3)_3 \\ OSO_3H \end{array}$$

This is a new reaction for the preparation of N-alkyl amides.¹⁰⁰ Nitriles and various substituted cyano compounds are treated with active olefins in the presence of sulfuric acid. Reaction occurs at room temperature in glacial acetic acid or dibutyl ether solution. The use of hydrogen cyanide in the reaction leads to the formation of N-alkylformamides. *t*-Butyl alcohol and sodium cyanide are used in place of the olefin and hydrogen cyanide in the preparation of N-*t*-butylformamide (50%).¹⁰⁰ The reaction has been extended to the synthesis of N-alkyl diamides from dinitriles and olefins or alcohols.⁹⁹

356. Addition of Amines to Ketenes

$$CH_3COCH = C = O + RNH_2 \rightarrow CH_3COCH_2CONHR$$

This reaction has found greatest use in the preparation of N-aryl- β ketoamides from diketene and arylamines. Acetoacetanilide is formed in 74% yield from diketene and aniline in benzene solution.⁹⁴ N-Alkylacetoacetanilides are similarly prepared when an alkylaniline is substituted for aniline in the reaction.⁹⁵

A series of N,N-dialkylmalonamides have been made by the addition of amines to carbon suboxide.⁹⁶

$$0 = C = C = C = O + 2RNH, \rightarrow CH_{2}(CONHR),$$

357. Addition of Grignard Reagents to Isocyanates

RNCO $\xrightarrow{R' MgX}$ RNC(R')OMgX $\xrightarrow{H_2O}$ R'CONHR

Anilides, toluides, and α -naphthalides are prepared from phenyl, *p*-tolyl, and α -naphthyl isocyanates, respectively, by reaction with a Grignard reagent. The reaction is valuable for the identification of halogen compounds of the type that form organometallic derivatives.¹⁰⁵ The reaction occurs in ether solution at room temperature. In general, the yields of N-arylamides are excellent. This method has been used in the preparation of N-(α -furyl)-propionamide (89%).⁹⁷

358. Alkylation of Amides and Imides

$$\operatorname{RCONHAr} \xrightarrow[CH_3]{Na;} \operatorname{RCON}(CH_3)Ar$$

N-Methylacetanilide is obtained in 96% yield by the action of methyl iodide or dimethyl sulfate on the sodium salt of acetanilide.¹³⁷ The last compound is prepared from acetanilide and sodium wire in hot benzene. The reaction has been extended to other aliphatic and aromatic N-substituted amides. Sodium hydride serves to convert the amide to its salt, and a variety of simple halides have been successfully employed as alkylating agents.¹⁷⁵

Alkylation of phthalimide is the first step in the Gabriel synthesis of primary amines. The scope of this alkylation is discussed in method 452 because the phthalimides are often hydrolyzed directly, without purification, to primary amines.

359. Rearrangement of Oximes (Beckmann)

$$R_{2}C = N - OH \xrightarrow{PC_{1_{3}}} RCONHR$$

The rearrangement of oximes is of importance in establishing the geometrical configurations of these compounds. Ketoximes are rearranged by acidic reagents such as benzenesulfonyl chlorides, phosphorus pentachloride, or sulfuric acid. The R group which is *trans* to the hydroxyl group migrates in the reaction.

The preparative value of this reaction is limited to a few special cases. Oximes of cyclopentanone⁶² and cyclohexanone^{36,61} are rearranged by concentrated sulfuric acid to cyclic amides of ω -amino acids (cf. method 248).

$$(CH_2)_5 C = NOH \xrightarrow{H_2SO_4} NH(CH_2)_5 CO$$

The oxime of 2-acetyldibenzothiophene rearranges in the presence of phosphorus pentachloride to give 2-acetamidodibenzothiophene in 70% yield.⁶³ The rearrangement also serves as a preparative method for the acetyl derivatives of 1-, 2-, 3-, and 9-aminophenanthrenes.¹⁶⁸

Aldoximes are rearranged to amides at 100-150° under the catalytic influence of Raney nickel.⁶⁸ The yields of amides from the oximes of acetaldehyde, heptaldehyde, benzaldehyde, and furfural are good (75-96%), although the reactions are carried out on a small scale only.

 $\text{RCH} = \text{NOH} \xrightarrow{\text{Raney Ni}} \text{RCONH}_2$

360. Ammonolysis and Rearrangement of Diazoketones (Arndt-Eistert)

 $\operatorname{RCOCl} \xrightarrow{\operatorname{CH}_2\operatorname{N}_2} \operatorname{RCOCHN}_2 \xrightarrow{\operatorname{NH}_3} \operatorname{RCH}_2\operatorname{CONH}_2$

Preparation of diazoketones and their rearrangements during hydrolysis (method 271) and alcoholysis (method 295) are discussed elsewhere. Ammonolysis of diazoketones leads to amides of acids containing one more carbon atom than the original acyl halide.⁹¹ Halogen atoms may be present in a remote position on an aliphatic chain.¹¹⁷ The reaction is carried out by heating the diazoketone in alcohol^{93, 103} or dioxane¹⁰² solution with aqueous ammonia in the presence of silver oxide or silver nitrate catalysts. Substituted acetanilides are formed when aniline is used in place of ammonia.^{93, 104}

$$\text{RCOCHN}_2 \xrightarrow[180^\circ]{\text{C}_6\text{H}_5\text{NH}_2} \text{RCH}_2\text{CONHC}_6\text{H}_5$$

361. Willgerodt Reaction

$$RCOCH_{3} \xrightarrow{(NH_{4})_{2}S_{x}} RCH_{2}CONH_{2}$$
$$RC \equiv CH \xrightarrow{(NH_{4})_{2}S_{x}} RCH_{2}CONH_{2}$$

From a preparative standpoint this reaction is most useful in the synthesis of arylacetic acids and amides from substituted methyl aryl ketones or vinyl aromatic compounds. The conversion is effected by heating the aromatic compounds under pressure at 160-200° with aqueous ammonium polysulfide.⁷⁷ Several modifications of this process have found more general application. Higher yields and purer products result at lower temperatures when dioxane is used as a solvent.^{76, 86, 87} A combination of sulfur, ammonium hydroxide, and pyridine has given equal success.^{74, 75} In the Kindler modification, the ketone or styrene is refluxed with a mixture of sulfur and an amine, usually morpholine, to give a thioamide, ArCH₂CSNR₂.^{75, 82, 83, 85} The *terminal* methyl group is always oxidized at the expense of the double bond or carbonyl group regardless of their position in the carbon chain.

$$RCO(CH_2)_n CH_3 \rightarrow R(CH_2)_{n+1} CONH_2$$

Thus, β -phenylpropionamide, γ -phenylbutyramide, and δ -phenylvaleramide are formed in decreasing yields from the homologs of acetophenone, where

n=1, 2, and 3, respectively.⁷⁴ Carbon-skeleton rearrangement does not take place during the reaction.^{75, 81}

Willgerodt reactions have been carried out on aromatic compounds containing halo,^{\$2, \$3, \$5, \$9} hydroxyl,^{77, \$2, \$5} alkoxyl,^{\$2, \$3, \$5, 90} amino,^{\$2, \$5} acetamido,^{\$2} methylmercapto,^{\$9} and nitro^{\$2} groups on the aromatic nucleus. Several heterocyclic compounds including acetyl or vinyl derivatives of dibenzofuran,⁷⁶ pyridine,^{75, \$5, \$8} and quinoline^{\$5} also have been used.

Simple aliphatic aldehydes, ketones, alcohols, olefins, thiols, and acetylenes react in the same manner as the related aryl derivatives, but the yields of products are usually very low.^{78, 79} α , β -Olefinic acids are decarboxylated during the process to give amides with one less carbon atom.⁸⁴

$$RCH = CHCO_2H \rightarrow RCH_2CONH_2$$

The literature of the Willgerodt reaction to 1946 has been reviewed."

362. Action of Hydrazoic Acid on Ketones (Schmidt)

$$RCOR + HN_3 \xrightarrow{H^+} RCONHR + N_2$$

Ketones react with hydrazoic acid at room temperature in the presence of acid catalysts.¹⁵⁰ The products are N-substituted amides. Hydrazoic acid is prepared in benzene or chloroform solution from sodium azide. A modification involves the addition of sodium azide to a solution of acid catalyst and ketone. Improved experimental procedures have been based on a study of the reaction mechanism.¹⁵¹ Several series of alkyl and N-aryl amides have been prepared from symmetrical and methyl ketones.^{64, 151, 167} Higher alkyl and aryl groups migrate more readily than methyl groups to the nitrogen atom. In the presence of large amounts of alcohol, imino esters are formed instead of amides (cf. method 410). Hydrazoic acid attacks the keto group of keto esters to give amido esters from which amino acids are obtained upon hydrolysis (method 449).

363. Cleavage of Ketones by Sodium Amide

$$C_6H_5COCR_3 \xrightarrow{NaNH_2} C_6H_6 + R_3CONHNa$$

Cleavage by sodium amide is a general reaction of diaryl ketones, hexaalkylacetones, and *t*-alkyl aryl ketones.¹⁴⁰ The reaction has found preparative value in the cleavage of trialkylacetophenones to amides of trialkylacetic acids (method 248).¹⁴¹ Fission occurs when the ketones are refluxed with sodium amide in benzene, toluene, or xylene solutions. The synthesis has been extended to higher-molecular-weight compounds but fails for the preparation of trialkylacetamides containing more than twelve carbon atoms unless two of the alkyl groups are methyl.¹⁴²

364. Acyl Azides by the Action of Nitrous Acid on Hydrazides

$$\text{RCONHNH}_2 \xrightarrow[\text{HG1}]{\text{NaNO}_2} \text{RCON}_3$$

This reaction is carried out in the same manner as the diazotization of primary amines. Most azides are relatively unstable compounds and explode upon heating. Hydrazides of all types of acids have been converted to azides.^{112, 113, 115} Halo alkoxyl, and nitro groups on an aromatic nucleus do not interfere. The reaction is illustrated by the preparations of *p*-nitrophenylacetyl azide (84%)³⁶ and 6-methylnicotinyl azide (70%).¹⁰⁷

365. Acyl Azides by Interaction of Sodium Azide and Acyl Halides

$$RCOCl + NaN_3 \rightarrow RCON_3 + NaCl$$

Acyl azides are conveniently prepared by treating an acetone, ether, or dioxane solution of the corresponding acyl halides with an aqueous solution of sodium azide.¹²¹ The reaction is rapid at 0-25°, and, in general, the azides are isolated in excellent yields. Many types of acyl halides have been used.^{106, 119, 122}

366. Condensation of Carbonyl Compounds with α-Halo Amides (Reformatsky)

$$RCOR + R'CHBrCONR''_{2} \frac{Z_{n}}{H_{2O}} R_{2}C(OH)CH(R')CONR''_{2}$$

N,N-Dialkyl- α -halo amides may be substituted for α -halo esters in the Reformatsky reaction.⁵¹ The yields of N,N-dialkyl- β -hydroxyamides compare favorably with those of the corresponding hydroxy esters (cf. method 103).

367. Condensation of Aldehydes with Amides and Imides

 $RCONH_{2} + HCHO \xrightarrow{K_{2}CO_{3}} RCONHCH_{2}OH$ $CH_{3}CONH_{2} + RCHO \xrightarrow{CH_{3}CO_{2}H} RCH(NHCOCH_{3})_{2}$

N-Methylol derivatives of amides and cyclic imides are obtained by heating these compounds with formaldehyde and a basic catalyst.^{146, 152, 176} The yields are exceptionally good. In the presence of acetic acid two molecules of acetamide and one molecule of aldehyde condense to alkylidenediacetamides in poor yields.¹⁴⁸

368. Condensation of Aldehydes with Malonmonoamide^{4, 147} (cf. method 37)

$$RCHO + CH_2(CO_2H)(CONH_2) \xrightarrow{C_5H_5N} RCH = CHCONH_2 + CO_2$$

369. Condensation of Amides 149

$$2CH_{3}CON(C_{6}H_{5})_{2} \xrightarrow{N_{6}} CH_{3}COCH_{2}CON(C_{6}H_{5})_{2} + (C_{6}H_{5})_{2}NNa$$

370. Coupling of Diethylaminocarbonyl Chloride with Organometallic Compounds¹⁰¹

 $RM_gX + CICON(C_2H_5)_2 \rightarrow RCON(C_2H_5)_2$

371. Pyrolysis of Imino Ester Hydrochlorides 43

$$RC(OC_2H_s) = NH \cdot HCI \xrightarrow{150^{\circ}} RCONH_2 + C_2H_5CI$$

372. Acylation of Amides 159

 $\mathsf{RCONH}_2 \xrightarrow[(\mathsf{R}' \mathsf{COC}]_2\mathsf{O}]_2\mathsf{O}} \mathsf{RCONHCOR'}$

373. Action of Diazomethane on Isocyanates 180

$$C_{6}H_{5}NCO + 2CH_{2}N_{2} \rightarrow C_{6}H_{5}N - CO + 2N_{2}$$

$$| \qquad | \qquad | \qquad CH_{2} - CH_{2}$$

374. Action of Ammonia or Amines on Lactones 184

$$\begin{array}{c} CH_2(CH_2)_n CO \xrightarrow{RNII_2} CH_2(CH_2)_n CO + H_2O \\ \hline \\ 0 \end{array}$$

375. Hydroxamic Acids by Oxidation of Aldoximes 111, 164

$$RCHO + NH_2OH + H_2O_2 \rightarrow RCONHOH + 2H_2O$$

376. Hydroxamic Acids by Rearrangement of Nitroparaffins^{111, 183} (cf. method 252)

$$CH_{3}CH_{2}CH_{2}NO_{2} \xrightarrow{H_{2}SO_{4}} CH_{3}CH_{2}CONHOH (44\%)$$

377. Hydroxamic Acids by Interaction of Aldehydes and Sodium Nitrohydroxamate¹¹¹

METHOD 377

$$RCHO + Na_2N_2O_3 \rightarrow RC(OH) = NONa + NaNO_2$$

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.)
	Aliphati	c and Alio	cyclic A	mides	•
C ₁	Formamide	353	84	19 ²⁰	113/20
С,	Acetamide	349	90	19 1	(81)
-		353	95	19 ²⁰	223
с,	Propionamide	349	95	1917	(81)
-	N-Methyl acetamide	351	75	19 13	20 2 206
	N,N-Dimethylformamide	349	73	1917	153/760, 1.4269 ²⁵
C,	Butyramide	349	88	1917	(115)
-	Isobutyramide	348	83	19 ³⁸	(129)
	N.N-Dimethylacetamide	349	78	19 ⁸	165/758, 1.4351 ²⁵
		358	69	19175	(167)
	Cyclopropanecarboxamide	348	91	19 43	(125)
c.	Valeramide	349	82	1917	(106)
- 3	N-Methylisobutyramide	348	75	1941	121/27, 1,4350
	N-N-Dimethylpropionamide	349	78	1917	176/765, 1.437125
	Trimethylacetamide	363	100	19141	(156)
	N-1-Butylformamide	355	50	19100	202
c.	Caproamide	349	75	1917	(101)
0	Dimethylethylacetamide	363	100	19 141	(104)
	β , β -Dimethylbutyramide	361	58	1979	(134)
	N.N-Dimethylbutyramide	349	84	1917	125/100, 1.439125
	N-n-Butylacetamide	351	37	19 °	229
	N-1-Butylacetamide	355	85	19 ¹⁰⁰	194, (98)
c,	Heptami de	349	75	1917	(97)
•	-	361	46	19 ⁷⁹	(97)
	γ, γ -Dimethylvaletamide	361	30	1979	(141)
	N,N-Dimethylvaleramide	349	87	19 ¹⁷	141/100, 1.4419 ²⁵
	N-Isoamylacetamide	351	64	19 °	234
C,	Caprylamide	349	80	1917	(106)
	Dimethyl-n-butylacetamide	363	56	19 ¹⁴²	(89)
	N,N-Dimethylcaproamide	349	88	19 17	158/100, 1.4430 ²⁵
	Cyclohexylacetamide	361	40	1979	(165)
		348	40	19 167	(171)
C.	N,N-Dimethylheptamide	349	81	19 ¹⁷	173/100, 1.4450 ²⁵
,	3.3.4.4-Tetramethylvaleramide	348	77	1942	(138)
	β -Cycloh exylpropionamide	3 61	27	1979	(120)
		Aromatic A	mides		
<u>с.</u>	Benzamide	349	50	1916	(130)*
c.	Phenylacetamide	360	70	1993	(156)
~ 0	,	361	80	1974	(158)
	~ Toluamide	354	97	19 66	(141)

TABLE 63 (c	ontinued)
-------------	-----------

с _п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aroma	tic Amides	(contir	wed)	
C.	N-Phenyl acetamide	350	85	19128	(115)
	(acetanilide)	351	99	19 °	(114)
	N-Methylformanilide	349	97	19 12	131/22. (14) 1 554 29
	$(C_6H_5 N(CH_3)CHO)$			-	->-> , (, (), 1.))4
c,	β -Phenylpropionami de	361	82	1974	(99)
	N-Phenyl propionami de	351	97	19° -	221, (103)
	o-Methylacetanilide	350	82	19 128	(111)
	p-Methylacetanilide	350	100	19128	(155)
	N-Methylacetanilide	351	54	199	255 (98)
		358	89	19175	(101)
		358	98	19137	(98)
C 10	a-Phenylbutyramide	348	97	19 40	(85)
	γ -Phenylbutyramide	361	42	1974	(84)
CII	δ-Phenylvaleramide	361	29	1974	(108)
	N-n-Butylbenzamide	348	45	197	(42)
	N-t-Butylbenzamide	355	90	10100	(125)
	a-Naphthamide	354	100	19 ⁶⁷	(202)
C 12	a-Naphthylacetamide	360	80	10.95	(181)
	β -Naphthylacetamide	348	96	10.44	(101)
	2-Acetamidonaphthalene	350	07	10129	(204)
	-	362	05	10151	(132)
	N-a-Naphthylacetamide	351	45	19 19 ⁹	(154)
C 13	Benzanilide	349	84	102	(161)
C14	N-Methylbenzanilide	358	62	19175	(101)
-	4-Biphenylacetamide	361	84	1074	()))
	2-Acetamidobiphenyl	350	93	19132	(121)
C 15	2-Fluoren eacetamide	361	70	1087	(266)
Cit	2-Phenanthrylacetamide	361	82	1074	(200)
	3-Phenanthrylac etamide	361	81	19 ⁸⁶	(172-176)
C 17	β -(2-Phenanthryl)-propionamide	361	66	1074	(180)
C ₁₉	γ-(3-Phen an thryl)-valeramide	360	72	19 ¹⁰³	(139)
		Lactam	3		
24	2-Pyrrolidone (y-Butyrolactam)	374	64	10 182	103/1 (24)
25	1-Methyl-2-pyrrolidon e	374	03	10182	202
	5-Methyl-2-pyrrolidone (7-	374	74	19 182	(44)
_	valerolactam)	<i>J</i>	, 3	-/	(+++)
-6	2-Ketohexamethyleneimine	359	65	19 ⁶¹	127-133/7, (68)
	$(\epsilon$ -caprolactam)	362	63	19151	(64)
	1,5-Dimethyl-2-pyrrolidone (N- methyl-7-valerolactam)	349	7 7	19 ¹⁸¹	85/13, 1.4611 ²⁵

AMIDES, IMIDES, HYDRAZIDES, ETC.

Ch. 19

с _п	Compound	Method	Yield (%)	Chapter ^{ref}	$B_{p},/mm, n_{D}^{t}, (M_{p})$				
Lactams (continued)									
C,	C_{0} N-Phenyl- β -propiolactam 373 20 19 ¹⁴⁰ (79)								
с,,	5-Phenyl-2-piperidone	574	88	39 ¹⁰⁶	228/20, (128)				
C13	Phenanthridone	349	83	1919	(293)				
	Не	terocyclic	Amide	S					
<u>с.</u>	2-Thienylacetamide	354	35	19172	(148)				
- 0	Nicotinamide	352	78	19 ²⁵	(132)				
	-	353	85	19 ²⁰	(122)				
		354	86	19 *1	(130)				
с.	N-(a-Furyl)-propionamide	357	89	19 97	134/12, (81)				
C7	2-Pyridineacetamide	361	31	19 ⁷⁵	(121)				
C 13	N,N-Diethyl in dol - 3 - carboxemide	370	44	19 101	(152)				
	N,N-Diethylthianaphthene- 3-carboxamide	370	21	19101	220/11				
с.,	2-Dibenzofurvlacetamide	361	70	19 ⁷⁶	(210)				
~ 14	4-Dibenzofurvlacetamide	360	67	19 ⁹²	(212)				
	2-Acetamidodibenzothiophene	359	70	19 ⁶³	(178)				
	N-Acetylcarbazole	350	83	19 ¹²⁶	(69)				
	Amide	s of Dicarl	oxylic	Acids					
<u>с.</u>	Malonamide (malondiamide)	352	99	1924	(169)				
Ċ.	Ethylmalondiamide	352	91	19 ²⁵	(215)				
- 5	N.N'-Dimethylmalonamide	356	70	19 ⁹⁶	(133)				
	Methylenediacetamide	367	54	19 ¹⁴⁸	(198)				
с.	Ethylidenediacetamide	367	44	19 ¹⁴⁸	(180)				
c.	n-Butylmalondiamide	352	87	19 ²³	(198)				
-1	N,N'-Diethylmalonamide	356	63	19 ⁹⁶	(147)				
с.	N-Mono-t-butyl succinamide	355	25	19 99	(149)				
08	Phthalamide		90	19 ¹⁵⁴	(220)				
C.	N.N -Diisopropylmalonamide	355	40	19 ⁹⁹	(115)				
C.,	Benzvlmalondiamide	352	96	19 ²³	(226)				
- 10	Diacetyl-o-phenylenediamine	350	80	19 ¹³⁰	(188)				
		Olefinic	Amides						
<u> </u>	Vinvlacetamide	354	80	1970	(72)				
-4	Methacrylamide	352	75	19 ¹⁷⁷	(111)				
		354	70	19 ⁶⁹	(110)				
C,	N-Methylmethactylamide	348	87	19 ¹⁶⁶	85/4				
Ċ.	B-Isopropylacrylamide	368	70	19147	(86)				

TABLE 63. AMIDES

TABLE 63 (continued)

C _n	Compound	M e t hod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Olefin	ic Amides	(conti	nued)	
C ₈	N-t-Butylmethacrylamide	355	88	19 166	94/20, (59)
с,	Cinnamamide	368	57	19 ⁴	(147)
C11	a-Allylphenylacetamide	348	82	19 ³⁹	(54)
	N-Allylacetanilide	358	73	19 ¹⁷⁸	101/2
		Halo Am	ides –		
C2	Fluoroacetamide	348	73	1947	(108)
		352	100	19 ¹⁰⁹	(108)
	γ -Chloroacetamide	352	67	19 ³⁰	(120)
	a,a-Dichlowacetamide	349	78	19 ¹⁰	(99)
	Trichloroacetamide	348	54	19 ⁵⁴	(141)
	N-Bromoacetamide	68	60	4 691	
		68	51	4 698	(105)
C,	N-Methylfluoroacetamide	352	75	19 ¹⁰⁹	(64)
	N-Methyl-a,a-dichlotoacet- amide	348	72	19 ⁴⁹	98/8, 79
	N-Methyl-a-bromoacetamide	348	61	19 45	61/0.6, (45)
C4	a-Chloroi sobutyramide	348	70	19 ⁵⁰	(118)
	N-Methyl-a-bromopropionamide	348	89	19 46	81/2. (40)
	N-Ethyl-a, a-dichloroac etamide	348	77	19 ⁴⁹	104/8. (59)
	N,N-Dimethyl-a,a-dichloro- acetamide	348	76	19**	97/9, 1.4931 ²⁵
	N,N-Dimethyl-a-bromoacet- amide	348	32	19 * *	116/18, 1.5097
	N-Ethyl-a-bromoacetamide	348	82	19 ⁴⁵	121/17, (47)
	N-Bromosuccinimide	68	81	4 687	
C5	a-Bromo-n-valeramide	348	60	19 ⁵⁵	(79)
	N-Ethyl-a-bromopropion amide	348	89	1946	82/2, (62)
	N,N-Dimethyl-a-bromo- propionamide	348	85	19 ⁴⁶	75/3, 1.4979
C,	a-Bromo-t-butylacetamide	348	71	19 ⁵²	(138)
	N,N-Diethyl-a,a-dichloro- acetamide	348	85	19 ⁴⁹	100/4, 1.4813 ²⁵
	N,N-Diethyl-a-bromoacetamide	348	67	19 ⁴⁵	82/0.6, 1.4963
с,	N, N- Die thyl-a-bromo- propionamide	348	79	19 *	84/1.6, 1.4862
	N-Bromobenzami de	68	55	4 690	
C,	a-Bromophenylacetamide	348	92	19 ⁴⁸	(148)
	N-Chloroa cetanili de	68	83	4 689	
	4-lodoacetanilide		92	19 ¹⁶³	(184)

Cn

C,

C,

C4

C,

C6

C8

C₅

C 6

C,

C8

C,

Ca.

C,

C 10

Compound

N-Methyl-a-bromophenyl-

N-Methyl-p-chloroacetanilide

acetamide

acetamide

C14 N-Phenyl-a-bromophenyl-

N-Methylla ctamide

N,N-Dimethyllactamide

a-Hydroxyphenylacetamide

p-Hydroxyphenylacetamide

a-Methoxyisobutyramide

 β,β -Diethoxypropionamide

m-Methoxyphenylacetamide

p-Methoxyphenylacetamide

(p-homoanisamide)

acetoanisidide)

Benzoylacetamide

Acetoacetanilide

C₁₁ a-Benzoyl buty ramide

C₁₅ Benzoylacetanilide

a-Benzoylpropionamide

p-Acetaminoacetophenone

N-Methylacetoacetanilide

Isatin

p-Methoryacetanilide (p-

C₁₀ N-Methyl-p-methoxyacetanilide

N,N-Dimethyldiethoxy-

Diethoxyacetamide

acetamide

N-Hydroxymethyliso-

(mandelamide)

p-Acetamidophenol

C. N-Hydroxymethylphenylacetamide

C13 o-Hydroxybenzanilide

valeramide

C₁₃ o-Iodobenzanilide

Lactamide

AMIDES, IMIDES, HYDRAZIDES, ETC.

Yield

(%)

68

72

74

40

74

91

86

65

62

81

68

56

82

70

86

84

80

51

53

81

96

95

96

78

81

67

74

82

42

69

76

19**48**

19175

19⁵³

1948

19²²

1928

1928

19152

19¹¹

1921

1977

19¹⁷⁸

19¹⁷⁶

19²⁶

19¹⁶⁵

19²⁹

19²⁹

1935

1982

19102

19131

19¹³⁷

19¹³⁷

19¹⁵³

19³²

1932

1994

19¹⁵⁸

19³²

1995

1934

TABLE 63 (continued)

Method

348

358

348

348

352

352

352

367

349

352

361

350

367

352

352

352

352

352

361

360

3 50

350

358 Keto Amides

....

352

352

356

178

352

356

352

Alkoxy Amides

Hydroxy Amides

Halo Amides (continued)

Ch. 19

Chapterref. B.p./mm., n_D^t , (M.p.)

(74)

(93)

(143)

(123)

(75)

(72)

(79)

(132)

(174)

(168)

(78)

(132)

(118)

(78)

(55)

105/12

(126)

(189)

(128)

(128)

(57)

(197)

(113)

(153)

(85)

(167)

(155)

131/4

(106)

57/0.6, 1.4588

TABLE 64. IMIDES

TABLE 63 (continued)

Cn	Compound	Method	Yield (%)	Chapterref	B.p./mm.,	n ^t _D , (M.p.
	C	Carboxy A	mides			
C3	Malon-monoamide	352	61	19 4	(110-115)	
C4	Acetylglycine	350	92	19124	(208)	
C,	Diethyl formylaminomalonate	••••	55	19 ¹⁵⁶	(49)	
C,	Benzoylaminoacetic (hipputic) acid	348	68	19 ⁵⁷	(187)	
С11	N-Benzoyl-a-aminoi sobutyri c acid	348	88	19 ⁵⁹	(202)	
C 13	N-Benzoyl-a-aminophenylacetic acid	348	97	19 ⁵⁹	(178)	
		Amino Am	ides			
22	a-Aminoacetamide	352	56	1935	(68)	
2,	D-a-Aminopropionamide	352	84	1935	(72)	
	Methylaminoacetamide	354	90	19 169	(72)	
4	Dimethylaminoacetamide	354	76	19 72	(96)	
8	o-Aminoacetanilide	425	90	19179	(133)	
213	p-Aminobenzanilide	425	90	19 162	(136)	
	(Cyano Ami	des			
3	Cyanoacetamide	352	88	19 31	(120)	
4	a-Cyanopropionamide	352	41†	19 ¹⁶⁰	. ,	
	o-Cyanobenzamide	384	65	20 374	(171)	
	N	Nitro Amic	les			
	o-Nitrophenylacetamide	360	55	1993	(161)	
	o-Nitroacetanilide	350	97	19 130	(93)	
	<i>p</i> -Nitroacetanilide	350	100	19 128	(216)	
		486	95	28 63	(207)	
9	o-Nitro-N-methylacetanilide	350	73	19 130	(71)	
Fo	r explanations and symbols see pp	. xi-xii.				
	ТАВ	DLE 64. IN	MIDES			
n	Compound	Me	thod	Yield (%)	Chapter ^{ref} .	(M. p.)
4	Succinimide		49	83	19 ⁵	(125)
_	Glutarimide	2		0,5		(12))

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref,}	(M.p.)
C₄	Succinimide	349	83	195	(125)
C,	Glutarimide	350	••••	19 ¹³⁵	(165)
C ₆	a-Methylglutarimide	350	80	19134	(91)
C7	a-Ethylglutarimide	350	85	19 ¹³⁵	(108)
C ₈	Phthalimide	350	97	19 123	(235)
	N-Bromophthalimide	68	80	4 688	
	4-Nitroph thalimide	486	53	19157	(198)

AMIDES, IMIDES, HYDRAZIDES, ETC.

TABLE 64 (continued)

 C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	(M.p.)
		259	90	19145	(134)
C,	N-Methylphthalimide	578	70	19146	(148)
	N-Bromomethylphthalimide	367	94	19146	(140)
		349	75	19 ¹³³	(158)
Сю	Succinanii (N-phenyisuccinimide)	358	79	19 143	(83)
	β-Bromoethylphthalimide	358	74	19 ¹⁴⁵	(37)
C 12	N-n-Butylphthalimide	350	76	1914	(60)
	N-t-Duty production	350	76	19127	(225)
C ₁₃	2-Pyndylphthailinide	358	63	19125	(116)
C 15	N-Benzylphmanmide Diethyl phthalimidomalonate	358	71	19144	(74)

For explanations and symbols see pp. xi-xii.

TABLE 65	HYDRAZIDES	AND	AZIDES
----------	------------	-----	--------

 C _n	Compound	Method	Yield (%)	Chapter ^{re f.}	(M.p.)
С ,	Betaine hydrazide hydrochloride	352	90	19108	(175-180)
	(Girard's reagent)	365	92	19 119	
~	2-Furoyl azide	364	88	19 ¹⁷³	(48)
C 6	Nicounyi azide	352	80	19116	(112)
C۳	Benzhydrazide	364	70	19 ¹¹⁸	(28)
	Benzoyl azıde	365	54	19121	(32)
		365	50	19118	(28)
	t Indohen zovil azide	364	90	1911	(56)
	2 4 Dipitroben zovi azide	365	91	19122	(68)
	6-Methylnicotinyl azide	364	70	19107	(4))
		352	76	19 114	(74)
C ₈	Ethylisobutylacethy diameter	352	95	19 113	(136)
	p-Metho Typer Zhydrazide	352	97	19 **	(167)
	p-Nitrophenylacetyl azide	364	84	19 **	(45)
	politi dopinen y la constanti de	352	95	19 113	(127)
C,	p-Ethoxy ben znydrazide	352	95	19 ***	(31)
C.r	p-Ethoxydenzoyl azide 9-Phenanthroyl azide	365	98	19 106	(95), Explodes

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 19

REFERENCES FOR CHAPTER 19

¹Coleman and Alvarado. Org. Syntheses. Coll. Vol. I. 3 (1941); cf. ref. 17. ²Webb. Ore. Syntheses. Coll. Vol. I. 82 (1941); cf. refs. 7 and 9. ³Roe. Scanlan, and Swern. I. Am. Chem. Soc., 71, 2217 (1949). ⁴Galat. I. Am. Chem. Soc., 70, 2596 (1948). ⁵Clarke and Behr. Ore. Syntheses. Coll. Vol. II, 562 (1943). ⁶MacGregor and Ward, I. Soc. Chem. Ind. (London), 66, 344 (1947). 'Grimmel. Guenther. and Morgan. I. Am. Chem. Soc., 68, 539 (1946). ⁸ Ruhoff and Reid. I. Am. Chem. Soc. 59, 401 (1937); cf. ref. 17. ⁹Sowa and Nieuwland. I. Am. Chem. Soc. 59, 1203 (1937). ¹⁰Clarke. Shibe. and Connor. Ore. Syntheses. 20, 37 (1940). ¹¹ Audrieth and Sveda, Org. Syntheses, 20, 62 (1940). ¹² Fieser and Iones. Org. Syntheses, 20, 66 (1940). ¹³Galat and Elion. 1. Am. Chem. Soc. 65, 1566 (1943). ¹⁴Smith and Emerson. I. Am. Chem. Soc. 67, 1862 (1945); Org. Syntheses, 29, 19 (1949). 15 Biggs and Bishop, Org. Syntheses, 25, 97 (1945), note 6. ¹⁶Kao and Ma. I. Chem. Soc., 2788 (1930); 443 (1931). 17 Mitchell and Reid. J. Am. Chem. Soc., 53, 1879 (1931); cf. ref. 8. ¹⁶ Ralston, Hoerr, and Pool, I. Org. Chem., 8, 473 (1943), 19 Oyster and Adkins, J. Am. Chem. Soc., 43. 208 (1921); Moore and Huntress, ibid., 49, 1332 (1927). 20 Cherbuliez and Landolt, Helv. Chim. Acta, 29, 1438 (1946). ²¹ Gordon, Miller, and Day, J. Am. Chem. Soc., 71, 1245 (1949). ²² Audrieth and Kleinberg, I. Org. Chem., 3, 312 (1938); Org. Syntheses, 21, 71 (1941). 23 Russell, J. Am. Chem. Soc., 72, 1853 (1950). 24 Röhrs and Lang. 1. prakt. Chem., 158, 112 (1941). ²⁵ Karrer et al., Helv. Chim. Acta, 20, 65 (1937); LaForge, J. Am. Chem. Soc., 50, 2480 (1928). ²⁶ Allen and Van Allan, Org. Syntheses, 26, 92 (1946), note 5. ²⁷ Phillips and Baltzly. I. Am. Chem. Soc., 69, 200 (1947). 28 Ratchford and Fisher, J. Org. Chem., 15, 317, 326 (1950); J. Am. Chem. Soc., 69, 1913 (1947). 29 McElvain and Clarke, J. Am. Chem. Soc., 69, 2659, 2662 (1947). ³⁰ Jacobs and Heidelberger, Org. Syntheses, Coll. Vol. 1, 153 (1941). ³¹Corson, Scott, and Vose, Ore. Syntheses, Coll. Vol. I. 179 (1941). 32 Abrams and Kipping, J. Chem. Soc., 1990 (1934). 33 Scheibler et al., Ber., 67, 1509 (1934). ³⁴ Kibler and Weissberger, Org. Syntheses, 25, 7 (1945). 35 Yang and Rising, J. Am. Chem. Soc., 53, 3183 (1931); cf. ref. 37. 36 Shriner and Cross. J. Am. Chem. Soc., 60, 2339 (1938). ³⁷ Iones. I. Am. Chem. Soc., 71, 79 (1949). ³⁸ Kent and McElvain, Org. Syntheses, 25, 58 (1945). 39 Horowitz and Geissman, J. Am. Chem. Soc., 72, 1519 (1950). 40 McElvain and Stevens, J. Am. Chem. Soc., 69, 2665 (1947). 41 McElvain and Stevens, J. Am. Chem. Soc., 69, 2668 (1947). 42 Whitmore, Marker, and Plambeck, J. Am. Chem. Soc., 63, 1628 (1941). 43 Schlatter, J. Am. Chem. Soc., 63, 1735 (1941). 44 Newman, J. Org. Chem., 9, 518 (1944).

43 Weaver and Whaley, J. Am. Chem. Soc., 69, 516 (1947); cf. ref. 51. * Weaver and Whaley, J. Am. Chem. Soc., 69, 1144 (1947). 47 Truce, J. Am. Chem. Soc., 70, 2828 (1948). 48 Truitt et al., J. Am. Chem. Soc., 71, 3480 (1949). "Swensen and Weaver, J. Am. Chem. Soc., 70, 4060 (1948). ⁵⁰ Stevens, J. Am. Chem. Soc., 70, 166 (1948). ^{\$1} Drake, Eaker, and Shenk, J. Am. Chem. Soc., 70, 677 (1948). ⁵² Homeyer, Whitmore, and Wallingford, J. Am. Chem. Soc., 55, 4213 (1933). ⁵³ Rapson and Shuttleworth, J. Chem. Soc., 488 (1941). 54 Tarbell and Weaver, J. Am. Chem. Soc., 63, 2942 (1941). 55 Pomerantz and Connor, J. Am. Chem. Soc., 61, 3386 (1939). ⁵⁶ Eck and Marvel, Org. Syntheses, Coll. Vol. II, 76 (1943). ⁵⁷ Ingersoll and Babcock, Org. Syntheses, Coll. Vol. II, 328 (1943). 58 Bishop, Org. Syntheses, 25, 71 (1945). 59 Steiger, J. Org. Chem., 9, 396 (1944). 60 Couturier, Ann. chim., (11) 10, 563 (1938). ⁶¹ Marvel and Eck, Org. Syntheses, Coll. Vol. II, 371 (1943). 62 Fox, Dunn, and Stoddard, J. Org. Chem., 6, 410 (1941). 63 Gilman and Jacoby, J. Org. Chem., 3, 116 (1938). 4 Sanford, J. Am. Chem. Soc., 67, 1942 (1945). 65 Paul, Bull. soc. chim. France, (5) 4, 1115 (1937); Compt. rend., 204, 363 (1937). ⁶⁶Noller, Org. Syntheses, Coll. Vol. II, 586 (1943). 67 West, J. Am. Chem. Soc., 42, 1662 (1920). 68 Sperber, Papa, and Schwenk, J. Am. Chem. Soc., 70, 3091 (1948). "Wiley and Waddey, Org. Syntheses, 29, 61 (1949); J. Org. Chem., 13, 421 (1948). ⁷⁰ Mutray and Cloke, J. Am. Chem. Soc., 56, 2749 (1934). ⁷¹Galat, J. Am. Chem. Soc., 70, 3945 (1948); Krewson and Couch, ibid., 65, 2256 (1943). ⁷² Turner, J. Am. Chem. Soc., 68, 1607 (1946). ⁷³ Jenkins, Bigelow, and Buck, J. Am. Chem. Soc., 52, 5202 (1930). 74 DeTar and Carmack, J. Am. Chem. Soc., 68, 2025 (1946). ⁷⁵ Carmack and DeTar, J. Am. Chem. Soc., 68, 2029, 2033 (1946). ⁷⁶ Gilman and Avakian, J. Am. Chem. Soc., 68, 2105 (1946). ⁷⁷Ott, Mattano, and Coleman, J. Am. Chem. Soc., 68, 2633 (1946). ⁷⁸ King and McMillan, J. Am. Chem. Soc., 68, 1369 (1946). ⁷⁹ Cavalieri, Pattison, and Carmack, J. Am. Chem. Soc., 67, 1783 (1945). ⁸⁰ Carmack and Spielman in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 83 and 95-98. ⁸¹Shantz and Rittenberg, J. Am. Chem. Soc., 68, 2109 (1946); King and Mc-Millan, ibid., 68, 632 (1946); Campaigne and Rutan, ibid., 69, 1211 (1947). ⁸² King and McMillan, J. Am. Chem. Soc., 68, 2335 (1946). 63 Kindler and Li, Ber., 74, 321 (1941). ⁸⁴ Davis and Carmack, J. Org. Chem., 12, 76 (1947). ⁸⁵ Schwenk and Bloch, J. Am. Chem. Soc., 64, 3051 (1942); Schwenk and Papa, I. Org. Chem., 11, 798 (1946). ⁸⁶ Bachmann and Cortes, J. Am. Chem. Soc., 65, 1332 (1943). ⁸⁷ Bachmann and Sheehan, J. Am. Chem. Soc., 62, 2688 (1940). ⁸⁸ Hartmann and Bosshard, Helv. Chim. Acta, 24, 28E (1941).

⁸⁹ Corse et al., J. Am. Chem. Soc., 70, 2841 (1948).

90 Solmssen and Wenis, J. Am. Chem. Soc., 70, 4200 (1948). ⁹¹ Bachmann and Struve in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 38. 92 Gilman et al., J. Am. Chem. Soc., 61, 2844 (1939). ⁹³ Amdt and Eistert, Ber., 68, 204 (1935). 94 Williams and Krynitsky, Org. Syntheses, 21, 4 (1941). ⁹⁵Kaslow and Cook, J. Am. Chem. Soc., 67, 1969 (1945). 96 Pauw, Rec. trav. chim., 55, 218 (1936). 97 Singleton and Edwards, J. Am. Chem. Soc., 60, 543 (1938). 98 Gilman and Kirby, J. Am. Chem. Soc., 51, 3477 (1929). 99 Benson and Ritter, J. Am. Chem. Soc., 71, 4128 (1949). 100 Ritter and Minieri, J. Am. Chem. Soc., 70, 4045 (1948); Ritter and Kalish, ibid., 70, 4048 (1948). ¹⁰¹ Wegler and Binder, Arch. Pharm., 275, 511 (1937). ¹⁰² Burger and Avakian, J. Org. Chem., 5, 606 (1940). ¹⁰³ Bachmann and Chemerda, J. Org. Chem.; 6, 40 (1941). ¹⁰⁴ Wilds and Meader, J. Org. Chem., 13, 763, 774 (1948). 105 Schwartz and Johnson, J. Am. Chem. Soc., 53, 1063 (1931); Underwood and Gale, ibid., 56, 2117 (1934); Gilman and Furry, ibid., 50, 1214 (1928). 106 Goldberg, Ordas, and Carsch, J. Am. Chem. Soc., 69, 261 (1947). ¹⁰⁷Graf, J. prakt. Chem., 133, 25 (1932). ¹⁰⁸ Girard, Org. Syntheses, Coll. Vol. II, 85 (1943); Girard and Sandulesco, Helv. Chim. Acta, 19, 1103 (1936). ¹⁰⁹ Buckle, Heap, and Saunders, J. Chem. Soc., 912 (1949); Bacon et al., J. Am. Chem. Soc., 70, 2654 (1948). ¹¹⁰ Bright and Hauser, J. Am. Chem. Soc., 61, 627 (1939); Renfrow and Hauser, ibid., 59, 2312 (1937). 111 Yale, Chem. Revs. 33, 225-231 (1943). ¹¹²Sah et al., Rec. trav. chim., 58, 9, 14, 596, 1014 (1939); 59, 238, 349, 357 (1940). ¹¹³Sah and Chang, Ber., 69, 2763 (1936); Curtius and Ulmer, I. prakt. Chem., 125, 54 (1930). ¹¹⁴Curtius and Nadenheim, J. prakt. Chem., 125, 170, 172 (1930). 115 Curtius et al., J. prakt. Chem., 125, 63, 77, 90, 152, 170, 182, 200, 211 (1930). ¹¹⁶ Gatterman and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 153. ¹¹⁷ Buckle, Pattison, and Saunders, J. Chem. Soc., 1478 (1949). ¹¹⁸ Newman, Lee, and Garrett, J. Am. Chem. Soc., 69, 113 (1947); cf. ref. 116. ¹¹⁹ Singleton and Edwards, J. Am. Chem. Soc., 60, 541 (1938). ¹²⁰ Jones and Neuffer, J. Am. Chem. Soc., 39, 659 (1917). ¹²¹ Barrett and Porter, J. Am. Chem. Soc., 63, 3434 (1941); cf. ref. 118. 122 Naegeli, Tyabii, and Conrad, Helv. Chim. Acta, 21, 1138 (1938). 123 Noyes and Porter, Org. Syntheses, Coll. Vol. I, 457 (1941). ¹²⁴Herbst and Shemin, Org. Syntheses, Coll. Vol. II, 11 (1943). ¹²⁵ Manske, Org. Syntheses, Coll. Vol. II, 83 (1943); Ing and Manske, J. Chem. Soc., 2348 (1926). 126 Hurd and Dull, J. Am. Chem. Soc., 54, 2432 (1932). 127 Feist and Schultz, Arch. Pharm., 272, 789 (1934). ¹²⁸ Kaufmann, Ber., 42, 3480 (1909). ¹²⁹ Brown et al., J. Org. Chem., 11, 166 (1946); cf. ref. 128.

130 Roeder and Day, 1. Org. Chem., 6, 25 (1941). 131 Lauer et al., I. Am. Chem. Soc., 68, 1546 (1946). 132 Popkin, I. Am. Chem. Soc., 65, 2043 (1943). 133 Adams, Long, and Jeanes, J. Am. Chem. Soc., 61, 2347 (1939). 134 Crouch and Lochte, J. Am. Chem. Soc., 65, 271 (1943). 135 Kornfeld, Jones, and Parke, J. Am. Chem. Soc., 71, 158, 159 (1949). 136 Cleland and Niemann, J. Am. Chem. Soc., 71, 841 (1949). 137 Thielepape, Ber., 68, 752 (1935). 138 Tingle and Brenton, J. Am. Chem. Soc., 32, 116 (1910); Manske, ibid., 51, 1202 (1929). ¹³⁹ Dakin and West, J. Biol. Chem., 78, 91, 757 (1928). 140 Bergstrom and Fernelius, Chem. Revs., 12, 122 (1933); 20, 449 (1937). 141 Haller and Bauer, Ann. chim., (9) 1, 5 (1914); Mentzer, Buu-Hoi, and Cagniant, Bull. soc. chim. France, (5) 9, 816 (1942). 142 Carter and Slater, J. Chem. Soc., 130 (1946); Buu-Hoi and Cagniant, Rec. trav. chim., 65, 248 (1946). 143 Salzberg and Supniewski, Org. Syntheses, Coll. Vol. I, 119 (1941). 144 Osterberg, Org. Syntheses, Coll. Vol. I, 271 (1941). 145 Sakellarios, Helv. Chim. Acta, 29. 1675 (1946). 146 Buc, J. Am. Chem. Soc., 69, 254 (1947); Pucher and Johnson, ibid., 44, 820 (1922). 147 Ross and Burnett, J. Am. Chem. Soc., 71, 3562 (1949). 148 Noves and Forman, J. Am. Chem. Soc., 55, 3493 (1933). 149 Tschelinzew et al., Ber., 69, 374, 2024 (1936). 150 Wolff in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 315, 335, 336. ¹⁵¹ Smith, J. Am. Chem. Soc., 70, 320 (1948); Smith and Horwitz, ibid., 72, 3718 (1950). ¹⁵² Einhorn et al., Ann. 343, 207-310 (1905). 153 Marvel and Hiers. Org. Syntheses. Coll. Vol. 1, 327 (1941). 154 Byrne, Linstead, and Lowe, J. Chem. Soc., 1019 (1934). 155 Adams and Jones, J. Am. Chem. Soc., 69, 1804 (1947). 156 Galat, J. Am. Chem. Soc., 69, 965 (1947). 157 Huntress and Shriner, Org. Syntheses, Coll. Vol. 11, 459 (1943). 158 Ferber and Brückner, Ber., 72, 999 (1939). 159 Polya and Spotswood, Rec. trav. chim., 67, 927 (1948); Hurd and Dull, J. Am. Chem. Soc., 54, 2436 (1932). 160 Strack and Schwaneberg, Ber., 67, 41 (1934). ¹⁶¹ Briggs, Ath, and Ellis, J. Chem. Soc., 61 (1942). 162 Chu, J. Am. Chem. Soc., 67, 1862 (1945); Rivier and Kunz, Helv. Chim. Acta, 15, 377 (1932). 163 Shepherd and Fellows, J. Am. Chem. Soc., 70, 159 (1948). 164 Oddo and Deleo, Ber., 69, 287 (1936). ¹⁶⁵ Tarbell and Noble, J. Am. Chem. Soc., 72, 2659 (1950). 166 Heyboer and Staverman, Rec. trav. chim., 69, 787 (1950). ¹⁶⁷ Mihina and Herbst, J. Org. Chem., 15, 1087 (1950). 168 Bachmann and Boatner, J. Am. Chem. Soc., 58, 2097 (1936); Mosettig and Krueger, J. Org. Chem., 3, 328 (1938); 5, 313 (1940). 169 Cook and Cox, I. Chem. Soc., 2336 (1949). ¹⁷⁰ Wiley and Morgan, J. Org. Chem., 15, 800 (1950). ¹⁷¹ Wenner, J. Org. Chem., 15, 548 (1950).

¹⁷² Crowe and Nord, J. Org. Chem., 15, 87 (1950).
¹⁷³ Breslow, J. Am. Chem. Soc., 72, 4245 (1950).
¹⁷⁴ Carothers and Jones, J. Am. Chem. Soc., 47, 3051 (1925).
¹⁷⁵ Fones, J. Org. Chem., 14, 1099 (1949).
¹⁷⁶ Haworth, MacGillivray, and Peacock, J. Chem. Soc., 1496 (1950).
¹⁷⁷ Arcus, J. Chem. Soc., 2735 (1949).
¹⁷⁸ Burckhalter et al., J. Am. Chem. Soc., 70, 1364 (1948).
¹⁷⁹ Fieser and Martin, J. Am. Chem. Soc., 57, 1838 (1935); cf. ref. 130
¹⁸⁰ Sheehan and Izzo, J. Am. Chem. Soc., 70, 1985 (1948).
¹⁸¹ Frank, Schmitz, and Zeidman, Org. Syntheses, 27, 28 (1947).
¹⁸² Späth and Lintner, Ber., 69, 2727 (1936); McElvain and Vozza, J. Am. Chem. Soc., 71, 897 (1949).
¹⁸³ Lippincott and Hass, Ind. Eng. Chem., 31, 119 (1939).

¹⁸⁴Scott and Kearse, J. Org. Chem., 5, 598 (1940); Jones et al., J. Am. Chem. Soc., 48, 181 (1926); 49, 2528 (1927).

Cyanides

CONTENTS

METHOD F	PAGE
378. Interaction of Metallic Cyanides and Halogen Compounds	591
379. Fusion of Alkali Cyanides and Sulfonic Acid Salts	594
380. Replacement of the Diazonium Group by Cyanide	⁻ 594
381. Replacement of Halogen in Acyl Halides by the Cyano Group	595
382. β -Keto Cyanides by Interaction of Alkali Cyanides and β -Keto Amines	595
383. Cyanogenation of Aromatic Compounds	595
384. Dehydration of Amides	596
385. Dehydration of Oximes	598
386. Alkylation of Cyano Compounds	599
387. Decarboxylation of Cyano Acids	601
388. Cyanoethylation	6 02
389. Addition of Hydrogen Cyanide to Unsaturated Compounds	603
390. Addition of Hydrogen Cyanide to Carbonyl Compounds	604
391. Cyanoaminolysis of Carbonyl Compounds	605
392. Addition of Hydrogen Cyanide to Carbon-Nitrogen Double Bonds	606
393. Addition of Hydrogen Cyanide to Lactones	607
394. Reduction of Unsaturated Cyano Compounds	608
395. Reduction of a-Halo Cyanides	608
396. Action of Hydrazoic Acid on Aldehydes	609
397. Hydrogenolysis of a-Benzoyloxy Cyanides	609
398. Dehydrogenation of Amines	609
399. Action of Metallic Thiocyanates on Salts of Carboxylic Acids	609
400. Addition of Hydrogen Cyanide to Oxides	609
401. Coupling of Diazonium Salts with Acrylonitrile	609
Table 66. Cyanides	610
Table 67. Dicyanides	614
Table 68. Olefinic Cyanides	615
Table 69. Acetylenic Cyanides	617
Table 70. Halo Cyanides	617
Table 71. Hydroxy Cyanides	619
Table 72. Cyano Ethers	619
Table 73. Cyano Aldehydes and Ketones	621
Table 74. Cyano Acids	622
Table 75. Cyano Esters	623
References	625

In this chapter are gathered twenty-four methods for the preparation of cyanides. An excellent review of methods for the introduction of cyano

groups appeared in 1948.³⁶ In addition, a monograph on the chemistry of organic cyanogen compounds has been published.³⁹⁷

378. Interaction of Metallic Cyanides and Halogen Compounds

$$RX + NaCN \xrightarrow{C_2H_5OH} RCN + NaX$$

The alkali cyanides react with alkyl halides to furnish predominantly nitriles. Primary aliphatic nitriles, including those of high-molecular weight, are readily formed in high yields.^{5,6,43} Secondary alkyl halides give poor yields (30%), and tertiary alkyl halides give little or no nitrile. The reactivity of the different halides in this reaction is in the increasing order of chloride, bromide, and iodide. This is illustrated by the formation of the chloronitrile from trimethylene chlorobromide in 70% yield.⁷⁰ Often the reaction of an alkyl chloride can be facilitated by the addition of sodium iodide, which rapidly forms the faster-acting alkyl iodide (cf. method 55).² Sometimes alkyl sulfates and sulfonates are used in place of alkyl halides.¹⁶²⁻¹⁶⁴ Small amounts of isocyanides formed in these reactions can be removed by washing the crude products with warm 50% sulfuric acid⁹ or cold concentrated hydrochloric acid.⁴

Benzyl-type chlorides are converted to the corresponding cyanides much more rapidly (85-90%). Ring substituents include alkyl,⁹⁻¹² halo,³⁶³ carbethoxy^{1,364} and nitro³⁶⁵ groups. The more reactive benzyl halides, particularly the p-methoxy derivatives, are subject to extensive alcoholysis when ethanol is employed as the solvent.^{17,41} The successful use of acetone,¹⁷ acetonitrile,⁵⁴ and phenylacetonitrile⁵⁵ as solvents has been described. Conversion by cuprous cyanide and pyridine has been successfully applied to benzyl chloride¹⁰ as well as to di-o-tolylchloromethane.⁵³ It is interesting to find that treatment of α -chloroethylbenzene, C₈H₅CH(Cl)CH₃, with cuprous cyanide gives 1,3-diphenyl-1-butene, $C_6H_5CH = CH - CH(CH_3)C_6H_5$, instead of the anticipated nitrile.³⁶⁶

The replacement of an aryl halogen atom by the cyano group can be accomplished by the action of anhydrous cuprous cyanide at 150-250° with or without an organic base (usually pyridine) as a promoter or solvent (Rosenmund-von Braun nitrile synthesis). The reaction is autocatalytic and may be accelerated by the addition of small amounts of a nitrile and copper sulfate.²¹ Typical laboratory procedures are found in the syntheses of α -naphthonitrile (90%)²⁵ and 9-cyanophenanthrene (87%).²⁶ The adaptation of the process to commercial practice has been discussed.42

For the most part, the cyanides of heterocyclic compounds are similarly prepared by the action of alkali cyanides or cuprous cyanide on sidechain or nuclear halogen atoms, respectively. Several notable exceptions are found in the furan series. Thus, the product from the reaction of

METHOD 378

furfuryl chloride is mainly 5-methyl-2-furonitrile instead of the expected 2-furanacetonitrile.³⁰

$$\begin{array}{c} HC - CH \\ \parallel \\ HC \\ O \end{array} \xrightarrow{} CCH_{2}CI + KCN \xrightarrow{} HC - CH \\ HC \\ CH_{2}C \\ O \end{array}$$

A similar rearrangement occurs with α -(1-chloroethyl)-furan; 5-ethylfuryl cyanide is formed.⁵² Also, 3-furylmethyl chloride and aqueous potassium cyanide furnish an isomeric mixture of nitriles, a 9:1 ratio of 3-furylacetonitrile and 3-methyl-2-furonitrile.³⁶¹ Tetrahydrofurfuryl chloride behaves normally although its halogen is more firmly held.²⁹ As expected, the halides of pyridine,³⁴ quinoline,³⁷ and isoquinoline³⁹ react satisfactorily without a solvent-promoter.

Polymethylene dicyanides are readily prepared from the corresponding dibromides,⁴⁹ as illustrated by the preparation of trimethylene cyanide, $CN(CH_2)_3CN$ (86%).⁴⁵ The o- and $p - \omega, \omega$ '-dibromoxylenes react rapidly to give only the corresponding phenylenediacetonitriles (70–90%); with the meta isomer, the reaction may be controlled to yield the bromonitrile (90%).^{12,50,51}

The formation of *olejinic nitriles* from allylic halides is best accomplished with dry, powdered cuprous cyanide rather than with alcoholic alkali cyanides, with which side reactions such as isomerization and alcoholysis of the double bond are particularly bothersome.⁵⁷ With cuprous cyanide the yields in the synthesis of allyl cyanide⁵⁶ and methallyl cyanide⁵⁸ are 84% and 86%, respectively. Higher allylic halides are subject to allylic rearrangements; thus cuprous cyanide acts on crotyl halide (CH₃CH=CHCH₂X) and methylvinylcarbinyl halide (CH₃CHXCH=CH₂) to produce the same mixture of isomeric nitriles (9:1) regardless of which halide is treated.⁵⁹ Numerous cyanides of the allylic type (C₅-C₁₄) have been prepared, although the possibility of an isomerization has not been considered.⁶⁰ A similar isomerization has been observed in the reaction of sorbyl chloride and potassium cyanide.⁶¹

 $CH_3CH = CH - CH = CHCH_2CI \xrightarrow{KCN} CH_3CH(CN)CH = CH - CH = CH_2$

For the most part, vinyl halides are unreactive; however, a few have been converted to vinyl-type cyanides under conditions employed for aromatic halogen compounds. Thus, sym-diiodoethylene has been converted by cuprous cyanide with an amine promoter to fumaronitrile (74%).⁶⁵ The halogen atom in certain triarylvinyl bromides has also been replaced by the cyano group under these conditions.⁶⁶ Acetylenic nitriles are best prepared by heating the corresponding iodides with alkali cyanides in aqueous acetone or with cuprous cyanide in xylene.⁶⁸ With methanolic potassium cyanide, 1-chloro-1-heptyne yields a cyanovinyl ether of the structure $C_5H_{11}C(OCH_3) = CHCN$ which results from the addition of methanol to the triple bond.⁶⁹

Halo nitriles are prepared from the corresponding dihalides or from mixed halides by taking advantage of the different reactivities of two dissimilar halogen atoms.^{70,72}

Hydroxy nitriles are obtained from halo alcohols as illustrated by the preparation of ethylene cyanohydrin from ethylene chlorohydrin (80%).⁷⁴ In the reaction of the next higher homolog, 2-chloropropanol, with alcoholic potassium cyanide, a 60% yield of the secondary alcohol (CH₃CHOHCH₂CN) is obtained instead of the expected 2-cyanopropanol.⁷⁷ Other chlorohydrins containing a third functional group have been converted to valuable synthetic starting materials, e.g., β -hydroxy- γ -methoxybutyronitrile⁷⁶ and 1-cyano-3-buten-2-ol.⁷⁸

Treatment of α -halo ethers with metallic cyanides such as cuprous, mercuric, or silver cyanides gives the corresponding cyano ethers; the alkali cyanides are without effect.^{80,83,89} Very little of the corresponding isonitriles are encountered despite the fact that these compounds often result from the interaction of heavy-metal cyanides and alkyl halides. Generally, cuprous cyanide, the most commonly used reagent, is suspended in dry anhydrous ether or dry benzene and treated with the halo ether under gentle reflux (55-80%).

More often than not, a halogen atom on the carbon beta to the ether linkage is unreactive. For example, the comparative reactivities of α and β -halogens may be illustrated by the reaction of ethers containing both these groups.^{84,89} In each case, the β -halogen is retained. On the other hand, the bromine atom in β -ethoxyethyl bromide, $C_2H_5OCH_2CH_2Br$, is readily replaced by the cyano group from sodium cyanide (58%).⁸⁶ It is interesting to note that aqueous potassium cyanide effects a cleavage of the carbon-oxygen bond in α , β -dichloroethyl ether, giving the cyanohydrin of chloroacetaldehyde, CH_CICHOHCN (40%).⁹¹

The formation of cyano ketones by this method is illustrated by the conversion of phenacyl halides to the corresponding nitriles.^{98, 99} Ring closure to cyclopropane derivatives is a side reaction which has been encountered with γ -halo ketones. Benzalacetophenone dibromide is converted by alcoholic potassium cyanide to the β -cyano ketone, the α -halogen atom being reduced.¹⁰² Several α -chloro ketones have been found to yield α -cyano epoxides.^{103,104}

Cyano acids are prepared by first neutralizing the corresponding halo acids with sodium carbonate and then treating the aqueous solutions with

sodium cyanide. The organic acid is liberated with concentrated hydrochloric acid.^{108,109,211} Sometimes the halogen atom in a halo ester is replaced by cyanide and the ester group is then preferentially hydrolyzed with cold alcoholic potassium hydroxide.¹¹⁰

 γ -Diethylaminobutyronitrile is prepared in 50% yield from trimethylene chlorobromide by successive treatment with diethylamine and potassium cyanide. This is almost twice the yield reported for the more common procedure of introducing the cyanide group first.¹¹³

379. Fusion of Alkali Cyanides and Sulfonic Acid Salts

$$ArSO_K + KCN \xrightarrow{Heat} ArCN$$

The fusion of alkali arylsulfonates with potassium cyanide forms aromatic nitriles by a replacement of the sulfo group. For the most part, the yields are low, although the reaction has been applied successfully in the preparation of naphthonitriles^{165,166} and cyanopyridines.^{171,172} Sometimes potassium ferrocyanide is substituted for the alkali cyanide with better results.¹⁶⁷ Ten isomeric cyanonaphthalenesulfonates have been converted to the dinitriles by fusion with this reagent in yields ranging from 8% to 75%.¹⁶⁶ Migration of the cyano group from the beta to the *alpha* position has been observed in the formation of these compounds.¹⁶⁹

380. Replacement of the Diazonium Group by Cyanide

$$\operatorname{ArNH}_2 \xrightarrow{\operatorname{HC1}} \operatorname{ArN}_2^+ \operatorname{Cl}^- \xrightarrow{\operatorname{CuCN}} \operatorname{ArCN}$$

The replacement of aromatic amino groups by cyanide is easily accomplished by the action of cuprous cyanide on the diazonium compound (Sandmeyer). The procedure is illustrated by the preparation of o- and p-tolunitriles; each is obtained in 64% to 70% yield.²¹⁸ Several features are noteworthy. The diazonium solution is neutralized with sodium carbonate before treatment with cuprous cyanide solution so that the liberation of hydrogen cyanide is avoided. Also, vigorous stirring in the presence of an inert solvent is required during the addition of the cold neutralized diazonium solution to the cold cuprous cyanide solution so that the decomposition proceeds without violence.²²¹ Methods for the preparation of cuprous cyanide have been described.^{218,220}

In the preparation of α -naphthonitrile, somewhat better yields are obtained by substituting nickel cyanide for the usual cuprous cyanide reagent (55% vs. 78%).²²⁴ 5-Cyanoquinoline is prepared satisfactorily by the Sandmeyer reaction, but the 8-isomer could not be obtained by this procedure.²²⁶ The diazonium group may be replaced in the presence of other nuclear groups including halogen,²²⁷ hydroxyl,²²⁸ alkoxyl,²²⁹ acyl,¹⁰⁷ carboxyl,^{230,232} carbomethoxyl,²³³ and nitro.²³⁴

381. Replacement of Halogen in Acyl Halides by the Cyano Group

$$RCOBr + CuCN \rightarrow RCOCN + CuBr$$

The conversion of aliphatic and aromatic acyl halides to α -keto nitriles has been effected by heating the halides with dry metallic cyanides, of which cuprous cyanide has given the most satisfactory results (60-87%). The acyl bromides rather than the chlorides are preferred, at least in the formation of aliphatic compounds.²⁹⁵ Thus, pyruvonitrile is prepared in 77% yield from acetyl bromide and cuprous cyanide whereas no product is obtained if acetyl chloride is employed.²⁹⁶ Benzoyl cyanide is made in 65% yield by heating the corresponding acyl chloride with cuprous cyanide.²⁹⁷

Another procedure consists in slowly adding pyridine to an ethereal solution of an acyl chloride and anhydrous hydrogen cyanide. This order of addition of the reactants is important in order to retard the formation of acyl cyanide dimers. In this manner, certain benzoyl cyanides²⁹⁸ as well as furoyl cyanide²⁹⁹ have been prepared (40-80%).

382. β -Keto Cyanides by Interaction of Alkali Cyanides and β -Keto Amines

$$ArCOCH_2CH_2N(CH_3)_2 \xrightarrow{KCN} ArCOCH_2CH_2CN + (CH_3)_2NH$$

Certain β -dialkylaminoethyl aryl ketones, readily prepared by the Mannich reaction (method 444), are converted to β -aroylpropionitriles in good yields by the action of hot aqueous potassium cyanide.³⁹³ β -Benzoylpropionitrile is made in this way in 67% yield. The reaction has been successfully applied to the formation of β -2-furoylpropionitrile (57%) and β -2-thienoylpropionitrile (67%).

383. Cyanogenation of Aromatic Compounds

$$ArH + CCI_3CN \xrightarrow{AICI_3} ArCCCI_3 \xrightarrow{NBOH} ArCN + CHCI_3$$

The introduction of a cyano group into an aromatic nucleus has been accomplished by the action of trichloroacetonitrile in the presence of anhydrous aluminum chloride followed by degradation of the intermediate ketimine. It is not necessary to isolate the trichloromethyl ketimine.

METHOD 384

Ch. 20

Instead, in a single process, the latter is liberated from its hydrochloride by the addition of dry ammonia and then degraded by the action of dry, powdered sodium hydroxide. Dry hydrogen chloride is a more satisfactory condensing agent than aluminum chloride for the cyanogenation of phenols and aromatic ethers. Typical aromatic nitriles obtained by this procedure include benzonitrile (69%), 2,4-, 3,4-, and 2,5-dimethylbenzonitriles from the corresponding xylenes (82-86%), 2,4,6-trimethylbenzonitrile from mesitylene (68%), 2-methoxy-5-methylbenzonitrile from the methyl ether of p-cresol (67%), and 3-cyano-2-methylindole (95%).³²⁹

Cyanogenation of aromatic compounds can also be carried out directly by the action of cyanogen bromide and aluminum chloride in carbon disulfide.

$$ArH + BrCN \xrightarrow{AiCi_1} ArCN + HBr$$

The success of the reaction depends largely on the use of finely ground aluminum chloride and freshly prepared cyanogen bromide. Aromatic hydrocarbons—benzene, toluene, anthracene, and acenaphthene—and phenolic ethers respond favorably.³³⁰ However, phenanthrene gives none of the anticipated nitrile.³³¹ As might be expected, a by-product is the aryl bromide.³³⁴ Indeed, thiophene³³² and furan³³³ are converted largely to the α -bromo derivatives.

384. Dehydration of Amides

$$\text{RCONH}_2 \xrightarrow{-H_2O} \text{RCN}$$

The preparation of nitriles by the removal of water from amides can be accomplished in high yields by numerous dehydrating agents including phosphorus pentoxide, phosphorus oxychloride, and thionyl chloride. A commonly used procedure for the preparation of simple aliphatic nitriles, e.g., isobutyronitrile (86%), consists in heating an intimate mixture of the dry, powdered amide and phosphorus pentoxide at $100-220^{\circ}$ and distilling the product as it is formed, sometimes under diminished pressure.¹¹⁴ Thionyl chloride is frequently the reagent of choice for the dehydration of higher-molecular-weight amides, since the secondary products are gaseous and the nitrile is more readily purified.¹¹⁹ Oftentimes, the higher fatty acids are converted to the nitriles in a single operation via the intermediate ammonium salts and amides. For this purpose, dry ammonia gas is passed into the molten acids at 290-300°; the yields of nitriles are excellent (80-85%).^{117, 118} A small amount of 85% phosphoric acid appreciably reduces the reaction time.¹⁵⁷ Another procedure consists in passing the acid vapors mixed with ammonia over silica gel at 500°. This technique

is particularly successful for lower aliphatic acids (C_2-C_6) and certain aryl-substituted acids such as phenylacetic and β -phenylpropionic acids (80-95%); it is less satisfactory for long-chain fatty acids.¹⁵⁸ Boron trifluoride has been used to effect the dismutation of an amide to an acid and a nitrile, viz.,³⁵⁵

$$2RCONH_{2} + BF_{3} \xrightarrow{CH_{3}COOH} RCN + RCO_{2}H + BF_{3} \cdot NH_{3}$$

Aromatic nitriles are also prepared by heating amides with phosphorus pentoxide,¹³⁰ phosphorus oxychloride,¹²³ phosphorus pentachloride,¹²⁴ thionyl chloride,¹²⁴ and ammonium sulfamate.³⁶⁷ In addition, the action of a double salt of aluminum and sodium chlorides, NaCl·AlCl₃, gives excellent yields of nitriles from both aliphatic and aromatic amides.¹²⁰ Heating an amide with phthalic anhydride causes dehydration.¹³¹ A novel synthesis consists in treating a mixture of an aromatic acid and *p*-toluene-sulfonamide with phosphorus pentachloride; the yields of nitriles range from 63% to 79%.^{136,136}

$$ArCO_2H + CH_3C_6H_4SO_2NH_2 + 2PCI_5 \rightarrow ArCN + CH_3C_6H_4SO_2CI + 2POCI_4 + 3HCI$$

Pyridinecarboxamides are dehydrated with phosphorus pentoxide.¹³³ Preparation of malonitrile, the simplest dinitrile, has been extensively studied. A convenient and rapid synthesis is brought about by the action of phosphorus pentachloride on cyanoacetamide in ethylene dichloride solution.¹³⁵ The simplest unsaturated dinitriles—fumaronitrile (90%), maleonitrile (39%), and acetylene dicarbonitrile (37%)—are prepared by the rapid heating of the corresponding diamides with phosphorus pentoxide.^{138,372} The chief by-products in the above reactions are probably the cyclic imides. Similarly, o-diamides are deaminated as well as dehydrated to give a mixture of products. An interesting synthesis of sebaconitrile consists in heating the corresponding dicarboxylic acid with urea to form the intermediate diamide, H₂NCO(CH₂)₆CONH₂. Stronger heating gives the dinitrile, NC(CH₂)₆CN, and ω -cyanopelargonic acid, NC(CH₂)₆COOH, in 49% and 34% yields, respectively.¹³⁹

Unsaturated nitriles prepared by the dehydration of amides include 1cyano-1-alkynes, e.g. 1-cyano-1-heptyne (85%),¹⁴² and 1-cyano-1-alkenes, e.g. β -isopropylacrylonitrile (80%).¹⁴³ Some dehydrating agents such as phosphorus pentachloride may lead to the formation of halogen-containing products; phosphorus pentoxide is preferred in these cases.¹⁴⁴ In a comparison of methods for preparing olefinic nitriles, it has been shown that dehydration of α,β - and β,γ -unsaturated amides can be accomplished without noticeable migration of the double bond.¹⁴⁴

The dehydration of an amide containing an acid-sensitive acetal group to a cyano acetal like β , β -diethoxypropionitrile has been carried out with phosphorus pentoxide in the presence of triethylamine.³⁵³

Other functional groups which may be present in the amide are halo,¹⁴⁶⁻¹⁵¹ alkoxyl,^{152, 153, 156} carbalkoxyl,¹⁵⁴ and nitro.¹⁵⁶

385. Dehydration of Oximes

$$RCH = NOH \xrightarrow{Acetic} RCN$$

The conversion of an aldoxime to a cyanide by the removal of water has been successfully applied in many instances. Hot acetic anhydride is the most common dehydrating agent. The reaction is important in sugar chemistry as a step in the degradation of an aldose to the next homolog.²³⁷ Oximes of aromatic aldehydes respond particularly well to this treatment, giving nitriles in good yields, e.g., α -methylbenzyl cyanide (90%),¹³⁹ 9-cyanoanthracene (98%),²³⁵ and 3,4-dimethoxybenzonitrile (76%).²⁴⁰ Oximes of unsaturated aldehydes like the α -alkylacroleins, H₂C=C(R)CHO, undergo dehydration without apparent migration of the double bond to furnish α -alkylacrylonitriles.^{272, 378}

Nitriles are also formed in excellent yields by the decarboxylation and dehydration of oximino acids with warm acetic anhydride. A good route for obtaining the starting materials consists in the condensation of aldehydes with rhodanine followed by cleavage of the product with alkali and treatment with hydroxylamine.

Yields in each step are in the range of 80% to 97%. The facile preparation of rhodanine in large quantity has been described along with improved directions for each step.^{241,243} Aliphatic, aromatic, and heterocyclic aldehydes undergo the initial condensation;²⁴² however, only products from the last two series are frequently carried to the final step, for example, 3,4-dimethoxyphenylacetonitrile (90% over-all),²⁴¹ 2-furanacetonitrile (80% over-all),²³⁶ and 2-thienylacetonitrile (74% over-all).³⁸⁰ The rhodanine synthesis has been extended to the preparation of phenyl-acetonitriles having chlorine or bromine atoms in the o-, m-, or p-position (38-62% over-all).²⁴³ Oximino acids are also obtained from the corresponding α -keto acids, which are readily available by the azlactone synthesis (method 210). This route has been found satisfactory for the preparation of certain alkoxyphenylacetonitriles.^{244,245}

A closely related reaction involves the conversion of α -oximino ketones to nitriles by pyrolysis or by the action of thionyl chloride (75%). This reaction constitutes a step in a series for the synthesis of aliphatic acids from valeric to lauric acids.²⁷⁴

$$\begin{array}{c} \text{NOH} \\ \text{RCH}_2\text{COCI} \xrightarrow{\text{C}_6\text{H}_6} \text{RCH}_2\text{COC}_6\text{H}_5 \xrightarrow{\text{NH}_4\text{NO}_3} \text{RCCOC}_6\text{H}_5 \xrightarrow{210^\circ} \text{RCN} + \text{C}_6\text{H}_5\text{COOH} \end{array}$$

386. Alkylation of Cyano Compounds

 $RCH_2CN + R'X + NaNH_2 \rightarrow RR'CHCN + NaX + NH_3$

The alkylation of nitriles has been developed as a general method for the preparation of substituted acetonitriles.¹⁷³ An excellent discussion of the literature to 1937 has been given.¹⁷⁶ The procedure consists in treating a nitrile in an inert solvent with finely divided sodium amide and the halogenated compound, followed by careful hydrolysis with water. Common solvents are ether, benzene, toluene, or liquid ammonia. Mono-, di-, and tri-alkylated products are possible, as shown by the alkylation of acetonitrile with ethyl bromide;¹⁷⁸ however, the mixtures can often be separated by fractional distillation.

The degree of alkylation has been controlled in certain instances. Straight-chain nitriles and equimolar quantities of low-molecular-weight bromides react in boiling ether solution to give mainly monoalkylated products. Nitriles prepared in this manner include capronitrile from the action of *n*-butyl bromide on acetonitrile (60%), diethylacetonitrile from ethyl bromide on butyronitrile (77%), and α -isopropylbutyronitrile from isopropyl bromide on butyronitrile (71%).¹⁷³ Higher temperatures, obtained with refluxing benzene or toluene solutions, favor the formation of trialkylacetonitriles when excess alkylating agent is used. The higher temperatures are necessary for alkylation with high-molecular-weight halides, e.g., *n*-decyl bromide on propionitrile.¹⁷⁸

The versatility of the reaction is illustrated by the preparation of tri*n*-butylacetonitrile from *n*-butyl bromide on either capronitrile (88%) or

METHODS 386-387

acetonitrile (80%).¹⁷⁷ In most preparations, the alkylating agents are bromides rather than chlorides, since bromides react more smoothly and at a lower temperature.^{173,177}

600

Alicyclic nitriles are prepared by the intramolecular alkylation of halo nitriles. For example, cyclopropyl cyanide is obtained in 75-90% yield by the action of sodium amide on γ -chlorobutyronitrile in ether or liquid ammonia.¹⁸⁶

$$ClCH_2CH_2CH_2CN + NaNH_2 \rightarrow CH_2-CHCN + NaCl + NH_3$$

Among the aryl-aliphatic nitriles subject to alkylation, phenylacetonitrile, $C_6H_sCH_2CN$, is especially reactive and its methylene hydrogens are readily replaced by one or two alkyl groups. Alkylation of this substance has been performed with alkyl halides or dialkyl sulfates.¹⁸⁰⁻¹⁸² It unites with both halogens in polymethylene halides (two equivalents of sodium amide are required) to form 1-phenylcycloalkyl cyanides.^{121,187,188} The action of substituted alkyl halides on phenylacetonitrile and its homologs furnishes valuable intermediates for syntheses.¹⁹¹

$C_{6}H_{5}CH_{2}CN + Z(CH_{2})_{n}Br \xrightarrow{NaNH_{2}} C_{6}H_{5}CH(CH_{2})_{n}Z$

where Z = CN, X, HO, RO, or NH₂. In this manner, cyano,¹⁸⁹ halo,¹⁸⁰ hydroxyl,¹⁸⁷ alkoxyl,¹⁷³ and amino^{173,177,190} groups have been introduced. The yields are good.

Certain *unsaturated* nitriles are prepared by the alkylation of reactive olefinic nitriles like vinylacetonitrile, 1-cyclohexenylacetonitrile, and 3-ethyl-2-pentenonitrile.¹⁹²

$$H_2C = CHCH_2CN + 2RX \xrightarrow{NaNH_2} H_2C = CHC(R_2)CN$$

Liquid NH₃

Other olefinic nitriles may be obtained by the alkylation of malonitrile with unsaturated halides.¹⁹³

Ethyl cyanoacetate is readily alkylated under the usual conditions employed for the malonic and acetoacetic ester syntheses (methods 299 and 213) to yield mono- and di-substituted cyano acetates. These substances may then be hydrolyzed and decarboxylated to furnish monocarboxylic acids (method 265). In many instances, it is difficult to avoid the formation of the dialkylated ester; the yields may be low.^{194,195} Several disubstituted cyano esters such as diisopropyl- and alkylphenylcyanoacetic esters are valuable intermediates in the synthesis of otherwise difficultly obtained acids.^{195, 198}

Certain unsaturated cyanoacetic esters, $RCH = C(R')CH(CN)CO_2C_2H_5$, derived in excellent yields by the condensation of ketones, RCH_2COR' , with cyanoacetic ester are alkylated to produce (dialkylvinyl)-alkylcyanoacetic esters, RCH = C(R')C(R'') (CN)COOC₂H₅. The yields are highest when sodium isopropoxide in isopropyl alcohol is employed as the condensing agent.^{208,217}

The cyanoacetic ester synthesis of certain alicyclic compounds is preferred to the malonic ester synthesis. Thus, cyclopropane-1, 1-cyanocarboxylate is readily obtained by the condensation of ethylene bromide and ethyl cyanoacetate in the presence of two equivalents of sodium ethoxide (76%).¹⁹⁹ A second procedure for synthesizing alicyclic compounds consists in treating α, α' -dibromodicarboxylic esters with alcoholic cyanide, whereby simultaneous replacement and ring closure occurs.²⁰⁰

$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & \\ CH_2 - CHBr & & & & & \\ & & & & & & \\ CH_2 - CHBr & & & & & \\ CH_2 - CHBr & & & & & \\ CH_2 - CHBr & & & & \\ CH_2 - CHBr & & & & \\ CH_2 - CHBr & & & & \\ CH_2 - CHCO_2C_2H_3 & & \\ CH_2 - CHCO_2C_2H_3 & & \\ CO_2C_2H_3 & & & \\ \end{array}$$

The cyano ester ring closure has been applied to the synthesis of four-, five-, and six-membered rings.²⁰²

 α -Cyanosuccinic esters are readily obtained by alkylating ethyl cyanoacetate with α -bromo esters.^{203,206} These compounds may then be further alkylated to form α , β -dialkyl- α -cyanosuccinates.

$$NCCH_{2}CO_{2}C_{2}H_{s} + RCHBrCO_{2}C_{2}H_{s} \xrightarrow{C_{2}H_{5}ONa} | NCCHCO_{2}C_{2}H_{s}$$

387. Decarboxylation of Cyano Acids

$$RCHO + H_2C(CN)CO_2Na \xrightarrow{KOH} RCH = C(CN)CO_2H \xrightarrow{Heat} RCH = CHCN$$

Cyanoacetic acid reacts readily with aliphatic and aromatic carbonyl compounds to form α -cyanoacrylic acids, which can be decarboxylated by heating to give β -substituted acrylonitriles.¹⁴⁴

The over-all synthesis is carried out in several ways. One very satisfactory procedure employs ammonium acetate as the condensing agent and benzene as solvent. The liberated water is removed by means of a water separator. The crude unsaturated cyano acid is decarboxylated directly by heat.¹⁹² Aqueous alkali has been used as the condensing agent, ¹⁴³,²¹⁰ and various organic bases such as pyridine and piperidine are also effective.¹⁴⁴, ²¹² By proper choice of the base, the reaction can be controlled to yield either the cyano acid or the unsaturated nitrile. Copper-bronze powder and quinoline with copper oxide have been used for the decarboxylation.¹⁴³,²⁰⁹

An interesting reaction for the preparation of α , β -disubstituted acrylonitriles consists in the cleavage of (dialkylvinyl)-alkylcyanoacetic esters by sodium alkoxides.²¹⁷ Although an equilibrium mixture of α , β - and β , γ -olefinic nitriles is possible,¹⁴⁴ the products are predominantly the α , β -isomers. The yields are about 90%.

$$\begin{array}{c} \text{R}^{\prime\prime}\text{CH} = \text{C}(\text{R}^{\prime})\text{C}(\text{CN})\text{CO}_{2}\text{C}_{2}\text{H}_{5} \xrightarrow{\text{C}_{2}\text{H}_{5}\text{ONe}} \text{R}^{\prime\prime}\text{CH}_{2}\text{C}(\text{R}^{\prime}) = \text{C} - \text{CN} + \text{CO}(\text{OC}_{2}\text{H}_{5})_{2} \\ | \\ \text{R} & | \\ \text{R} & \text{R} \end{array}$$

Simple saturated nitriles are seldom prepared by the decarboxylation of cyano acids derived from the cyanoacetic ester synthesis (cf. method 265). However, difunctional compounds are frequently obtained by this route, as in the preparation of α -methyl- γ -phenoxybutyronitrile from β -phenoxy-ethyl bromide and ethyl methylcyanoacetate (52% over-all).²¹⁴

$$CH_{3} \xrightarrow{CH_{3}} C_{6}H_{5}OCH_{2}CH_{2} \xrightarrow{-C(CN)CO_{2}C_{2}H_{5}} \xrightarrow{KOH_{3}H^{+}} C_{6}H_{5}OCH_{2}CH_{2} \xrightarrow{-CH_{3}} CH_{3}$$

This synthesis has been adopted for obtaining 4-dialkylaminobutyronitriles.²¹⁵

388. Cyanoethylation

(a)
$$\operatorname{ROH} + \operatorname{H}_2C = \operatorname{CHCN} \xrightarrow{\operatorname{KOH}} \operatorname{ROCH}_2\operatorname{CH}_2\operatorname{CN}$$

(b)
$$CH_3COCH_3 + 3H_2C = CHCN \xrightarrow{KOH} CH_3COC(CH_2CH_2CN)_3$$

Compounds possessing labile hydrogen atoms add readily to acrylonitrile, thereby placing a β -cyanoethyl group at the location of the reactive hydrogen atom. The hydrogen atom may be attached to nitrogen, oxygen, or sulfur atoms like those present in amines,^{247,249} alcohols,²⁵⁴ phenols,²⁵⁶ mercaptans, etc.; or it may be present in reactive --CH₂-or --CH-- groups contained in aldehydes,²⁵⁸ ketones,²⁵⁹ nitroparaffins,³⁸³ haloforms, malonic esters,^{255,261} acetoacetic esters,^{259,381} and cyanoacetic esters.³⁸² The reaction is a form of the Michael condensation (cf. method 301). It is base-catalyzed and requires a solvent such as benzene, dioxane, pyridine, or acetonitrile.

This versatile and convenient reaction results in the formation of a large number of polyfunctional nitriles. The scope, limitations, and experimental procedures along with many examples of cyanoethylation reactions have been presented.²⁴⁶

389. Addition of Hydrogen Cyanide to Unsaturated Compounds

$$HC \equiv CH \xrightarrow{HCN} H_2C = CHCN \xrightarrow{HCN} CNCH_2CH_2CN$$

The addition of hydrogen cyanide to olefins and acetylenes has been the subject of many patents.³⁶ An important application is the addition of hydrogen cyanide to acetylene under special catalytic conditions leading to acrylonitrile or succinonitrile, as illustrated above.

Important laboratory applications involve the addition of hydrogen cyanide to an olefinic linkage which is activated by another group such as carbonyl,³⁰⁴ carbalkoxyl,³⁰⁶ cyano,²⁴⁶ or nitro³⁰⁷ on the adjacent carbon; β -cyano compounds are formed. The reaction is related to the Michael condensation (method 301). For the most part, the additions are base-catalyzed and are carried out by treating the unsaturated compound with an alkali cyanide in aqueous or aqueous-alcoholic solution.

The reaction of α,β -unsaturated ketones with alkali cyanides may be complicated by side reactions. Cyanohydrin formation may occur, and also, since alkali hydroxide is generated during the reaction, hydrolysis of the γ -keto cyanide to a γ -keto acid may take place.³⁰⁴

$$(CH_{3})_{2}C = CHCOCH_{3} \xrightarrow{KCN} (CH_{3})_{2}C(CN)CH_{2}COCH_{3} \xrightarrow{KOH} (CH_{3})_{2}C(CO_{2}H)CH_{2}COCH_{3}$$

This difficulty may be overcome by partial neutralization with acetic acid. In this manner, α -phenyl- β -benzoylpropionitrile has been prepared from benzalacetophenone and alcoholic potassium cyanide (96%).³⁰³

If two activating groups are attached to the α -carbon atom, then the double bond is especially susceptible to hydrogen cyanide addition. Thus, unsaturated cyanoacetic acids²¹¹ or esters,^{294, 308} RCH=C(CN)CO₂C₂H₅, unsaturated malonitriles,³⁰² RCH=C(CN)₂, and unsaturated malonic esters,^{309,310,387} RCH=C(CO₂C₂H₅)₂, add hydrogen cyanide in good yield. The products are readily converted by hydrolysis and decarboxylation to substituted succinic acids, thus affording a good synthesis for these sub-

stances (cf. method 247). Oftentimes, the intermediate addition products are not isolated but are hydrolyzed directly.^{305,387}

$$\begin{array}{ccc} & & & & & & & \\ & & & & \\ RCH = CCO_2C_2H_5 \xrightarrow{H_{CN}} & RCHCHCO_2C_2H_5 \xrightarrow{H^+} & RCHCH_2COOH \end{array}$$

Sometimes, the alkaline condition of the addition reaction is sufficiently strong to cause hydrolysis of the ester group but not of the cyano groups. Decarboxylation then occurs to give a dicyanide, as in the preparation of phenylsuccinonitrile from ethyl α -cyanocinnamate.³⁰¹

$$CN \qquad CN \\ \downarrow \\ C_6H_5CH = CCO_2C_2H_5 + NaCN + 2H_2O \rightarrow C_6H_5CHCH_2CN + \\ NaHCO_5 + C_5H_6OH$$

A convenient procedure has been developed for the synthesis of α , β dicyano esters whereby an unsaturated cyano ester is prepared and treated with hydrogen cyanide in a single operation.³⁰⁸ For this purpose, a hot mixture of the carbonyl compound, cyanoacetic ester, and pyridyl acetate 's treated with ethanol and potassium cyanide.

 $R_{2}C = O + CH_{2}(CN)CO_{2}C_{2}H_{5} \xleftarrow{C_{5}H_{5}N-CH_{3}COOH}{R_{2}C = C(CN)CO_{2}C_{2}H_{5} + H_{2}O$

The condensation equilibrium is displaced to the right by removing the unsaturated cyano ester as it is formed by the addition of hydrogen cyanide. The effect is analogous to the single-step formation and hydrogenation of α , β -unsaturated cyanoacetic esters (method 394). The yields are good with most aliphatic ketones and aldehydes (49-75%), but poor results are obtained with aromatic carbonyl compounds and diisopropyl ketone.

390. Addition of Hydrogen Cyanide to Carbonyl Compounds

The addition of hydrogen cyanide to carbonyl compounds gives α -hydroxy cyanides (cyanohydrin synthesis). The reaction is reversible, and the extent of the cyanohydrin formation depends upon the structure of the carbonyl compound. The equilibrium highly favors the formation of aliphatic and alicyclic cyanohydrins; however, aryl alkyl ketones react to a lesser extent, and diaryl ketones, not at all.^{265,280} The reaction may be accomplished by mixing the carbonyl compound with liquid hydrogen cyanide in the presence of a basic catalyst.^{265,266,275,287} The equilibrium

is quickly reached, and the product is stabilized by acidification before processing. More conveniently, hydrogen cyanide can be generated in the reaction mixture by the action of sulfuric,²⁶³ nitric,²⁶⁸ phosphoric,²⁶⁷ or acetic²⁷⁰ acid on an alkali cyanide. Oftentimes, the bisulfite addition product is first prepared and then treated directly with an alkali cyanide.

 $R_2CO \xrightarrow{\text{NBHSO}_3} R_2C(OH)SO_3Na \xrightarrow{\text{NBCN}} R_2C(OH)CN$

These procedures are illustrated by the preparation of acetone cyanohydrin (78%).^{263,264}

Quite often, the bisulfite product is isolated and purified before the treatment with alkali cyanide, particularly in the conversion of aromatic aldehydes since their bisulfite compounds are easily manipulated. The preparation of aromatic cyanohydrins from their bisulfite products is advantageous since benzoin formation, which is catalyzed by alkali cyanides, is largely avoided. Furthermore, because of the basic environment, hydrogen cyanide fumes are curtailed.

The simplest aldehyde cyanohydrin, glycolonitrile, has been prepared by a cyanohydrin interchange between formalin and methyl ethyl ketone cyanohydrin.²⁷⁶

 $CH_2O + C_2H_5(CH_3)C(OH)CN \iff HOCH_2CN + C_2H_5COCH_3$

Under acidic conditions, acetal formation may occur between the cyanohydrin and the unreacted carbonyl compounds.²⁶⁵

Other carbonyl compounds carrying a second functional group undergo this reaction, e.g., acrolein,²⁷⁹ chloroacetone,²⁷⁵ *p*-hydroxybenzaldehyde,²⁸⁴ acetoacetic ester,²⁷⁸ and *p*-dimethylaminobenzaldehyde.²⁸⁵ The method is important in the synthesis of sugars (Kiliani cyanohydrin synthesis).²⁸¹

391. Cyanoaminolysis of Carbonyl Compounds

 $R_2CO + NaCN + NH_4CI \rightarrow R_2C(NH_2)CN + NaCl + H_2O$

 α -Aminonitriles are prepared by replacing the carbonyl oxygen in aldehydes and ketones with amino and cyano groups (Strecker synthesis). The reaction is valuable as the initial step in a practical laboratory synthesis of α -amino acids (method 247).

Many modifications of the original procedure have been developed, furnishing the aminonitriles over a wide range of yields. A convenient procedure consists in adding an alcoholic solution of the carbonyl compound to an aqueous solution of sodium cyanide and ammonium chloride. Both aliphatic and aromatic carbonyl compounds react, e.g., diethyl ketone, acetophenone, and benzaldehyde.³¹¹ Similar treatment of formaldehyde is more complicated; methylene aminoacetonitrile (molecular formula, $C_9H_{12}N_6$) is formed.³¹²

 $2HCHO + NaCN + NH_{A}CI \rightarrow H_{A}C = NCH_{A}CN + NaCI + 2H_{A}O$

Certain N-alkylamino nitriles have been made by replacing the ammonium chloride with a primary or a secondary amine hydrochloride. An aqueous solution of amine hydrochloride, alkali cyanide, and aldehyde (or ketone) is shaken at room temperature for 2 to 48 hours (39-78%).³¹⁹ A variation of this procedure consists in adding concentrated hydrochloric acid to an aqueous solution of amine, aldehyde, and sodium cyanide. In this manner, dimethylaminoacetonitrile is prepared by the condensation of dimethylamine and formaldehyde in 73-83% yield.³¹³ Acetic acid serves as a solvent for the reaction of less soluble aromatic compounds.³²⁰

Another procedure replaces the above combination of ammonium chloride and alkali cyanide with ammonium cyanide. This reagent and the carbonyl compound in alcoholic solution are allowed to react at room temperature for several days. Aliphatic^{317,318} and alkyl aryl³¹⁴⁻³¹⁶ ketones, but not diaryl ketones, give products in 20% to 90% yield.

The sodium bisulfite addition products of aldehydes have been converted by the action of potassium cyanide and an amine to α -alkylamino cyanides. The procedure is best suited for obtaining amino nitriles derived from formal dehyde and simple amines³¹⁹ and is illustrated in the preparation of diethylaminoacetonitrile (90%).³²²

 $H_2C(OH)SO_3Na \xrightarrow{R_2NH} H_2C(NR_2)SO_3Na \xrightarrow{KCN} R_2NCH_2CN$

Higher homologs have been prepared by employing other amines ^{319,390} or aldehydes.^{324,390} The yields are improved in the reaction of hindered amines by the addition of a dispersing agent.³²⁵ The procedure is of little importance for the conversion of ketones.

Still another variation consists in the treatment of cyanohydrins with ammonia or amines. This procedure has given very successful results in the conversion of acetone cyanohydrin to the corresponding amino cyanides by the action of ammonia (80%), dimethylamine (88%), diethylamine (59%), aniline (93%), or piperidine (71%).³²⁷ Methylaminoacetonitrile is made in the same way in 93% yield.³⁹⁰

392. Addition of Hydrogen Cyanide to Carbon-Nitrogen Double Bonds

Hydrogen cyanide adds to the carbon-nitrogen double bonds present in various aldehyde and ketone derivatives, like those in imines, hydrazones, oximes, and Schiff bases.³³⁰ In each instance, a new carbon-carbon linkage is formed. Thus, the reaction of dry hydrogen cyanide with an imine METHODS 392-393

gives an α -amino cyanide.³⁹¹ The procedure is illustrated by the treatment of benzophenoneimine in alcohol solution to form α -aminodiphenylacetonitrile (77%).³³⁹ Ether has also been employed as a solvent.³⁴⁰

$$(C_6H_5)_2C = NH + HCN \rightarrow (C_6H_5)_2C(NH_2)CN$$

The addition of dry hydrogen cyanide to the trimer of methyleneaminoacetonitrile, $CH_2 = NCH_2CN$, in the presence of hydrochloric acid yields iminodiacetonitrile, $NH(CH_2CN)_2$.³⁴¹

Oximes add hydrogen cyanide to form α -hydroxylaminonitriles.³⁴³ The yields are greatly improved by substituting a sodium cyanide-phosphate buffer for liquid hydrocyanic acid, as in the preparation of α -hydroxyl-aminoisobutyronitrile (67%) from acetoxime.³⁴²

$$(CH_3)_2C = NOH + NaCN \xrightarrow{KH_2PO_4} (CH_3)_2C(NHOH)CN$$

Aqueous hydrogen cyanide in the presence of pyridine has also been proved a successful reagent.³⁴⁴

Aldonitrones, prepared by the condensation of aromatic aldehydes and phenylhydroxylamine, are converted by the action of aqueous potassium cyanide to substituted anils of aroyl cyanides.³⁴⁵

$$ArCH = N(O)C_{6}H_{5} \xrightarrow{HCN} [ArCH(CN)N(OH)C_{6}H_{5}] \xrightarrow{-H_{2}O} ArC(CN) = NC_{6}H_{5}$$

The interaction of acyl chlorides, hydrocyanic acid, and quinoline in absolute benzene forms 1-acyl-1, 2-dihydroquinaldonitriles.³⁴⁶

Treatment of the 1-benzoyl derivative with phosphorus pentachloride in chloroform solution regenerates benzoyl chloride and forms 2-cyanoquinoline in an over-all yield of 50-63%.³⁴⁷ Isoquinoline behaves in a similar manner to give 1-cyanoisoquinoline.

393. Addition of Hydrogen Cyanide to Lactones

The heating of lactones with powdered alkali cyanides leads to salts of cyano acids. The procedure is illustrated (above equation) by the synthesis of o-carboxybenzyl cyanide from phthalide and potassium cyanide (67-83%).³⁴⁹ In another instance, the reaction of potassium cyanide with γ -anisyl- γ -butyrolactone involves a rearrangement thereby forming a β -cyano acid instead of the anticipated γ -cyano acid.³⁸⁰

$$p-CH_3OC_6H_4CH - CH_2CH_2CO \longrightarrow p-CH_3OC_6H_4CH_2CHCH_2CO_2K$$

A similar rearrangement has been observed in the treatment of γ -methyl- γ -valerolactone with potassium cyanide whereby γ -methyl- β -cyanovaleric acid is formed instead of the expected γ -cyano acid.³⁵¹

394. Reduction of Unsaturated Cyano Compounds

$$RCH = CHCN + H_2 \xrightarrow{Pd} RCH_2CH_2CN$$

Unsaturated nitriles are converted smoothly to the saturated compounds by selective hydrogenation over palladinized charcoal^{217, 291} or by chemical reduction.²⁹⁰ The reaction is of special value in the preparation of a variety of substituted cyano compounds from the olefinic nitriles obtained in cyanoacetic ester condensations (method 387).

Conditions have been found whereby the condensation and hydrogenation steps are carried out as a single operation.²⁹² In this procedure, a solution of carbonyl compound and ethyl cyanoacetate in glacial acetic acid is shaken with hydrogen in the presence of palladium-on-carbon and a condensing agent, such as ammonium acetate or piperidine. The yields are excellent for the conversion of aldehydes and simple ketones (63-98%). The condensation-reduction of aromatic ketones like acetophenone and propiophenone gives mixtures, apparently because of incomplete hydrogenation of the condensation products. The procedure is given in detail for the synthesis of ethyl *n*-butylcyanoacetate (96%).²⁹³

395. Reduction of a-Halo Cyanides

$$C_{6}H_{5}CH(CI)CN \xrightarrow{(H)} C_{6}H_{5}CH_{2}CN$$

A synthesis of nitriles from the cyanohydrins of aromatic aldehydes via the reduction of the corresponding α -halo cyanides has been proposed. As an example, benzaldehyde cyanohydrin is converted by the action of thionyl chloride to phenylchloroacetonitrile (80%). This substance is reduced with zinc in acetic acid to phenylacetonitrile (70%).³³⁵ 396. Action of Hydrazoic Acid on Aldehydes

$$RCHO + HN_3 \xrightarrow{H^+} RCN + H_2O + N_2$$

The reaction between equimolar quantities of hydrazoic acid and aldehydes in the presence of strong mineral acid yields nitriles and, to a lesser extent, N-substituted formyl derivatives, RNHCHO (Schmidt reaction). A number of aldehydes, including acetaldehyde, benzaldehyde, *m*-nitrobenzaldehyde, and vanillin, have been converted to the nitriles in yields of 64% to 83%.^{336,337}

397. Hydrogenolysis of a-Benzoyloxy Cyanides 396

$$\operatorname{ArCHO} \xrightarrow{C_{6}H_{5}COC_{1}} \operatorname{ArCH}(O_{2}CC_{6}H_{5})CN \xrightarrow{H_{3}} \operatorname{ArCH}_{2}CN \quad (70\% \text{ over-all})$$

398. Dehydrogenation of Amines 352, 392

$$RCH_2NH_2 \xrightarrow[Heat]{Catalyst} RCN + 2H_2$$

399. Action of Metallic Thiocyanates on Salts of Carboxylic Acids³⁸⁴

$$(\text{RCOO})_2\text{Zn} + \text{Pb}(\text{CNS})_2 \rightarrow 2\text{RCN} + \text{PbS} + \text{ZnS} + 2\text{CO}_2$$

400. Addition of Hydrogen Cyanide to Oxides 348

$$\overset{O}{\nearrow}$$

CH₂CH₂CH₂Cl + HCN $\xrightarrow{\text{NaCN}}$ CH₂ClCH₂OHCH₂CN (85%)

401. Coupling of Diazonium Salts with Acrylonitrile³⁵⁶ (cf. method 28)

$$\operatorname{ArN}_2^+Cl^- + \operatorname{H}_2C = CHCN \xrightarrow{\operatorname{CuCl}_2} \operatorname{ArCH}_2CHClCN$$

Ł

CYANIDES

Ch. 20

TABLE 66. CYANIDES

TABLE 66 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
		Alicyo	clic Cy	anides	
C4	Cyclopropyl cyanide	386	60	20186	93-96/26
с,	2-Methylcyclopropane- carbonitrile	386	60	2071	146, 1.4259
C 6	Cyclopentyl cyanide	378	27	20 ⁸	75/30, 1.4404 ²⁵
с,	Cyclohexyl cyanide	384	93	20121	80-84/18
Сı	δ-Cyclopentyl butyl cyanide	378	85	207	126/17, 1.4542
C1:	2 Dicyclopentylac e tonitrile	384	100	20127	90/0.3, (35)
		Aroma	tic Cya	nides	
C7	Benzoni tril e	383	69	20329	79/17
		384	80	20122	190
		384	97	20 120	191
		396	70	20 336	
C8	Benzyl cyanide	378	90	20 °	135-140/38
		384	87	20 ¹⁵⁶	129/31
		395	70	20 ³³⁵	234
	o-Tolunitrile	380	70	20 ²¹⁸	96/20
	m-Tolunitrile	380	59	20 219	100/20
	p-Tolunitrile	380	70	20 ²¹⁸	106/20, (27)
		384	89	20 ¹²⁰	220
C,	a-Methylbenzyl cyanide	385	90	20 ¹⁸⁹	107-110/11
		386	66	20 ¹⁷⁹	94/6, 1,5084 ²⁵
	β -Phenylethyl cyanide	384	81	20 ¹⁵⁸	142/25
		386	49	20 ¹⁷⁵	125/11
	o-Methylbenzyl cyanide	378	89	2011	84/14
	m-Methylbenzyl cyanide	378	85	2012	133/15
	2, 3-Dimethylbenzonitrile	380	40	20 222	107/11
	2,4-Dimethylbenzoni trile	383	87	20 ³²⁹	(111)
	2,5-Dimethylbenzonitrile	383	82	20329	109/17
	3,4-Dimethylbenzonitrile	383	86	20 ³²⁹	118-122/15, (69)
Сю	a-Phenyl butyroni tril e	384	78	20 ¹²⁴	112/9, 1.5075
		386	87	20 ¹⁸¹	115/16
	1-Ph enylcy clopropyl cy ani de	386	44	20 ¹⁸⁷	253/751, 1.5386
	p-Ethylbenzyl cyanide	378	82	20 ¹³	127-130/14
	a,a-Dimethylbenzyl cyanide	386	78	20 ¹⁸⁴	82/2.2, 1.5043-55 ²⁵
	2,5-Dimethylbenzyl cyanide	378	73	2014	118/6, 143/19

TABLE 66. CYA	NIDES
---------------	-------

Aliphatic Cyanides C Methyl cyanide (aceto- nitrile) 378 100 20 161 76-82 ark for the state of the	
C ₂ Methyl cyanide (aceto- nitrile) 378 100 20 151 76-82 378 63 20 152 384 50 20 ⁴ 81/757, 1.3441 384 91 20 120 82 396 64 20 336 C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 158 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.3842 Isopropyl cyanide (iso- butyronitrile) 378 80 20 1 141/764, 1.3962 Isobutyl cyanide (iso- yaleronitrile) 70 70 71 728 1 279	
nitrile) 378 63 20 ¹⁶² 384 50 20 ⁴ 81/757, 1.3441 384 91 20 ¹³⁰ 82 396 64 20 ³³⁶ C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 ¹³⁸ 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 384 94 20 ¹³⁶ Isopropyl cyanide (iso- 384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) C ₅ <i>n</i> -Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso- 384 80 20 ¹¹⁵ 129 valeronitrile)	
384 50 20 ⁴ 81/757, 1.3441 384 91 20 ¹²⁰ 82 396 64 20 ³³⁶ 82 396 64 20 ³³⁶ 97 C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 ¹³⁶ 97 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 Isopropyl cyanide (iso- 384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) 50 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso- 384 80 20 ¹¹⁵ 129 129 valeronitrile) 50 50 50 50 104/732, 1, 370	
384 91 20 ¹²⁰ 82 396 64 20 ³³⁶ C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 ¹³⁶ 97 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 Isopropyl cyanide (iso- 384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) C 77 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso- 384 80 20 ¹¹⁵ 129 valeronitrile) 50 50 20 ¹²⁰ 104/7328, 1.370	
C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 ¹³⁸ 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 384 94 20 ¹³⁸ Isopropyl cyanide (iso-384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) C ₅ <i>n</i> -Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso-384 80 20 ¹¹³ 129 valeronitrile)	
C ₃ Ethyl cyanide 378 50 20 ⁴ 97/758, 1.3658 384 83 20 ¹³⁸ 97 C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 384 94 20 ¹³⁸ Isopropyl cyanide (iso-384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) C ₅ <i>n</i> -Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso-384 80 20 ¹¹³ 129 valeronitrile)	
384 83 20 ¹³⁸ 97 C4 <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384: 384 94 20 ¹³⁸ 97 Isopropyl cyanide (iso- butyronitrile) 384 96 20 ⁴ 118/757, 1.384: C5 <i>n</i> -Butyl cyanide 378 80 20 ¹¹⁴ 101-103/740, 1 Isobutyl cyanide 378 80 20 ¹¹ 141/764, 1.396: Isobutyl cyanide (iso- valeronitrile) 384 80 20 ¹¹³ 129 valeronitrile) 56 57 56 104/738, 1.370	
C ₄ <i>n</i> -Propyl cyanide 378 36 20 ⁴ 118/757, 1.384 384 94 20 ¹⁵⁸ Isopropyl cyanide (iso-384 86 20 ¹¹⁴ 101-103/740, 1 butyronitrile) C ₅ <i>n</i> -Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso-384 80 20 ¹¹³ 129 valeronitrile)	_
384 94 20 ¹³⁸ Isopropyl cyanide (iso- butyronitrile) C ₅ 7-Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso- valeronitrile) 20 ¹³ 129 104/728, 1.370	2
Isopropyl cyanide (iso- butyronitrile) C ₅ 7-Butyl cyanide 378 80 20 ¹¹ 141/764, 1.396 Isobutyl cyanide (iso- valeronitrile)	
C ₅ n-Butyl cyanide 378 80 20 ¹ 141/764, 1.396 Isobutyl cyanide (iso- 384 80 20 ¹¹³ 129 valeronitrile)	.3/13-
Isobutyl cyanide (iso- 384 80 20 ¹¹³ 129 valeronitrile)	9
t-Butyl cyanide (tri- 384 73 20 ²²⁰ 104/738, 1.379 methylacetonittile)	02
162/777.1406	0
$C_6 = \frac{1}{20} \frac{1}{100} \frac{1}{100}$	
(capronitfile) 384 03 20 177 162 386 60 20173 162	
378 82 20 ³ 154/756, 1,405	59
$\frac{1}{100}$	
acetonitrile	
Diethylacetonittile 386 77 20 ¹⁷³ 145	
387 60 [†] 20 ¹⁸² 142-146	
Neopentyl cyanide (t- 384 90 20 ¹¹⁶ 136/737, (32.5 butylacetonitrile)	i)
C. n-Hexyl cyanide 378 72 20 ⁴ 182/757, 1.414	41
Ethylisopropylace 386 71 20 ¹⁷³ 158	
tonitrile	
C _a Ethyl- <i>n</i> -butylacetoni trile 386 68 20 ¹⁷³ 70/12	
C ₉ 2-Ethyl-3-methylhexano- 394 67 20 ²¹⁷ 72/7, 1.4232 ²⁵ nitrile	5
C., Diethyl-z-butylacemnittile 386 78 20 ¹⁷³ 86/11	
C_{10} precly cvanide 378 95 20^{5} $125-129/11$	
Tri- <i>m</i> -propylacetonitrile 386 76 20 ¹⁷⁷ 70/2	
C Laurenirile $384 85 20^{118} 160/30, (4)$	
C m Dodegyl Gyanide 378 88 20 ⁶ 168/21, 1.438	9
C ₁₃ h-bodie of cyalite 314 80 20 ¹¹⁸ 168/12, (19) C ₁₄ Myristonitrile 384 80 20 ¹¹⁸ 168/12, (19)	
C ₁₆ Palmitonitrile 384 80 20 ¹¹⁸ 173/7, (31)	
C ₁₇ Cetyl cyanide 378 86 20 (30)	
378 68 20 200/13	
C ₁₈ Stearonitrile 384 95 20^{-1-1} $175/1.5$, (42) 384 85 20^{117} 358 , (43)	

C_n

Compound

C10 2,4,6-Trime thylben zo-

C₁₁ p-Isopropylphenylace-

p-s-Butylbenzonitrile

Mesitylacetonitrile

a-Naphthonitrile

B-Naphthonitrile

 β -Cyanotetralin

cyanide

cyani de

 $C_{12} \beta$ -Ethyl- γ -phenylpropyl

1-Cy anomethyl-2,3,4,6-

1-Cyanomethyl-2,3,4,5-

1-Ph enylcyclopentyl

a-Naphthylacetonitrile

B-Naphthyl acetoni tril e

C₁₃ 2,4,6-Triethylbenzonitrile

a-Cyclohexylphenyl-

o-Benzylben zonitrile

2-Cyanophenanthrene

3-Cyanophenanthrene

9-Cyanophenanthren e

9-Cyano-1,2,3,4-tetrahydrophen an thren e

1-Cyanoanthracene

9-Cyanoanthracene

2-Cyanobiphenyl

4-Cyanobiphenyl

C₁₄ Diphenylacetonitrile

acetoni tril e

C₁₅ 1-Cyanophenanthrene

tetramethylbenzene

tetramethylbenzene

nitrile

tonitrile

CYANIDES

TABLE 66 (continued)

Aromatic Cyanides (continued)

73

78

84

100

90

86

78

100

50

60

80

65

90

74

95

85

87

77

64

86

50

60 t

90

77

383

378

378

378

378

379

380

384

379

380

384

383

378

378

378

386

378

384

378

384

380

384

386

378

379 384

384

384

378 378

384 378

385

1

20³²⁹

20³⁵⁸

2024

2016

20 25

20.165

20224

20¹²⁸

20¹⁶⁶

20²²⁵

20 120

20³²⁹

2019

20¹⁸

20¹⁷

20 121

20 ²⁰

20¹²⁹

20 22

20 ³⁶⁹

20³⁸⁵

20³⁷⁵

20 123

20¹⁸⁸

Method $\frac{\text{Yield}}{(\%)}$ Chapter^{ref.} B.p./mm., n_{D}^{t} , (M.p.), Deriv.

125/16, (55)

104-110/1.5

80/4, 1.5310

160-170/20, (62)

155-158/14

135/5, (75)

148-153/20

151/24, 1.5201

172/15, 166/8

176/13, 1.5330²⁶

182-186/12, (33), 1.6173²⁵

160-165/22

174/27

148/12

(38)

(66)

142/13

184/25

(86)

(86)

(75)

(73)

Ch. 20

613

TABLE 66 (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Denv.
	A	romatic Cy	anides	(continued)	
C 16	a,a-Diphenylbutyro- nitrile	386	88	20 185	147/0.3, 1.5660 ²⁵
	a, 7-Diphenyl butyro- ni tril e	386	63	20 ¹⁸³	147-151/0.5-1
	Dib enzyl acetonitrile	386	40	20 ¹⁷³	200-215
	Di-o-tolyl acetoni trile	378	54	20 ⁵³	(115)
Cai	α, α, β-Triphenylpropio- nitrile	386	67	20 ³⁷⁶	(126)
	β,β,β -Triphenylpropio- nitrile	384	89	20 ¹²⁵	(140)
		Heterocy	velic C	yanid es	
C,	a-Cyanotetrahydrofuran	385	76	20 275	82/23, 1,4351 ²⁵
C6	2-Furylacetonitrile	384	15†	20 394	80/20, 1.4715 ²⁵
		385	88	20 ²³⁶	84/17, 1.4691 ²⁵
	5-Methyl-2-furonitrile	385	67	20 239	67/15, 1.4848
	a-Te trahy drofuryl-	378	52	20 29	92/13, 1.4476 ¹³
	acetoni tril e	378	36	20 ¹⁶⁴	45/2, 1.4625
	2-Thienylacetonitrile	385	74†	20 ³⁸⁰	90/3, 1.5041 ³⁰
		378	81	20 ³¹	115-120/22
	2-Cyanopyridine	378	74	20 ³⁵	120/25
	3-Cyan opyridine (ni co-	378	50	20 ³⁴	(50)
	tinonitril e)	379	46	20171	(50)
		380	50	20271	
		384	100	20 133	201/760
	4-Cyanopyridine	384	55	20 134	(79)
C,	N-(β-Cyanoethyl)- pyrrole	388	86	20 ^{2 53}	135-150/8-10
	3-Pyridylacetonitrile	384	34	20 ³⁷⁰	108/0.5, 161Pi
	4-Pyridylacetonitrile	384	55	20 371	(79), 230Pi
	3-Cyano-4-methylpyridine	379	33	20 172	64/1-2, 185Pi
	3-Cyano-5-methylpyridine	379	35	20171	(84)
	N-Cyanomethyl piperidin e	391	94	20 ³¹⁹	83/9
С,	N-(β-Cyanoethyl)- piperidine	388	93	20 ²⁵³	130/30, 1.4697
с,	2-Piperidinobutyronitrile	436	87	74 ¹⁹³	129/25 1.4653 117Pi
	a-Piperidinoi so buty ro- nitrile	391	71	20 ³²⁷	94/14
ີນ	2-Cyanomethylbenzo- thiophene	378	51	20 ³²	126/0.2, (67)
	3-Cyanomethylbenzo- thiophene	378	53	20 ³³	140/2, (67)
	3-Cyano-2-methylindole	383	95	20 ³²⁹	208

54	20 ²⁵	160-164/4	
40	20 170	(128)	
96	20 ¹³⁰		с,
77	20 ¹⁵⁹	(109)	
62	20 ¹⁵⁹	(102)	رى
87	20 ²⁶	(107)	
81	20 ²⁸	(125)	
			С ₁₀
60	20 ¹³¹	(144.5)	
87	20 27	(175)	
98	20 ²³⁵	(179)	
			-to

.

CYANIDES

Ch. 20

TABLE 66 (continued)

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
	He	terocyclic	Cyanid	es (continue	d)
C 10	2-Cyanoquinoline	378	63	20 ³⁸	(94)
-		392	63†	20 ³⁴⁷	(94)
	5-Cyanoquinoline	380	51	20 ^{2 26}	147/8, (88)
	8-Cvanoquinoline	378	67	20 236	(83.5)
	1-Cyanoi soquinoline	392	85	20 ³⁴⁷	(74)
	3-Cyanoquinoline	378	92	20 ³⁷	(108)
	4 Cyanoisoquinoline	378	88	20 ³⁹	(104)
	5-Cyanoi soquinoline	378	81	20 ³⁹	(139)
	6-Cyanoisoquinoline	378	25	20 ³⁹	(152)
	8-Cyanoi soquinoline	378	53	20 ³⁹	(133)
С,,	8-Cyanomethylquinoline	378	78	20 ⁴⁰	(87)
C 15	N-(β-Cyanoethyl)- carbazole	388	85	20 ²⁵⁰	(155.5)

For explanations and symbols see pp. xi-xii.

TABLE 67. DIC YANIDES

Cn	Compound	Method	Yi e ld (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.)
с,	Malononitrile	384	66	20135	113-118/25, 94/8
C.	Succinonitrile	388	93	20 ²⁴⁶	160/20
•		378	80	20 44 -	147/10
	Methyimalononitrile	384	78	20 ¹³⁶	198, (26)*
C.	Trimethylene cyanide	378	86	20 **	134/10, 1.4295*
C.	Hexamethylene cyanide	378	80	20 ⁴⁷	180/12
		386	50	20 ³⁷⁷	172/11, 1.4448 ²²
	2-Methyl-1,3-dicyanopentane	378	42	20 * 6	189-193/12
	1-Methylbutylmalononitrile	394	67	20 ²⁸⁹	100/8, 1.4324 ²⁵
	cis-1.4 Dicyanocyclohexane	384	77	20 ¹⁴⁰	(65)
	trans-1.4-Dicyanocyclohexane	384	69	20 ¹⁴⁰	(140)
	Phthalonitrile	384	75	20 ¹⁴¹	(141)
C.	Heptamethylene cyanide	378	80	20 ⁴⁸	183/11
-		384	78	20 ³⁶⁸	160/3, 1.4426 ²⁵
		386	69	20 ³⁷⁷	176/11, 1.4518 ¹⁹
	Phenylmalononitrile	384	60	20137	(69)
С.,	Sebaconitrile	384	49	20 ¹³⁹	201-203/16
10	Phenylsuccinonitile	389	64	20 ³⁰¹	(68)
	<i>m</i> -Phenylenediacetonitrile	378	91	20 12	231/20, (27)
	p-Phenylenediacetoniuile	378	70	20 12	(96)
с.,	a-Phenyl-a, β - β -tricyanoethane	389	90	20 ³⁰²	(125)
C 12	a-Phenylglutaronitrile	388	33	20 ²⁶²	200/12

TABLE 68. OLEFINIC CYANIDES

TABLE 67 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C ₁₃	a-Methyl-a-phenyladiponiuile	386	88	20 ¹⁸⁹	150-160/1
C ₁₄	Biphenyl-4,4-dicyanide	380	45	20 ²²³	(233)

For explanations and symbols see pp. xi-xii.

TABLE 68. OLEFINIC CYANIDES

C _n	Compound	Method	Yield (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.)
	Alig	hatic Olefin	ic Cyan	ides	
C3	Acrylonitrile	19	80	2 442	78
		24	63	2 ²³⁹	77/760
		398	85	20 ³⁹²	
C4	trans-2-Butenonitrile (crotononitrile)	384	40	20144	119, 1.4217
	Allyl cyanide	378	84	20 ⁵⁶	119/753, 1.4034
		378	75	20 ³⁶⁰	116-121, 1.4060
	a-Methylacryloni trile	19	50	2 102	,
		19	34	2 ¹⁰⁰	90
		384	85	20272	91, 1.3999 ²⁵
		385	76	20272	91, 1,3977 ²⁵
		398	90	20 ³⁹²	90/760, 1.4001
	Mal c onitri le	384	39	20 138	(31)
	Fumaroni trile	378	74	20 ⁶⁵	(96)
		384	80	20 ³⁷²	(96)
C,	2-Pentenonitrile (β-ethyl- acrylonitrile)	384	45	20 ¹⁴³	72/72, 1.4301
	3-Pentenonitrile	378	92	20 ⁵⁹	146, 1,4228
	4-Pentenonitrile	384	60	20 160	145, 1, 4213 ¹⁴
	Methallyl cyanide	378	86	20 ⁵⁸	136, 1,4180
	1-Cyano-1,3-butadiene (cis and trans)	24	70	2 ²³⁸	50/31, 1.4852 57/31, 1.4960
		378	20	20 64	68/58, 1.4880
	a-Ethylacrylonitrile	385	30	20 ³⁷⁸	111, 1.4132
C6	2-Hexenoni tril e	384	60	20 144	50/10, 1.4379
	3-Hexenonitrile	378	77	20 ⁶⁰	99/90, 1.4289 ¹⁹
		384	40	20 144	58/15, 1.4301
		387	48	20 ²⁰⁹	59/12
	5-Hexenonitrile	378	88	20 ³⁵⁹	162, 59/16, 1.4268 ²⁵
	3-Methyl-2-pentenonitrile	384	36	20 ¹⁴⁵	63/20, 1.4447
	4-Methyl-2-pentenonitrile	384	80	20 ¹⁴³	68/34, 1.4329
	3-Methyl-3-pentenonitrile	384	80	20 ¹⁴⁵	60/19, 1.4367 ²¹
	4-Methyl-3-pentenonitrile	387	60	20 144	66/24, 1.4352

C_n

C,

C.

C7

Compound

3-Heptenonitrile

4-Heptenonitrile

3-Ethyl-3-pentenoniuile

 β -t-Butylacrylonitrile

C. Cyclohexylideneacetonitrile

1-Cyclohexenylacetonitrile

2.3-Dimethyl-2-pentenonitrile

CYANIDES

Method

378

378

387

387

387

TABLE 68 (continued)

Aliphatic Olefinic Cyanides (continued)

Yield

(%)

76

79

727

90

70

20 ⁶⁰

20⁶¹

20 192

20217

20143

Ch. 20

Chapter^{ref.} B.p./mm., n^t_D, (M.p.)

68.5/11, 1.4323²¹

105/72, 1.439425

64/17, 1.4469²⁵

105/22, 1.484319

60/28, 1.4344

50/5, 1.436715

TABLE 70. HALO CYANIDES

TABLE 6	8 (continued)
---------	---------------

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Atomatic C	lefinic Cy	anides ((continued)	-
C11	Cinnamylidenacetonitrile	387	78	20213	160/11. (41.5)
	a-Methylbenzalmalononitrile	37	70	20 ³⁸⁰	123/2. (94)
C12	α-Phenyl-β-π-propyla crylo- nitrile	37	54	2 ³⁷⁹	118.5/3.5, 1.5404
C 15	a-Phenylcinnamonitrile	37	91	2 485	(88)
C16	Stilbene-2-acetonitrile	378	63	20 67	(82)
Cal	Triphenylacrylonitrile	378	100	20 66	(165)

For explanations and symbols see pp. xi-xii.

TABLE 69. ACETYLENIC CYANIDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C₄	Acetylenedicarbonitrile	384	37	20 138	
C,	1-Cyano-1-heptyne	384	85	20 142	81/13, 1.4551 ²⁵
	1-Cyano-2-heptyne	378	92	20 ⁶⁸	124/56, 1,4475 ²⁵
	l-Cyano-3-heptyne	384	50	20 ⁶⁸	71/3, 1.449225
	1-Cyano-4-heptyne	378	82	20 ⁶⁶	111/29, 1.4514 ²⁵
	l-Cyano-5-heptyne	378	75†	20 ⁶⁸	79/2, 1,4530 ²⁵
	1-Cyano-6-heptyne	378	74	20 ⁶⁸	80/3, 1.4460 ²⁵
C,	1-Cyano-1-octyne	384	80	20 142	96/13, 1,4564 ¹⁴
	Cycloh exylpropiolonitrile	50	67	367	96/21, 1.4947 ¹¹

For explanations and symbols see pp. xi-xii.

TABLE 70. HALO CYANIDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
		Aliphatic Halo	Cyanid	les	
C1	Fluoroacetonitrile	384	65	20 373	80/760
	Chloroac etoni trile	384	70	20 ¹⁴⁶	124, 61/100
	Trifluoroac etonitrile	384	74	20 ¹⁴⁹	-64/743
	Trichloroacetonitrile	384	80	20 150	86
C,	β -Chloropropioniuile	73	80	4 ²⁰⁶	71/16
	eta-Bromopropionitrile	52	43	4 ¹³⁹	69/7, 1.4789 ²⁵
C₄	γ -Chlorobutyronitrile	378	70	2070	93-96/26
	γ -Iodobutyronitrile	55	96	4 ³⁹⁰	74/1

For explanations and symbols see pp. xi-xii.

20 ⁶⁰ 95/19. 1.4350²⁵ 70 378 C. 3-Octenonitrile 73-77/14-16, 1.449125 20 217 387 90 2, 3-Dimethyl-2-hexenonitrile 20 217 76/17, 1.4500²⁵ 3-Ethyl-2-methyl-2-penteno-387 90 nitrile 20²¹⁷ 78/8, 1.451225 90 2-Ethyl-3-methyl-2-hexeno-387 C. ni tril e 20 217 76/9, 1.4503²⁵ 2,3,5-Trimethyl-2-hexeno-89 387 nitrile 20173 Diethylallylacetonitrile 90 79/14 386 Alicyclic Olefinic Cyanides 2⁹⁸ 75 69/15 1-Cvano-1-cyclopentene 19 291 50 69/15 19 20⁶³ 76 50/15 3-Cyano-1-cyclopentene 378 56/15, 1.4669¹⁵ 20300 389 24 20¹⁴⁵ 98/24, 1.4805¹⁸ 384 55 Cy clop en tyliden e acemnitrile 20¹⁴⁵ 92/19, 1.468318 62 1-Cyclopentenylacetonitrile 384 20 ¹⁰¹ 80 69/14 19 2-Methyl-1-cyano-1cyclopentene 20¹⁴⁵ 108/22, 1,492815

384

384

58

56

20¹⁴⁵

20¹⁹² 99/15, 1.4769²⁵ 79 387 20 ³⁹⁹ 111/25, 1.4769²⁵ 387 91 2381 (174)37 30 Cyclohexylidenemalononitrile C, Aromatic Olefinic Cyanides 2275 118/12, (20) Cinnamonitrile (trans) 33 20 C. 20²⁷² 137/16, 1.600523, (23) 385 84 20212 139/30, (22), 1.6031 387 60 152/30, (-4.4), 1.5843 387 (cis) 2²⁵⁶ 53/0.15, 1.5756 27 29 o-Cyanostyrene 2257 83/3.5, 1.5630 27 51 m-Cyanostyrene 2166 89/1.5, 1.575025 19 71 p-Cyanostyrene 2 492 93/3, 1.5772 24 76 2 383 102/1, 1.555 36 C₁₀ a-Phenylcrotononitrile 37 20 ¹⁴⁵ (60) 384 62 4-Phenyl-3-butenonitrile 20³⁸¹ (84) Benzalmalononitrile 37 96

CYANIDES

Ch. 20

		Madad	Yield	Chant-ref.	B.p. /mm. n ^t (M.p.)
C _n	Compound	Memoa	(%)		D, (m.p.)
	Aliphauic H	lalo Cyani	des (co	ntinued)	
C.	a-Chloroisobutyronitril e	52	38	4140	100/60, 1.4310
-		384	84	20147	116, 1.4045 ²⁵
	a-Bromoi sobuty ronitril e	384	86	20 147	139, 1.4460 ²⁵
			76	4205	140, 1.4447 ²⁵
	<i>B</i>-Chloroi so buty roni trile	73	79	4 ²⁰⁵	52/6, 1.4323 ²⁵
	β -Bromoi so buty ronitrile	73	72	4 105	62/5, 1.4680 ²⁵
C -	8-Chlorovalempitrile	378	52	20 72	102/17, 1.4441 ²⁵
C 5	8-Bromovaletonitrile	378	43	20 73	111/11, 1.4781
	β -Methyl- γ -chlorobutyronitrile	378	26	20 71	83/16, 1.4426
~	, Beenenenenimile	378	26	20362	134/15, 1,475424
C.6	e-Bromocaproniune	384	76	20 148	117/6
	A-				
C,	o-Chlorobenzonitrile	384	93	20 120	(44)
	o-Bromobenzoni tril e	384	79	20 ¹⁵⁶	(53)*
	p-Bromobenzonitrile	380	70	20 221	(113)*
	p-Iodobenzonitrile	380	70	20 227	(114)
c.	o-Chlorophenylacetonitrile	385	64	20 ²⁴³	125/11
- 0	o-Bromophenylacetonitrile	385	88	20 ²⁴³	141/13
	<i>m</i> -Chlorophenylacetonitrile	385	55	20 ²⁴³	136/10
	<i>m</i> -Bromophenylacetonitrile	385	70	20 ²⁴³	147/10
	p-Fluorophenylacetonitrile	378	72	20 ³⁶³	116/16
	p-Chlorophenylacetonitrile	385	80	20 ²⁴³	139/12, (32)
	p-Bromophenyla cetonitrile	385	72	20 ²⁴³	156/12, (48)
	o-Cyanobenzyl bromide	64	57	4 ²⁹²	(72.5)
	o-Cyanobenzyl iodide	55	97	4 ²⁹²	(78)
	o-Cyanobenzal bromide	64	40	4 ²⁹⁴	(65)
	p-Cyanobenzyl bromide	64	47	4 ²⁹³	(116)
	Phenylchloroacetonitrile	53	80	4 ¹⁷⁹	131/13
C.	a-Chlorohydrocinnamoni trile	401	34	20 ³⁵⁶	140/15, (21)
~9	m-Bromomethylphenylace- tonitrile	378	90	20 ⁵¹	141/18
	p-(\beta-Bromoethyl)-benzonitrile	384	68	20 151	151/5, (50)
Cre	a-Phenyl- % chlorobutyroni tril e	53	30	4 ^{18 0}	129/4, 1.5327
C ₁₂	>- Chloro-a-ethyl-a-phenyl-	386	53	20 ¹⁸⁰	106/1.5

For explanations and symbols see pp. xi-xii.

TABLE 72. CYANO ETHERS

TABLE 71. HYDROXY CYANIDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C,	Formaldehyde cyanohydrin	390	80	20 277	88/8
	(glycolonitrile)	390	40	20 276	100/17, 1,4090 25
C3	Ethylene cyanohydrin	378	80	20 74	107-109/12
C₄	Acetone cyanohydrin	390	78	20 263	78-82/15
	Chloroacetone cyanohydrin	390	90	20 ²⁷⁵	110/20, 1.4520
	4 Chloro- 3 hydroxybutyroni trile	400	85	20 348	135/15, 1.473515
	β-Hydroxy buty ron i trile	378	60	20 ""	215
	Acrolein cyanohydrin	390	96	20 279	
C۶	Methyl ethyl ketone cyanohydrin	390	100	20 ²⁶⁶	
	β -Hydroxy- γ -methoxybutyronitrile	378	85	20 76	133/18
	Butadiene cyanohydrin	378	74	20 ⁷⁸	133/30, 1.4559
C٥	Diethyl ketone cyanohydrin	390	75	20 267	93/13
	Cyclopentanone cyanohydrin	390	87	20 ²⁶⁸	114/14
Cĩ	a-Methyl-a-hydroxycapronitrile	378	70	20 ⁷⁵	113/10
	Cyclohexanone cyanohydrin	390	98	20 ²⁶⁹	120/10, (26)
	p-Hydroxy ben zoni trile	380	70	20 228	148/1
	Acetoacetic ester cyanohydrin	390	85	20 ²⁷⁸	120-124/13, 1.4298 ²⁵
C ₈	Mandelonitrile	390	8 6	20 ²⁸³	170d*
	2-Hydroxymandelonitrile	390	90	20 ²⁸⁴	
	4-Hydroxymandelonitrile	,390	90	20 ²⁸⁴	(102)
	p-Cyanobenzyl alcohol	96	85	5 ⁵⁴⁹	203/53, (42)
	p-Hydroxybenzyl cyanide	93	71	5492	(70)
	Phenylacetaldehyde cyanohydrin	390	67	20 ²⁸⁶	(55)
C,	p-Cyanophenylmethylcarbinol	80	88	5 ¹⁷⁹	157/6, 1.5474
		378	36	20 79	136-140/5, 1.5477
C 10	a-Phenyl-γ-hydroxybutyronitrile	38 6	40	20 187	146-149/1.5-2.0
	p-Dimethylaminobenzaldehyde cyanohydrin	390	59	20 ²⁸⁵	(113)
С13	2-Phenylcyclohexanone cyanohydrin	390	89	20 ⁴⁷⁰	(117)

For explanations and symbols see pp. xi-xii.

TABLE 72. CYANO ETHERS

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)
		Aliphatic Cy	ano Ett	ers	
C,	Methoxyacetonitrile	116	77	6 102	118-122
		378	74	20 ⁸⁰	121/759, 1.3831
C₄	a-Methoxypropionitrile	378	3 6	20 ⁸⁷	118/740, 1.3818
	eta-Methoxy propionitile	121	89	6 116	85/49, 1.4032
		388	89	20 ²⁵⁴	85/49, 1.4032

CY ANIDES

Ch. 20

C _n	Compound	M e thod	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic	Cyano E	thers (a	continued)	
<u> </u>	Ethowa cetoni trile	20 81	135/755, 1.3898		
U 4	Enory acciontance	384	60	20 152	134, 1.3888 ²⁵
c	1-Methowybutyronitrile	378	52	20 **	133/746, 1.4025
C5	B-Methory isobuty romitrile	121	28	6 ¹⁵⁷	162, 1.4038
	a-Ethoxyptopionitrile	378	51	20 ⁸⁵	130/751, 1.3890 ²²
	<i>B</i> -Ethoxypropionitile	121	89	6 115	173, 78/25, 1.4068*
		378	58	20 ⁸⁶	169-174
		388	78	20 ²⁵⁴	78/25, 1.4068
	n-Propoxyacetonitrile	378	55	20 ⁸²	56/40, 152/751, 1.4001
	Isopropozy acetoni trile	378	72	20 ⁶³	74/53, 146/748, 1.3960
	γ-Methoxycromoniuile	19	70	2 ° 9	182
C.	<u>An Proporty propionitrile</u>	121	84	6117	84/19, 1.4131
C6	B-Isopropo rypropioni trile	121	69	6116	82/25, 1.4089
	p 100p.0p0	388	69	20 ²⁵⁴	83/25, 1.4089
	Methoxyethoxypropionitrile	388	87	20 ²⁵⁴	100/9
	bis-(β-Cyanoethyl) ether	388	91	20 ²⁵⁵	162/5, 1.4407 ²⁵
C,	a, a-Dimethyl- γ -methoxy-	386	54	20 ¹⁷³	67/14
	&= Butowyptopionittile	388	86	20 ²³⁴	98/20, 1.4180
C ₈	1,2-bis-(β-Cyanoethoxy)-	388	83	20 ²⁵⁵	158/2
	a-Ethyl-7-ethoxybutyronitrile	387	54	20 ²¹⁶	216/750
	Ar	omatic C	yano Et	thers	
<u> </u>	Phenoxyacetonittile	115	75	6155	123/12, 1.5243
C 8		384	40 [†]	20 153	128/17, 1.5246
	<i>m</i> -Methoxybenzoniuile	384	79	20 ¹⁵⁶	
		385	70	20 ²³⁸	116-120/13
c	& Phenowpropionitrile	188	68	20 ²⁵⁶	(60)
ς,	o-Methoxybenzyl cyanide	378	37	20 ⁹⁵	
	<i>m</i> -Methoxybenzyl cyanide	378	88	20 ⁹⁴	165/20
	p-Methoxybenzyl cyanide	116	88	6 ¹⁰³	154/15
		378	43	20 ⁹⁶	131-134/9
		397	70	20 ³⁹⁶	153/16
	p-Cyanobenzyl methyl ether	115	84	662	102/4, 1.5266
	p-Ethoxybenzonitrile	380	65	20 229	(65)
	3,4-Dimethoxybenzonitrile (veratronitrile)	385	76	20 ²⁴⁰	(67)
C	~Phenoxypropyl cyanide	378	96	20 ⁹²	162-166/22
<u>~</u> ю	3-Ethoxyphenylacetonitrile	385	80	20 ²⁴⁴	141/8
	3 & Dimethoxyphenylacetonitril	e 378	52	20 ⁹⁷	(68)
	,	385	90 †	20 241	(65)
		397	70	20 ³⁹⁶	(68)

TABLE 73. CYANO ALDEHYDES AND KETONES

TABLE 72 (continued)

С л	Compound	Method	Yi e ld (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.)
	Aromatic	Cyano E	thers (c	continued)	
C 10	p-Propoxyphenyl cyanide	115	54	6156	122/3, (47)
C ₁₁	a-Methyl-y-phenoxybutyronitrile	387	64	20 214	165-170/19_1_5060 ²⁴
	γ-Benzyloxypropyl cyanide	378	57	20 ⁹³	157/12
	2-Ethoxy-3-methoxyphenylace- tonitrile	385	80	20244	133/2.0
	3-Methoxy-4-ethoxyphenylace- toniuile	385	53	20 ²⁴⁵	158/0.4, (54)
	3-Ethoxy-4-methoxyphenylace- tonitrile	385	80	20 ²⁴⁴	151/2.5
C13	β -(2-Naphthoxy)-propionitrile	388	79	20 ²⁵⁷	(107)

For explanations and symbols see pp. xi-xii.

TABLE 73. CY ANO ALDEHYDES AND KETONES

C _n	Compound	Method	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic Cy	ano Aldel	ydes a	nd Ketones	
C,	Acetyl cyanide (pyruvonitrile)	381	87	20 295	93. 1.3743
C4	Propionyl cyanide	381	60	20 ²⁹⁵	110, 1.3225
C3	Isobutyryl cyanide	381	60	20 295	1 18
C6	n-Butyrylacetonitrile	216	52	20 663	105/11
	5-Oxocapronitrile	184	71	20 ³⁸¹	86.5/5.2, 1.4790 ²⁵
	Isobutyrylacetonitrile	216	44	10 664	104/13
		381	78	20 ²⁹⁵	149
	Trimethylacetyl cyanide	381	87	20 ^{3 86}	122, 1.394027
C,	2,4-Dimethyl-3-ketovaleronitrile	216	40	10 661	96/24, 1,4213 ²⁵
	Trimethylacetylacetonitrile	378	80	20 101	(68)
	2-Cyanocy clohexanone	378	64	20 ¹⁰⁵	131/15
C,	a-Butyrylbutyronitrile	216	60	10 ⁶⁵⁹	135/3
C,	2-(β-Cyanoethyl)-2-ethyl- butyraldehyde	388	77	20 ²⁵⁸	128/4, 1.4500 ²⁵
C11	2-(β -Cyanoethyl)-2-ethylhexanal	388	80	20 258	$142/5, 1.4515^{25}$
C12	1, 1, 1-tris (B-Cyanoethyl) acetone	388	80	20 ¹⁵⁹	(154)
	Aromatic Cyan	o Aldehya	les and	Ketones	
C,	o-Cyanobenzaldehyde	155	29 1	9 ¹⁵²	(104)
	<i>m</i> -Cyanobenzaldehyde	151	45	9 138	(77)
	p-Cyanobenzaldehyde	147	70	9110	(100)
		148	70	9 ²⁶¹	(96)

CYANIDES

Ch. 20

TABLE 75. CYANO ESTERS

TABLE 75. CYANO ESTERS

C _n	Compound	Method	Yi e ld (%)	Chapter ^r ef.	B.p./mm., n_{D}^{t} , (M.p.)
C 5	Ethyl cyanoacetate	285	80	1477	97/16
		298	40	14 335	107/22
•		3 78	50	20112	107/27*, 1,4179*
	Methyl eta -cyanopropionate	293	75	14 ¹⁷⁸	96/8
C6	Ethyl a-cyanopropionate	378	20	20 ¹¹¹	77/9.5. 1.410429
	Ethyl β -cyanopropionate	378	82	20 110	106/11. 1.4233
c,	Ethyl ethylcyanoacetate	298	40	14333	110/24, 1,418
		394	85t	20 292	85/7. 1.4163 ²⁵
	Ethyl γ-cyanobutyrate	378	78	20110	122/18
	Ethyl_cyclopropane-1-cyano- 1-carboxyl ate	386	76	20 ¹⁹⁹	212-216
C8	Ethyl n-propylcyanoacetate	386	45	20 ¹⁹⁴	108-110/14-15
		394	94†	20292	96/8. 1.4200 ²⁵
	Ethyl isopropylcyanoacetate	298	47	14333	112/22 1 422
		386	65	20197	116/25
		394	93†	20 ²⁹²	91/8, 1.4203 ¹⁵
C,	Ethyl <i>n</i> -butylcyanoacetate	298	54	14333	129/23. 1.426
		394	96†	20 ²⁹³	109/9. 1.474225
	Ethyl isobutylcyanoacetate	394	98 t	20292	99/7, 1.4232 ²⁵
		386	34	20194	111-115/12
	Ethyl s-butylcyanoacetate	394	81†	20292	100/7. 1.4267 ²⁵
	Èthyl t-butylcyanoacetate	302	75	14 420	88/5. 1.4278
	Ethyl a,β -dicyano- β - methylbutyrate	389	70	20 ³⁰⁸	136-141/9
	Ethyl (2-cyanoethyl)- acetoacetate	388	63	20 ³⁸¹	121/2, 1.4446 ²⁵
	Methyl o-cyanoben zoate	380	65	20 ²³³	154/15, (51)
C 10	Ethyl isoamylcyanoacetate	386	76	20 ¹⁹⁴	128-135/18
		394	95†	20 292	114/7, 1.4279 ²⁵
	Ethyl 1-methylbutylcyanoacetate	394	63†	20 ²⁹²	112/8, 1.4300 ²⁵
	Ethyl cyclopentylcyanoacetate	394	77	20 ²⁹⁴	129/13, 1.4536 ¹⁹
	Ethyl a, β -dicyanocaproate	389	53	20 ³⁰⁸	160/12
	Ethyl α,β-dicyano-β-methyl- valerate	389	49	20 ³⁰⁸	146/10
	Diethyl α-cyano-β-methyl- succinate	386	70	20 ²⁰⁵	160-165/17
	Ethyl a-carboethoxy-y- cyanobutyrate	388	45	20 ¹⁶⁰	175-180/25
С11	Ethyl diisopropylcyanoacetate	386	4 0	20 ¹⁹⁵	238-241
	Methyl ω -cyanopelargonate	384	71	20 ¹⁵⁴	121-124/1, 170/14
	Ethyl 1,3-dimethylbutylcy- anoac etate	394	63†	20 ²⁹²	119/8, 1.4316 ²⁵
	Ethyl n-propylisopropylcy- anoacetate	38 6	76	20 ¹⁹⁷	116-119/13

For explanations and symbols see pp. xi-xii.

TABLE 73 (continued)

C _n	Compound	M etho d	Yield (%)	Chapter ^{ref,}	B.p./mm., n ^t _D , (M.p.)
	Aromatic Cyano Ald	ehydes ar	d Keto	ones (continu	ied)
c.	p-Cyanobenzaldehyde (con-	155	15†	9251	(76)
~.	timued)	158	90	9 ¹³	(95)
	Benzoyl cyanide	381	65	20 ²⁹⁷	209/745, (33)
C.	Ben zovla ce toni tril e	216	56	10 ⁶⁵⁹	(81)
~y		216	70	10 662	(81)
		235	42†	10 662	(81)
		378	60	20 100	
	o-Cvanoacetophenone	378	80	20 107	148/12
	p-Cyanoacetophenone	378	70	20 ¹⁰⁶	(56)
с.,	a-Phenylacetoacetonitrile	216	60	10 ⁶⁶⁰	(89)
~ 10	a-Benzovl propionittil e	216	53	10 ⁶⁵⁹	130/3
	B-Benzovl propionitrile	382	67	20 393	(76)
	4-Methylben zoylacetonitrile	378	67	20 ⁹⁸	(99)
с.,	4-Benzovlbutyronittile	184	52	20 381	125/0.1, 1.5326 ²⁵
С.,	a-Cvanopropiomesitylene	178	19	10 ¹⁵⁶	(128)
C.,	4.4 - Dicvanobenzophenone	380	60	20 228	(162)
C ₁₆	α -Phenyl- β -benzoylpropionitrile	389	96	20 ³⁰³	(127)
	Hetetoc	yclic Cya	no Keta	ones	
	Futovl cvanide	381	60	20 299	32/0.15, (25)
Č.	a-Furovlacetonittile	216	31	10 662	(79)
07	a-Thienoylacetonitrile	216	50	10 ⁶⁶²	(135)
с.	ß-2-Furoyl propionitril e	382	57	20 ³⁹³	(76)
~ 5	β -2-Thienoylpropionitrile	382	67	20 ³⁹³	(66)

For explanations and symbols see pp. xi-xii.

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Cvanoacetic acid	378		20 ¹⁰⁸	(65)
C,	Generational acid	378	56	20 ¹⁰⁹	160/3
с ,	- Cyanobenzoic acid	180	61	20 232	(217)
C.	p-Cyanobenzoic acid	380	45	20 231	(210)
c.	o-Carboxyphenylacetonittile	393	83	20 ³⁴⁹	(115)
C ₉	r-Cyanophenylacetic acid	380	50	20 23e	(152)
C ₁₀	ω-Cyanopelargonic acid	384	34	20 139	(49)

TABLE 74. CYANO ACIDS

CYANIDES

Ch. 20

TABLE 75 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{sef.}	B.p./mm., n ^t _D , (M.p.)
C ₁₁	γ-Carboethoxy-γ-cyanopimelo- nitrile	388	97	20 255	(37)
	Ethyl α,β-dicyano-δ-methyl- caproate	389	67	20 ³⁰⁶	151-155/10
	Ethyl β , β -diethyl- α , β -dicyano- propionate	389	40	20 ³⁹⁵	165/15
	Diethyl a-cyano- β -ethyl succinate	386	67	20 ²⁰³	164/21
	Diethyl α-cyano-a, β-dimethyl- succinate	386	75	20 ²⁰⁴	159-162/15-20
	Ethyl a-carboethoxy- β - cyanovalerate	389	62	20 ³⁰⁹	130-140/2.5
	Methyl a,a-di-(2-cyanoethyl)- acetoacetate	388	50	20 259	(154)
	Ethyl cyclohexylcyanoacetate	394	98 t	20 29 2	139/8, 1.457445
	Ethyl phenylcyanoacetate	298	79	14 ³³²	1,35/-5, 1.5015**
	o-Carbethoxyphenylacetonitrile	378	76†	20 ³⁶⁴	170/16, 1.5172
с	Ethyl <i>m</i> heorylcyanoacetate	394	71†	20 ²⁹²	113/1, 1.4337 ²⁵
V12	Frhyl benzylcyanoacetate	394	63†	20 292	118-122/0.4, 1.5033 ²⁵
	Ethyl β -cy ano- β -ph enyl- propionate	389	82	20 ³⁸⁷	164/8
c	Fthyl ethylphenylcyanoacetate	386	76	20 ¹⁹⁸	147/11
C 13	Diethyl a-cyano-a, β -diethyl-	386	79	20 ²⁰³	167-170/18
	Dimethyl B-cyanobenzylmalonate	389	100	20 ³¹⁰	(48.5)
	2 2-Dicarboethoxypimelonitrile	388	83	20 ²⁵⁵	(62)
Cı	a-Phenyi-a-carbethoxyglutaro- nitrile	388	83	20 ³⁸²	167/1, 1.5103 ²⁵

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 20

REFERENCES FOR CHAPTER 20

¹Adams and Marvel, J. Am. Chem. Soc., 42, 310 (1920); ref. 4. ²Hass and Marshall, Ind. Eng. Chem., 23, 352 (1931); ref. 4. ³Noyes, J. Am. Chem. Soc., 23, 393 (1901); ref. 4. ⁴Jeffery and Vogel, J. Chem. Soc., 674 (1948). ⁵Fierz and Kuster, Helv. Chim. Acta, 22, 82 (1939). Suida and Drahowzal, Ber., 75, 991 (1942); Ruhoff, Org. Syntheses, Coll. Vol. II, 292 (1943). 'Yohe and Adams, I. Am. Chem. Soc., 50, 1503 (1928). *Rogers and Roberts, J. Am. Chem. Soc., 68, 843 (1946). Adams and Thal, Org. Syntheses, Coll. Vol. 1, 107 (1941). ¹⁰Wawzonek and Hsu, J. Am. Chem. Soc., 68, 2741 (1946). ¹¹Newman, I. Am. Chem. Soc., 62, 2295 (1940). ¹²Titley, J. Chem. Soc., 514 (1926). ¹³Baker, Dippy, and Page, J. Chem. Soc., 1777 (1937). 14 Akin, Stamatoff, and Bogert, J. Am. Chem. Soc., 59, 1271 (1937); Bardhan and Sengupta, J. Chem. Soc., 2525 (1932). ¹⁵v. Braun and Sobecki, Ber., 44, 1472 (1911). ¹⁶Fuson, Corse, and McKeever, J. Am. Chem. Soc., 62, 3250 (1940). ¹⁷Hewett and Martin, J. Chem. Soc., 1396 (1940). 18 Fuson and Sperati, J. Am. Chem. Soc., 63, 2643 (1941). ¹⁹Levy, Ann. chim., (11) 9, 73 (1938). ²⁰Cloke and Leary, J. Am. Chem. Soc., 67, 1249 (1945); Briggs and Wilson, I. Chem. Soc., 500 (1941); Gaylord and Becker, J. Org. Chem., 15, 313 (1950). ²¹ Koelsch and Whitney, J. Org. Chem., 6, 795 (1941). ²² Fuson et al., J. Am. Chem. Soc., 68, 533 (1946). ²³Bradsher, J. Am. Chem. Soc., 62, 486 (1940). ²⁴Marvel, Frank, and Prill, J. Am. Chem. Soc., 65, 1647 (1943); cf. ref. 25. ²⁵Newman, Org. Syntheses, 21, 89 (1941). ²⁶Callen, Dornfeld, and Coleman, Org. Syntheses, 28, 34 (1948). ²⁷Bachmann and Kloetzel, J. Org. Chem., 3, 55 (1938). ²⁸Bachmann and Cronyn, J. Org. Chem., 8, 456 (1943). ²⁹Barger, Robinson, and Smith, J. Chem. Soc., 720 (1937). ³⁰ Johnson et al., J. Am. Chem. Soc., 52, 1284 (1930); Reichstein, Ber., 63, 749 (1930). ³¹ Blicke and Leonard, J. Am. Chem. Soc., 68, 1934 (1946). 32 Blicke and Sheets, J. Am. Chem. Soc., 71, 2856 (1949); Avakian et al., ibid., 70, 3075 (1948). 33 Blicke and Sheets, J. Am. Chem. Soc., 70, 3768 (1948). ³⁴McElvain and Goese, J. Am. Chem. Soc., 63, 2283 (1941). ³⁵Craig, J. Am. Chem. Soc., 56, 231 (1934). ³⁶Mowry, Chem. Revs., 42, 189 (1948). ³⁷Gilman and Spatz, J. Am. Chem. Soc., 63, 1553 (1941). 38 Jansen and Wibaut, Rec. trav. chim., 56, 709 (1937). ³⁹Tyson, J. Am. Chem. Soc., 61, 183 (1939). ⁴⁰ Iones et al., J. Am. Chem. Soc., 70, 2846 (1948). ⁴¹Quelet, Bull. soc. chim. France, (5) 7, 205 (1940). ⁴²Braun, U. S. Dept. of Commerce, Office Technical Services, P.B. Report 626 (1946). 43 Levene and Taylor, J. Biol. Chem., 59, 905 (1924).

REFERENCES FOR CHAPTER 20

⁴⁴Fauconnier, Bull. soc. chim. France, (2) 50, 214 (1888). ⁴⁵Marvel and McColm. Org. Syntheses, Coll. Vol. I, 536 (1941); ref. 4. ⁴⁶Montmollin and Martenet, Helv. Chim. Acta, 12, 604 (1929). 47 Müller and Bleier, Monatsh., 56, 396 (1930). 48 Braun and Danziger, Ber., 45, 1970 (1912). "Chuit, Helv. Chim. Acta, 9, 264 (1926); Ziegler and Hechelhammer, Ann., 528, 114 (1937). ⁵⁰Ruggli, Bussemaker, and Müller, Helv. Chim. Acta, 18, 613 (1935). ⁵¹Gough and Thorpe, J. Chem. Soc., 1155 (1919). ⁵²Reichstein and Zschokke, Helv. Chim. Acta, 15, 1124 (1932). 53 Fuson and Rachlin, I. Am. Chem. Soc., 64, 1571 (1942). 54 Wittig and Petri, Ann., 513, 39 (1934). 35 Hewett, J. Chem. Soc., 293 (1940). ⁵⁶Rietz, Org. Syntheses, 24, 96 (1944); Supniewski and Salzberg, ibid., Coll. Vol. I, 46 (1941); cf. ref. 4. ⁵⁷ Tamele et al., Ind. Eng. Chem., 33, 115 (1941); v. Auwers, Ber., 56, 1172 (1923). 56 Cheldelin and Schink, J. Am. Chem. Soc., 69, 2625 (1947); Fuson and Southwick, ibid., 66, 679 (1944). ³⁹Lane, Fentress, and Sherwood, J. Am. Chem. Soc., 66, 545 (1944). ⁶⁰Delaby and Lecomte, Bull, soc. chim. France, (5) 4, 749 (1937); cf. ref. 59. ⁶¹ Treff and Werner, Ber., 68, 642 (1935); Hunsdiecker, ibid., 75, 465 (1942). ⁶²Reichstein and Trivelli, Helv. Chim. Acta, 15, 254 (1932). ⁶³ Buu-Hoi and Cagniant, Bull. soc. chim. France., (5) 12, 978 (1945). 64Coffman, J. Am. Chem. Soc., 57, 1981 (1935). 65 Hochwalt, U.S. Pat. 2, 399, 349 (1946); C. A., 40, 4744 (1946). 66 Koelsch. J. Am. Chem. Soc., 58, 1328 (1936). 67 Natelson and Gottfried, J. Am. Chem. Soc., 64, 2962 (1942). 68Newman and Wotiz, J. Am. Chem. Soc., 71, 1292 (1949). ⁶⁹McCusker and Vogt, J. Am. Chem. Soc., 59, 1307 (1937). ⁷⁰ Allen, Org. Syntheses, Coll. Vol. I, 156 (1941). ⁷¹Cloke et al., J. Am. Chem. Soc., 67, 1587 (1945). ⁷²Horning, Horning, and Platt, J. Am. Chem. Soc., 69, 2929 (1947); Starr and Dixon, ibid., 56, 1595 (1934); Leonard and Barthel, ibid., 71, 3098 (1949). ⁷³Cloke and Ayers, J. Am. Chem. Soc., 56, 2144 (1934); Leonard and Wildman, ibid., 71, 3100 (1949). ⁷⁴Kendall and McKenzie, Org. Syntheses, Coll. Vol. 1, 256 (1941); Hands and Walker, I. Soc. Chem. Ind. (London), 67, 458 (1948). ⁷⁵ Festraete, Bull. soc. chim. Belg., 41, 327 (1932). ⁷⁶Koelsch, J. Am. Chem. Soc., 65, 2460 (1943). "Dewael, Bull. soc. chim. Belg., 33, 504 (1924). 78 Bissinger et al., J. Am. Chem. Soc., 69, 2960 (1947). ⁷⁹Marvel and Overberger, J. Am. Chem. Soc., 67, 2250 (1945). ⁵⁰Henze and Rigler, J. Am. Chem. Soc., 56, 1350 (1934). ⁵¹ Rigler and Henze, J. Am. Chem. Soc., 58, 474 (1936). ⁸²Henze et al., J. Am. Chem. Soc., 64, 1222 (1942). ⁸³Barnes and Budde, J. Am. Chem. Soc., 68, 2339 (1946); cf. ref. 82. ⁸⁴Lingo and Henze, J. Am. Chem. Soc., 61, 1574 (1939). 83 Henze and Thompson, J. Am. Chem. Soc., 65, 1422 (1943). ⁸⁶Harrison and Diehl, Org. Syntheses, 23, 33 (1943).

⁸⁷Wallace and Henze, J. Am. Chem. Soc., 64, 2882 (1942); Niemann, Benson, and Mead. I. Org. Chem., 8, 401 (1943). ⁸⁸Henze. Benz. and Sutherland, J. Am. Chem. Soc., 71, 2122 (1949). ⁸⁹Spurlock and Henze, 1. Org. Chem., 4, 234 (1939). ⁹⁰Baker, 1. Chem. Soc., 520 (1942); Price, Coyner, and DeTar, J. Am. Chem. Soc., 63, 2796 (1941). ⁹¹Houben and Pfankuch, Ber., 59, 2400 (1926). 92 Marvel and Tanenbaum, J. Am. Chem. Soc., 44, 2645 (1922). 93 Bennett and Hock, J. Chem. Soc., 474 (1927). 94 Woodward, J. Am. Chem. Soc., 62, 1478 (1940); Rapson and Robinson, J. Chem. Soc., 1537 (1935) 95 Niederl and Roth, J. Am. Chem. Soc., 60, 2140 (1938). ⁹⁶Shriner and Hull, J. Org. Chem., 10, 230 (1945); cf. ref. 10. ⁹⁷Kindler and Gehlhaar, Arch. Pharm., 274, 386 (1936). 98 Long. 1. Am. Chem. Soc., 69, 990 (1947). 99 Rabcewicz-Zubkowski and Kaflinska, Roczniki Chem., 10, 541 (1930); C. A., 25, 505 (1931). 100 Gabriel and Eschenbach, Ber., 30, 1126 (1897). ¹⁰¹Widman and Wahlberg, Ber., 44, 2065 (1911). 102 Hidayetulla, Shah, and Wheeler, J. Chem. Soc., 111 (1941). 103Kohler and Brown, J. Am. Chem. Soc., 55, 4299 (1933). ¹⁰⁴Delbaere, Bull. soc. chim. Belg., 51, 1 (1942); Justoni, Gazz. chim. ital., 69. 378 (1939); C. A., 33, 8574 (1939). ¹⁰⁵Meyer, Helv. Chim. Acta., 16, 1291 (1933). ¹⁰⁶Mowry, Renoll, and Huber, J. Am. Chem. Soc., 68, 1108 (1946). ¹⁰⁷Helberger and von Rebay, Ann., 531, 279 (1937). 108 Ruggli and Businger, Helv. Chim. Acta, 25, 35 (1942); Lapworth and Baker, Org. Syntheses, Coll. Vol. I, 181 (1941). ¹⁰⁹Schultz. J. Am. Chem. Soc., 69, 1056 (1947). ¹¹⁰Ives and Sames, J. Chem. Soc., 513 (1943). ¹¹¹Pollack, J. Am. Chem. Soc., 65, 1335 (1943); cf. ref. 136. ¹¹²Noyes, J. Am. Chem. Soc., 26, 1545 (1904); Goldschmidt and Gräfinger, Ber., 68, 282 (1935). ¹¹³Humphlett, Weiss, and Hauser, J. Am. Chem. Soc., 70, 4020 (1948). ¹¹⁴Kent and McElvain, Org. Syntheses, 25, 61 (1945). ¹¹⁵McElvain, Clarke, and Jones, J. Am. Chem. Soc., 64, 1968 (1942). ¹¹⁶Homeyer, Whitmore, and Wallingford, J. Am. Chem. Soc., 55, 4212 (1933). ¹¹⁷Ralston, Harwood, and Pool, J. Am. Chem. Soc., 59, 986 (1937). ¹¹⁸Whitmore, Sutherland, and Cosby, J. Am. Chem. Soc., 64, 1360 (1942). ¹¹⁹Sherk, Augur, and Soffer, J. Am. Chem. Soc., 67, 2239 (1945). ¹²⁰Norris and Klemka, J. Am. Chem. Soc., 62, 1432 (1940). ¹²¹Tilford, Van Campen, and Shelton, J. Am. Chem. Soc., 69, 2902 (1947). ¹¹²Michaelis and Siebert, Ann., 274, 312 (1893). 123 Reid and Hunter, J. Am. Chem. Soc., 70, 3515 (1948); cf. ref. 126. ¹²⁴McElvain and Stevens, J. Am. Chem. Soc., 69, 2663 (1947). ¹²³Hellerman and Garner, J. Am. Chem. Soc., 68, 819 (1946). 126 Freeman, Ringk, and Spoerri, J. Am. Chem. Soc., 69, 858 (1947). 127Kuhn and Wagner-Jauregg, Ber., 67, 1770 (1934). ¹²⁸Blicke, J. Am. Chem. Soc., 49, 2848 (1927); ref. 120. ¹²⁹Newman, J. Org. Chem., 9, 522 (1944).

627

REFERENCES FOR CHAPTER 20

629

¹³⁰Bachmann and Boatner, J. Am. Chem. Soc., 58, 2097 (1936). ¹³¹Waldmann and Oblath, Ber., 71, 366 (1938). 132Oxlev et al., J. Chem. Soc., 763 (1946). 133 LaForge, J. Am. Chem. Soc., 50, 2480 (1928); ref. 134. 134Camps, Arch. Pharm., 240, 368 (1902). ¹³⁵Corson, Scott, and Vose, Org. Syntheses, Coll. Vol. II, 379 (1943); Surrey, ibid. 25, 63 (1945). ¹³⁶Strack and Schwaneberg, Ber., 67, 41 (1934). ¹³⁷Hessler, Am. Chem. 1., 32, 123 (1904). ¹³⁸Blomquist and Winslow, J. Org. Chem., 10, 149 (1945). ¹³⁹Biggs and Bishop, Org. Syntheses, 25, 95 (1945). ¹⁴⁰Malachowski, Wasoska, and Jozkiewicz, Ber., 71, 759 (1938). 141 Linstead and Lowe, J. Chem. Soc., 1022 (1934). ¹⁴²Moureu and Lazennec, Bull. soc. chim. France, (3) 35, 524 (1903); cf. ref. 68. 143 Ross and Burnett, J. Am. Chem. Soc., 71, 3562 (1949). 144 Letch and Linstead, J. Chem. Soc., 443 (1932). 145 Kandiah and Linstead, J. Chem. Soc., 2139 (1929). 146 Reisner and Horning, Org. Syntheses, 30, 22 (1950). 147 Stevens, I. Am. Chem. Soc., 70, 165 (1948). 148 Breslow and Hauser, J. Am. Chem. Soc., 67, 686 (1945). ¹⁴⁹Gilman and Jones, J. Am. Chem. Soc., 65, 1458 (1943). ¹⁵⁰Dunlop and Tucker, I. Chem. Soc., 1953 (1939). ¹⁵¹Blicke and Lilienfeld, I. Am. Chem. Soc., 65, 2283 (1943); Foreman and McElvain, ibid., 62, 1436 (1940). ¹⁵²McElvain and Walters, I. Am. Chem. Soc., 64, 1965 (1942). ¹⁵³Whitney and Henze, J. Am. Chem. Soc., 60, 1148 (1938); Powell and Adams, ibid., 42, 655 (1920). ¹⁵⁴Bishop, Org. Syntheses, 25, 69 (1945). 155 Bennett and Wain, J. Chem. Soc., 1108 (1936). ¹⁵⁶Miller, Org. Syntheses, 29, 75 (1949). 157 Schiessler, Rytina, and Whitmore, J. Am. Chem. Soc., 70, 529 (1948), footnote 12. ¹⁵⁶Mitchell and Reid, J. Am. Chem. Soc., 53, 321 (1931). ¹⁵⁹Bachmann, I. Am. Chem. Soc., 57, 558 (1935). ¹⁶⁰Paul and Cottin, Bull. soc. chim. France, (5) 4, 933 (1937). 161 Walden, Ber., 40, 3214 (1907); cf. ref. 4. ¹⁶²Rodionow, Bull. soc. chim. France, 39, 324 (1926). 163Sekera and Marvel, J. Am. Chem. Soc., 55, 345 (1933). 164 Zief, Fletcher, and Kirshen, J. Am. Chem. Soc., 68, 2743 (1946). 165 Whitmore and Fox, J. Am. Chem. Soc., 51, 3363 (1929); West, ibid., 42, 1661 (1920). ¹⁶⁶Colver and Noyes, J. Am. Chem. Soc., 43, 898 (1921). ¹⁶⁷Wahl, Goedkoop, and Heberlein, Bull. soc. chim. France, (5) 6, 533 (1939). 168 Bradbrook and Linstead, J. Chem. Soc., 1739 (1936). ¹⁶⁹King and Wright, I. Chem. Soc., 253 (1939). ¹⁷⁰Fieser, I. Am. Chem. Soc., 54, 4110 (1932). ¹⁷¹McElvain and Goese, J. Am. Chem. Soc., 65, 2233 (1943). ¹⁷²Webb and Corwin, J. Am. Chem. Soc., 66, 1456 (1944). ¹⁷³Ziegler and Ohlinger, Ann., 495, 84 (1932). ¹⁷⁴Bergstrom and Agostinho, J. Am. Chem. Soc., 67, 2152 (1945); Baldinger and Nieuwland, ibid., 55, 2851 (1933).

¹⁷⁵Schuerch and Huntress. I. Am. Chem. Soc., 70, 2824 (1948). ¹⁷⁶Bergstrom and Fernelius, Chem. Revs., 12, 135 (1933); 20, 451 (1937). ¹⁷⁷Sperber, Papa, and Schwenk, I. Am. Chem. Soc., 70, 3091 (1948). 178 Birch and Robinson, I. Chem. Soc., 493 (1942). 179 Crawford, J. Am. Chem. Soc., 56, 140 (1934); ref. 124. ¹⁸⁰Murray and Cloke, I. Am. Chem. Soc., 68, 126 (1946). 181 Rising and Zee, J. Am. Chem. Soc., 49, 541 (1927); refs. 180 and 182. 182 Bowden, I. Am. Chem. Soc., 60, 131 (1938). 183 Newman, J. Am. Chem. Soc., 62, 870 (1940). 184 Cope, Foster, and Towle, J. Am. Chem. Soc., 71, 3932 (1949). 185 Larsen et al., J. Am. Chem. Soc., 71, 532 (1949). 186 Schlatter, Org. Syntheses, 23, 20 (1943); Cloke et al., J. Am. Chem. Soc., 53, 2791 (1931). ¹⁸⁷Knowles and Cloke, J. Am. Chem. Soc., 54, 2028 (1932); cf. ref. 71. 188 Hancock and Coke, Org. Syntheses, 25, 25 (1945); Weston, J. Am. Chem. Soc., 68, 2345 (1946). 189 Newman and Closson, J. Am. Chem. Soc., 66, 1553 (1944). ¹⁹⁰Billman, Smith, and Rendall, J. Am. Chem. Soc., 69, 2058 (1947). ¹⁹¹Ziegler, U.S. Pat. 1,958,653; C. A., 28, 4435 (1934). ¹⁹²Whyte and Cope, J. Am. Chem. Soc., 65, 1999 (1943). 193 Cope, Hoyle, and Heyl, J. Am. Chem. Soc., 63, 1843 (1941). ¹⁹⁴Darapsky, I. prakt. Chem., 146, 250 (1936). ¹⁹⁵Marshall, J. Chem. Soc., 2754 (1930). ¹⁹⁶Hessler, J. Am. Chem. Soc., 35, 990 (1913). 197 Fischer and Flatau, Ber., 42, 2981 (1909). 198 Chamberlain et al., J. Am. Chem. Soc., 57, 352 (1935). ¹⁹⁹ Jones and Scott, J. Am. Chem. Soc., 44, 413 (1922). 200 Fuson and Kao, J. Am. Chem. Soc., 51, 1536 (1929). ²⁰¹Fuson, Kreimeier, and Nimmo, J. Am. Chem. Soc., 52, 4074 (1930). ²⁰²Fuson and Cole, J. Am. Chem. Soc., 60, 1237 (1938). ²⁰³Wren and Haller, J. Chem. Soc., 230 (1937). ²⁰⁴Bone and Sprankling, J. Chem. Soc., 75, 839 (1899). 205 Linstead, Noble, and Wright, J. Chem. Soc., 915 (1937); cf. ref. 204. ^{1'6}Bone and Sprankling, J. Chem. Soc., 654, 1298 (1900). ²⁰⁷Hessler and Lamb, J. Am. Chem. Soc., 43, 205 (1921). 208 Cope and Hancock, J. Am. Chem. Soc., 60, 2903 (1938). ²⁰⁹ Baker et al., J. Org. Chem., 12, 143 (1947); cf. ref. 144. ²¹⁰Lapworth and Baker, Org. Syntheses, Coll. Vol. I, 181 (1941). ²¹¹Lapworth and McRae, J. Chem. Soc., 121. 1699 (1922). ²¹²Ghosez, Bull. soc. chim. Belg., 41, 477 (1932); Kistiakowsky and Smith, I. Am. Chem. Soc., 58, 2428 (1936). ²¹³Wittig and Kethur, Ber., 69, 2078 (1936). ²¹⁴Adams and Rogers, J. Am. Chem. Soc., 63, 228 (1941). ²¹⁵Huber et al., J. Am. Chem. Soc., 67, 1618 (1945). 216 Work, J. Chem. Soc., 197 (1946). ²¹⁷Osman and Cope, J. Am. Chem. Soc., 66, 881 (1944). ²¹⁸Clarke and Read, Org. Syntheses, Coll. Vol. I, 514 (1941). ²¹⁹Tomisek et al., J. Am. Chem. Soc., 68, 1587 (1946). ²²⁰Barber, J. Chem. Soc., 79 (1943). ²²¹Clarke and Read, J. Am. Chem. Soc., 46, 1001 (1924). 222 Fieser and Cason, J. Am. Chem. Soc., 61, 1744 (1939).

²²³ Work, I. Chem. Soc., 1315 (1940): DeMilt and Sartor. I. Am. Chem. Soc., 62. 1954 (1940): ref. 228. 224 Rupe and Brentano, Helv, Chim. Acta, 19, 581 (1936); McRae, J. Am. Chem. Soc. 52, 4550 (1930). 225 Goldstein and Chastellain. Helv. Chim. Acta, 17. 1481 (1934). 226 Fieser and Hershberg, J. Am. Chem. Soc., 62, 1644 (1940). 227 Sah and Wang, Rec. trav. chim., 59, 364 (1940). 228 Ashlev et al., I. Chem. Soc., 103 (1942). 229 Wertheim, I. Am. Chem. Soc., 57, 545 (1935). 230 Jaeger and Robinson, J. Chem. Soc., 744 (1941). ²³¹Valby and Lucas, I. Am. Chem. Soc., 51, 2718 (1929). 232 Curtius and Hess. I. prakt. Chem., 125, 40 (1930). 233 Boyd and Ladhams, I. Chem. Soc., 2089 (1928). 234 Storrie, J. Chem. Soc., 1746 (1937). 235 Fieser and Hartwell, J. Am. Chem. Soc., 60, 2555 (1938). 236 Plucker and Amstutz, I. Am. Chem. Soc., 62, 1512 (1940). 237 Clarke and Nagy, Org. Syntheses, 20, 74 (1940). 238 Curd and Raison, I. Chem. Soc., 160 (1947). 239 Scott and Johnson, J. Am. Chem. Soc., 54, 2549 (1932). 240 Buck and Ide. Ore. Syntheses. Coll. Vol. II, 622 (1943). 241 Julian and Sturgis, J. Am. Chem. Soc., 57, 1126 (1935). 242 Granacher et al., Helv, Chim. Acta, 5, 610 (1922); 6, 458 (1923). 243 Campbell and McKail, J. Chem. Soc., 1251 (1948). 244 Buck, Baltzly, and Ide, J. Am. Chem. Soc., 60, 1789 (1938). 245 Haworth and Robinson, I. Chem. Soc., 120 (1935). 246 Bruson in Organic Reactions. Vol. 5. John Wiley & Sons, New York, 1949, p. 79. 247 Buc, Org. Syntheses, 27. 3 (1947). 248 Cook and Reed, J. Chem. Soc., 399 (1945); cf. ref. 249. ³⁴⁹ Tatbell et al., I. Am. Chem. Soc., 68, 1217 (1946). 250 Whitmore et al., I. Am. Chem. Soc., 66, 725 (1944). ²⁵¹Pearson, Jones, and Cope. J. Am. Chem. Soc., 68, 1225 (1946). ²⁵²King and McMillan, J. Am. Chem. Soc., 68, 1468 (1946). 253 Corse, Bryant, and Shonle, J. Am. Chem. Soc., 68, 1911 (1946). ²⁵⁴Utermohlen, I. Am. Chem. Soc., 67, 1505 (1945); MacGregor and Pugh, J. Chem. Soc., 535 (1945). 255 Bruson and Riener, I. Am. Chem. Soc., 65, 23 (1943). ²⁵⁶Bachman and Levine, I. Am. Chem. Soc., 70, 599 (1948). ²⁵⁷Bachman and Levine, I. Am. Chem. Soc., 69, 2341 (1947). ²⁵⁸Bruson and Riener, I. Am. Chem. Soc., 66, 56 (1944). ²⁵⁹ Bruson and Riener, J. Am. Chem. Soc., 64, 2850 (1942); also ref. 246. ²⁶⁰Koelsch. I. Am. Chem. Soc., 65, 2458 (1943). ²⁶¹ Floyd, I. Am. Chem. Soc., 71, 1746 (1949). ²⁶²Koelsch, J. Am. Chem. Soc., 65, 437 (1943). 263 Cox and Stormont, Org. Syntheses, Coll. Vol. II, 7 (1941); cf. ref. 264. ²⁶⁴Wagner and Baizer, Org. Syntheses, 20, 43 (1940), note 1. ²⁶⁵Ultee, Rec. trav. chim., 28, 1, 248 (1909). 266 Jacobson, J. Am. Chem. Soc., 68, 2628 (1946); cf. ref. 265. ²⁶⁷Colonge and Joly, Ann. chim., (11) 18, 303 (1943); cf. ref. 265. 268 Cook and Linstead, J. Chem. Soc., 958 (1934).

²⁶⁹van Coillie, Bull. soc. chim. Bele., 42, 419 (1933): Frank et al., J. Am. Chem. Soc. 71, 3889 (1949). ²⁷⁰Boekelheide and Schilling, I. Am. Chem. Soc., 72, 712 (1950). 271 Rath. Ann., 486, 102 (1931). ²⁷²Mowry and Morner, I. Am. Chem. Soc., 69, 1831 (1947). ²⁷³Williams, Ber., 60, 2512 (1927). ²⁷⁴Darzens and Mentzer, Compt. rend., 213, 268 (1941). 275 Hurd and Rector, I. Org. Chem., 10, 441 (1945). 276 Mowry, I. Am. Chem. Soc., 66, 371 (1944). 277 Gaudry. Ore. Syntheses, 27, 41 (1947). ²⁷⁸Mowry and Rossow, J. Am. Chem. Soc., 67, 926 (1945). 279 Glattfeld and Hoen. I. Am. Chem. Soc., 57, 1405 (1935). 280 Lapworth and Manske, J. Chem. Soc., 2533 (1928); 1976 (1930). ²⁸¹Hudson, Advances in Carbobydrate Chemistry, Academic Press, New York, 1945. Vol. I. pp. 1-36. ²⁸²Corson et al., Org. Syntheses, Coll. Vol. I. 336 (1941). 283 Ruskin and Pfalz, J. Am. Chem. Soc., 60, 1471 (1938); cf. ref. 282. ²⁸⁴Ladenburg, Folkers, and Major, J. Am. Chem. Soc., 58, 1292 (1936). ²⁸⁵ Jenkins, Bigelow, and Buck, I. Am. Chem. Soc., 52, 5198 (1930). 286 Ruggli and Hegedus. Helv. Chim. Acta. 25, 1292 (1942). 287 Stoughton, J. Am. Chem. Soc., 63, 2376 (1941). 286 Lucas and Prater, I. Am. Chem. Soc., 59, 1682 (1937). 289 Hevl and Cope, J. Am. Chem. Soc., 65, 669 (1943). ²⁹⁰Vogel et al., I. Chem. Soc., 1528 (1940); 768 (1930); 2010 (1928). ²⁹¹Cope et al., J. Am. Chem. Soc., 63, 3452 (1941). ²⁹² Alexander and Cope, J. Am. Chem. Soc., 66, 886 (1944); cf. ref. 293. ²⁹³ Alexander and Cope. Ore. Syntheses. 26, 31 (1946); cf. ref. 292. ²⁹⁴Vogel, J. Chem. Soc., 2010 (1928). ²⁹⁵Tschelinzeff and Schmidt, Ber., 62, 2210 (1929). 296 Hurd. Edwards, and Roach, J. Am. Chem. Soc., 66, 2013 (1944). ²⁹⁷Oakwood and Weisgerber, Org. Syntheses, 24, 14 (1944). ²⁹⁸Claisen, Ber., 31, 1023 (1898); Mauthner, ibid., 42, 188 (1909). 299 Fisher and Brauns, Ber., 46, 892 (1913). ³⁰⁰David, Dupont, and Paguot, Bull, soc. chim. France, (5) 11, 563 (1944). ³⁰¹Mowry, J. Am. Chem. Soc., 68, 2108 (1946). 302 Corson and Stoughton, J. Am. Chem. Soc., 50, 2825 (1928). ³⁰³Allen and Kimball, Org. Syntheses, Coll. Vol. 1I, 498 (1943). ³⁰⁴Lapworth, J. Chem. Soc., 85, 1214 (1904). ³⁰⁵Lapworth and Baker, Org. Syntheses, Coll. Vol. I, 451 (1941). ³⁰⁶Higginbotham and Lapworth, J. Chem. Soc., 121, 49 (1922). 307 Buckley, Heath, and Rose, J. Chem. Soc., 1500 (1947). ³⁰⁸Smith and Horwitz. J. Am. Chem. Soc., 71, 3418 (1949). ³⁰⁹Koelsch and Stratton, J. Am. Chem. Soc., 66, 1883 (1944). ³¹⁰Michael and Weiner, J. Am. Chem. Soc., 59, 744 (1937). ³¹¹Steiger, Org. Syntheses, 22, 13, 23 (1942); 24, 9 (1944). ³¹²Adams and Langlev. Org. Syntheses, Coll. Vol. I, 355 (1941). ³¹³Turner, J. Am. Chem. Soc., 68, 1607 (1946). ³¹⁴Read, J. Am. Chem. Soc., 44, 1746 (1922). ³¹⁵Herbst and Johnson, J. Am. Chem. Soc., 54, 2463 (1932). 316 Jawelow, Ber., 39, 1195 (1906).

317 Gulewitsch and Wasmus, Ber., 39, 1181 (1906). ³¹⁸Cocker and Lapworth, J. Chem. Soc., 1391 (1931). 319 Luten, J. Org. Chem., 3, 588 (1938-1939). 320 Walther and Hübner, J. prakt. Chem., 93, 119 (1916). 321 Immendörfer, Ber., 48, 605 (1915); cf. ref. 388. 322 Allen and Van Allen, Org. Syntheses, 27, 20 (1947). 323 Stewart and Cook, J. Am. Chem. Soc., 50, 1973 (1928); cf. ref. 324. ³²⁴ Knoevenagel and Mercklin, Ber., 37, 4087 (1904). 325 Corse, Bryant, and Shonle, J. Am. Chem. Soc., 68, 1905 (1946). 326 Bloom, Breslow, and Hauser, J. Am. Chem. Soc., 67, 539 (1945). 327 Jacobson, J. Am. Chem. Soc., 67, 1996 (1945); 68, 2628 (1946). 328 Menge, J. Am. Chem. Soc., 56, 2197 (1934). ³²⁹Houben and Fischer, Ber., 66, 339 (1933). 330 Karrer, Rebmann, and Zeller, Helv. Chim. Acta, 3, 261 (1920); 2, 482 (1919). 332 Mosettig and van de Kamp, J. Am. Chem. Soc., 54, 3328 (1932). 332 Steinkopf, Ann., 430, 78 (1923). 333Klopp and Wright, J. Org. Chem., 4, 142 (1939). 334 Bargellini and Madesani, Gazz. chim. ital., 61, 684 (1931); C. A., 26, 1264 (1932). 335 Hignett and Kay, J. Soc. Chem. Ind. (London), 54, 98T (1935). 336 Wolff in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 307. 335. 337 Schuerch, J. Am. Chem. Soc., 70, 2293 (1948). 338 Miller and Plöchl, Ber., 25, 2020 (1892); 26, 1545 (1893). 339 Smith and Bergstrom, J. Am. Chem. Soc., 56, 2095 (1934). 340 Harris, Harriman, and Wheeler, J. Am. Chem. Soc., 68, 846 (1946). 341 Bailey and Lochte, J. Am. Chem. Soc., 39, 2443 (1917); 37, 935 (1915). 343 Lillevik et al., J. Org. Chem., 7, 164 (1942); Porter and Hellerman, J. Am. Chem. Soc., 61, 754 (1939); cf. ref. 344. 343 Porter and Hellerman, J. Am. Chem. Soc., 66, 1652 (1944). 344 Adickes, J. prakt. Chem., 161, 279 (1943). 345 Bellavita, Gazz. chim. ital., 70, 584 (1940); C. A., 35, 2127 (1941). 346 Grosheintz and Fischer. J. Am. Chem. Soc., 63, 2021 (1941). 347 Kaufmann and Dändliker, Ber., 46, 2924 (1913). 348 Rambaud, Bull. soc. chim. France, (5) 3, 138 (1936). 349 Price and Rogers, Org. Syntheses, 22, 30 (1942). 350 Price and Kaplan, J. Am. Chem. Soc., 66, 477 (1944). 351 Blaise, Compt. rend., 124, 89 (1897). 352 Mailhe, Ann. chim., (9) 13, 183 (1920); Bull. soc. chim. France, (4) 25, 588 (1919): 27, 229 (1920). 333 Mc Elvain and Clarke, J. Am. Chem. Soc., 69, 2657, 2661 (1947). 354 Van Epps and Reid, J. Am. Chem. Soc., 38, 2120 (1916). 355 Sowa and Nieuwland, J. Am. Chem. Soc., 59, 1202 (1937). 336 Koelsch, J. Am. Chem. Soc., 65, 57 (1943). 357 Johnson and Shelberg, I. Am. Chem. Soc., 67, 1745 (1945). 358 Horning, Horning, and Platt, J. Am. Chem. Soc., 72, 2731 (1950). 359 LaForge, Green, and Gersdorff, J. Am. Chem. Soc., 70, 3709 (1948). 360Price and Krishnamurti, I. Am. Chem. Soc., 72, 5334 (1950). 361 Sherman and Amstutz, J. Am. Chem. Soc., 72, 2195 (1950). 362 Cason, Wallcave, and Whiteside, J. Org. Chem., 14, 37 (1949).

363 Pattison and Saunders, J. Chem. Soc., 2748 (1949). 364 Price. Lewis. and Meister, J. Am. Chem. Soc., 61, 2760 (1939). 365 Bader, Downer, and Driver, J. Chem. Soc., 2779 (1950). 366 Goerner and Hines. J. Am. Chem. Soc., 70, 3511 (1948). 367 Boivin. Can. I. Research. 28, 671B (1950). 368 Mowry and Ringwald, J. Am. Chem. Soc., 72, 4439 (1950). 369 Goldschmidt and Veer, Rec. trac. chim., 67, 502 (1948). ³⁷⁰Burger and Walter, J. Am. Chem. Soc., 72, 1988 (1950). 37 Priis. Lutz. and Erlenmeyer, Helv. Chim. Acta, 31, 571 (1948). ³⁷²Mowry and Butler. Org. Syntheses, 30, 46 (1950). ³⁷³ Buckle, Heap, and Saunders, J. Chem. Soc., 914 (1949). 374 Byrne, Linstead, and Lowe, 1. Chem. Soc., 1019 (1934). ³⁷⁵Robb and Schultz, Org. Syntheses, 28, 55 (1948). 376Sisido, Nozaki, and Kurihara, J. Am. Chem. Soc., 72, 2270 (1950). 377 Paul and Tchelitcheff, Bull. soc. chim. France, (5) 16, 470 (1949). ³⁷⁶Marvel, Miller, and Chou, J. Am. Chem. Soc., 72, 5408 (1950). ³⁷⁹ Rousseau and Lindwall, J. Am. Chem. Soc., 72, 3047 (1950). 380 Crowe and Nord, J. Org. Chem., 15, 81 (1950). 381 Albertson, I. Am. Chem. Soc., 72, 2594 (1950). 382 Horning and Finelli, Org. Syntheses, 30, 80 (1950). 363 Buckley et al., J. Chem. Soc., 1505 (1947). 384 Bader, Downer, and Driver, J. Chem. Soc., 2779 (1950). 385 Bauer and Cymerman, J. Chem. Soc., 2078 (1950). 386Sperber and Fricano, J. Am. Chem. Soc., 72, 2792 (1950). 387 Allen and Johnson, Org. Syntheses, 30, 83 (1950). 388 Leonard and Barthel, J. Am. Chem. Soc., 72, 3632 (1950). 389 Asscher. Rec. trav. chim., 68, 963 (1949). 390 Cook and Cox, J. Chem. Soc., 2334 (1949). ³⁹¹Tiollais, Bull. soc. chim. France, (5) 14, 966 (1947). ³⁹²Peters et al., Ind. Eng. Chem., 40, 2046 (1948). ³⁹³Knott. J. Chem. Soc., 1190 (1947). ³⁹⁴Runde, Scott, and Johnson, J. Am. Chem. Soc., 52, 1286 (1930). ³⁹⁵ Verkade and Hartman, Rec. trav. chim., 52, 952 (1933). ³⁹⁶Kindler and Peschke, Arch. Pharm., 271, 431 (1933). ³⁹⁷Migrdichian, The Chemistry of Organic Cyanogen Compounds, Reinhold Publishing Corp., New York, 1947. 398 Whitmore, Noll, and Meunier, I. Am. Chem. Soc., 61, 683 (1939). ³⁹⁹Cope et al., Org. Syntheses, 31, 25 (1951).

Imino Esters (Imino Ethers) and Amidines

CONTENTS

PAGE

METHOD	PAGE
402. Imino Esters by the Addition of Alcohols to Nitriles	634
403. Ammonolysis of Imino Esters	635
404. Addition of Ammonia or Amines to Nitriles	635
405. Condensation of Amines with Amides	635
406. Addition of Dialkylaminomagnesium Halides to Nitriles	630
407. Amination of Nitriles by Sodium Amide	630
408. Ammonolysis of N-Arylamidinium Salts	630
409. Interaction of Arylamines and Orthoformates	630
410. Imino Esters by the Action of Hydrazoic Acid on Ketones	630
Table 76. Imino Esters (Imino Ethers)	637
Table 77. Amidines	638
References	639

The relationship of imino esters, RC(OR') = NH, and amidines, $RC(NH_2) = NH$, to esters and amides, respectively, suggests analogous methods of preparation. For example, amidines are obtained by the action of ammonia on imino esters (method 403). The chemistry of the amidines to 1944 has been reviewed. In addition to the methods discussed here. many lesser used reactions for their preparation are listed.²³

402. Imino Esters by the Addition of Alcohols to Nitriles

$$\operatorname{RCN} \xrightarrow{\operatorname{R'OH}} \operatorname{RC}(\operatorname{OR'}) = \operatorname{NH} \cdot \operatorname{HCl} \xrightarrow{\operatorname{Na_2CO_3}} \operatorname{RC}(\operatorname{OR'}) = \operatorname{NH}$$

Aliphatic and aromatic imino ester hydrochlorides are most easily obtained by passing dry hydrogen chloride into an equimolar mixture of a nitrile and an alcohol in ether solution.^{1, 2, 9, 11} Strictly anhydrous conditions are essential for successful conversions. The time of reaction is greatly reduced by refluxing the ether solution." Dioxane is superior as a solvent in certain cases.¹² At temperatures above 60-80°, decomposition of the imino ester hydrochloride to an alkyl chloride and an amide occurs. The free imino esters are obtained by neutralization of the hydrochlorides with sodium bicarbonate¹ or potassium carbonate^{2, 11, 12} under ether.

Imino esters containing halo,^{7, 10, 11} hydroxyl,⁶ carbalkoxyl,^{5, 11} and cyano¹¹ groups have been prepared.

This method, along with several other lesser used reactions for the preparation of imino esters, has been discussed in more derail.22

403. Ammonolysis of Imino Esters

$$RC(OR') = NH \cdot HCl \xrightarrow{NH_3} RC(NH_2) = NH \cdot HCl$$

Excellent examples of this reaction are found in the preparations of acetamidine (91%)¹³ and nicotinamidine (60%).¹⁴ The conversion is accomplished by treatment of the imino ester hydrochloride with alcoholic ammonia or by the action of ammonium chloride on the free imino ester. The amidines are frequently isolated as salts such as the sulfates or picrates.⁶ N-Substituted amidines result when amines are used in place of ammonia.29

404. Addition of Ammonia or Amines to Nitriles

$$\operatorname{RCN} \xrightarrow{\operatorname{NH_3}} \operatorname{RC}(\operatorname{NH_2}) = \operatorname{NH}$$

The addition of ammonia or ammonium chloride to nitriles does not occur readily.^{15, 20} Some success has been achieved by condensing these substances in the presence of aluminum chloride or catalysts of similar nature.27

Certain nitriles add amines to form N-substituted amidines. This reaction has been modified and extended through the use of ammonia and alkyl- or aryl-ammonium salts of sulfonic acids. Many amidines have been prepared in yields ranging from 13% to 86%.15 Some amidines are obtained in better yields by heating a cyanide with ammonium thiocyanate or an alkylammonium thiocyanate.24

405. Condensation of Amines with Amides

$$RCONHR' + R''NH_2 \xrightarrow{PC1_3} RC(NHR'') = NR'$$

A number of aromatic amidines have been readily obtained by boiling a primary or secondary amine with a substituted amide in a solution of phosphorus trichloride.¹⁶ Several aliphatic amides undergo a similar condensation with amines and phosphorus oxychloride.¹⁷ An imino chloride, RC(Cl)=NR', is an intermediate in this process. N-Phenylbenzamidine, $C_6H_5C(NHC_6H_5) = NH$, is obtained by the action of methanolic ammonia on

the corresponding imino chloride.¹⁹ Also, amidines are formed in the Beckmann rearrangement of ketoximes in which imino chlorides are sometimes intermediates.¹⁸

406. Addition of Dialkylaminomagnesium Halides to Nitriles 30

R'CN
$$\xrightarrow{\text{R}_2\text{NMgBr};}_{\text{H}_2\text{O}}$$
 R'C(NR₂)=NH (45−83%)

407. Amination of Nitriles by Sodium Amide²⁵

$$R_{3}CCN \xrightarrow{NaNH_{2}} R_{3}CC(NH_{2}) = NNa \xrightarrow[H_{2}O]{R'X} R_{3}CC(NH_{2}) = NR'$$

408. Ammonolysis of N-Arylamidinium Salts²⁶

$$RC(NHA_t) = NH_2^{+}X^{-} \xrightarrow{NH_3} RC(NH_2) = NH_2^{+}X^{-}$$

409. Interaction of Arylamines and Orthoformates²⁸

 $2ArNH_2 + HC(OC_2H_5)_3 \rightarrow HC(NHAr) = NAr$

410. Imino Esters by the Action of Hydrazoic Acid on Ketones²¹

$$CH_3COCH_3 + HN_3 + C_2H_5OH \xrightarrow{HC1} CH_3C(OC_2H_5) = NCH_3 \cdot HCl$$

TABLE 76. IMINO ESTERS (IMINO ETHERS)

TABLE 76. IMINO ESTERS (IMINO ETHERS)

с "	Compound	Method	Yield (%)	Chapter ^{r ef.}	B.p./mm., n ^t _D , (M.p.), Deriv
C4	Ethyl iminoacetate	402	22	212	90/765, 1.4025 ²⁵
		402	95	21 ⁸	
	Ethyl chloroiminoacetate	402	90	21 ⁸	
	Methyl cyanoiminoacetate	402	87	21 ¹¹	
C۶	Ethyl iminopropionate	402	95	21 *	
	Ethyl N-methylacetimidate	410	50	2121	100
	Methyl γ, γ, γ -trichloro- iminobutyrate	402	92	2111	
	Methyl β -cyanoiminopro- pionate	402	80	21 11	
	Ethyl cyanoiminoacetate	402	97	2111	103/10, (79)
C 6	Methyl iminovalerate	402	79	214	
	Ethyl iminobutyrate	402	63	21 ⁸	
	Ethyl iminoisobutyrate	402	80	21 ⁸	
	Methyl eta -carbomethoxy- iminopropionate	402	93	21 11	
с,	Ethyl iminovalerate	402	75	21 ⁸	
	Ethyl iminoisovalerate	402	40	21 ⁸	
	Diethyl iminomalonate	402	44	21 ¹¹	63/0.4, 1.4530 ²⁵
	Ethyl carboethoxyimino- acetate	402	93	2111	
C,	Phenyl iminoacetate	402	27	217	113HCl
	Phenyl chloroiminoacetate	402	79	217	97HCl
C,	Ethyl o-hydroxyimino- benzoate	402	41	216	151HCl
	Ethyl <i>m</i> -hydroxyimino- benzoate	402	93	21 ⁶	164HC1
Cbo	Methyl a-phenyliminopro- pionate	402	73	2112	73/1, 1.5185 ²⁵
	Ethyl phenyliminoacetate	402	73	21 ¹	99/2, 1.5126
	Ethyl p- hydroxyphenyl- iminoacetate	402	97	216	148HCl
C11	Methyl a-phenylimino- butyrate	402	77	21 °	92HCI

TABLE 77. AMIDINES

с _{<i>n</i>}	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
с,	Acetamidine hydrochloride	403	91	2113	(166)
C.	n-Valeramidine	408	96	21 ²⁶	
- •	1,3-Diamidinopropane (glutaramidine)	404	50	21 ¹⁵	235Pi
C ₆	2-Amidinopyridine	404	49	21 ¹⁵	208Pi
	3-Amidinopyridine (nicotin- amidine) hydrochloride	403	60	21 14	(190)
с,	Benzamidine	404	57	2127	240Pi
	Denzamidine	404	66	2115	239Pi
		404	50	2124	240Pi
		408	91	21 26	
	Benzamidine hydrochloride	403	95	21 ³	(73)
	n-Chlorobenzamidine	404	61	21 ¹⁵	256Pi
	p-Bromobenzamidine	404	52	21 ¹⁵	(159), 265HCl
	<i>c</i> -Nitrobenzamidine	404	13	21 ¹⁵	233Pi
	m-Nitrobenzamidine	404	35	21 ¹⁵	
	p-Nitrobenzamidine	404	44	21 ¹⁵	240Pi
C ₈	- Dhanulagatamidine	404	55	21 15	
	Phenylacetamiune	408	93	2126	
	<i>p</i> -Hydroxyphenylacetami- dine hydrochloride	403	87	216	(254)
	p-Methoxybenzamidine	404	18	21 ¹⁵	(119), 213Pi
С,	N.N'-Dimethylbenzamidine		82	21 ¹⁵	128/11, (81)
	p-Hydroxyphenyl-N-methyl- acetamidine hydro- chloride	403	60	216	(230)
C .n	N-Phenylbutyramidine	405	16	21 17	(65)
с.,	a-Naphthamidine	404	29	21 15	(154), 227Pi
. 11	β -Naphthamidine	404	25	21 ¹⁵	(136), 247Pi
С'n	N-Dhanylbon remidice	404	82	21 15	(116), 231HCl
	N-r neny menzamiane	405	75	21 19	(117)
	N,N'.Diphenylformamidine	409	80	21 ²⁸	(139), 245HCl
C 14	Tributylacetamidine	407	88	21 ²⁵	135/0.5, 142HCl
	N-Phenyl-N-methylbenz-	404	100	2127	(86), 187Pi
C 15	N,N-Dibutylbenzamidine	406	82	21 ³⁰	121/1, 174HCl
С.,	N.N-Diphenylbutyramidine	405	61	2117	(104), 154HCl
C 16 C 19	N.N-Diphenylbenzamidine	404	29	2115	(113)
	N,N'-Dimethylbenzamidine	405	80	2131	(145)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 21

REFERENCES FOR CHAPTER 21

¹McElvain and Stevens, J. Am. Chem. Soc., 68, 1919 (1946). ²Glickman and Cope, J. Am. Chem. Soc., 67, 1019 (1945); Sah, ibid., 50, 516 (1928). ³Ronzio and Ekeley, Org. Syntheses, Coll. Vol. I, 6, 7 (1941). ⁴McElvain, Kent, and Stevens, J. Am. Chem. Soc., 68, 1922 (1946). ⁵Rising and Zee, I. Am. Chem. Soc., 49, 544 (1927). ⁶Easson and Pyman, I. Chem. Soc., 2991 (1931). ⁷McElvain and Fajardo-Pinzon, J. Am. Chem. Soc., 67, 691 (1945). ⁸ McElvain and Nelson, J. Am. Chem. Soc., 64, 1827 (1942). ⁹Rising and Zee, J. Am. Chem. Soc., 50, 1210 (1928); cf. ref. 12. 10 Steinkopf and Malinowski, Ber., 44, 2898 (1911). ¹¹ McElvain and Schroeder, J. Am. Chem. Soc., 71, 43 (1949). 12 McElvain and Stevens, J. Am. Chem. Soc., 69, 2663 (1947). 13 Dox, Org. Syntheses, Coll. Vol. I, 5 (1941). 14 Barber and Slack, J. Am. Chem. Soc., 66, 1607 (1944); cf. ref. 15. ¹⁵ Short et al., J. Chem. Soc., 147, 763 (1946); 382 (1947); 703, 2097 (1949). ¹⁶Sen and Ray, I. Chem. Soc., 646 (1926). ¹⁷ Drozdov and Bekhli, I. Gen. Chem. (U.S.S.R.), 14, 472 (1944). 18 Stephen and Bleloch, J. Chem. Soc., 886 (1931). ¹⁹ Ghadiali and Shah, J. Univ. Bombay, 6, 127 (1937); C. A., 32, 3761 (1938). ²⁰ Krewson and Couch, I. Am. Chem. Soc., 65, 2256 (1943). ²¹ Wolff in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 318, 330. ²² Migrdichian, Organic Cyanogen Compounds, Reinhold Publishing Corp., New York, 1947, pp. 64-66, 84-90. ²³ Shriner and Neumann, Chem. Revs., 35, 351 (1944). ²⁴ Partridge and Short, I. Chem. Soc., 390 (1947). ²⁵Newbery and Webster, J. Chem. Soc., 738 (1947); Sperber, Papa, and Schwenk, I. Am. Chem. Soc., 70, 3092 (1948). ²⁶Oxley and Short, I. Chem. Soc., 449 (1949). ²⁷ Oxley, Partridge, and Short, I. Chem. Soc., 1110 (1947). ²⁸ Backer and Wanmaker, Rec. trav. chim., 67, 257 (1948); Dains, Malleis, and Meyers, J. Am. Chem. Soc., 35, 970 (1913); Price, Leonard, and Herbrandson, ibid., 68, 1252 (1946). ²⁹ Djerassi and Scholz, J. Am. Chem. Soc., 69, 1691 (1947). ³⁰ Lorz and Baltzly, J. Am. Chem. Soc., 70, 1904 (1948); Hullin, Miller, and Short, J. Chem. Soc., 394 (1947).

³¹Hontz and Wagner, Org. Syntheses, 31, 48 (1951).
METHODS 412-415

22

Isocyanates

CONTENTS

PAGE

METHOD	PAGE
411. Action of Phosgene on Amines	640
412. Pyrolysis of Acyl Azides (Curtius)	640
413. Alkylation of Metallic Cyanates	641
414. a-Keto Isocvanates by Acylation of Silver Cyanate	641
415. Action of Phosphorus Pentachloride on Urethanes	641
Table 78. Isocyanates	642
References	644

411. Action of Phosgene on Amines

$RNH_2 \xrightarrow{COCI_2} RNHCOCI \xrightarrow{-HCI} RNCO$

Simple isocyanates containing up to twelve carbon atoms are best prepared by a vapor-phase reaction of phosgene and a primary amine reported in 1950.² The reaction occurs without a catalyst at 240-350° to form carbamyl chlorides from which the isocyanates are obtained by refluxing in an inert solvent or by treating with a tertiary amine. Over-all yields range from 58% to 88%. Secondary amines are converted to disubstituted carbamyl chlorides, R₂NCOC1.^{2, 28}

Higher-molecular-weight amines are treated in the liquid phase usually in solvents like ethyl acetate,¹ toluene,^{3, 5, 6} chlorobenzene,^{4, 8} or chloronaphthalene.^{*} This process is illustrated by the preparation of *p*-nitrophenyl isocyanate (95%).1 Amine hydrochlorides or carbamic acids are sometimes used in place of the free amine."

412. Pyrolysis of Acyl Azides (Curtius)

$$RCON_3 \rightarrow RNCO + N_2$$

Pyrolysis of acid azides results in the loss of nitrogen gas and intramolecular rearrangement of an R radical from carbon to nitrogen. Degradation to the isocyanate is best carried out by warming the azide in a solution of benzene,⁹ toluene,^{14, 15, 29} or diphenyl ether.¹³ Kinetic

studies have been made in thirteen solvents.¹² Yields of isocyanates are usually in the range of 75-95%. In the preparation of methyl isocyanate by this method, acetic anhydride rather than acetyl chloride is best employed in the preparation of the azide from sodium azide. Otherwise, the isocyanate is contaminated with acetyl chloride.¹⁶ Azides are also prepared by diazotization of hydrazides (method 364).

The conversion of azides to amines is discussed elsewhere (method 447). The related Hofmann and Lossen rearrangements (methods 446 and 448) are inferior for the preparation of isocyanates.

413. Alkylation of Metallic Cyanates

$$KNCO + R_2SO_4 \xrightarrow{Na_2CO_3} RNCO + ROSO_3K$$

Alkyl isocyanates where R is methyl and ethyl have been prepared by this reaction in yields of 43% and 95%, respectively.²⁴ Diphenvlmethyl bromide also serves as an alkylating agent to give diphenylmethyl isocvanate (80%).30

414. a-Keto Isocyanates by Acylation of Silver Cyanate

 $RCOCl + AgOCN \rightarrow RCONCO + AgCl$

Ten a-keto isocyanates have been prepared in 40-90% yields by refluxing ethereal solutions of the corresponding acyl halides with a suspension of silver cyanate.²⁵ Adipyl isocyanate has been made in this way. but the yield is not stated.²⁶

415. Action of Phosphorus Pentachloride on Urethanes²⁷

$$RNHCO_2 R \xrightarrow{PCI_5} RNCO$$

641

ISOCYANATES

Ch. 22

TABLE 78. ISOCYANATES

TABLE 78 (continued)

с <u></u>	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
Cı	4-Biphenylyl isocyanate	411	90	225	(57)
C 14	Diphenylmethyl isocyanate	413	80	22 ³⁰	148/4
	2-Fluoryl isocyanate	411	89	22 3	(70)

TABLE	78.	ISOCYANATES
-------	-----	-------------

с "	Сотроилd	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
с,	Methyl isocyanate	411	88	222	38
		412	60 t	2214	
		412	78	22 ¹⁶	36-39
		413	43	2224	42-45
	Chloromethyl isocyanate	412	65	22 ²¹	81
C,	Ethyl isocyanate	411	71	22 ²	58-61, 1.3801*
		412	65 t	2214	
	eta-Chloroethyl isocyanate	411	87	22 ⁸	42/16
		415	49	22 ²⁷	
C₄	<i>n</i> -Propyl isocyanate	411	76	22²	87
		412	53 t	2214	
	Isopropyl isocyanate	411	82	22 ²	70-75, 1.3886
		412	83 t	2214	
	Ethylene isocyanate	412	65	22 22	75/25
	γ-Chloropropyl isocyanate	411	81	22 ⁸	55/16
C s	<i>n</i> -Butyl isocyanate	411	70	22²	115, 1.4060
		412	96 t	2214	
	Isobutyl isocyanate	411	78	22 ²	102
		412	84 †	2214	
	t-Butyl isocyanate	412	94	2211	85
	Carboethoxymethyl isocyanate	411	85	22ª	68/11
	2-Furyl isocyanate	412	73	22 ¹³	54/40
	•	412	75	22 ¹⁷	111/740
C6	Cyclopentyl isocyanate	411	94	22ª	135/12
C,	Diethylacetyl isocyanate	414	90	22 ²⁵	60/31
	Phenyl isocyanate	411	86	222	160
		412	87	22 ²⁰	55/13
	o-Nitrophenyl isocyanate	411	95	22 °	(41)
	<i>m</i> -Nitrophenyl isocyanate	411	- 95	22 6	(51)
		412	100	22 ¹⁸	(50)
	p-Nitrophenyl isocyanate	411	95	221	161/18, (57)
		412	90	22 ¹⁵	163/20, (57)
C ₈	Hexamethylenediisocyanate	411	95	22 ⁸	132/15
		411	95	22 ³¹	110/5, 1.4585
	p-Methoxyphenyl isocyanate	412	80	22 ¹⁹	106/8
	Benzoyl isocyanate	414	50	22 ²⁵	90/20
C,	Phenacetyl isocyanate	414	40	22 ²⁵	118/20
	1,3,5-Benzenetriisocyanate	411	50	224	(85)
	p-Ethoxyphenyl isocyanate	412	81	2223	110/11
	p-Carbomethoxyphenyl isocyanate	411	86	2 2 ⁸	123/11, (49)
	p-Dimethylaminophenyl isocyanate	412	56	22 29	104/2, (39) •
C 12	Undecyl isocyanate	412	8 6	22 °	103/3

REFERENCES FOR CHAPTER 22

¹Shriner, Home, and Cox, Org. Syntheses, Coll. Vol. II, 453 (1943). ²Slocombe, Hardy, Saunders, and Jenkins, J. Am. Chem. Soc., 72, 1888 (1950). ³ Ray and Rieveschl, J. Am. Chem. Soc., 60, 2676 (1938). Gill, MacGillivray, and Munro, J. Chem. Soc., 1753 (1949). ⁵Gelderen, Rec. trav. chim., 52, 970 (1933). ⁶Hoeke, Rec. trav. chim., 54, 506 (1935). ⁷ Saunders and Slocombe, Chem. Revs., 43, 203 (1948). ^aSiefken, Ann., 562, 76, 111 (1948). *Allen and Bell, Org. Syntheses, 24, 94 (1944). ¹⁰ Smith in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 337, 376, 392. ¹¹ Bühler and Fierz-David, Helv. Chim. Acta, 26, 2133 (1943). ¹²Newman, Lee, and Garrett, J. Am. Chem. Soc., 69, 113 (1947). ¹³ Singleton and Edwards, J. Am. Chem. Soc., 60, 542 (1938). ¹⁴ Boehmer, Rec. trav. chim., 55, 379 (1936). 15 Sah, Rec. trav. chim., 59, 233 (1940). ¹⁶Colucci, Can. J. Research, 23B, 111 (1945). ¹⁷ Stevenson and Johnson, J. Am. Chem. Soc., 59, 2529 (1937). 18 Sah and Woo, Rec. trav. chim., 58, 1014 (1939). ¹⁹ Brunner and Wöhrl, Monatsh., 63, 376 (1934). 20 Schroeter, Ber., 42, 2339 (1909). ²¹ Schroeter, Ber., 42, 3358 (1909). ²²Curtius and Hechtenberg, J. prakt. Chem., 105, 316 (1923). ²³ Curtius and Ulmer, J. prakt. Chem., 125, 59 (1930). 24 Slotta and Lorenz, Ber., 58, 1320 (1925). ²⁵ Hill and Degnan, J. Am. Chem. Soc., 62, 1595 (1940). ²⁶ Lieser and Macura, Ann., 548, 243 (1941). ²⁷ Wenker, J. Am. Chem. Soc., 58, 2608 (1936). 28 Raiford and Alexander, J. Org. Chem., 5, 306 (1940). 29 Breslow, J. Am. Chem. Soc., 72, 4246 (1950). ³⁰ Donleavy and English, J. Am. Chem. Soc., 62, 218 (1940). ³¹ Farlow, Org. Syntheses, 31, 62 (1951).

23

Carbamates (Urethanes), Semicarbazides, and Ureas

CONTENTS

METHOD

PAGE

416. Action of Amines, Hydrazines, or Alcohols on Isocyanates	645
417. Action of Amines on Urea or Nitrourea	646
418. Action of Ammonia or Amines on Chloroformates	646
419. Action of Alcohols on Urea or Urethanes	647
420. Action of Carbamyl Chlorides on Alcohols, Ammonia, or Hydrazines	647
421. Acylation of Ureas	647
422. Reaction of Amides with Isocyanates	647
423. Urea and Alkylisoureas from Cyanamides	647
424. Reduction of Nitro- or Nitroso-ureas	648
Table 79. Carbamates (Urethanes)	649
Table 80. Semicarbazides and Ureas	649
References	651

416. Action of Amines, Hydrazines, or Alcohols on Isocvanates

$$RNCO \xrightarrow{R' NH_2} RNHCONHR'$$

$$RNCO \xrightarrow{R' NHNH_2} RNHCONHNHR' + RNHCON(R')NH_2$$

$$R' OH \xrightarrow{R' OH} RNHCO_2R'$$

These reactions indicate the relationship of ureas, urethanes, and semicarbazides to each other but are not generally used for the preparation of these compounds. Isocyanates are formed in the Hofmann⁵ and Curtius⁶ rearrangements (methods 446 and 447) and may be converted directly to urethanes^{2,9} and symmetrically substituted ureas¹ by modifications of these reactions. For example, N-bromoamides are rearranged directly to urethanes by a solution of sodium methoxide in methyl alcohol.^{3,4} Hydrazines can react with isocyanates to give either 1,4- or 2,4-disubstituted semicarbazides.' Alkylhydrazines produce only 2,4dialkylsemicarbazides, RNHCON(R)NH, A general method of preparation of arylureas involves treatment of an arylamine with aqueous sodium cyanate and acetic acid, viz., $ArNH_2 + HNCO \rightarrow ArNHCONH_2$ (54-95%).⁴¹ 417. Action of Amines on Urea or Nitrourea

 $RNH_2 + CO(NH_2)_2 \rightarrow CO(NH_2)NHR + NH_3$

Symmetrical dialkyl- and diaryl-ureas are formed in 43-78% yields by heating primary amines and ureas in the dry state at $160^{\circ 14}$ or by boiling an aqueous solution of the amine hydrochloride and urea.^{15, 42} Urea is converted to ammonium cyanate, which reacts with the amine to give a monosubstituted urea. This compound, in turn, breaks down into an alkylisocyanate from which the sym-dialkylurea is obtained by the action of more primary amine. By interrupting this process from time to time, phenylurea can be made from aniline and urea in 55% yield. The remainder of the product is sym-diphenylurea.¹⁰

Nitrourea is decomposed quantitatively into cyanic acid and nitrous oxide when heated in aqueous solution. If primary or secondary amines are present, the products are alkylureas or N,N-dialkylureas, respectively.^{11,12} Alcohol is used as a solvent for amines which are only slightly soluble in water.^{16, 16} The yields in general are excellent (70-98%), and the reaction is preferred to the exchange with urea described above. Alkanolamines give hydroxyalkylureas in 85-95% yields.¹³ Nitrourea is conveniently prepared in 90% yield from urea nitrate.¹¹

A similar exchange reaction occurs between arylureas and hydrazine hydrate in boiling alcohol solution; arylsemicarbazides are formed in fair yields.²³

418. Action of Ammonia or Amines on Chloroformates

 $RNH_2 + ClCO_2R' \xrightarrow{B_{gse}} RNHCO_2R' + (HCl)$

The acylation of ammonia or primary and secondary amines by chloroformic esters (chlorocarbonates) is the most general method for the synthesis of urethanes. Chloroformates are obtained by the action of phosgene on alcohols (method 289) and, without purification, are converted to carbamates by cold concentrated ammonium hydroxide. Over-all yields from primary and secondary alcohols range from 55% to 94%.^{20, 24} N-substituted carbamates result in similar yields when primary ¹⁹ or secondary ²⁵ amines are substituted from ammonia in the reaction. Aqueous sodium hydroxide is sometimes used to neutralize the acid formed.¹⁹

In the presence of sodium, further acylation of ethyl carbamate by chloroformic ester gives ethyl N-tricarboxylate, $N(CO_2C_2H_5)_3$, in 57% yield.²¹

Chlorohydrins,²⁶ hydroxy ethers,²⁸ and dialkylaminoalkylamines²⁷ furnish urethanes containing an additional functional group in yields ranging from 60% to 93%.

METHODS 418-423

419. Action of Alcohols on Urea and Urethanes

 $ROH + NH_2CONH_2 \rightarrow NH_2CO_2R + NH_2$

Primary alcohols when heated to $175-190^{\circ}$ with urea give 43-60% yields of urethanes.^{29, 30} Alcohols below *n*-butyl require pressure. The reaction probably goes through the intermediate cyanic acid obtained by decomposition of the urea. The reversible reaction HNCO + ROH \rightleftharpoons NH₂CO₂R is well known, and urethanes are sometimes prepared by the exchange reaction of an alcohol and another urethane.³²

In concentrated sulfuric acid solution at $20-25^{\circ}$ urea is alkylated by tertiary alcohols to give *t*-alkylureas in 33-58% yields.³³

420. Action of Carbamyl Chlorides on Alcohols, Ammonia, or Hydrazines

$$R_2NCOC1 + NH_3 \rightarrow R_2NCONH_3$$

Asymmetric ureas,³⁵ N,N-dialkylurethanes,³⁶ and 4,4-dialkylsemicarbazides⁷ are available by this method. In general, the yields are excellent. Carbamyl chlorides are prepared by the action of phosgene on secondary amines (cf. method 411).

421. Acylation of Ureas

 $NH_2CONH_2 \xrightarrow{RCOC1} RCONHCONH_2 \xrightarrow{R'COC1} RCONHCONHCOR'$

Both straight-chain and branched acyl halides successfully acylate urea to the mono- and di-acyl derivatives. Yields of 75-85% of either derivative may be obtained.³⁷ A review of four additional methods for the preparation of acylureas has been made.³⁷

422. Reaction of Amides with Isocyanates 34

 $RCONH_2 + R'NCO \rightarrow RCONHCONHR'$

423. Urea and Alkylisoureas from Cyanamides 38, 39

 $NH_2CN \xrightarrow{H_2O}_{H^+} NH_2CONH_2$

 $\text{RNH}_2 \xrightarrow{\text{BrCN}} \text{RNHCN} \xrightarrow{\text{CH}_3\text{OH}} \text{RNHC(OCH}_3) = \text{NH}$

 $RR'NHCN \xrightarrow{NaOCH_3} RR'NC(OCH_3) = NH$

424. Reduction of Nitro- or Nitroso-ureas^{7, 31}

 $\rm NH_2CONHNO_2 \xrightarrow{(H)} \rm NH_2CONHNH_2$

TABLE 80. SEMICARBAZIDES AND UREAS

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C₄	<i>n</i> -Propyl carbamate	418	68	2324	(53), (60)
	Isopropyl carbamate	418	68	23 24	(92)
	Ethyl methylcarbamate	418	90	23 ¹⁹	55-60/12
C۶	n-Butyl carbamate	418	65	2324	(54)
		419	76	23 ³⁰	109/14, (54)
	Isobutyl carbamate	419	42	23 ²⁹	117/25, (66)
		418	72	23 24	(62)
	s-Butyl carbamate	418	57	23 24	(94)
	Methyl n-propylcarbamate	416	77	23 ³	76/20
	Methyl cyclopropylcarbamate	416	78	234	85/11, (31)
C6	<i>n</i> -Amyl carbamate	418	76	23 ²⁴	(56)
с,	Ethyl s-butylcarbamate	418	75	23 ²⁵	88/14
C,	Benzyl carbamate	418	94 †	23 ²⁰	(87)
		419	86	23 ³²	(87)
с,	Methyl n-heptylcarbamate	416	81	23 ³	130/14
	Ethyl N-tricarboxylate	418	57	2321	147/12
С <u>1</u> 2	Diethyl 1,3-cyclohexanedi- carbamate	416	79	23°	(150)

For explanations and symbols see pp. xi-xii.

TABLE 80. SEMICARBAZIDES AND UREAS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., (M.p.)
C ₁	Semicarbazide (carbamic acid hydrazide)	416	60	23 ⁸	(96)*
	Semicarbazide sulfate	424	69	23 ³¹	(145)
	Urea	423	95	23 ³⁹	(133)
	Nitrourea	••••	87	23 22	(156)*
С,	2-Methylsemicarbazide	424	40	237	(115)
-	4-Methylsemicarbazide	416	60	237	(117)
	Methylurea	417	85	23 11	(102)
с,	2,4-Dimethylsemicarbazide	424	28	237	(150)
	4,4-Dimethylsemicarbazide	4 20	77	23 7	(83)
	Ethylurea	417	90	2312	(92)
	sym-Dimethylurea	417	78	2315	(100)
	unsym-Dimethylurea	417	88	23 11	(182)
	Ethyleneurea	417	98	23 17	187/10, (134)
	eta-Hydroxyethylurea	417	90	23 ¹³	(95)
	Acetylurea	421	80	23 ³⁷	(217)

TABLE 80 (continued)

с _{<i>п</i>}	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., (M.p.)
C,	β-Hydroxy-n-propylurea	417	88	23 13	(119)
	Propionylurea	421	78	23 37	(211)
	N-Acetyl-N-methylurea	422	75	23 40	
C s	sym-Diethylurea	417	43	23 15	(112)
	unsym-Diethylurea	417	65	23 11	(76)
	n-Butylurea	417	91	23 11	(96)
	t-Butylurea	419	33	23 ³³	(182)
	n-Butyrylurea	421	80	23 37	(174)
	Isobutyrylurea	421	80	23 ³⁷	(176)
	sym-Diacetylurea	421	80	23 ³⁷	(155)
C 6	N-Acetyl-N'+propionylurea	421	80	23 ³⁷	(113)
c,	Phenylurea	417	98	23 11	(147)
•		417	55	23 ¹⁰	(147)
	p-Bromophenylurea	416	92	23 41	(227)
	1-Butyryl-3-ethylurea	422	25	23 34	(100)
C,	unsym-Methylphenylurea	417	72	23 11	(82)
•	p-Methoxyphenylurea	416	85	23 ¹	(165)
	-	417	85	2342	
C,	unsym-Ethylphenylurea	417	76	23 ¹¹	(63)
		420	100	23 ³⁵	(60)
	p-Ethoxyphenylurea	417	90	23 42	(174)
	1-Acetyl-3-phenylurea	422	89	23 ³⁴	
C 10	1-Benzoyl-3-ethylurea	422	38	23 34	(114)
С 13	p-Biphenylylsemicarbazide	417	71	23 23	(276)
	sym-Diphenylurea	417	40	23 ¹⁰	(235)
	p-Biphenylylurea (p-xenylurea)	417	100	23 16	(196)
C 14	1-Benzoyl-3-phenylurea	422	82	23 ³⁴	(204)
C 15	sym-Di-o-tolylure a	417	78	23 14	(248)
	sym-Di-p-tolylurea	417	53	2314	(264)
C 21	sym-Di-a-naphthylurea	417	75	23 14	(286)
	s_{vm} -Di- β -naphthylure a	417	46	2314	(296)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 23

REFERENCES FOR CHAPTER 23

¹Sah and Chang, Ber., 69, 2764 (1936); Curtius et al., J. prakt. Chem., 125, 60, 167 (1930); Manske, J. Am. Chem. Soc., 51, 1202 (1929). ² Shriner and Cross, J. Am. Chem. Soc., 60, 2338 (1938); Donleavy and English, ibid., 62, 218 (1940). ³ Montagne, Bull. soc. chim. France, (5) 14, 125 (1947). ⁴Schlatter, J. Am. Chem. Soc., 63, 1735 (1941); Lipp, Buchkremer, and Seeles, Ann., 499, 13 (1932). ⁵ Wallis and Lane in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 267. ⁶Smith in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 377. ⁷ Vogelesang, Rec. trav. chim., 62, 5 (1943); Gelderen, ibid., 52, 979 (1933). ⁸Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 134; Thiele and Strange, Ber., 27, 31 (1894). ⁹ Skita and Rössler, Ber., 72, 465 (1939). ¹⁰ Davis and Blanchard, Org. Syntheses, Coll. Vol. I, 453 (1941). ¹¹Davis and Blanchard, J. Am. Chem. Soc., 51, 1790 (1929). ¹² Biilmann and Klit, Ber., 63, 2205 (1930); cf. ref. 11. 13 Charlton and Day, J. Org. Chem., 1, 552 (1937). 14 Davis and Underwood, J. Am. Chem. Soc., 44, 2601 (1922). ¹⁵ Davis and Blanchard, J. Am. Chem. Soc., 45, 1817 (1923). 16 Sah and Kao, Rec. trav. chim., 58, 460 (1939). ¹⁷ Schweitzer, J. Org. Chem., 15, 471, 475 (1950). 18 Buck and Ferry, J. Am. Chem. Soc., 58, 854 (1936); Buck, Ide, and Baltzly, ibid., 64, 2233 (1942). ¹⁹ Hartman and Brethen, Org. Syntheses, Coll. Vol. II, 278 (1943). ²⁰ Carter, Frank, and Johnston, Org. Syntheses, 23, 14 (1943). ²¹ Allen and Bell, Org. Syntheses, 24, 60 (1944). ²² Ingersoll and Armendt, Org. Syntheses, Coll. Vol. I, 417 (1941). 23 Sah and Kao, Rec. trav. chim., 58, 461 (1939); Wheeler, J. Am. Chem. Soc., 51, 3654 (1929). 24 Kraft and Herbst, J. Org. Chem., 10, 483, 484, 490 (1945). ²⁵ Marvel and Noyes, J. Am. Chem. Soc., 42, 2276 (1920). 26 Pierce, J. Am. Chem. Soc., 50, 242 (1928); Pierce and Adams, ibid., 45, 792 (1923). ²⁷ Shriner and Hickey, J. Am. Chem. Soc., 61, 889 (1939). 28 Ashburn, Collett, and Lazzell, J. Am. Chem. Soc., 60, 2933 (1938). 29 Jacobson, J. Am. Chem. Soc., 60, 1742 (1938). ³⁰ Davis and Lane, Org. Syntheses, Coll. Vol. I, 140 (1941). ³¹ Ingersoll, Bircher, and Brubaker, Org. Syntheses, Coll. Vol. I, 485 (1941). 32 Kraft, J. Am. Chem. Soc., 70, 3570 (1948). ³³ Smith and Emerson, Org. Syntheses, 29, 18 (1949); Harvey and Caplan, U. S. pat. 2,247,495; C. A. 35, 6267 (1941). 34 Wiley, J. Am. Chem. Soc., 71, 1310 (1949). 35 Abrahart, J. Chem. Soc., 1273 (1936). 36 Raiford and Alexander, J. Org. Chem., 5, 300 (1940). ³⁷ Stoughton, J. Org. Chem., 2, 514 (1938); Stoughton, Dickison, and Fitzhugh, J. Am. Chem. Soc., 61, 408 (1939). 38 Curd, Davey, and Richardson, J. Chem. Soc., 1732, 1745 (1949).

³⁹ Murray and Ronzio, J. Am. Chem. Soc., 71, 2245 (1949). ⁴⁰ Lamchen, J. Chem. Soc., 748 (1950).

⁴¹ Kurzer, Org. Syntheses, 31, 8 (1951) including note 5.
 ⁴² Kurzer, Org. Syntheses, 31, 11 (1951) including note 5.

24

Amines

CONTENTS

METHOD	PAGE
425. Reduction of Nitro Compounds	654
426. Reduction of Oximes	658
427. Reduction of Nitriles	658
428. Reduction of Amides	660
429. Reduction of Schiff Bases	660
430. Reduction of Aromatic Amines	661
431. Reductive Alkylation (or Reductive Amination)	662
432. Reductive Alkylation of Amines (Leuckart)	663
433. Reductive Cleavage of Azo Compounds	665
434. Catalytic Debenzylation of N-Benzyldialkylamines	665
435. Ammonolysis of Halogen Compounds	665
436. Alkylation of Amines	666
437. Interaction of Hexamine and Halogen Compounds	670
438. Replacement of Hydroxyl Groups by Amino Groups	670
439. Amination of Aromatic Nuclei	670
440. Rearrangement of N-Alkylanilines	671
441. Amination of Cyclic Imines	671
442. Amination of Oxides	672
443. Amination of Unsaturated Compounds	672
444. Aminomethylation (Mannich)	673
445. Aminomethylation of Alcohols	674
446. Degradation of Amides (Hofmann)	674
447. Degradation of Acyl Azides (Curtius)	675
448. Degradation of Hydroxamic Acids (Lossen)	676
449. Interaction of Hydrazoic Acid and Carbonyl Compounds (Schmidt)	677
450. Hydrolysis of Isocyanates, Isothiocyanates, Urethanes, and Ureas	678
451. Hydrolysis of N-Substituted Amides	678
452. Hydrolysis of N-Substituted Phthalimides (Gabriel)	679
453. Hydrolysis of Nitrosoanilines	680
454. Hydrolysis of Quaternary Imine Salts	680
455. Hydrolysis of Cyanamides	680
456. Ring Dehydrogenation	680
457. Condensation of Grignard Reagents and O-Methylhydroxylamine	681
458, Addition of Grignard Reagents to Schiff Bases	681
459. Interaction of Grignard Reagents and Halo Amines	681
460. Reduction of Unsaturated Amines	681
461. Interaction of Sodium Amide and Halogen Compounds	682
462. Rearrangement of Hydrazobenzenes	082

653

.

CONTENTS (continued)

METHOD	PAGE
463. Interaction of Amines and β-Keto Esters	682
464. Condensation of Unsaturated Amines and Aromatic Compounds	682
Table 81. Amines	683
Table 82. Diamines	691
Table 83. Olefinic Amines	694
Table 84. Acetylenic Amines	695
Table 85. Halo Amines	695
Table 86. Hydroxy Amines	698
Table 87. Amino Ether's	702
Table 88. Amino Aldehydes	704
Table 89. Amino Ketones	705
Table 90. Amino Acids	706
Table 91. Amino Esters	710
Table 92. Amino Cyanides	711
References	715

425. Reduction of Nitro Compounds

$ArNO_2 \xrightarrow{(H)} ArNH_2$

This method has had limited application for making aliphatic amines² although it assumes increasing importance in view of the commercial availability of the nitroparaffins and the development of processes for their ready conversion to nitro olefins,^{31, 487, 518} nitro alcohols,¹ nitro ethers,⁵¹⁸ nitro amines,⁴⁸⁷ and nitro cyanides,⁵¹⁹ all of which have been reduced to the corresponding amino compounds.

Aromatic primary amines are commonly prepared from nitro compounds by the action of one of several reducing agents; the reaction has been discussed.⁵³⁵ Reduction with a metal-acid combination like granulated iron and a small quantity of acid gives excellent results. By this procedure, many aromatic amines have been prepared, including aniline (86%), o-toluidine (73%), 4-aminobiphenyl (93%), and a-naphthylamine (96%).4,6 Another common combination is tin and hydrochloric acid, but reduction may be accompanied by nuclear halogenation, particularly in the treatment of o-substituted nitrobenzenes. The action of zinc dust and aqueous alcohol in the presence of calcium chloride, essentially neutral conditions, is sufficient to convert 2-nitrofluorene to 2-aminofluorene (82%).²¹ Aluminum amalgam and aqueous alcohol, still another neutral combination, has been successfully applied in the formation of 3-aminoacenaphthene (85%)²² and the isomeric aminoacridines (70-75%).³⁰ Lithium aluminum hydride is an effective reductant for certain nitroölefins in the thiophene series.31, 559

Catalytic hydrogenation is performed in alcohol solution over Raney nickel at 25° to 100° and 30 atm.¹⁴ or over platinum oxide at room temperature and 1 to 2 atm.¹⁶ The reaction is highly exothermic; therefore, precautions should be taken against excessive reaction temperatures. Typical illustrations are found in the preparations of 2-amino-*p*-cymene (90%)¹⁵ and 3,4-diethylaniline (90%).¹³ Heterocyclic nitro compounds in the quinoline²⁵ and dibenzothiophene³⁵ series also respond favorably to catalytic hydrogenation.

In addition to these procedures, electrolytic reduction of the nitro group has been accomplished, as illustrated by the preparation of o-aminocyclohexylbenzene (85%); however, the procedure is rarely employed. An apparatus for large-scale runs has been described,¹⁷ and a comprehensive review of electrolytic reactions has been given.²⁰¹

Often under the non-acidic conditions, the reduction stops at the hydroxylamine stage.^{26, 526} Thus phenylhydroxylamine, C₆H₅NHOH, is synthesized in 68% yield by the action of zinc dust and water on nitrobenzene.⁵²⁷

Certain aliphatic *diamines* have been prepared by reduction of nitro amines with hydrogen^{40, 487} or aluminum amalgam.³⁹ The starting materials are readily obtained by the reaction of nitroparaffins with formaldehyde and amines (method 444).

Aromatic diamines and other polyfunctional aromatic amino compounds are prepared by the above general procedures. In the hydrogenation of polynitro compounds in the presence of Raney nickel catalyst, ethyl acetate has been found to be a better solvent than aliphatic alcohols.⁴² The synthesis of 2,4-diaminotoluene is accomplished by reduction of the corresponding dinitro compound with iron filings and hydrochloric acid (89%).⁴³ Alkaline reducing agents, including ammonium sulfide, sodium sulfide, zinc and alcoholic alkali, etc., have also been employed. For example, o-phenylenediamine is synthesized in 85% to 90% yield by reducing o-nitroaniline with zinc and alcoholic alkali.⁴¹

Certain unsaturated amino compounds like the cis- and trans-p,p'diaminostilbenes and p,p'-diaminotolane are prepared by selective hydrogenation of the corresponding dinitro compounds using Raney nickel catalyst (60-89%).^{45, 47} The reduction has also been accomplished with hydrazine hydrate in the presence of alkali.⁴⁶

Haloanilines are obtained from halonitrobenzenes preferably by the iron-acid reduction procedure.^{4, 51} Nuclear halogenation occurs during the reduction of nitrobenzene by stannous chloride in the presence of acetic anhydride; a quantitative yield of p-chloroacetanilide is obtained.⁴⁹ Hydrogenation of halonitrobenzenes over Raney nickel catalyst is possible provided that the temperature is kept below 150°, at which point

dehalogenation occurs.^{50, 52} The iodine atom is the most susceptible of the halogens to replacement during catalytic hydrogenation of the nitro group; however reduction by stannous chloride and hydrochloric acid has been successful, e.g., *m*-iodoaniline (83%).⁵³

Aliphatic nitro alcohols, conveniently derived by the condensation of nitroparaffins with aldehydes,⁵⁴ are reduced to *amino alcohols* in almost quantitative yields by the action of iron powder and mineral acid.¹ Best results are obtained when an excess of acid is present. The procedure is illustrated by the synthesis of 2-amino-1-butanol (90%).¹

$$CH_{3}CH_{2}CH_{2}NO_{2} + H_{2}CO \xrightarrow{OH^{-}} CH_{3}CH_{2}CH(NO_{2})CH_{2}OH \xrightarrow{Fe - H_{2}SO_{4};} C_{e}(OH)_{2}$$

$$CH_{3}CH_{2}CH(NH_{2})CH_{2}OH$$

This same reducing agent has been successfully employed in the synthesis of 2-amino-1-phenyl-1-propanol (70%).⁵⁵ The formation of amino alcohols by catalytic hydrogenation over Raney nickel catalyst has been accomplished. However, because of the instability of the nitro alcohols in basic media, lower amines are also formed.

 $\begin{aligned} \text{RCHOHCH(NO}_2)\text{CH}_3 &\rightleftharpoons \text{RCHO} + \text{C}_2\text{H}_5\text{NO}_2 \\ \\ \text{C}_2\text{H}_5\text{NO}_2 + \text{H}_2 \xrightarrow{\text{Ni}} \text{C}_2\text{H}_5\text{NH}_2 \\ \\ \text{RCHO} + \text{C}_2\text{H}_5\text{NH}_2 + \text{H}_2 \xrightarrow{\text{Ni}} \text{RCH}_2\text{NHC}_2\text{H}_5 \end{aligned}$

These by-products are suppressed by hydrogenating in an acid medium, e.g., in the presence of carbonic, acetic, or oxalic acids.^{55, 56, 529}

The acid-sensitive *amino phenols* can be obtained by the reduction of nitro phenols with sodium sulfide or sodium hydrogen sulfite⁵⁶ or by treatment of the *p*-tolylsulfonic esters with iron and acetic acid.⁵⁹ Also, hydrogenation over Raney nickel at 100° gives excellent results.¹⁴

Aromatic nitro alcohols are converted by hydrogenation⁶⁰ or by the action of metals and acids. Various combinations have been compared in the preparation of β -(4-aminophenyl)-ethanol.⁶²

Other functional groups may be present during reduction. Aromatic amino ethers are prepared by the same general procedures described above, e.g., *m*-aminoanisole $(80\%)^{63}$ and 2-aminodiphenyl ether (94%).⁶⁵ The reduction of o-nitrobenzaldehyde to the sensitive o-aminobenzaldehyde is successfully accomplished by the action of ferrous sulfate and ammonia (75%).⁶⁷ *m*-Dimethylaminobenzaldehyde is formed by reduction of the nitro acetal in aqueous solution with sodium sulfide followed by methylation (74% over-all)⁶⁸ or by catalytic reduction of *m*-nitrobenzaldehyde in the presence of formaldehyde $(27\%)^{530}$ (cf. method 431). Reduction of the nitroacetophenones has been accomplished by metal-acid combinations and by selective hydrogenations over Raney nickel and platinum oxide catalysts; a comparison of these procedures has been made in the preparation of o- and *m-aminoacetophenones*.^{69, 70} Other methods of preparation for o-amino ketones have been summarized.⁷² *p-Aminophenylacetic acid* is best obtained by reduction of the nitro compound with ammonium sulfide (84%).⁷³ Amino esters are readily obtained by catalytic reduction of nitro esters over platinum oxide, e.g., ethyl *p*-aminobenzoate (100%).⁷⁵ A novel synthesis of ethyl *m*-aminophenylacetate from *m*-nitrobenzaldehyde consists in converting this substance to *m*-nitro-O-benzoylmandelonitrile by the action of benzoyl chloride and sodium cyanide, followed by al-coholysis and hydrogenation with simultaneous hydrogenolysis (69% over-all).⁷⁷

3-Aminobenzonitrile is prepared by reduction of 3-nitrobenzonitrile by sodium disulfide in aqueous suspension (63%). This reagent causes some hydrolysis of the cyano group.⁷⁹ A selective hydrogenation of the more reactive nitro group in the presence of the cyano group can also be done, e.g., in the preparation of *p*-aminobenzyl *cyanide* (79%).⁷⁸

Partial reduction of aromatic polynitro compounds leads to *nitro amines*. The most successful reagents are the alkali metal or ammonium sulfides in aqueous alcohol.⁸⁰ In some instances, sodium bicarbonate combined with sodium sulfide gives better results because of the formation of sodium hydrosulfide, which is believed to be the main reducing agent. Also, aqueous methanol is preferred to aqueous ethanol.⁸¹ Nitro compounds that are sparingly soluble in alcohol solutions may be reduced by hydrogen sulfide in pyridine solution.⁸²

Very often reduction of an aromatic nitro compound is carried out in the presence of acetic anhydride, whereby the corresponding acetamido compound is formed.⁴⁹ Amino amides are prepared by catalytic hydrogenation of nitro amides, e.g., 2-aminoacetanilide (90%).⁸³

AMINES

Ch. 24

ないないのでんな

426. Reduction of Oximes

$$R_2C = NOH \xrightarrow{(H)} R_2CHNH_2$$

Reduction of oximes to primary amines proceeds readily and can be accomplished with hydrogen and Raney nickel catalyst with or without high pressures (50-90%).^{174, 206, 308, 346-349} Primary amines formed from aldoximes are accompanied by secondary amines, $(RCH_2)_2NH$. The reduction may also be carried out with sodium and absolute ethanol, as illustrated by the synthesis of *n*-heptylamine (73%).³⁵⁰ The action of zinc dust and acetic acid is effective in the formation of 9-fluorylamine (74%).³⁵¹ Lithium aluminum hydride is a good reagent, as shown by the reduction of 2,2-diphenylcyclohexanone oxime to 2,2-diphenylcyclohexylamine (80%).⁵⁴⁵

Aliphatic *diamines* are made by reduction of amino oximes by these same general procedures.^{352, 353} Sometimes catalytic hydrogenation gives low-boiling cleavage products.²¹⁹

The reduction of isonitroso ketones with hydrogen and platinum in the presence of hydrochloric acid gives *amino ketones* or *amino alcohols*, e.g., 1-phenyl-2-amino-1-propanol (98%)³⁵⁶ and α -aminopropiophenone (88%).³⁵⁷

The reduction of α -oximino acids to α -amino acids is accomplished by catalytic hydrogenation with a Raney nickel³⁶¹ or palladium-charcoal^{362, 363} catalyst or by the action of sodium or aluminum amalgam.^{314, 364-367}

Several procedures involving the formation of α -oximino acid intermediates for the synthesis of α -amino acids have been described^{103,360} (cf. method 385). One outstanding synthesis consists in the production of α -oximino acids or esters by the action of a nitrite on a substituted acetoacetic or malonic ester.^{360,361}

$$\begin{array}{c} CH_3COCH(R)CO_2R' \\ RCH(CO_2R')_2 \xrightarrow{(HONO)} HON = C(R)COOH \xrightarrow{(H)} RCH(NH_2)COOH \\ \hline \\ Acid or Base \end{array}$$

Oximes carrying a second group like a hydroxyl, carbonyl, or carbalkoxyl may form cyclic products, such as pyrazines from α -keto oximes and pyrrolidones from γ -oximino esters, upon reduction.³⁴¹

427. Reduction of Nitriles

$$RCN + H_2 \xrightarrow{Ni} RCH = NH \xrightarrow{H_2} RCH_2NH_2$$
$$RCH = NH + RCH_2NH_2 \longrightarrow RCH(NH_2)NHCH_2R \xrightarrow{H_3} (RCH_2)_2NH + NH_3$$

METHOD 427

Catalytic hydrogenation of aliphatic and aromatic nitriles yields primary and secondary amines.^{215, 309} Formation of the secondary products can be suppressed (1) by carrying out the reduction in acetic anhydride. which acetylates the primary amine and prevents its reaction with the intermediate aldimine (platinum catalyst);³⁰⁷ (2) by reducing in the presence of ammonia (nickel catalyst);^{203, 310} or (3) by simply hydrogenating as rapidly as possible with a relatively large amount of catalyst.¹⁴ Temperatures above 150° during hydrogenation favor the formation of the secondary amine by the elimination of ammonia from the primary amine, viz., $2RNH_2 \rightarrow R_2NH + NH_3$.²¹⁵ A typical procedure employing highpressure equipment and ammonia is illustrated by the synthesis of β -phenylethylamine (87%).³¹⁰ If hydrogenation of the nitrile is performed in the presence of an amine like methylamine or dimethylamine, then the corresponding N-mono- or N.N-di-alkylamine is formed.³⁴² A Raney nickel catalyst that is useful for hydrogenation at room temperature and low pressure has been described.308

Reduction may also be brought about by sodium and alcohol, although extensive cleavage of the cyanide group may occur, viz., RCN \rightarrow RH + NaCN.³⁰³⁻³⁰⁶ Lithium aluminum hydride has been successfully employed for the reduction of aliphatic and aromatic nitriles^{302, 559} as well as several cyanides in the thiophene series.^{314, 544}

A large number of aliphatic diamines have been made by the reduction of amino nitriles. Dialkylaminoacetonitriles, R_2NCH_2CN , are reduced with hydrogen in the presence of ammonia (Raney nickel catalyst)^{316, 317, 320} or with sodium and alcohol (40–80%).^{304, 320} Unsubstituted α -amino nitriles lose hydrogen cyanide on attempted hydrogenation and poison the catalyst; consequently, the stable acetyl derivatives are reduced in acetic anhydride to give the diacetyl diamine.³¹⁸ Also, the acetamido nitriles may be converted to 1,2-diamines through the dihydroimidazoles with subsequent hydrolysis, as illustrated by the preparation of 2-methyl-1,2-diaminobutane (53% over-all).³²²

$$\begin{array}{c|c} RR'C - CN & H_2 \\ NHCOCH_3 & N_1 \\ NHCOCH_3 & N_$$

The addition of primary or secondary amines to acrylonitriles, followed by catalytic reduction of the β -amino cyanides, constitutes a good synthesis of γ -aminopropylamines. The yields in the first step are usually in the range of 60% to 95% and in the second about 50% to 75%.^{195, 319, 320}

660 AMINES Ch. 24

$$RNH_2 + H_2C = CHCN \rightarrow RNHCH_2CH_2CN \xrightarrow{H_2, NH_3}_{Ni} RNH(CH_2)_3NH_2$$

In a similar manner, higher amino nitriles are reduced.³²¹

Amines containing other functional groups have been prepared. Amino ethers are readily made by catalytic hydrogenation or sodium-alcohol reduction of the corresponding cyanides.³²⁸⁻³³¹ β -Hydroxy amines may be prepared by reduction of α -hydroxy or α -keto nitriles. Best results are obtained when the reduction is carried out with hydrogen and platinum or palladium catalyst in the presence of mineral acid. In this manner, substituted mandelonitriles, ArCHOHCN,³³² and aroyl cyanides, ArCOCN,³³³ yield β -hydroxy- β -arylethylamines (24-94%). Reduction of β -keto nitriles gives keto amines or amino alcohols; however, the yields are poor.³³⁴ Amino acids and amino esters are similarly prepared in good yields.³³⁶⁻³⁴⁰

Cyanides bearing a second group in a suitable position may undergo ring closure on hydrogenation, as illustrated by the formation of piperidine from trimethylene cyanide and pyrrolidines from β -cyano esters³⁴¹ (cf. method 574).

428. Reduction of Amides

$$\text{RCONH}_2 \xrightarrow{(H)} \text{RCH}_2\text{NH}_2$$

Catalytic hydrogenation of amides to amines requires drastic conditions: in general, a temperature of 250° to 265° and a pressure of 200 to 300 atm. over copper-chromium oxide catalyst using dioxane as the solvent.¹⁴ The yields of primary amines from unsubstituted amides are lowered mainly by the formation of secondary amines, viz., $2RNH_2 \rightarrow R_2NH + NH_3$. N-Mono- and di-substituted amides yield secondary and tertiary amines, respectively; however, considerable cleavage of the carbon-nitrogen bonds occurs.³⁴³

Amides are more conveniently reduced with lithium aluminum hydride in ether solution to yield amines with the same carbon content, e.g., triethylamine from N,N-diethylacetamide (50%) and ethyl-*n*-propylamine from N-ethylpropionamide (53%).^{330, 344, 559} The same conversion has been accomplished by an electrolytic reduction.^{201, 345}

429. Reduction of Schiff Bases

$$RCH = NR' \xrightarrow[Catalyst]{H_2} RCH_2NHR'$$

Unsymmetrical secondary amines are readily prepared in good yields by the catalytic reduction of Schiff bases at moderate temperatures in highor low-pressure equipment. Many examples have been cited.²⁰² The intermediate imines are prepared from primary amines and aldehydes—very seldom from ketones—and may be used without isolation (cf. method 431). For the preparation of aliphatic amines, e.g., ethyl-*n*-propylamine and *n*-butylisoamylamine, a prereduced platinum oxide catalyst is preferred with alcohol as the solvent.^{366, 369} Schiff bases from the condensation of aromatic aldehydes with either aromatic ^{215, 372} or aliphatic ^{138, 373} amines are more readily prepared and are reduced over a nickel catalyst. In this manner, a large number of N-alkylbenzylamines having halo,¹³⁸ hydroxyl,³⁷⁴ or methoxyl^{138, 374} groups on the nucleus have been made. Reductions by means of sodium and alcohol³⁷⁰ and lithium aluminum hydride ^{302, 559} have also been described.

430. Reduction of Aromatic Amines

$$C_6H_5NH_2 \xrightarrow{(H)} C_6H_{11}NH_2$$

Certain amines are readily prepared by the reduction of aromatic, aryl aliphatic, and heterocyclic amines. For example, aniline is reduced to cyclohexylamine by high-pressure hydrogenation in the presence of Raney nickel catalyst or a cobalt oxide-calcium oxide catalyst. The reaction occurs at a temperature above 200° , where condensation of the primary amine also takes place, viz., $2C_6H_{11}NH_2 \rightarrow (C_6H_{11})_2NH + NH_3$. If this side reaction is repressed by the presence of dicyclohexylamine at the start of the reaction, a 94% yield of cyclohexylamine is obtained.³⁷⁷ Hydrogenation of aryl aliphatic amines proceeds more readily, occurring at moderate temperatures and pressures over platinum catalyst in glacial acetic acid.^{378, 379} Other reductions using this catalyst are best performed on the amines in the form of their hydrochlorides.⁵²³

The reduction of N-alkyl-*p*-nitroanilines to the corresponding cyclohexanediamines has been carried out with hydrogen over cobalt-on-alumina and ruthenium catalysts.¹⁹⁸ Sometimes a nuclear-substituted aniline is acetylated before reduction in order to avoid side reactions. Thus, catalytic hydrogenation of *p*-acetaminophenol³⁸¹ and ethyl *p*-acetaminophenylacetate³⁸² has been successfully accomplished with platinum catalyst at 50-60° in the presence of acetic acid.

Other conditions for the reduction of the aromatic nucleus are discussed in method 4. The hydrogenation of heterocyclic nuclei is treated in method 554.

431. Reductive Alkylation (or Reductive Amination)

662

 $RCOR' + NH_3 + H_2 \xrightarrow{Ni} RR'CHNH_2 + H_2O$ (R'=H or alkyl)

Alkyl groups may be introduced into ammonia, a primary amine, or a secondary amine by means of an aldehyde or ketone in the presence of a reducing agent, such as molecular hydrogen and a catalyst, active metals and acids, or formic acid or one of its derivatives. When the reducing agent is formic acid or a derivative, the reaction is known as the Leuckart reaction and is discussed elsewhere (method 432). An excellent review of the preparation of amines by reductive alkylation has been presented. This article includes a discussion of the scope and utility of the reaction, a selection of experimental conditions, illustrative preparations, and a tabulation of primary, secondary, and tertiary amines prepared thereby.²⁰²

Reductive alkylation of ammonia has been proved an effective and highly versatile method for obtaining primary amines. The most satisfactory conditions have been catalytic hydrogenation (Raney nickel) of the carbonyl compound in an ethanolic solution of ammonia under pressure ranging from 20 to 150 atm. and at temperatures in the range of 40° to 150°. 203-206 Typical amines prepared in this manner include benzylamine (89%)²⁰⁴ and 2-aminoheptane (80%).²⁰⁶ With liquid ammonia and no solvent, a higher pressure (330 atm.) at the higher temperature (150°) is required, as illustrated by the synthesis of α -phenylethylamine from acetophenone (52%).²⁰⁸ More recently, improved procedures for hydrogenation at lower pressures over platinum oxide or Raney nickel have been described.^{205, 207} Treatment of benzalacetone and furfuralacetone under these conditions leads to saturation of the a,β -olefinic linkage as well as to reductive alkylation.²⁰⁵ In general, the method is particularly successful for obtaining aliphatic amines having five or more carbon atoms. In all these reactions for making a primary amine, ammonia is present in excess to minimize the formation of a secondary amine.

Secondary amines are prepared by several procedures of reductive alkylation. A procedure similar to that described for primary amines may be employed; the ratio of reactants must be changed to at least two moles of the carbonyl compound to one of ammonia. The procedure leads to symmetrical secondary amines and is most successful starting with aromatic aldehydes, as in the formation of dibenzylamine (67%).²⁰⁴

 $2ArCHO + NH_3 + H_2 \xrightarrow{Ni} ArCH_2NHCH_2Ar + 2H_2O$

Symmetrical and unsymmetrical secondary amines are made by substituting a primary amine for the ammonia. In this reduction, the higher aliphatic aldehydes (above C_3) and simple ketones²¹⁵ respond best, usually over a platinum catalyst.

$$RCOR' + R''NH_2 + H_2 \xrightarrow{Pt} RR'CHNHR'' + H_2O$$

Aromatic amines like aniline, α - and β -naphthylamines, etc., are readily converted to the N-alkylamines by using aldehydes in the presence of Raney nickel, hydrogen, and sodium acetate (24-88%).^{210,213} Since many aromatic amines are prepared under similar conditions by the reduction of nitro compounds, it is possible to combine both reductions in a single operation and convert nitro compounds to secondary amines (31-96%).²¹¹

Tertiary amines are formed if the reduction of the nitro compound and aldehyde is carried out with hydrogen and platinum in the presence of acetic acid. Nitroparaffins as well as aromatic nitro compounds react (34-92%).²¹² Reductive dimethylation of amines of the type ArCH(CH₃)CH₂NH₂ and ArCH₂CH(CH₃)NH₂ with formaldehyde and hydrogen over Raney nickel catalyst occurs in 48-97% yields.²¹⁴ N-Monoalkylated anilines are methylated in good yields by the action of formaldehyde in the presence of zinc and mineral acid.²¹⁷ Many tertiary aliphatic amines have been prepared by reductive alkylation of secondary amines with aldehydes and ketones, the aldehydes giving better results.²¹⁶

Difunctional compounds are formed by these procedures. Diamines are prepared by reductive amination of amino ketones²⁰⁵ or by reductive alkylation of diamines.²¹⁹ A few aromatic halo amines^{50, 221} and amino ethers²¹³ have been made. Hydroxy amines are conveniently formed by the reductive alkylation of amino alcohols^{160, 222-227} as illustrated by the synthesis of 2-isopropylaminoethanol (95%).²²³ N-Alkyl derivatives of 5-amino-1-pentanol are readily obtained by the reductive amination of 5-hydroxypentanal.²²⁸⁻²³⁰ Several a-diketones have been treated under these conditions giving amino ketones or amino alcohols, only one carbonyl group undergoing reductive amination and the other being unaffected or reduced to a hydroxyl group.²³¹ Aliphatic and aromatic amino acids can be converted to their N,N-dimethyl derivatives in excellent yields with formaldehyde and hydrogen over palladium-charcoal catalyst.232 Aromatic nitro acids may be reduced and methylated in one operation. Reductive amination of α -keto acids yields α -amino acids.²³³ Sometimes a considerable quantity of the corresponding hydroxy acid is also formed; β - and γ -keto acids give little or no amino acids.²³³

432. Reductive Alkylation of Amines (Leuckart)

$$R_{2}CO \xrightarrow{\text{HCO}_{2}\text{NH}_{4}} R_{2}CHNHCHO \xrightarrow{\text{H}_{2}O} R_{2}CHNH_{2}$$

663

Reductive amination of carbonyl compounds with ammonia or amines in the presence of a reducing agent has been discussed (method 431). When the reducing agent is formic acid or a derivative, the products are the formyl derivatives of primary or secondary amines or the formates of tertiary amines. These intermediates readily furnish the amines. A critical discussion of the reaction along with experimental conditions and procedures and a tabular survey of compounds has been presented.³⁹⁷

Many water-insoluble ketones, aliphatic, aryl aliphatic, and heterocyclic, respond favorably to treatment with ammonium formate or formamide to form with subsequent hydrolysis the primary amines. A typical procedure for the synthesis of α -phenylethylamine (66%) from acetophenone and ammonium formate has been applied to many other ketones (65-84%).³⁹⁹ Nuclear alkoxyl, halo, and nitro groups are not disturbed.^{399, 401} The reaction with formamide as the reducing agent is catalyzed by ammonium formate, ammonium sulfate, or magnesium chloride.⁴⁰⁵

If the ammonium formate is substituted by N-alkylformamide, then the formyl derivative of a secondary amine is formed.

 $R_2CO + 2HCONHR' \xrightarrow{Heat} R_2CHN(R')CHO + R'NH_2$

In a similar manner, treatment with an N,N-dialkylformamide leads to tertiary amines; moreover, magnesium chloride, or better still calcium chloride, catalyzes the reaction.⁴⁰² Other factors have been studied.⁴⁰³

The method is employed extensively for the methylation of primary and secondary to the corresponding tertiary amines by the action of formaldehyde and formic acid.

 $RNH_2 + 2CH_2O + 2HCO_2H \xrightarrow{Heat} RN(CH_3)_2 + 2CO_2 + 2H_2O$

In this manner, N,N-dimethyl-*n*-butylamine¹²³ and N,N-dimethylphenethylamine⁴⁰⁰ are obtained in yields over 80% from the corresponding primary amines. Higher aliphatic aldehydes do not respond as satisfactorily as formaldehyde.

By means of a modification of the procedure, aromatic aldehydes may be converted by the action of ammonium formate to primary amines, e.g., benzylamine (60%) and *p*-methoxybenzylamine (23%).⁵⁴⁷

Methylation of *diamines* with formaldehyde and formic acid yields the tetramethyl derivatives, e.g., tetramethyldiaminobutane (92%).¹²³ In most instances, alkylation of *amino acids* by this same combination gives complex products, although α -dimethylaminobutyric acid can be made from the corresponding α -amino acid in 80% yield.¹²³ Reaction of the readily available *amino alcohols* like N-methylethanolamine and 2-isopropylamino-ethanol gives the N,N-dialkyl derivatives.⁴⁰⁶

433. Reductive Cleavage of Azo Compounds

 $HOC_6H_4N = NC_6H_4SO_3Na \xrightarrow{Na_2S_2O_4} HOC_6H_4NH_2$

The introduction of amino groups into phenols and ethers can be accomplished by the formation and reductive cleavage of their azo compounds. The diazotizing agent may be prepared from sulfanilic acid, and the reduction can be performed with sodium hydrosulfite. Excellent examples are found in the synthesis of 1-amino-2-naphthol (85%) and 4amino-1-naphthol (75%).⁵⁵⁴

434. Catalytic Debenzylation of N-Benzyldialkylamines

The reductive debenzylation of N-benzyldialkylamines with hydrogen in the presence of a platinum or palladium catalyst affords an excellent synthesis for symmetrical and unsymmetrical secondary amines.^{122, 125, 444} The starting materials are readily available by dialkylation of benzylamine or by the monoalkylation of alkylbenzylamines, which in turn are prepared by the reduction of Schiff bases (method 429). The method has been extended to the formation of hydroxy amines,⁴⁴⁶ amino esters,⁴⁴⁷ and amino acids.⁴⁴⁷

435. Ammonolysis of Halogen Compounds

$$RCl + NH_3 \rightarrow RNH_2 \cdot HCl$$

The direct conversion of halides to primary amines is discussed here. However, it is usually much more desirable to use one of the indirect methods such as method 437 or 452.

The reaction of ammonia with primary alkyl halides generally forms a mixture of primary, secondary, and tertiary amines and even a certain amount of the quaternary ammonium halide. Still, the method may be profitable for obtaining primary amines if the halogen compound is above C_3 and excess ammonia is employed, for then polyalkylation is less likely and the products, having widely different boiling points, are more readily separated. Thus *n*-butyl bromide and a large excess of ammonia in al-cohol solution at room temperature give a 47% yield of *n*-butylamine.⁸⁴ In general, primary alkyl halides react better than secondary; tertiary halides are slow to react and must be heated with alcoholic ammonia.⁸⁵ Anhydrous liquid ammonia favors the formation of primary amines.⁹⁶ Aryl-

substituted aliphatic halides such as the arylchloropropanes give 21-51% yields of the corresponding amines.⁸⁶

Aryl halides react to form largely primary amines. High-pressure ammonolysis at an elevated temperature (100-200°) in the presence of a copper catalyst is required.^{87, 88} The 9-halofluorenes take an anomalous course.⁸⁹ Heterocyclic amines are quite often prepared by ammonolysis of the halides over a copper catalyst.⁹⁰⁻⁹⁴ The halogen atom in 9-chloroacridine is easily replaced by an amino group by heating to 120° with ammonium carbonate and phenol.⁹² Similarly, 2-chlorolepidine is converted to 2-aminolepidine (2-amino-4-methylquinoline) (78%).⁹⁵ Aryl halides in which the halogen atom is activated by nitro groups are easily converted to the amines without catalyst, as in the preparation of 2,4dinitroaniline (76%).¹¹³

Preparation of the simplest diamine, ethylene diamine, by ammonolysis of the dihalide is accompanied by the formation of diethylenediamine and triethylenetetramine;⁹⁶ other methods for its preparation are more suitable. Only the higher homologs of β -dialkylaminoethyl bromide respond favorably to this treatment. Thus, di-*n*-butylaminoethyl bromide is converted to the diamine in 55% yield whereas the dimethylaminoethyl bromide undergoes extensive dimerization.⁹⁷ Trimethylene bromide reacts with liquid ammonia to form trimethylenediamine (50%);⁹⁶ however, experimental details are lacking. When the two halogens in the dihalide approach one another in space as in tetra- and penta-methylene dibromides, then nitrogen spiranes are the main products.⁹⁶

The exchange of halogen for the amino group is important in the formation of other polyfunctional compounds, particularly the amino acids. In several of these transformations with aqueous or liquid ammonia, it has been shown that the presence of ammonium salts minimizes the formation of secondary and tertiary amines.^{100, 102} Excellent directions for the synthesis of α -amino acids (C₂-C₆) from α -halo acids and ammonia are given.¹⁰⁴⁻¹¹⁰ The methods have been reviewed.^{102, 103} Long-chain amino acids are prepared by this and other procedures.¹¹²

Other aspects of the ammonolysis process have been discussed.^{536, 535}

436. Alkylation of Amines

$$RNH_2 \xrightarrow{R'x} RR'NH \xrightarrow{R'x} RR'_2N \cdot HX$$

The direct alkylation of a primary amine with an alkyl halide results in the formation of secondary and tertiary amines in varying amounts, depending on the conditions of the reaction. Quite often, these products are accompanied by unchanged amine and quaternary ammonium salt. As in the ammonolysis of halides, formation of a particular product is favored by employing a large excess of one reactant: excess alkylating agent for the tertiary amine or excess amine for the secondary amine. The reaction is important in the synthesis of aromatic secondary and tertiary amines as well as some aliphatic tertiary amines. Thus, in the synthesis of N-phenylbenzylamine, an unusually high yield of this secondary amine (96%) is obtained with a 4:1 molar ratio of aniline to benzyl chloride.¹¹⁴ Other N-monoalkylated anilines are obtained in a similar manner (75-85%).¹¹⁹ Also, certain *B*-arylethylamines, ArCH, CH, NHR, are prepared from β -arylethyl bromides and primary amines by using a large excess of the latter.¹¹⁸ Very often, alkylations of this nature which are carried out in aqueous ethanol are accompanied by hydrolysis and alcoholysis of the halide.⁸⁶ Some N-alkylated aryl amines like N-ethyl-m-toluidine may be synthesized in fair yields from reactants which are present in equimolar quantities (66%).¹¹⁵ Conditions for the exclusive formation of N-methylaniline from chlorobenzene and methylamine have been found.¹¹⁷

$$C_{6}H_{5}Cl + 2CH_{3}NH_{2} \xrightarrow[Heat]{C_{0}} C_{6}H_{5}NHCH_{3} + CH_{3}NH_{2} \cdot HCl$$

Such a process parallels that for making aniline from chlorobenzene and ammonia and involves a copper catalyst which promotes the reaction of the aryl halogen atom.

Sometimes the degree of alkylation can be controlled more carefully by employing other alkylating agents. Thus, primary amines may be alkylated to secondary amines free from tertiary amines by the action of aluminum alkoxides at 250-350° in a sealed tube. The procedure is illustrated by the treatment of aniline with aluminum ethoxide at 275° to form N-ethylaniline (94%).¹¹⁶ On the other hand, alkylation with alkyl phosphates leads to tertiary amines, e.g., N,N-diethylaniline (99%) and N,N-di-n-butylaniline (79%).^{131, 132} These reagents afford a simple and convenient procedure furnishing yields in the range of 53% to 95%. Other alkylating agents for the formation of dialkylarylamines include the esters of sulfuric, sulfurous, and p-toluenesulfonic acids.¹³¹ It has been noted that pyridine acts as a catalyst in the production of N,N-dimethyl- α naphthylamine from α -naphthylamine and dimethyl sulfate.¹³⁴

Commercial processes for obtaining the N-alkylated anilines are based on the reaction of aniline salts with alcohol in an autoclave at about 200°. A laboratory adaptation of this application of an alcohol as the alkylating

agent consists in heating the alcohol and aniline with a small amount of iodine in an autoclave for 10 hours at 220° to 230°. In this manner, either mono- or di-alkylated anilines are prepared (60-90%).¹³⁵ Other catalysts include copper and sodium halides.²⁰⁰ The mono- and di-alkylated amines may be separated by treatment with acetic anhydride and distillation.³⁹⁵

Aliphatic tertiary amines are prepared by the interaction of secondary amines and alkyl bromides. Equimolar quantities of the reactants are treated in alcohol solution in the presence of an inorganic base for 2 to 6 days at room temperature or more quickly in an autoclave at a higher temperature. Many compounds have been characterized; however, the yields are not always stated.^{121, 124} N-Alkylated benzylamines are commonly prepared by this procedure;^{122, 125, 136} these compounds are important intermediates in the synthesis of pure secondary amines (method 434). Alkylation of diethylamine with isopropyl bromide has been accomplished, after many unsuccessful attempts, by heating the reactants under reflux in glycerol solution for 72 hours (60%).¹²⁶

Preparation of aromatic secondary and tertiary amines like diphenyland triphenyl-amine is catalyzed by copper powder.¹³⁶

Further alkylation of tertiary amines yields quaternary ammonium salts. These compounds are numerous and are readily prepared by heating the alkyl halide and tertiary amine in the absence of a solvent or in the presence of alcohol.¹³⁹⁻¹⁴¹ Methylation of tertiary amines to quaternary ammonium salts can be accomplished with methyl halides^{142, 537} or dimethyl sulfate.¹⁴³

Monoalkylation of *ethylenediamine* with high-molecular-weight alkyl chlorides and bromides (C_n to C_{1n}) can be successfully carried out when a highly concentrated solution (95%) of the diamine is employed. The vields are in the range of 83% to 98%.¹⁴⁴ N,N-Dialkylethylenediamines, R₂NCH₂CH₂NH₂, are prepared by other methods (methods 427, 435, and 452). sym-N,N'-Dialkylethylenediamines, RNHCH₂CH₂NHR, may be obtained either by the treatment of ethylenediamine with two moles of halide (84-90%)¹⁴⁵ or by the reaction of ethylene chloride with an excess of the primary amine in an autoclave, as in the preparation of N,N'-di*n*-butylethylenediamine (50%).¹⁴⁶ Other alkylated diamines are formed by the amination of dialkylaminoethyl chloride.^{147, 146} In some instances, a copper-bronze catalyst has been employed;^{146, 149} the yield of diethylaminoethylaniline from the alkylation of aniline by diethylaminoethyl chloride is increased from 72% to 88% with this catalyst.¹⁴⁹ A copperbronze or cuprous chloride catalyst is more frequently employed in the condensation of aryl halides with amines.¹⁵⁰

Alkylation with allyl halides gives olefinic amines.¹⁵¹

Halo amines are formed by these procedures. Partial amination of trimethylene chlorobromide with diethylamine yields 1-diethylamino-3chloropropane (70%) accompanied by the formation of diethylamine hydrobromide.¹⁵³ Halo anilines respond to the usual treatment with dimethyl sulfate,^{130, 133} alkyl halides,¹⁵⁴ or alkyl phosphates.¹³²

Amino alcohols are commonly made by the amination of halo alcohols or by alkylation of amino alcohols. Thus β -diethylaminoethyl alcohol is synthesized from diethylamine and ethylene chlorohydrin (70%).¹⁵⁶ Higher amino alcohols are made in a similar manner.^{152, 165-166} No isomerization through the formation of an ethylene oxide intermediate occurs during the reaction of a 1,2-chlorohydrin.¹⁶⁵ Several series of alkylaminoalkylcarbinols, RNHCH₂(CH₂), OH, have been prepared by alkylations of ethanolamine (16-53%),¹⁵⁷ 2-amino-2-methyl-1-propanol, and 2-amino-1-butanol,¹⁶² For the preparation of mixed N,N-dialkyl derivatives, better yields are obtained when the larger alkyl group is introduced first.^{160, 161} Aliphatic tertiary amino alcohols of the type $(CH_3)_2COH(CH_2)_nN(CH_3)_2$, n = 1 to 4, have been prepared by amination of the corresponding bromohydrins (52%).¹⁶³ The latter compounds are readily obtained by the action of methylmagnesium bromide on bromo esters (method 91). The alkylation of 2-amino-2-methylpropanol with tetramethylene bromide leads to 2-(1pyrrolidyl)-2-methylpropanol (76%).169

$$H_{2}C \longrightarrow CH_{2}$$

Amino ethers are obtained by the same reactions employed for amino alcohols.^{152, 170-174}

Aliphatic and aryl aliphatic *amino ketones* are made by the amination of the halogenated carbonyl compounds,¹⁷⁸⁻¹⁸⁵ e.g., dimethylaminoacetone (74%),¹⁷⁶ 1-diethylamino-2-pentanone (79%),⁵³⁸ and α -methylaminopropiophenone (57%).¹⁸⁵ It is noteworthy that this system may undergo a rearrangement, viz., ArCOCH₂Br + (C₂H₅)₂NH \rightarrow ArCH₂CON(C₂H₅)₂ (45%).⁵³⁹ The reaction of α -halo ketones with arylamines is even more complex.⁵⁴⁰ Examples of the formation of α -aminoaldehydes by this method are few.¹⁷⁵ However, the same results may be achieved by the amination of the halo acetals with subsequent hydrolysis.^{68, 176, 177}

Amination of halogenated *acids* or *esters* is possible.¹⁸⁷⁻¹⁹¹ When circumstances are favorable, dehydrohalogenation occurs, as in the treatment of ethyl α -bromoisovalerate with diethylamine; the product is predominantly the α , β -unsaturated ester.¹⁹¹ The amination of aliphatic chloro and bromo *nitriles* is facilitated by the presence of potassium iodide.¹⁹³⁻¹⁹⁶ Halogen atoms in the o- and p-nitrohalobenzenes are readily replaced by the dialkylamino group, as in the preparation of p-nitrodimethylaniline (97%).^{197, 198}

437. Interaction of Hexamine and Halogen Compounds

$$RX + (CH_2)_6 N_4 \rightarrow (CH_2)_6 N_4 \cdot RX \xrightarrow{HC1} RNH_2 \cdot HC1 + NH_4C1$$

The interaction of alkyl halides, preferably iodides or bromides, with hexamine in chloroform or alcohol solution forms quaternary ammonium salts which on heating with hydrochloric acid are readily converted to primary amines.^{134, 235, 237} The procedure has been employed successfully in the reaction of primary, but not secondary or tertiary, aliphatic halides,^{235, 236} certain benzyl halides,^{234, 237} halo ketones,²³⁸ halo acids,^{239, 240} and halo esters.^{240, 241} The yields range from 40% to 85%.

Certain quaternary ammonium salts, particularly the hexaminebenzyl halides, form aldehydes when heated with water (method 147).

438. Replacement of Hydroxyl Groups by Amino Groups

$$C_{10}H_7OH + NH_3 \xrightarrow{(NH_4)_2SO_3} C_{10}H_7NH_2 + H_2O$$

This equilibrium reaction in the presence of sulfites is important for the preparation of certain polyfunctional benzenes and naphthalene derivatives bearing hydroxyl or amino groups (cf. method 94) (Bucherer). A review of the literature to 1942 has been made.³⁶⁹ The hydroxy compounds are converted to the corresponding primary amines by treatment with aqueous ammonia and ammonium sulfite at 90-150°, good mixing being essential, as illustrated by the preparation of 2-naphthylamine (96%) and 7-methyl-1-naphthylamine (90%).³⁸⁹ In a similar manner, resorcinol and its alkylated derivatives have been changed to the corresponding amino phenols (50-80%).^{390, 391} Benzene derivatives containing one hydroxyl or one amino group are much less reactive. Hydroxyquinolines undergo this reaction (65-88%).^{392, 393, 546}

Sometimes, replacement can be effected by heating with ammonia under pressure in the presence of zinc chloride, e.g., 3-amino-2-naphthoic acid from 3-hydroxy-2-naphthoic acid (70%).⁵²⁴

439. Amination of Aromatic Nuclei

Certain aromatic and heterocyclic compounds having reactive nuclear positions undergo direct amination. Thus α -nitronaphthalene on treatment with hydroxylamine in methanolic potassium hydroxide yields 4-nitro-1naphthylamine (60%),⁵⁰⁷ following the rules of orientation for substitution by a nucleophilic reagent rather than an electrophilic reagent.

The amination of heterocyclic bases such as pyridine, quinoline, and their derivatives by alkali amides furnishes a good method for obtaining the 2-amino compounds (50-100%). The scope and limitations of the reaction have been reviewed; the procedure is illustrated by the preparation of 2-aminopyridine (76%).⁵⁰⁸

440. Rearrangement of N-Alkylanilines

$$C_6H_5NHR \xrightarrow{CoCl_2} p-RC_6H_4NH_2$$

Treatment of N-monoalkylanilines with anhydrous cobalt chloride at about 220° for 13 hours causes a nitrogen-to-carbon rearrangement to form *p*-alkylanilines.^{359, 396} Normal alkyl groups migrate without apparent isomerization within the group to give good yields (60-85%); however, *s*and *t*-alkylanilines undergo extensive decomposition to give olefins and aniline. Similar treatment of the aniline salts gives the rearrangement, viz., N-isobutylaniline \cdot HCl \rightarrow *p*-amino-*t*-butylbenzene. In this case, isomerization occurs within the alkyl group.

441. Amination of Cyclic Imines

$$\begin{array}{c} CH_{2} \\ | \\ NH + R_{2}NH \xrightarrow{AICI_{3}} CH_{2}NR_{2} \\ | \\ CH_{2} \\ CH_{2} \end{array}$$

N-Alkyl- and N,N-dialkyl-ethylenediamines are prepared in a single step (cf. methods 427, 435, and 452) by the addition of gaseous ethylenimine to primary or secondary amines in the presence of anhydrous aluminum chloride (77-89%).⁴⁸¹ Primary amines react at about 90° with benzene as solvent, whereas secondary amines react at 180° with tetralin or biphenyl as solvent. In a similar manner, homologs of ethylenimine and ammonia (or amines) react in high-pressure equipment at 100° in the presence of ammonium chloride.⁴⁵²

 $\begin{array}{c} O \\ CH_2 - CH_2 + R_2 NH \rightarrow R_2 NCH_2 CH_2 OH \end{array}$

Ammonia and amines open oxide rings to form amino alcohols;⁴⁶¹⁻⁴⁶⁹ the yields are markedly higher when amines are employed (55-90% vs. 18-40%).^{464,467,468} The ready availability of ethylene and propylene oxides makes this procedure attractive for preparing 2-dialkylaminoethanols⁴⁶¹ and 1-dialkylamino-2-propanols.⁴⁶⁴ Thus β -diethylaminoethanol is conveniently prepared by the addition of ethylene oxide to diethylamine in methanol at 45° to 60° or by a combination of the two reactants in an autoclave at 100° (81%).⁴⁶¹ Isopropylamine reacts with ethylene oxide in the presence of water and a small amount of hydrochloric acid to form β -isopropylaminoethanol (76%).⁴⁶³ The reaction is general and is shown by higher oxides like isobutylene oxide,⁴⁶⁵ styrene oxide,⁴⁶⁸ and stilbene oxide.⁴⁶⁹

443. Amination of Unsaturated Compounds

 $HC = CH \xrightarrow{R_2NH} [R_2NCH = CH_2] \xrightarrow{HC \equiv CH} R_2NCH(CH_3)C \equiv CH$

Acetylene and either primary or secondary aliphatic amines react under pressure at 80° to 100° in the presence of a copper catalyst to form Nmono- and N-di-substituted 3-aminobutynes, e.g., 3-diethylamino-1-butyne (65%).⁴⁷² Although benzylamine responds favorably, aniline and acetylene furnish only a 25% yield of 3-anilino-1-butyne.

The treatment of allyl alcohol with amines in the presence of an equimolar quantity of alkali in an autoclave at about 115° represents a general method for the preparation of N-alkyl-3-aminopropanols, e.g., 3-dimethylamino-1-propanol (65%).⁴⁷³

$$CH_2 = CHCH_2OH \xrightarrow{R_2NH}_{NBOH} R_2NCH_2CH_2CH_2OH$$

Ammonia and amines add more easily to a double bond which is conjugated with a carbonyl or carbalkoxyl group to form β -amino compounds. Thus, mesityl oxide and aqueous ammonia react under mild conditions to form diacetonamine (70%).⁴⁷⁴

$$CH_{3}COCH = C(CH_{3})_{2} \xrightarrow{NH_{3}} CH_{3}COCH_{2}C(CH_{3})_{2}NH_{2}$$

The addition of aliphatic and aromatic amines to other unsaturated ketones has been discussed.⁴⁷⁵ α,β -Unsaturated aldehydes like acrolein and crotonaldehyde combine with two moles of amine to form unsaturated 1,3diamines, RCH(NR₂)CH=CHNR₂.⁴⁵³ The addition of primary or secondary amines to acrylic esters has provided a good route to the N-alkyl- β -aminopropionic esters.⁴⁷⁷⁻⁴⁸⁰ The product may add a second molecule of ester to furnish alkyl di-(carbalkoxyethyl)-amines;⁴⁸¹ however, the course of the reaction can be controlled in many instances to provide largely the secondary or tertiary amine.

 $\text{RNH}_2 \xrightarrow{\text{CH}_2 = \text{CHCO}_2 \text{R}'} \text{RNHCH}_2 \text{CH}_2 \text{CO}_2 \text{R}' \xrightarrow{\text{CH}_2 = \text{CHCO}_2 \text{R}'}$

RN(CH2CH2CO2R')2

Other α , β -unsaturated esters including methyl methacrylate,¹⁶⁹ ethyl crotonate,⁴⁸² and ethyl cinnamate⁴⁸³ respond to this treatment. Ammonia adds to ethyl crotonate to form a 55% yield of ethyl β -aminobutyrate; on the other hand, the interaction of ammonia and ethyl acrylate produces only di- and tri-substituted products.⁴⁸⁴

Amination of α , β -unsaturated acids is brought about by treatment with two moles of hydroxylamine in alcohol solution, as illustrated by the synthesis of dl- β -amino- β -phenylpropionic acid (34%).^{485,486}

$$C_6H_5CH = CHCO_2H \xrightarrow{NH_2OH} C_6H_5CH(NHOH)CH_2CO_2H \xrightarrow{NH_2OH}$$

C₆H₅CH(NH₂)CH₂CO₂H

The interaction of ammonia or amines with α -nitro olefins, RCH=CHNO₂, in alcoholic solution at 0° forms nitroamines, e.g., 1-nitro-2-aminopropane (55%) and 2-nitro-3-aminobutane (60%). The reaction is general and is applied to numerous nitro olefins readily obtained by the dehydration of aldehyde-nitroparaffin condensation products.^{487,488}

$$RCH = CHNO_2 + NH_3 \rightarrow RCH(NH_2)CH_2NO_2$$

444. Aminomethylation (Mannich)

 $RCOCH_3 + CH_2O + (CH_3)_2NH \cdot HCI \xrightarrow{-H_2O} RCOCH_2CH_2N(CH_3)_2 \cdot HCI$

Compounds possessing labile hydrogen atoms readily condense with formaldehyde and an amine (primary or secondary) or ammonia, thereby placing an aminomethyl or substituted aminomethyl group at the location

of the reactive hydrogen atom. The reactive hydrogen may be present in the *alpha* position of an aldehyde,⁴¹⁶ ketone,⁴¹⁷⁻⁴²³ acid,⁴²⁴ ester, or nitroparaffin;^{39,40,425,426} or it may be in the *ortho* or *para* position of a phenol⁴¹³ or in certain heterocyclic compounds.⁴⁰⁹⁻⁴¹²

Secondary products are often formed by the replacement of a second active hydrogen with an aminomethyl group.

 $\operatorname{RCOCH}_{2}\operatorname{CH}_{2}\operatorname{N}(\operatorname{CH}_{3})_{2} \cdot \operatorname{HCl} \xrightarrow[(\operatorname{CH}_{3})_{2}\operatorname{NH}^{\circ}\operatorname{HCl}] \xrightarrow{\operatorname{RCOCH}[\operatorname{CH}_{2}\operatorname{N}(\operatorname{CH}_{3})_{2} \cdot \operatorname{HCl}]_{2}} \operatorname{RCOCH}[\operatorname{CH}_{2}\operatorname{N}(\operatorname{CH}_{3})_{2} \cdot \operatorname{HCl}]_{2}$

Also, Mannich bases which are themselves primary or secondary amines may undergo further condensation to yield tertiary amines.

 $\text{RCOCH}_{2}\text{CH}_{2}\text{NHR} \cdot \text{HCl} \xrightarrow[\text{RCOCH}_{3}]{\text{CH}_{2}\text{O}} (\text{RCOCH}_{2}\text{CH}_{2})_{2}\text{NR} \cdot \text{HCl} + \text{H}_{2}\text{O}$

The literature of this reaction to 1942 has been reviewed.⁴²⁷ Later observations have been made.^{414,422,514} The synthesis of β -dimethylamino-propiophenone (72%) exhibits a typical procedure.⁴²⁰

445. Aminomethylation of Alcohols

$$R_1NH + CH_2O + R'OH \rightarrow R_1NCH_2OR'$$

The interaction of paraformaldehyde, a secondary amine, and an alcohol occurs vigorously to form in good yields an aminomethyl alkyl ether. The method is general and has been applied to the formation of many amino ethers.⁵¹³

446. Degradation of Amides (Hofmann)

$$RCONH_2 \xrightarrow{NBOBr} RNCO \xrightarrow{H_2O} RNH_2$$

Amides react with alkaline hypochlorite or hypobromite solutions to form primary amines having one less carbon atom. The reaction involves the hydrolysis of an isocyanate, which is seldom isolated. Isocyanates are also intermediates in the Curtius and Lossen rearrangements (methods 447 and 448). Although these methods have a common mechanism and intermediate, they involve three separate and distinct types of starting materials and are, therefore, treated individually. A comparison of these reactions has been made.²⁷⁰ A detailed discussion of the Hofmann reaction, which includes conditions, typical procedures, and compounds prepared thereby, has been presented.²⁴⁴

The method has been used for the preparation of aliphatic, aryl aliphatic, $^{254-258}$ aromatic, 252,253 and heterocyclic 24,260,261,522,542 amines. Yields for the lower aliphatic amines (C₁-C₈) are about 70-90% but are poor for the higher amines because of the formation of the corresponding nitriles and acyl alkyl ureas.²⁴⁵⁻²⁴⁸ In order to overcome this difficulty, the high-molecular-weight aliphatic amides are treated with bromine and sodium methoxide with subsequent hydrolysis of the resulting urethanes.³⁴⁹

 $\text{RCONH}_2 + \text{Br}_2 + 2\text{NaOCH}_3 \rightarrow \text{RNHCO}_2\text{CH}_3 + 2\text{NaBr} + \text{CH}_3\text{OH}$

Alicyclic amines have been produced by the same modification.^{250, 251}

A few diamides have been converted to diamines.^{226, 262, 263} For the most part, the conversion of unsaturated amides is unsatisfactory; however, α -allylphenylacetamide is transformed to α -allylbenzylamine in a 90% yield.²⁶⁴ Aromatic amides having free or methylated phenolic groups are treated preferably with sodium hypochlorite rather than hypobromite in order to avoid excessive ring halogenation.^{256, 265, 265} Certain amino acids like anthranilic acid and β -alanine have been synthesized from the appropriate imides.²⁶⁸

447. Degradation of Acyl Azides (Curtius)

$$\operatorname{RCON}_{3} \xrightarrow{\sim} \operatorname{RNCO} \xrightarrow{\begin{array}{c} C_{2}H_{3} \\ H_{2}O \end{array}} \operatorname{RNH}_{2} \xrightarrow{\begin{array}{c} H_{2}O \end{array}} \operatorname$$

The conversion of an acid to an amine of one less carbon may be conveniently accomplished by way of the azide and rearrangement to the isocyanate. The azide may be obtained either from the acyl chloride and sodium azide or from an ester by treatment with hydrazine and subsequent diazotization. An excellent review including scope and limitations of the reactions, selection of experimental conditions and procedures, and a tabulation of compounds prepared thereby has been presented.²⁷⁰

The acyl azide undergoes a rearrangement similar to the Hofmann rearrangement (method 446) and to the Lossen rearrangement (method 448). This step is carried out in inert solvents like benzene and chloroform to give the isocyanate directly or in solvents like alcohol and water which will react with the isocyanate to form urethanes and ureas.

The amines are obtained by hydrolysis of any of these three intermediates. When hydrolysis is impracticable, the alkylureas or urethanes

may be converted with phthalic anhydride to alkylphthalimides which are formed in excellent yields. These compounds are then readily decomposed by hydrazine according to the usual Gabriel synthesis (method 452).²⁷²

The Curtius reaction can be performed on aliphatic,²⁷¹ alicyclic,^{273, 278, 279} aromatic,²⁷⁴⁻²⁷⁸ or heterocyclic²⁸¹⁻²⁸³ azides.

The application of the procedure to azides containing other functional groups has also been described.²⁷⁰ Diamines (from dicarboxylic acids),²⁷⁸⁻²⁸⁰ arylhaloamines,^{285, 286} and nitroarylamines ^{285, 286} have been successfully prepared, whereas certain groups like the double bond, hydroxyl, carbonyl, and amino often cause the formation of products other than the anticipated amine. For the synthesis of α -amino acids, the readily accessible alkylcyanoacetic esters may be employed as starting materials. Their azides rearrange to cyano isocyanates, which can be easily hydrolyzed.^{287, 288}

NCCH(R)CON,
$$\xrightarrow{\sim}$$
 NCCH(R)NCO $\xrightarrow{H_2O}$ HOOCCH(R)NH₂

 α -Amino acids may also be obtained by applying the Curtius reaction to substituted malonic acid esters as in the preparation of β -phenylalanine (44% over-all).^{278,289,290}

448. Degradation of Hydroxamic Acids (Lossen)

 $\begin{array}{c} \text{RCONHOH} \xrightarrow{\text{KOH}} \text{RNCO} \xrightarrow{\text{H}_2\text{O}} \text{RNH}_2 + \text{CO}_2 \\ \xrightarrow{\text{Heat}} \end{array}$

Alkali salts of hydroxamic acids and their derivatives undergo a rearrangement to give isocyanates. The method has had little synthetic application; it has been reviewed.²⁹¹

449. Interaction of Hydrazoic Acid and Carbonyl Compounds (Schmidt)

(a)
$$\operatorname{RCO_2H} + \operatorname{HN_3} \xrightarrow{\operatorname{H_2SO_4}} \operatorname{RNH_2} + \operatorname{CO_2} + \operatorname{N_2}$$

(b)
$$\operatorname{RCOR} + \operatorname{HN}_3 \xrightarrow{\operatorname{H}_2\operatorname{SO}_4} \operatorname{RCONHR} \longrightarrow \operatorname{RNH}_2$$

The reaction of equimolar quantities of hydrazoic acid with an acid or ketone affords a convenient method for preparing certain amines. The reaction is carried out by treating the organic compound in an inert solvent in the presence of sulfuric acid with gaseous hydrogen azide,²⁹⁹ hydrazoic acid in solution, or sodium azide directly.²⁹² An excess of hydrazoic acid should be avoided in the reaction of ketones, for then tetrazoles are formed. It should be recalled that hydrazoic acid is toxic and explosive. A discussion of the method including scope and limitations, experimental conditions and procedures, and compounds prepared thereby has been presented.²⁹²

Aliphatic,²⁹³ alicyclic,²⁹⁴ and aromatic acids²⁹⁴⁻²⁹⁸ which are stable to concentrated sulfuric acid undergo the reaction in good yields, although detailed directions are frequently lacking. Amines prepared by this single-step process are often obtained in higher yields than when prepared by either the Hofmann or Curtius degradation.*

Benzoic acids substituted with alkyl, halo, hydroxyl, alkoxyl, cyano, or nitro groups react to give the corresponding substituted anilines in 41-80% yields.²⁹⁵ The carboxyl group in an α -amino acid does not react with hydrazoic acid; the reaction proceeds, however, if the amino group is further removed. This difference in reactivity is shown by the conversion of α -aminoadipic acid to *dl*-ornithine (75%).³⁰⁰

 $HO_{2}C(CH_{2})_{3}CH(NH_{2})CO_{2}H + HN_{3} \xrightarrow{H_{2}SO_{4}} H_{2}N(CH_{2})_{3}CH(NH_{2})CO_{2}H$

The conversion of ketones to amides by the Schmidt reaction has been mentioned elsewhere (method 362). Since the hydrolysis of the amides so obtained proceeds readily, the two steps provide a convenient synthesis of amines from ketones. The yields are often higher than those obtained from the Beckmann rearrangement with subsequent hydrolysis (method

*For a comparison of the Schmidt, Hofmann, and Curtius reactions, see ref. 270, p. 363.

451).²⁹⁷⁻²⁹⁹ The procedure is convenient for the synthesis of α -amino acids from mono- or di-substituted acetoacetic esters (80-98%).³⁰¹

$$CH_{3}COC(R)_{2}CO_{2}C_{2}H_{5} + HN_{3} \xrightarrow{H_{2}SO_{4}} CH_{3}CONHC(R)_{2}CO_{2}C_{2}H_{5} \xrightarrow{H_{2}O} H_{2}NCR_{2}CO_{2}H + C_{2}H_{5}OH + CH_{3}CO_{2}H$$

450. Hydrolysis of Isocyanates, Isothiocyanates, Urethanes, and Ureas

$$RNCO + H_2O \rightarrow RNH_2 + CO_2$$

Many important amines have been obtained by the hydrolysis of one of these substances. Thus, t-butylamine is formed by alkaline hydrolysis of t-butylurea (78%)⁴⁵⁴ or by treatment of t-butylisothiocyanate with formic acid (79%).⁴⁵⁵ Allylamine is synthesized by hydrolysis of allyl isocyanate with dilute hydrochloric acid (73%).⁴⁵⁶ The hydrolysis of isocyanates, urethanes, and ureas, which occur as intermediates in the degradation of amides and azides, has been discussed under methods 446 and 447, where many examples have been cited.

 β -Arylaminoethanols are made by the condensation of arylamines with chloroethyl chloroformate followed by treatment of the resulting carbamates with excess alkali. The reaction proceeds by way of an intermediate oxazolidone which need not be isolated.⁴⁵⁸

$$\operatorname{ArNH}_{2} \xrightarrow{\operatorname{CICO_{2}CH_{2}CH_{2}CI}} \operatorname{ArNHCO_{2}CH_{2}CH_{2}CI} \rightarrow \operatorname{ArNCO_{2}CH_{2}CH_{2}} \overset{\operatorname{KOH}_{2}}{\underset{(80\%-100\%)}{\underset{\operatorname{ArNHCH}_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}}} \xrightarrow{\operatorname{KOH}_{2}} \overset{\operatorname{KOH}_{2}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}}{\underset{\operatorname{KOH}}}}}}}}}}}}}$$

In a similar manner, γ -chloropropyl arylcarbamates formed from aromatic amines and γ -chloropropyl chloroformate are converted to γ -arylaminopropanols.⁴⁵⁹

451. Hydrolysis of N-Substituted Amides

$$\operatorname{RCONHR} \xrightarrow{\mathbf{R'X}}_{N_{\bullet}} \operatorname{RCONRR'} \xrightarrow{H_{2}O} \operatorname{RR'NH}$$

The N-alkylation of amides followed by hydrolysis furnishes a good route for making secondary amines. The formyl,⁴⁹⁴ acetyl,³⁷⁸ and arylsulfonyl^{492,550} derivatives of amines are best suited for alkylation (method 358). Hydrolysis is accomplished by refluxing concentrated hydrochloric acid alone^{35,375,494,497} or in acetic acid.^{492,502,503} N-Alkylformamides prepared by the addition of olefins to nitriles (method 355) are hydrolyzed with aqueous alkali.⁵⁰⁶ Similar hydrolytic procedures have been employed for obtaining diamines,^{387,497} unsaturated amines,^{495,496} and amino acids.⁴⁹⁸⁻⁵⁰⁰ The deacylation of p- and o-nitroacetanilides is carried out with sodium ethoxide in boiling alcohol.⁵⁰¹

Certain amines are conveniently prepared by the hydrolysis of Nsubstituted amides which are made by the Beckmann rearrangement (method 359) and the Schmidt reaction (method 362).

452. Hydrolysis of N-Substituted Phthalimides (Gabriel)

The facile alkylation of phthalimide and subsequent hydrolysis of the N-substituted derivatives furnishes a convenient synthesis for primary amines. The substituted phthalimide was originally prepared by heating a mixture of phthalimide, potassium carbonate, and organic halide in a non-polar solvent for 2 to 24 hours at 100° to 150° .⁴²⁸ An improved procedure consists in performing this initial step in a polar solvent like dimethylformamide, in which potassium phthalimide is appreciably soluble; the reaction occurs at room temperature within 10 minutes.⁴²⁹ Various esters of *p*-toluenesulfonic acid may be substituted for the organic halides as alkylating agents.⁴³⁷

Tertiary alkyl halides lose hydrogen halide in their reaction with potassium phthalimide. However, the *t*-alkylphthalimides are readily prepared by heating the corresponding *t*-alkylureas and phthalic anhydride to 200° to 240° .⁴³⁰

Hydrolysis may be carried out directly by refluxing the alkylated phthalimide in basic or acidic solutions or by the action of hydrazine hydrate followed by acidification.⁴²⁸ This procedure is illustrated by the synthesis of *t*-butylamine (67% over-all).⁴³⁰

Alkylation with organic halides carrying a second functional group affords a good synthesis of some difficultly obtained difunctional compounds including diamines,^{353,432-436} amino halides,⁴³⁸ hydroxy amines,⁵⁵⁶ amino ketones,^{429,440} amino acids,^{429,441-443} amino cyanides,^{441,445} and

nitro amines.⁴²⁸ Also the stability of the N-substituted phthalimide allows further changes to be made, for example, (a) amination of γ -bromopropylphthalimide with various secondary amines (60-80%),⁴³³ (b) catalytic reduction of N-(m-nitrobenzyl)-phthalimide,³⁸ (c) oxidation of β -hydroxyethylphthalimide,⁴⁴³ and (d) the action of halogen acids on epihydrinphthalimide.⁴³⁹

453. Hydrolysis of Nitrosoanilines

 $C_{g}H_{g}NRR' \xrightarrow{(HONO)} p-RR'NC_{g}H_{g}NO \xrightarrow{H_{2}O} RR'NH + p-HOC_{g}H_{g}NO$

This classical method for preparing secondary amines is rarely used. It has been applied in the preparation of some α -dialkylamino- ω -methylaminoalkanes (65-70%).¹⁵⁸ Higher yields have been obtained by hydrolyzing with sodium bisulfite rather than with sodium hydroxide, which is the common reagent.

454. Hydrolysis of Quaternary Imine Salts

$$ArCH = NR \xrightarrow{R'X} [ArCH = NRR'] + X^{-} \xrightarrow{H_2O} RRNH$$

The alkylation of Schiff bases and hydrolysis of the resulting quaternary salts is an excellent method for obtaining certain secondary amines, RR'NH, particularly where $R' = CH_{3}$.²¹⁴ The procedure is less satisfactory for the introduction of large alkyl groups. The Schiff base is usually a derivative of benzaldehyde. It is readily prepared, and, without isolation, is alkylated; furthermore, the salt is seldom isolated. An example is the treatment of the Schiff base from allylamine and benzaldehyde. Methylation is accomplished by the action of methyl iodide at 80° for 16 hours; subsequent hydrolysis furnishes methylallylamine in 71% yield.⁵⁵³

455. Hydrolysis of Cyanamides

$$2RBr \xrightarrow{\text{Na}_2\text{NCN}} R_2\text{NCN} \xrightarrow{\text{H}_2\text{O}} R_2\text{NH} + CO_2 + \text{NH}_3$$

Examples include the synthesis of diallylamine (88%) and di-n-butylamine (75%).⁴⁶⁰

456. Ring Dehydrogenation

METHODS 456-460

Azines of certain carbonyl compounds like 3-methyl-5-alkyl-2-cyclohexen-1-ones and the alkylated 1-tetralones have been aromatized to the corresponding 3-methyl-5-alkylanilines and 1-aminonaphthalenes by boiling with a palladium-carbon catalyst in triethylbenzene.⁴⁴⁹ The yields in the first step are in the range 24% to 74% and in the second 20% to 55%.

The nuclear amino group is stable during the sulfur dehydrogenation of 2-amino-9, 10-dihydrophenanthrene (cf. method 2).⁴⁸⁰ In another instance, it is protected by acetylation before dehydrogenation.⁴⁹¹

457. Condensation of Grignard Reagents and O-Methylhydroxylamine

 $CH_{3}ONH_{2} \xrightarrow{2RMgX} RNHMgX \xrightarrow{H_{2}O} RNH_{2}$

A general method for the preparation of primary amines, free from secondary and tertiary amines, involves the interaction of Grignard reagents and O-methylhydroxylamine. The yields range from 45% to 90% for many amines including ethylamine (81%), *t*-butylamine (70%), *n*-amylamine (65%), and β -phenylethylamine (68%).⁵¹²

Grignard reagents which have been prepared from polymethylene halides and magnesium in the presence of 0.1% water in the ether react readily with O-methylhydroxylamine to form the corresponding polymethylene diamines (50-68%).^{\$12}

458. Addition of Grignard Reagents to Schiff Bases

ArCHO $\xrightarrow{\text{RNH}_3}$ ArCH $\xrightarrow{\text{R'MgX}}$ ArCH(R')NHR

This method is particularly desirable when the stable and readily available Schiff bases from substituted benzaldehydes are employed. It furnishes a good synthesis for amines of the type ArCH(R')NHR where the two R groups may be widely varied to include those from many Grignard reagents and primary aliphatic amines, e.g., N-methyl-1, 2-diphenylethylamine (95%)⁴⁷⁰ and 1-ethylamino-1-phenylbutane (90%).⁴⁷¹ The reaction of aliphatic aldimines and Grignard reagents has been found to proceed less readily.³⁷⁰

459. Interaction of Grignard Reagents and Halo amines³⁷⁶

 $RMgX + NH_2CI \rightarrow RNH_2 + MgXCI \text{ or } RCI + MgXNH_2$

460. Reduction of Unsaturated Amines^{367,453} (cf. methods 431 and 443)

 $\text{RCH} = \text{CHCHO} \xrightarrow{2\text{HNR}_2} \text{RCH(NR}_2)\text{CH} = \text{CHNR}_2 \xrightarrow{\text{H}_2,\text{Pt}} \text{RCH(NR}_2)\text{CH}_2\text{CH}_2\text{NR}_2$

461. Interaction of Sodium Amide and Halogen Compounds³⁸⁴⁻³⁸⁷

$$RX + NaNH_2 \xrightarrow{Liquid} RNH_2 + NaX$$

R = n-hexyl (74%);³⁶⁴ R = 2-pyridyl (67%).³⁸⁷

462. Rearrangement of Hydrazobenzenes^{489,490}

$$C_6H_5NHNHC_6H_5 \xrightarrow{H^+} H_2NC_6H_4C_6H_4NH_2$$

463. Interaction of Amines and β -Keto Esters^{\$11}

$$RCOCH_2CO_2C_2H_5 \xrightarrow{R'NH_2} RC(NHR') = CHCO_2C_2H_5$$

464. Condensation of Unsaturated Amines and Aromatic Compounds⁴⁹⁶

 $CH_2 = CHCH_2NH_2 + ArH \xrightarrow{AIC1_3} ArCH(CH_3)CH_2NH_2$

TABLE 81. AMINES

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Aliph	natic A	mines	
C ₁	Methylamine	437	72	24 ²³⁵	-6.5*
		431	51	24118	
		446	78	24247	
		447	60 1	24 271	
C2	Ethylamine	437	83	24 ²³⁵	16.6*, 1 60HBr*
		446	90	24 ²⁴⁵	
	Dim ethylamine	431	95	24 ¹²⁹	171HCI •
с.	n-Propylamine	446	90	24 245	48, 158HCl*
- 3	Isopropylamine	446	70	24 245	32
		426	89	24347	34
	Trimethylamine	431	90	24 127	3.5*, 275HCl*
c	n Butrlaniaa	476	40	3 ≰ 350	75-90 1054/C1+
C.4	n-Butylamine	420	60 47	24	75-80, 1950-01*
		455	4/ 62	24	70. J/ 742, 1,4008
	e Butylamine	426	54	24	63/765 1 3939
	5 Dutyrumine	426	60	24350	59-65
		431	80	24209	66
	Isobutylamine	426	52	24174	68/745, 1.3969
		446	90	24 ²⁴⁵	67
		447	71†	24 271	164HC1
		457	90	24 ⁵¹²	69, 1 5 0Pi
	t-Butylamine	429	82	24 ³⁷¹	44.5, 1.3770
		450 -	78	24 ⁴⁵⁴	46, 1.3800
		451	78	24 ⁵⁰⁶	310HCl
		452	67†	24490	46, 198Pi•
		457	70	2451	45, 1.3789, 134Bz
	Methylisopropylamine	431	65	24440	50, 74HC
		431	59	24	45-55, 135Pi
	Chloride	436	95	24	
C₅	n-Amylamine	426	62	24 ³⁴⁶	100-104
		427	95	24 ²⁰³	
		427	68	24 ³⁰³	105
		446	88	24 ²⁴⁵	96
		449	75	24 ²⁹³	138Pi
		457	65	24511	104, 139Pi
	2-Aminopentane	431	66	24 227	89
	3- Aminop en tan e	431	60	24 147	92
	lsoamylamine	446	88	24	78
		457	71	24314	96, I38Pi
	t-Amylamine	452	631	24	78
		457	48	24	/8, 183P1
	Neopentylamine hydro- chloride	4 40	94	24	(273d)

AMINES

Ch. 24

		TABLE	81 (<i>c</i> o	mtinued)	
C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	A	liphatic A	mines	(continued)	
C5	Methyl-n-butylamine	4 29	26†	24 ³⁶⁹	91/750, 1.4011
	Ethyl-n-propylamine	428	53	24 ³⁴⁴	78, 223HC1
		429	43†	24 ³⁶⁸	80/738, 1.3966, 224HCl
	N,N-Diethylmethylamine	431	92	24 212	185Pi
C6	n-Hexylamine	427	70	24 310	130
		446	70	24 ²⁴⁵	128
		449	75	24 ²⁹³	126Pi
		461	74	24 ³⁸⁴	
	2-Methyl-4-aminopentane	431	55	24 ²⁰⁷	109, 1.4063 ²⁵ , 139HCl*
	2,2-Dimethyl-3-aminobu- tane	431	51	24 ²⁰⁵	102, 297HCl
	Ethyl-n-butylamine	429	52†	24 ³⁶⁸	109/737, 1.4056, 197HCl
	Dimethyl-n-butyl amine	432	80	24 ¹²³	94
	Triethylamine	428	50	24 ³⁴⁴	89
с,	<i>n</i> -Heptylamine	426	64	24 ³⁴⁷	153
		426	73	24 350	152-157
		427	95	24 ²⁰³	
		431	63	24 ²⁰⁸	58/23, 122Pi
		446	65	24 246	156
		449	75	24 ²⁹³	119Pi
	2-Aminoheptane	426	80	24 ²⁰⁶	142.5
		431	80	24 ²⁰⁶	142, 1.4150 ²⁴ , 83HCl
		432	55	24 ²⁰⁶	142.5
	n-Propyl-n-butylamine	4 29	54†	24 ³⁶⁸	93/200, 1.4112, 268HCl
	Isopropyl-n-butylamine	4 29	52†	24 ³⁶⁹	125/748, 1.4050
	Diethyli sopropylamine	436	60	24 ¹²⁶	108
	<i>n</i> -Butyltrimethylammonium bromide	436	93	24 ¹³⁹	(198)
C,	Ethyl-n-hexylamine	434	76	24 ¹²⁵	158/743, 191HCl
	Di-n-butylamine	455	75	24 ⁴⁶⁰	160
C 12	Di-n-hexyl amine	434	100	24 ⁵⁵⁷	122/15, 270HCl
		Alicy	clic An	nines	
Ξ,	Cyclopropylamine	446	50 t	24 ²⁵⁰	50/750, 149Pi
C5	Cyclopentylamine	426	80	24 ¹⁴	
C.6	Cyclohexylamine	426	60	24 ³⁵⁰	135
		426	90	24 ³⁰⁸	48-52/30, 1.456925, 206HCl
		430	94	24 ³⁷⁷	
		431	50	24 ²⁰⁷	
		432	75	24 ⁵⁴⁷	
		449	82	24 ²⁹⁴	
ς,	2-Methyl-1-aminocyclo- hexane	446	77 †	24 ²⁵¹	150, 1.4575 ¹⁶ , 147Bz

TABLE 81. AMINES

TABLE 81 (continued)

C _n	Compound	Metho d	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
_	Al	icyclic A	mines	(continued)	
C,	3-Methyl-1-aminocyclohex-	446	66†	24 ²⁵¹	150/747, 1.4488 ²² , 163Bz
	4-Me thyl- 1-aminocyclohex- an e	446	90	24 ²⁵¹	150/743, 1.4535 ¹³ , 260HCl
с.	& Cyclohexylethylamine	430	79	24 ³⁷⁸	85/25, 1.4656, 256HCI
0	trans-2-Ethylcyclohexyl- amin e	426	80	24 ³⁴⁸	151/745, 65/17, 198Pi
	N-Ethylcyclohexylamine	430	91	24 ³⁰⁹	165/745
C,	1-Cyclohexyl-2-amino- propane	4 30	77	24 ³⁷⁸	87/21, 1.4615, 192HCI
	β -Methyl- β -cyclohexyl- ethylamine	430	86	24 ³⁷⁸	91/17, 1.4718, 196HCl
	N-Methyl- β -cyclohexyl- ethylamine	430	85	24 ³⁷⁸	78/9, 1.4586, 172HCl
C 10	9 Aminodecalin	425	73	24 ³	92/12, 148Bz
C 12	Dicyclohexylamine	430	95	24 ¹⁴	145/30
		431	70	24 ²¹⁵	115-120/10, 333HCI
		Aron	natic A	mines	
C ₆	Aniline	425	86	24 ⁵	184, 195HCI
		447	76	24 271	115Ac
		449	85	24 ²⁹⁴	
C,	Ben zylamin e	4 26	73	24 ³⁴⁶	74/15
		427	72	24 302	
		427	69	24 ³⁰⁷	85/24
		431	89	24 ²⁰⁴	80/8
		432	60	24547	182/680, 198Pi
		435	53	24%	75/14, 105Bz*
		437	84	24 ²³⁴	184
		446	85	24	184, 258HCl
		447	94†	24 27	257HCI
		4 49	75	24	
		451	81.	24375	84/20, 60 Ac
		452	751	24	187, 60Ac
		457	57	24 314	90/12, 194Pi
	N-Methylaniline	431	50	24 211	196*
		436	90	24117	
		436	73	24135	101Ac
	o-Toluidine	425	73	24	199*, 111Ac
	<i>m</i> -Toluidin <i>e</i>	4 25	25†	24528	201/756, 65Ac
	p-Toluidine	425	91	244	200*, 149Ac
C,	a-Phenylethylamine	426	97	24 ³⁴⁷	76/13, 158HCl
	• -	431	52	24 ²⁰⁸	81/18

 C_n

C.

Compound

a-Phenylethylamine

 β -Phenylethylamine

o-Methylbenzylamine

p-Methylbenzylamine

3- Amino- 1, 2-dimethyl-

4-Amino-1, 2-dimethyl-

1,3-Dimethyl-5-amino-

N-Methylbenzylamine

N,N-Dimethylaniline

C₉ 1-Phenyl-1-aminopropane

2-Phenyl-1-aminopropane

1-Phenyl-2-aminopropane

a,a-Dimethylbenzylamine

p-n-Propylaniline

cumidine) N-Methyl-a-phenethyl-

amine

p-Isopropylaniline (p-

p-Ethylaniline

benzene

benzene

benzene N-Ethylaniline

(continued)

AMINES

Method

431

432

446

447

427

427

437

446

449

452

457

427

427

431

427

432

425

440

425

425

435

449

438

431

436

429

431

436

436

431

435

446

464

426

431

435

446

449

446

440

425

432

TABLE 81 (continued)

Yield

(%)

Aromatic Amines (continued)

69

66

60

68 t

87

72

54

60

70

95

68

69

88

83

88

62

90

83

92

69

66

21 1

75

63

75

72

79

86

68

65

51

60

94

55

85

51

42

73

84

67

58

60

24²⁰⁷

24³⁹⁹

24²⁵⁵

24²⁷⁵

24³¹⁰

24³⁰⁸

24²³⁵

24254 24294

24428

24 512

24 ³⁰⁹

24302

24²⁰⁴

24³⁰⁷

24 ⁵⁴⁷

247 24 395

24¹¹

2412

24 87

24²⁹⁷

2412

24211

24¹³⁵

24³⁷³

24217

24¹³⁵

24 ¹³¹

24207

2486

24257

24 496

24³⁴⁹

24 205

24 ⁸⁶

24 256

24²⁹⁶

24²⁵⁸

24³⁹⁵

24⁸

24 401

Ch. 24

Chapterref. B.p./mm., n^f_D, (M.p.), Deriv.

73/14, 104Ac

70/12, 104Ac

93/15, 219HCl

78/10, 167Pi

134/85, 1.5412

108/54, 234HCl

200/680, 205Pi

119/25, 134Ac

216, 94Ac*

118/25, (49)

205*, 135Pi

83/10, 145HCl

92/12, 147HCl

80/10, 146HCl

82/11, 149HC1

104/22, 152HC

220-225, 96Ac

105/20, 102Ac

146HC1

179HCI

98/19, 1.5255, 144HCl

73/8, 1.5175-8525, 241HCI

218/760, (10), 1.5581

(51)

186

195

107/37, 1.5306, 174Pi

186

205

105/20

TABLE 81. AMINES

TABLE 81 (continued)

C, P F N N F	A - Ethyl m-toluidine Benzyldimethylamine - Methyl-N-ethylaniline N,N-dimethyl-m-toluidine N,N-Dimethyl-p-toluidine	436 4 3 6	Amines	(continued)	
C ₉ M E M M F	₩ Ethyl m-toluidine 3enzyldimethylamine N-Methyl-N-ethylaniline N,N-dimethyl-m-toluidine N,N-Dimethyl-p-toluidine	436 4 3 6	66		
e M M F	Benzyldimethylamine N-Methyl-N-ethylaniline N,N-dimethyl-m-toluidine N.N-Dimethyl-p-toluidine	436	00	24 ¹¹⁵	112/20
ע ע ר ר	N-Methyl-N-ethylaniline N,N-dimethyl-m-toluidine J.N-Dimethyl-p-toluidine		80	24 ¹²³	176-180
r M F	N.N-dimethyl- <i>m</i> -toluidine	431	88	24 ²¹⁷	209, 129Pi
r F	N.N-Dimethyl-p-toluidine	436	60	24132	206/740
F		436	53	24132	206/740
5	h enyl trime thyl ammonium sulfat e	436	90	24 ¹⁴³	(126), 124Pi
	-Aminohydrindene	451	92	24 ⁵⁰⁵	247, (34)
C ₁₀ 1	-Phenyl-3-aminobutane	431	67	24205	80/4, 148HCl
~ 2	- Amino- 3-phenyl butane	447	96†	24 ²⁷⁴	111/14
0	-Amino-t-butylbenzene	425	85	24 ¹⁰	161 Ac
p	- Amino-t- butyl benzene	425	73	249	93/3, (16), 170Ac
2	2-Amino-p-cymene	425	90	24 ¹⁵	242/760, 110/10
3	,4-Diethylaniline	425	99	2413	117/10, 1.5458 ²⁹ , 119Ac
1	-Methylamino-1-phenyl- propane	458	75	24 471	
1	-Methylamino-2-phenyl-	436	44	24 ⁸⁶	100/20, 133HC
	propan e	454	80	24214	98/18, 159HCl
		464	47	24 ⁴⁹⁶	87/10, 1.5112, 146HCl
2	Methylamino- l-phenyl- propane	454	93	24 ²¹⁴	80/6, 136HCl
N	J-Ethyl-a-phenethylamine	432	70	24 401	200HC
N	N.N-Dimethylphenethyl- amine	432	83	24 ⁴⁰⁰	98/22
I	en zylmethyle thylamine	436	100	24 122	80/16, 152HCI
N	N.N-Diethylaniline	431	70	24 212	140Pi
		436	87	24 138	216
		436	99	24131	
p	-Dimethylaminoethyl- benzene	436	27	24 ³⁹⁵	104/16
1	-Naphthylamine	425	96	24 4	(50), 159Ac*
		449	70 †	24 ²⁹⁸	
2	-Naphthylamine	438	96	24 ³⁸⁹	(112), 132Ac*
1	l, 2, 3, 4-Tetrahydro-2- n aphthylamin e	4 30	57	24 ³⁸³	118/8, 140/20
C,, 1	-Ethylamino-2-phenyl-	431	94	24 ²¹⁴	127/30, 160HC
** -	propane	464	77	24 ⁴⁹⁶	93/10, 1.5032, 159HCI
1	-Dimethylamino-2- phenylpropane	464	62	24 ⁴⁹⁶	80/10, 1.4983, 222HCl
2	2-Dimethylamino-1-	431	67	24 ²¹⁴	100/12, 161HCl
-	-Methyl- I-naphthylamine	438	90	24 ³⁸⁹	140/3, (59)
	2-Aminomethylnaphthalene	435	72	2496	135/0.3

Compound

C₁₁ N-Methylnaphthylamine

 C_{12} β -(a-Naphthyl)-ethylamine

a-(B-Naphthyl)-ethylamine

N-Ethyl-a-naphthylamine

N-Ethyl-B-naphthylamine

N,N-Dimethyl-a-naphthyl-

N,N-Dimethyl-B-naphthyl-

o-Aminocyclohexylbenzene

3- Aminoacenaphthene

o-Phenylbenzylamine

(benzylaniline)

N-Phenyl-p-toluidine

Methyldiph enylamine

2-Aminofluorene

9-Aminofluorene

 C_{14} β , β -Diphenylethylamine

m-Tolylben zylamine

Ethyldiphenylamine

2-Dimethylaminobiphenyl

N, N-Diethyl-a-naphthyl-

1-Aminophenanthrene

2-Aminophenanthrene

3-Aminophenanthrene

9-Aminophenanthrene

Diben zylamine

amine

N-Phenyl benzylamine

amine

amine

2-Aminobiphenyl

3-Aminobiphenyl

4-Aminobiphenyl

C₁₃ Benzhydrylamine

688

C_n

AMINES

425

426

432

452

427

429

429

431

436

431

436

451

456

449

451

456

449

451

447

449

451

Aromatic Amines (

82

74

75

87†

76

50

94

80

94

40

60

72†

60

88 t

861

68

80 t

70 t

81 +

731

601

24351

24⁴⁰⁴

24431

24311

24 ³⁷⁵

24³⁷²

24²¹⁶

24¹³⁰

24212

24 131

24 504

24⁴⁹¹

24²⁹⁸

24 503

24 ⁴⁵⁰

24²⁹⁸

24504

24 277

24 ²⁹⁶

24 502

(65), 255HC

134/2, (43.5)

150-155/4-5

(146), 220Ac

(147), 204Pi*

150/13

145/11

(84)

(86)

(86)

(86)

(87)

(137.5)

(137)

(130)

157/4, 199HCl

155-165/30, 1.5961, 154Pi

(62)

	AMINE	S	Ch. 24
TABLE	81 (თ	ntinued)	
Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
omatic A	Amines	(continued)	
437	73	24243	200-205/30, 262HCl
451	70	24 ⁴⁹²	170/12
447	45†	24 ²⁷⁶	170/12, 245HCl
432	84	24 ³⁹⁹	199HCI
431	88	24 ²¹³	190/20*
431	64	24213	316*
436	70	24 ¹³³	272*
43 6	64	24 ¹³¹	305*
425	9 3	24 ¹⁸	182/30, (49)
425	99	24 ¹⁹	178/18, (31)
425	93	244	211/30, (54)*, 171Ac
425	85	2417	134/3, 106/0.5
425	85	24 22	(81.5), 193Ac
426	87	24 ³⁴⁷	171/16, 270HC
432	96	24 ⁴⁰⁵	
427	60	24313	168/15, 179/12, 217HCl
429	97	24 ²¹⁵	146/1
436	87	24114	180/12, (36)
451	40†	24 493	
431	65	24216	148/13
425	82	24 21	(127)

TABLE 81. AMINES

TABLE 81 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{t ef.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Iromatic A	mines	(continued)	
C14	9-Aminoanthracene	425	91	2420	(135-140), 274Ac
С.,	β,γ -Diphenylpropylamine	427	88	24 ³¹¹	171/6
- 15	γ , γ -Diphenylpropylamine	427	81	24 ³¹¹	150/2, 218HCl
	N-Methyl-1,2-diphenyl- ethylamine	458	95	24 ⁴⁷⁰	186HCI
	9-Aminomethylphenan-	427	100	24 ³¹³	(108.5), 294HCl
	threne	435	70	24 ⁹⁶	165/0.15
с	Triphenvlamine	436	85	24 ¹³⁶	(126)
C ₂₄	p-Aminotetraphenyl- methane	1	74	24552	(250)
	<u></u>	Hetero	cyclic	Amines	
C.	2-Aminofuran	447	54†	24282	124Bz
c.	- Furfurvlamine	431	79	24 ²⁰⁴	146*
-5	2-Methyl-3-aminofuran	447	541	24281	52/4, 137Bz
	2-Methylaminofuran	427	84	24321	50/10
	2-Thenvlamine	4 4 4	45	24 411	65/4, 1,5628, 189HCI
	a-Thienvlaminomethane	437	84	24242	75/11. 194HCI
	2-Aminonyridine	435	70	24 ⁹³	(57)
	2 /////////////////////////////////////	439	76	24 ⁵⁰⁶	120/36
	2. Amino pyridine	425	93	2423	(64)
	Fillinopyricale	435	80	7493	(64), 133Ac
		435	60	74 ⁵⁹²	109/3 (61)
		446	89	24 542	(64)
	4. Aminopyridine	435	30	74 532	(159)
	4-AnnuopyHane	446	74	24 ⁵⁹²	(159)
	2-Aminopiperidipe	430	78	24 380	68/17 (57) 197Bz
	2-Aminopipen an e	554	90	39 ¹²⁰	68/17, (57), 225HCI
с.	N-Methylfurfurylamine	436	50	24120	149/761, 1.4729, 146HCI
0	1-(a-Thienyl)-1- aminoethane	432	51	24 ²⁴²	84/16, 142HC1
	B-(2-Thienvl)-ethylamine	425	63	24 ³¹	78/7.0, 202HCl
		427	34	24 ³¹⁴	74/3, 203HCI
		446	63	24523	201/750, 202HCI
	2-Methyl-S-aminopyridine	446	55	24 ²⁶⁰	(96), 123Ac*
	2	447	93	24 360	(96), 218HCl
	& Amino 2-picoline	439	61	24 ⁵⁰⁹	125/20, (40)
	2 Aminomethylpyridine	477	38	24 ³¹⁵	93/3, 76/3, 138NBz
	2- Aminomethylpyridine	427	60	24315	98/3, 116/3, 191NBz
	4 Aminomethylowidine	477	60	24 ³¹⁵	117/5, 112/4, 180Pi*
	2- Aminomethylpiperidine	554	61	39 ¹²⁶	81/18
с,	1-Furyl-2-aminopropane	426	90	24 ³⁴⁹	

Compound

N,N-Dimethylfurfurylamine

2-Dimethylaminomethyl-

a-(Ethylamino)-pyridine

N-Ethyl-5-methylfurfury-

N,N-Dimethyl-5-methyl-

B-(3-Pyridyl)-isopropyl-

γ-Piperidinopropylamine

3-Aminothianaphthene

5-Aminothianaphthene

δ-Piperidinobutylamine

C, N,N-Diethylfurfurylamine

2-Aminoguinoline

3-Aminoquinoline

4-Aminoquinoline

5-Aminoquinoline

6-Aminoquinoline

7-Aminoquinoline

8-Aminoquinoline

1-Aminoi soguinoline

4-Aminoisoquinoline

5- Aminoi soquinoline

6 Aminoi soquinoline

cis-trans-Decahydro-

1-(B-Diethylaminoethyl)-

quinoline

amine

pyrrole

 C_{10} β -3-Thianaphthylethyl-

furfurylamine

C. 1-(a-Furyl)-3-aminobutane

pyrrole

amine

amine

N-Ethylfurfurylamine

690

 C_n

C,

AMINES TABLE 81 (continued)

Heterocyclic Amines (continued)

49

58

60

85

77

81

50

45

65

36

69

67

65

68

54

50

97

60

73

70

90

90

431

80

85

95

95

88

70

70

80

65

85

95

32

66

429

436

• 432

432

444

451

431

444

444

432

427

425

425

432

427

435

425

435

435

435

446

446

575

425

425

425

425

438

439

435

425

4 38

438

430

427

436

Method Yield Chaptertef. B.p./mm., n^t_D, (M.p.), Deriv.

146

82/4

75/25, 121HCI

145, 103Pi

94/19, 137Pi

190/760, 102/25

88/1, 187Pi

168Ac

172, 85Pi

(83), 172Ac

(83), 172Ac

(156), 178Ac

(69), (156), 178Ac

181/7, (110), 240HCl

187-200/10-13, (114)

(72)

(129)

(84)

(154)

(153)

(75), (93)

(65.5)

(123)*

(132)

(218)

206

80/4

141/7, (65)

(108.5), 168Ac

(129), 166Ac

125/1, 177Pi

76/17, 1.468925, 139HCl

70/25, 1.4620²⁶, 158HC

205/730, 1.4750, 210Pi

120/25, 1.4756, 160Pi

167/761, 1.4688, 128HC1

24130

24 120

24 397

24¹⁴¹

24⁴⁰⁹

24 494

24²⁰³

24 410

24 ⁴¹⁰

24 406

24 195

24³⁴

24 32

24¹⁴¹

24¹⁹⁵

2494

24 24

24⁹⁴

24¹⁶⁴

24 532

24²⁴

39 ¹⁶⁴

39 163

2425

24 29

24²⁸

2426

24 393

24 510

2433

2433

24³⁹²

24⁵⁴⁶

24 309

24544

24300

Ch. 24

TABLE 81 (continued)

C _n Com	pound	Me thod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), De
	Het	erocyclic	Amine	s (continued)
C ₁₀ N,N-Diethyl-ß methylamin	-pyridyl- e	428	55	24 ³⁴⁴	100/12, 170Pi
2- Aminol epidi	ne	435	78	24 ⁹⁵	(133), 232Ac
C ₁₁ 3-Dimethylami indole	inomethyl-	444	100	24 ⁴¹²	(134), 142Pi
2-Dimethylami	inoquinolin <i>e</i>	436	91	24 ¹³⁷	(71)
C ₁₂ 1-Aminodiben:	zofuran	435	24	24 ⁹⁰	(74), 205Ac
3 Aminodi ben a	zofuran	425	91	24 ⁵⁵¹	(94)●
4-Aminodiben:	zofuran	438	45	24 ³⁹⁴	(85)*
		446	55	24 ²⁶¹	
2-Aminodiben:	zothi oph ene	425	91	24 ³⁵	(133)
		435	62	24 ⁹¹	(129), 178Ac
		451	72	24 ³⁵	(131)
3- Aminodi ben	zo thiophene	461	50	24 ³⁸⁵	(122), 200Ac
4-Aminodiben:	zothiophene	435	371	24 ⁹¹	(110), 198Ac
			64	24 ³⁶	(110)
a			60	20 219	(216)
C ₁₁ 2-Aminoacridi	ne		00	27	
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation	ne ne s and symbols	435 see pp. 2	89 xi-xii.	39 ²¹⁷	(233)
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation	ne s and symbols TA	435 see pp. 2	89 xi-xii. DIAMI	39 ²¹⁷ 39 ²¹⁷	(233)
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C ₁₀ Comp	ne s and symbols TA pound	435 s see pp. 2 ABLE 82. Method	89 ki-xii. DIAMI Yield (%)	39 ²¹⁷ NES Chapter ^{ref.}	(233) B.p./mm., n ^t _D , (M.p.), D
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₀ Comp	ne ne s and symbols TA pound	435 see pp. 1 ABLE 82. Method Alipha	89 xi-xii. DIAMI Yield (%)	39 ²¹⁷ NES Chapter ^{fef.}	(233) B.p./mm., n ^t _D , (M.p.), D
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami	ne ne s and symbols TA bound	435 see pp. 2 ABLE 82. Method Alipha 447	89 xi-xii. DIAMI Yield (%) ntic Dia	39 ²¹⁷ 39 ²¹⁷ NES Chapter ^{ref.} amines 24 ²⁸⁰	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami	ne ne s and symbols TA bound ine	435 s see pp. 1 ABLE 82. Method Alipha 447 452	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60	39 ²¹⁷ NES Chapter ^{ref.} umines 24 ²⁸⁰ 24 ⁴³²	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami C ₃ 1,2-Diaminopr	ne ne s and symbols TA bound ine opane	435 s see pp. 3 ABLE 82. Method Alipha 447 452 425	89 xi-xii. DIAMI Yield (%) atic Dia 75† 60 52	39 ²¹⁷ NES Chapter ^{ref.} amines 24 ²⁸⁰ 24 ⁴³² 24 ⁴⁸⁷	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami C ₃ 1,2-Diaminopr Trimethylened	ne ne s and symbols TA bound ine opane liamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427	89 xi-xii. DIAMI Yield (%) atic Dia 75† 60 52 23	39 ²¹⁷ 39 ²¹⁷ NES Chapter ^{ref.} umines 24 ²⁸⁰ 24 ⁴³² 24 ⁴⁸⁷ 24 ¹⁹⁵	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178B
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami C ₃ 1,2-Diaminopr Trimethylened	ne ne s and symbols TA bound ine opane liamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427 446	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54	39 ²¹⁷ 39 ²¹⁷ NES Chapter ^{ref.} umines 24 ²⁸⁰ 24 ⁴⁸⁷ 24 ⁴⁸⁷ 24 ¹⁹⁵ 24 ²²⁰	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178H 131/760*, 250Pi
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami C ₃ 1,2-Diaminopr Trimethylened	ne ne s and symbols TA bound ine opane liamine	435 see pp. 2 ABLE 82. Method Alipha 447 452 425 427 446 449	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65	39 ²¹⁷ 39 ²¹⁷ NES Chapter ^{ref.} umines 24 ²⁸⁰ 24 ⁴⁸⁷ 24 ¹⁹⁵ 24 ²²⁰ 24 ²²⁰	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C _n Comp C ₂ Ethylenediami C ₃ 1,2-Diaminopr Trimethylened	ne ne s and symbols TA bound ine opane liamine	435 see pp. 2 ABLE 82. Method Alipha 447 452 425 427 446 449 452	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90	39 ²¹⁷ 39 ²¹⁷ NES Chapter ^{ref.} 24 ²⁸⁰ 24 ⁴⁸⁷ 24 ⁴⁸⁷ 24 ¹⁹⁵ 24 ²²⁰ 24 ⁴³²	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi 136, 140Bz*
C ₁₃ 2 Aminoacridi 9- Aminoacridi For explanation C ₁₂ Comp C ₂ Ethylenediami C ₃ 1,2- Diaminopr Trimethylened	ne ne s and symbols TA bound ine opane liamine en ediamin e	435 see pp. 2 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66	39 217 39 217 NES Chapterref. amines 24 280 24 487 24 487 24 487 24 230 24 230 24 230 24 230 24 230 24 230 24 230 24 332 24 341	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178H 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz*
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₂ Comp C ₂ Ethylenediami C ₃ 1,2 Diaminopr Trimethylened N-Methylethyl	ne ne s and symbols TA bound ine opane liamine enediamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427 451	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66 33†	39 ²¹⁷ NES Chapterref. umines 24 ²⁸⁰ 24 ⁴⁸⁷ 24 ⁴⁸⁷ 24 ¹⁹⁵ 24 ²²⁰ 24 ⁴²³ 24 ⁴⁸⁷ 24 ⁴⁸⁷ 24 ⁴⁹³	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178H 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz* 116/757, 220Pi
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₂ Ethylenediami C ₂ Ethylenediami C ₃ 1,2 Diaminopr Trimethylened N-Methylethyl C ₄ 1,2 Butylened	ne ne s and symbols TA bound ine opane liamine enediamine iamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427 451 441	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66 33† 55	39 217 39 217 NES Chapterfef. unines 24 280 24 487 24 487 24 487 24 487 24 320 24 482 24 487 24 482 24 487 24 482 24 487 24 482 24 4	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz* 116/757, 220Pi 140, 1.4490, 187Bz
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₂ Ethylenediami C ₂ Ethylenediami C ₃ 1,2 Diaminopr Trimethylened N-Methylethyl C ₄ 1,2 Butylened Tetramethylen	ne ne s and symbols TA bound ine opane liamine enediamine iamine ediamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427 446 449 452 427 441 441	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66 33† 55 60	39 217 39 217 NES Chapterref. umines 24 280 24 487 24 482 24 487 24 482 24 4	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz* 116/757, 220Pi 140, 1.4490, 187Bz 177Bz
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₂ Ethylenediami C ₂ Ethylenediami C ₃ 1,2 Diaminopr Trimethylened N-Methylethyl C ₄ 1,2 Butylened Tetramethyler	ne ne s and symbols TA bound ine opane liamine enediamine iamine	435 see pp. 3 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427 446 449 452 427 441 446 447	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66 33† 55 60 48†	39 217 39 217 NES Chapterref. umines 24 280 24 487 24 482 24 487 24 482 24 4	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz* 116/757, 220Pi 140, 1.4490, 187Bz 177Bz
C ₁₃ 2 Aminoacridi 9 Aminoacridi For explanation C ₁₂ Explanation C ₂ Ethylenediami C ₃ 1,2 Diaminopr Trimethylened N-Methylethyl C ₄ 1,2 Butylened Tetramethylen	ne ne s and symbols TA bound ine opane liamine en ediamin e iamine oediamin e	435 see pp. 2 ABLE 82. Method Alipha 447 452 425 427 446 449 452 427 446 449 452 427 446 449 452 427 441 446 447 449	89 xi-xii. DIAMI Yield (%) ntic Dia 75† 60 52 23 54 65 90 66 33† 55 60 48† 80	39 217 39 217 NES Chapterref. umines 24 280 24 487 24 487 24 487 24 487 24 487 24 487 24 487 24 487 24 487 24 482 24 487 24 482 24 487 24 482 24 4	(233) B.p./mm., n ^t _D , (M.p.), D 172Ac 116, 172Ac 221HCl 138/735, 1.4600, 178F 131/760*, 250Pi 250Pi 136, 140Bz* 111, 112Bz* 116/757, 220Pi 140, 1.4490, 187Bz 177Bz

AMINES

Ch. 24

			Yield		
С <u>п</u>	Compound	Method	(%)	Chapter ^{ref.}	B.p./mm., n_{D}^{l} , (M.p.), Deriv
	Alip	hatic Dia	mines	(continued)	
C4	2, 3-Di amino bu tane	425	40	24 ⁴⁸⁷	312HCl
	Isobutyl <i>e</i> n ediamin e	427	80	24 ³¹⁸	115/754*, 100Ac
	γ -Methylaminopropylamine	427	70	24 ³¹⁹	141, 1.4479, 226Pi
	N-Monoethylethyl- enediamıne	451	20†	24 ⁴⁹⁷	131/759, 195Pi
	β-Dimethyl aminoethyl- amin	427	47	24 ³¹⁶	108
	N, N'-Dime thyl e thyl en e- diamine	436	50	24 ¹⁴⁷	1 50- 160, 160Pi
C s	Pentamethylenediamine (cadaverine)	457	68	24 ⁵¹²	180, 237Pi
	2-Methyl-1,2-diamino- butane	427	61†	24 ³²²	143/752, 1.4483, 229Pi
	2-Methyl-1,4-diamino- butane	446	72	24 ²⁶³	154Bz
	2,2-Dimethyl-1,3-propane-	425	90	24 ¹	78/50, (29), 257HCl+
	di ami ne	425	67	24 ³⁷	153/737, 1.4566, 240Pi
	γ-Ethylaminopropylamine	427	74	24 ¹⁹⁵	156/735, 1.4441, 193Pi
	1-Dimethylamino- 2- aminopropane	431	40	24 ¹⁷⁸	113, 1.4177 ²⁵
C6	Hexamethylenediamine	452	86†	24 ⁴³⁵	258HC1
		457	51	24 ⁵¹²	204, 220Pi
	1-Ethylamino-2- aminobutane	441	20	24 452	157, 1.4431, 116Bz
	2-Methyl-2-methylamino- 1-aminobutane	427	66†	24 ^{3 22}	155/737, 1.4502, 203Pi
	} Ethylamino-2-methyl-2- aminopropane	441	42	24 452	141, 1.4300, 108Bz
	eta-Diethylaminoethylamine	427	53	24 ³⁰⁴	145/760, 99/13, 207Pi
		427	62	24 ³¹⁷	144-150, 211Pi
		441	89	24 ⁴⁵¹	
		452	57	24 ³⁵³	145-149
27	1-Diethylamino-2-	431	62	24 ²¹⁸	153, 182Pi
	aminopropane	431	65	24 ²⁰⁵	154/760, 70/20
	γ -Diethylaminopropyl-	427	72	24 ¹⁹⁵	168/735, 1.4355, 194Pi
	amine	452	60	24 433	170, 1.4437
-	1-Dimethylamino-3- methylaminobutane	436	100	24 ¹⁴⁸	56/14, 186Pi
	1, 3-bis-Dimethylamino- propane	460	78	24 ⁴⁵³	145, 207Pi
	β-Diethylaminoethyl- methylamine	436	40	24 ¹⁴⁷	160

TABLE 82. DIAMINES

TABLE 82 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n_D^t , (M.p.), Deri
	Al	iphatic D	iamine	s (continued)	
C.	1-Diethylamino-2-amino-	425	55	24 ³⁹	80/16
	butan e	441	54	24 452	173, 1.4347
	1-Diethylamino-3-amino-	426	60	24 ³⁵³	74/12, 1.4428 ¹⁸
	butane	431	72	24 ²⁰⁵	70/10, 1.44 30¹⁸
	4-Diethylaminobutylamine	427	97	24 ³²¹	88/18, 1.4462°, 156Pi
		427	50	24 ¹⁹⁴	86/16, 1.4420 ²⁵
	1,3-bis-Dimethylamino-	436	100	24 ¹⁴⁸	56/12
	bu tan e	460	74	24 453	
	1,4- <i>bis</i> -Dimethylamino- butane	436	92	24 ¹²³	167, 199Pi
	1-Di ethyl amino-3- methyl aminopropan e	453	65	24 ¹⁵⁸	60/8, 1.4390 ¹⁹
29	1-Diethylamino-3- aminopentane	426	75	24 ⁵³⁸	86 - 95/22, 1.4421, 155Pi
	Tetraethylmethylene- diamine		76	24 ⁵¹³	167/757
2 10	Decamethylenediamine	427	80	24 ³²³	146/14, (60)
	1-Diethylamino-4- aminohexane	426	64	24 ³⁵²	105-112/20
	β -Diethylaminoethyl- diethylamine	436	50	24 ¹⁴⁷	151Pi
		Alicyo	lic Dia	mines	
2.	trans- 1, 2-Diaminocyclo-	447	12†	24 ²⁷³	74/50, 1.4837
•	butane	449	55†	24 ²⁷³	74/50, 1.4837
	1.2 Diaminocyclohevane	420	60	7 4 279	265Pi
- 6	1, FDraininocycionexale	430	50 t	24 74 279	198/760, 265Pi
		450	100	24 279	198/760 265Pi
	1 4-Diaminocycloherane	4,00	721	24 74 ²⁷⁸	1,0,,00, =0,
-	cis-1,4-Diaminomethyl-	427	33†	24 ³²⁴	115/8, 350HCl
	trans-1,4-Diaminomethyl-	427	22†		118/10, (27), 380HCl
	N-Ethyl-1,4 cyclohexane- diamine	430	63	24 ¹⁹⁸	87/11, 1.4767 ²⁵
10	N,N-Diethyl-1,4 cyclohex- anediamine	430	70	24 ¹⁹⁸	85/4, 1.4720 ²⁵
•		Aroma	tic Dia	amines	
2.	o-Phenylenediamine	425	85	24 41	(101)
	<i>m</i> -Ph e nyl e n e diamin e	425	95	24 ¹⁴	154/10, 70Ac
	sym-Triamino benzene	425	76	24 ⁴²	(84), (112), 357Bz

AMINES

Ch. 24

1

	TABLE 82 (continued)						
C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.), Deriv.		
		Aromatic D	iamines	s (continued)			
с,	o-Aminobenzylamine	425	43	24 38	85-90/1, (59), 138Ac		
	<i>m</i> -Aminobenzylamine	452	28 †	24 ³⁸	134/4, 1.6092, 174Bz		
	2,4-Diaminotoluene	425	74	24 ⁴³	(98)		
	sym-Triaminotoluen e	425	60	24 42	(122)		
C.	Phenyl ethylen ediamin e	427	90	24 ³¹⁶	159Ac		
	<i>m</i> -Xylyl en diamin e	452	38†	24 436	141/14, 135Ac		
	N-Phenylaminoethyl- amine	441	89	24451	,		
	p-Aminodimethylaniline		75	24517	140/12, 130Ac		
C 10	<i>m</i> -Ph enyl en- β , β' - diethyl amin e	427	79	24 ³²⁵	161/14, 302HCI		
	p -Phenylen- β , β -diethylamine	427	75	24 ⁵²⁵	116/0.9, (36), 210Ac		
	N-(2-Dimethylamino- ethyl)-aniline	43 6	88	24 ¹⁴⁹	127/3, 1.5251 ²⁵ , 124HCl		
C11	3,3'-Diaminobiphenyl	425	95	24 ¹⁴			
	4,4'-Diaminobiphenyl (benzidine)	425	82	24**	(125)		
C13	4,4 - Diaminodiphenyl- methane	••••	70	24 ⁵¹⁶	(91), 237Ac		
214	p,p'-bis-Aminomethyl- biph enyl	427	80	24 ³³⁶	180/0.5, (145), 235Pi		
C ₁₅	p.p ['] -bis-Aminomethyl- diphenylmethane	427	80	24 ³²⁶	(90), 224Bz		

For explanations and symbols see pp. xi-xii.

TABLE 83. OLEFINIC AMINES

C _n	Compound	Method	Yi eld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	Allylamine	450	73	24456	57/746
C₄	Methallyl amine	435	- 70	24100	78.8, 1.431
		4 50	35	24 457	62, 1.4155, 158Pi
	Allylmethylamine	451	48	24496	65, 1.4065
		454	71	24 ⁵⁵³	64
C,	1-Amino-4-pentene	427	60	24 ³²⁷	106/767, 1.428 ³⁶ , 116Pi
	Allyldimethylamine	436	43	24 ¹⁵¹	64. 1.3981 ²⁵ . 116Pi
C.	1-Ethylamino-3-butene	436	42	24152	109
	Diallylamine	455	88	24 460	111

TABLE 85. HALO AMINES

TABLE 83 (continued)

Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
29	80	2 ¹⁹³	118/750, 1.4202 ¹⁸
436	84	24 ¹⁵¹	111, 1.4170 ²⁵ , 91Pi
19	20	2 ¹⁶⁶	79/2.5, 1.6070 ²⁵
29	85	2 ¹⁹³	156/746, 1.4310
19	87	2 ¹⁰⁸	87/2, 1.5676 ²⁵
451	63	24 ⁴⁹⁵	80/2
446	90	24264	75/3.5, 1.5300, 153Pi
19	30	2 ⁴⁵⁵	1.6120, (17)
425	72	24 🏜	150/0.2
			(151)
30	69	2220	(108), 156Pi
30	89	2 ²²¹	(121), 172Ac
425	81	24 ⁴⁶	(229)
425	89	24 ⁴⁵	(121), 172Ac
5			(231)
	Method 29 436 19 29 19 451 446 19 425 30 30 425 425	Method Yield (%) 29 80 436 84 19 20 29 85 19 87 451 63 446 90 19 30 425 72 30 69 30 89 425 81 425 89	MethodYield $(\%)$ Chapterref.2980 2^{193} 43684 24^{151} 1920 2^{166} 2985 2^{193} 1987 2^{108} 45163 24^{495} 44690 24^{364} 1930 2^{455} 42572 24^{46} 3069 2^{320} 3089 2^{221} 42581 24^{46} 42589 24^{45}

For explanations and symbols see pp. xi-xii.

TABLE 84. ACETYLENIC AMINES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
с.	3-Dimethylamino-1-butyne	443	63	24472	95
c,	1-Diethylamino-2-propyne	43	83	3 ⁵⁵	120, 1.4296 ²⁵
c.	3-Diethylamino-1-butyne	443	65	24 472	126, (10), 179HCl
-	1-Diethylamino-2-butyne	44	74	3 ⁵⁵	153, 1.4413 ²⁵
C13	3-Diethylamino- 1-phenyl- 1- propyne	444	80	24 ⁴¹³	137/18, 137HCl
C14	p,p'-Diaminotolane	425	60	24 47	(235), 281 Ac

For explanations and symbols see pp. xi-xii.

TABLE 85. HALO AMINES

C _n	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.), Deriv.
		Aliphatic and	Alicycl	ic Halo Amin	nes
C,	β-Bromoethylamine	51	83	470	**************************************
_		52	72	4130	173HBr
			80	24 515	(174)
	β -Iodoethylamine	51	77	4 573	
	N-Tetrachloro-1,2- diaminoethane	69	92	4 ⁶³⁶	78/10, (4.5)

6 9 6	AMINES
--------------	--------

Compound

C₃ 1-Amino-2-bromopropane

 γ -Bromopropylamine

C4 2-Chloroethylethylamine

chloride

bromide

C₅ 1-Dimethylamino-2-

 β -Dimethylaminoethyl

 β -Dimethyl aminoethyl

n-Butyldichloroamine

N-Chlorodiethylamine

t-Butylchloroamine

chloropropan e 1-Dimethylamino-3-

chloropropane 2-Dimethylamino-1-

chloropropane

3-Bromopropyldi-

methylamine C₆ 1-Dimethylamino-3-

chlorobutan e

chloride β -Diethylaminoethyl

bromi de β, β', β'' -Trichlorotri-

C, 1-Methylamino-6-

propane

propane

propane

amine

bromohexane 1-Diethylamino-2-chloro-

ethylamine

o-Chlorocyclohexylamine

o-Bromocyclohexylamine

Cyclohexyldichloroamine

1-Diethylamino-3-chloro-

2-Diethylamino-1-chloro-

3-Bromopropyldiethyl-

 β -Diethylaminoethyl

Isopropyldichloroamine

 β, β' -Dichlorodiethylamine

Cn

TABLE 85 (continued)

Aliphatic and Alicyclic Halo Amines (continued)

70

89

76

91

59

90

83

75

92

94

68

96

41

75

85

851

80

66

80

70

95

100

78

57

70

70

73

80

.

4¹³⁸

24 **43**8

4⁶⁵⁶

4¹⁷⁶

4177

4⁶⁹⁶

4⁷⁰

4 657

4⁶⁵⁶

4⁶⁵⁵

4 171

4 584

4 171

4³⁷⁶

4¹⁷⁵

4¹⁷⁰

470

4178

4 137

4137

4⁶⁵⁶

4128

4172

4¹⁷³

24 ⁵⁴¹

24153

4172

4375

Method

52

452

69

53

53

53

51

69

69

69

53

53

53

54

53

53

51

53

52

52

69

54

53

53

436

436

53

54

Yield (%) Chapter^{tef.} B.p./mm., n_D^t , (M.p.), Deriv.

159HBr

163HBr

2 23HC1

20 3HCl

43/15, 1.457223

217HCl, 136Bz

40/17, 46/30, 1.4553

186HCl, 103Pi

104HCl, 167Pi

51/15, 1.4602

39/10, 168HCI

133HCl, 137Pi

107HCl, 126Pi

107HCl, 113Pi

82/28, 171/169, 64HCl

69/50

85/15

90/17

60HBr

86HCl

70/20

94HBr

168HC1

145HCI

Ch. 24

TABLE 85. HALO AMINES

TABLE 85 (continued)

Cn	Compoun d	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
	Aliphatic a	nd Alicyc	lic Hal	o Amines (a	ontinued)
C,	1-Bromo-6-dimethylamino- hexane	54	100	4 ³⁷⁷	
	1-Diethylamino-3-chloro-	53	87	4 174	72/17, 82HCl
	butane	436	68	24 ⁵⁴¹	84HCl
C,	1-Diethylamino-3-chloro-	53	72	4 ¹⁷⁴	87/18
	1-Diethylamino-4-chloro- pentane	73	90	4 ²⁰⁴	67/5
C ₁₀	1-Bromo-6-diethylamino- hexane	54	98	4 ³⁷⁷	
	1-Diethylamino-4-methyl- 4-chloropentane	73	75	4 ²⁰⁴	65/3, 1.4459
		Aromati	c Halo	Amines	
C.	o-Chloroanilin e	425	97	24 ⁵⁰	95-100/8, 235HC1
·		425	92	244	209*,86Ac
	o-Bromoaniline	425	82	24 ⁶	229, (32)*, 99Ac*
	o-Iodoanilin e	425	83	24 ⁵³	(61), 110Ac*
	<i>m</i> -Fluoroaniline	425	90	24 ⁵⁵⁸	187/770
	<i>m</i> -Chloroaniline	425	90	24 ⁵⁰	95-100/9, 119Bz
	<i>m</i> -Bromoaniline	425	80	24 ⁵¹	124/10, (17), 120Bz*
		446	87	24 ²⁵³	250, 88Ac
	<i>m</i> -Iodoanilin <i>e</i>	425	83	24 ⁵³	146/15, (33)*, 119Ac*
	<i>p</i> -Fluoroaniline	425	95	24 ⁵²	99/33, 152Ac*
		425	91	24 ⁵⁵⁸	188/762, 185Bz*
	p-Chloroani lin e	425	100	24 ⁴⁹	(71), 173Ac
		425	97	2450	100–110/8, 188Bz
	<i>p</i> -Bromoaniline	425	9.7	24	(66)*, 168Ac
		425	83	24 ⁵⁰	(60), 202 Bz
	p-Iodoaniline	64	84	4 ²⁹⁰	(63)
c,	o-Chloro benzylamine	426	81	24 ⁵⁰	9 5- 100/9, 116Bz
•	-	431	88	24 ⁵⁰	90-95/8, 116Bz
	p-Chlorobenzylamine	427	64	24 ⁵⁰	98-102/10, 240HCl
		447	100	24 ²⁸⁵	215/734, 259HCl
	o-Aminobenzyl chloride	51	84	4 ⁶⁹	
	o-Aminobenzyl bromide	51	91	4 ²⁰⁸	
	4 Amino-3-chlorotoluene	64	60	4 ²⁹¹	225
C,	1-Phenyl-1-amino-2-	52	76	4 ¹³⁶	190HCl
	N, N-Dimethyl-o-chloro-	436	90	24 ¹³²	206/740
	N,N-Dimethyl-o-bromo- aniline	436	70	24 ¹⁵⁵	101/12

AMINES

Ch. 24

TABLE 85 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Arc	matic Halo	Amine	s (continued	l)
C ₈	N,N-Dimethyl- <i>m</i> -chloro- aniline	43 6	75	24132	232/740
	N,N-Dimethyl- <i>m</i> -bromo- aniline	436	54	24 ¹⁵⁵	119/8, 135Pi
	N,N-Dimethyl-p-fluoro- aniline	43 6	45	24 ¹⁵⁴	(35)
	N,N-Dimethyl-p-chloro-	56	80	4 336	(33,5)
	anilin 🖕	436	70	24 154	(35.5)
		43 6	72	24 ¹³²	236/740, (33)
	N,N-Dimethyl-p-iodo- aniline	59	48	4 ⁶⁰¹	(81)
Сю	N,N-Diethyl-o-chloro- aniline	436	91	24 ¹³²	221/740, 164Pi
	N,N-Diethyl- <i>m</i> -chloro- aniline	43 6	95	24 ¹³²	250/740
	N,N-Diethyl-p-chloro- aniline	43 6	95	24 ¹³²	253/740, (46)
C ₁₂	3,3'-Dibromobenzidene	462	75	24 489	(129)

For explanations and symbols see pp. xi-xii.

	TABLE 86. HYDROXY AMINES						
C _n	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.		
		Aliphatic	Hydrox	y Amines			
с,	2-Amino-1-propanol	84	80	5 ¹⁵	80/18, 1.4502, 114Pi		
		425	74	24 ⁵⁷	78/15		
		434	95	24 446	73/11		
	1-Amino-2-hydroxy- propane	442	25	24 ⁴⁶⁷	65/4, 158/738		
	3-Hydroxypropylamine	452	85	24 ⁵⁵⁶	186		
	2-Amino-1,3-propanediol	84	80	515	116/1, 1,4891, 97HCl		
	2-(N-Methylamino)- 1- ethanol	84	63	515	56/11, 1.4385, 148Pi		
	Dimethylaminomethanol		70	24 ⁵¹⁴	1.4050		
C₄	2-Amino-1-butanol	425	90	24 ¹	173*		
		434	100	24 446	80/11		
	1-Amino-2-butanol (as oxalate)	425	83	24 ⁵²⁹	(200d), 113Bz		
	3- Amino- 2-butanol	435	49	24 467	162/742 1.4482		
	2-Amino-2-methyl-1-	84	80	5 ¹⁵	69/10. 1.4486. 205HCl		
	propanol	4 25	90	24 ¹			

TABLE 86. HYDROXY AMINES

TABLE 86 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Aliphatic Hydroxy Amines (continued)							
C4	1- Amino- 2-methyl- 2- propanol	.442	30	24 ⁴⁶⁵	145-155			
	B-Ethylaminoethanol	436	35	24 ¹⁵⁶	169, 1.4440			
	~	442	55	24 462	169			
	2-Amino-1.3-butanediol	84	80	5 ¹⁵	113/2, 1.4833 ²¹			
	2-Amino-2-methyl-1,3- propanediol	425	96	24 ¹				
~	6 Amino-1-nentonol	176	80	74 ³⁵⁴	119/25, 100Bz			
C5	4 Amino 1-pentanol	420	77	24 ²²⁸	81/1 (39)			
	y Amilio I-pentator	457	60	24 ⁵⁵⁶	271			
	2-Amino-2-pentanol	425	97	24 ⁵⁴	100/10. 1.4419			
	1- Amino- Ampentanol	436	32	24152	81/1, 1,4551 ²⁵			
	2-Methyl-2-amino-1-	425	86	24 54	98/10, 1.4468			
	2- Amino- 3- methyl- 1- butanol (valinol)	84		5 ⁸²	(119)			
	2-Methyl-3-amino-2-	91	66	5438	117HC1			
	3-Methylamino-2-methyl-	436	52	24 ¹⁶⁴	143, 1.4338, 138Pi			
	2 Isopmovlaminoethanol	431	95	24 ²²³	87/23			
	2 100 200 2 100 200 200 200 200 200 200	442	76	24 463	171			
	2-Dimethylamino-1-	436	82	24 ⁵⁷	65/37			
	3- Dimethyl amino- 1-	443	65	24 ⁴⁷³	113/150			
	1-Dimethylamino-2- propagal	442	70	24 ⁴⁶⁴	126/758			
	2- Amino- 2-e thyl- 1,3- propan ediol	425	92	24 ^L				
C.	2-Amino-1-hexanol	84	65	584	104/13, 114Pi			
- 0	2-Hydroxy-2-aminohexane	97	45	5 ²⁹²	95/20, 207Db			
	2-Amino-4-methyl-1-	84	55	584	95/11, (44), 163HCl			
	pentanol	434	90	24 ***	99/11			
	4 Methyl-4 amino-2-	79	34	5 ¹⁷⁰	75/15			
	S-Methylamino-1-pentanol	431	50†	24 ²²⁹	97/3			
	2. 2 Dimethyl- 3 methyl-	79	72	5 ⁶⁷⁵	70-82/12			
	amino-1-propanol	436	57	24 166	71/14, (46), 173HCl			
	1-Isopropylamino-2- propanol	431	97	24 ²²⁴	76/22, 1.4322 ²³ , 131Pi			
	3-Ethylamino-2-methyl-2- propanol	43 6	56	24 ¹⁶⁴	153, 1.4344, 133Pi			
	3- Dimethylamino-1-butanol	79	35	5185	78/14, 105BzHCl			

AMINES

Ch. 24

TABLE 86 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{re f.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alipha	tic Hydro:	ry Amin	nes (continu	ed)
C6	4-Dimethylamino-2-butanol	79	85	5172	
	3-Dimethylamino-2-methyl- 1-propanol	84	50	585	164
	3-Dimethylamino-2-methyl- 2-propanol	436	40 †	24 ¹⁶³	130/743, 1.4215, 115HCl
	eta-Diethylaminoethanol	43 6	70	24 ¹⁵⁶	65/18, 1.4389 ²⁵
		442	81	24 ⁴⁶¹	160/741, 1.4389 ²⁵
с,	2-Amino-2,4-dimethyl-1- pentanol	84	80	5 ¹⁵	98/12, 1.4563
	1-Ethylamino-4-pentanol	436	32	24152	81/1.0, 1.4551 ²⁵ , 148HBr
	5-Dimethylamino-1- pentanol	431	59 t	24 229	114/23
	4-Dimethylamino-2-methyl- 2-butanol	436	34†	24 ¹⁶³	160/743, 1.4295, 141HCl
	2-Diethylamino-1-propanol	84	63	5 ⁸³	66/18, 1.4332
	3-Di ethylamino- 1-propanol	436	91	24 ¹⁵⁸	95/28
	2,2-Dimethyl-3-dimethyl- amino-1-propanol	436	64	24 ¹⁶⁶	63/15, 132HCl
	1-Diethylamino-2-propanol	442	88	24 ⁴⁶⁴	63/22, 1.4265*, 139HCl*
C8	5-Isopropylamino-1- pentanol	431	71 [†]	24 ²³⁰	98HCI
	5- Dimethylamino-2-methyl- 2-pentanol	436	34†	24 ¹⁶³	99/30, 1.4400, 154HCl
	3-Diethylamino-1-butanol	79	45	5 ¹⁸⁵	85/13, 161BzHCl
	4-Diethylamino-1-butanol	84	52	5 ⁸⁶	92/9, 1.4474
	1-Diethylamino-3-butanol	79	40	5 ¹⁶⁸	73/20, 116HCl
		436	60	24 ¹⁶⁵	82/18, 1.4372 ²⁵ , 116HCl
C,	5-Diethylamino-1-pentanol	95	68	5709	1 31/23, 1.4544
	2-Diethylamino-3-methyl- 1-butanol	84	44 .	5 ⁸⁶	90/14
	2, 2-Dimethyl- 3-diethyl- amino-1-propanol	79	8 6	5 ⁶⁷⁵	88/12
C 10	1-Diethylamino-5-hexanol	80	8 <u>8</u>	5 192	108/10, 1.4490 ²⁵
	A	licyclic H	lydroxy	/ Amines	·······
C,	trans- 2- Aminocyclo- pentanol	442	40	24 466	194HCl
C6	2-Aminocyclohexanol	442	63	24 467	214. (66)
	cis-2-Aminocyclohexanol)	447	68	24 ²⁸⁴	110/15, (70), 185HCl
	trans-2-Aminocyclo- bexanol				108/15, (67), 175HCl
	cis-2-Aminocyclohexanol	435	50	2499	(73), 187HCl
	trans-2-Aminocyclo-	435	72	24 ⁹⁹	104/7, (66), 175HCl
	hexanol	44 2	64	24 ⁵⁴⁹	111/16, (69), 169 Bz

TABLE 86. HYDROXY AMINES

TABLE 86 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^r ef.	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alicyo	lic Hydro	xy Amin	es (continu	ed)
C6	<i>cis-trans-4</i> -Aminocyclo- hexanol	430	98	24 ⁵⁸¹	(80), (111)
	1- Amino- 1-hydroxymethyl- cyclopentane	84	80	515	69/1, 1.4899, 131HCl
	1-Aminomethyl cyclo- pentanol	427	50	24 ⁵⁴³	140/40, 190HCI
с,	1-Aminomethylcyclo- hexanol	427	70	24 ⁵⁴³	115/20, 190HCl
	2-Aminomethylcyclo- hexanol	427	68	24 ³³⁵	133/17, 1.4910 ²⁵ , 150HCl
	1-Amino-1-hydroxy- methylcyclohexane	84	80	515	118/27, 1.4970, 159HCl
C ₈	2-(N-Cyclohexylamino)- 1- ethanol	84	80	5 15	97/3, 1.4862, 130Pi
C,	2-Amino-2-cyclohexyl-1- propanol	84	80	515	104/2, (80), 202HCl
	2- Amino-3- cycloh ex yl-1- prop a nol	84	80	515	108/1, 1.4989, 192HCl
		Aromatic	Hydroxy	y Amines	
C.	o-Aminophenol	446	72	24 ²⁶⁶	(171)
	<i>m</i> -Aminophenol	438	50	24 ³⁹⁰	(123), 229HCl
c,	o-Aminobenzyl alcohol	84	78	581	(81)
	<i>m</i> -Aminobenzyl alcohol	425	100	2461	(96)
C,	β -Amino- α -phenylethyl	427	80	24 ³³³	(57)
	alcohol	442	18	24 ⁴⁶⁸	149-155/16
	β-Amino-β-phenylethyl alcohol	84	93	584	103/2, (111), 208Pi
	β-(4-Aminophenyl)- ethanol	425	88	24 ⁶²	(108)
	<i>m</i> -Aminophenylmethyl- carbinol	425	94	24 ⁶⁰	(64)
	2- Anilinoethanol	450	75	24 ⁴⁵⁸	170/19, 1.5749
C.	2-Amino-1-phenyl-1-	425	87	24 ⁵⁵	122/4-5
	propanol	426	71 [†]	24 ³⁵⁶	(103), 191HCI
	2-Amino-3-phenyl-1- propanol	84	52	5 ⁸⁴	156HCl
	3- Amino- 1-phenyl- 1- propanol	79	70	5 166	(64), 86Bz
	α-Phenyl-β-methyl- aminoethanol	79	90	5 167	(76)
	3- Anilino- 1-propanol	436	68	24 ¹⁵⁹	192/ 3 0, 1.502
		450	80	24 ⁴⁵⁹	154/5, 1.568 ¹⁸

For explanations and symbols see pp. xi-xii.

.

AMINES

Ch. 24

TABLE 87 (continued)

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliph	atic Ami	no Eth	ers (continue	ed)
C,	β-Ethoxy-n-amyl amine Diethylaminomethyl ethyl ether	435 445	44 69	24 ¹⁰¹ 24 ⁵¹³	56/15, 1.4220 134/756
c,	β-Ethoxy-n-hexyl amine 1-Methyl amino-6-methoxy- hexane	435 436	60 79	24 ¹⁰¹ 24 ¹⁵²	69/13, 1.4271 84/15
C,	l-Ethylamino-6-methoxy- hexane l-Methoxy-4-ethylamino-	436 436	73 60	24 ¹⁷³ 24 ¹⁵²	90/2, 1.4269 ²⁷ 89/16
	h exan e 1-Dimethy lamino-6- methoxyhexane	436	78	24 ¹⁷³	78/11
C 10	1-Diethylamino-5-methoxy- pentane	436	91	24 ¹³²	77/18, 1.2490
C ₁₂	β, β', β'' -Triethoxytri- ethylamine	115	66	6 61	137/12, 195HCI
		Aromati	c Amin	o Ethers	
с,	m-Aminoani sole (m- ani sidine)	425	80	24 ⁶³	125/13
C	β-Phenoxy ethylamine p-Aminophenetole 3,4-Dimethoxyaniline	428 435 425 446	80 65 78 82	24 ³⁴⁴ 24 ⁹⁶ 24 ⁶ 24 ²⁶⁵	104/12, 168Pi 115/12 254*, 138Ac* 174/24, (88)
C,	 (4- aminoveratrole) γ-Phenoxypropyl amine 2-Phenoxyisopropylamine N-Ethyl-p-anisidine p-Methoxydimethylaminobenzene 	435 426 431 436	71 65 51 55	24 ⁹⁶ 24 ³⁵⁵ 24 ²¹³ 24 ¹³²	126/15, (13) 120/13, 1.5237, 148HCl 135–140/20, 1.5444 234/740, (38.5)
C 10	 δ-Phenoxy-n-butylamine 3-Phenoxypropylmethylamine β-Ethoxy-β-phenylethyl 	427 436 435	87 61 62	24 ³³¹ 24 ¹⁷² 24 ¹⁰¹	148/17 133-138/23, 1.5255, 151HCl 109/12, 1.5102
~	amine	436		D 4 172	140/26 1 5127 155800
C _{II}	3-Phenoxy propy lethylamine 3-Phenoxy propyl dimethyl- amine	436	82	24 ¹⁷¹ 24 ¹³²	132/20
	p-Methoxydiethylamino- benzene	436	74	24	24 // /40
C12	2-Aminodiphenyl ether	425	94	2465	173/14, (47), 81Ac

For explanations and symbols see pp. xi-xii.

	TABLE 86 (continued)					
C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv	
	Aromat	ic Hydro	xy Ami	nes (continu	ed)	
C,	p-Dimethylaminobenzyl	79	96	5²	1.577525	
	alcohol	••••	65	5 ⁷⁸¹	125/1, 1.5727 ¹⁴	
C ₁₀	1-Amino-2-phenyl-2-butanol	89	73	5403	18 1HCl	
	2-Amino-3-phenyl-3-butanol	89	63	5 403	239HC1	
	2-Me thyl amino- 1-ph enyl- 1-	431	81	24 55	115-120/5	
	propanol	79	90	5167	(77)	
	β -Ethylamino- α -phenyl- ethyl alcohol	442	56	24 ⁴⁶⁸	140-164/14, (78)	
	4-Amino-1-naphthol	433	75	24 ⁵⁵⁴		
	1-Amino-2-naphthol	433	85	24 ⁵⁵⁴		
C 11	2- Amino- 3- phenyl- 3- pentanol	89	93	5 ⁴⁰³	222HCl	
	1-Phenyl-2-methylamino-	79	60	5 ¹⁶⁹	202HCl, 168Pi	
	1-butanol	79	90	5167	(90)	
	2-Methylamino-3-phenyl- 3-butanol	89	75	5403	235HCI	
	5- Anilino- I-pentanol	436	45	24 ¹⁶⁷	164/1.4	
	2-Diethylaminomethyl- phenol	444	69	24 ⁴¹⁵	67/2, 1.5108 ²⁵	
C12	Phenyl-7-dimethyl- aminopropyl carbinol	89	70	5402	107/0.07, (48)	
	β -Diethylamino- α -phenyl- ethyl alcohol	436	66	24 ⁴⁵⁸	145/14, 1.5101 ²⁵	
	6-Anilino-1-hexanol	436	74	24 ¹⁶⁷	138/0.05, (42)	

For explanations and symbols see pp. xi-xii.

TABLE 87. AMINO ETHERS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.				
	Aliphatic Amino Ethers								
C.	γ-Methoxy-n-propylamine	427	50	24 ³²⁹	118/733, 1.4182				
C,	γ-Ethoxy-n-propylamine	427	50	24 ³²⁹	136/732, 1.4201				
	eta-Methoxyisobutylamine	428	42	24 ³³⁰	121, 1.4204				
	γ -Methoxyisobutylamine	427	59	24 330	128, 1.4192 ²³				
C.	β -Ethoxy- <i>n</i> -butyl amine	435	42	24 ¹⁰¹	140, 1.4190				
	Diethylaminomethyl methyl ether	445	40	24 ⁵¹³	116/755				
	Di-(γ -aminopropyl) ether	427	77	24 ³²⁸	59/1.5, 1.4605, 152Pi				
c,	2-Methoxy-3-aminohexane	432	34	24 ⁴⁰⁷	98/100				

703

704		AMINES			Ch. 24
		TABLE	87 (<i>c</i> o	ntinued)	
C _n	Compoun d	Method	Yi e ld (%)	Chapter ^{t ef.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aro	matic Ami	no Ethe	ets (continue	cd)
C12	3-Aminodiphenyl ether	115 425	57 84	6 ¹⁴ 24 ⁶⁴	191/14, (37) 148/1 141HCl
	4-Aminodiphenyl ether	115 425	65 100	6 ¹⁴ 24 ⁶⁶	(83.5) 189/14, (83.5)
C ₁₃	3-Phenoxypropyldiethyl- amine	436	94	24 ¹⁷⁰	150/20, 1.4987, 102HCl
C14	1-Ph enoxy-6-ethylamino- h exane	436	90	24 ¹⁷⁴	148/3, 1.5010, 135HCl

For explanations and symbols see pp. xi-xii.

TABLE 88	B. AMINO	D ALDEHYDES
----------	----------	-------------

с <u>п</u>	Compound	Method	Yi e ld (%)	Chapter ref.	B.p./mm., n ^t _D , (M.p.), Deriv.
C ₆	a-Dimethyl aminoi sobutyr- al dehy de	436	32	24 ¹⁷⁵	129
с,	α, α-Dimethyl-β-dimethyl- aminopropional dehyde	444	80	24 ⁴¹⁶	144, 153HCI
	o-Aminobenzal dehyde	425	75	24 ⁶⁷	(40)*
	<i>m</i> -Aminobenzaldehyde	149	52	9 127	162Ph
	\$-Aminobenzaldehyde	155	52	9 ¹⁵⁶	
		425	50	24 ⁵⁶⁰	(70)
C,	<i>m</i> -Dimethylaminobenz-	425	74†	24 ⁶⁸	112/7, 229Se
	aldehyde	431	27	24 ⁵³⁰	114/3, 76-Ox*
	<i>p</i> -Dimethylaminobenz-	142	80	9 ¹⁰³	166/15, (73)
	ald e hyd e	144	45	9 %	180/20, (73), 148Ph
		150	59	9 187	(73), 144-Ox*
Сıo	p-Formylphenyl-tri- methylammonium iodide	148	68	9 ²⁶¹	(152d)
C ₁₁	<i>m</i> -Diethylaminobenz- aldehyde	43 6	48 †	24 ¹⁷⁷	138/7, 165Se
	p-Diethylaminobenz-	144	45	9 ⁹⁹	(41), 121Ph
	aldehyde	150	50	9 ¹⁸⁸	(41), 9 3- 0 x *

For explanations and symbols see pp. xi-xii.

TABLE 89. AMINO KETONES

TABLE 89. AMINO KETONES

C _n	Compound	M ethod	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Alipha	tic and A	licyclic	Amino Keto	nes
C,	Aminoacetone	426	96	24 ³⁵⁸	75HCl
-	Diaminoac eton e	426	83	24 ³⁵⁹	
C,	Dimethyl am inoac e ton e	436	74	24 ¹⁷⁸	36/25, 1.4128, 137Se*
C ₆	1- Dimethy lamino- 3- butanon e	444	45	24 ⁴¹⁷	70/40, 1.4213 ²⁵
	Diacetonamine (as acid oxalate)	443	70	24 ⁴⁷⁴	(127)
с,	Diethylaminoacetone	436	72	24 ¹⁷⁹	70/32, 1.4249, 143Se
C a	1-Diethylamino-3- butanone	444	59	24 ⁴¹⁷	70/11, 1.4333 ²⁴
	Diaceton ethylamin e	443	42	24 ⁴⁷⁶	191
C,	1-Dimethylamino-3- methyl-5-hexanone	184	46	10 ³⁰⁶	83/11
	1-Diethylamino-2- pentanone	436	79	24 ⁵³⁸	91/24, 104Se
	1-Diethylamino- 3	436	55	24 ¹⁸⁰	84/13, 1.4368 ¹⁵
	pentanone	443	37	24 ⁵³⁸	96/36, 102Se
	2-Dimethylaminomethyl- cyclohexanone	444	71	24 ⁴¹⁹	97/11.5, 146HCl
С ₁₀	5-Diethylamino-2- hexanone	184	42	10 ³⁰⁹	95/16, 1.4337 ²⁵
	1-Diethyl amino-4- hexanone	184	44†	10 ³⁰⁶	108/20
	1-Diethylamino-5- hexanone	184	60 †	10 ³⁰⁷	98/11, 1.4380 ²⁵
	2-Diethylaminomethyl- cyclopentanone	444	85	24 ⁴¹⁸	103/13
	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	Aromatic	Amino	Ketones	
C ₈	ω-Aminoacetophenone hydrochloride	437	75	24 ²³⁸	(187)
	o-Aminoacetophenone	425	78	2469	113/6, 75Ac
	m-Aminoacetophenone	425	71	24 ⁷⁰	(99), 128Ac
	p-Acetylaniline	178	19	10 ²⁶	168/6, (106), 166Ac
	N,N-Dimethyl-p- bromoaniline	431	88	24221	145/22, (53)
C۵	a-Aminopropiophenone	426	88	24 ³⁵⁷	114HCl
,	β -Aminopropiophenone	452	80	24 ⁴⁴⁰	127HCl
	o-Aminopropiophenone	425	76	24 ⁸¹	146/17, 74Ac
	<i>m</i> -Aminopropiophenone	425	96	2471	169/15, (42), 93Ac
C 10	2-Phenylamino-3-butanone	436	80	24 ¹⁸²	121/4, (52)

For explanations and symbols see pp. xi-xii.

ß

AMINES

Ch. 24

_	TABLE 89 (continued)					
Cn	Compound	Method	Yi e ld (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.	
	Aroma	atic Amino	Ketor	nes (continue	ed)	
C 10	a-Methylamino- propiophenone	43 6	57	24 ¹⁸⁵	177HC1	
	o-Dimethylamino- acetophenone	436	56	24 ¹⁸⁶	94/1.5, 184Pi	
C11	3-Phenylamino-2-	436	72	24 ¹⁸¹	120/1	
	a-Methylaminobutyr- ophenone	436	70	24 ¹⁸⁵	194HCI	
	1-Phenyl-3-dimethyl- amino-2-propanone	187	53	10 676	141/26, 127Pi	
	β-Dimethylaminopro- piophenone	444	72	24 * 20	156HCl	
C12	1-Dimethylamino-4- phenyl-2-butanone	436	43	24184	107/3.5, 1.5070	
	β-Dimethylamino-a- methylpπpiophenone	444	74	24 421	82/1, 1.5162 ²⁵ , 154HCl	
C 13	2 Aminobenzophenone	446	92	24 ²⁵⁹	(107)	
	4,4'-Diaminobenzophenone	183	70 †	10 248	(245), 241Ph	
	1-Amino fluo renone	446	56	24 267	(118.5), 138Ac	
	4-Aminofluorenone	446	74	24 ²⁶⁷	(139)	
C ₁₅	1-Phenyl-1-phenylamino- propanone	43 6	74	24 ¹⁸³	(91.5)	
C16	p-Dimethylaminobenzil	179	90	10 199	(116)	

For explanations and symbols see pp. n-xii.

TABLE 90. AMINO ACIDS

Cn	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	Aminoacetic acid (glycine)	247 247 435 447 452	92 87 77 54†	13 ⁵¹⁹ 13 ⁵¹⁸ 24 ¹⁰⁴ 24 ²⁷⁸	(263), 67 Am * (246), 62 An * (236d)
с,	a-Aminopropionic acid (alanine)	432 247 247 253 435	72† 60 44† 70	13 ⁵¹⁹ 13 ⁵²⁰ 13 ⁵²⁶ 24 ¹⁰⁵	(295), 62 Am* (295) 163Bz (295d)
	β -Aminopropionic acid (β -alanine)	451 247 247	71 90 86	24 ⁵⁰⁰ 13 ⁵²³ 13 ⁵²¹	(198), 123HCI*

TABLE 90. AMINO ACIDS

TABLE 90 (continued)

			(%)	Chapter	D.p., mm., "D, ("ap.), Denv
с,	β-Aminopropionic acid	247	90	13522	(198)
-	(B-alanine) (continued)	247	75†	13524	(200)
		247	69 t	13525	(197)
	,	248	70	13 ²⁰¹	
		249	72	13527	(195)
		427	75	24 ³³⁶	(195)
		437	85	24 ²³⁹	(200d)
		446	45	24 ²⁶⁸	(198d)
	a-Amino-B-hydroxypro-	97	40†	5542	
	pionic acid (serine)	247	51†	13528	(244), 150Bz
C,	a-Amino-n-butyric acid	247	61†	13519	(304), 75Am*
	-	253	50†	13529	140Bz
		278	82	13548	142Bz
		431	58	24233	
		435	60	24102	
		447	21†	24290	182HCl
	2-Aminobutyric acid	452	62	24 441	
	a-Aminoisobutyric acid	247	70	13530	
	a Ministroni () included	247	33	13 531	
		247	731	13 519	
		253	77 1	13529	198Bz
		280	76	1 3 530	127Am*
	a Marbula Baolonina	427	73	24 339	(182)
	N-Methylalapine	451	81	24	(317d), 129Bz
	N-Methylalanine	451	70	24 499	(182d)
	N-Emylgychie	431	100	24 232	(183)
	N, N Dimeniyigiyeme	278	43	13643	162Bz
	a-Amino succinic (a-	451	95	24498	(280d)
	aspartic) actu	471	41	24 300	(215d), 181Pi
	a, y-Diaminobalyne actu	449		24 24 446	(306d)
	meso-a, p-Diamino-	4.54	90	24	()00-)
	succinic acid	07	00	5 54S	(235)
	buryric acid	97	90)	
c.	a-Aminovaleric acid	247	68 +	13519	(291), 188HCl•
ς,	(norvaline)	278	86	13 557	117Ac
	(1001-000-0)	447	43	24 289	188HCl
		447	31	24 287	152Bz
	2- Aminovaleric acid	425	99	24 531	(197)
	S-Aminovaleric acid	248	71	13533	(158)*, 90Bz
	o-miniovalene acta	248	80	13 534	94HC1
	a-Aminoisovaleric acid	278	85	13 644	-
	(devaline)	4 35	48	24 106	(282d)
	(m- vanne)	447	221	24289	
		647	60	24 288	
	γ-Amino-β-methylbutyric	452	40	24 442	(174)

٠

AMINES

TABLE 90 (continued)

Ch. 24

TABLE 90. AMINO ACIDS

TABLE 90 (continued)

Cn	Compound	Me thod	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
<u> </u>	Histidine	278	45	13 542	(272)
·	<i>l</i> -Histidine hydrochloride			13544	(252)
	d-Arginine hydrochloride	••••	90	13 ⁵⁴⁷	(220)
C,	a-Aminoheptanoic acid	278	55	13 ⁵⁴⁸	(281), 135Bz
-,	7-Aminoheptanoic acid	427	30	24 ³³⁷	(187)
	β,β-Diethyl-β-amino- propionic acid	443	30	24 ⁴⁸⁶	(184)
	N.N-Dimethyl-dl-valine	431	100	24 ²³²	(152), 164HCl
	a-Methyl-7-dimethyl- aminobutyric acid	249	90	13 549	(76)
	β-Dimethylaminopivalic acid	253	74	13436	(99)
	β-2-Thienylalanine	4 26	68	24 ³¹⁴	(275)
C,	a-Aminoöctanoic acid	247	47†	13 ⁵⁵⁰	
		278	82	13 ⁵⁴⁸	(270), 128Bz
	N,N-Dimethyl-dl-leucine	431	100	24232	(188)
	a-Aminoph e nylacetic acid	247	37†	13***	176Bz*
	o-Aminophenylacetic acid	425	85	2474	(119)
	<i>m</i> -Aminophenylacetic acid	248	61	13147	(146), 166Am•
	p-Aminophenylacetic acid	248	51	1314/	(197), 162Am•
		425	84	24'	(200)
	p-Aminomethyl)-benzoic	427	80	24 340	(342), 2881101
	acid	437	64	24	
C,	a-Aminononanoic acid	278	55	13548	(273), 128Bz
		280	92	13.55	
	a-Amino-a-ph e nyl- propionic acid	247	40 '	13.55	(267)
	a-Amino-β-phenyl-	278	83	13**	146Ac
	propionic acid	278	67	1354	(257), 184BZ
		279	67	13	(288)
	dl-a-Amino- β -phenyl-	431	62	24	(2724)
	propionic acid	435	621	24 24 ²⁸⁸	(265)
		447	441	24 24 ²⁷⁸	235HC]
	β-Amino-α-phenyl-	447	66	24 ²⁶⁹	(223)
	propionic acid	264	50	13 554	
	p-Amilo-p-prelyr	264	70	13 555	(222)
	proprome acto	443	34	24 485	(221d)
	b- (B- Aminoethyl)-	260	48	13558	175Ac
	benzoic acid				
	m-Dimethylaminobenzoic acid	431	100	24 ²³²	(150)
	p-Dimethylaminobenzoic	431	80	24232	(240)
	acid	263	50	13619	(243)•

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	dl-a-Methylaminobutyric acid	431	62	24 ²³³	
	γ -N-Methylaminobutyric acid	248	90	13598	121HCl
	N-Methyl-a-aminoi sobu tyric acid	247	43†	13 ⁵³⁷	
	N,N-Dimethylalanine monohydrate	431	100	24 ²³²	(182), 148HCl
	a-Aminoglutaric (dl-	247	75	13 182	
	glutamic) acid	278	64 1	13557	(199)+ 103HC1+
		278	75	13 535	(199), 1991(4
				13536	(213) 202HCI+
	a-Amino-a-methyl- succinic acid	247	51 [†]	13519	(230)
	α,δ-Diamino-n-valeric acid (d -omithine)	449	75	24 ³⁰⁰	200Pi, 187Bz
	Methyliminodiacetic acid	436	71	24187	(215)
	γ-Methylmercapto-a-amino- butyric acid (dl- methionine)	278	85	13642	(280), 145Bz
C₅	dl-a-Amino-n-caproic acid (norleucine)	435	67	24 ¹⁰⁸	
	γ-Amino-n-caproic acid	426	47	24 ³⁶⁶	(181), 121HCl
	€-Aminocaproic acid	248	100	13540	(202), 105HBr*
		248	92	13541	(203)
	dl- α- Amino-β- me thyl-	247	741	13 \$19	(318)
	valeric acid	435	49	24 ¹⁰⁹	(280 d)
	α-Aminoisocaproic acid	278	64	13557	(295)*, 161Ac
	(leucine)	278	87	13542	(283), 141Bz
		435	45	24 ¹⁰⁷	(292d)
		447	51	24 ²⁸⁷	(293)
		447	68	24 ²⁸⁹	(282)
	a-Amino-a-ethylbutyric acid	247	43†	13543	
	a-Dimethylaminoiso- butyric acid	436	80	24 ¹²³	264HCl
	a-Aminoadipic acid	253	48†	13 ⁶⁰⁸	(189)
		435	86	24 ⁵³⁴	(202)
		452	84	24 534	(202)
	α,δ-Diaminoadipic acid	452	91	24 42 9	(300)
	a, ϵ -Diaminocaproic acid	280	78	13649	253HCI
	(dl-lysine)	435	69	24 ¹¹⁰	189HCl
	_	449	74	24 ³⁰⁰	189HCl
	dl-lysine dihydrochloride	435	62	24 ⁵³³	188HCl
	l-Cystine	••••• ••••	·····	13 ⁵⁴⁵ 13 ⁵⁴⁶	(261)•

 C_n

Compound

For explanations and symbols see pp. xi-xii.

C₉ β -Anilinopropionic acid

C₁₀ d-y-Phenyl-a-amino-

butyric acid C₁₁ Tryptophane AMINES

249

431

278

278

TABLE 90 (continued)

65

62

451

88

Method Yield (%) Chapterref. B.p./mm., n_D^t , (M.p.), Deriv.

(60)

(282), 206Ac

193Bz

13265

24²³³

13 560

13⁵⁶¹

Ch. 24

TABLE	92.	AMINO	CYANIDES
INDLL	220	1101110	CI MILDEO

TABLE 91 (continued)

Compound	Method	(%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
Aliph	atic Amin	no Este	ts (continue	d)
Ethyl α-methyl-γ- dimethylaminobutyrate	285	63†	14 ²⁹⁰	83/16
Methyl γ -diethylamino-	43 6	74	24 ¹⁸⁹	63/3, 102HCl
Ethyl a-diethylamino-	4 3 6	84	24 ¹⁸⁸	75/13
Diethyl dimethylamiso-	4 36	74	24 ⁵²¹	117/15, 1.432019
Ethyl 7-diethylamino- butyrate	285	70 †	14 ²⁹¹	105/17, 1.4342
	Aromati	c Amin	o Esters	
Methyl o-aminobenzoate	285	85	14 ¹	139/19
Methyl <i>m</i> -aminobenzoate	321	48	14 ⁴²⁸	(37)
	425	95	24 ⁷⁶	153/11, (37), 137Ac
Methyl p-aminobenzoate	285	53	14 ¹	
Ethyl p-aminobenzoate	425	100	24 ⁷⁵	(90)
Ethyl a-aminophenyl- acetate	285	65	14 ⁷⁴	115/5, 1.500 ²⁵ , 200HCl
Ethyl <i>m</i> -aminophenyl- acetate	425	87	2477	140/4, 1.5435 ²¹ , 131HCl
Ethyl p-(aminomethyl)- benzoate	437	40	24 ²⁴⁰	148/8, 237HCl
Methyl & anilinopropionate	443	69	24 ⁴⁷⁹	160/14, (38)
Methyl o-dimethylamino- benzoate	436	60	24 ¹⁹²	137-142/17
Ethyl α-amino-β-phenyl- propionate	42 6	53	24 ³⁶¹	142/10
Ethyl β-amino-β-phenyl- propionate	443	35	24 ⁴⁸³	146/11
	Aliph Ethyl α-methyl-γ- dimethylaminobutyrate Methyl γ-diethylamino- butyrate Ethyl α-diethylamino- propionate Diethyl dimethylamino- malonate Ethyl γ-diethylamino- butyrate Methyl ο-aminobenzoate Methyl p-aminobenzoate Ethyl p-aminobenzoate Ethyl p-aminobenzoate Ethyl p-aminobenzoate Ethyl μ-aminophenyl- acetate Ethyl m-aminophenyl- acetate Ethyl β-allinopropionate Methyl β-anlinopropionate Methyl β-amino-β-phenyl- propionate Ethyl β-amino-β-phenyl-	Aliphatic AminEthyl a -methyl- γ -285dimethylaminobutyrate436butyrate5Ethyl γ -diethylamino-436propionate36Diethyl dimethylamino-436malonate285Ethyl γ -diethylamino-285butyrate470Methyl γ -diethylamino-285butyrate425Methyl ρ -aminobenzoate285Ethyl p -aminobenzoate285Ethyl p -aminobenzoate285Ethyl p -aminobenzoate285Ethyl p -aminobenzoate285Ethyl p -aminobenzoate425Ethyl p -aminobenzoate425acetate285Ethyl p -aminophenyl-425acetate285Ethyl p -(aminomethyl)-437benzoate443Methyl β -aninopopionate443Methyl α -amino- β -phenyl-426propionate285Ethyl α -amino- β -phenyl-443	Aliphatic Amino EsteEthyl a-methyl- γ -28563 thedimethylaminobutyrate43674Methyl γ -diethylamino-43684propionate9Diethyl dimethylamino-43674malonate28570 theEthyl γ -diethylamino-28570 theMethyl γ -diethylamino-28570 theMethyl γ -diethylamino-28570 theMethyl o-aminobenzoate28585Methyl n-aminobenzoate321484259546 thyl p-aminobenzoate285Ethyl p-aminobenzoate28553Ethyl p-aminobenzoate42587acetate28565acetate28587acetate28587acetate28587Acetate43740benzoate44369Methyl β -anilinopropionate44369Methyl o-dimethylamino-43660benzoate28553Ethyl a-amino- β -phenyl-42653propionate24335	Aliphatic Amino Esters (continueEthyl α -methyl- γ -285 63^+ 14^{390} dimethylaminobutyrate43674 24^{189} butyrateEthyl α -diethylamino-43684 24^{186} propionateDiethyl dimethylamino-43674 24^{521} malonateEthyl γ -diethylamino-285 70^+ 14^{291} butyrateAromatic Amino EstersMethyl γ -diethylamino-285 70^+ 14^{291} butyrate28585 14^1 Ac dryl n -aminobenzoate28585 14^1 Ae dhyl m -aminobenzoate28553 14^1 Ethyl p -aminobenzoate28553 14^1 Ethyl p -aminobenzoate28553 14^1 Ethyl p -aminobenzoate425100 24^{75} Ethyl α -aminophenyl-28565 14^{74} acetateEthyl m -aminophenyl-42587 24^{77} acetateEthyl β -aminophenyl-43740 24^{190} benzoateMethyl β -anilinopropionate443 69 24^{479} Methyl β -anilinopropionate443 69 24^{479} benzoateEthyl α -amino- β -phenyl-42653 24^{483} Ethyl α -amino- β -phenyl-42653 24^{483}

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_D^t , (M.p.), Deriv.		
Aliphatic and Alicyclic Amino Cyanides							
C,	Aminoacetonitrile hydro- chloride	391	95	20 ³²⁸	(166)		
	Aminoacetonitrile hydrogen sulfate		81	24 ⁵²⁵			

For explanations and symbols see pp. xi-xii.

TABLE 91. AMINO ESTERS

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
		Aliphati	c Amin	o Esters	
C4	Methyl <i>β</i> -aminopropionate	292	67	14 301	51/12
	Ethyl aminoacetate	293	90	14171	143HCl
C₅	Methyl a-aminoisobutyrate	285	64	1473	134, 183HCl
	Ethyl a-aminopropionate	. 285	95	147	· -
	Ethyl β-aminopropionate	427	74	24 ³⁴⁰	56/10
		434	100	24 447	67HC1
	Methyl β-methylamino- propionate	443	40	24 447	50/11
C6	Ethyl B-amino-n-butyrate	426	21 †	24 ³⁶⁷	69/17 148Pi
	-, -	443	55	24 482	$\frac{62}{10}$ 74Am
	Ethyl β-methylamino- propionate	443	49	24 ⁴⁷⁸	68/18, 1.4218 ²²
C7	Ethyl β-amíno-n-valerate	426	23†	24 ³⁶⁷	84/17
	Ethyl a-methylamino- butyrate	436	63	24 ¹⁹⁰	65/20, 1.4174, 104Pi
	Ethyl β-methylamino-n- butyrate	443	89	24 442	66/10
	Ethyl aminomalonate (as acetyl derivative)	4 26	44†	24 ³⁶⁴	(96)
c.	Ethyl a-amino-n-caproate	426	86	24 ³⁶¹	88/11
	Ethyl β-amino-n-caproate	426	48	24 ³⁶⁷	104/25
	Isobutyl a-aminoiso- butyrate	285	66	1472	61/4, 1.4210, 103HC
	Ethyl β-ethylamino-n- butyrate	4 31	68	24 ³⁶⁷	75/12
	Methyl β-diethylamino- propionate	443	100	24 ⁴⁷⁷	66.5/8
	Ethyl a-aminosuccinate (dl-aspartic ester)	426	70	24 ³⁶⁵	98/1

•

711
AMINES

Ch. 24

	TABLE 92 (continued)							
C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv			
	Aliphatic and	Alicyclic	: Amino) Cyanides (continued)			
C3	β -Aminopropionitril e	388	33	20 247	89/20, 1.3496			
	Methylaminoacetonitrile	391	93	20 ³⁹⁰	65/20			
	Methyleneaminoacew- nitrile	391	71	20 ³¹²	(129)			
C4	3-Amino-n-propyl cyanide	452	38 t	24 445	97/20, 140HCl			
	a-Aminoisobuty ronitrile	391	77	20 ³¹⁷	48/11			
		391	80	20 ³²⁷	68/24, 1.4198			
	eta-Methylaminopropio- nitrile	388	78	20 ²⁴⁸	74/16, 1.4342 ¹⁵			
	Ethylaminoacetoni trile	391	70	20 ³²⁴	83/29			
	Dimethylaminoacetonitrile	391	83	20 ³¹³	134-137, 1.4095 ²⁵			
	Iminodiacetonitrile	392	100	20 ³⁴¹	(75)			
С,	a-Methylaminoi sobutyro- nitrile	391	57	20 ³⁸⁸	54/18, 133/747, 1.4176			
	β -Ethylaminopropioni trile	388	90	20250	95/30 1 4322			
	Isopropylaminoa ceto-	391	89	20 389	169HCl			
	nitril e	391	90	20 ³⁹⁰	85/20			
C,	5-Amino-n-amyl cyanide	452	68†	24 445	118/14 98Bz			
•	a-Aminodie thylaceto- nitrile	391	40	20 ³¹⁷	71/11			
	a-Methylamino-n-	391	85	20 ³⁹⁰	85/25			
	valeronitrile	392	77	20 ³⁹¹	74/14, 167, L4362 ¹⁴ , 103Pi			
	a-Methylaminoiso- valeronitrile	391	80	20 ³⁹⁰	70/20			
	a-Methylamino-a-methyl- n-butyronitrile	391	83	20 ³⁸⁸	68/17, 1.4282 ²¹ , 83Bz			
	a-Ethylaminoi sobutyro- nitrile	391	94	20 ³²¹	144/761			
	β-n-Propylaminopropio- nitrile	388	92	20 ²⁴⁹	121/30, 1.4362			
	β-Isopropylaminopropio- nitrile	388	95	20 ²⁵¹	87/17, 1.4290 ²⁵			
	a-Dimethylaminobutyro- nitrile	391	78	20 ³¹⁹	68/23			
	4-Dimethylaminobutyro- nitrile	387	64	20 ²¹⁵	44-47/1.5			
	a-Dimethylaminoisobutyro-	391	69	20 ³¹⁹	57/25			
	nitrile	391	88	20 327	50/20, 1.4215			
	Diethylaminoacetonitrile	391	90	20 322	63/14, 1.4230 ²⁵			
C,	a-Aminomethylbutylaceto- nitrile	391	51	20 ³¹⁷	88/10			
	a-Aminomethylisobutylace- tonitrile	391	53	20 ³¹⁷	76/10			

.

TABLE 92. AMINO CYANIDES

TABLE 92 (continued)

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
	Aliphatic and	Alicyclic	: Amino	o Cyanides (continued)
С,	a-Methylamino-a-ethyl- butyronittile	391	73	20 ³²¹	167/765
	a-Dimethylamino-a-methyl-	391	70	20 ³¹⁹	63/12
	à-Methylethylaminoiso-	391	53	20 ³¹⁹	58/14
	a-Diethylaminopropio-	391	65	20 323	49/7, 68/17
	nitrile	391	68	20 ³¹⁹	55/11
	B-Diethylaminoptopio-	388	97	20 ²⁵⁰	120/70, 1.4353
	nitrile	436	56	24194	84/13, 1.4343 ²⁵
	1-Amino-1-cyanocyclo-		77	20 315	(204)
	hexane hydrochloride				
C ₈	a-Ethylamino-a-isobutyl- acetonitrile	391	84	20 ³²⁴	84/12
	a-Dimethylamino-a-methyl- n-valeronitrile	391	49	20 ³¹⁹	7 5/ 10
	a-Dimethylamino-a-methyl- isovaleronitrile	. 391	49	20 ³¹⁹	63/7
	a-Dimethylamino-a-ethyl- butyronitrile	391	75	20 ³¹⁹	69-73/10
	γ-Diethylaminobutyro-	378	84	20 ¹¹³	93/14
	nitrile	387	83	20 215	89/9
		436	97	24 ¹⁹³	103/21, 1.4351, 70Pi
	a-Diethylaminoisobutyro-	391	59	20 ³²⁷	68/14, 1.4312
	nittile	391	39	20 ³¹⁹	74/14
C,	a-Diethylamino-n- valeronitrile	391	44	20 ³¹⁹	95/15
	α-Diethyl aminoiso- val eronitrile	391	39	20 ⁻³¹⁹	69/4
	β-Cyclohexylamino- propionitrile	388	92	20 ³⁴⁹	124/4, 1.4764
с.	E-Diethylaminocaptonittile	436	90	24 ¹⁹⁶	102/4, 62Pi
C 10	a-Diethylamino-a-iso- butylacetonitrile	391	92	20324	89/11
		Aromati	c Amin	o Cyanides	
<u>с.</u>	<i>m</i> -Aminobenzoni trile	425	63	2479	(53), 131Ac
c.	o-Aminobenzyl cyanide	425	88	24 ⁵²⁰	(72)
- 8	p-Aminobenzyl cyanide	425	79	24 ⁷⁸	147/1
	Anilinoacetonitrile	391	35	20324	(47)
с,	Methylphenylaminoaceto- nitrile	391	76	20 ³¹⁹	141/9

714	ł .	AMINES		AM		AMINES		Ch. 24
C _n	Compound	Method Yield Chapterref.		Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv			
	Aroma	atic Amino	Cyani	des (continu	ed)			
C 10	β -Benzylaminopropio- nitrile	388	73	20 252	185/23			
	a-Dimethy laminoph enyl- acetonitril e	391	29	20 ³¹⁹	90/6			
	a-Anilinoi sobutyroni tril e	391	93	20 ³²⁷	(94)			
C12	a-Diethylaminophenyl- acetonitrile	391 391	83 56	20 ³²³ 20 ³¹⁹	112/7, 131/11 124/9			
C 14	a-Aminodiphenylaceto- nitrile	392	77	20 ³³⁹	(102)			
	γ-Diethylamino-a-phenyl- butyronitrile	386	74	20 ¹⁹⁰	122/1			
	9 Amino-9-cyanofluorene	392	70	20 340	(96)			

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 24 REFERENCES FOR CHAPTER 24

¹Senkus, Ind. Eng. Chem., 40, 506 (1948); cf. ref. 54. ² Johnson and Degering, J. Am. Chem. Soc., 61, 3194 (1939); Hass and Riley, Chem. Revs., 32, 389 (1943). ³Clemo and Ormston, J. Chem. Soc., 1778 (1932). ⁴Hazlet and Dornfeld, J. Am. Chem. Soc., 66, 1781 (1944); cf. refs. 6 and 18. ⁸Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 165; cf. ref. 4. West, J. Chem. Soc., 127, 494 (1925). ⁷Cline and Reid, J. Am. Chem. Soc., 49, 3150 (1927). ⁸ Haworth and Barker, J. Chem. Soc., 1302 (1939); Stevens and Beutel, J. Am. Chem. Soc., 63, 311 (1941). ⁹Marvel et al., J. Am. Chem. Soc., 66, 916 (1944); ref. 10. ¹⁰ Craig, J. Am. Chem. Soc., 57, 195 (1935). ¹¹ Fieser and Cason, J. Am. Chem. Soc., 61, 1744 (1939); Emerson and Smith, ibid., 62, 141 (1940). ¹² Birch et al., J. Am. Chem. Soc., 71, 1362 (1949). ¹³ Lambooy, J. Am. Chem. Soc., 71, 3756 (1949). 14 Adkins, Reactions of Hydrogen, University of Wisconsin Press, Madison, 1937. ¹⁵ Allen and Van Allan, Org. Syntheses, 22, 9 (1942). ¹⁶ Adams, Cohen, and Rees, I. Am. Chem. Soc., 49, 1093 (1927). ¹⁷ McGuine and Dull, J. Am. Chem. Soc., 69, 1469 (1947). ¹⁸ Jenkins, McCullough, and Booth, Ind. Eng. Chem., 22, 31 (1930). ¹⁹ Campaigne and Reid, J. Am. Chem. Soc., 68, 1663 (1946). ²⁰ Bartlett and Cohen, J. Am. Chem. Soc., 62, 1187 (1940). ²¹ Kuhn, Org. Syntheses, Coll. Vol. II, 447 (1943); Sampey and Reid, J. Am. Chem. Soc., 69, 712 (1947). ²² Morgan and Harrison, J. Soc. Chem. Ind. (London), 60, 120T (1941); Friedman et al., J. Am. Chem. Soc., 71, 3012 (1949). ²³ Binz and v. Schickh, Ber., 68, 320 (1935). ²⁴ Renshaw and Friedman, J. Am. Chem. Soc., 61, 3320 (1939). ²⁵ Drake et al., J. Am. Chem. Soc., 68, 1605 (1946); refs. 26 and 27. ³⁶ Fieser and Hershberg, J. Am. Chem. Soc., 62, 1640 (1940); cf. ref. 27. ¹⁷ Winterbottom, J. Am. Chem. Soc., 62, 160 (1940). ¹⁸ Linsker and Evans, J. Am. Chem. Soc., 68, 149 (1946); also ref. 27. ²⁹ Linsker and Evans, J. Am. Chem. Soc., 68, 874 (1946). ³⁰ Albert and Ritchie, J. Soc. Chem. Ind. (London), 60, 120T (1941). ³¹Gilsdorf and Nord, J. Org. Chem., 15, 807 (1950). 32 Fieser and Kennelly, J. Am. Chem. Soc., 57, 1614 (1935). ³³ Craig and Cass, J. Am. Chem. Soc., 64, 783 (1942). ³⁴ Fries and Hemmecke, Ann., 470, 7 (1929). 33 Gilman and Nobis, J. Am. Chem. Soc., 71, 274 (1949); cf. ref. 36. ³⁶ Gilman and Avakian, J. Am. Chem. Soc., 68, 1514 (1946). ³⁷ Rockett and Whitmore, J. Am. Chem. Soc., 71, 3249 (1949). 38 Kornblum and Iffland, J. Am. Chem. Soc., 71, 2137 (1949). ³⁹ Cerf, Bull. soc. chim. France, (5) 4, 1460 (1937). 40 Senkus, J. Am. Chem. Soc., 68, 10 (1946); Johnson, ibid., 12, 14 (1946). ⁴¹ Martin, Org. Syntheses, Coll. Vol. II, 501 (1943). 42 Gill, MacGillivray, and Munro, J. Chem. Soc., 1753 (1949).

43 Mahood and Schaffner, Org. Syntheses, Coll. Vol. II, 160 (1943). ** Morgan and Walls, J. Soc. Chem. Ind., (London), 50, 94T (1931). 45 Ruggli and Lang, Helv. Chim. Acta, 19, 996 (1936). 46 Huang-Minlon, J. Am. Chem. Soc., 70, 2802 (1948); cf. ref. 326. 47 Ruggli and Lang, Helv. Chim. Acta, 21, 38 (1938). 48 Weygand and Gabler, Ber., 71, 2474 (1938). ⁴⁹ Kiewiet and Stephen, J. Chem. Soc., 82 (1931). ⁵⁰ Winans, J. Am. Chem. Soc., 61, 3564 (1939). ⁵¹ Mathieson and Newbery, J. Chem. Soc., 1136 (1949); Natelson and Gottfried, J. Am. Chem. Soc., 61, 1001 (1939). 52 Bradlow and Vanderwerf, J. Am. Chem. Soc., 70, 654 (1948); Dunker and Starkey, ibid., 61, 3005 (1939); Schiemann and Pillarsky, Ber., 62, 3041 (1929). ⁵³Steck, Hallock, and Holland, J. Am. Chem. Soc., 68, 1243 (1946); von Baeyer, Ber., 38, 2761 (1905). ⁵⁴ Johnson and Degering, J. Org. Chem., 8, 7 (1943); Vanderbilt and Hass, Ind. Eng. Chem., 32, 34 (1940). 55 Hoover and Hass, J. Org. Chem., 12, 506 (1947). ⁵⁶Gakenheimer and Hartung, J. Org. Chem., 9, 85 (1944). 57 Attenburrow et al., J. Chem. Soc., 514 (1949). ^{\$8}Galatis, J. prakt. Chem., 151, 334 (1938); Hewitt and King, J. Chem. Soc., 822 (1926). ⁵⁹ Rupe and Brentano, Helv. Chim. Acta, 19, 594 (1936). 60 Marvel and Overberger, J. Am. Chem. Soc., 68, 185 (1946). ⁶¹Phillips and Maggiolo, J. Org. Chem., 15, 659 (1950). 62 Woodburn and Stuntz, J. Am. Chem. Soc., 72, 1361 (1950). 63 Lempert and Robinson, J. Chem. Soc., 1420 (1934); cf. ref. 6. 64 Clinton and Suter, J. Am. Chem. Soc., 69, 704 (1947). 65 Tarbell et al., J. Am. Chem. Soc., 70, 1384 (1948); cf. ref. 66. ⁶⁶Suter, J. Am. Chem. Soc., 51, 2581 (1929). ⁶⁷Smith and Opie, Org. Syntheses, 28, 11 (1948). 53 Cocker, Harris, and Loach, J. Chem. Soc., 751 (1938). ⁶⁹Leonard and Boyd, J. Org. Chem., 11, 405 (1946). ⁷⁰Marvel, Allen, and Overberger, J. Am. Chem. Soc., 68, 1088 (1946); King, McWhirter, and Barton, ibid., 67, 2091 (1945); also ref. 69. "Keneford and Simpson, J. Chem. Soc., 356 (1948). ⁷²Simpson et al., J. Chem. Soc., 646 (1945). ⁷³Robertson, Org. Syntheses, Coll. Vol. I, 52 (1941). ⁷⁴Hahn and Tulus, Ber., 74, 515 (1941). ⁷⁵Adams and Cohen, Org. Syntheses, Coll. Vol. I, 240 (1941). ⁷⁶Ungnade and Henick, J. Am. Chem. Soc., 64, 1737 (1942). "Cronyn, J. Org. Chem., 14, 1013 (1949). ⁷⁸Wawzonek, J. Am. Chem. Soc., 68, 1157 (1946). ⁷⁹Blanksma and Petri, Rec. trav. chim., 66, 353 (1947). ⁸⁰Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 171. 41 Hodgson and Ward, J. Chem. Soc., 663, 794 (1945). ⁴²Hodgson and Birtwell, J. Chem. Soc., 318 (1943); Bradyet al., ibid., 2264 (1929). 85 Fieser and Martin, J. Am. Chem. Soc., 57, 1838 (1935). ⁴⁴Whitmore and Langlois, J. Am. Chem. Soc., 54, 3441 (1932).

⁸⁵Westphal and Jerchel, Ber., 73, 1002 (1940); v. Braun and Klar, ibid., 73, 1417 (1940). ⁵⁶Patrick, McBee, and Hass, J. Am. Chem. Soc., 68, 1009 (1946). "Wisansky and Ansbacher, Org. Syntheses, 28, 46 (1948). ⁸⁸Groggins and Stirton, Ind. Eng. Chem., 28, 1051 (1936); 29, 1353 (1937). ⁸⁹Pinck and Hilbert, J. Am. Chem. Soc., 68, 377 (1946). ⁹⁰Gilman and Van Ess, J. Am. Chem. Soc., 61, 1369 (1939). 91 Gilman and Jacoby, J. Org. Chem., 3, 108 (1938). ⁹²Albert et al., Org. Syntheses, 22, 5 (1942); J. Soc. Chem. Ind. (London), 64. 170 (1945). 93 Hertog and Wibaut, Rec. trav. chim., 55, 122 (1936); Maier-Bode, Ber., 69, 1534 (1936). 94 Jansen and Wibaut, Rec. trav. chim., 56, 709 (1937). 95 Kave, I. Am. Chem. Soc., 71, 2322 (1949). 96 v. Braun, Ber., 70, 979 (1937). ⁹⁷Amundsen and Krantz, J. Am. Chem. Soc., 63, 305 (1941); Org. Syntheses, 23, 23 (1943). 98 Fargher, J. Chem. Soc., 117, 1351 (1920); Groggins and Stirton, Ind. Eng. Chem., 29, 1355 (1937). 99 Osterberg and Kendall, J. Am. Chem. Soc., 42, 2616 (1920); Johnson and Schubert, ibid., 72, 2189 (1950); Wilson and Read, J. Chem. Soc., 1272 (1935). ¹⁰⁰Tamele et al., Ind. Eng. Chem., 33, 115 (1941). ¹⁰¹Wernert and Brode, J. Am. Chem. Soc., 54, 4365 (1932). ¹⁰²Cheronis et al., J. Org. Chem., 6, 349, 467 (1941). 103 Block, Chem. Revs., 38, 501 (1946). 104 Orten and Hill, Org. Syntheses, Coll. Vol. I, 300 (1941); Tobie and Ayres, I. Am. Chem. Soc., 64, 725 (1942). 108 Tobie and Ayres, Org. Syntheses, Coll. Vol. I, 23 (1941). ¹⁰⁶Marvel, Org. Syntheses, 20, 106 (1940). ¹⁰⁷Marvel, Org. Syntheses, 21, 74 (1941). ¹⁰⁸Marvel and du Vigneaud, Org. Syntheses, Coll. Vol. I, 48 (1941). ¹⁰⁹ Marvel, Org. Syntheses, 21, 60 (1941). ¹¹⁰Eck and Marvel, Org. Syntheses, Coll. Vol. II, 374 (1943). ¹¹¹Marvel, Org. Syntheses, 21, 101 (1941). ¹¹²Elks, Hems, and Ryman, J. Chem. Soc., 1386 (1948). ¹¹³Wells and Allen, Org. Syntheses, Coll. Vol. II, 221 (1943). ¹¹⁴Willson and Wheeler, Org. Syntheses, Coll. Vol. I, 102 (1941). ¹¹⁵Buck and Ferry, Org. Syntheses, Coll. Vol. II, 290 (1943). ¹¹⁶Lazier and Adkins, J. Am. Chem. Soc., 46, 741 (1924). ¹¹⁷Hughes, Veatch, and Elersich, Ind. Eng. Chem., 42, 787 (1950). ¹¹⁸Speer and Hill, J. Org. Chem., 2, 139 (1937). ¹¹⁹Hickinbottom, J. Chem. Soc., 992 (1930). 120 Zanetti and Bashour, J. Am. Chem. Soc., 61, 3133 (1939), cf. ref. 138. 121 Blicke, Monroe, and Zienty, J. Am. Chem. Soc., 61, 91, 93, 771, 775 (1939). 122 Buck and Baltzly, J. Am. Chem. Soc., 63, 1964 (1941). 123Clarke, Gillespie, and Weisshaus, J. Am. Chem. Soc., 55, 4571 (1933). 124 Borrows et al., J. Chem. Soc., 197 (1947). ¹²⁵King and Work, J. Chem. Soc., 401 (1942). ¹²⁶Caspe, J. Am. Chem. Soc., 54, 4457 (1932). 127 Adams, Brown, and Marvel, Org. Syntheses, Coll. Vol. I, 528, 531 (1941). 128 Marvel and Jenkins, Org. Syntheses, Coll. Vol. I, 347 (1941).

¹²⁹Werner. J. Chem. Soc., 111, 850 (1917). 130 Evans and Williams, J. Chem. Soc., 1199 (1939). ¹³¹Billman, Radike, and Mundy, J. Am. Chem. Soc., 64, 2977 (1942). 132 Thomas, Billman, and Davis, J. Am. Chem. Soc., 68, 895 (1946). 133 Gokhle and Mason. J. Chem. Soc., 1757 (1930); cf. ref. 134. ¹³⁴Germuth, J. Am. Chem. Soc., 51, 1555 (1929). ¹³⁵Knoevenagel, I. prakt. Chem., 89, 30 (1913). ¹³⁶Hager, Org. Syntheses, Coll. Vol. 1, 544 (1941). 137 Gilman et al., I. Am. Chem. Soc., 67, 2106 (1945). 138 Lutz et al., J. Org. Chem., 12, 760 (1947). 139 Hurd and Drake. I. Am. Chem. Soc., 61, 1943 (1939). ¹⁴⁰Shelton et al., J. Am. Chem. Soc., 68, 753, 755, 757 (1946). ¹⁴¹Weilmuenster and Jordan, J. Am. Chem. Soc., 67, 415 (1945). 142 Reck, Harwood, and Ralston, J. Org. Chem., 12, 517 (1947). 143 Groenewoud and Robinson, J. Chem. Soc., 1692 (1934). 144 Linsker and Evans, J. Am. Chem. Soc., 67, 1581 (1945). 146 Linsker and Evans, I. Am. Chem. Soc. 68, 1432 (1946). 146 Donia et al., J. Org. Chem., 14, 946 (1949). 147Kermack and Wight, J. Chem. Soc., 1425 (1935). 148 Mannich and Margotte, Ber., 68, 273 (1935). 149 Stahmann and Cope, J. Am. Chem. Soc., 68, 2494 (1946). ¹⁵⁰Linsker and Evans, J. Org. Chem., 10, 283 (1945). ¹⁵¹Cope and Towle. I. Am. Chem. Soc., 71, 3423 (1949). 152 Elderfield et al., I. Am. Chem. Soc., 68, 1579 (1946). ¹⁵³ Breslow et al., J. Am. Chem. Soc., 67, 1472 (1945). ¹⁵⁴Davies and Cox, J. Chem. Soc., 614 (1937); cf. ref. 130. ¹⁵⁵Gilman and Banner, J. Am. Chem. Soc., 62, 344 (1940). ¹⁵⁶Hartman, Org. Syntheses, Coll. Vol. II, 183 (1943). ¹⁵⁷Pierce, Salsbury, and Fredericksen, J. Am. Chem. Soc., 64, 1691 (1942). ¹⁵⁸Munch, Thannhauser, and Cottle, J. Am. Chem. Soc., 68, 1297 (1946). ¹³⁹Rindfusz and Harnack, J. Am. Chem. Soc., 42, 1723 (1920). ¹⁶⁰Hancock et al., I. Am. Chem. Soc., 66, 1747 (1944). ¹⁶¹ Bachman and Mayhew, J. Org. Chem., 10, 243 (1945). ¹⁶²Kremer and Waldman, J. Am. Chem. Soc., 64, 1089 (1942); Pierce et al., ibid., 64, 2884 (1942). ¹⁶³Campbell and Campbell, J. Am. Chem. Soc., 60, 1372 (1938). 164Goldberg, Ringk, and Spoerri, J. Am. Chem. Soc., 61, 3562 (1939). ¹⁶⁵Elderfield et al., J. Am. Chem. Soc., 68, 1516 (1946). ¹⁶⁶Fourneau, Benoit, and Firmenich, Bull. soc. chim. France, (4) 47, 880 (1930). ¹⁶⁷Kon and Roberts. I. Chem. Soc., 980 (1950). 168 Elderfield et al., J. Am. Chem. Soc., 69, 1258 (1947); Campbell et al., ibid., 68. 1556 (1946); cf. ref. 174. ¹⁶⁹Moffett, J. Org. Chem., 14, 862 (1949). 170 Marvel, Zartman, and Bluthardt, J. Am. Chem. Soc., 49, 2300 (1927). ¹⁷¹Gibbs, Littmann, and Marvel, J. Am. Chem. Soc., 55, 753 (1933). ¹⁷²Cowan and Marvel, J. Am. Chem. Soc., 58, 2277 (1936). ¹⁷³Drake et al., J. Am. Chem. Soc., 68, 1536 (1946). ¹⁷⁴Campbell et al., *I. Am. Chem. Soc.*, 68, 1556 (1946). 175 Alexander, J. Am. Chem. Soc., 70, 2592 (1948). 174 Johnson et al., J. Am. Chem. Soc., 69, 2364 (1947).

177 Cocker and Harris, J. Chem. Soc., 1092 (1939).

178 Zaugg and Horrom, J. Am. Chem. Soc., 72. 3004 (1950). 179 Magee and Henze, J. Am. Chem. Soc., 60, 2148 (1938); cf. ref. 218. 180 A damson et al., J. Chem. Soc., 1578 (1937). 181 Janetzky and Verkade, Rec. trav. chim., 65, 909 (1946). 182] anetzky and Verkade, Rec. trav. chim., 65, 697 (1946). 183 Verkade and Janetzky, Rec. trav. chim., 62, 780 (1943). 184 Henze and Holder, J. Am. Chem. Soc., 63, 1943 (1941). 185 Hyde, Browning, and Adams, J. Am. Chem. Soc., 50, 2287 (1928); Fourneau and Barrelet, Bull. soc. chim. France, 47, 72 (1930). ¹⁸⁶Bogert and Nabenhauer, J. Am. Chem. Soc., 46, 1702 (1924). 187 Berchet, Org. Syntheses, Coll. Vol. 11, 397 (1943). 188 Biilmann and Berg, Bull. soc. chim. France, (5) 1, 1657 (1934). 189 Blicke, Wright, and Zienty, J. Am. Chem. Soc., 63, 2488 (1941). 190 Leonard and Ruyle, J. Am. Chem. Soc., 71, 3094 (1949). ¹⁹¹Magidson et al., Arch. Pharm., 272, 77 (1934). ¹⁹² Mills and Dazeley, J. Chem. Soc., 460 (1939). ¹⁹³Clark and Mosher, J. Am. Chem. Soc., 72, 1026 (1950); ref. 195. ¹⁹⁴Utermohlen and Hamilton, J. Am. Chem. Soc., 63, 156 (1941). ¹⁹⁵Whitmore et al., J. Am. Chem. Soc., 66, 725 (1944). 196 Breslow and Hauser, J. Am. Chem. Soc., 67, 686 (1945). ¹⁹⁷Campbell, J. Am. Chem. Soc., 71, 740 (1949). 198 Behr et al., J. Am. Chem. Soc., 68, 1296 (1946). ¹⁹⁹ Burckhalter et al., J. Am. Chem. Soc., 70, 1363 (1948). 200 Johnson, Hill, and Donleavy, Ind. Eng. Chem., 12, 636 (1920); ibid., 13, 504 (1921). ²⁰¹Swann in Technique of Organic Chemistry, Vol. II, Interscience Publishers, New York, pp. 143-208. 202 Emerson in Organic Reactions, Vol. 4, John Wiley & Sons, New York, 1948, p. 174. 203 Schwoegler and Adkins, J. Am. Chem. Soc., 61, 3499 (1939). ²⁰⁴Winans, J. Am. Chem. Soc., 61, 3566 (1939). 205 Haskelberg, J. Am. Chem. Soc., 70, 2811 (1948). 206 Rohrmann and Schonle, J. Am. Chem. Soc., 66, 1516 (1944). ²⁰⁷ Alexander and Misegades, J. Am. Chem. Soc., 70, 1315 (1948); cf. ref. 203. 208 Robinson and Snyder, Org. Syntheses, 23, 68 (1943). ²⁰⁹Fleury-Larsonneau, Bull. soc. chim. France, (5) 6, 1576 (1939). ²¹⁰Emerson and Walters, J. Am. Chem. Soc., 60, 2023 (1938). ²¹¹Emerson and Mohrman. J. Am. Chem. Soc., 62, 69 (1940); cf. ref. 210. ²¹²Emerson and Uraneck, J. Am. Chem. Soc., 63, 749 (1941). ²¹³Emerson and Robb, J. Am. Chem. Soc., 61, 3145 (1939). 214 Woodruff, Lambooy, and Burt, J. Am. Chem. Soc., 62, 922 (1940). 215 Winans and Adkins, J. Am. Chem. Soc., 54, 306 (1932). 216 Skita, Keil, and Havemann, Ber., 63, 39 (1930); ibid., 66, 1400 (1933). ²¹⁷Wagner, J. Am. Chem. Soc., 55, 724 (1933). ²¹⁸ Breslow et al., J. Am. Chem. Soc., 68, 100 (1946). ²¹⁹Pearson, Jones, and Cope, J. Am. Chem. Soc., 68, 1225 (1946). 220 Crum and Robinson, J. Chem. Soc., 561 (1943). 221 Emerson, Dorf, and Deutschman, J. Am. Chem. Soc., 62, 2159 (1940). 222 Cope and Hancock, J. Am. Chem. Soc., 64, 1503 (1942). 223 Hancock and Cope, Org. Syntheses, 26, 38 (1946). ²²⁴Cope and Hancock, J. Am. Chem. Soc., 66, 1453 (1944). ²²⁵Hancock and Cope, J. Am. Chem. Soc., 66, 1738 (1944).

²²⁶Engelhardt, Crossley, and Sprague, J. Am. Chem. Soc., 72, 2718 (1950). ²²⁷Drake et al., J. Am. Chem. Soc., 71, 455 (1949). ²²⁸Woods and Sanders, J. Am. Chem. Soc., 68, 2111 (1946); cf. ref. 229. ²²⁹Scriabine, Bull. soc. chim. France, (5) 14, 455 (1947). ²³⁰Drake et al., J. Am. Chem. Soc., 68, 1529 (1946). ¹³¹Skita, Keil, and Baesler, Ber., 66, 858 (1933). 232 Bowman and Stroud, J. Chem. Soc., 1342 (1950). ²³³Knoop and Oesterlin, Z. physiol. Chem., 148, 294 (1925); 170, 186 (1927). ²³⁴Heidelberger, An Advanced Laboratory Manual for Organic Chemistry, Chemical Catalog Co., New York, 1923, p. 24; Delepine, Bull. soc. chim. France, (3) 17, 293 (1897); cf. ref. 235. 235 Galat and Elion, J. Am. Chem. Soc., 61, 3585 (1939). ²³⁶Delepine, Bull. soc. chim. France, (4) 31, 108 (1922). 237 Graymore, J. Chem. Soc., 1116 (1947). ²³⁸Mannich and Hahn, Ber., 44, 1542 (1911). 239 Wendler. J. Am. Chem. Soc., 71, 375 (1949). 240 Blicke and Lilienfeld, J. Am. Chem. Soc., 65, 2281 (1943). ²⁴¹ Baniel et al., *J. Org. Chem.*, 13, 791 (1948). 242 Blicke and Burckhalter, J. Am. Chem. Soc., 64, 477 (1942). 243 Blicke and Maxwell, J. Am. Chem. Soc., 61, 1780 (1939). 244 Wallis and Lane in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 267. 245Hofmann, Ber., 15, 762 (1882). ²⁴⁶Hoogewerff and van Dorp, Rec. trav. chim., 6, 386 (1887). 247 Whitmore and Thorpe, J. Am. Chem. Soc., 63, 1118 (1941). 248 Whitmore and Homeyer, J. Am. Chem. Soc., 54, 3435 (1932). ²⁴⁹ Jeffreys, Am. Chem. J., 22, 14 (1899). ²⁵⁰Schlatter, J. Am. Chem. Soc., 63, 1733 (1941). ²⁵¹Gutt, Ber., 40, 2061 (1907). ²⁵²Hauser and Renfrow, J. Am. Chem. Soc., 59, 121 (1937). ²⁵³Beckmann and Correns, Ber., 55, 848 (1922). ²⁵⁴Hoogewerff and van Dorp, Rec. trav. chim., 5, 252 (1886). 255 Arcus and Kenyon, J. Chem. Soc., 916 (1939). 256 Woodruff and Conger, J. Am. Chem. Soc., 60, 465 (1938). 257 Woodruff and Pierson, J. Am. Chem. Soc., 60, 1075 (1938). ²⁵⁸Cope, Foster, and Towle, J. Am. Chem. Soc., 71, 3932 (1949). ²⁵⁹Hewett et al., J. Chem. Soc., 292 (1948). 260 Graf, J. prakt. Chem., 133, 19 (1932). ²⁶¹Gilman and Swiss, J. Am. Chem. Soc., 66, 1884 (1944); cf. ref. 90. ²⁶²v. Braun and Lemke, Ber., 55, 3526 (1922). 263 v. Braun and Jostes, Ber., 59, 1091 (1926). ²⁶⁴Horowitz and Geissman, J. Am. Chem. Soc., 72, 1518 (1950). ²⁶⁵ Buck and Ide, Org. Syntheses, Coll. Vol. II, 44 (1943). 266 Graebe and Rostovzeff, Ber., 35, 2747 (1902). ²⁶⁷Huntress, Pfister, and Pfister, J. Am. Chem. Soc., 64, 2845 (1942). ²⁶⁸Clarke and Behr, Org. Syntheses, Coll. Vol. II, 19 (1943). ²⁶⁹Natarajan and Swaminathan, J. Am. Chem. Soc., 69, 2560 (1947). ²⁷⁰Smith in Organic Reactions, Vol. 3. John Wiley & Sons, New York, 1946. p. 337. ²⁷¹Naegeli, Grüntuch, and Lendorff, Helv. Chim. Acta, 12, 227 (1929). ²⁷²Manske, J. Am. Chem. Soc., 51, 1202 (1929).

AMINES

REFERENCES FOR CHAPTER 24

²⁷³Buchman et al., J. Am. Chem. Soc., 64, 2696 (1942). ²⁷⁴McCoubrey and Mathie son, 1. Chem. Soc., 696 (1949). ²⁷⁵Kenyon and Young, J. Chem. Soc., 263 (1941). ²⁷⁶Mayer and Sieglitz, Ber., 55, 1847 (1922). 277 Goldberg, Ordas, and Carsch, J. Am. Chem. Soc., 69, 260 (1947). ²⁷⁸Smith, ref. 270, p. 381. 279Skita and Rössler, Ber., 72, 461 (1939). 280 Naegeli and Lendorff, Helv. Chim. Acta, 15, 49 (1932). ²⁸¹Stevenson and Johnson, J. Am. Chem. Soc., 59, 2525 (1937). 282 Singleton and Edwards, J. Am. Chem. Soc., 60, 540 (1938). ²⁸³Mayer and Krieger, Ber., 55, 1659 (1922). ²⁶⁴Mousseron and Jacquier, Bull. soc. chim. France, (5) 17, 238 (1950). 285 Curtius, J. prakt. Chem., 89, 508 (1914). 286 Curtius, J. prakt. Chem., 58, 190 (1898); Naegeli and Tyabji, Helv. Chim. Acta, 16, 349 (1933). 287 Darapsky, I. prakt. Chem., 146, 250 (1936). ²⁸⁸Gagnon, Gaudry, and King, J. Chem. Soc., 13 (1944). ²⁸⁹Curtius, I. prakt. Chem., 125, 211 (1930). ²⁹⁰Curtius and Sieber, Ber., 55, 1543 (1922). 291 Yale, Chem. Revs., 33, 209 (1943). ²⁹²Wolff in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946. p. 307. ²⁹³ Adamson and Kenner, J. Chem. Soc., 842 (1934). ²⁹⁴Oesterlin, Z. angew. Chem., 45, 536 (1932). ²⁹⁵Briggs and Lyttleton, I. Chem. Soc., 421 (1943). ²⁹⁶v. Braun and Friehmelt, Ber., 66, 684 (1933). ²⁹⁷Benson, Hartzel, and Savell, J. Am. Chem. Soc., 71, 1111 (1949). ²⁹⁸ Dice and Smith, J. Org. Chem., 14, 179 (1949). ²⁹⁹Fuson, Maynert, and Shenk, J. Am. Chem. Soc., 67, 1939 (1945). 300 Adamson, J. Chem. Soc., 1564 (1939). 301 Schmidt. Ber., 57, 704 (1924). ³⁰²Nystrom and Brown, J. Am. Chem. Soc., 70, 3738 (1948). 303 Adams and Marvel, J. Am. Chem. Soc., 42, 314 (1920); Suter and Moffett, ibid., 56, 487 (1934). ³⁰⁴Bloom, Breslow, and Hauser, J. Am. Chem. Soc., 67, 539 (1945). 305 Walter and McElvain, J. Am. Chem. Soc., 56, 1614 (1934). ³⁰⁶Suida and Drahowzal, Ber., 75, 995 (1942). 307 Carothers and Adams, J. Am. Chem. Soc., 47, 3051 (1925). ³⁰⁸ Adkins and Billica, J. Am. Chem. Soc., 70, 695 (1948). 309 Adkins and Cramer, J. Am. Chem. Soc., 52, 4349 (1930). ³¹⁰Robinson and Snyder, Org. Syntheses, 23, 71 (1943), footnote 5. ³¹¹ Freeman, Ringk, and Spoerri, J. Am. Chem. Soc., 69, 858 (1947). ³¹²Geissman and Tess, J. Am. Chem. Soc., 62, 514 (1940); St. Goldschmidt and Veer, Rec. trav. chim., 67, 489 (1948). ³¹³van de Kamp, Burger, and Mosettig, J. Am. Chem. Soc., 60, 1321 (1938). ³¹⁴Crowe and Nord, J. Org. Chem., 15, 81 (1950). 315Kolloff and Hunter, J. Am. Chem. Soc., 63, 490 (1941); cf. Prijs, Lutz, and Erlenmeyer, Helv. Chim. Acta, 31, 571 (1948). ³¹⁶Turner, J. Am. Chem. Soc., 68, 1607 (1946). ^{\$17}King and Acheson, J. Chem. Soc., 683 (1946). ³¹⁸Reihlen et al., Ann., 493, 20 (1932).

³¹⁹Tarbell et al., J. Am. Chem. Soc., 68, 1217 (1946). ³²⁰Corse, Bryant, and Shonle, J. Am. Chem. Soc., 68, 1905 (1946). 321 Huber, J. Am. Chem. Soc., 66, 876 (1944). 322 Hawkins and Briggs, J. Am. Chem. Soc., 71, 2530 (1949). 323 Biggs and Bishop, Org. Syntheses, 27, 18 (1947). ³²⁴Malachowski et al., Ber., 71, 759 (1938). 325 Ruggli and Prijs. Helv. Chim. Acta, 28, 674 (1945). 326 Albert. Mills, and Royer, J. Chem. Soc., 1452 (1947). 327 Paul and Cottin, Bull. soc. chim. France, (5) 4, 933 (1937). ³²⁸Wiley, J. Am. Chem. Soc., 68, 1867 (1946). ³²⁹Utermohlen, J. Am. Chem. Soc., 67, 1505 (1945). 330 Tarbell and Noble. I. Am. Chem. Soc., 72, 2657 (1950). 331 Marvel and Tanenbaum, J. Am. Chem. Soc., 44, 2649 (1922). 332 Buck, J. Am. Chem. Soc., 55, 2593, 3388 (1933). 333Kindler and Peschke, Arch. Pharm., 269, 581 (1931). 334 Wiley and Adkins, J. Am. Chem. Soc., 60, 914 (1938). 335 Mousseron, Jullien, and Winternitz, Bull. soc. chim. France, (5) 15, 884 (1948). 336 Ruggli and Businger, Helv. Chim. Acta, 25, 35 (1942). 337 Schultz, J. Am. Chem. Soc., 69, 1056 (1947). 338 Albert and Magrath, J. Chem. Soc., 678 (1944); Havinga and Veldstra, Rec. trav. chim., 66, 271 (1947). 339 Pollack, J. Am. Chem. Soc., 65, 1335 (1943). 340 Weygand, Ber., 74, 256 (1941). ³⁴¹Winans and Adkins, J. Am. Chem. Soc., 55, 4167 (1933). ³⁴Biggs and Bishop, Ind. Eng. Chem., 38, 1084 (1946); Kindler and Hess. Arch. Pharm., 271, 439 (1933). 343 Wojcik and Adkins, J. Am. Chem. Soc., 56, 2419 (1934). 344 Uffer and Schlittler, Helv. Chim. Acta, 31, 1397 (1948). 345 Gavrilov, Koperina, and Klyuchareva, Bull. soc. chim. France, (5) 12, 773 (1945). 346 Winans and Adkins, J. Am. Chem. Soc., 55, 2051 (1933). 347 Paul. Bull. soc. chim. France, (5) 4, 1121 (1937). 346King, Barltrop, and Walley, J. Chem. Soc., 277 (1945). 349 Hass, Susie, and Heider, J. Org. Chem., 15, 8 (1950). 350 Lycan, Puntambeker, and Marvel, Org. Syntheses, Coll. Vol. II, 318 (1943). 531 Pinck and Hilbert, J. Am. Chem. Soc., 54, 710 (1932). 352 Breslow et al., J. Am. Chem. Soc., 66, 1921 (1944). 353 Magidson and Grigorowsky, Ber., 69, 396 (1936). 354 Carmack et al., J. Am. Chem. Soc., 68, 1220 (1946). ³⁵⁵Hurd and Perletz, J. Am. Chem. Soc., 68, 38 (1946). 336 Hartung and Munch, J. Am. Chem. Soc., 51, 2262 (1929). 357 Mills and Grigor. J. Chem. Soc., 1568 (1934). 356 Fischer, Sturm, and Friedrich, Ann., 461, 257 (1928). 339 Koessler and Hanke, J. Am. Chem. Soc., 40, 1716 (1918). 360 Barry and Hartung, J. Org. Chem., 12, 460 (1947). 561 Shivers and Hauser, J. Am. Chem. Soc., 69, 1264 (1947). 362 Hamlin and Hastung, J. Biol. Chem., 145, 349 (1942). 363 Snyder and Smith. J. Am. Chem. Soc., 66, 350 (1944). 364 Granacher, Helv. Chim. Acta, 6, 458 (1923). ³⁶⁵Cocker, J. Chem. Soc., 1489 (1940).

300 Müller and Feld. Monatsh., 58, 22 (1931). 367 Decombe, Ann. chim., (10) 18, 126 (1932). 366 Campbell, Sommers, and Campbell, J. Am. Chem. Soc., 66, 82 (1944). 369 Henze and Humphreys, J. Am. Chem. Soc., 64, 2878 (1942); cf. ref. 368. 370 Tiollais, Bull. soc. chim, France, (5) 14, 959 (1947). ³⁷¹Campbell, Sommers, and Campbell, Org. Syntheses, 27, 12 (1947). 372 Allen and Van Allan, Org. Syntheses, 21, 108 (1941). 373 Cromwell, Babson, and Harris, J. Am. Chem. Soc., 65, 312 (1943). 374Cromwell and Heksema, J. Am. Chem. Soc., 67, 1658 (1945). 375 Phillips, J. Soc. Chem. Ind. (London), 66, 325 (1947). 376 Coleman and Blomquist, J. Am. Chem. Soc., 63, 1692 (1941). ³⁷⁷Winans, Ind. Eng. Chem., 32, 1215 (1940). 378Zenitz, Macks, and Moore, J. Am. Chem. Soc., 69. 1117 (1947); cf. ref. 379. 379 Kindler, Hedemann, and Schärfe, Ann., 560, 215 (1948); Métayer, Ann. chim., (12) 4. 226 (1949). 380 Nienberg, Ber., 70, 635 (1937). 381 Ferber and Brückner, Ber., 72, 995 (1939). 342 Ferber and Bendix, Ber., 72, 839 (1939). 383 Waser and Möllering, Org. Syntheses, Coll. Vol. I, 499 (1941); cf. ref. 309. 384Shreve et al., Ind. Eng. Chem., 29, 1361 (1937); 33, 218 (1941). 385 Gilman and Nobis, I. Am. Chem. Soc., 67, 1479 (1945). 386 Horning and Bergstrom, J. Am. Chem. Soc., 67, 2110 (1945). 387 Hauser and Weiss, J. Org. Chem., 14, 310 (1949). 388 Eisleb, Ber., 74, 1433 (1941). 380 Drake in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 105. ³⁹⁰Ikuta, Am. Chem. 1., 15, 39 (1893). ³⁹¹ Hartung, Minnick, and Koehler, J. Am. Chem. Soc., 63, 507 (1941). ³⁹²Robinson, J. Am. Chem. Soc., 69, 1942 (1947). 393 Woroshtzow and Kogan, Ber., 65, 142 (1932). 394 Gilman and Swiss, J. Am. Chem. Soc., 66, 1884 (1944). 398 Davies and Hulbert, J. Soc. Chem. Ind. (London), 57, 349T (1938). ³⁹⁶Hickinbottom, J. Chem. Soc., 1119 (1937). 397 Moore in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 301. 398 Stevens and Richmond, I. Am. Chem. Soc., 63, 3132 (1941); cf. ref. 397. ³⁹⁹Ingersoll, Org. Syntheses, Coll. Vol. II, 503 (1943); Ingersoll et al., J. Am. Chem. Soc., 58, 1808 (1936). 400 Icke, Wisegarver, and Alles, Org. Syntheses, 25, 89 (1945). 4ª Novelli, J. Am. Chem. Soc., 61, 520 (1939). 402 Bunnett and Marks, J. Am. Chem. Soc., 71, 1587 (1949). 403 Staple and Wagner, J. Org. Chem., 14, 559 (1949). 404 Schiedt, J. prakt. Chem., (2) 157, 203 (1941). 405 Webers and Bruce, J. Am. Chem. Soc., 70, 1422 (1948). 406 Burger and Walters, J. Am. Chem. Soc., 72, 1988 (1950). 407 Niemann, Benson, and Mead, J. Org. Chem., 8, 401 (1943). 408 Wright et al., J. Am. Chem. Soc., 72, 3536 (1950); Biel, ibid., 71, 1306 (1949). 409 Herz, Dittmer, and Cristol, J. Am. Chem. Soc., 69, 1698 (1947); Bachman and Heisey, ibid., 68, 2496 (1946). 410 Holdren and Hixon, J. Am. Chem. Soc., 68, 1198 (1946).

⁴¹¹Hartough et al., J. Am. Chem. Soc., 70, 4013, 4018 (1948). 412 Kühn and Stein, Ber., 70, 567 (1937). 413 Mannich and Chang, Ber., 66, 418 (1933). 414 Jones, Marszak, and Bader, J. Chem. Soc., 1578 (1947). 415 Grillot and Gormley, J. Am. Chem. Soc., 67, 1968 (1945). ⁴¹⁶Mannich, Lesser, and Silten, Ber., 65, 378 (1932). 417 Wilds and Shunk, J. Am. Chem. Soc., 65, 469 (1943); Spaeth, Geissman, and Jacobs, J. Org. Chem., 11, 399 (1946). 418Skoda, Bull. soc. chim. France, (5) 13, 328 (1946). ⁴¹⁹Howton, J. Org. Chem., 12, 379 (1947); cf. Mannich, Ber., 75, 49 (1942). 420 Maxwell, Org. Syntheses, 23, 30 (1943). 421 Ruddy and Buckley, J. Am. Chem. Soc., 72, 718 (1950); Burckhalter and Fuson, ibid., 70, 4184 (1948). 422 Fry, J. Org. Chem., 10, 259 (1945); Winstein et al., ibid., 11, 215 (1946). 423 Plati et al., J. Org. Chem., 14, 543, 873 (1949). 424 Mannich and Ganz, Ber., 55, 3486 (1922). 415 Butler and MacMillan, J. Am. Chem. Soc., 72, 2978 (1950). 426 Blomquist and Shelley, J. Am. Chem. Soc., 70, 147 (1948). 427 Blicke in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 303. ⁴²⁸Ing and Manske, J. Chem. Soc., 2348 (1926); cf. Org. Syntheses, Coll. Vol. II. 83 (1943). 429 Sheehan and Bolhofer, J. Am. Chem. Soc., 72, 2786 (1950). ⁴³⁰Smith and Emerson, Org. Syntheses, 29, 18 (1949). ⁴³¹Loevenich, Becker, and Schröder, J. prakt. Chem., 127, 254 (1930). 432 Putochin, Ber., 59, 625 (1926); C. A. 24, 3756 (1930); cf. ref. 428; also Bailar, J. Am. Chem. Soc., 56, 955 (1934). 433 Amundsen and Sanderson, Org. Syntheses, 24, 44 (1944); Shriner and Hickey, J. Am. Chem. Soc., 61, 888 (1939). 434 Chambret and Joly, Bull. soc. chim. France, (5) 14, 1023 (1947). 435 Müller and Feld, Monatsh., 58, 15 (1931). 434 Ruggli, Leupin, and Dahn, Helv. Chim. Acta, 30, 1845 (1947). 437 Sakellarios, Helv. Chim. Acta, 29, 1675 (1946). 438 Hamer and Rathbone, J. Chem. Soc., 246 (1943). 439 Weizmann and Malkowa, Bull. soc. chim. France, (4) 47, 356 (1930). 440 Davies and Powell, J. Am. Chem. Soc., 67, 1466 (1945). 441 DeWitt, Org. Syntheses, Coll. Vol. II, 25 (1943). 442Cloke et al., J. Am. Chem. Soc., 67, 1587 (1945). 445 Billman and Parker, J. Am. Chem. Soc., 65, 761 (1943). 444 Birkofer, Ber., 75, 429 (1942). 445 Goldberg and Kelly, J. Chem. Soc., 1369 (1947). 446 Stoll, Peyer, and Hofmann, Helv. Chim. Acta, 26, 929 (1943). 447 Mattocks and Hartung, J. Am. Chem. Soc., 68, 2108 (1946). 448 Wenner, J. Org. Chem., 13, 26 (1948). 449 Horning, Horning, and Platt, J. Am. Chem. Soc., 70, 288 (1948). 450 Riegel, Gold, and Kubico, J. Am. Chem. Soc., 64, 2221 (1942). 411 Coleman and Callen, J. Am. Chem. Soc., 68, 2006 (1946). 452 Clapp. J. Am. Chem. Soc., 70, 184 (1948); cf. ref. 451. 453 Mannich, Handke, and Roth, Ber., 69, 2112 (1936). 454 Pearson, Baxter, and Carter, Org. Syntheses, 29, 21 (1949); cf. ref. 455. 455Schmidt et al., Ann., 568, 192 (1950).

456 Leffler, Org. Syntheses, Coll. Vol. II, 24 (1943). 457 Krueger and Schwarcz, J. Am. Chem. Soc., 63, 2512 (1941). 458 Adams and Segur. J. Am. Chem. Soc., 45, 785 (1923). 459 Pierce and Adams, J. Am. Chem. Soc., 45, 790 (1923). 460 Vliet, Org. Syntheses, Coll. Vol. 1, 201, 203 (1943). 461 Headlee, Collett, and Lazzell, J. Am. Chem. Soc., 55, 1066 (1933); Horne and Shriner, ibid., 54, 2925 (1932). 462 Lasselle and Sundet, J. Am. Chem. Soc., 63, 2374 (1941). 463 Biel, J. Am. Chem. Soc., 71, 1306 (1949). 464 Goldfarb, J. Am. Chem. Soc., 63, 2280 (1941). 465 Cairns and Fletcher, J. Am. Chem. Soc., 63, 1034 (1941). 466 McCasland and Smith, J. Am. Chem. Soc., 72, 2190 (1950). 467 Leffler and Adams, J. Am. Chem. Soc., 59, 2252 (1937). 468 Emerson, J. Am. Chem. Soc., 67, 516 (1945). 469 Lutz, Freek, and Murphey, J. Am. Chem. Soc., 70, 2015 (1948). 470 Moffett and Hoehn, J. Am. Chem. Soc., 69, 1792 (1947). 471 Campbell et al., J. Am. Chem. Soc., 70, 3868 (1948). 472 Gardner et al., J. Chem. Soc., 780 (1949). 473 Kyrides et al., J. Am. Chem. Soc., 72, 745 (1950); Gawron and Spoerri, ibid., 67, 514 (1945); Hromatka, Ber., 75, 131 (1942). 474 Haeseler, Org. Syntheses, Coli. Vol. L 196 (1941). 475 Cromwell, Chem. Revs., 38, 83 (1946). 476 Kohn, Monatsh., 25. 841 (1904). 477 Morsch, Monatsh., 63, 220 (1934). 478 Holley and Holley, J. Am. Chem. Soc., 71, 2124 (1949). 479 Johnson, Woroch, and Buell, J. Am. Chem. Soc., 71, 1901 (1949); Southwick and Seivard, ibid., 71, 2532 (1949). 400 Stork and McElvain, J. Am. Chem. Soc., 69, 971 (1947). 481 Mozingo and McCracken, Org. Syntheses, 20, 35 (1940); Fuson, Parham, and Reed, J. Am. Chem. Soc., 68, 1239 (1946); McElvain and Rorig, ibid., 70, 1820, 1826 (1948). 462 Morsch, Monatsh., 60, 50 (1932). 483 Morsch, Monatsb., 61, 299 (1932). 484 Mc Elvain and Stork, J. Am. Chem. Soc., 68, 1049 (1946). 485 Steiger, Org. Syntheses, 22, 26 (1942). 486 Philippi, Hendgen, and Hernler, Monatsh., 69, 282 (1936). 487 Heath and Rose, J. Chem. Soc., 1471, 1486 (1947). 488 Worrall, J. Am. Chem. Soc., 49, 1598 (1927). 489 Snyder, Weaver, and Marshall, J. Am. Chem. Soc., 71, 289 (1949). 490 Robinson, J. Chem. Soc., 220 (1941). 491 Bachmann, J. Am. Chem. Soc., 59, 420 (1937). 492 Pschorr and Karo, Ber., 39, 3140 (1906). 493 Weston and Adkins, J. Am. Chem. Soc., 50, 859 (1928). 494 Blicke and Tsao, J. Am. Chem. Soc., 68, 905 (1946). 495 Fones, J. Org. Chem., 14, 1099 (1949). 496 Weston, Ruddy, and Suter, J. Am. Chem. Soc., 65, 674 (1943). 497 Aspinall, J. Am. Chem. Soc., 63, 852 (1941). 498 Klosterman and Painter, J. Am. Chem. Soc., 69, 1674 (1947). 499 Cocker, J. Chem. Soc., 1693 (1937); 1290 (1940). 500 Billman and Parker, J. Am. Chem. Soc., 65, 2455 (1943). 301 Verkade and Witjens, Rec. trav. chim., 62, 201 (1943).

⁵⁰²Krueger and Mosettig, J. Org. Chem., 5, 313 (1940). ⁵⁰³Mosettig and Krueger, J. Org. Chem., 3, 317 (1938). ⁵⁰⁴Bachmann and Boatner, J. Am. Chem. Soc., 58, 2097 (1936). ⁵⁰⁵ Baker, J. Chem. Soc., 476 (1937). 506 Ritter and Kalish, J. Am. Chem. Soc., 70, 4048 (1948). ⁵⁰⁷Price and Voong, Org. Syntheses, 28, 80 (1948). ⁵⁰⁵Leffler in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 91; cf. Deasy, J. Org. Chem., 10, 141 (1945). ⁵⁰⁹Parker and Shive, J. Am. Chem. Soc., 69, 63 (1947). ⁵¹⁰Bergstrom, Sturz, and Tracy, J. Org. Chem., 11, 239 (1946). ⁵¹¹Glickman and Cope, J. Am. Chem. Soc., 67, 1017 (1945); Coffey, Thomson, and Wilson, J. Chem. Soc., 856 (1936); Decombe, Ann. chim., (10) 18, 103 (1932). ⁵¹²Brown and Iones, J. Chem. Soc., 781 (1946). ⁵¹³Stewart and Bradley, J. Am. Chem. Soc., 54, 4172 (1932). ⁵¹⁴Alexander and Underhill, J. Am. Chem. Soc., 71, 4014 (1949). ⁵¹⁵Masters and Bogert, J. Am. Chem. Soc., 64, 2710 (1942). ⁵¹⁶ Rivier and Farine, Helv. Chim. Acta, 12, 866 (1929); Scanlan, J. Am. Chem. Soc. 57. 887 (1935). ⁵¹⁷Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 317. ⁵¹⁸Lambert, Scaife, and Wilder-Smith, J. Chem. Soc., 1474 (1947). ⁵¹⁹Buckley, Heath, and Rose, J. Chem. Soc., 1500 (1947). ⁵²⁰Rousseau and Lindwall, J. Am. Chem. Soc., 72, 3047 (1950). ⁵²¹ Jones and Wilson, J. Chem. Soc., 550 (1949). ^{\$22}Barger and Easson, J. Chem. Soc., 2100 (1938). ^{\$23}Hiers and Adams, J. Am. Chem. Soc., 49, 1099 (1927); Ber., 59, 162 (1926). ⁵²⁴ Allen and Bell, Org. Syntheses, 22, 19 (1942). ⁵²⁵ Anslow and King, Org. Syntheses, Coll. Vol. I, 298 (1941). ^{\$26}Neunhoeffer and Liebich, Ber., 71, 2247 (1938); Bell, Kenyon, and Robinson, 1. Chem. Soc., 1243 (1926). 527Kamm, Org. Syntheses, Coll. Vol. 1, 445 (1941). ^{\$28}Salzberg, J. Am. Chem. Soc., 72, 4307 (1950). ⁵²⁹Ettlinger. J. Am. Chem. Soc., 72, 4795 (1950). ⁵³⁰Ingram, J. Chem. Soc., 2247 (1950). ⁵³¹ Theilacker and Wendtland, Ann., 570, 50 (1950). 552 Hauser and Reynolds, J. Org. Chem., 15, 1224 (1950). ⁸³³Degering and Boatright, J. Am. Chem. Soc., 72, 5137 (1950). ⁵³⁴Waalkes et al., *I. Am. Chem. Soc.*, 72, 5760 (1950). 535 Groggins, Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New York, 1947, pp. 73-128. ^{\$36}Ref. 535, pp. 338-423. ⁵³⁷Baret and Leveque, Bull. soc, chim. France, (5) 16, 832 (1949). 538 Elderfield and Ressler, J. Am. Chem. Soc., 72, 4067 (1950). ⁵³⁹May and Mosettig, J. Am. Chem. Soc., 70, 1077 (1948). 540 Julian et al., J. Am. Chem. Soc., 67, 1203 (1945). 341 Hass and Huffman, J. Am. Chem. Soc., 63, 1233 (1941). 542 Allen and Wolf, Org. Syntheses, 30, 3 (1950). 543 Tchoubar, Bull. soc. chim. France, (5) 16, 160 (1949). 544 Herz, J. Am. Chem. Soc., 72, 4999 (1950). 545 Burger and Bennet, J. Am. Chem. Soc., 72, 5414 (1950). 546 Manske and Kulka, J. Am. Chem. Soc., 72, 4997 (1950).

³⁴⁷Lewis, J. Chem. Soc., 2249 (1950). 348 Snyder and Hamlin, J. Am. Chem. Soc., 72, 5082 (1950). 3. Winstein and Boschan, J. Am. Chem. Soc., 72, 4675 (1950); cf. ref. 467. 550 Roeder and Day, J. Org. Chem., 6, 28 (1941). 551 Gilman and Avakian, J. Am. Chem. Soc., 68, 580 (1946). ss2Witten and Reid, Org. Syntheses, 30, 5 (1950). ⁵⁵³Morrison and Rinderknecht, J. Chem. Soc., 1478 (1950). 554 Fieser, Org. Syntheses, Coll. Vol. II, 35, 39 (1943). 555 Stevenson, Ind. Eng. Chem., 42, 1664 (1950). 556Kremer, J. Am. Chem. Soc., 61, 1321 (1939). 557 King and Work, J. Chem. Soc., 1307 (1940). ssa Wilkinson and Finar, J. Chem. Soc., 759 (1947). 559 Brown in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 469. ^{\$60}Campaigne, Budde, and Schaefer, Org. Syntheses, 31, 6 (1951). 361 Schultz, Org. Syntheses, 31, 45 (1951).

25

Imines

CONTENTS

METHOD	PAGE
465. Condensation of Carbonyl Compounds with Amines	728
466. Cyclization of β-Amino Alcohols	729
467. Action of Grignard Reagents on Oximes	729
468. Action of Grignard Reagents on Nitriles	729
469. β-Iminonitriles by Condensation of Nitriles	730
470. Ethylene Imino Ketones by the Action of Amines on α, β -Dibromo	-
Ketones	730
Table 93. Imines	731
References	732
	,)2

465. Condensation of Carbonyl Compounds with Amines

VETHOR

$RCHO + R'NH_2 \rightarrow RCH = NR' + H_2O$

Both aliphatic and aromatic aldehydes condense with primary amines, aliphatic and aromatic, to form N-substituted imines. The purely aliphatic imines (C_s to C_{10}) can be obtained in 50-80% yield; however, these compounds are unstable and should be used immediately after distillation.¹ Side reactions which may occur during their formation have been studied.² On the other hand, Schiff bases from substituted benzaldehydes and amines, aliphatic and aromatic, are more stable and have been prepared in large numbers.³⁻⁶ The benzaldehyde entity may carry a halo, hydroxyl, methoxyl, dialkylamino, or nitro group.⁵ Usually, an immediate reaction occurs upon mixing the two reactants either without a solvent or in dilute alcohol, as illustrated by the synthesis of benzalaniline, $C_6H_sCH=NC_6H_s$ (87%).³

The formation of Schiff bases by the reaction of ketones with amines is more difficult. Acetophenone and other aryl alkyl ketones which are slow to react under the usual conditions will combine with aromatic amines at 160-180° in the presence of a zinc chloride-aniline salt.²¹ In another procedure, 2-acetylthiophene and aniline are condensed in boiling toluene with the aid of a water separator.²⁶

Ketones like acetophenone have been heated with ammonia in the presence of a dehydrating agent, but the formation of the ketimines is poor.⁷ A successful conversion of 9-fluorenone to its ketimine has been described in which anhydrous ammonia is passed through the molten ketone at 165° (66%).⁸

Invariably, the combination of ammonia and aldehydes forms other products; these reactions have been reviewed.⁹ Monochloramine (NH₂Cl) reacts readily with substituted benzaldehydes to form aldchlorimines (ArCH=NCl).¹⁰

466. Cyclization of β -Amino Alcohols

Ethylenimine is conveniently prepared from ethanolamine by heating the inner salt of the sulfate ester with aqueous alkali (37%).¹¹ The method has been applied to other β -amino alcohols to form the C-alkyl homologs of ethylenimine in which one to three of the four hydrogens may be substituted.¹² The general procedure is illustrated by the synthesis of 2,2-dimethylethylenimine (51%).¹³ The N-alkyl analogs can be made by treating the N-alkylethanolamine hydrochlorides with chlorosulfonic acid followed by the action of base on the intermediate sulfuric acid esters, as in the preparation of N-ethylethylenimine (70%).¹⁴

Aryl-substituted amino alcohols fail to undergo this reaction but instead are dehydrated to vinylamines.

The reactions of ethylenimine have been studied extensively.23

467. Action of Grignard Reagents on Oximes

Certain substituted ethylenimines are obtained by the action of aliphatic or aromatic Grignard reagents on aryl alkyl ketoximes with subsequent non-acidic decomposition of the intermediate complex (20-60%).^{15,16}

468. Action of Grignard Reagents on Nitriles

$$ArCN \xrightarrow{RMgX} ArRC = NMgX \xrightarrow{NH_3} ArRC = NH$$

The interaction of Grignard reagents and nitriles produces ketimines which may be hydrolyzed to ketones without isolation (method 187). Many of the alkyl aryl ketimines have been isolated for further study. For this purpose, the intermediate addition compound is decomposed by treatment with anhydrous hydrogen chloride or, preferably, with anhydrous ammonia.¹⁷⁻¹⁹ The yields range from 50% to 86%. Often, the ketimines are non-hydrolyzable or h7drolyzed with difficulty, allowing them to be easily isolated;¹⁶ others must be isolated and stored under anhydrous conditions.^{19,20}

469. β -Iminonitriles by Condensation of Nitriles²²

$$2CH_{3}CN \xrightarrow[H_{2}O]{\text{NaNH}_{2};} CH_{3}C(=NH)CH_{2}CN$$

470. Ethylene Imino Ketones by the Action of Amines on α, β -Dibromo Ketones²³

TABLE 95.	IMIN E2
-----------	---------

C _n	Compound	Compound Method ^{Yield} Chapter ^{ref}		Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv,
с <u>,</u>	Ethylenimine	466	37	2511	58, 1.4123 ²⁵
c,	1,2-Propylenimine	466	65	2512	64, 1.4095 ²⁵
•	Ethylidenemethylamine	465	55	251	28/754, 1.4010 ¹⁴
C₄	1,2-Butylenimine	466	46	2512	89, 1.4165 ²⁵
- •	trans-2, 3-Butylenimine	466	47	2512	76, 1 .4 070 ²⁵
	2,2-Dimethylethylen- imine	466	51	2513	72, 1.4050 ²⁵
	N-Ethylethylenimine	466	70	2514	222HCl
	Propylidenemethyl- amine	465	77	251	53/758, 1.4033 ¹³
	Ethylidene-ethyl- amine	465	77	251	48/774, 1.3953 ¹³
C,	Propylidene-ethyl- amine	465	81	25 ¹	74/764, 1.4053 ¹⁴
	Butylidenemethyl- amine	465	76	251	81/764, 1.4095 ¹³
C ₆	Butylidene-ethyl- amine	465	84	25 ¹	102/763, 1.4105 ²¹
C۴	N-Benzylidenemethyl- amine	465	70	25*	185, 69/20, 1.5519
C9	N-Benzylidene-ethyl- amine	465	90	2524	99/28, 1.5397
С 10	2-Phenyl-2-ethyl- ethylenimine	467	60	2516	86/7, 1.5318, 191HCl
C ₁₂	N-Phenyl 2-thienyl methyl ketimine	465	46	25 ⁶	155/5, (70)
Cu	Diphenylmethane imine hydrochloride		66	25 ²⁰	
	Fluorenyllidenimine	465	66	25 ⁸	(124)
	N-Benzylideneaniline (b en zalaniline)	465	87	25 3	(52)
C14	Acetophenonanil	465	42	2521	167/12, (99)
C 15	2,2-Diphenyl-3- methylethylenimine	467	70	2515	132/1, (75), 140HCl

IMINES

REFERENCES FOR CHAPTER 25

¹Tiollais, Bull. soc. chim. France, (5) 14, 708 (1947); Campbell, Sommers, and Campbell. I. Am. Chem. Soc., 66, 82 (1944). ²Emerson. Hess, and Uhle. I. Am. Chem. Soc., 63, 872 (1941): Paguin, Chem. Ber., 82, 316 (1949). Bigelow and Eatough. Org. Syntheses, Coll. Vol. I, 80 (1941). *Cromwell, Babson, and Harris, I. Am. Chem. Soc., 65, 312 (1943); ref. 6, ⁵Cromwell and Hoeksema. J. Am. Chem. Soc., 67, 1658 (1945): Moffett and Hoehn, ibid., 69. 1792 (1947); Lutz et al., J. Org. Chem., 12, 760 (1947); Jensen and Bang, Ann., 548, 106 (1941). "Campbell et al., J. Am. Chem. Soc., 70, 3868 (1948). 'Strain. J. Am. Chem. Soc., 52. 820 (1930). ^aHarris. Harriman. and Wheeler. I. Am. Chem. Soc., 68. 846 (1946). ⁹Sprung. Chem. Revs., 26, 297 (1940). ¹⁰Hauser, Gillaspie, and LeMaistre, I. Am. Chem. Soc., 57, 567 (1935). ¹¹Allen, Spangler, and Webster, Org. Syntheses, 30, 38 (1950); Leighton, Perkins. and Renguist. J. Am. Chem. Soc., 69, 1540 (1947); cf. ref. 12. ¹² Jones et al., J. Org. Chem., 9, 125, 484 (1944). ¹³Campbell, Sommers, and Campbell, Org. Syntheses, 27, 12 (1947). ¹⁴Elderfield and Hageman, J. Org. Chem., 14, 622 (1949). ¹⁵Campbell et al., J. Org. Chem., 8, 103 (1943). ¹⁶Campbell et al., J. Org. Chem., 9, 184 (1944). ¹⁷Moureu and Mignonac. Ann. chim., (9) 14, 322 (1920). ¹⁸Pickard and Vaughan, J. Am. Chem. Soc., 72, 876, 5017 (1950). ¹⁹Cloke, J. Am. Chem. Soc., 62, 117 (1940). ²⁰Lachman, Org. Syntheses, Coll. Vol. II, 234 (1941). ²¹Reddelien, Ann., 388, 165 (1912); Ber., 43, 2476 (1910). ²²Adkins and Whitman. J. Am. Chem. Soc., 64, 150 (1942); Darnow, Kühlcke, and Baxmann, Chem. Ber., 82, 254 (1949). ²³Cromwell and Caughlan, J. Am. Chem. Soc., 67, 2235 (1945); 69, 258 (1947). ²⁴Campbell et al., *I. Am. Chem. Soc.*, 70, 3868 (1948). 25 Bestian, Ann., 566, 210 (1950). ²⁶Hartough, J. Am. Chem. Soc., 70, 1282 (1948).

26

Hydrazines

CONTENTS

METHOD	PAGE
471 Alkylation of Hydrazines	733
472. Interaction of Amines and Hydroxylamine-O-Sulfonic Acid	734
473. Reduction of Diazonium Compounds	. 734
474. Reduction of Nitrosoamines	734
475. Reduction of Azo Compounds	735
476. Action of Grignard Reagents on Diazomethane	. 735
477. Reductive Hydrazination of Carbonyl Compounds	. 735
478. Addition of Grignard Reagents to Dialkyl-alkylidenhydrazones	. 735
Table 94. Hydrazines	. 7 3 6
References	. 738

These compounds are prepared in part by methods similar to those for amines; in addition, specific methods are employed including the reduction of diazonium compounds, reduction of azo compounds, and reduction of nitrosamines leading to sym- or unsym-substituted hydrazines.

471. Alkylation of Hydrazines

$$RX + NH_1NH_2 \rightarrow RNHNH_2$$

High-molecular-weight monoalkylhydrazines (C_6 and above) can be made from anhydrous hydrazine³³ and alkyl halides in a manner similar to the alkylation of amines.² On the other hand, alkylation with the lower halides leads chiefly to di-, tri-, and tetra-substituted hydrazines.² Ethylhydrazine has been obtained by alkylation of hydrazine with ethyl sulfate (32%).³ Methylhydrazine is synthesized by a special variation of this method (54%).⁹

If activated by nitro groups, aryl halogens are easily replaced by the hydrazino group, as illustrated by the synthesis of 2,4-dinitrophenylhydrazine (85%).⁴ Other nitrophenylhydrazines may be obtained by the action of hydrazine or methylhydrazine.⁵

Alkali metal phenylhydrazines, ArN(Na)NH, which are prepared by the direct reaction of primary hydrazines with alkali amide in liquid

733

Ch. 26

ammonia are readily alkylated by alkyl halides to furnish N,N-alkylarylhydrazines, Ar(R)NNH, (73-94%).⁷

sym-Hydrazines, RNHNHR, are prepared by the alkylation of dibenzoylhydrazine ($C_8H_sCONHNHCOC_8H_s$) followed by hydrolytic treatment, as shown by the synthesis of sym-dimethylhydrazine (73% over-all).⁸ This procedure may be applied to dibenzoylalkylhydrazines which upon alkylation and hydrolysis yield sym-hydrazines substituted with different groups, e.g., sym-methylisopropylhydrazine.¹⁰

The interaction of hydrazine hydrate and ethyl chlorocarbonate in methanol solution yields methyl hydrazine carboxylate, H₂NNHCO₂CH₃ (49%).¹¹

472. Interaction of Amines and Hydroxylamine-O-Sulfonic Acid

$$RNH_2 + NH_2O \cdot SO_2OH \xrightarrow{Heat} RNHNH_2$$

Monoalkylhydrazines (C_2 to C_3) are readily prepared by heating amines with hydroxylamine-O-sulfonic acid in the presence of alkali (31-60%).¹ The products are isolated as the oxalate salts.

473. Reduction of Diazonium Compounds

$$\operatorname{ArN}_{2}^{+}\operatorname{Cl}^{-} \xrightarrow{\operatorname{Na}_{2}\operatorname{SO}_{3}} \operatorname{ArNHNH}_{2} \cdot \operatorname{HCl}$$

The reduction of diazonium salts by sodium sulfite forms monosubstituted arylhydrazines. An improved procedure for the synthesis of phenylhydrazine in 84% yield is typical.¹² Arylhydrazine salts substituted in the nucleus with halo,¹⁴ ether,¹⁵ carboxyl,^{16,19} or nitro^{17,18} groups have been prepared. The free bases are liberated from the salts by the action of aqueous sodium hydroxide or sodium acetate.

474 Reduction of Nitrosoamines

$$R_2NH \xrightarrow{(HONO)} R_2NNO \xrightarrow{Zn} R_2NNH_2$$

unsym-Disubstituted hydrazines, R_2NNH_2 , are prepared by the zincacetic acid reduction of either aliphatic or aromatic nitrosoamines. In this manner, unsym-dimethylhydrazine is synthesized in 73% yield from nitrosodimethylamine.²⁰ Similarly, α -methyl- α -phenylhydrazine is prepared (56%).²¹ Preparations of the nitrosoamines from the corresponding secondary amines are also described.

Ethylhydrazine is made from nitrosodiethylurea, $C_2H_5N(NO)CONHC_2H_5$, by the usual steps of reduction and hydrolysis.²² 475. Reduction of Azo Compounds

 $ArNO_2 \xrightarrow{(H)} ArN = NAr \xrightarrow{(H)} ArNHNHAr$

Aromatic sym-disubstituted hydrazines are obtained by reduction of azo compounds, which in turn are intermediates in properly controlled reductions of nitro compounds. The over-all reduction can be accomplished with zinc dust and alkali or electrolytically. For example, hydrazobenzene, the simplest member, is made by both procedures.^{23,24} Chemical reduction is carried out on o-nitrobromobenzene to form 2, 2'dibromohydrazobenzene (57%), the halo groups remaining intact.²⁵ Many examples of the electrolytic procedure have been cited; the yields vary from 50% to 95%.²⁶ To a limited extent, a magnesium-magnesium iodide system has been employed as a reducting agent for the azobenzenes.²⁷⁷

476. Action of Grignard Reagents on Diazomethane²⁹

$$CH_{s}(CH_{2})_{2}CH_{2}MgX \xrightarrow[H_{2}O]{CH_{2}N_{2};}{H_{2}O} CH_{s}(CH_{2})_{2}CH_{2}NHNHCH_{s} (53\%)$$

477. Reductive Hydrazination of Carbonyl Compounds 30

$$2R_2CO + H_3NNH_2 \xrightarrow{H_2} R_2CHNHNHCHR_2$$

R = isopropyl (80%)

478. Addition of Grignard Reagents to Dialkyl-alkylidenhydrazones^{21,32}

$$R_2 NNH_2 \xrightarrow{H_2 CO} R_2 NN = CH_2 \xrightarrow{CH_3 MgX;} R_2 NNHCH_2 CH_3$$

R = ethyl (22% over-all)

HYDRAZINES

Ch. 26

TABLE 94. HYDRAZINES

C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	Methylhydrazine (as sulfate)	471	54	26°	(142)
с,	Ethylhydrazine	471	32	26 3	99.5/709 110HC1
-	Ethylhydrazine (as oxalate)	472	42	26 ¹	(171)
	sym-Dimethylhydrazine (as hydrochloride)	471	78	26 ⁸	(167)
	<i>unsym</i> -Dimethylhydrazine	474	73	26 ²⁰	65/765, 82HCl
	Methyl hydrazino- carboxylate	471	49	26 ¹¹	108/12, (63), 160HC1
C,	<i>n</i> -Propylhydrazine (as oxalate)	472	52	26 ¹	(175)
	Isopropylhy dražine	477	90	26 ³⁰	107/750, 114HCl
	Isoptopylhydrazine (as oxalate)	472	44	26 ¹	(172)
C4	<i>n</i> -Butylhydrazine (as oxalate)	472	45	26 ¹	(165)
	<i>sym</i> -Methylisopropyl- hydrazine	471	50	26 ¹⁰	79/37
	N,N-Dimethyl-N'- ethylhydrazine	478	65	26 ³¹	77/720, 93Pi
C _s	n-Amylhydrazine (as oxalate)	472	31	26 ¹	(164)
	sym-Methyl-n-butyl- hydrazin e	476	53	26 ²⁹	115HCI
C 6	n-Hexylhydrazine	471	26	26 ²	81/14
-	sym-Dii sopropyl- hydrazin e	477	100	2630	124/750, 1.412524
	Triethylhydrazine	478	22†	2632	39/37
	Phenylhydrazine	473	84	26 ¹³	138/18, (23)
	p-Fluorophenylhydrazine	473	74	2614	129/21, (39)
	o-Nitrophenylhydrazine	473	64	26 ¹⁸	(90)*, 140Ac*
	p-Nitrophenylhydrazine	473	66	2617	(157), 120Pi*
	2,4-Dinitrophenylhydrazine	471	85	264	(192)
с,	a-Methyl-a-phenyl- hydrazine	474	56	26 ²¹	109/13
	o-Carbo xyphenylhydrazin e	473	84	26 ¹⁶	(247), 190HCl
	p-Carboxyphenylhydrazine	473	76	26 ¹⁹	253HC1
C.	N,N-Ethylphenylhydrazine	471	88	267	120-7/25, 147HCl
C 12	2-Phenoxyphenylhydrazine	473	45	26 ¹⁵	(154)
	Hydrazobenzene	475	85	26 ²³	(124)
	2, 2'-Dibromohydra zo- benzene	475	57	26 ²⁵	(98)

737

TABLE 94 (continued)

С л	Compound	Metho d	Yield (%)	C hapterref.	B.p./mm., n_D^t , (M.p.), Deriv.
C13	4,4'-Dihydrazinodiphenyl-	473	35	2613	(141)
C 34	methane Tetraph <i>e</i> nylhydrazine		70	26 ²⁸	(144)

HYDRAZINES

Ch. 26

REFERENCES FOR CHAPTER 26

¹Gever and Haves, J. Org. Chem., 14, 813 (1949). ²Westphal, Ber., 74, 759 (1941). ³Brown and Kearley, J. Am. Chem. Soc., 72, 2762 (1950). ⁴Allen, Org. Syntheses, Coll. Vol. II, 228 (1943). ⁵Vis, Rec. trav. chim., 58, 387 (1939). Koenigs and Loesch, J. prakt. Chem., 143, 59 (1935). ⁷Audrieth, Weisiger, and Carter, J. Org. Chem., 6, 417 (1941). ⁸Hatt, Org. Syntheses, Coll. Vol. II, 208 (1943). ⁹Hatt. Org. Syntheses, Coll. Vol. II, 395 (1943). ¹⁰RamsDerger. 1. Am. Chem. Soc., 51, 918 (1929). ¹¹Diels and Fritzsche, Ber., 44, 3022 (1911). ¹²Coleman, Org. Syntheses, Coll. Vol. I. 442 (1941). ¹³Parkes and Morley, J. Chem. Soc., 315 (1936). ¹⁴Schiemann and Winkelmüller, Ber., 66, 729 (1933). ¹⁵Tarbell et al., J. Am. Chem. Soc., 70, 1381 (1948). ¹⁶Pfannstiel and Janecke, Ber., 75, 1096 (1942). ¹⁷Davies, J. Chem. Soc., 715 (1922). ¹⁸Brady and Reynolds, J. Chem. Soc., 196 (1928). ¹⁹Veibel and Hauge, Bull. soc. chim. France, (5) 5, 1506 (1938). ²⁰Hatt, Org. Syntheses, Coll. Vol. II, 211 (1943). ²¹Hartman and Roll, Org. Syntheses, Coll. Vol. II, 418 (1943). ²²Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 241. ²³Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 183; cf. ref. 24. ²⁴McKee and Gerapostolou, Trans. Electrochem. Soc., 68, 329 (1935). ²⁸Snyder, Weaver, and Marshall, J. Am. Chem. Soc., 71, 289 (1949). ²⁶Swann, Trans. Electrochem. Soc., 69, 307 (1936); 77, 479 (1940); Swann in Technique of Organic Chemistry, Vol. II, Interscience Publishers, New York, 1948, p. 143. ¹⁷Bachmann, J. Am. Chem. Soc., 53, 1524 (1931). ²⁸See ref. 23, p. 355. ²⁹Coleman et al., 1. Org. Chem., 3, 99 (1938). ³⁰Lochte, Noyes, and Bailey, J. Am. Chem. Soc., 44, 2556 (1922). ³¹Klages et al., Ann., 547, 1, 28 (1941). ³²Westphal and Eucken, Ber., 76, 1137 (1943). ³³Smith and Howard, Org. Syntheses, 24, 53 (1944); cf. Barber and Wragg, J. Chem. Soc., 1458 (1948).

27

Oximes and Nitroso Compounds

CONTENTS

METHOD	PAGE
79. Oximination of Carbonyl Compounds	739
180. Nitrosation of Active Methylene Compounds	740
181. Partial Reduction of Nitro Compounds	740
482. Hydroxylamination of Dihydropyridines	741
183. Nitrosation of Secondary Amines	741
484. Nitrosation of an Aromatic Nucleus	742
185. Oxidation of Hydroxylamines and Amines	742
Table 95. Oximes (Isonitroso Compounds)	743
Table 96. Nitroso Compounds	744
References	745

479. Oximination of Carbonyl Compounds

 $R_2CO + H_2NOH \circ HCl + NaOH \rightarrow R_2C = NOH + H_2O + NaCl$

Oximes are commonly prepared by the interaction of ketones with hydroxylamine hydrochloride (or sulfate) in the presence of an inorganic base. The reaction is reversible, but the state of equilibrium highly favors the desired products. Preparations of large quantities for synthetic work are illustrated for methyl ethyl ketoxime,¹ cyclohexanone oxime,^{2,3} heptaldoxime,³ and benzophenone oxime,⁴ the procedures varying somewhat with the nature of the carbonyl compound. In some instances, a readily available and cheap reagent like sodium hydroxylamine disulfonate, HON(SO₃Na)₂, is first prepared from sodium nitrite and sodium bisulfite and, without isolation, treated with the carbonyl compound,^{2,6,7,15} Hydroxylamine-O-sulfonic acid, H₂NOSO₃H, is still another reagent and, like sodium hydroxylamine disulfonate, is used in the absence of a base. The preparation of hydroxylamine hydrochloride is described.⁶

The oximes of ketones with large hydrocarbon radicals like the acetylphenanthrenes are readily prepared by the action of hydroxylamine hydrochloride in the presence of pyridine.¹² Special studies have been made for the synthesis of 1,2-cyclohexanedione dioxime¹⁴ as well as the next higher homolog.¹³ Dimethylglyoxime, $CH_3C(=NOH)C(=NOH)CH_3$, is

739

prepared by the action of sodium hydroxylamine monosulfonate on biacetyl monoxime.¹⁵

480. Nitrosation of Active Methylene Compounds

 $RCOCH_2R + R'ONO \xrightarrow{HCI} RCOC(=NOH)R + R'OH$

Compounds having active methylene groups react with nitrous acid to form oximino derivatives. The attack on the α -methylene group of ketones is illustrated by the action of ethyl nitrite on methyl ethyl ketone, and by the action of methyl nitrite on propiophenone, to form biacetyl monoxime $(60\%)^{15}$ and isonitrosopropiophenone (68%),¹⁶ respectively. Methyl and ethyl nitrites are passed in gaseous form into the ketones in the presence of hydrochloric acid. In other preparations, *n*-butyl, amyl, or octyl nitrite in liquid form is employed.^{14,17,18}

Similarly, the α -methylene group of acetoacetic ester is oximinated by the action of sodium nitrite in glacial acetic acid (63%).¹⁹ Nitrosation of alkylated malonic, ^{20,21} acetoacetic,²¹ and benzoylacetic²² esters with subsequent cleavage affords an excellent synthesis for α -oximino esters, RC(=NOH)CO₂C₂H₅. A survey of several possible procedures for this conversion has been made.²¹ If a β -keto acid is nitrosated, then the carboxyl group is lost and an α -oximino ketone is formed, viz.,

 $CH_{3}COCHRCO_{2}H \xrightarrow{(HONO)} CH_{3}COC(=NOH)R + CO,$

The conversion of o- and p-nitroethylbenzenes with t-butyl nitrite and sodium t-butoxide into the corresponding nitroacetophenone oximes is accomplished in 67-74% yields.²⁵

481. Partial Reduction of Nitro Compounds

Various procedures have been developed for the production of oximes from nitroparaffins. Direct reduction with zinc dust and acetic acid has been proposed, but the yields are poor because of the simultaneous formation of amines.²⁶ A synthesis for cyclohexanone oxime has been demonstrated which involves the formation and selective hydrogenation of 1chloro-1-nitrocyclohexane. The halogenated intermediate is prepared in quantitative yield by chlorination of the sodium salt of *aci*-nitrocyclohexane, and subsequent hydrogenation is performed in an 80% yield over palladium-on-charcoal,²⁷

Still another scheme is concerned with the zinc-acetic acid reduction of an aliphatic nitro olefin, which is readily prepared by the condensation of an aldehyde with the nitroparaffin (method 37).²⁸

$$\operatorname{RCH}_2\operatorname{NO}_2 \xrightarrow{\operatorname{R'CHO}} \operatorname{R'CH} = \operatorname{C}(\operatorname{R})\operatorname{NO}_2 \xrightarrow{\operatorname{Zn}} \operatorname{R'CH}_2\operatorname{C}(\operatorname{=}\operatorname{NOH})\operatorname{R}$$

 α -Nitrostilbene, $C_6H_sCH = C(NO_2)C_6H_s$, is selectively hydrogenated over a palladium catalyst to desoxybenzoin oxime in an almost quantitative yield.²⁹

482. Hydroxylamination of Dihydropyridines³⁰

483. Nitrosation of Secondary Amines

 $R_2NH \cdot HCI \xrightarrow{(HONO)} R_2NNO$

Aliphatic and aromatic amines react with nitrous acid to form N-nitroso derivatives. For example, dimethylamine hydrochloride on treatment with sodium nitrite and hydrochloric acid is converted to nitrosodimethylamine in 90% yield.³⁹ In like manner, N-nitrosomethylaniline is synthesized from N-methylaniline in 93% yield.⁴⁰ The ready formation of these derivatives and the easy reconversion to the amine by reduction affords an advantageous procedure for separating secondary amines from primary and tertiary amines, as shown in the synthesis of N-ethyl-*m*-toluidine and other N-alkyl derivatives by the alkylation of *m*-toluidine.⁴¹

Certain N-nitroso derivatives are important intermediates in the synthesis of diazomethane and homologs. One synthesis involves the nitrosation of a β -alkylaminoisobutyl methyl ketone; the corresponding N-nitrosoamine is readily decomposed to the diazoalkane and mesityl oxide by treatment with sodium isopropoxide.⁴²

$$\begin{array}{ccc} (CH_3)_2CCH_2COCH_3 & \xrightarrow{(HONO)} (CH_3)_2CCH_2COCH_3 & \xrightarrow{N_BOR} CH_2N_2 + \\ & & & | \\ & CH_3NH & CH_3NNO \\ & & & (CH_3)_2C = CHCOCH_3 + H_2O \end{array}$$

Other intermediates for the synthesis of diazomethane are nitrosomethylurea, $CH_3N(NO)CONH_2$,⁴³ and nitrosomethylurethane, $CH_3N(NO)CO_2C_2H_3$.⁴⁴

Certain a-anilino acids like phenylglycine and a-anilinopropionic acid have been converted to their N-nitroso derivatives.⁴⁵ 484. Nitrosation of an Aromatic Nucleus

$$C_{6}H_{5}N(CH_{3})_{2} \xrightarrow{(HONO)} p-ONC_{6}H_{4}N(CH_{3})_{2}$$

Aromatic tertiary amines and phenolic compounds undergo nuclear nitrosation, as illustrated by the synthesis of *p*-nitrosodimethylaniline (89%),³¹ *p*-nitrosophenol (80%),³³ and 1-nitroso-2-naphthol (99%).³² In the reaction of α -naphthol, an isomeric mixture of the nitrosonaphthols is obtained.³⁴ The nitrosation of phenols with nitrous acid usually produces *p*-nitroso compounds; however, *o*-nitrosophenols can be prepared by nitrosating phenols in the presence of cupric sulfate.³⁵

N-Nitroso derivatives of secondary amines are transformed into *p*nitroso derivatives by the action of hydrogen chloride in alcohol and ether solution (Fischer-Hepp). The conversion is believed to occur through the liberation of nitrosyl chloride followed by *p*-nitrosation, viz.,³⁸

$$C_{6}H_{3}N(NO)CH_{3} \xrightarrow{HCI} C_{6}H_{5}NHCH_{3} \xrightarrow{NOCI} p-ONC_{6}H_{4}NHCH_{3}$$

485. Oxidation of Hydroxylamines and Amines

$$\operatorname{ArNO}_2 \xrightarrow{Z_n} \operatorname{ArNHOH} \xrightarrow{(O)} \operatorname{ArNO} \xleftarrow{(O)} \operatorname{ArNH}_2$$

Nitrosobenzene is readily synthesized by the chromic acid oxidation of β -phenylhydroxylamine, which in turn is prepared by the reduction of nitrobenzene by the action of zinc dust and ammonium chloride (53%).⁴⁶ The hydroxylamines need not be isolated. In other preparations, ferric chloride is employed as oxidant.^{47,48}

Primary aromatic amines react with Caro's acid to form nitroso derivatives, as in the preparation of 5-nitro-2-nitrosotoluene from 2-amino-5nitrotoluene (71%).⁴⁹

TABLE 95. OXIMES (ISONITROSO COMPOUNDS)

C _n	Compound	Metho d	Yield (%)	Chapter ^{ref.}	B.p./mm., nt, (M.p.)
<u> </u>	Acetaldozime	479	80	2724	114
c,	Acetoxime	479	76	27 *	136, (61)
•	Methylglyozime	479	62	27 23	(154)
	a-Oximinopropionic acid	480	90	2721	(181d)
c,	Methyl ethyl ketoxime	479	85	27 ¹	150-155
-	Biacetyl mono zime	480	60	27 ¹⁵	(76.5)
	Dimethylglyoxime	479	60	2715	(240)
	a-Oximinobutyric acid	480	65	27 ²¹	(15 4 d)
c.	Glutardialdoxime	482	90 [†]	27 ³⁰	(175)
-,	Cyclopentanone ozime	479	93	27 ^s	97/24, (54)
C.	Cyclohexanone oxime	479	93	27 ³	105/12, (88)
		479	65	27 ²	95-100/5, (80)
		481	80	27 ²⁷	(88)
	2-Isonitro so cy clohe xanone	480	82	27 14	
	1,2-Cyclohexanedione dioxime	479	70	2714	(188)
	a-Oximinocaproic acid	480	70	2721	(135d)
	Ethyl a-oximinoacewacetate	480	63	2719	(58)
c,	Heptakdo xim e	479	93	27 ³	107/6, (55)
- •	3-Heptenone oxime	481	60	27 ²⁸	56/1, 1.4522 ²⁵
	1,2-Cycloheptanedione dioxime	479	46	27 ¹³	(180)
	Ethyl a-oximinovalerate	480	75	2722	124/5, (48)
c.	Acetophenone oxime	479	90	27°	(59)
•	p-Chloroscetophenone oxime	479	94	27 ¹⁰	(98)
	o-Nitroacetophenone oxime	480	74	27 ²⁵	(117)
	p-Nitroacetophenone oxime	480	67	27 ²⁵	(174)
	Ethyl a-oximino caproate	480	80	27 ²⁰	(55)
c.	Isoni tro sopropiophenon e	480	68	27 ⁴⁶	(113)
-,	p-Methylacetophenone oxime	479	95	27 ¹⁰	(87)
	a -Oximino- β -phenylpropionic acid	480	95	27 ²¹	(169)
С.,	Methyl a-naphthyl ketoxime	479	98	27 ¹⁰	(137)
C.,	Benzophenone oxime	479	99	274	(142)
- 11		479	98	2711	(144)*
C	p-Phenylacetophenone oxime	479	90	27°	(186)
~14	Desoxybenzoin oxime	481	100	27 ²⁹	(94)
C ₁₄	3-Acetylphenanthrene oxime	479	100	2712	(72)

OXIMES AND NITROSO COMPOUNDS

Ch. 27

TABLE 96. NITROSO COMPOUNDS

с _л	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., nf., (M.p.)
	(-Nitroso Com	poun ds		· · · · · · · · · · · · · · · · · · ·
C,	Ni tro sob en zen e	485	53	27 46	(67)
	p-Dinitrosoben zen e	484	40 †	2737	(180)
	o-Chloronitrosoben zen e	485	40	27 47	(56)
	o-Bromoni tro soben zen e	485	35	2747	(97)
	p-Nitrosophenol	484	80	27 ³³	(125d)
с,	o-Nitrosotoluene	485	20	27 47	(72.5)
C,	p- Nitro so dimethylanilin e	484	89	27 ³¹	(*=*))
C 10	p-Nitro sodi ethylanilin e	484	95	27 ³¹	
	N	-Nitroso Comp	ounds		
C,	Ni tro sodime thy lamine	483	90	2739	150/755
	Ni tro som e thy lurea	483	72	27 43	2007 - 20
C₄	Nitrosom ethylu rethan e	483	76	2744	61/10
с,	N-Nitroso- β -methylamino- isobutyl methyl ketone	483	80 [†]	27 42	101/1.5
	N-Nitrosomethylaniline	483	93	27 40	137/13
C.	N-Nitrosophenylglycin e	483	90	27 ⁴³	(103d)

For explanations and symbols see pp. xi-xii,

REFERENCES FOR CHAPTER 27

REFERENCES FOR CHAPTER 27

¹Marvel and Noves, I. Am. Chem. Soc., 42, 2276 (1920). ²Eck and Marvel, Org. Syntheses, Coll. Vol. II, 76 (1943). ³Bousquet, Org. Syntheses, Coll. Vol. II, 313 (1943). ⁴Lachman, Org. Syntheses, Coll. Vol. II, 70 (1943). ⁵Fox, Dunn, and Stoddard, J. Org. Chem., 6, 410 (1941). ⁶Semon, Org. Syntheses, Coll. Vol. I, 318 (1941). 'Semon and Damerell, J. Am. Chem. Soc., 46, 1290 (1924). ^aSanford et al., I. Am. Chem. Soc., 67, 1941 (1945). ⁹Campbell, Campbell, and Chaput, J. Org. Chem., 8, 99 (1943). ¹⁰Campbell and McKenna, J. Org. Chem., 4, 198 (1939). ¹¹Lachman, J. Am. Chem. Soc., 47, 262 (1925). ¹²Bachmann and Boatner, J. Am. Chem. Soc., 58, 2097 (1936). ¹³Haar, Voter, and Banks, J. Org. Chem., 14, 836 (1949). 14 Banks and Diehl, J. Org. Chem., 10, 199 (1945). ¹⁵Semon and Damerell, Org. Syntheses, Coll. Vol. II, 204 (1943). ¹⁶Hartung and Crossley, Org. Syntheses, Coll. Vol. II, 363 (1943); cf. ref. 17. ¹⁷Hartung and Munch, I. Am. Chem. Soc., 51, 2262 (1929). ¹⁸Noves, Org. Syntheses, Coll. Vol. II, 108 (1943). ¹⁹Adkins and Reeve, I. Am. Chem. Soc., 60, 1328 (1938). ²⁰Shivers and Hauser, J. Am. Chem. Soc., 69, 1264 (1947). ²¹Barry and Hartung, J. Org. Chem., 12, 460 (1947); cf. Weaver and Hartung, ibid., 15, 741 (1950). ²²Hauser and Reynolds, J. Am. Chem. Soc., 70, 4250 (1948). ²³Cox et al., J. Chem. Soc., 129 (1936). ¹⁴Wieland, Ber., 40, 1677 (1907), footnote 1. ²⁵ Food-Moore and Rydon, I. Chem. Soc., 679 (1946). ²⁶ Johnson and Degering, J. Am. Chem. Soc., 61, 3194 (1939). ²⁷Robertson, J. Org. Chem., 13, 395 (1948). ²⁸Nightingale and Janes, J. Am. Chem. Soc., 66, 352 (1944). ²⁹Reichert and Hoffmann, Arch. Pharm., 274, 161 (1936). ³⁰Shaw, I. Chem. Soc., 300 (1937). ³¹Bennett and Bell, Org. Syntheses, Coll. Vol. II, 223 (1943); cf. Hodgson and Nicholson, J. Chem. Soc., 470 (1941). ³²Marvel and Porter, Org. Syntheses, Coll. Vol. I, 411 (1941). 33 Bridge, Ann., 277, 85 (1893). ³⁴Ilinski and Henriques, Ber., 18, 706 (1885). ³⁵Cronheim, J. Org. Chem., 1, 7 (1947). ³⁶Hodgson et al., J. Chem. Soc., 1405 (1939); 221 (1943). ³⁷Ruggli and Bartusch, Helv. Chim. Acta, 27, 1371 (1944). ³⁸Neber and Rauscher, Ann., 550, 182 (1942). ³⁹Hatt, Org. Syntheses, Coll. Vol. II, 211 (1943). ⁴⁰Hartman and Roll, Org. Syntheses, Coll. Vol. II, 460 (1943). ⁴¹Buck and Ferry, Org. Syntheses, Coll. Vol. II, 290 (1943). ⁴²Redemann et al., Org. Syntheses, 25, 28 (1945); Adamson and Kenner, I. Chem. Soc., 1551 (1937). 43 Arndt, Org. Syntheses, Coll. Vol. II, 461 (1943). ⁴⁴Hartman and Phillips, Org. Syntheses, Coll. Vol. II, 464 (1943). 45 Earl and Mackney, J. Chem. Soc., 899 (1935). ⁴⁶Coleman, McCloskey, and Stuart, Org. Syntheses, 25, 80 (1945). 47 Lutz and Lytton, J. Org. Chem., 2, 73 (1937); ref. 48. ⁴⁸Barrow and Thorneycroft, J. Chem. Soc., 773 (1939). 49 Langley, Org. Syntheses, 22, 44 (1942).

METHOD 486

2-nitropropane has been successfully converted to 2,2-dinitropropane (50%).²³ Commercial products from the nitration of propane include nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane. These reactions are not conveniently adapted to laboratory work. Extensive reviews have been presented.

Aromatic compounds are usually nitrated in liquid phase by treatment with a mixture of concentrated nitric acid and concentrated sulfuric acid. Sulfuric acid serves as a dehydrating agent which prevents dilution of the nitric acid by the liberated water. Acetic anhydride in acetic acid¹² and boron trifluoride²⁶ also serve this purpose.

Mononitration of benzene is carried out at about 60° and dinitration (meta isomer) at about 95° ; further nitration is difficult.^{2, 27} In a similar manner, toluene gives rise to o- and p-nitrotoluenes (90%) and a small quantity of the meta isomer,³ isopropylbenzene (cumene) goes predominantly to p-nitrocumene (89%),⁴ and t-butylbenzene to p-nitro-t-butylbenzene (74%).⁶ For the nitration of an easily oxidizable substance like p-cymene, a good emulsion and careful temperature control are important.¹¹

Polymethylbenzenes undergo nitration more readily as illustrated by the conversion of sym-trimethylbenzene (mesitylene) to nitromesitylene (76%).¹² Durene (sym-tetramethylbenzene) gives dinitrodurene (94%); no mononitrodurene is ever obtained.²⁴ In the nitration of other polysubstituted benzenes, certain anomalous reactions occur.¹³ Thus nitration of *p*-cymene (*p*-isopropyltoluene) and *p*-diisopropylbenzene gives in part *p*-nitrotoluene (8%) and *p*-nitroisopropylbenzene (50%), respectively, each resulting from the replacement of an isopropyl group by the nitro group. In other instances, several alkyl groups in polymethylbenzenes¹⁴ and polyethylbenzenes¹⁵ are replaced. The nitration of pentamethylbenzene gives dinitroprehnitene (70%).¹⁴

Nitration of polycyclic aromatic compounds has also been well studied, e.g., 1-nitronaphthalene (92%),^{17, 27} 4-nitrobiphenyl (49%),¹⁶ and 2-nitrofluorene (79%).¹⁸ One unusual aspect is the nitration of acenaphthene to 2-nitroacenaphthene (41%) by the action of benzoyl nitrate, whereas the customary nitration procedure yields mainly 4-nitroacenaphthene.²⁰

Benzoyl and acetyl nitrates direct the nitro group to the *ortho* position of substituted benzenes; however, detailed procedures are lacking.¹⁰⁴ Acetyl nitrate is presumed to be present in solutions of nitric acid in acetic anhydride. Another reagent is the combination of nitrogen tetroxide and sulfuric acid.²¹ A review of these and other nitration processes to 1950 has been made;²² in addition, the general mechanisms of aromatic nitrations have been extensively studied.¹⁰⁰

Certain nitro-substituted heterocyclic compounds are formed by direct nitration,²⁶⁻³⁵ e.g., 2-nitrothiophene (85%),²⁸ 7-methyl-8-nitroquinoline (67%),³³ and 3-nitrodibenzofuran (76%).³⁵

28

Nitro Compounds

CONTENTS

METHOD	PAGE
486. Direct Nitration	746
487. Replacement of the Diazonium Group	749
488. Interaction of Silver Nitrite and Alkyl Halides	749
489. Alkylation of Nitro Compounds	749
490. Decarboxylation of Nitro Acids	750
491. Oxidation of Aromatic Amines and Nitroso Compounds	751
492. Addition of Nitroparaffins to a-Nitro Olefins	751
493. Addition of Nitryl Chloride to Unsaturated Halides	751
Table 97. Nitro Compounds	752
Table 98. Dinitro Compounds	753
Table 99. Nitro Olefins	754
Table 100. Nitro Halides	754
Table 101. Nitro Alcohols and Phenols	755
Table 102. Nitro Ethers	756
Table 103. Nitro Aldehydes and Ketones	757
Table 104. Nitro Acids	757
Table 105. Nitro Esters	758
Table 106. Nitro Cyanides	759
Table 107. Nitro Amines	759
References	761

486. Direct Nitration

$RH + HNO_3 \rightarrow RNO_2 + H_2O$

Paraffins and cycloparaffins undergo nitration at high temperatures (400°) upon short contact with nitric acid vapor. In general, a mixture of mononitroparaffins is obtained which includes compounds corresponding to the replacement of any hydrogen or alkyl group present in the original paraffin. For example, nitration of *n*-butane in the vapor phase produces nitromethane, nitroethane, 1-nitropropane, 1-nitrobutane, and 2-nitrobutane. Pyrolysis and oxidation products also occur. Vapor-phase nitration of paraffins under these conditions does not produce dinitroparaffins; also a nitroparaffin as reactant is oxidized and pyrolyzed rather than further nitrated. However, at a lower temperature and a high pressure,

Ch. 28

Examples of nitration of nuclear and side-chain *balogenated compounds* are found in the preparation of *p*-nitrofluorobenzene $(80\%)^{36}$ and the isomeric o- and *p*-nitrophenylethyl bromides³⁷ in 30% and 50% yields, respectively.

Phenol is liable to undergo extensive oxidation during nitration so that carefully controlled conditions are required; it forms 40% o- and 13% *p*-nitrophenol.³⁸ A solvent like chloroform or acetic acid is recommended. The nitration of *p*-cresol is carried out in benzene and acetic acid solution at 0°, the product being 3-nitro-4-hydroxytoluene (77%).³⁹ The nitration of *m*-cresol is discussed under method 491. Benzene is oxidized and nitrated (oxynitration) to 2,4-dinitrophenol (72%) or to picric acid (2,4,6-trinitrophenol) by the action of mercuric nitrate in nitric acid.⁴⁰ Aromatic alcohols like β -phenylethanol are nitrated as the esters to avoid oxidation products.⁴¹

The nitration of aromatic ethers leads to a mixture of *nitro ethers* and nitrophenols in proportions which depend upon experimental conditions.⁴² Benzoyl nitrate favors almost exclusively the formation of o-nitrophene-tole; however, detailed directions are lacking.⁴³ Treatment of diphenyl ether with nitric acid in acetic anhydride-acetic acid gives a separable mixture of the *ortho* and *para* isomers (86% total).⁴⁵

The nitration of acetophenone has been extensively studied.¹⁶ It is carried out at a low temperature (5° to -20°) by the action of nitric and sulfuric acids and gives *m*-nitroacetophenone (55-83%) and smaller amounts of o-nitroacetophenone. Under similar conditions, benzaldehyde is converted to *m*-nitrobenzaldehyde (84%).⁴⁷ If nitration is performed on benzaldehyde diacetate, C₆H₅CH(OCOCH₃)₂, with subsequent hydrolysis, *p*-nitrobenzaldehyde (73%) is obtained; furthermore, a slight modification of this procedure causes the formation of mainly the ortbo isomer (43%).⁴⁶

Aromatic *amines* are often acetylated before nitration. Examples include the nitration of *p*-acetotoluide ⁵⁹ and 2-acetylaminonaphthalene,⁶⁰ the products being 3-nitro-*p*-acetotoluide (90%) and 1-nitro-2-acetylaminonaphthalene (49%), respectively. The *p*-tolylsulfonyl derivative is readily formed and hydrolyzed after nitration.⁶¹ On the other hand, if unacetylated and in the presence of a large excess of sulfuric acid, *p*-toluidine gives mainly 2-nitro-*p*-toluidine (71%),⁶³ the arylammonium ion being *meta*directing.

Similarly, *m*-nitrodimethylaniline is synthesized by nitration of the amine in concentrated sulfuric acid (63%).⁶²

487. Replacement of the Diazonium Group

$$A_{I}N_{2}^{+}X^{-} \xrightarrow[Catalyst]{NaNO_{2}} A_{I}NO_{2} + N_{2}$$

Aromatic diazonium salts on treatment with sodium nitrite decompose to form nitro compounds. This method represents a good procedure for obtaining o- and p-dinitrobenzenes, in 70% and 76% yield, respectively, from the corresponding diazonium sulfates.⁶⁴ Improved yields in the preparation of dinitronaphthalenes are obtained when the decomposition of the diazonium sulfates is catalyzed by a cupro-cupri sulfite prepared by the interaction of copper sulfate and sodium nitrite. The procedure is illustrated by the synthesis of 1,4-dinitronaphthalene (60%).⁶⁵ Occasionally, diazonium fluoborates are first formed,⁶⁶ and these compounds are treated with sodium nitrite in the presence of copper powder, viz.,

$$ArN_2^+BF_4 + NaNO_2 \xrightarrow{Cu} ArNO_2 + N_2 + NaBF_4$$

In this manner, *p*-dinitrobenzene is obtained in 82% yield from *p*-nitroaniline.⁶⁷ Similar treatment of diazonium cobaltinitrites has led to nitro compounds.^{68, 69}

488. Interaction of Silver Nitrite and Alkyl Halides

$$RX + AgNO_2 \rightarrow RNO_2 + AgX$$

The interaction of alkyl halides with silver nitrite produces a mixture of the alkyl nitrite and the isomeric nitro compound;^{70, 73} in addition, alkyl nitrates may be formed.⁷¹ Straight-chain primary halides, preferably the bromides, give better yields than branched-chain primary, secondary, and tertiary halides. For the most part, the yields are low. In a similar manner, polynitroparaffins are obtained from polyhalides.⁷⁴

In the laboratory preparation of nitroethane, the substitution of ethyl sulfate for ethyl iodide and sodium nitrite for silver nitrite leads to a more economical and convenient process (46%).⁷²

Salts of α -halocarboxylic acids react similarly with sodium nitrite to yield salts of α -nitro acids (method 490).

289. Alkylation of Nitro Compounds

14173-Organic Chemistry-4

$$\begin{array}{c} \text{RX} + \text{RCH} = \text{NONa} \rightarrow \text{R}_2\text{CHNO}_2 \text{ and } \text{RCH} = \text{NOR} \\ \downarrow \\ O \\ \end{array}$$

A few nitro compounds have been obtained in good yields by the interaction of reactive halogen compounds with *aci*-nitro alkanes. The reaction is usually complicated in that both C- and O-alkylation occurs. If the stability of the *aci* form of the nitro compound is high, then the tendency is toward alkylation on carbon rather than on oxygen. An example is the condensation of *p*-nitrobenzyl chloride with the sodium salt of nitroethane to give an 83% yield of 1-*p*-nitrobenzylnitroethane,

p-O2NC6H4CH2CH(NO2)CH3.77

Certain tertiary dinitroparaffins are produced by treating secondary nitroparaffins with one mole of alkali and one-half mole of halogen.

$$R_{2}C = NO_{2}Na \xrightarrow{Br_{1}} R_{2}CBrNO_{2} \xrightarrow{R_{2}C = NO_{2}Na} R_{2}C \xrightarrow{CR_{2}} CR_{2}$$

$$NO_{1} NO_{2}$$

The yield for the conversion of 2-nitropropane to 2,3-dimethyl-2,3-dinitroburane ($R = CH_3$) is 80%.⁷⁸

490. Decarboxylation of Nitro Acids

$$ClCH_2CO_2H + NaNO_2 \rightarrow NO_2CH_2CO_2H \rightarrow CH_3NO_2 + CO_2$$

A number of α -nitro carboxylic acids are easily dicarboxylated to furnish nitro compounds. The synthesis of nitromethane in this manner is a classical example (38%).⁷⁹ Nitroethane and higher homologs have been similarly prepared from the α -bromo acids and sodium nitrite.⁸⁰ Another example is found in the synthesis of phenylnitromethane. Treatment of benzyl cyanide with methyl nitrate in the presence of sodium ethoxide gives the sodium salt of the *aci*-nitro compound, which is then hydrolyzed and decarboxylated.⁸¹

$$C_{6}H_{5}CH_{2}CN \xrightarrow{CH_{3}ONO_{2}}_{NaOC_{2}H_{5}} C_{6}H_{5}C(CN) = NO_{2}Na \xrightarrow{NaOH} C_{6}H_{5}C(COONa) = NO_{2}Na$$

 $\xrightarrow{HC1} C_6H_5CH_2NO_2$

Other than in the preparation of nitromethane and phenylnitromethane, the method has had limited application.

Other decarboxylations are noteworthy. Thermal decomposition of 2,4,6-trinitrobenzoic acid furnishes 1,3,5-trinitrobenzene in 46% yield.⁸² In an adaptation of a procedure for the decarboxylation of halogenated furoic acids with boiling quinoline and powdered copper, 2- and 3-nitrobenzofuran are prepared from nitro acids⁸³ and 5-nitrothionaphthene is formed from the corresponding 2-carboxylic acid.⁹⁷

491. Oxidation of Aromatic Amines and Nitroso Compounds

The oxidation of amines to nitro compounds has preparative value when the amines are more readily available than the corresponding nitro compounds, as in the case of the aminopyridines and aminoquinolines (cf. method 439). Oxidation is accomplished with hydrogen peroxide, as shown in the formation of 2-nitropyridine (75%).⁸⁴

The direct nitration of *m*-cresol is unsatisfactory for obtaining 4-nitro-3-methylphenol (29%). A better procedure is to form the nitroso compound and oxidize it to the nitro compound (66% over-all).⁸⁵

HO
$$CH_3 \xrightarrow{NaNO_2} HO CH_3 \xrightarrow{Dil.} HO CH_3$$

H₂SO₄ $HO NO \xrightarrow{HO_3} NO_2$

In a similar manner, *p*-nitrophenol is prepared from *p*-nitrosophenol (60%);⁸⁶ also, several o-dinitro compounds including o-dinitrobenzene and 1,2dimethyl-4,5-dinitrobenzene are obtained from the corresponding nitronitroso compounds.⁸⁷

492. Addition of Nitroparaffins to a-Nitro Olefins

 $RR'CHNO_2 + R''CH = C(R''')NO_2 \xrightarrow{NaOC_2H_5} RR'C(NO_2)CHR''CH(R''')NO_2$

In a variation of the Michael condensation, nitroparaffins having active α -methylene groups add to reactive olefinic compounds including α,β unsaturated esters (method 301), α,β -unsaturated cyanides (method 388), and α -nitro olefins.⁸⁶ Interaction of primary or secondary aliphatic nitro compounds with the unsaturated nitro compounds in the presence of sodium ethoxide in alcohol yields 1,3-dinitroparaffins. The reaction is general, but the yields vary, depending on the degree of polymerization that the nitro olefin undergoes and the amount of addition of alcohol to it as well as on the reactivity of the product toward further condensation. The principal product from the reaction of 2-nitro-2-butene $(R''=R'''=CH_3)$ and 2-nitropropane is 2,4-dinitro-2,3-dimethylpentane $(R=R'=R''=CH_3)$ in 47% yield.

493. Addition of Nitryl Chloride to Unsaturated Halides 89

 $H_2C = CHBr + NO_2Cl \rightarrow O_2NCH_2CHBrCl (85\%)$

NITRO COMPOUNDS

Ch. 28 .

TABLE 97. NITRO COMPOUNDS

C _n	Compound	Method	Yield (%)	Chapter ^{tef.}	B.p./mm., n ^t _D , (M.p.)
	Aliphatic and	Aromatic	Nitro C	ompound s	
C1	Nitromethane	490	38	2879	101
c.	Nitroethane	488	46	2872	115
-1		490	50	28 ⁸⁰	
с,	1-Nitrobutane	488	37	28 ⁷³	152/780, 1.4103
с.	1-Nitropentane	488	39	28 ⁷³	66/16, 1.4175
ີ້ຄ	Nitrobenzene	486	85	28 ²	207
с,	Phenylnitromethane	490	55	28 ⁸¹	92/3
•	m-Nitrotoluene	14	72	28 ⁹⁵	114/15, (16)
С,	1-Nitro-2-phenylethane	488	60	28 ⁷⁵	133/14
•	o-Nitroethylbenzene	486	51	28 ³	135/37
	p-Nitroethylbenzene		42	28 ³	154/37
	3-Nitro-1,2-dimethylbenzene	486	86	28 ⁸	130/18
	4-Nitro-1, 2-dimethylbenzene	486	30	287	130/12, (28.5)
	2-Nitro-1,4 dimethylbenzene	486	89	28°	65/0.35
C,	p-Nitrocumene (p-Nitroisopropyl- benzene)	48 6	89	28 ⁴	132/15
	Nitromesitylene	486	76	2812	243-250, (44)
C 10	p-Nitro-s-butylbenzene	486	57	28 ⁵	130/9
	p-Nitro-t-butylbenzene	486	74	28 ⁶	158/30, (28)
	2-Nitro-4-isopropyltoluene	486	82	28 ¹¹	126/10, 1.5287
	4-Nitro-1.2-diethylbenzene	486	41	28 ¹⁰	141/10, 1.5440 ²⁵
	1-Nitronaphthalene	486	92	2817	(56.6)
	2-Nitronaphthalene	487	40	28 ⁶⁵	(7 9)*
С.,	2-Nitrobiphenyl	12	60	28 ⁹²	(36)
	2-Nitro biphenyl 🕽	486	27	28 ¹⁶	166/4, (37)
	4-Niuobiphenyl		49		(114)
	3-Nitrobiphenyl	12	60	28 ⁹¹	(59)
		14	40	28 ⁹⁴	(62)
	4-Nitro biphenyl	12	60	28 ⁹²	(113)
	2-Nitroacenaphthene	48 6	41	28 ²⁰	(151)
С.,	2-Nitro fluoren e	486	79	28 ¹⁸	(157)
Cia	9-Nitroanthracene	486	56	28 ¹⁹	(146)
14		486	70	28 ¹⁰³	(146)
	Heteroc	yclic Niu	ro Comp	ounds	
C.	2-Nitrothiophene	486	85	28 ²⁸	(45)
C,	2-Ni tropyri dine	491	7 5	28 ⁸⁴	256, (71)
с.	3-Nitrothionaphthene	486	48	28 ²⁹	(81)
-	5-Nitrothionaphthene	490	69	28 ⁹⁷	(150)
		5 5 9	69	39 62	(150)
	3-Nitro-2,4,6-trimethylpyridine	486	90	28 ³¹	229/733

TABLE 98. DINITRO COMPOUNDS

TABLE 97 (continued)

C _n	Compound	Method	Yield (%)	Chaptertef.	B.p./mm., n ^t _D , (M.p.)
	Heterocycl	ic Nitro Com	pounds	(continued)	
С,	3-Nitroquinoline	575	48	39 162	(126)
	5-Ni troquinoline	5 59	16	39146	(70)
	6-Nitroquinoline	575	72	39 130	(151)
	7-Nitroquinoline	575	14	39130	(130)
	5-Nitroquinoline	486	35	28 ³²	(71)
	8-Nitroquinoline		43		(89)
C 10	7-Methyl-8-nitroquinoline	486	67	28 ³³	(187)
C12	3-Nitrodibenzofuran	486	76	28 ³⁵	(182)
	2-Nitrodibenzothiophene	486	28	28 ³⁰	(187)
	3-Nitrocarbazole	557	85	39 158	(206)
C 13	2-Nitroacridine	486	60	28 ³⁴	(215)

For explanations and symbols see pp. xi-xii.

TABLE 98. DINITRO COMPOUNDS

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C ₁	Tetranitrometh ane		65	28 ⁹⁶	40/26, 1.4384
с,	1,3-Dinitropropane (purified)	488	7	2874	103/1, 1.4638 ²⁵
C6	2,4-Dinitro-3-methylpentane	492	28	28 ⁸⁸	95/0.5
	2, 3-Dimethyl-2, 3-dinitrobutane	489	80	28 ⁷⁸	(209)
	o-Dinitrobenzene	487	70	28 ⁶⁴	(117)
		491	60	28 ⁸⁷	
	<i>m</i> -Dinitrobenzen e	486	88	28 ²	(90)
	p-Dinitrobenzene	487	76	28 ⁶⁴	(173)
		487	82	28 ⁶⁷	(173)
	1,3,5-Trinitrobenzene	14	65	28 ⁹⁶	(123)
		490	46	28 ⁸²	(122)
C,	2,4 Dinitro-2,3 dimethylpentane	492	47	28 ⁸⁸	92/0.5
С 10	Dinitrodurene	486	94	28 ²⁴	(208)
	Dinitroprehnitene	486	70	28 ¹⁴	(177)
	1,3Dinitronaphthalene	7	74	28 ¹⁰¹	(146)
	1,4 Dinitronaphthalene	487	60	28 ⁶⁵	(134)
C12	2,2'-Dinitro biphenyl	11	61	· 28 ⁹⁰	(124)
C 14	4,4-Dinitrodiphenylethane	486	95	28 ²⁵	(180)

For explanations and symbols see pp. xi-xii.

A BOARD

Ch. 28

TABLE 99. NITRO OLEFINS

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.)
С,	Nitroethylene	24	67	2443	39/80
c,	1-Nitro-1-propene	24	67	2443	54/28
•	2-Nitto-1-propene	24	56	2443	58/90
		24	84	2 ²⁴⁰	49/60, 1.4292 ²³
		26	50	2 ²⁸⁴	
C₄	2-Nitro-1-buten e	26	73	2 ²⁸⁴	61/50, 1.4356
•	2-Nitro-2-butene	24	85	2 ⁴⁶⁸	56/15, 1. 4600²²
C,	2-Nitro-1-pentene	26	75	2 ²⁸⁴	68/50, 1.4403
C,	2-Nitro-1-hexene	26	70	2 ²⁸⁴	82/50, 1.4462
v	2-Nitro-2-hexene	24	90	2 ²⁴¹	53/1, 1.4513 ²⁵
	3-Nitro-3-hexene	24	90	2 ²⁴¹	53/1, 1.4521 ²⁵
	2-Nitro-4-methyl-2-pentene	24	90	2 ²⁴¹	57/1, 1.4520 ²⁵
	ω-Nitro-2-vinylthiophene	37	78	2 ³⁵²	(80)
c,	1-Nitro-1-heptene	24	90	2 ²⁴¹	57/1, 1.4524 ²⁵
	2-Nitro-1-heptene	26	70	2 ²⁸⁴	94/30, 1.4482
	3-Nitro-5-methyl-3-hexene	24	90	2 ²⁴¹	53/1, 1.4528 ²⁵
	1-Cyclohexenylnitromethane	19	75	2444	107/17, 1.4856
		20	85	2 ⁵¹⁹	100/9
	l-(2-Thienyl)-2-nitropropene	37	44	2 ³⁵²	(69)
C,	2-Nitro-4-ethyl-2-hexene	24	90	2 ²⁴¹	84/1, 1.4602 ²⁵
	β -Nitrostyrene	37	83	2 ⁴⁸⁹	(58)
	m-Nitrostyrene	27	60	2 ²⁵⁸	96/3.5, 1.5830
	p-Nitrostyrene	20	70	2 455	(21)
	2,4,6-Trinitrostyrene	26	49	2 ⁴⁷⁹	(65)
	ω, 3-Dinitrostyrene	37	76	2 ⁴⁰³	(125)
C,	3-Nitro-5-ethyl-3-heptene	24	90	2 ²⁴¹	65/1, 1.4598 ²⁵
		14	45	28 ⁹³	(73)
		28	32	2 ²⁷³	(72)
	<i>m</i> -Nitrostilbene	28	33	2 ⁴⁷⁷	(112)
	cis-p-Nitrosulbene	27	64	2 ²⁵⁹	(65)
	p-Nitrostilbene	28	48	2 ²⁷³	(155)

For explanations and symbols see pp. xi-xii.

TABLE 100. NITRO HALIDES

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
с,	1-Chloro-1-bromo-2-nitroethane	493	85	28 89	77/15
c.	1-Chloro-2-nitropropane	52	47	4 ⁵⁸⁰	82/28
- 3	2-Bromo-2-ni tropropane	64	89	4 ²⁹⁷	151.8/745
с.	1-Chloro-4-nittobutane	64	35	4 ⁵⁹¹	105/10
C ₆	o-Chloronitrobenzene	487	81	28 ⁶⁸	(33)*

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C ₆	o-Bromonitrobenzene	56	83	4316	(42)*
	<i>m</i> -Fluoronitrobenzene	56	54	4 303	54/2
	<i>m</i> -Chloroni troben zen e	56	71	4 337	117/12. (45)
		487	89	28 ⁶⁶	(46)•
	<i>m</i> -Bromonitrobenzen e	56	87	4316	(56)*
		64	75	4 ²⁹⁵	(52)
	p-Fluo roni trobenzene	486	80	28 ³⁶	109/36
	p-Chloroni troben zene	56	33	4316	(83)*
		487	70	28 ⁶⁸	
	p-Bromonitrobenzene	56	79	4 3 16	(127)*
	1,2,3-Triiodo-5-ni trobenzene	56	70	4 ⁵⁹⁵	(162)
c,	o-Nitrobenzyl bromide	64	51	4 181	(46)
	<i>m</i> -Nitrobenzyl chloride	51	57	431	(47)
	<i>m</i> -Nitrobenzyl bromide	52	85	4181	(58)
	p-Nitrobenzyl chloride	51	67	431	(71)
	p-Nitrobenzyl bromide	64	59	4 296	(99)
	p-Nitrobenzyl iodide	55	100	4 ³⁷⁸	(124)
C8	o-Nitrophenylethyl bromide)	486	30	28 ³⁷	120/0.5, (38)
	p-Nitrophenylethyl bromide		54		(70)

For explanations and symbols see pp. xi-xii.

TABLE 101. NITRO ALCOHOLS AND NITRO PHENOLS

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	2,2,2-Trinitroethanol	102	75	5747	103/14, (30)
С,	2-Nitro-1-propanol	102	65	5 ⁷⁴⁸	100/12
C4	3-Nitro-2-butanol	102	92	5 ⁷⁴³	90/11, 1.4425 ²² , 123Nu
	Nitro-t-butyl alcohol	102	30	5 ⁷⁵¹	.77/10
C,	1-Nitro-2-pentanol	102	71	5 ⁷⁵⁰	88/3, 1,4439 ²⁵ , 100Nu
	1-Nitro-3-methyl-2-butanol	102	68	5 ⁷⁵⁰	84/4, 1,4455 ²⁵ , 98Nu
	2- Ethyl- 2-ni tro- 1, 3- propanediol	102	9 9	5745	(56)
C6	2-Nitro-3-hexanol	102	73	5746	84/3, 1.4455 ²⁵ , 137Nu
	3-Nitro-4-hexanol	102	81	5746	85/2, 1.4441 ²⁵ , 114Nu
	1-Nitro-4-methyl-2-pentanol	102	65	5 ^{7 50}	99/2. 1.4433
	o-Nitrophenol	486	40	28 ³⁸	(45)
	p-Nitrophenol		13		(114)
	<i>m</i> -Nitrophenol	93	86	5 490	163/12, (96)
	p-Nitrophenol	491	60	28 ⁸⁶	(114)
	2-Nitrohydro quinon e	110	30	5 ⁷⁹¹	(133)
	2,4 Dinitrophenol	486	72	28 ⁴⁰	(113)
_					

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
с,	4-Nitro-3,5-heptanediol	102	50	5753	(97)
	1-Nitromethyl-1-cyclo- hexanol	102	75	5 ⁷⁵²	118/9
	o-Nitrobenzyl alcohol	80	90	5 ¹⁹⁵	(74)
	•	81	91	5511	(74)
		96	50	5 ⁵⁵⁸	
	<i>m</i> -Nitrobenzyl alcohol	79	82	52	(31)
	··· ••••••••••••••••••••••••••••••••••	80	86	5 191	169/6, 1.573128
	p-Nitrobenzyl alcohol	80	92	5 251	,
		95	71	5 524	(93)
	2-Nitro-4-methylphenol	93	69	5 501	(36)
	2	486	77	28 ³⁹	(33)
c.	1-Nitro-2-octanol	102	88	5744	120/2
~.	5-Nitro-4-octanol	102	89	5745	124/10, 1.4463
	1-Phenyl-2-nitroethanol	102	78	5742	-
	m-Nitrophenylmethylcarbinol	80	76	5177	(63)
	β -(4-Nitrophenvl)-ethanol	486	50	2841	(62)
c.	2-Nitro-1-phenyl-1-propanol	102	62	5 ⁷⁴⁹	125/3

For explanations and symbols see pp. xi-xii.

TABLE 102. NITRO E	THERS
--------------------	-------

Cn	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
с.	Methyl 2-nitroethyl ether	121	60	6165	38/1, 67/12, 1.417
Ċ,	o-Nitroanisole	487	63†	28 ⁶⁹	277*, (10)*
•	p-Nitroani sole	487	68	28 ⁶⁹	274°, (54)°
c.	2-Nitro-5-methoxytoluene	486	60	28 44	(55)
- 0		491	66†	28 ⁸⁵	(55)
	o-Niuoethoxybenzene	116	80	6 ¹⁰⁴	148/15
с.,	o-Nitrodiphenyl ether	115	84	6 ²⁴	185/8
- 14	p-Nitro diphenyl ether	115	82	624	190/8, (58)
	• • • • • • •	486	36	28 ⁴⁵	(57)

For explanations and symbols see pp. xi-xii.

TABLE 104. NITRO ACIDS

TABLE 103. NITRO ALDEHYDES AND KETONES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
с,	5-Nitto-4,4-dimethyl-2- pentanone	301	63	14416	110/11, 1.4422 ²⁵
	o-Nitrobenzaldehyde	147	36	9244	(38)
		155	18†	9150	(45)
		158	85	914	(45)
		486	43	28 46	(43)
	<i>m</i> -Nitroben zaldehy de	147	45	9244	(52)
		149	42	9123	(/-/
		486	84	28 47	119-123/4. (58)
	p-Nitrobenzaldehyde	147	59	9244	(105)
		155	51 [†]	9 ¹⁴⁹	(106)
		155	56	9 ⁹¹	(106), 159Ph
		158	80	914	(107)
		162	91	9 ⁶⁵	(106), 156Ph
		486	73	28 ⁴⁸	(106), 132-Ox
	2,4-Dinitrobenzaldehyde	1 50	32	9 186	(71)
C,	Nitroterephthaldehyde	486	52	28 ⁴⁹	(97), 176-Ox
	a-Nitroacetophenone	179	80	10 219	(105)
	o-Nitroacetophenone	179	23†	10 220	135/4
		185	83	10 ³¹⁴	159/16, 1.551
	<i>m</i> -Nitroacetophenone	486	55	28 ⁴⁶	(78)
	p-Nitroacetophenone	179	21 †	10 22 0	(80)
		185	74	10 ³¹⁵	(80), 132Ph*
		228	47	10 ⁵³⁸	(80)
с,	<i>m</i> -Nitropropiophenone	486	75	28 ⁵³	(102)
С11	o-Nitrophenyl 2-thienyl ketone	178	60	10 ¹⁵⁵	(98)
C ₁₃	2,4,7-Trinitrofluorenon e	486	78	28 54	(176)
C 14	o, o'-Dinitrobenzil	230	60	10 592	(206)

For explanations and symbols see pp. xi-xii.

TABLE 104. NITRO ACIDS

C _n	Compound	Method	Yi e ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	4-Nitropentanoic acid	249	92	13301	118/0.6, (34)
C,	o-Nitrobenzoic acid	255	98	13365	(147), 155An*
		257	80	13 562	(148), 174Am*
		261	91	13563	(146)
	m-Nitrobenzoic acid	249	96	13564	(140), 142Am*
		253	90	13 565	(141)
	p-Nitrobenzoic acid	257	62	13259	(242)
		257	86	13 ⁵⁶⁶	(238), 204An*

NITRO COMPOUNDS

Ch. 28

C _n	Compound	Method	Yi el d (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
С,	2.4 Dinitrobenzoic acid	247	95	13 567	(180), 203Am*
'	3.5-Dinitrobenzoic acid	486	60	28 ⁵⁵	(207)
	2,4,6-Trinitrobenzoic acid	257	90	13 494	(228)*
c.	o-Nitrophenylacetic acid	259		13 ⁵⁶⁸	(139), 161Am*
- 0	<i>m</i> -Nitrophenylacetic acid	247	62†	13 ⁵⁶⁹	(120)
	•••	248	221	13 ¹⁴⁷	(119), 110Am*
	p-Nitrophenylacetic acid	247	95	13 ⁵⁷⁰	(152), 198Am*
		247	97	13 570	(153)
	3-Nitrophthalic acid	250	26	13 ³⁸⁸	(217)
		486	31	28 ^{sə}	(218)
	4-Nitrophthalic acid	248	99	13 ³⁴⁰	(164)

For explanations and symbols see pp. xi-xii.

TABLE 105. NITRO ESTERS

C _n	Compound	Me thod	Yi <i>e</i> ld (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
c,	Methyl nitroacetate	285	60	14398	94/15, 1.4245
C,	Ethyl nitroacetate	285	60	14 ³⁹⁸	106/25, 1.4252
•		486	30	28 ¹⁰²	91/12
C.	Methyl <i>Y</i> -nitrobutyrate	301	35	14 415	68/0.3, 1.4375
3	2-Nitro butyl formate	287	88	14125	76/5, 1.4345 ²⁶
	2-Nitroisobutyl formate	287	61	14 ¹²⁵	87/10, 1.4327 ²⁶
	2-Nitroethyl propionate	285	90	1476	107/10, 1.4336
	Dimethyl nitromalon ate	486	59	28 ¹⁰³	124/16, 100/1
с.	Ethyl 3-methyl-4-nitrobutanoate	301	55	14415	85/1, 1.4350
-1	Diethyl nitromalonate	486	92	28 ⁵⁶	83/0.3, 1.4274 ²¹
c.	Methyl m-nitrobenzoate	321	52	14 428	(78)
0		486	85	28 ^{so}	(78)
	Methyl <i>p</i> -nitrobenzoate	285	100	141	(93)
		294	100	14 ¹⁸⁵	(96)
	Methyl 2,4 dinitrobenzoate	285	91	14 ¹⁹	(83)
	o-Nitrophenyl acetate	287	93	14 ¹³³	(38)
		287	90	14 ¹¹⁹	(41)
	p-Nitrophenyl acetate	286	96	14 ⁸⁸	(82)
		287	94	14 ¹¹⁹	(83)
c.	Methyl p-nitrophenylacetate	285	84	1475	(54)
,	Ethyl p-nitrobenzoate	294	100	14 ¹⁸⁵	(57)
	p-Nitrobenzyl acetate	290	82	14 ¹⁹⁷	(78)
C 10	Ethyl o-nitrophenylacetate	486	25	28 ⁵¹	(67)
- 10	Ethyl p-nitrophenylacetate	293	97	14 ¹⁷⁷	(66)

For explanations and symbols see pp. xi-xii.

TABLE 107. NITRO AMINES

TABLE 106. NITRO CYANIDES

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
C4	2-Nitro-n-propyl cyanide	389	15	20 ³⁰⁷	82/0.5
	2-Nitroisopropyl cyanide	389	25	20 ³⁰⁷	70/0.5
C,	4-Nitro-n-butyl cyanide	388	30	20 ³⁸³	84/0.25
	2-Nitro-1-methyl-n-propyl cyanide	389	50	20 ³⁰⁷	61-65/0.2
	Nitro-t-butyl cyanide	389	75	20 ³⁰⁷	67/0.2, (42)
C 6	3-Nitro-3-methyl-n-butyl cyanide	388	80	20 ³⁸³	70/0.09
C,	3-Nitro-1,2-dimethyl-n-butyl cyanide	388	80	20 ³⁸³	87/0.24
	o-Nitro benzonitrile	384	95	20 127	(115)
	m-Nitrobenzonitrile	384	90	20 122	(117)
		396	83	20 336	,
		486	82	28 ⁵⁷	(116)
	p-Nitrobenzonitrile	384	90	20 ¹⁵⁶	(148)
	2,4-Dinitrobenzonitrile	380	85	20 ²³⁴	(104)
	3,5-Dinitroben zonitrile	384	55	20 ¹⁵⁵	(127)
C ₈	o-Nitrobenzyl cyanide	385	66	20 379	(84)
	<i>m</i> -Nitrob e nzyl cyanide	378	85	20 ³⁶⁵	180/1.5
	p-Nitrobenzyl cyanide	380	75	20 ³⁸⁴	(146)
		48 6	54	28 ⁵⁸	(117)

For explanations and symbols see pp. xi-xii.

TABLE 107. NITRO AMINES

C _n	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.), Deriv.
C,	2-Amino-1-nitropropan e	443	55	24 487	55/10, 114HCl
C_	2-Nitro-3-aminobutane	443	60	24 ⁴⁸⁷	78/20, 1.4720 ¹⁸ , 115HCl
	1-Nitro-2-amino-2-methyl- propane	443	40	24 ⁴⁸⁷	65/11, 182HC
C,	N-(2-Nitwisobutyl)- methylamine	444	48	24 ⁴⁰	62/6, 1.4368
C 6	N-(2-Nitrobutyl)- dimethylamine	444	70	24 ⁵⁴⁸	94/15, 1.4338
	N-(2-Nitroisobutyl)- dimethylamine	444	74	24 ⁴⁰	66/10, 1.4330
	o-Nitroaniline	15	56	28 ⁹⁹	(70)
		451	97	24 ⁵⁰¹	(72), 93Ac
		449	83	24 ²⁹⁴	
	<i>m</i> -Nitroaniline	425	80	24 ⁸⁰	(114)
	2,4-Dinittoaniline	435	76	24 113	(177)
	2,6 Dinitroaniline	435	36†	24 ⁵⁶¹	(140)
с,	N-(2-Nitropropyl)- di ethylamine	444	83	24 426	1.4420

NITRO COMPOUNDS

Ch. 28

TABLE 107 (continued)

Cn	Compound	Method	Yield (%)	Chapter ^{re f.}	B.p./mm., n_{D}^{t} , (M.p.), Deriv
Ċ,	N-(2-Nitro-2-methylbutyl)-	444	76	24 ⁴⁰	64/3, 1.4410
	o-Nitrobenzylamine	452	90	24 ⁴²⁸	248HC
	-Nitrobenzylamine	452	90	24 428	220HCl
	p-Nitrobenzylamine	437	61	24 ²³⁵	
	p 111100 00 0 1 1 1 1 1 1 1 1	447	91†	24285	222HCI
		452	80	24 ⁴²⁸	250HC1
	2-Nitro-p-toluidine	486	90	28 ⁵⁹	(117), 95Ac
	2-Nitro-p-toluidine	486	71	28 ⁶³	(77)
	o-Nitromethylaniline	451	89	24 ⁵⁵⁰	(34), 71Ac
c.	t-Diethylamino-2-nitro-	444	100	24 ³⁹	103/14
0	1-Diemylamico 2	444	79	24 ¹²⁶	79/2, 1.4405
	2-Nitro-3-diethylamino-	443	65	24 ⁴⁸⁷	90-95/11, 267Pi
	1-Diethylamino-2-methyl-	444	74	24 *25	64/2, 1.4393 ²⁵
	Z-mitropropane	136	85	24 ¹⁹⁷	149/20, 1.6080 ²⁵
	N.NDimethyl-0-introaniline	486	63	2862	(60)
	N.N-Dimethyl-p-nitroaniline	436	97	24 ¹⁹⁷	(164)
C	N-(2-Nitmischuryl)-aniline	444	93	24 ⁴⁰	(64)
C 10	N.N-Diethyl-p-nitroaniline	436	94	24 ¹⁹⁸	(76)
C	N,N-Diethyl- 3-nitrobenzyl-	436	60	24 ¹⁹⁹	148/6, 161Pi
	n,N-Diethyl-4-nitrobenzyl-	436	45	24 ¹⁹⁹	162HCi
C ₁	4 α-Nitro-β-anilino-β- phenylethane	443	79	24 ⁴⁸⁸	(87), 127HCl

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 28

REFERENCES FOR CHAPTER 28

¹Hass and Riley, Chem. Revs., 32, 373 (1943); Hass, Ind. Eng. Chem., 35, 1146 (1943); Levy and Rose, Quarterly Reviews, 1, 358 (1948). ²Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 161. ³Cline and Reid, J. Am. Chem. Soc., 49, 3150 (1927); Birch et al., ibid., 71, 1367 (1949); Jones and Russell, J. Chem. Soc., 921 (1947). ⁴Haworth and Barker, J. Chem. Soc., 1302 (1939); Sterling and Bogert, J. Org. Chem., 4, 25 (1939). ⁵Glattfeld and Wertheim, J. Am. Chem. Soc., 43, 2682 (1921). ⁶Craig, J. Am. Chem. Soc., 57, 195 (1935). ⁷ Birch et al., J. Am. Chem. Soc., 71, 1364 (1949); ref. 8. *Emerson and Smith, J. Am. Chem. Soc., 62, 141 (1940); ref. 7. ⁹ Snyder and Pilgrim, J. Am. Chem. Soc., 70, 3787 (1948); Kobe and Levin, Ind. Eng. Chem., 42, 352 (1950). ¹⁰ Lambooy, J. Am. Chem. Soc., 71, 3756 (1949). ¹¹ Kobe and Doumani, Org. Syntheses, 21, 96 (1941). ¹²Powell and Johnson, Org. Syntheses, Coll. Vol. II, 449 (1943). ¹³Nightingale, Chem. Revs., 40, 117 (1947). 14 Smith and Harris, J. Am. Chem. Soc., 57, 1289 (1935). ¹⁵ Smith and Guss, J. Am. Chem. Soc., 62, 2635 (1940). ¹⁶ Morgan and Walls, J. Soc. Chem. Ind. (London), 49, 15T (1930); Jenkins, Mc-Cullough, and Booth, Ind. Eng. Chem., 22, 31 (1930). ¹⁷ Berkebile and Fries, J. Chem. Education, 25, 617 (1948). ¹⁸Kuhn, Org. Syntheses, Coll. Vol. II, 447 (1943); cf. Schulman, J. Org. Chem., 14, 385 (1949). ¹⁹ Bartlett and Cohen, J. Am. Chem. Soc., 62, 1187 (1940). ²⁰ Morgan and Harrison, J. Soc. Chem. Ind. (London), 49, 413T (1930). ¹¹ Pinck, I. Am. Chem. Soc., 49, 2536 (1927). ²²Crater, Ind. Eng. Chem., 40, 1627 (1948); 42, 1716 (1950). ²³ Denton et al., Ind. Eng. Chem., 40, 381 (1948). ²⁴ Smith, Org. Syntheses, Coll. Vol. II, 254 (1943). ²⁵ Rinkenbach and Aaronson, J. Am. Chem. Soc., 52, 5040 (1930). ²⁶ Thomas, Anzilotti, and Hennion, Ind. Eng. Chem., 32, 408 (1940). ²⁷ McCormack, Ind. Eng. Chem., 29, 1333 (1937). ²⁸ Babasinian, Org. Syntheses, Coll. Vol. II, 466 (1943). ²⁹ Fries and Hemmecke, Ann., 470, 6 (1929). 30 Gilman and Nobis, J. Am. Chem. Soc., 71, 274 (1949). ³¹ Plazek, Ber., 72, 577 (1939). 32 Fieser and Hershberg, J. Am. Chem. Soc., 62, 1643 (1940). 33 Capps, J. Am. Chem. Soc., 69, 179 (1947). 34 Lehmstedt, Ber., 71, 808 (1938). 35 Gilman, Bywater, and Parker, J. Am. Chem. Soc., 57, 885 (1935). 36 Bradlow and Vanderwerf, J. Am. Chem. Soc., 70, 654 (1948). 37 Foreman and McElvain, J. Am. Chem. Soc., 62, 1436 (1940). 38 Ref. 2, p. 246; also Fishman, J. Am. Chem. Soc., 42, 2291 (1920); Baroni and Kleinau, Monatsh., 68, 251 (1936). 39 Adams and Kornblum, J. Am. Chem. Soc., 63, 196 (1941). 40 Bachmann et al., J. Org. Chem., 13, 390 (1948); Wright et al., Ind. Eng. Chem., 40, 1281 (1948). 41 Woodburn and Stuntz, J. Am. Chem. Soc., 72, 1361 (1950).

42 Schramm and Westheimer, J. Am. Chem. Soc., 70, 1782 (1948).

⁴³ Francis, J. Chem. Soc., 89, 1 (1906).

44 Cook et al., J. Chem. Soc., 1076 (1949).

⁴⁵Suter, J. Am. Chem. Soc., 51, 2581 (1929).

⁴⁶ Corson and Hazen, Org. Syntheses, Coll. Vol. II, 434 (1943); Leonard and Boyd, J. Org. Chem., 11, 409 (1946); Morgan and Watson, J. Soc. Chem. Ind. (London), 55, 29T (1936).

47 Icke et al., Org. Syntheses, 29, 72 (1949).

48 Davey and Gwilt, J. Chem. Soc., 204 (1950).

⁴⁹ Ruggli and Preiswerk, Helv. Chim. Acta, 22, 484 (1939).

⁵⁰ Kamm and Segur, Org. Syntheses, Coll. Vol. 1, 372 (1941); cf. ref. 26.

⁵¹ Dippy and Page, J. Soc. Chem. Ind. (London), 55, 190T (1936).

⁵²Culhane and Woodward, Org. Syntheses, Coll. Vol. I, 408 (1941); cf. ref. 26.

⁵³ Keneford and Simpson, J. Chem. Soc., 356 (1948).

⁵⁴ Woolfolk and Orchin, Org. Syntheses, 28, 91 (1948).

⁵⁵ Brewster, Williams, and Phillips, Org. Syntheses, 22, 48 (1942).

⁵⁶ Weisblat and Lyttle, J. Am. Chem. Soc., 71, 3079 (1949).

57 Blanksma and Petri, Rec. trav. chim., 66, 355 (1947).

⁵⁸ Robertson, Org. Syntheses, Coll. Vol. I, 396 (1941).

59 McGookin and Swift, J. Soc. Chem. Ind. (London), 58, 152 (1939).

⁶⁰ Hartman and Smith, Org. Syntheses, Coll. Vol. II, 438 (1943).

⁶¹ King and Beer, J. Chem. Soc., 791 (1945).

62 Fitch, Org. Syntheses, 27, 62 (1947).

63 Nölting and Collin, Ber., 17, 261 (1884).

⁶⁴ Hodgson, Heyworth, and Ward, J. Chem. Soc., 1512 (1948).

⁶⁵Hodgson, Mahadevan, and Ward, Org. Syntheses, 28, 52 (1948); J. Chem. Soc., 1392 (1947).

⁶⁶ Roe in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 193. ⁶⁷ Starkey, Org. Syntheses, Coll. Vol. II, 225 (1943).

68 Hodgson and Heyworth, J. Chem. Soc., 1624 (1949); cf. ref. 65.

⁶⁹ Hodgson and Marsden, J. Chem. Soc., 22 (1944); Hodgson and Ward, *ibid.*, 127 (1947).

⁷⁰ Reynolds and Adkins, J. Am. Chem. Soc., 51, 279 (1929).

⁷¹ Komblum et al., J. Am. Chem. Soc., 69, 307 (1947).

⁷² McCombie, Saunders, and Wild, J. Chem. Soc., 24 (1944).

73 Vogel, J. Chem. Soc., 1847 (1948).

⁷⁴Kispersky, Hass, and Holcomb, J. Am. Chem. Soc., 71, 516 (1949).

⁷⁵ Borsche and Sinn, Ann., 553, 265 (1942).

⁷⁶ Thurston and Shriner, J. Org. Chem., 2, 183 (1937).

"Hoover and Hass, J. Org. Chem., 12, 501 (1947).

⁷⁸Seigle and Hass, J. Org. Chem., 5, 100 (1940); Hudgin, M.S. Thesis, Purdue University, 1940.

⁷⁹ Whitmore and Whitmore, Org. Syntheses, Coll. Vol. 1, 401 (1941).

⁸⁰ Auger, Bull. soc. chim. France, 23, 333 (1900).

⁸¹ Black and Babers, Org. Syntheses, Coll. Vol. II, 512 (1943).

⁸²Clarke and Hartman, Org. Syntheses, Coll. Vol. I, 541 (1941).

⁸³Gilman, Van Ess, and Hayes, J. Am. Chem. Soc., 61, 643 (1939).

⁸⁴Kirpal and Böhm, Ber., 65, 680 (1932).

^{s5}Koelsch, J. Am. Chem. Soc., 66, 2019 (1944).

³⁶ Robertson, J. Chem. Soc., 81, 1477 (1902).

⁸⁷ Kuhn and Klaveren, Ber., 71, 779 (1938).

88 Lambert and Piggott, J. Chem. Soc., 1489 (1947).

⁸⁹ Steinkopf and Kühnel, Ber., 75, 1323 (1942).

90 Fuson and Cleveland, Org. Syntheses, 20, 45 (1940).

⁹¹ Bachmann and Hoffman in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 249.

92 France, Heilbron, and Hey, J. Chem. Soc., 369 (1940); cf. ref. 91.

93 Ruggli and Schmid, Helv. Chim. Acta, 18, 1232 (1935).

⁹⁴ Campbell, Anderson, and Gilmore, J. Chem. Soc., 449 (1940).

95 Clarke and Taylor, Org. Syntheses, Coll. Vol. 1, 415 (1941); ref. 96, p. 294.

⁹⁶ Komblum in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1944, p. 296.

97 Fieser and Kennelly, J. Am. Chem. Soc., 57, 1614 (1935).

⁹⁸ Liang, Org. Syntheses, 21, 105 (1941); Nicholson, J. Chem. Soc., 1553 (1949).
⁹⁹ Ehrenfeld and Puterbaugh, Org. Syntheses, Coll. Vol. I, 388 (1941).

¹⁰⁰ Hughes, Ingold, Gillespie, et al., J. Chem. Soc., 2400-2558 (1950); Hughes,

Ingold et al., *ibid.*, 2628-2677 (1950).

¹⁰¹Smith, J. Am. Chem. Soc., 71, 2855 (1949).

¹⁰² Arndt and Rose, J. Chem. Soc., 6 (1935).

¹⁰³ Braun and Cook, Org. Syntheses, 31, 77 (1951).

¹⁰⁴ Pictet and Khotinsky, Ber., 40, 1163 (1907).

METHODS 494-496

765

29

Azo and Azoxy Compounds

CONTENTS

METHOD

PAGE

 494. Coupling of Aromatic Diazonium Compounds with Phenols and Amines 495. Condensation of Nitroso Compounds with Amines 496. Reduction of Nitro Compounds 497. Oxidation of Hydrazines 498. Oxidation of Azo Compounds 499. Oxidation of Azo Compounds 	764 765 765 766 766 766
499. Isomerization of Diazoamino Compounds Table 108. Azo and Azoxy Compounds	767
References	768

494. Coupling of Aromatic Diazonium Compounds with Phenols and Amines

$A_{1}N_{2}^{+}Cl^{-} + C_{6}H_{5}OH \rightarrow p-HOC_{6}H_{4}N = NAr$

Aromatic diazonium compounds react with phenols and anilines in aqueous solution to produce azo compounds, the azo group occupying the ortho or preferably the para position. It has been shown that the active components are the diazonium cation and the phenoxide ion or free amine.¹ Hence free mineral acid should be absent. On the other hand, strong basic solutions should be avoided in order to prevent the formation of the stable, inactive anti-diazotate;² for these reasons the acidity of the diazonium solution is carefully regulated. The stability of the diazonium compound is influenced by several factors including nuclear substituents.³ Also, the coupling capacity of phenols and amines is affected by substituents.⁴ Sometimes certain groups are eliminated during the coupling reaction.¹⁶

Primary and secondary amines react with diazonium salts to form initially the N-azo derivatives, e.g., diazoaminobenzene, $C_6H_5NHN = NC_6H_5$, from aniline and benzenediazonium chloride.⁵ In the presence of acids, these compounds isomerize to the corresponding *p*-aminoazo derivatives; for example, the above compound goes to *p*-aminoazobenzene, $p-NH_2C_6H_4N = NC_6H_5$. If the *para* position is not free, isomerization to the ortho position occurs.¹⁵ The isomerization may proceed by a fission of the diazoamino compound to the progenitors, which then undergo coupling. Aminonaphthalenes couple with diazonium compounds to form the amino azo compounds directly.

In some instances, diazo compounds and primary aromatic amines undergo an exchange reaction. Thus p-nitrobenzenediazonium chloride and aniline hydrochloride in a weakly acidic solution are converted to p-nitroaniline and benzenediazonium chloride.¹⁷

The coupling reaction is important in the industrial preparation of azo dyes as well as in the analytical determination of diazonium compounds. The reaction has been reviewed,⁴ and experimental procedures have been given.⁶⁻⁸

495. Condensation of Nitroso Compounds with Amines

$$ArNO + Ar'NH_2 \rightarrow ArN = NAr$$

Condensation of aromatic nitroso compounds with primary amines is a satisfactory procedure for obtaining azo compounds. An example is the combination of nitrosobenzene and aniline in acetic acid, which results in a quantitative yield of azobenzene.⁹ Similarly, a series of methylsubstituted azobenzenes have been prepared, although the yields are poor in the case of the *ortho*-substituted compounds.¹⁰ As an illustration of the versatility of the reaction, nitrosobenzene can be condensed with o-methoxyaniline (o-anisidine),¹¹ p-aminobenzoic acid,¹² o-phenylenediamine monobenzoate,¹³ and m-nitroaniline¹⁴ to form the corresponding substituted azobenzenes.

496. Reduction of Nitro Compounds

$$2\operatorname{ArNO}_{2} \xrightarrow{(H)} \operatorname{ArN} = \operatorname{NAr} \xrightarrow{(H)} \operatorname{ArN} = \operatorname{NAr} \\ \downarrow \\ O$$

Aromatic azo and azoxy compounds may be prepared by chemical or electrolytic reduction of nitro compounds, the degree of reduction depending upon the experimental conditions.

Several chemical reducing agents are available for obtaining the azo compounds. An example is the synthesis of azobenzene by the action of zinc dust and alkali on nitrobenzene (86%).¹⁸ Lithium aluminum hydride in ether gives satisfactory results in the conversion of nitrobenzene and nitromesitylene to the azo compounds.²¹ Reduction by the action of hydrazine in alcohol solution over a palladium catalyst has been a successful procedure for converting the halonitrobenzenes to the azo compounds.²⁰

Other agents are employed for obtaining azoxy compounds. The earliest procedure involved the reducing action of sodium methoxide, *viz.*,³³

Ch. 29

 $4C_6H_5NO_2 + 3CH_3ONa \rightarrow 2C_6H_5N = N(O)C_6H_5 + 3HCOONa + 3H_2O$

When sodium arsenite is the reducing agent, nitrobenzene is changed to azoxybenzene in an 85% yield.³²

Another convenient procedure utilizes dextrose as the reductant, furnishing azoxybenzene in an 82% yield.³² This same reductant converts *p*-nitrobenzoic acid to its azoxy derivative or its azo derivative, depending upon slight changes in the experimental conditions.³⁴ Also, by slight changes in the procedure, *m*-nitrophenol may be converted by the action of zinc dust and alkali to the corresponding azo or azoxy compound.²³ A combination of magnesium and methanol has been applied to the nitrotoluenes and halonitrobenzenes to yield the alkyl- and halo-substituted azoxy compounds in good yields.²²

Directions have been given for the electrolytic reduction of nitrobenzene to azobenzene.¹⁹ Azoxy compounds are also formed by this technique.³⁶

497. Oxidation of Hydrazines

RNHNHR
$$\stackrel{(O)}{\rightarrow}$$
 RN = NR

Aromatic hydrazines like hydrazobenzene are readily oxidized to azobenzenes with air in the presence of alkali or by the action of sodium hypobromite.²⁴ Aliphatic azo compounds are also prepared from the corresponding hydrazo compounds. Thus azomethane, $CH_3N = NCH_3$, is prepared by the oxidation of sym-dimethylhydrazine with cupric chloride (70%).²⁶ The oxidation of ω, ω' -hydrazotoluene, $C_6H_5CH_2NHNHCH_2C_6H_5$, to the azo compound is accomplished with mercuric oxide in boiling ether (76%).²⁵

Aliphatic hydrazines of the type $R_2C(CN)NHNHC(CN)R_2$ are prepared by the interaction of ketone cyanohydrins and hydrazine. These compounds can be oxidized to azonitriles with hypobromous acid in methanol.²⁶ In a similar manner, ethyl azodicarboxylate, $C_2H_5O_2CN = NCO_2C_2H_5$, is synthesized by the action of hypochlorous acid on ethyl hydrazodicarboxylate (83%).²⁷

498. Oxidation of Azo Compounds 10, 37

$$C_6H_5N = NC_6H_5 \xrightarrow{H_2O_2} C_6H_5N = N(O)C_6H_5$$

499. Isomerization of Diazoamino Compounds 15 (cf. method 494)

$$C_6H_5N = N - NHC_6H_5 \xrightarrow{H^+} p - H_2NC_6H_4N = NC_6H_5$$

TABLE 108. AZO AND AZOXY COMPOUNDS

TABLE 108. AZO AND AZOXY COMPOUNDS

с <u></u>	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)
C₂	Azomethane	497	70	29 28	
C6	Ethyl azodicarboxylate	497	83	29 ²⁷	111/15
C M	2,2'-Azomethylethylacetonitrile	497	70	29 ²⁶	(57)
	Dimethyl 2,2'-azoisobutyrate	497	90	29 25	(32)
C 12	Azobenzene	495	100	29°	(68)
		496	86	29 ¹⁸	(67.5)
		497	100	29 24	(68)
	p,p'-Dibromoazobenzene	496	80	29 20	(204)
	<i>m,m'-</i> Dihydroxyazobenzene	496	63	29 ²³	(205)
	o-Aminoazobenzene	495	54	29 1 3	
	<i>m</i> -Aminoazobenzen <i>e</i>	425	69	29 14	(67)
	p-Aminoazobenzene	425	81	29 ³¹	(124)
	p,p'-Diaminoazobenzene	425	40	29 ³⁰	(246)
	<i>m</i> -Nitroazobenzene	495	70	2914	(96)
	Azoxybenzene	496	85	29 32	(36.5)
	p,p'-Dichloroazoxybenzene	496	81	29 22	(158)
	p,p'-Dibromoazoxybenzene	496	84	29 ²²	(176)
	m,m'-Dihydroxyazoxybenzene	496	65	29 23	(183)
С 13	2-Methoxyazobenzene	495	45	29 11	197/14. (41)
	2-Methylazobenzene	498	49	29 10	186/25
	p-Phenylazobenzoic acid	495	61	2912	(249)
C 14	ω, ω' -Azotoluene	497	76	29 25	(29)
	o-Aminoazo-p-toluene	494	70	29 15	(118)
	p,p'*Dimethylazoxybenzene	496	61	29 22	(70)
	p-Azoxybenzoic acid	496	95	29 34	
C 15	Methyl red	494	66	297	(182)
C 20	1,1'-Azonaphthalene	14	30	29 29	(189)
C 26	2,2'-Azoxyfluorene	496	60	29 35	(279)

REFERENCES FOR CHAPTER 29

¹Wistar and Bartlett, J. Am. Chem. Soc., 63, 413 (1941); Hauser and Breslow, *ibid.*, 63, 418 (1941).

²Saunders, The Aromatic Diazo Compounds, Longmans, Green & Co., New York, 1949, p. 383.

³Ref. 2, p. 61. ⁴Ref. 2, p. 194. ⁵ Hartman and Dickey, Org. Syntheses, Coll. Vol. II, 163 (1943). ⁶Conant, Lutz, and Corson, Org. Syntheses, Coll. Vol. I, 49 (1941). ⁷ Clarke and Kirner, Org. Syntheses, Coll. Vol. I, 374 (1941). *Fieser, Org. Syntheses, Coll. Vol. II, 35 (1943). ⁹ Mills, I. Chem. Soc., 67, 928 (1895). ¹⁰ Parsons and Bailar, J. Am. Chem. Soc., 58, 268 (1936). ¹¹ Bamberger, Ber., 33, 3188 (1900). ¹² Anspon, Org. Syntheses, 25, 86 (1945). ¹³ Ruggli and Rogner, Helv. Chim. Acta, 25, 1533 (1942). 14 Ruggli and Wüst, Helv. Chim. Acta, 28, 781 (1945). ¹⁵ Ruggli and Courtin, Helv. Chim. Acta. 15, 90 (1932). ¹⁶ Ref. 2, p. 221. ¹⁷ Ref. 2, p. 223. ¹⁸ Bigelow and Robinson, Org. Syntheses, 22, 28 (1942); cf. 19. ¹⁹ Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 249. 20 Busch and Schulz, Ber., 62, 1458 (1929). ²¹ Nystrom and Brown, I. Am. Chem. Soc., 70, 3738 (1948). ²² Zechmeister and Rom, Ann., 468, 128 (1929). ²³ Ruggli and Hinovker, Helv. Chim. Acta, 17, 410 (1934). ²⁴ Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 184. 25 Bickel and Waters, Rec. trav. chim., 69, 312 (1950). 26 Dox, I. Am. Chem. Soc., 47, 1473 (1925). 27 Rabjohn, Org. Syntheses, 28, 58 (1948). 28 Jahn, J. Am. Chem. Soc., 59, 1761 (1937). 29 Cumming and Howie, J. Chem. Soc., 134 (1933). ³⁰ Ashley et al., *I. Chem. Soc.*, 112 (1942). ³¹ Ruggli and Iselin, Helv. Chim. Acta, 30, 733 (1947). ³² Bigelow and Palmer, Org. Syntheses, Coll. Vol. II, 57 (1943). 33 Fry and Cameron, J. Am. Chem. Soc., 49, 864 (1927); Suter and Dains, ibid., 50, 2733 (1928). ³⁴ Bacharach and Weinstein, Rec. trav. chim., 54, 932 (1935). ³⁵Cislack, Eastman, and Senior, J. Am. Chem. Soc., 49, 2318 (1927). ³⁶ Swann in Technique of Organic Chemistry, Vol. II, Interscience Publishers, New York, 1948, pp. 177-179.

³⁷ Swern, Chem. Revs., 45, 38 (1949).

30

Diazo and Diazonium Compounds

CONTENTS

PAGE

500. Decomposition of N-Nitroso Compounds	769
501. Diazotization of Aliphatic Amino Compounds	770
502. Oxidation of Hydrazones	770
503. Interaction of Acyl Halides and Diazoalkanes	771
504. Diazotization of Aromatic Amines	772
Table 109. Diazo and Diazonium Compounds	774
References	776

The chemistry of aliphatic diazo compounds of the general formula RCHN₂, among which are the important diazo ketones RCOCHN₂ and diazo esters N₂CRCO₂R, has been reviewed.⁵²⁻⁵⁴ In addition, the formation of aromatic diazonium salts, $ArN_2^+Cl^-$, has been extensively studied and fully described in several monographs.¹ For this reason, only the most pertinent points are included here along with key references.

500. Decomposition of N-Nitroso Compounds

METHOD

(1) $\operatorname{RCH}_2\operatorname{N(NO)CO}_2\operatorname{C}_2\operatorname{H}_5 + 2\operatorname{KOH} \longrightarrow \operatorname{RCHN}_2 + \operatorname{K}_2\operatorname{CO}_3 + \operatorname{C}_2\operatorname{H}_5\operatorname{OH} + \operatorname{H}_2\operatorname{O}_3$

(2) $RCH_2N(NO)CONH_2 + KOH \rightarrow RCHN_2 + KCNO + 2H_2O$

(3) $\operatorname{RCH}_2\operatorname{N(NO)CCH}_2\operatorname{COCH}_3 \xrightarrow{\operatorname{NaOR}} \operatorname{RCHN}_2 + (\operatorname{CH}_3)_2\operatorname{C} = \operatorname{CHCOCH}_3 + \operatorname{H}_2\operatorname{O}_2$ (CH₃)₂

Low-molecular-weight diazoalkanes are prepared by three general methods, all of which involve the basic decomposition of an N-nitroso compound. The first is concerned with the alkaline degradation of an N-nitroso-N-alkylurethane (equation 1). Thus, the synthesis of diazoethane and 1-diazopropane is accomplished in 75% and 57% yields, respectively, by the rapid addition of the corresponding nitrosourethane to a solution of potassium hydroxide in *n*-propyl alcohol.³⁴ The procedure has been extended to the formation of a more complex product, diazo-

METHODS 502-503

Ch. 30

 β , β , β -triphenylethane (100%).³⁸ Diazomethane is also prepared in this way from the commercially available nitrosomethylurethane;³⁵ however, other procedures are preferred.

A closely related method consists in treating an N-nitroso-N-alkylurea with strong aqueous potassium hydroxide (equation 2). Although this procedure has been adapted to the formation of several diazoalkanes,⁴² it is particularly suited for forming diazomethane.³⁶

Treatment of methyl N-nitroso- β -alkylaminoisobutyl ketones with sodium isopropoxide or sodium cyclohexoxide furnishes a third method (equation 3). The preparation of the starting materials involves simply the addition of an amine to mesityl oxide with subsequent nitrosation.^{39, 41} In this case the starting material (equation 3, R=H) for diazomethane is more stable than nitrosomethylurea and does not have an irritating action like methylnitrosourethane.³⁹

The diazoalkanes are not isolated but are collected in ether for immediate consumption. The quantity and yield from the N-nitroso compound are determined by treating an aliquot with excess benzoic acid and titrating the unreacted acid with standard alkali.³⁶ The diazoalkanes should be handled with care.³⁹

501. Diazotization of Aliphatic Amino Compounds

 $CH_2(\overset{+}{NH_3Cl})CO_2C_2H_5 + NaNO_2 \rightarrow N_2CHCO_2C_2H_5 + NaCl + 2H_2O$

Primary amino groups *alpha* to a carbethoxyl, cyano, ketone, sulfonic acid,⁴³ or trifluoromethyl group⁴⁴ react with nitrous acid to form stable diazo groups. An example is the conversion of glycine ethyl ester hydrochloride to ethyl diazoacetate (85%).⁴⁵ The reaction has been applied to higher amino esters.⁴⁶ It may be recalled that aliphatic primary amines in general react with nitrous acid to give nitrogen, alcohols, and olefins. However, the above groups adjacent to the amino group have special effects; even the closely related α -amino acids are converted to hydroxy acids by this treatment.

502. Oxidation of Hydrazones

$$R_2C = NNH_2 + HgO \rightarrow R_2CN_2 + H_2O + Hg$$

Certain aromatic diazohydrocarbons are conveniently prepared by the oxidation of hydrazones. Thus benzophenone hydrazone $(R = C_6H_5)$ reacts with mercuric oxide in petroleum ether at room temperature during 6 hours to furnish diphenyldiazomethane in 89% to 96% yield.⁴⁷ Hydrazones of substituted benzophenones have been similarly treated.⁴⁸ Phenylbenzoyl-

diazomethane is synthesized by this same procedure (94%).⁵⁰ A few simpler diazo compounds like dimethyldiazomethane (R = CH₃), phenyldiazomethane, C₆H₅CHN₂, and phenylmethyldiazomethane, C₆H₅(CH₃)CN₂, have been made, although no indication of yields is given.⁴⁹

503. Interaction of Acyl Halides and Diazoalkanes

 $2CH_2N_2 + RCOX \rightarrow RCOCHN_2 + CH_3X + N_2$

The preparation of diazo ketones by the interaction of acyl chlorides and diazoalkanes has become a well-established reaction, for these compounds represent important starting materials for the synthesis of many ketone and acid derivatives. Excellent surveys of the reaction and its uses have been made.⁵²⁻⁵⁴

Diazomethane is the most common reagent for this reaction although other diazohydrocarbons have been successfully employed.³⁴ In the standard procedure, the acyl chloride is added slowly to an ethereal solution of excess diazomethane (2.5 to 3 moles) at 0° and the mixture is allowed to stand for varying periods of time. The yields are practically quantitative. The initial reaction is the formation of the diazo ketone with the liberation of hydrogen halide, which then reacts with a second molecule of diazomethane to form methyl halide and nitrogen. If the hydrogen halide is not consumed by excess diazomethane, it will react with the diazo ketone to yield an ω -halogenated ketone. In some instances, an organic base like trimethylamine is present at the start of the reaction for the purpose of removing the liberated acid, thus curtailing the consumption of the expensive diazomethane.⁵⁵ Quite often the diazo ketones are used without purification, but many have been crystallized. A few compounds have been distilled at reduced pressure without violent decomposition.⁵⁶

The method has been adapted to the formation of *bis*-diazoacetylalkanes from dibasic acid chlorides.⁵⁷ Diazo ketones have been obtained from acyl chlorides containing a β , γ -double bond, an ester group, and certain heterocyclic and aryl nuclei having alkyl, methoxyl, and nitro substituents. On the other hand, functional groups such as phenolic hydroxyl, arylamino, aldehyde, active methylene, and α , β -unsaturated linkages may interfere. The method is ideal for application to complex molecules.

Experimental conditions and procedures have been presented.^{52, 53} It should be recalled that diazomethane is toxic and explosive in the gase-ous state.

The applications of diazo ketones for the synthesis of other homologous series are summarized elsewhere, i.e., halo ketones (method 57), hydroxy ketones (method 114), alkoxy ketones (method 124), keto esters (method 311), higher acids (method 271), higher esters (method 295), and amides (method 360). 504. Diazotization of Aromatic Amines

$$ArNH_2 + HX + HNO_2 \longrightarrow ArN_2^+ X^- + 2H_2O$$

Salts of primary aromatic amines react with nitrous acid to produce diazonium salts.¹ The reaction is usually performed by adding a cold solution of sodium nitrite to a cold solution of the arylamine in aqueous mineral acid. The end point of the reaction is conveniently determined by the detection of excess nitrous acid with porassium iodide-starch paper. Sulfamic acid has long been used both in industry and in the laboratory to remove excess nitrous acid. It has been found to react with the more active diazo compounds.² In most cases, high temperatures are avoided to prevent the formation of phenols and the decomposition of the unstable nitrous acid. An excess of mineral acid is necessary to prevent coupling between the diazonium salt and unreacted amine (cf. method 494). If the amine salt is somewhat insoluble, a fine crystalline form, which is produced by rapid crystallization from a warm aqueous solution, may be employed.¹⁷

Amines having sulfonic acid or carboxyl groups may be mixed with sodium nitrite in basic solution and the mixture then added to excess mineral acid, or the amine may be ground with concentrated acid and the mixture then treated with aqueous sodium nitrite.²⁵

Many diazonium salts are unstable and must be handled with care, preferably in solution rather than in the dry state. Procedures have been perfected for making stabilized diazonium salts, which can be isolated and dried.³ If a solid non-stabilized diazonium salt is desired, an alcoholic solution of the amine salt is treated with an alkyl nitrite, and the product is crystallized or precipitated with ether. Glacial acetic acid and dioxane may also be employed as solvents.⁷

In the event that the amine is only slightly soluble in the aqueous mineral acid, as is true of weakly basic amines having negative substituents, special techniques are employed to bring about the reaction. A successful procedure involves the treatment of the weakly basic amine in concentrated acid, sulfuric, phosphoric, or glacial acetic, with nitrosyl-sulfuric acid.^{4, 28} In this manner, the more intractable amines having two or more *meta*-directing or halogen substituents are subjected to diazotization, e.g., 2,4,6-trinitroaniline (picramide)⁴ and 2,6-diiodo-4-nitroaniline.⁵ Pyridine has been used as a solvent in diazotizations with nitrosyl-sulfuric acid.⁶

The common procedure for diazotization by means of nitrous acid in aqueous solutions is illustrated by the synthesis of benzenediazonium chloride,⁸ o-, *m*-, and *p*-methylbenzenediazonium sulfates,^{9, 11} and β -naph-thalenediazonium chloride.¹⁰

METHOD 504

The tetrazotization of *m*-phenylenediamine has been described;¹² also, under special conditions (nitrosylsulfuric acid in glacial acetic acid) a similar conversion of the *ortho* isomer has been accomplished.¹³ This procedure has been adapted to the tetrazotization of certain naphthalene diamines.¹⁴ The simultaneous diazotization of two amino groups in the biphenyl series is illustrated by the synthesis of 4,4'-biphenylene-*bis*diazonium chloride¹⁵ and its 3,3'-dimethyl analog.¹⁶

Syntheses are also recorded that illustrate diazotization in the presence of a single substituent like a halo,^{17, 18} phenolic hydroxyl,⁵¹ alkoxyl,²⁰ aldo,^{21, 22} carbethoxyl,²³ carboxyl,^{24, 25} or nitro group.²⁶⁻³¹

Certain nuclear substituents ortho to a newly formed diazonium group may interact to form a cyclic structure with or without retention of the nitrogen atoms.³² Such is the case in the diazotization of o-phenylenediamine in aqueous solution, the product being 1,2,3-benzotriazole (81%).³⁰ If the ortho substituent is an activated methyl group, an indazole is formed.³¹ Hydroxyl groups ortho or para to the diazonium group may interact to form internal condensation products called diazo oxides.³³ These compounds may also form in the reaction of halo- and nitro-substituted aminophenols.

Further discussion of the formation of diazonium salts and their reactions is found under the many methods involving the replacement and modification of the diazonium group (methods 12, 14, 56, 93, 380, 401, 473, 487, 494, 506, and 521). Ch. 30

TABLE 109. DIAZO AND DIAZONIUM COMPOUNDS

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.)
		Diazo Co	mpound	s	
C,	Diazomethane	500	84	30 39	-24/760
-		500	70	30 ³⁶	
C,	Diazoethane	500	50	30 41	-17/89.5
_		500	75	30 ³⁴	
	Trifluorodiazoethane	501	67	30 44	13/752
c,	1-Diazopropane	500	47	30 41	-8/41.5
		500	57	30 34	
	Vinyldiazomethane	500	23	30 ³⁷	
C,	1-Diazobutane	500 🏼	45	30 41	-3.5/26
		500		30 ³⁴	
	Ethyl diazoacetate	501	85	30 45	
C6	Isovaleryldiazomethane	503	85	30 56	62/4
C 8	Diazoacetophenone	503	100	30 ⁵⁵	(48)
	1,4 - <i>bis</i> -Diazoacetyl- <i>n</i> -butane	503	73	30 ⁵⁷	(71)
C,	1-p-Chlorobenzoyl-I-diazo- ethane	503	71	30 ³⁴	(57)
	Benzyl diazomethyl ketone	503	85	30 ³⁵	(50)*
	p-Methoxybenzoyldiazo- methane	503	70	30 ⁵³	(91)
с,,	a-Naphthoyldiazomethane	503	92	30 53	(55)
C 13	Diphenyldiazomethane	502	96	30 47	(30)
	1-(2'-Naphthoyl)-1-diazoethane	503	78	30 ³⁴	(110d)
C 14	Phenylbenzoyldiazomethane	502	94	30 ⁵⁰	(79)
C 20	Diazo- β,β,β -triphenylethane	500	100	30 ³⁸	

Diazonium Compounds

		· •		
С,	Benzenediazonium chloride	504	30 ⁸	
	o-Benzenetetrazonium chloride	504	30 ¹³	
	<i>m</i> -Benzenetetrazonium chloride	504	3012	
	o-Chlorobenzenediazonium bromide	504	30 18	
	p-Bromobenzenediazonium chloride	504	30 ¹⁷	
	p-Hydroxybenzenediazonium sulfate	504	30 *1	
	<i>m</i> -Nitrobenzenediazonium chlo- ride (sulfate)	504	30 26	
	p-Nitrobenzenediazonium fluoborate	504	30 ²⁷	
с,	o-Methylbenzenediazonium bromide (sulfate)	504	30°	
	<i>m</i> -Methylbenzenediazonium chloride	504	3011	

TABLE 109. DIAZO AND DIAZONIUM COMPOUNDS 775

TABLE 109 (continued)

с "	Compound	Method	Yield (%) Chapterref.	B.p./mm., $n_{\rm D}^{t}$, (M.p.)				
	Diazonium Compounds (continued)							
с,	p-Methylbenzenediazonium bromide (sulfate)	504	30 ⁹					
	2-Bromo-4-methylbenzene- diazonium sulfate	504	30 ¹⁹					
	<i>m</i> -Benzaldehydediazonium sulfate	504	30 ²¹					
	p-Benzaldehydediazonium sulfate	504	30 22					
	o-Carboxybenzenediazonium chloride	504	30 ²⁴					
	2-Nitto-4-methylbenzenedia- zonium sulfate	504	30 29					
C,	p-Carbethoxybenzenedia- zonium chloride	504	30 ²³					
С ₁₀	eta-Naphthalezediazonium chloride	504	30 ¹⁰					
	4-Nitronaphthalenediazonium sulfate	504	30 ²⁸					
С ₁₂	4,4'-Biphenylene-bis- diazonium chloride	504	30 15					

REFERENCES FOR CHAPTER 30

¹Saunders, The Aromatic Diazo-Combounds and Their Technical Applications, Longmans, Green & Co., New York, 1949, pp. 1-60; Groggins, Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New York, 1947, pp. 129-167. ²Grimmel and Morgan, I. Am. Chem. Soc., 70, 1750 (1948). ³Saunders, ref. 1, pp. 61-104; Hodgson and Marsden, I. Chem. Soc., 207 (1940); cf. Kornblum in Organic Reactions, Vol. 2, John Wiley & Sons, New York, 1946, p. 285. ⁴Hodgson and Walker, I. Chem. Soc., 1620 (1933); Misslin, Helv. Chim. Acta, 3, 626 (1920); Schoutissen, I. Am. Chem. Soc., 55, 4531 (1933). ⁵Niemann and Redemann, J. Am. Chem. Soc., 63, 1550 (1941). ⁶DeMilt and Van Zandt, I. Am. Chem. Soc., 58, 2044 (1936); Bachmann and Boatner, ibid., 58, 2194 (1936); cf. Lothrop, ibid., 60, 725 (1938). ⁷Schoutissen, Rec. trav. chim., 40, 764 (1921); Pray, J. Phys. Chem., 30, 1477 (1926); Smith and Waring, J. Am. Chem. Soc., 64, 469 (1942). ⁶Conant, Lutz, and Corson, Org. Syntheses, Coll. Vol. I, 49 (1941); Coleman, 'bid., Coll. Vol. I, 442 (1941). ⁹ Marvel and McElvain, Org. Syntheses, Coll. Vol. I, 170 (1941); Bigelow, ibid., Coll. Vol. I. 135, 136 (1941); Clarke and Read, ibid. Coll. Vol. I, 514 (1941). ¹⁰Nesmajanow, Org. Syntheses, Coll. Vol. II, 432 (1943). ¹¹ Tarbell and Fukushima, Org. Syntheses, 27, 81 (1947). ¹² Schoutissen, Rec. trav. chim., 54, 381 (1935); Heertjes, Kolb, and Waterman, I. Soc, Chem. Ind. (London), 56, 173T (1937). ¹³Hodgson and Walker, I. Chem. Soc., 530 (1935). ¹⁴Hodeson and Whitehurst, I. Chem. Soc., 80 (1947). ¹⁵Schiemann and Winkelmüller, Ore. Syntheses, Coll. II, 188 (1943). ¹⁶Hartwell and Fieser, Org. Syntheses, 16, 12 (1936). ¹⁷ Gomberg and Bachmann, Org. Syntheses, Coll. Vol. I, 113 (1941). ¹⁸ Hartwell, Org. Syntheses, 24, 22 (1944). ¹⁹ Bigelow, Johnson, and Sandborn, Org. Syntheses, Coll. Vol. I, 133 (1941); Ungnade and Orwoll, ibid., 23, 11 (1943). ²⁰ Kornblum, Org. Syntheses, 21, 30 (1941). ²¹ Woodward, Org. Syntheses, 25, 56 (1945); Icke et al., ibid., 29, 63 (1949). ²²Schoutissen, Rec. trav. chim., 54, 97 (1935). ²³ Schiemann and Winkelmüller, Org. Syntheses, Coll. Vol. II, 299 (1943). ²⁴Clarke and Kirner, Org. Syntheses, Coll. Vol. I, 374 (1941); Stephenson, ibid., 29, 54 (1949); cf. ref. 25; Allen and MacKay, ibid., Col. Vol. II, 580 (1943). ²⁵ Atkinson and Lawler, Org. Syntheses, Coll. Vol. I, 222 (1941). ²⁶Hartman and Brethen, Org. Syntheses, Coll. Vol. I, 162 (1941); Manske, ibid., Coll. Vol. I. 404 (1941). ²⁷ Starkey, Org. Syntheses, Coll. Vol. II, 225 (1943). ²⁸ Hodgson, Mahadevan, and Ward, Org. Syntheses, 28, 52 (1948). ²⁹ Clarke and Taylor, Org. Syntheses, Coll. Vol. I, 415 (1941). ³⁰ Damschroder and Peterson, Org. Syntheses, 20, 16 (1940). ³¹ Porter and Peterson, Org. Syntheses, 20, 73 (1940). ³²Saunders, ref. 1, pp. 241-267. ³³Saunders, ref. 1, pp. 28-35. ³⁴ Wilds and Meader, J. Org. Chem., 13, 763 (1948). ³⁵ McPhee and Klingsberg, Org. Syntheses, 26, 13 (1946). ³⁶ Arndt, Ore. Syntheses, Coll. Vol. II, 165 (1943); cf. ref. 35.

³⁷ Hurd and Lui, J. Am. Chem. Soc., 57, 2656 (1935). 38 Hellerman and Garner, J. Am. Chem. Soc., 57, 139 (1935). 39 Redemann et al., Org. Syntheses, 25, 28 (1945); cf. refs. 40 and 41. 40 Berenbom and Fones, I. Am. Chem. Soc., 71, 1629 (1949). ⁴¹ Adamson and Kenner, J. Chem. Soc., 1551 (1937); 286 (1935). ⁴² Werner, J. Chem. Soc., 115, 1093 (1919). 43 Angeli, Ber. 37, 2080 (1904). 44 Gilman and Jones, J. Am. Chem. Soc., 65, 1458 (1943). ⁴⁵ Womack and Nelson, Org. Syntheses, 24, 56 (1944); Smith and McKenzie, J. Org. Chem., 15, 74 (1950). 46 Marvel and Noyes, J. Am. Chem. Soc., 42, 2259 (1920). ⁴⁷ Smith and Howard, Ore. Syntheses, 24, 53 (1944). 48 Staudinger et al., Ber., 49, 1897, 1923, 1928, 1951, 1969, 1973 (1916). ⁴⁹ Staudinger and Gaule, Ber. 49, 1897 (1916); Guba and Sankaran, *ibid.* 70. 1689 (1937). ⁵⁰ Nenitzescu and Solomonica, Ore. Syntheses. Coll. Vol. II, 496 (1943). ⁵¹ Dains and Eberly, Org. Syntheses, Coll. Vol. II, 355 (1943). ⁵² Eistert in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, pp. 513-570. ⁵³ Bachmann and Struve in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, p. 38. 54 Smith, Chem. Revs., 23, 193 (1938).

55 Newman and Beal, J. Am. Chem. Soc., 71, 1506 (1949); ref. 40.

56 Birkofer, Ber., 80, 88 (1947).

⁵⁷ Walker, J. Chem. Soc., 1304 (1940).

Mercaptans

CONTENTS

D I O F

METHOD	PAGE
505. Alkylation of Metallic Hydrosulfides	778
506. Hydrolysis of S-Alkylthiouronium Salts	779
507. Hydrolysis of Xanthates	779
508. Hydrolysis of Thiol Esters	779
509. Reduction of Sulfonyl Halides	780
510. Reduction of Disulfides	780
511. Action of Sulfur on Organometallic Reagents	780
512. Addition of Hydrogen Sulfide to Olefinic Compounds	780
513. Action of Hydrogen Sulfide on Alcohols	781
514. Addition of Amines to Olefinic Sulfides	781
Table 110. Mercaptans	782
References	785

505. Alkylation of Metallic Hydrosulfides

VETHOD

$RX + NaSH \rightarrow RSH + NaX$

The direct introduction of the mercapto group into the organic molecule is accomplished by the alkylation of hydrogen sulfide¹⁵ or an alcoholic solution of sodium or potassium hydrosulfide. The hydrosulfide solution is prepared by saturating alcoholic potassium hydroxide,¹⁶ molten sodium sulfide nonahydrate,²³ or a solution of sodium in absolute alcohol¹⁴ with hydrogen sulfide. Alkyl sulfates and primary or secondary alkyl halides serve as alkylating agents. Dithiols are obtained from polymethylene halides in 70-85% yields.¹⁴ Chlorohydrins,¹⁸ β -chloro ethers,¹⁹ α -chloro ketones,²⁰ and diethylaminoalkyl chlorides²³ have also been converted to mercaptans by this method. Potassium hydrosulfide in propylene glycol at 175° converts 2-bromopyridine to 2-mercaptopyridine in 87% yield.¹⁷ The nitro group of *p*-nitrochlorobenzene is reduced in the preparation of *p*-aminothiophenol (69%).²² The active halide, *p*-cyanobenzyl chloride, gives only a 10% yield of mercaptan; the main product is the sulfide formed by further alkylation of the mercaptan.²¹ Alkyl sulfides are often by-products of the reaction (cf. method 515). Their formation is minimized by an excess of hydrogen sulfide.

506. Hydrolysis of S-Alkylthiouronium Salts

 $CS(NH_2)_2 \xrightarrow{RX} RSC(NH_2) = NH_2^+X^- \xrightarrow{NaOH} RSH + (NH_2CN)_x$

The carbon-sulfur linkage is readily established by alkylation of thiourea by means of halides,^{1, 3} sulfates,¹³ or alcohol-hydrogen halide mixtures.² Many types of groups have been introduced, including primary,^{1, 2} secondary,^{1, 2, 5} tertiary,^{1, 6} allyl,^{1, 7} benzyl,^{1, 2} and furfuryl.¹² A few aryl groups have been introduced by means of active aromatic⁸ and heterocyclic¹¹ halides or by treating the thiourea with a diazonium salt.⁴ Mercaptans are formed by alkaline hydrolysis of the resulting isothiouronium salts. Over-all yields vary from 40% to 90%. Polymethylene halides give dithiols,^{2, 14, 51} and halo alcohols and halo acids lead to *mercapto alcohols*¹⁰ and *mercapto acids*,⁹ respectively. A convenient procedure for the disposal of mercaptan vapors in the laboratory has been described.⁵⁰

507. Hydrolysis of Xanthates

$$A_{rN_{2}}^{+}X^{-} \xrightarrow{C_{2}H_{8}OCSSK} C_{2}H_{8}OCSSAr \xrightarrow{KOH;} A_{rSH} + COS + C_{2}H_{8}OH$$

The replacement of an amino group by a mercapto group on an aromatic nucleus is effected by treating the diazotized amine with potassium ethyl xanthate and hydrolyzing the resulting aryl ethyl xanthate (Leuckart). Yields of 40-80% are reported for thiophenols containing methyl,²⁵ halo,^{26, 54} and methoxyl ⁵⁷ groups. Potassium ethyl xanthate is readily prepared from alcoholic potassium hydroxide and carbon disulfide.⁵²

508. Hydrolysis of Thiol Esters

$$\operatorname{RCOSR}' \xrightarrow{H_2O} \operatorname{RCO_2H} + \operatorname{R'SH}$$

The hydrolysis of thiol esters is achieved in either acidic or basic media. Alcoholic solutions of hydrogen chloride or potassium hydroxide are the most common reagents. Dithiols,⁴² hydroxy mercaptans,³³ and mercapto ethers,⁴² ketones,⁴⁸ and acids⁴¹ have been prepared by this method. The corresponding thiol esters are obtained by the addition of thioacetic acid to oxides³³ and olefinic acids⁴¹ or by the action of its potassium salt on halo ketones⁴⁸ or sulfonic esters.⁴² 509. Reduction of Sulfonyl Halides

$$RSO_2C1 \xrightarrow{(H)} RSH$$

Arylsulfonyl chlorides are reduced by zinc dust and sulfuric acid at 0° to give high yields of thiophenols.^{35, 37, 56} Tin and hydrochloric acid⁷ and a mixture of phosphorus, potassium iodide, and phosphoric acid³⁸ have also been used. Preliminary experiments with lithium aluminum hydride on both alkyl- and aryl-sulfonyl chlorides gave 45-50% yields of mercaptans.³⁶ Halogen atoms on the benzene ring are stable during the reduction.⁷

510. Reduction of Disulfides

RSSR
$$\xrightarrow{(H)}$$
 2RSH

This reaction has found little application to mercaptan syntheses since the mercaptans are usually as readily available (by other methods) as the disulfides. The S-S linkage is reduced by zinc in acetic^{29, 32, 53} or sulfuric³⁰ acid, lithium aluminum hydride,³⁴ or metallic sodium.³¹ γ -Hydroxypropyl disulfide is reduced electrolytically in 70% yield.³³ Reduction by sodium disulfide does not reduce the nitro group in the preparation of *p*-nitrothiophenol (65%),⁶ whereas zinc and acetic acid converts *o*-nitrophenyl disulfide to *o*-aminothiophenol (90%).³² Disulfides made by the action of ammonium hydrogen sulfide on aldehydes are sources for difficultly available aromatic and heterocyclic mercaptans. The disulfides are reduced by aluminum amalgam and water.⁴⁹

511. Action of Sulfur on Organometallic Reagents

ArLi
$$\stackrel{s}{\rightarrow}$$
 ArSLi $\stackrel{H_2O}{H^+}$ ArSH

Phenyllithium and p-dimethylaminophenyllithium react with sulfur with the liberation of heat. Hydrolysis of the products by dilute hydrochloric acid gives thiophenol (62%) and p-dimethylaminothiophenol (50%), respectively.⁹ The Grignard reagent has been employed in a similar manner.^{40, 55}

512. Addition of Hydrogen Sulfide to Olefinic Compounds

$$(CH_3)_2C = CH_2 + H_2S \rightarrow (CH_3)_3CSH$$

Small yields (4-36%) of mercaptans have been obtained by the addition of hydrogen sulfide under pressure to simple olefins.²⁷ The addition fol-

METHODS 512-514

lows Markownikoff's rule. Hydrogen sulfide has been added to conjugated olefinic ketones, acids, and nitro compounds.²⁸

513. Action of Hydrogen Sulfide on Alcohols²⁴

$$ROH + H_2S \xrightarrow{ThO_3}{380^{\circ}} RSH + H_2O$$

514. Addition of Amines to Olefin Sulfides^{45,46}

$$R_2 C - CR_2 + R'_2 NH \rightarrow R'_2 NCR_2 CR_2 SH$$

MERCAPTANS

Ch. 31

TABLE 110. MERCAPTANS

783

TABLE 110 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	Di	ithiols (con	tinued)		
C 5	Pentamethylene mercaptan	506	83	3114	147/100, 1.5194 25
C 6	Hexamethylene mercaptan	506	63	312	• • •
С,	Heptamethylene mercaptan	505	88	3114	178/100, 1.4950 ²⁵
]	Halo Merca	ptans		
C3	β -Chloropropyl mercaptan	51	69	31 33	125/764, 1.4852
	γ -Bromopropyl mercaptan	52	53	3118	56/12
Сő	o-Bromothiophenol	507	80	31 26	97/11
		507	55	3154	118/18, 1.6321 ²⁴
	o-Iodothiophenol	507	40	31 ²⁶	120/11
	<i>m</i> -Bromothiophenol	507	50	31 54	120/21, 1.6310 ²⁵
	p-Fluorothiophenol	511	26	31 40	(162)
	p-Chlorothiophenol	509	50	317	(53)
	p-Bromothiophenol	509	60	317	(75)
		509	87	3154	(75)
с,	m-Trifluoromethylthiophenol	511	84	31 55	85/40
	Mercapto Al	cohols, Et	hers, an	d Ketones	
C,	2-Methoxyethyl mercaptan	508	55	3142	112, 1.448823
	eta-Hydroxypropyl mercaptan	508	85	31 ³³	51/12, 1.4862
	γ -Hydroxypropyl mercaptan	505	65	3118	82/10
		506	43	31 ¹⁰	75-80/7
		510	70	3133	80/1.2, 1.4952
	Mercaptoacetone	505	68	31 ²⁰	(110)
C₄	eta-Ethoxyethyl mercaptan	505	74	31 ¹⁹	126
C5	eta-Ethoxypropyl mercaptan	505	36	3119	134
С _б	eta-Ethoxybutyl mercaptan	505	61	31 ¹⁹	157
C,	p-Methoxythiophenol	507	79	31 ⁵⁷	89/5, 1.5801 ²⁵
C ₈	2-Phenoxyethyl mercaptan	508	90	31 42	134/29, 1.5597 23
C,	a-Mercapto-a-phenylacetone	508	80	3148	(110)
	Merc	capto Acids	and Es	sters	
C,	β -Mercaptopropionic acid	506	72	319	106/4, (17.5), 1.4910
C₄	Ethyl mercaptoacetate (ethyl thioglycolate)	285	89	31**	63/20
C₅	β -Mercaptovaleric acid	508	80	3141	109/4, 1.4784
	Y-Mercaptovaleric acid	508	85	3141	91/0.05, 1.4802
	δ -Mercaptovaleric acid	508	83	3141	111/0.8, (25), 1.4882
	Ethyl eta -mercaptopropionate	285	79	3143	78/20
C,	o-Carboxythiophenol (thio- salicylic acid)	510	84 †	31 ⁵³	(164)
	m-Mercaptobenzoic acid	509	84	31 ³⁸	(148)

For	explanations	and	symbol s	see	pp.	xi-xii.
-----	--------------	-----	----------	-----	-----	---------

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.)			
		Aliphatic M	ercaptai	ns				
C1	Methyl mercaptan	506	90	3113	7.6*			
C ₂	Ethyl mercaptan	506	75	31 3	35			
c,	<i>n</i> -Propyl mercaptan	505	49	31 ¹⁶	67/763, 1.4351 ²⁵			
	Isopropyl mercaptan	505	36	31 16	53/753, 1.4223 ²⁵			
	Allyl mercaptan	506	41	317	68			
C,	n-Butyl mercaptan	505	54	31 ¹⁶	99/768, 1.4401 ²⁵			
	n-Butyl mercaptan	506	91	312	98			
	s-Butyl mercaptan	506	64	312				
	Isobutyl mercaptan	506	56	31²	88			
	Isobutenyl mercaptan	506	68	317	93/750			
C,	n-Amyl mercaptan	505	69	31 ¹⁶	126/760, 1.4440 ²⁵			
-	3-Pentanethiol	506	48	31 ^{\$}				
	t-Amyl mercaptan	506	65	316	97			
С ₆	<i>n</i> -Hexyl mercaptan	505	67	31 ¹⁶	86/90, 1.4473 ²⁵			
		506	71	312	153/762			
	Aromatic	and Hetero	cyclic M	Mercaptans				
C ₅	a-Furfuryl mercaptan	506	33	3112	84/65, 1.5329			
		510	73	31 29	155			
	2-Mercaptomethyltetrahydro- futan	508	55	3142	113/145, 1.4910			
	2-Mercaptopyridine	505	87	3117	(128)			
		506	47	3111	(125)			
C 6	Thiophenol	509	91	31 ³⁵	71/15			
		511	62	31 ³⁹	68/20, 1.5885			
C,	Benzyl mercaptan	506	72	31²	195			
	m-Thiocresol	507	75	31 25	107/50, 1.570 ²⁵			
	p-Methylthiophenol (p-thio-	509	82	31 ³⁸	90/13, (43)			
	cresol)	510	75	3134	(43)			
C ₈	eta-Phenylethyl mercaptan	506	70	31²				
	o-Ethylthiophenol	509	68	31 ³⁷	208/730			
C,	o-n-Propylthiophenol	509	76	31 ³⁷	220/730			
-	o-Isopropylthiophenol	509	70	31 ³⁷	226/730			
	<i>p-</i> Isopropylthiophenol	509	64	31 56	104/14, 1.5542			
C 13	Triphenylmethyl mercaptan	505	80	31 15	(107)			
		Dithio	Dithiols					

C 13	p-lsopropylthiophenol Triphenylmethyl mercaptan	509	64 80	31 ¹⁵	(107)
		Dithic	ls		
C,	Ethylene mercaptan (1,2- ethanedithiol)	506	62	3151	63/46
C,	Trimethylene mercaptan	508	57	3142	110/120, 1.5380 ²¹
C 4	Tetramethylene mercaptan	506	85	3114	128/100, 1.526525
MERCAPTANS

Ch. 31

с _{n}	Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.)
	Mercapto A	mines and	Nitro C	Compounds	
c,	B-Aminoethyl mercaptan		97	3147	(98)
Ċ.	β -Diethylaminoethyl met-	505	57	3123	64/21, 1.4680
- 6	captan	514	48	3145	65/20
	o-Aminothiophenol	510	90	31 ³²	(26)*
	n-Aminothiophenol	505	69	3122	145/17, (45)
	p-Nitrothiophenol	510	65	318	(75)
c.	β -Phenylaminoethyl mercaptan	514	52	31 46	96/2.5, 1.6040
	p-Dimethylaminothiophenol	511	50	31 ³⁹	122/2

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 31

¹Urquhart, Gates, and Connor, Org. Syntheses, 21, 36 (1941); Vogel, J. Chem. Soc., 1822 (1948); Backer and Dijkstra, Rec. trav. chim., 51, 290 (1932). ² Frank and Smith, J. Am. Chem. Soc., 68, 2103 (1946). ³Hackmann and Berkenbosch, Rec. trav. chim., 68, 752 (1949); cf. ref. 13. ⁴Busch and Schulz, I. prakt. Chem., 150, 173, 180 (1938). ⁵King and McMillan, I. Am. Chem. Soc., 68, 1369 (1946). ⁶Backer, Rec. trav. chim., 54, 216 (1935). ⁷Backer and Kramer, Rec. trav. chim., 53, 1102 (1934). ⁸ Price and Stacy, I. Am. Chem. Soc., 68, 498 (1946). ⁹ Baker et al., J. Org. Chem., 12, 171 (1947); Cheney and Piening, J. Am. Chem. Soc., 67, 733 (1945). ¹⁰ Clinton et al., I. Am. Chem. Soc., 67, 594 (1945). ¹¹ Phillips and Shapiro, J. Chem. Soc., 584 (1942). ¹² Kirner and Richter, J. Am. Chem. Soc., 51, 3134 (1929). 13 Amdt, Ber., 54, 2236 (1921). ¹⁴ Hall and Reid, J. Am. Chem. Soc., 65, 1466 (1943). ¹⁵ Kharasch and Williams, J. Am. Chem. Soc., 72, 1843 (1950). ¹⁶ Ellis and Reid, J. Am. Chem. Soc., 54, 1674 (1932); Hoffman and Reid, ibid., 45, 1831 (1923); Collin et al., J. Soc. Chem. Ind. (London), 52, 272T (1933). 17 Thirtle, J. Am. Chem. Soc., 68, 342 (1946). ¹⁸ Karjala and McElvain, J. Am. Chem. Soc., 55, 2969 (1933). ¹⁹ Swallen and Boord, J. Am. Chem. Soc., 52, 655 (1930). ²⁰ Hromatka and Engel, Monatsh., 78, 32 (1948). ²¹ Barkenbus, Friedman, and Flege, J. Am. Chem. Soc., 49, 2552 (1927). ²² Gilman and Gainer, J. Am. Chem. Soc., 71, 1749 (1949). ²³ Gilman et al., J. Am. Chem. Soc., 67, 1846 (1945). 24 Kramer and Reid, J. Am. Chem. Soc., 43, 887 (1921); Binz and Pence, ibid., 61, 3136 (1939). ²⁵ Tarbell and Fukushima, Org. Syntheses, 27, 81 (1947). ²⁶ Schwarzenbach and Egli, Helv. Chim. Acta, 17, 1177 (1934). ²⁷ Ipatieff and Friedman, J. Am. Chem. Soc., 61, 71 (1939); Jones and Reid, ibid., 60, 2452 (1938). ²⁸ Földi and Kollonitsch, J. Chem. Soc., 1683 (1948); Heath and Lambert, ibid., 1477 (1947). ²⁹ Gilman and Hewlett, I. Am. Chem. Soc., 52, 2142 (1930). ³⁰ Noller and Gordon, J. Am. Chem. Soc., 55, 1090 (1933). ³¹ Stutz and Shriner, J. Am. Chem. Soc., 55, 1244 (1933). ³² Bogert and Snell, J. Am. Chem. Soc., 46, 1309 (1924). ³³ Sjöberg, Ber., 75, 13 (1942). ³⁴ Strating and Backer, Rec. trav. chim., 69, 644 (1950). ³⁵ Adams and Marvel, Org. Syntheses, Coll. Vol. I, 504 (1941). ³⁶ Marvel and Caesar, J. Am. Chem. Soc., 72, 1033 (1950). ³⁷Hansch and Blondon, J. Am. Chem. Soc., 70, 1561 (1948). ³⁶ Miescher and Billeter, Helv. Chim. Acta, 22, 609, 610 (1939); cf. ref. 7. ³⁹ Gilman and Fullhart, I. Am. Chem. Soc., 71, 1480 (1949). ⁴⁰ Seyhan, Ber., 72B, 594 (1939). ⁴¹Schjanberg, Ber., 74, 1751 (1941). 42 Chapman and Owen, J. Chem. Soc., 579 (1950). 43 Karrer and Schmid, Helv. Chim. Acta, 27, 125 (1944).

44 Baker et al., J. Org. Chem., 12, 144 (1947). 45 Gilman and Woods, I. Am. Chem. Soc., 67, 1844 (1945). 46 Snyder, Stewart, and Ziegler, J. Am. Chem. Soc., 69, 2672 (1947). 47 Barnett, J. Chem. Soc., 6 (1944); Bogert et al., J. Am. Chem. Soc., 62, 1177 (1940); 63, 2363 (1941); Bestian, Ann., 566, 240 (1950). 48 von Wacek, Kratzl, and Bezard, Ber., 75, 1353 (1942). 49 Kipnis, Levy, and Omfelt, J. Am. Chem. Soc., 71, 2270 (1949). ⁵⁰ Hill and Wolfrom, I. Am. Chem. Soc., 69, 1539 (1947). ⁵¹ Speziale, Org. Syntheses, 30, 35 (1950). 52 Price and Stacy, Org. Syntheses, 28, 82 (1948), note 1. ³³ Allen and MacKay, Org. Syntheses, Coll. Vol. II, 580 (1943). ⁵⁴ Wilson and Tarbell, J. Am. Chem. Soc., 72, 5203 (1950). 55 Soper et al., J. Am. Chem. Soc., 70, 2849 (1948). 56 Gilman and Broadbent, J. Am. Chem. Soc., 69, 2054 (1947).

⁵⁷ Suter and Hansen, J. Am. Chem. Soc., 54, 4102 (1932).

ŧ.

32

Sulfides

CONTENTS

PAGE 515. Alkylation of Mercaptans 787 516. Action of Halides on Metallic Sulfides 788 517. Addition of Mercaptans to Olefinic Compounds 788 518. Haloalkylation of Mercaptans 789 519. Cleavage of Ethylene Oxide and Analogs 789 520. Conversion of Oxides to Cyclic Sulfides 789 521. Decomposition of Diazosulfides 789 522. Action of Organometallic Compounds on Disulfides 789 523. Action of Mercaptides on Lactones 790 524. Action of Sodium Sulfide on Dithiocyanates 790 Table 111. Sulfides 791 References 795

515. Alkylation of Mercaptans

METHOD

$$RSH \xrightarrow{N_{a}OH} RSNa \xrightarrow{R'X \text{ or }} RSR'$$

This reaction is analogous to similar methods for the preparation of ethers (methods 115 and 116). Both simple and mixed sulfides may be made from aliphatic mercaptans or thiophenols. The sodium mercaptides are formed from the mercaptans and aqueous or alcoholic solutions of sodium hydroxide or alcoholic sodium ethoxide. Alkylation is effected by halides,^{2-4,9} alkyl sulfates,^{5,6} or esters of sulfonic acids.¹¹ The over-all yields of sulfides are usually above 70%. t-Butyl mercaptan is alkylated directly by t-butyl alcohol in strong sulfuric acid to give t-butyl sulfide in 87% yield."

A variety of other functional groups may be present in either the halide or the mercaptan. Olefinic sulfides are obtained by the action of allyl halides on benzyl or phenyl mercaptides.^{13, 15} Ethylene, trimethylene, and 1-pentene chlorohydrins give hydroxyalkyl sulfides, from which chloroalkyl sulfides are obtained by the Darzens procedure (method 53).¹⁶⁻¹⁸ Phenacyl chloride gives keto sulfides of the type C₆H₈COCH₂SR.²² Alkylmercapto acids are prepared from either halo acids

787

or mercapto acids.^{31, 33} In addition, halo,³⁰ alkoxyl,²¹ carboxyl,³² cyano,^{23, 24} and nitro^{28, 30} groups on aromatic nuclei have been present during the alkylation.

516. Action of Halides on Metallic Sulfides

$$2RX + Na_2S \rightarrow RSR + 2NaX$$

Symmetrical sulfides are obtained in 70-90% yields by refluxing aqueous alcoholic solutions of halides with sodium sulfide.^{2,7} The nonahydrate of sodium sulfide is a satisfactory reagent for the reaction.^{1,12} Tetramethylene¹² and pentamethylene²⁷ halides give cyclic sulfides, e.g., tetramethylene sulfide (tetrahydrothiophene) (64%). Halides containing several other important functional groups have been employed. Typical examples include methallyl chloride,¹⁴ and halides with hydroxyl,¹⁹ ethoxyl,²⁰ carboxyl,²⁶ and diethylamino²³ groups in the *beta* position. A ''dry'' synthesis of phenyl sulfide from calcium oxide, sulfur, and chlorobenzene at 300° has been reported.⁸

517. Addition of Mercaptans to Olefinic Compounds

$$RCH = CH_2 + R'SH \xrightarrow{H_2SO_4} RCH(SR')CH_3$$

$$Peroxides \rightarrow RCH_2CH_2SR'$$

Mercaptans add to olefins according to Markownikoff's rule in the presence of sulfur³⁵ or sulfuric acid.³⁶ The mode of addition is reversed by peroxides.^{35, 38} The yields of sulfides are generally in the range of 60-90%. Somewhat lower yields (50-60%) are obtained by the addition of mercaptans to vinyl chloride ³⁸ and allyl alcohol.^{37, 39, 42} Conjugated olefinic aldehydes,^{40, 41} ketones,^{9, 42} esters,^{42, 44, 45, 69} and cyanides ⁴²⁻⁴⁵ add mercaptans and thiophenols in excellent yield. In certain cases the unsaturated compound may be converted directly to a symmetrical sulfide by addition of hydrogen sulfide ⁴⁵ (cf. method 388).

$$CH_{2} = CHCN \xrightarrow{H_{2}S} HSCH_{2}CH_{2}CN \xrightarrow{CH_{2} - CHCN} S(CH_{2}CH_{2}CN)_{2}$$

These additions to the conjugated system are catalyzed by bases such as sodium hydroxide, sodium methoxide, tertiary amines, piperidine, and quaternary ammonium hydroxides. Cupric acetate catalyst is used in the conversion of acrolein to β -methylmercaptopropionaldehyde,

CH₃SCH₂CH₂CHO (84%).⁴⁰ The addition of mercaptans is analogous to the addition of alcohols to these systems (method 121). However, the thiol group is more active than the hydroxyl group, as is shown by

the formation of β -(2-hydroxyethylmercapto)-propionitrile, HOCH₂CH₂SCH₂CH₂CN, from acrylonitrile and 2-mercaptoethanol, HOCH₂CH₂SH.⁴⁴

518. Haloalkylation of Mercaptans

$$RSH + R'CHO + HX \rightarrow RSCHXR'$$

 α -Halo sulfides are available from mercaptans by direct haloalkylation. Chloromethylation and bromomethylation of the simpler mercaptans is effected by shaking at -15° with paraformaldehyde and hydrogen halide. The yields of halomethyl derivatives are 43-93%.⁵⁵⁻⁵⁷ Somewhat lower yields (30-47%) are obtained when acetaldehyde is substituted for paraformaldehyde.⁵⁵

519. Cleavage of Ethylene Oxide and Analogs

$$\begin{array}{c} CH_2CH_2 & \xrightarrow{H_2S} HOCH_2CH_2SH \xrightarrow{CH_2CH_2} S(CH_2CH_2OH)_2 \\ & & & \\ O & \xrightarrow{RSH} RSCH_2CH_2OH \end{array}$$

Ethylene oxide reacts with hydrogen sulfide at $45-60^{\circ}$ to produce β -hydroxyethyl sulfide in 90% yield.⁶¹ The reaction can be stopped at the mercaptan stage with excess hydrogen sulfide. Analogous reactions of ethylenimine ⁶⁰ and ethylene sulfide ⁶² produce both the sulfides and substituted mercaptans. Cleavage of the ethylene oxide ring by mercaptans gives β -hydroxyethyl alkyl sulfides in 70-90% yields.⁶¹

520. Conversion of Oxides to Cyclic Sulfides

$$\stackrel{\text{RCH}-\text{CH}_2}{\overset{\text{KCNS}}{\longrightarrow}} \stackrel{\text{RCH}-\text{CH}_2}{\overset{\text{S}}{\longrightarrow}}$$

Thiourea or potassium or ammonium thiocyanates react with alkene oxides at room temperature in aqueous solution to give cyclic sulfides in 50-73% yields.^{63, 64}

521. Decomposition of Diazosulfides 53

$$\operatorname{ArN}_{2}^{+}X^{-} \xrightarrow{\operatorname{RSN}_{8}} \operatorname{ArN} = \operatorname{NSR} \to \operatorname{ArSR}$$

522. Action of Organometallic Compounds on Disulfides 58

$$ArSSAr + C_6H_5Li \rightarrow ArSC_6H_5 + ArSLi$$

No.

TABLE 111. SULFIDES

791

TABLE	111.	SULFIDES

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.
		Aliphatic	Sulfide	S	
С,	Methyl sulfide	516	50	3212	38
C₄	Ethyl sulfide	516	78	3212	91
	Vinyl sulfide	20	25 †	32 ⁴⁸	84/759
C 5	Ethyl <i>n</i> -propyl sulfide	517	64	32 ³⁶	116/750, 1.4471
	bis-Ethylthiomethane	515	90	32 ⁵⁵	181/760
C 6	n-Butyl ethyl sulfide	515	78	3211	144
	n-Propyl sulfide	516	85	327	142
C,	t-Butyl sulfide	515	87	32 ⁹	149
	Methallyl sulfide	516	75	3214	173, 1.4862
		Cyclic	Sulfides	1	
C,	Propylene sulfide	520	70	32 ⁷⁰	75
C₄	Isobutylene sulfide	520	73	3264	85, 1.4641
	Tetramethylene sulfide (cf. tetrahydrothiophene)	516	64	3212	120, 1.5037 21
C5	Pentamethylene sulfide	516	34	32 27	140/756, 1.5055
C 6	Tetramethylethylene sulfide	524	90	32 ⁶⁵	127, (77)
	Cyclohexene sulfide	520	60	3264	85/46, 1.5292
	Aromati	ic and Hete	rocyclic	Sulfides	
C,	Phenyl methyl sulfide	515	76	32 ^s	192/761
	2-Thenyl ethyl sulfide	515	76	324	68/3
	a-Furfuryl ethyl sulfide	515	80	32 ³	91/28, 1.5140
C 8	Phenyl ethyl sulfide	515	65	32 ¹¹	204
		515	92	32 ^s	69/6
	Methyl <i>m</i> -tolyl sulfide	515	90	32 °	110/31, 1.5736 ²⁴
с,	Phenyl <i>n</i> -propyl sulfide	515	60	32 36	219/750, 1.5571
	Phenyl isopropyl sulfide	515	60	32 ³⁶	207/750, 1.5468
	Allyl phenyl sulfide	515	100	3215	105/25, 1.4772
Сıо	Phenethyl ethyl sulfide	515	81	32°	96/4
	Phenyl <i>t-</i> butyl sulfide	517	70	32 ³⁶	73/5, 1.5335
	Allyl benzyl sulfide	515	83	32 ¹³	118/13
C 12	Phenyl sulfide		83	32 * 6	163/18
C 13	Benzyl phenyl sulfide	515	60	322	(41)
C 14	Benzyl sulfide	516	83	32²	(49)
C 22	a-Naphthylmethyl sulfide	516	90	321	(119)
	eta-Naphthylmethyl sulfide	516	84	321	(127)
		Halo S	ulfide s		
С,	Methyl chloromethyl sulfide	518	60	3257	106/760
	Methyl bromomethyl sulfide	518	56	32 55	134/760

523. Action of Mercaptides on Lactones 59

$$\begin{array}{c} \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CO} \xrightarrow{\text{CH}_{3}\text{SNe}} \text{CH}_{3}\text{SCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CO}_{2}\text{Na} \\ \hline \\ \hline \\ 0 \xrightarrow{} \end{array}$$

524. Action of Sodium Sulfide on Dithiocyanates 65

$$(CH_3)_2C(SCN)C(SCN)(CH_3)_2 \xrightarrow{Ne_2S \cdot 9H_2O} (CH_3)_2 C - C(CH_3)_2 (90\%)$$

792

SUL FIDES

Ch. 32

TABLE 111. SULFIDES

793

TABLE 111 (continued)

Compound	Method	Yield (%)	Chapter ^{ref} .	B.p./mm., n ^t _D , (M.p.)
A	ldo and K	eto Sulf	ides	
β -Methylmercaptopropion-	517	84	32 ⁴⁰	53/11, 1.4850
β -Ethylmercaptobutyralde- hyde	517	60	32 41	93/24, 1.4720
β -Ethylmercaptoethyl methyl ketone	517	61	32 °	79/10
Methyl phenacyl sulfide	515	88	32 22	104/2, 1.5836
p-Methylmercaptoaceto- phenone	178	70	32 *	(80)
Ethyl phenacyl sulfide	515	87	3222	106/2, 1.5700
eta-Ethylmercaptopropiophe- none	517	53	32 °	(47)
Carbo	oxy and Ca	urbalkoxy	y Sulfides	
Ethylmercaptoacetic acid	247	80	3256	118/11
2-Methylmercaptopropionic acid	515	27	32 ³¹	106/8, 1.4815 ²⁵
3-Methylmercaptopropionic acid	515	88	32 ³¹	119 - 123/12, 1.4884 ²⁵
γ-Methylmercaptobutyric acid	523	50	32 ⁵⁹	128/5
Methyl β -methylmercapto-	517	84	32 *2	78/4, 1.4600 ³²
propionate	517	86	3244	81/15, 1.4646
Methyl β -thiodipropionate	517	81	32 ⁶⁹	139/6, 1.4713 ²⁵
Diethyl thiodiglycolate	516	57	32 67	115/5, 1.4619 ²⁶
3-Methylmercaptobenzoic acid	515	73	32 ³²	(127)
Methyl β -phenylmercapto- propionate	517	96	32 44	154/12, 1.5510
Ethyl phenylmercaptoacetate		60	32 54	148/12
	Cyano	Sulfide	s	
eta-Methylmercaptopropio- nítrile	517	91	32 44	97/15, 1.4840
Ethylmercaptoacetonitrile	378	45	32 ⁵⁶	73/13
eta-Ethylmercaptopropio- nitrile	517	83	3244	109/21, 1.4790
2-Cyanoethyl sulfide	517	93	32 ⁴⁵	193/7
p-Methylmercaptobenzo- nitrile	380	52	32 ⁵⁰	272/760, (64)
	Compound β-Methylmercaptopropion- aldehyde β-Ethylmercaptobutyralde- hyde β-Ethylmercaptoethyl methyl ketone Methyl phenacyl sulfide p-Methylmercaptoaceto- phenone Ethyl phenacyl sulfide β-Ethylmercaptopropiophe- none Ethylmercaptopropiophe- none Ethylmercaptopropionic acid 3-Methylmercaptopropionic acid γ-Methylmercaptopropionic acid γ-Methylmercaptopropionic acid Methyl β-methylmercapto- propionate Methyl β-methylmercapto- propionate Methyl β-henylmercaptopropio- nitrile Ethyl β-phenylmercapto- propionate Bethyl β-phenylmercapto- propionate Ethyl β-phenylmercapto- propionate Ethyl β-phenylmercapto- propionate Ethyl β-phenylmercapto- propionate Ethyl β-phenylmercaptopropio- nitrile 2-Cyanoethyl sulfide p-Methylmercaptobenzo- nitrile	CompoundMethodAldo and Kβ-Methylmercaptopropion- aldehyde517β-Ethylmercaptobutyralde- byde517hyde517β-Ethylmercaptoethyl methyl phenone515p-Methylmercaptoaceto- phenone178Ethyl phenacyl sulfide515β-Ethylmercaptoaceto- phenone178Ethyl phenacyl sulfide515β-Ethylmercaptopropiophe- none517Ethyl phenacyl sulfide515g-Methylmercaptopropiophe- none517Y-Methylmercaptopropionic acid515acid2472-Methylmercaptopropionic acid515acid2473-Methylmercaptopropionic acid517Methyl β-methylmercapto propionate517Methyl β-thiodipropionate sli65163-Methylmercaptobenzoic acid517Methyl β-thiodipropionate sli7517Diethyl thiodiglycolate acid5163-Methylmercaptobenzoic sli6517propionate Ethyl phenylmercaptoacetate517Methyl β-phenylmercapto sli7517propionate Ethyl phenylmercaptopropio- nitrile5172-Cyanoethyl sulfide β-Ethylmercaptopropio- nitrile5172-Cyanoethyl sulfide sli7517p-Methylmercaptopropio- nitrile517p-Methylmercaptopropio- sli7517propionate Sli7517propionate Sli7517propionate Sli7517propionate Sli7517<	CompoundMethodYield (%)Aldo and Keto Sulf. β -Methylmercaptopropion- aldehyde51784 β -Ethylmercaptobutyralde- hyde51760 β -Ethylmercaptoethyl methyl51761ketone51588 p -Methylmercaptoaceto- phenone17870Ethyl phenacyl sulfide51587 β -Ethylmercaptopropiophe- none51753Ethyl phenacyl sulfide51587 β -Ethylmercaptopropiophe- none517802-Methylmercaptopropiophe- none51588acid247802-Methylmercaptopropionic acid51588acid247802-Methylmercaptopropionic s1551588acid247802-Methylmercaptopropionic 	Compound Method Yield (%) Chapter ref. Aldo and Keto Sulfides Aldo and Keto Sulfides 32.9 β-Methylmercaptoptopion- aldehyde 517 60 32.9 β-Ethylmercaptoptyralde- hyde 517 61 32.9 β-Ethylmercaptoethyl methyl 517 61 32.9 β-Ethylmercaptoaceto- phenone 178 70 32.9 Fryl phenacyl sulfide 515 87 32.29 β-Ethylmercaptoaceto- phenone 178 70 32.9 Fully phenacyl sulfide 515 87 32.29 β-Ethylmercaptoacetic acid 247 80 32.9 β-Ethylmercaptopropionic 515 88 32.91 acid 32.9 32.9 32.9 acid 244 80 32.92 acid 247 80 32.92 acid 243 32.91 32.91 acid 32.91 32.91 32.91 acid 517 84 32.92

For explanations and symbols see pp. xi-xii.

	TA	BLE 111	(contint	ued)	
с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., <i>n</i> ^{<i>t</i>} _D , (M.p.)
	Hal	o Sulfides	(contin	ued)	
C,	Methyl a-chloroethyl sulfide	518	30	32 ⁵⁵	53/100
	eta-Chloroethyl methyl sulfide	53	80	32 ¹⁶	44/20, 1.4902 ³⁰
		53	85	3234	56/30
	Ethyl chloromethyl sulfide	518	60	32 ⁵⁷	128/760
	Ethyl bromomethyl sulfide	518	44	32 ⁵⁵	67/45
C₄	<i>n</i> -Propyl chloromethyl sulfide	518	93	32 ⁵⁷	150/760
	γ -Chloropropyl methyl sulfide	53	75	32 ¹⁶	71/29, 1.4833 ³⁰
	Ethyl a-chloroethyl sulfide	518	47	32 ⁵⁵	39/24
	Ethyl eta -chloroethyl sulfide	53	94	32 ⁵¹	70/51
C,	t-Butyl chloromethyl sulfide	518	24	32 ⁵⁷	58/12
C ₆	1-Methylthiol-2-chloropen- tane	53	70	32 18	85/20, 1.4860
C,	Phenyl chloromethyl sulfide	518	50	32 ⁵⁵	98/12
C.	Benzyl chloromethyl sulfide	518	75	32 ⁵⁵	138/25
	eta-Chloroethyl phenyl sulfide	53	85	3217	101/4, 1.5838
C,	γ -Chloropropyl phenyl sulfide	53	85	32 ¹⁷	117/4, 1.5752
C 14	p,p'-Dichlorobenzyl sulfide	516	86	321	(41)
	Hyd	roxy and A	Alkoxy S	alfides	
С,	eta-Hydroxyethyl methyl sul- fide	515	82	3216	69/20, 1.4867 ³⁰
C₄	γ -Hydroxypropyl methyl sulfide	515	76	32 ¹⁶	94/17, 1.4832 ³⁰
	Ethyl eta -hydroxyethyl sulfide	519	70	32 ⁶¹	181
	β -Hydroxyethyl sulfide (thio-	516	86	32 ¹⁹	165/20
	diglycol)	519	90	32 ⁶¹	146/7
C 5	Ethyl 2-hydroxypropyl sul- fide	80	56	32 ³⁷	77/15, 1.4734
	Ethyl 2-hydroxyisopropyl sulfide	517	59	32 ³⁷	80-90/17, 1.4777
	Ethyl ethoxymethyl sulfide	115	50	32 ⁵⁶	135/755
C 6	1-Methylthiol-2-pentanol	515	45	32 18	90/18, 1.4792
c,	p-Hydroxyphenyl methyl sul- fide	97	55	3221	(84)

515

519

516

515

515

80

78

51

90

100

32¹⁷

32⁶¹

32²⁰

32 21

32¹⁷

141/11, 1.5870²²

120/4

100/4, (23)

135/2, 1.5813

229

 β -Hydroxyethyl phenyl sul-

p-Methoxyphenyl methyl sul-

 β -Ethoxyethyl sulfide

C₉ γ-Hydroxypropyl phenyl sul-

C۴

fide

fide

fide

SULFIDES

Ch. 32

795

REFERENCES FOR CHAPTER 32

REFERENCES FOR CHAPTER 32

¹Overberger, Ligthelm, and Swire, J. Am. Chem. Soc., 72, 2858 (1950). ² Shriner, Struck, and Jorison, J. Am. Chem. Soc., 52, 2066 (1930). ³Kimer and Richter, J. Am. Chem. Soc., 51, 3135 (1929). ⁴Kipnis and Ornfelt, J. Am. Chem. Soc., 71, 3571 (1949). ⁵ Vogel, J. Chem. Soc., 1822 (1948). ⁶ Tarbell and Fukushima, J. Am. Chem. Soc., 68, 1458 (1946). ⁷ Bost and Conn, Org. Syntheses, Coll. Vol. II, 547 (1943). ⁸Macallum, I. Org. Chem., 13, 154 (1948). ⁹ Fehnel and Carmack, J. Am. Chem. Soc., 71, 92 (1949). ¹⁰ Wood, I. Am. Chem. Soc., 47, 2062 (1925). ¹¹ Gilman and Beaber, J. Am. Chem. Soc., 47, 1449 (1925). ¹² Tarbell and Weaver, J. Am. Chem. Soc., 63, 2940 (1941). ¹³ Backer and Jong, Rec. trav. chim., 67, 889 (1948). 14 Tamele, Ott, Marple, and Hearne, Ind. Eng. Chem., 33, 116, 120 (1941). ¹⁵ Hurd and Greengard, J. Am. Chem. Soc., 52, 3357 (1930). ¹⁶ Windus and Shildneck, Org. Syntheses, Coll. Vol. II, 345 (1943); Kimer, J. Am. Chem. Soc., 50, 2451, 2452 (1928). ¹⁷ Ford-Moore, Peters, and Wakelin, J. Chem. Soc., 1755 (1949); Kirner and Richter, J. Am. Chem. Soc., 51, 3413 (1929). 18 Glavis, Ryden, and Marvel, J. Am. Chem. Soc., 59, 709 (1937). ¹⁹ Faber and Miller, Org. Syntheses, Coll. Vol. II, 576 (1943). ²⁰ Swallen and Boord, J. Am. Chem. Soc., 52, 657 (1930). ²¹ Suter and Hansen, J. Am. Chem. Soc., 54, 4102 (1932). ²² Prelog et al., Helv. Chim. Acta, 27, 1214 (1944); Long, J. Am. Chem. Soc., 68, 2159 (1946). ²³ Barkenbus, Friedman, and Flege, J. Am. Chem. Soc., 49, 2551 (1927). ²⁴ Forrest, Fuller, and Walker, J. Chem. Soc., 1503 (1948). ²⁵ Cook and Kreke, J. Am. Chem. Soc., 61, 2971 (1939). ²⁶ Bennett and Scorah, J. Chem. Soc., 196 (1927). ²⁷ Navlor. I. Chem. Soc., 1107 (1947). ²⁸ Tarbell et al., J. Am. Chem. Soc., 70, 1384 (1948); cf. ref. 30. ²⁹ Price and Stacy, Org. Syntheses, 28, 82 (1948); J. Am. Chem. Soc., 68, 498 (1946). ³⁰ Gilman and Broadbent, J. Am. Chem. Soc., 69, 2055 (1947). ³¹ Mooradian et al., I. Am. Chem. Soc., 71, 3372 (1949). ³² Brand, Gabel, and Rosenkranz, Ber., 70, 305 (1937). ³³ Larsson and Jönsson, Ber. 67, 757 (1934); Karrer and Schmid, Helv. Chim. Acta, 27, 121 (1944). ³⁴ Kimer and Windus, Org. Syntheses, Coll. Vol. II, 136 (1943). 35 Jones and Reid, J. Am. Chem. Soc., 60, 2452 (1938). ³⁶ Ipatieff, Pines, and Friedman, J. Am. Chem. Soc., 60, 2731 (1938); Ipatieff and Friedman, ibid., 61, 71 (1939). ³⁷ Fuson, Price, and Burness, J. Org. Chem., 11, 475 (1946). 38 Fuson and Ziegler, J. Org. Chem., 11, 510 (1946). ³⁹ Fuson and Koehneke, I. Org. Chem., 14, 707 (1949). 40 Pierson, Giella, and Tishler, J. Am. Chem. Soc., 70, 1450 (1948). 41 Hall and Howe, J. Chem. Soc., 2723 (1949). 42 Szabo and Stiller, J. Am. Chem. Soc., 70, 3667 (1948). 43 Ross, J. Am. Chem. Soc., 71, 3458 (1949).

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)			
	Cyano Sulfides (continued)							
C,	Phenylmercaptopropio- nitrile	517	97	32**	154/8, 1.5735			
	p-Cyanobenzyl methyl sul- fide	515	85	3224	178/25			
C 10	β -Methyl- β -phenylmercapto- propionitrile	517	89	32 4 3	114/0.9, 1.5581			
C 16	p-Cyanobenzyl sulfide	515	68	32 23	(115)			
	Amino and Nitro Sulfides							
C,	Methyl 2-nitroethyl sulfide	517	80	32 ⁶⁸	105/20			
C₄	β -Aminoethyl sulfide	519	50	32 ⁶⁰	131/22			
C,	Ethyl <i>m</i> -aminophenyl sulfide	425	80	32 ⁵²	103/3			
	Ethyl m-nitrophenyl sulfide	515	50 t	32 ⁵²	117/3			
C 12	eta-Diethylaminoethyl sulfide	516	36	32 25				
	2-Aminodiphenyl sulfide	515	46	32 ²⁸	154-160/3, (33)			
	4-Aminodiphenyl sulfide	425	89	32 ³⁰	(95)			
	2-Nitrodiphenyl sulfide	515	87	32 ²⁸	(80)			
	4-Nitrodiphenyl sulfide	515	86	32 ³⁰	(55)			
	p-Aminophenyl sulfide	425	82	32 47	(111)			
	p-Nitrophenyl sulfide	515	82	32 29	(161)			
		Othe	r Sulfide	s				
C3	Methylmercaptoacetyl chloride	335	45	3231	50/14, 1.4967 ²⁵			
C4	Diacetyl sulfide		90	32 ⁶⁶	63/20, 1.4810 ²¹			
	2-Methylmercaptopropionyl chloride	335	52	3231	78/45, 1.4873 ²⁵			
	3-Methylmercaptopropionyl chloride	335	37	3231	97/45, 1.4941 ²⁵			
	Ethylmercaptoacetyl chloride	335	75	32 ³¹	63/14, 1.4888 ²⁵			
C ₈	Phenylmercaptoacetyl chlo- ride	335	93	3231	118/6, 1.5806 ²⁵			
C 14	Dibenzoyl sulfide	341	85	18 ²	(48)			

44 Hurd and Gershbein, I. Am. Chem. Soc., 69, 2328 (1947). 45 Gershbein and Hurd, I. Am. Chem. Soc., 69, 241 (1947). 46 Hartman, Smith, and Dickey. Org. Syntheses, Coll. Vol. II, 242 (1943). 47 Price, Leonard, and Stacy, J. Am. Chem. Soc., 69, 856 (1947). 48 Ruigh and Erickson, J. Am. Chem. Soc., 61, 916 (1939). 49 King, McWhirter, and Rowland, J. Am. Chem. Soc., 70, 241 (1948). ⁵⁰ Buu-Hoi and Lecocq, Bull. soc. chim. France, (5) 13, 142, 476 (1946). ⁵¹ Mohler and Sorge, Helv. Chim. Acta. 23, 1210 (1940). ⁵² Donleavy and English, I. Am. Chem. Soc., 62, 2965 (1940). 53 Miller, Crossley, and Moore, J. Am. Chem. Soc., 64, 2322 (1942). 54 Müller and Freytag, I. prakt. Chem., 146, 56 (1936). 55 Böhme, Fischer, and Frank, Ann., 563, 62 (1949). ⁵⁶ Böhme, Ber., 69, 1610 (1936). ⁵⁷ Walter, Goodson, and Fosbinder, J. Am. Chem. Soc., 67, 655 (1945). ⁵⁸ Schönberg et al., Ber., 66, 237 (1933). ⁵⁹ Plieninger, Chem. Ber., 83, 267 (1950). ⁶⁰ Nathan and Bogert, J. Am. Chem. Soc., 63, 2363 (1941). ⁶¹ Woodward, J. Chem. Soc., 1892 (1948); Nenitzescu and Scarlatescu, Ber., 68, 587 (1935); Gilman and Fullhart, J. Am. Chem. Soc., 71, 1478 (1949). 62 Meade and Woodward, J. Chem. Soc., 1894 (1948). ⁶³ Culvenor, Davies, and Pausacker, J. Chem. Soc., 1050 (1946). 64 Snyder, Stewart, and Ziegler, J. Am. Chem. Soc., 69, 2674 (1947). 65 Youtz and Perkins, I. Am. Chem. Soc., 51, 3510 (1929). 66 Bonner, J. Am. Chem. Soc., 72, 4270 (1950). 67 Overberger, Mallon, and Fine, J. Am. Chem. Soc., 72, 4959 (1950). 68 Heath and Lambert, J. Chem. Soc., 1477 (1947). ⁶⁹ Fehnel and Carmack, Org. Syntheses, 30, 65 (1950).

⁷⁰ Davies and Savige, J. Chem. Soc., 320 (1950).

33

Disulfides

CONTENTS

PAGE

525. Oxidation of Mercaptans and Related Compounds797526. Decomposition of Alkyl Thiosulfates797527. Alkylation of Sodium Disulfide798528. Reduction of Sulfonyl Halides798Table 112. Disulfides799References800

525. Oxidation of Mercaptans and Related Compounds

METHOD

$2RSH + H_2O_2 \rightarrow RSSR + 2H_2O$

Sulfhydryl compounds are oxidized with ease to disulfides. It is necessary to employ mild oxidizing agents that do not attack the product. Oxidation of an alkaline solution of *n*-amyl mercaptan by iodine is described for *n*-amyl disulfide (68%).¹¹ A mixed disulfide, ethyl *t*-butyl disulfide, is obtained in 63% yield by treatment of an equimolecular mixture of ethyl and *t*-butyl mercaptans with iodine in ethanol.¹ Hydrogen peroxide is probably the best reagent for the oxidation.³⁻⁵ Halo and amino groups in the molecule are unaffected. Benzoyl disulfide, C₆H₅COSSCOC₆H₅, is conveniently prepared by the iodine oxidation of the potassium salt of thiobenzoic acid, C₆H₅COSK.⁶

526. Decomposition of Alkyl Thiosulfates

 $2RSSO_3N_7 \rightarrow RSSR + SO_2 + Na_2SO_4$

Sodium thiosulfate reacts with alkyl halides to form salts of the type RSSO₃Na (Bunte salts). Alkyl disulfides may be obtained from these salts by pyrolysis⁹ or reaction with iodine or hydrogen peroxide.⁷ The yields range from 47% to 69%. Cyano and carboxyl groups do not interfere.⁸ Benzoylation of sodium thiosulfate produces benzoyl disulfide in 58% yield.¹⁰

527. Alkylation of Sodium Disulfide

 $2RX + Na_2S_2 \rightarrow RSSR + 2NaX$

Alkylation of an ethanolic solution of sodium sulfide containing an equivalent amount of dissolved sulfur produces disulfides in 60-80% yields from alkyl¹¹ or o- and p-nitrophenyl halides.¹⁴ Cyclic disulfides are prepared by alkylation with 1,3-dihalides.¹² Hydroxyl¹³ and nitro¹⁵ groups do not interfere. Alkylation of a solution of sodium sulfide containing 2-5 equivalents of sulfur produces polysulfides.

528. Reduction of Sulfonyl Halides 16-19

 $2RSO_2Cl \xrightarrow{HI} RSSR$

TABLE 112. DISULFIDES

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с 	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)
C3 Trimethylene disulfide 526 60 33^{20} C4 Ethyl disulfide 528 54 33^{19} $152/736$ 2-Chloroethyl disulfide 525 94 33^{5} 98/0.4, 1.5656 β -Aminoethyl disulfide 525 80 33^{4} (217) hydrochloride	C,	Methyl disulfide	528	26	3319	108/748
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C,	Trimethylene disulfide	526	60	3320	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C₄	Ethyl disulfide	528	54	33 ¹⁹	152/736
β-Aminoethyl disulfide di- hydrochloride 525 80 33^4 (217) hydrochloride Dithiodiacetic acid 526 50 33^8 (106) C ₆ Ethyl t-butyl disulfide 525 63 33^1 60/11 Allyl disulfide 525 70 33^1 59/5 γ-Hydroxypropyl disulfide 527 60 33^{13} 160/0.8 a, a-Dithiodipropionic acid 526 57 33^6 60/14 β,β-Dithiodipropionic acid 526 80 33^8 (154) C ₈ r-Butyl disulfide 526 47 33^9 123/30, 1.4920 528 52 33^{19} 229/735 γ, γ -Dithiodibutyronitrile 526 70 33^4 1.606 C ₁₀ r-Amyl disulfide 525 68 33^{11} 102/2, 1.4868 527 γ, γ -Dithiodibutyronitrile 525 65 33^2 (93) p -Aminophenyl disulfide 525 64 33^3 (76) σ -Nitrophenyl disulfide 527 66 33^{14} (195) m -Nitrophenyl disul		2-Chloroethyl disulfide	525	94	33 ^{\$}	98/0.4, 1.5656
Dithiodiacetic acid52650 33^8 (106)C6Ethyl t-butyl disulfide52563 33^1 $60/11$ Allyl disulfide52570 33^1 $59/5$ γ -Hydroxypropyl disulfide527 60 33^{13} $160/0.8$ a, a -Dithiodipropionic acid52657 33^8 (154) C8 r -Butyl disulfide526 47 33^9 $123/30, 1.4926$ β, β -Dithiodipropionic acid526 47 33^9 $123/30, 1.4926$ γ, γ -Dithiodibutyronitrile52670 33^8 1.606 C10 r -Amyl disulfide525 68 33^{11} $102/2, 1.4868^{12}$ γ, γ -Dithiodibutyronitrile525 65 33^2 (93) p -Aminophenyl disulfide525 64 33^{13} (76) σ -Nitrophenyl disulfide527 66 33^{14} (195) m -Nitrophenyl disulfide527 68 33^{15} (180) C12 σ -Aminophenyl disulfide527 68 33^{15} (180) C13 m -Carboxyphenyl disulfide528 80 33^{15} (180) C14 m -Carboxyphenyl disulfide528 66 33^{16} (173) Benzoyl disulfide528 66 33^{16} (130) 526 58 33^{10} (130) (135)		β -Aminoethyl disulfide di- hydrochloride	525	80	334	(217)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dithiodiacetic acid	526	50	33 ⁸	(106)
Allyl disulfide 525 70 33^{1} 59/5 γ -Hydroxypropyl disulfide 527 60 33^{13} 160/0.8 a, a -Dithiodipropionic acid 526 57 33^{6} (154) C ₈ r -Butyl disulfide 526 47 33^{9} 123/30, 1.4926 γ, γ -Dithiodibutyronitrile 526 70 33^{8} (154) C ₈ r -Butyl disulfide 526 47 33^{9} 123/30, 1.4926 γ, γ -Dithiodibutyronitrile 526 70 33^{8} 1.606 C ₁₀ r -Amyl disulfide 525 68 33^{11} 102/2, 1.4868 γ, γ -Dithiodibutyronitrile 525 65 33^{11} 102/2, 1.4868 γ, γ -Dithiodibutyronitrile 525 65 33^{11} 102/2, 1.4868 γ, γ -Dithiodibutyronitrile 525 64 33^{11} 102/2, 1.4868 γ, γ -Dithiodibutyronitrile 525 65 33^{12} (93) ρ -Aminophenyl disulfide 525 64 33^{13} (76) σ -Nitrophenyl disulfide 528	C6	Ethyl <i>t-</i> butyl disulfide	525	63	33 ¹	60/11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Allyl disulfide	525	70	331	59/5
a, a -Dithiodipropionic acid 526 57 33 ⁸ β, β -Dithiodipropionic acid 526 80 33 ⁸ (154) C_8 n -Butyl disulfide 526 47 33 ⁹ 123/30, 1.4926 γ, γ -Dithiodibutyronitrile 526 70 33 ⁸ 1.606 C_{10} n -Amyl disulfide 525 68 33 ¹¹ 102/2, 1.4868 ³ 527 80 33 ¹¹ 102/2, 1.4868 ³ 527 80 33 ¹¹ 91/1, 1.4875 ²³ C_{12} o -Aminophenyl disulfide 525 65 33 ² (93) 93 p -Aminophenyl disulfide 527 66 33 ¹⁴ (195) 93 p -Aminophenyl disulfide 527 68 33 ¹⁵ (180) 100 C_{14} m -Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p -Cyanophenyl disulfide 528 66 33 ¹⁶ (130) $Benzoyl disulfide$ 525 73 33 ⁶ (130)		γ -Hydroxypropyl disulfide	527	60	33 13	160/0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		a,a-Dithiodipropionic acid	526	57	33 ⁸	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		eta,eta-Dithiodipropionic acid	526	80	33 ⁸	(154)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₈	n-Butyl disulfide	526	47	33°	123/30, 1.4926
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			528	52	33 ¹⁹	229/735
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		γ,γ -Dithiodibutyronitrile	526	70	33 *	1.606
527 80 33 ¹¹ 91/1, 1.4875 ²³ C ₁₂ o-Aminophenyl disulfide 525 65 33 ² (93) p-Aminophenyl disulfide 525 64 33 ³ (76) o-Nitrophenyl disulfide 527 66 33 ¹⁴ (195) m-Nitrophenyl disulfide 528 80 33 ¹⁵ (82) p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C ₁₄ m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)	C 10	n-Amyl disulfide	525	68	33 ¹¹	102/2, 1.4868 ²⁵
C12 o-Aminophenyl disulfide 525 65 33 ² (93) p-Aminophenyl disulfide 525 64 33 ³ (76) o-Nitrophenyl disulfide 527 66 33 ¹⁴ (195) m-Nitrophenyl disulfide 528 80 33 ¹⁵ (82) p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C14 m-Carboxyphenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)			527	80	3311	91/1, 1.4875 ²⁵
p-Aminophenyl disulfide 525 64 33 ³ (76) o-Nitrophenyl disulfide 527 66 33 ¹⁴ (195) m-Nitrophenyl disulfide 528 80 33 ¹⁶ (82) p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C 14 m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)	C 12	o-Aminophenyl disulfide	525	65	33 ²	(93)
o-Nitrophenyl disulfide 527 66 33 ¹⁴ (195) m-Nitrophenyl disulfide 528 80 33 ¹⁶ (82) p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C ₁₄ m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)		p-Aminophenyl disulfide	525	64	33 ^s	(76)
m-Nitrophenyl disulfide 528 80 33 ¹⁶ (82) p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C ₁₄ m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)		o-Nitrophenyl disulfide	527	66	3314	(195)
p-Nitrophenyl disulfide 527 68 33 ¹⁵ (180) C ₁₄ m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁶ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)		<i>m</i> -Nitrophenyl disulfide	528	80	33 ¹⁶	(82)
C ₁₄ m-Carboxyphenyl disulfide 528 85 33 ¹⁷ (246) p-Cyanophenyl disulfide 528 66 33 ¹⁸ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)		p-Nitrophenyl disulfide	527	68	33 ¹⁵	(180)
p-Cyanophenyl disulfide 528 66 33 ¹⁸ (173) Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)	C 14	<i>m</i> -Carboxyphenyl disulfide	528	85	3317	(246)
Benzoyl disulfide 525 73 33 ⁶ (130) 526 58 33 ¹⁰ (135)		p-Cyanophenyl disulfide	528	66	33 ¹⁸	(173)
526 58 33 ¹⁰ (135)		Benzoyl disulfide	525	73	33°	(130)
			526	58	33 ¹⁰	(135)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 33

¹Small, Bailey, and Cavallito, J. Am. Chem. Soc., 69, 1711 (1947). ² Bogert and Snell, J. Am. Chem. Soc., 46, 1309 (1924). ³Price and Stacy, Org. Syntheses, 28, 14 (1948). ⁴Barnett, J. Chem. Soc., 7 (1944); Nathan and Bogert, J. Am. Chem. Soc., 63, 2363 (1941). ⁵ Fuson et al., J. Org. Chem., 11, 491 (1946). ⁶Frank and Blegen, Org. Syntheses, 28, 16 (1948). 'Westlake and Dougherty, J. Am. Chem. Soc., 64, 149 (1942). ^a Stoner and Dougherty, J. Am. Chem. Soc., 63, 987 (1941). ⁹ Stutz and Shriner, J. Am. Chem. Soc., 55, 1243 (1933); cf. ref. 7. ¹⁰ Westlake and Dougherty, J. Am. Chem. Soc., 67, 1861 (1945). ¹¹ Miller, Crossley, and Moore, J. Am. Chem. Soc., 64, 2323 (1942). ¹² Backer and Evenhuis, Rec. trav. chim., 56, 129 (1937). ¹³ Siöberg, Ber., 75, 26 (1942). ¹⁴ Elgersma, Rec. trav. chim., 48, 752 (1929); Bogert and Stull, Org. Syntheses. Coll. Vol. I, 220 (1941). ¹⁵ Schreiber and Shriner, J. Am. Chem. Soc., 56, 115 (1934); cf. ref. 14. ¹⁶ Foss et al., J. Am. Chem. Soc., 60, 2729 (1938). ¹⁷ Brand, Gabel, and Rosenkranz, Ber., 70, 304 (1937). ¹⁸ Bauer and Cymerman, J. Chem. Soc., 3434 (1949). ¹⁹ Hunter and Sorenson, J. Am. Chem. Soc., 54, 3364 (1932). ²⁰ Affleck and Dougherty, J. Org. Chem., 15, 865 (1950).

34

Sulfoxides and Sulfones

CONTENTS

PAGE

529. Oxidation of Sulfides

METHOD

$$RSR' \xrightarrow{(0)} RSOR' \xrightarrow{(0)} RSO_2R'$$

The best general reagent for this oxidation is 30% hydrogen peroxide.¹⁻⁸ Sulfoxides are isolated in 60-90% yields when a limited quantity of reagent is used in acetone or acetic acid solution at room temperature. With more peroxide and sometimes higher temperatures the yields of sulfones are equally high. In acetic acid solution, the active oxidizing agent is peracetic acid.¹⁰ This reagent is improved by substituting a part of the acetic acid by acetic anhydride.^{10, 15} Other oxidizing agents that sometimes give good results include chromic anhydride,^{3, 7} perbenzoic acid,⁴ and potassium permanganate.^{2, 18} Symmetrical sulfoxides and sulfones form a continuous series of mixed crystals.²

Hydrogen peroxide attacks the sulfur atom in preference to the double bond in allyl phenyl sulfide and allyl benzyl sulfide to give allyl phenyl sulfoxide (64%)⁵ and allyl benzyl sulfone (85%),⁹ respectively. Olefinic sulfones may also be obtained by dehydrohalogenation of β -baloalkyl sulfones prepared by this method.^{6, 12, 20} Oxidation of sulfides has been utilized in the preparation of sulfones containing other common functional groups such as the amide,^{14, 15} nitro,^{13, 14, 16, 19} amino,¹⁸ and ester¹⁷ groups.

530. Sulfones by the Alkylation of Sulfinates

$$RSO_2Na \xrightarrow{R'X \text{ or}} RSO_2R'$$

Salts of sulfinic acids are converted to sulfones by the action of prihary,^{22, 23} secondary,²³ and benzyl halides,³ alkyl sulfates,²³ and aryl halides in which the halogen atoms are activated by nitro groups in the ortho or para positions.^{24, 25} The reaction fails with *t*-amyl halide.²¹ The yields vary widely, depending upon the nature of the reactants. From salts of benzenesulfinic acid and simple alkylating agents, sulfones are produced in 50-90% yields. Satisfactory results have been obtained when the aryl sulfinic acid contains nitro, cyano, and acetamido groups. Keto sulfones are made in 48-62% yields by alkylation with α -halo ketones.²⁰

531. Sulfonation of Aromatic Hydrocarbons

 $ArH + H_2SO_4 \longrightarrow ArSO_3H + H_2O$ $ArSO_3H + Ar'H \longrightarrow ArSO_2Ar' + H_2O$

Sulfones are often produced as by-products in the sulfonation of aromatic hydrocarbons (method 540). Aromatic hydrocarbons react with sulfonic acids less readily than with sulfuric acid. The success of the reaction depends upon the removal of the water as it is formed. An automatic water separator is used in the conversion of a refluxing mixture of benzene and sulfuric acid to diphenyl sulfone (80%).³¹ A similar technique has been employed in the preparation of unsymmetrical sulfones. The vapor of an aromatic hydrocarbon is passed through the sulfonic acid at 150-200°, and water is removed by the excess hydrocarbon vapor.^{30, 32} Chlorobenzene has been substituted for the aromatic hydrocarbon in this reaction. Intermolecular migration of the sulfonic acid group occurs in some cases.

532. Diaryl Sulfoxides and Sulfones by the Friedel-Crafts Reaction

$$2ArH + SOCl_{2} \xrightarrow{A1Cl_{3}} ArSOAr + 2HCl \text{ when } Ar = C_{6}H_{5} (51\%)^{1, 3, 26}$$
$$ArH + Ar'SO_{2}Cl \xrightarrow{A1Cl_{3}} ArSO_{2}Ar' + HCl (47-7\%)^{27, 28}$$

533. Addition of Sulfur Dioxide to Dienes

$$RC = CR$$

$$RCH = CRC(R) = CHR \xrightarrow{SO_2} RHC CHR (50-85\%)^{29}$$

$$SO_2$$

534. Action of Grignard Compounds on Sulfonyl Halides and Sulfonates 33-35

$$\begin{array}{ccc} ArSO_2Cl & & & \\ ArSO_3Ar' & & & & \\ ArSO_3Ar' & & & & \\ \end{array} ArSO_2Ar'' & & & \\ \end{array}$$

SULFOXIDES AND SULFONES

Ch. 34

-tions-

TABLE 113. SULFOXIDES AND SULFONES

805

TABLE 113 (continued)

с <u></u>	Compound	Method	Yield (%)	Chapterref.	B.p./mm., $n_{\rm D}^{t}$, (M.p.)
	Si	ulfones (co	ntinued)		
C 12	p,p'-Diaminodiphenyl sulfone	425	77	34 25	(176)
		435	78	34 ³⁰	(177)
C 13	Phenyl benzyl sulfone	530	52	34 ³	(146)
	Phenyl p-tolyl sulfone	534	33	34 33	
		534	44	34 34	
C 14	Dibenzyl sulfone	529	98	3411	(153)
	Di -p- tolyl sulfone	531	80	34 32	(158)
		534	45	34 34	,
Cıs	Dimesityl sulfone	532	75	34 28	(204)

For explanations and symbols see pp. xi-xii.

TABLE	113. SU	L FOXIDES	AND	SUL FONES
-------	---------	-----------	-----	-----------

C _n	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
		Sul	foxides	_	
С,	Dimethyl sulfoxide	529	50	34 ¹	86/25
C4	Diethyl sulfoxide	529	70	34 ¹	84/12
	Tetramethylene sulfoxide	529	90	341	106/12, 1.5198 ²³
	bis- β -Aminoethyl sulfoxide	529	97	34 ¹⁸	
С,	Ethyl benzyl sulfoxide	529	60	34 4	(49)
	Allyl phenyl sulfoxide	529	64	34 ^s	104/0.36, 1.5765 ²⁵
C 12	Diphenyl sulfoxide	532	51	34 ²⁶	(71)
C 13	Benzyl phenyl sulfoxide	529	69	34 ³	(123)
C 14	Dibenzyl sulfoxide	529	75	34 ³	(133)
		Su	lfones		
С,	Methyl vinyl sulfone	20	62	346	116/19
•	Chloromethyl ethyl sulfone	529	80	344	128/14, (33)
C_	Tetramethylene sulfone	529	97	341	(11)
•	Vinyl ethyl sulfone	20	79	34 ²⁰	106/8
	Divinyl sulfone	20	85	34 12	99/7
C,	Allyl vinyl sulfone	20	63	34 5	119/10, 1.4815 ²⁵
•	Ethoxymethyl ethyl sulfone	529	95	34 4	122/13
с,	Phenyl methyl sulfone	530	75	34 23	(88)
	n-Butylsulfonylacetone	530	62	34 ²⁰	137/4
	Methyl p-aminophenyl sulfone	530	49 †	34 22	(134)
	Methyl p-nitrophenyl sulfone	529	84	34 ¹⁹	(143)
C.	Phenyl ethyl sulfone	530	80	34 23	(42)
	Phenyl vinyl sulfone	20	79	34 12	(69)
	Phenyl 2-chloroethyl sulfone	529	79	3412	(55)
с,	Ethyl benzyl sulfone	529	80	34 4	(84)
	Phenyl <i>n</i> -propyl sulfone	530	80	34 ²³	(46)
	Phenyl isopropyl sulfone	530	80	34 ²³	145-150/1
	Allyl phenyl sulfone	530	53	34 ⁵	112/0.5, 1.5460 ²⁵
	Ethyl p-cyanophenyl sulfone	530	94	34 22	(95)
C 10	Phenyl <i>n</i> -butyl sulfone	530	80	34 ²³	165-170/1
	s-Butyl phenyl sulfone	529	78	34 5	114/0.2, 1.5271 ²⁵
	Allyl benzyl sulfone	529	85	34°	(64)
	Crotyl phenyl sulfone	529	43	34 ⁵	108/0.1, 1.5421 ²⁵
C 12	Diphenyl sulfone	531	80	34 ³¹	(128)
		532	82	34 27	(124)
		534	35	34 ³³	
	p,p'-Dichlorodiphenyl sulfone	531	42	34 ³⁰	(149)
	p-Aminophenyl phenyl sulfone	425	68	34 ¹⁶	(175)
	p-Nitrophenyl phenyl sulfone	529	98	34 ¹⁶	(143)

REFERENCES FOR CHAPTER 34

Ch. 34

¹Tarbell and Weaver, J. Am. Chem. Soc., 63, 2941 (1941). ²Rheinboldt and Giesbrecht, J. Am. Chem. Soc., 68, 973 (1946). ³ Shriner, Struck, and Jorison, J. Am. Chem. Soc., 52, 2060 (1930). ⁴Böhme, Ber., 69, 1610 (1936). ⁵Cope, Morrison, and Field, J. Am. Chem. Soc., 72, 59 (1950). Buckley, Charlish, and Rose, J. Chem. Soc., 1515 (1947). 'Overberger, Ligthelm, and Swire, J. Am. Chem. Soc., 72, 2858 (1950). *Klenk, Suter, and Archer, J. Am. Chem. Soc., 70, 3848 (1948). ⁹ Backer and de Jong, Rec. trav. chim., 67, 890 (1948). ¹⁰Swern, Chem. Revs., 45, 33, 35 (1949). ¹¹ Arbusow, J. prakt. Chem., 131, 368 (1931); cf. ref. 3. ¹² Ford-Moore, Peters, and Wakelin, J. Chem. Soc., 1756 (1949). ¹³Heath and Lambert, J. Chem. Soc., 1479 (1947). 14 Raiziss et al., J. Am. Chem. Soc., 61, 2764 (1939). 15 Pomerantz and Connor, J. Am. Chem. Soc., 61, 3388 (1939). ¹⁶Gilman and Broadbent, J. Am. Chem. Soc., 69, 2056 (1947). ¹⁷Hurd and Gershbein, J. Am. Chem. Soc., 69, 2334 (1947). ¹⁸ Barnett, J. Chem. Soc., 5 (1944). 19 Waldron and Reid, J. Am. Chem. Soc., 45, 2405 (1923). ²⁰ Fehnel and Carmack, J. Am. Chem. Soc., 71, 237 (1949). ²¹ Ipatieff, Pines, and Friedman, J. Am. Chem. Soc., 60, 2731 (1938). ²² Fuller, Tonkin, and Walker, J. Chem. Soc., 636 (1945). 23 Baldwin and Robinson, J. Chem. Soc., 1447 (1932). ²⁴ Shriner and Greenlee, J. Org. Chem., 4, 247 (1939). ²⁵ Ferry, Buck, and Baltzly, Org. Syntheses, 22, 30 (1942). 26 Schönberg, Ber., 56, 2275 (1923); cf. refs. 1 and 3. ²⁷ Buehlet and Masters, J. Org. Chem., 4, 262 (1939); Beckurts and Otto, Ber., 11, 2066 (1878). 28 Maclean and Adams, J. Am. Chem. Soc., 55, 4685 (1933). 29 Backer and Strating, Rec. trav. chim., 53, 525 (1934); Backer. Strating, and Kool, ibid., 58, 778 (1939); Grummitt, Ardis, and Fick, J. Am. Chem. Soc., 72, 5167 (1950). ³⁰ Heymann and Fieser, J. Am. Chem. Soc., 67, 1982 (1945). ³¹ Fouque and Lacroix, Bull. soc. chim. France, (4) 33, 180 (1923). ³² Meyer, Ann., 433, 336 (1923). 33 Gilman and Fothergill, J. Am. Chem. Soc., 51, 3506 (1929). ³⁴Gilman, Beaber, and Meyers, J. Am. Chem. Soc., 47, 2050 (1925).

³⁵Hepworth and Clapham, J. Chem. Soc., 1192 (1921).

Sulfinic Acids

CONTENTS

PAGE

535. Reduction of Sulfonyl Halides	807
536. Action of Sulfur Dioxide on Diazonium Salts	807
537. Action of Organometallic Compounds on Sulfur Dioxide	808
538. Reaction of Aromatic Compounds with Sulfur Dioxide (Friedel-Crafts)	308
539. Cleavage of Ethylene Disulfones	808
Table 114. Sulfinic Acids	809
References	810

535. Reduction of Sulfonyl Halides

METHOD

 $2RSO_2C1 \xrightarrow{Z_n} (RSO_2)_2Z_n \xrightarrow{Na_2CO_3} 2RSO_2Na$

Zinc salts of sulfinic acids are formed by reduction of sulfonyl chlorides by zinc and hot water. The zinc salts may be converted to sodium salts by the action of sodium carbonate. Over-all yields of the sodium salts of p-toluenesulfinic acid³ and 2-dibenzofuransulfinic acid⁴ are 64-67%. Equally good results have been obtained by reduction of sulfonyl halides with aqueous sodium sulfite.^{1, 2, 9} Complete reduction to sulfhydryl compounds occurs with certain reducing agents (method 509).

536. Action of Sulfur Dioxide on Diazonium Salts

 $ArN_2^+SO_4H^- + 2SO_2 + 2H_2O \xrightarrow{Cu} ArSO_2H + N_2 + 2H_2SO_4$

The replacement of the amino group by the sulfinic acid group on an aromatic nucleus is effected by treating the corresponding diazonium sulfate with sulfur dioxide in the presence of copper catalyst (Gattermann).¹⁰ Copper bronze, powder, and paste have been used; the last is obtained by decomposing copper sulfate with zinc dust.⁷ The sulfinic acids may be isolated as the ferric⁸ or sodium⁵ salts. The yields are often excellent (74-92%). Surprising exceptions are the lower yields sometimes obtained for *meta*- and *para*-substituted acids compared with the corresponding *ortho* isomers.^{5, 10}

TABLE	114.	SUL FINIC	ACIDS
-------	------	-----------	-------

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	(M.p.)
C,	l-Butanesulfinic acid (Mg salt)	537	69	3513	
	l-Butanesulfinic acid (Na salt)	539	72	35 ¹⁵	
C 6	Benzenesulfinic acid	536	86	3510	
-		536	100	35ª	
		538	80	3514	(83)
	p-Fluorobenzenesulfinic acid (Na salt)	538	75	35 ⁶	
	p-Chlorobenzenesulfinic acid	535	81	351	(99)
		538	38	35 14	(99)
	p-Bromobenzenesulfinic acid	538	56	3514	(114)
с,	o-Toluenesulfinic acid	536	90	3510	
		536	80	35 ¹⁰	(86)*
		538	94	3514	(84)
	p-Toluenesulfinic acid (Na salt)	535	64	35 3	
	o-Methoxybenzenesulfinic acid	536	90	3510	(99)
	<i>p</i> -Methoxybenzenesulfinic acid	536	50	35 ¹⁰	(98)
C.	l-Octanesulfinic acid (Mg salt)	537	42	3513	
	p-Acetaminobenzenesulfinic acid	535	47 †	35²	(155)
C 10	α-Naphthalenesulfinic acid	536	74	35 ¹⁰	(85)
		538	62	3514	(85)
C 12	1-Dodecanesulfinic acid	537	77	3512	(30)
-	2-Dibenzofuransulfinic acid (Na salt)	535	67	354	

For explanations and symbols see pp. xi-xii.

537. Action of Organometallic Compounds on Sulfur Dioxide

$$2RMgX \xrightarrow{2SO_2} (RSO_2)_2Mg \xrightarrow{H^+} 2RSO_2H$$

Magnesium salts of aliphatic sulfinic acids are conveniently prepared in high yield by passing sulfur dioxide into a rapidly stirred, cooled, Grignard reagent.¹¹⁻¹³ Excess sulfur dioxide should be avoided.¹² The magnesium salts are readily converted to the corresponding sodium salts by treatment with sodium carbonate or sodium hydroxide,¹³ or to the free sulfinic acids by the action of dilute mineral acid.^{12, 13} 1-Dodecanesulfinic acid is more stable than lower-molecular-weight aliphatic sulfinic acids.¹²

538. Reaction of Aromatic Compounds with Sulfur Dioxide (Friedel-Crafts)

$$ArH + SO_2 \xrightarrow{AICl_3} ArSO_2 H (75-94\%)^{6, 1}$$

539. Cleavage of Ethylene Disulfones

 $RSO_2CH_2CH_2SO_2R + 2KCN \rightarrow 2RSO_2K + NCCH_2CH_2CN (72-80\%)^{12,15}$

REFERENCES FOR CHAPTER 35

¹ Kulka, J. Am. Chem. Soc., 72, 1216 (1950).
² Smiles and Bere, Org. Syntheses, Coll. Vol. I, 7 (1941).
³ Whitmore and Hamilton, Org. Syntheses, Coll. Vol. I, 492 (1941).
⁴ Gilman, Smith, and Oatfield, J. Am. Chem. Soc., 56, 1413 (1934).
⁵ Todd and Shriner, J. Am. Chem. Soc., 56, 1383 (1934).
⁶ Hann, J. Am. Chem. Soc., 57, 2166 (1935).
⁷ Silvester and Wynne, J. Chem. Soc., 693 (1936).
⁸ Thomas, J. Chem. Soc., 342 (1909).
⁹ Krishna and Singh, J. Am. Chem. Soc., 50, 794 (1928).
¹⁰ Gattermann, Ber., 32, 1136 (1899).
¹¹ Houlton and Tartar, J. Am. Chem. Soc., 60, 544 (1938).
¹³ Allen, J. Org. Chem., 7, 23 (1942).
¹⁴ Knoevenagel and Kenner, Ber., 41, 3315 (1908).
¹⁵ Ziegler and Connor, J. Am. Chem. Soc., 62, 2596 (1940).

36

Sulfonic Acids

CONTENTS

METHOD

PAGE

540. Direct Sulfonation	811
541. Oxidation of Thiols and Related Compounds	812
542. Alkylation of Alkali Sulfites (Strecker)	813
543. Addition of Bisulfites to Unsaturated Compounds	813
544. Action of Bisulfites on Aromatic Compounds	814
545. Sulfomethylation	814
546. Addition of Bisulfites to Carbonyl Compounds	814
547. Addition of Bisulfites to Alkene Oxides	814
Table 115. Sulfonic Acids	815
References	819

540. Direct Sulfonation

$ArH + H_2SO_4 \rightleftharpoons ArSO_3H + H_2O$

Sulfonation of aromatic hydrocarbons is usually accomplished by treating with sulfuric acid, preferably containing 5-20% sulfur trioxide to remove the water formed in the reaction. Other sulfonating agents are generally less satisfactory. Sulfur trioxide^{14, 30} gives sulfones as byproducts, and chlorosulfonic acid frequently produces sulfonyl chlorides rather than sulfonic acids (method 550). Sulfonation by these and ten additional reagents has been extensively reviewed.¹⁰⁻¹⁴ The sulfonation reaction is reversible (method 15). Catalysts such as boron trifluoride,³ mercury,^{1, 19} and vanadium salts²⁰ are used for compounds that sulfonate with difficulty. For example, benzene is readily sulfonated at room temperature to the monosulfonic acid^{8,18} and at 70-90° to m-benzenedisulfonic acid (90%).¹⁷ Finally, at 275° with 15% oleum and a mercury catalyst, sodium *m*-benzenedisulfonate is converted to 1.3.5-benzenetrisulfonic acid (73%).¹ Intra- and inter-molecular migration of alkyl and halo groups may occur in the sulfonation of polymethylated or halogenated benzenes (Jacobsen reaction, method 16).6,9

Sulfonation of naphthalene at 40° gives chiefly the *a*-sulfonic acid; above 160° the *beta* isomer is formed.^{7,8} The mono-, di-, and poly-

811

sulfonation of naphthalene and alkylnaphthalenes has been extensively studied.² From phenanthrene and concentrated sulfuric acid at 120°, low yields of the 2- and 3-sulfonated derivatives are obtained. The product is separated by crystallization of the sodium, barium, and potassium salts.⁵ Substitution in the 1-position of anthracene is highly favored by sulfur trioxide in pyridine.³⁵

Most heterocyclic nuclei undergo the sulfonation reaction. Sulfonation of pyridine is difficult. The yield of 3-pyridinesulfonic acid by sulfonation at 390° with oleum is only 13%. The yield is greatly improved by the use of vanadium or mercury salts as catalysts. A critical study of the factors influencing the yield has been made, and a maximum yield of 71% is reported.²⁰ Fuming sulfuric acid converts quinoline to practically pure 8-quinolinesulfonic acid (54%).²¹ The action of concentrated sulfuric acid on dibenzofuran gives 2-dibenzofuransulfonic acid (75%).²²

Although aliphatic and alicyclic hydrocarbons react with most sulfonating agents, the reactions are not suitable for the preparation of the pure sulfonic acids.^{4, 11} Certain olefins react with sulfur dioxide-dioxane complex to give *olefinic sulfonic acids*.²³ In this way, cyclohexene is converted to 1-cyclohexene-3-sulfonic acid,²⁵ whereas with concentrated sulfuric acid in a mixture of acetic acid and acetic anhydride the main product is 2-hydroxycyclohexanesulfonic acid.²⁶ 1-Propene-1-sulfonic acid is obtained in low yield by the action of oleum on *n*- or isopropyl alcohol.²⁴

Aliphatic carboxylic acids may be sulfonated directly to sulfocarboxylic acids in which the sulfonic acid group is on the α -carbon atom. Better results are sometimes obtained by sulfonation of the corresponding alkylmalonic acid followed by decarboxylation.⁴² Sulfonation of propionic anhydride with pyrosulfuric acid gives α -sulfopropionic acid (75%).⁴³ Several simple olefinic acids containing a sulfonic acid group in the α -position have been made by direct sulfonation of α , β -olefinic acids or β -halo acids.⁴⁰ In the latter case, dehydrohalogenation accompanies sulfonation.

Several other functional groups may be present on the aromatic nucleus during the sulfonation reaction,¹¹ including halo,^{10, 28, 29} hydroxyl,¹⁹ phenoxyl,²⁷ carboxyl,¹⁹ and amino³¹⁻³⁴ groups. Sulfonations of aniline and of dimethylaniline take place by different mechanisms.³²

541. Oxidation of Thiols and Related Compounds

 $RSH \xrightarrow{(O)} RSO_3H$

The end product of the oxidation of mercaptans, sulfides, disulfides, sulfoxides, sulfones, etc., is a sulfonic acid. From a preparative standpoint the mercaptan is the most important of the source materials. Oxidations by potassium permanganate,⁵⁶ chromic anhydride,⁵⁶ bromine water,⁵⁷ hydrogen peroxide,⁶⁰ and nitric acid ⁵⁸ are reported. Best results are obtained by the action of nitric acid on lead mercaptides. The lead sulfonates are obtained in 59–83% yields and are converted to the free sulfonic acids by treatment with dry hydrogen chloride in isopropyl alcohol.⁵⁵ Tetradecamethylene disulfonic acid, HO₃S(CH₂)₁₄SO₃H, is made in 54% yield by the oxidation of a xanthate ester by bromine water (cf. method 507).⁵⁹

542. Alkylation of Alkali Sulfites (Strecker)

. '

Ch. 36

$$RX + Na_2SO_3 \rightarrow RSO_3Na$$

Many halogen compounds react with sodium, potassium, or ammonium sulfites to give high yields of sulfonic acid salts. High- and low-molecular-weight aliphatic halides have been converted in 70-89% yields.46,49 Branched-chain sulfonic acids have been obtained from several simple halides such as isopropyl and t-butyl bromides. The over-all yield from the latter compound is only 23%.47 Other halides studied include cyclopentyl chloride,⁵² benzyl chloride,⁵² and various phenyl-substituted alkyl halides.⁵¹ The reaction is carried out by refluxing the halide with a concentrated aqueous solution of the sulfite. A temperature of 200° in an autoclave has been employed for several higher-molecular-weight halides.⁴⁶ Polymethylene bromides, $Br(CH_2)_n Br$, lead to α, ω -disulfonic acids in 30-56% yields.^{44, 45, 50} When one mole of sodium sulfite is treated with 3.3 moles of ethylene bromide, sodium 2-bromoethanesulfonate is obtained in 80% yield.73 Sulfonic acids containing keto,48 carboxyl,^{38, 41} and amino^{53, 54} groups in various positions on the aliphatic chain have been prepared by this method.

543. Addition of Bisulfites to Unsaturated Compounds

 $RCH = CH_2 + NaHSO_3 \rightarrow RCH_2CH_2SO_3Na$

Aqueous solutions of bisulfites react with olefins in the presence of oxygen or certain oxidizing agents. Addition of the bisulfite takes place by a free-radical mechanism contrary to Markownikoff's rule. The yields of sulfonates are usually low (12-62%). Styrene gives mainly 2-hydroxy-2-phenylethanesulfonic acid.³⁹ Bisulfite has also been added to the double bonds in allyl and cinnamyl alcohols.³⁹ β -Sulfocarboxylic acids are prepared in this way from α,β -olefinic acids.³⁸ β,β -Disulfopropionic acid is made in 80% yield by the addition of two molecules of bisulfite to the triple bond of propiolic acid.⁴¹ 2-Nitro olefins add sodium bisulfite or sulfurous acid to give 55-99% yields of 2-nitroalkanesulfonic acids.⁶⁶

$$H_2C = CHCH_2NO_2 \xrightarrow{NaHSO_3} CH_3CH(SO_3Na)CH_2NO_2$$

544. Action of Bisulfites on Aromatic Compounds

These and similar additions of bisulfites to tautomeric systems within the aromatic nucleus have been extensively reviewed.⁶⁵

545. Sulfomethylation

546. Addition of Bisulfites to Carbonyl Compounds⁷⁰

$$RCHO + NaHSO_3 \rightarrow RCHOHSO_3Na$$

547. Addition of Bisulfites to Alkene Oxides

 $CH_2CH_2 + NaHSO_3 \rightarrow HOCH_2CH_2SO_3Na$ (60%)⁷¹

TABLE 115. SULFONIC ACIDS

TABLE 115. SULFONIC ACIDS

с _{<i>п</i>}	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)				
	Monosulfonic Acids								
Ci	Methanesulfonic acid (Ba salt)	542	82	36*					
C,	Ethanesulfonic acid (Ba salt)	542	83	36*9					
C,	2-Propanesulfonic acid	542	37 t	36 47	159/1.4, 1.4332				
C₄	l-Butanesulfonic acid (Pb salt)	541	96	36 ⁵⁵	147/0.5				
	2-Methylpropane-1-sulfonic	542	43 t	36 47	171/1.2, 1.4364				
	acid	543	62	36 ³⁹	,				
	2-Methylpropane-2-sulfonic acid	542	23 †	3647	173/1.5, 1.4315				
C,	3-Pentanesulfonic acid (Ba salt)	541	62	36 72					
	Cyclopentanesulfonic acid (Na salt)	542	90	36 32					
	3-Methylbutane-1-sulfonic acid	542	87 †	3647	177/1.5, 1.4400				
	3-Pyridinesulfonic acid	540	71	36 ²⁰	(356)				
C,	Benzenesulfonic acid	540	56	3614	(53)*				
с,	Benzylsulfonic acid (Na salt)	542	98	36 52	()))				
	p-Toluenesulfonic acid (Na salt)	540	63	3674					
C8	α-Phenylethanesulfonic acid (Na salt)	542	45	36 ^{\$1}					
	eta-Phenylethanesulfonic acid (Na salt)	542	90	36 ⁸¹					
C,	α-Phenylpropanesulfonic acid (Na salt)	542	32	36 ^{\$1}					
	p-Isopropylbenzenesulfonic acid (Na salt)	540	65	36 13					
	Mesitylenesulfonic acid	540	90	3610	(78)				
	8-Quinolinesulfonic acid	540	54	36 21					
C 10	p -n- Butylbenzenesulfonic acid (Na salt)	540	23	3616					
	Prehnitenesulfonic acid	540	70	36 ⁶	(104)				
	Durenesulfonic acid	540	70	366	(113)				
	Isodurenesulfonic acid	540	70	36 ⁶	(79)				
	eta-Naphthalenesulfonic acid	540	70	367					
C 12	2-Dibenzofuransulfonic acid	540	75	3622	(147)				
C ₁₄	2-Phenanthrenesulfonic acid (Ba salt)	540	21	36 5	x- •//				
	3-Phenanthrenesulfonic acid (K salt)	540	26	36 ^s					

For explanations and symbols see pp. xi-xii.

SULFONIC ACIDS

Ch. 36

100 B

1

٦

TABLE 115. SULFONIC ACIDS

TABLE 115 (continued)

817

с <u></u> ,	Compound	Method	Yield (%)	Chapterref.	B.p./mm., n ^t _D , (M.p.)
	Amino S	alfonic Ac	ids (con	tinued)	
C 6	p-Aminobenzenesulfonic (sul- fanilic) acid	540	95	36 31	
с,	p-Methylaminobenzenesulfonic acid	540	39	36 34	(245)
C,	p-Dimethylaminobenzenesul- fonic acid	540	7	36 ³³	
C,	3-Phenylaminopropanesul- fonic acid	542	35	36 ⁵⁴	(265)
C 14	1-Anthracenesulfonic acid (Na salt)	540	40	36 ⁵⁵	
		Other Sul	fonic Ac	ids	
с,	Ethylenesulfonic acid (NH4 salt)		55	36 68	
	2-Bromoethanesulfonic acid (Na salt)	542	72	3673	
	eta-Hydroxyethanesulfonic acid (Na salt)	547	60	3671	
	2-Nitroethanesulfonic acid (Na salt)	543	75	36 ⁶⁶	
C,	1-Propene-1-sulfonic acid	540	18	3624	135/0.5
	2-Chloropropane-2-sulfonic acid (Na salt)	53	18	36 24	
	acid (Na salt)	543	78	36 56	
	acid (Na salt)	543	88	36 **	
C₄	I-Nitro-2-methylpropane-2- sulfonic acid (Na salt)	543	95	36 ⁶⁶	
	B, B-Disulfodiethyl ether (Ba salt)	541	70	36 60	
	2-Methyl-2-propene-1-sulfonic acid	540	••••	36 ²³	
C 6	<i>m</i> -Hydroxybenzenesulfonic acid (Na salt)	544	26	36 64	
	2,5-Dichlorobenzenesulfonic acid	540	90	36 ²⁹	
	p-Bromobenzenesulfonic acid (Na salt)	540	37	36 ²⁸	
	<i>m</i> -Hydroxybenzenesulfonic acid	92	78	5 ⁵⁶⁷	
с.	Acetophenone-w-sulfonic acid	542	14 †	36 ⁴⁸	(75)

	TABLE 115 (continued)						
с _п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n_{D}^{t} , (M.p.)		
		Disulfon	ic Acids				
c,	1,2-Ethanedisulfonic acid	542	46	3645	(174)		
c,	1,3-Propanedisulfonic acid	542	56	36 45	157/1.4, (124)		
C₄	1,4-Butanedisulfonic acid (Na salt)	542	93	36 ^{so}			
C 5	1,5-Pentanedisulfonic acid	542	80	36 44	198/1.7		
C.	1.6-Hexanedisulfonic acid	542	68	36 44	(78)		
	1,3-Benzenedisulfonic acid (Na salt)	540	90	36 17			
	1,3,5-Benzenetrisulfonic acid (Na salt)	540	73	361			
C 14	1,14-Tetradecanedisulfonic acid (Na salt)	541	54	36 ⁵⁹			
		Sulfo Car	boxylic /	Acids			
с.	Disulfoacetic acid	253	61	3662	(86)		
c,	a-Sulfopropionic acid	540	75	36 49			
- 3	β β -Disulformationic acid	543	80	36 41	(93)		
	g-Sulfoacrylic acid (Ba salt)	540	70	3640			
C₄	a-Sulfocrotonic acid (Ba salt)	20	57	36 4 0			
C,	a-Sulfo-n-valeric acid	264	73	3642	(66)		
	a-Sulfoisovaleric acid	264	80	36 ³⁸	(68)		
	β -Sulfoisovaleric acid (Ba salt)	543	67	36 ³⁸			
	a-Sulfomethylethylacetic acid	540	34	36 ³⁸	(83)		
	a-Ethyl-β-sulfopropionic acid (Ba salt)	543	70	36 ³⁸			
	α-Sulfo-β,β-dimethylacrylic acid	540	72	36 4 0			
		Amino Su	lfonic Ac	cids			
<u> </u>	2-Aminoethanesulfonic acid	425	65	3666	(317)		
~ 2	(taurine)	542	73	36 53	() =)		
C 3	2-Aminopropane-1-sulfonic	425	60	36 ⁶⁶			
	3-Aminopropanesulfonic acid	542	60	36 54	(292)		
	1-Aminopropane-2-sulfonic	425	79	36 66	(295)		
	acid	,	.,				
C₄	4-Aminobutanesulfonic acid	542	24	36 54	(263)		
C₅	5-Aminopentanesulfonic acid	542	6 0 †	3654	(312)		
C ₆	o-Aminobenzenesulfonic acid (orthanilic acid)	425	57	36 *1	(325)		
	p-Aminobenzenesulfonic acid (Na salt)	544	3 5	3663			

C_n

C 10

SULFONIC ACIDS

Method

56

540

540

540

28

Compound

4-Bromonaphthalene-2-sul-

Azobenzene-4-sulfonic acid

For explanations and symbols see pp. xi-xii.

fonic acid (Na salt)

C14 1-Anthraquinonesulfonic acid

Stilbene-4-sulfonic acid

C₁₂ p-Phenoxybenzenesulfonic

acid (Na salt)

(K salt)

TABLE 115 (continued)

Other Sulfonic Acids (continued)

Yield

(%)

71

93

90

86

42

Chapterfef. B.p./mm., nD, (M.p.)

(129)

36 ⁶⁹

3627

36 36

36 37

2273

REFERENCES FOR CHAPTER 36

REFERENCES FOR CHAPTER 36

¹Suter and Harrington, J. Am. Chem. Soc., 59, 2577 (1937).

²Othmer, Jacobs, and Buschmann, Ind. Eng. Chem., 35, 326 (1943); Sureve and Lux, *ibid.*, 35, 306 (1943); Fieser and Bowen, J. Am. Chem. Soc., 62, 2105 (1940); Fierz-David and Richter, Helv. Chim. Acta, 28, 257 (1945); Lantz, Bull. soc. chim. France. (5) 12, 245 (1945); Royer, Ann. chim., (12) 1, 407 (1946).

³ Thomas, Anzilotti, and Hennion, Ind. Eng. Chem., 32, 408 (1940). ⁴ Burkhardt, J. Chem. Soc., 2387 (1930).

D' Maidt, J. Chem. 30C., 2307 (1930).

⁵ Fieser, Org. Syntheses, Coll. Vol. II, 482 (1943).

⁶Smith and Cass, J. Am. Chem. Soc., 54, 1612 (1932); cf. ref. 9.

⁷ Colver and Noyes, J. Am. Chem. Soc., 43, 900 (1921); cf. refs. 2 and 8. ⁸ Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, pp. 191-194.

⁹Smith and Lux, J. Am. Chem. Soc., 51, 2997 (1929).

¹⁰ Suter and Weston in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, pp. 141, 162.

¹¹ Suter, Organic Chemistry of Sulfur, John Wiley & Sons, New York, 1944, pp. 94, 195.

¹² Groggins and Simpson in Groggins' Unit Processes in Organic Synthesis, 3rd ed., McGraw-Hill Book Co., New York, 1947, p. 260.

¹³Lisk, Ind. Eng. Chem., 40, 1671 (1948); 41, 1923 (1949); 42, 1746 (1950); Simpson and Olsen, *ibid.*, 29, 1350 (1937).

¹⁴Leiserson, Bost, and LeBaron, Ind. Eng. Chem., 40, 508 (1948).

¹⁵ Frank, Berry, and Shotwell, J. Am. Chem. Soc., 71, 3891 (1949).

¹⁶Paquette, Lingafelter, and Tartar, J. Am. Chem. Soc., 65, 686 (1943).

17 Fierz-David and Stamm, Helv. Chim. Acta, 25, 368 (1942).

¹⁸ Tanasescu and Macarovici, Bull. soc. chim. France, (5) 5, 1126 (1938). ¹⁹ Lauer, I. prakt. Chem., 138, 81 (1933).

- Lauer, J. prakt. Chem., 158, 81 (1955)

²⁰ McElvain and Goese, J. Am. Chem. Soc., 65, 2233 (1943); Webb and Corwin, *ibid.*, 66, 1456 (1944); Machek, Monatsh., 72, 84 (1938); Van Gastel and Wibaut, Rec. trav. chim., 53, 1032 (1934); Craig, J. Am. Chem. Soc., 55, 2855 (1933).
²¹ McCasland, J. Org. Chem., 11, 277 (1946).

²² Wendland, Smith, and Muraca, J. Am. Chem. Soc., 71, 1593 (1949).
 ²³ Suter et al., J. Am. Chem. Soc., 60, 538 (1938); 63, 978, 1594 (1941); 66, 1105 (1944); 67, 827 (1945).

²⁴ Lambert and Rose, J. Chem. Soc., 46 (1949).

²⁵ Sperling, J. Chem. Soc., 1925 (1949).

²⁶ Friese, Ber., 64, 2106 (1931).

いいたり、ため、「大学」を

²⁷ Suter, J. Am. Chem. Soc., 53, 1114 (1931).

²⁸ Demeny, Rec. trav. chim., 50, 53 (1931).

²⁹ Crowell and Raiford, J. Am. Chem. Soc., 42, 145 (1920).

³⁰ Lauer and Oda, J. prakt. Chem., 143, 139 (1935).

³¹ Jacobs, Othmer, and Hokanson, Ind. Eng. Chem., 35, 321 (1943).

³² Alexander, J. Am. Chem. Soc., 68, 969 (1946); 69, 1599 (1947); 70, 1274 (1948).

³³ Davidson and Reade, J. Chem. Soc., 1702 (1939).

³⁴Uppal and Venkataraman, J. Soc. Chem. Ind. (London), 57, 411 (1938).

³⁵ Battegay and Brandt, Bull. soc. chim. France, (4) 33, 1667 (1923).

³⁶ Ruggli and Stäuble, Helv. Chim. Acta, 24, 1084 (1941).

³⁷ Scott and Allen, Org. Syntheses, Coll. Vol. II, 539 (1943).

819

38 Backer and van der Veen, Rec. trav. chim., 55, 887 (1936). ³⁹ Kharasch et al., J. Am. Chem. Soc., 61, 3092 (1939); J. Org. Chem., 3, 175 (1938). 40 Backer and Mulder, Rec. trav. chim., 62, 46, 53 (1943). ⁴¹ Backer and Beute, Rec. trav. chim., 54, 601, 621 (1935). 42 Backer and Toxopeus, Rec. trav. chim., 45, 890 (1926). 43 Backer and Dubsky, Rec. trav. chim., 39, 694 (1920). "Stone, J. Am. Chem. Soc., 58, 488 (1936); Zuffanti and Hendrickson, ibid., 63, 2999 (1941). ⁴⁵ McElvain, Jelinek, and Rorig, J. Am. Chem. Soc., 67, 1578 (1945); cf. ref. 44. 46 Reed and Tarter, J. Am. Chem. Soc., 57, 571 (1935). 47 Zuffanti, J. Am. Chem. Soc., 62, 1044 (1940). 49 Parkes and Tinsley, J. Chem. Soc., 1861 (1934). 49 Latimer and Bost, J. Org. Chem. 5, 24 (1940). ⁵⁰ Helferich and Grünert, Ber., 74, 1531 (1941); cf. ref. 44. ⁵¹ Evans, Mabbott, and Turner, J. Chem. Soc., 1159 (1927). 52 Turkiewicz and Pilat, Ber., 71, 285 (1938). ⁵³ Cortese, J. Am. Chem. Soc., 58, 191 (1936); Marvel and Bailey, Org. Syntheses, Coll. Vol. II, 563 (1943); Cortese, ibid., Coll. Vol. II, 564 (1943). ⁵⁴ Rumpf, Bull, soc. chim. France, (5) 5, 871 (1938). ⁵⁵Noller and Gordon, J. Am. Chem. Soc., 56, 1090 (1933); Vivian and Reid, ibid., 57, 2559 (1935). ⁵⁶ Collin et al., J. Soc. Chem. Ind. (London), 52, 272T (1933). ⁵⁷ Clarke, Org. Syntheses, 20, 23 (1940); Young, J. Am. Chem. Soc., 59, 811 (1937). ⁵⁸ Murray, J. Chem. Soc., 739 (1933). ⁵⁹ Stone, I. Am. Chem. Soc., 62, 571 (1940). 60 Backer, Rec. trav. chim., 54, 205 (1935). ⁶¹ Wertheim, Org. Syntheses, Coll. Vol. II, 471 (1943). 62 Backer and Benninga, Rec. trav. chim., 55, 370 (1936). 63 Hunter and Sprung, J. Am. Chem. Soc., 53, 1432 (1931); Lauer, Sprung, and Langkammerer, ibid., 58, 225 (1936). ⁶⁴ Lauer and Langkammerer, J. Am. Chem. Soc., 56, 1628 (1934). ⁶⁵ Ref. 11, pp. 353-365. ⁶⁶ Heath and Piggott, J. Chem. Soc., 1481 (1947). 67 Suter, Bair, and Bordwell, J. Org. Chem., 10, 470 (1945). 60 Whitmore and Landau, J. Am. Chem. Soc., 68, 1797 (1946). ⁶⁹ Mercanton and Goldstein, Helv. Chim. Acta, 28, 534 (1945). ⁷⁰ Ref. 11, pp. 126-130 ⁷¹Lauer and Hill, J. Am. Chem. Soc., 58, 1873 (1936). ⁷² Miron and Richter, J. Am. Chem. Soc., 71, 453 (1949). ⁷³ Marvel and Sparberg, Org. Syntheses, Coll. Vol. 11, 558 (1943). ⁷⁴ Ray and Soffer, J. Org. Chem., 15, 1039 (1950).

37

Derivatives of Sulfonic Acids

CONTENTS

PAGE

 548. Action of Inorganic Acid Halides on Sulfonic Acids 549. Sulfonyl Halides by Halogenation of Mercaptans and Related Compounds 	821 821
550. Direct Halosulfonation of Aromatic Compounds	822
551. Action of Sulfonyl Halides on Ammonia or Amines	822
552. Action of Sulfonyl Halides on Hydroxy Compounds	823
553. Sulfonic Esters by Rearrangement of Alkyl Sulfites	823
Table 116. Derivatives of Sulfonic Acids	824
References	826

548. Action of Inorganic Acid Halides on Sulfonic Acids

METHOD

 $RSO_3H \xrightarrow{SOC1_2, PC1_5, etc.} RSO_2Cl$

Sulfonic acids are converted to the corresponding acid halides in much the same way as carboxylic acids. Thionyl chloride is the best reagent for the preparation of methanesulfonyl chloride (83%).⁴ By heating with a large excess of thionyl chloride, however, *p*-toluenesulfonic acid is converted into its anhydride (87%).²¹ Benzenesulfonyl chloride is made in 80% yield by the action of either phosphorus pentachloride or phosphorus oxychloride at 180° on sodium benzenesulfonate.⁵ Chlorosulfonic and fluorosulfonic acids are used in the conversion of sodium *p*-chlorobenzenesulfonate to the corresponding sulfonyl halides (85-89%).¹⁹

 $ArSO_3Na + FSO_3H \rightarrow ArSO_3F + NaHSO_3$

Nitro,²⁰ halo,^{13, 19} and azo¹⁴ groups on the aromatic nucleus are stable during these conversions.

549. Sulfonyl Halides by Halogenation of Mercaptans and Related Compounds

$$RSH + 3X_2 + 2H_2O \longrightarrow RSO_2X + 5HX$$

「「「「「「「」」

and the second

A variety of sulfur compounds are converted directly to sulfonyl halides by the action of bromine or chlorine water. The list includes mercaptans,²⁴ sulfides,¹ disulfides,^{1, 2, 16, 24} thiol esters,²⁴ thiocyanates,¹⁷ alkyl xanthates,²⁴ and S-alkylthiouronium salts.⁷ Chlorination of the thiouronium salts sometimes leads to highly explosive products.²⁵ Most of the reactions occur at low temperatures and give excellent yields of sulfonyl chlorides. The corresponding bromides are formed in somewhat lower yields (36-67%).⁷ Under anhydrous conditions halogenation of disulfides gives sulfenyl halides,³ viz., RSSR + X₂ \rightarrow 2RSX.

550. Direct Halosulfonation of Aromatic Compounds

 $A_{r}H + 2XSO_{3}H \longrightarrow A_{r}SO_{2}X + HX + H_{2}SO_{4}$

The replacement of a hydrogen atom on an aromatic nucleus by the sulfonyl halide grouping in a one-step process is accomplished by treating the aromatic compound with chloro- or fluoro-sulfonic acid. Two equivalents of the halosulfonic acid are required, and frequently three equivalents are used. The aromatic sulfonic acid is presumably an intermediate in the process and is converted to the sulfonyl halide by the second equivalent of halosulfonic acid (cf. method 540). Reaction usually occurs at -5° to 30° in chloroform or carbon tetrachloride solution. Higher temperatures ($100-125^{\circ}$) are employed when carboxyl or nitro groups are on the nucleus. Benzenesulfonyl fluoride is obtained in 62% yield by the action of excess fluorosulfonic acid at 20° on benzene in an iron vessel.⁹

Alkyl groups are sometimes displaced from the aromatic nucleus during the reaction.¹⁰ Various functional groups may be present in the aromatic compound during the halosulfonation reaction. These groups include methoxyl,¹² alkyl,^{10, 23} halo, ¹⁸ carboxyl,¹¹ acetamino,⁶ and nitro.¹⁵ The yields range from 55% to 100%. Acetophenone gives a disulfonyl chloride in which the sulfonyl groups are in the *ortho* position and on the methyl group.⁸

Simple aliphatic chlorides are chlorosulfonated by a mixture of chlorine and sulfur dioxide in the presence of light. For example, *n*-propyl chloride gives 3-chloropropanesulfonyl chloride (23%).²²

551. Action of Sulfonyl Halides on Ammonia or Amines

 $RSO_2X + NH_3 \rightarrow RSO_2NH_2 + (HX)$

The action of ammonia^{18, 26} or amines³⁰ on sulfonyl halides gives sulfonamides and N-substituted sulfonamides. The sulfonyl halide is some-

METHODS 551-553

times heated with dry, powdered ammonium carbonate.¹⁸ Aniline and its derivatives react smoothly at 100–120° in acetic acid solution to which are periodically added portions of sodium acetate. The yields of sulfon-amides, $ArSO_2NHAr'$, vary from 50% to 91%.²⁸ Many sulfonamides have been prepared on a small scale by this method, but the yields are not always stated.^{18, 41} Sulfanilamide, $NH_2C_6H_4SO_2NH_2$, is prepared from aniline by first protecting the amino group by conversion to formanilide or carbanilide followed by direct halosulfonation and reaction with ammonia. The over-all yields are 62–65%.²⁹

552. Action of Sulfonyl Halides on Hydroxy Compounds

$$RSO_2X + R'OH \xrightarrow{Base} RSO_3R' + (HX)$$

Esters of aliphatic and aromatic sulfonic acids are conveniently prepared in high yields from alcohols and sulfonyl halides. A basic medium is required. By substituting sodium butoxide for sodium hydroxide in butanol, the yield of *n*-butyl *p*-toluenesulfonate is increased from 54% to 98%.³¹ Ethyl benzenesulfonate and nuclear-substituted derivatives carrying bromo, methoxyl, and nitro groups are prepared from the corresponding sulfonyl chlorides by treatment with sodium ethoxide in absolute ethanol; the yields are 74-81%.¹² Pyridine is by far the most popular basic medium for this reaction. Alcohols (C₄-C₁₂) react at 0-10° in 80-90% yields,^{32-34, 36} and various phenols can be converted to aryl sulfonates in this base.^{32, 40}

A related reaction is the formation of alkyl chlorosulfonates from alcohols and sulfuryl chloride.³⁹

$$ROH + SO_2Cl_2 \rightarrow CISO_3R + HCl$$

553. Sulfonic Esters by Rearrangement of Alkyl Sulfites

$$(RO)_2SO \xrightarrow{R'_3N} RSO_3R (56\%)^{35}$$

TABLE 116. DERIVATIVES OF SULFONIC ACIDS

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)				
	Sulfonyl Halides								
C1	Methanesulfonyl chloride	548	83	374	65/20, 1.451 ²³				
•		549	75	37 ¹⁷	55/11				
		549	76	37 '	62/21, 1.4490 ²⁵				
с,	Ethanesulfonyl chloride	549	79	37 17	72/20				
-	·	549	82	377	77/26, 1.4506 ²⁵				
		549	90	371	174, 1.4518				
с.	2-Propane sulfonyl chloride	549	40	37 '	75/19, 1.4525 ²⁵				
	3-Chloropropanesulfonyl chloride	550	23	37 ²²	118/15, 1.4900 23				
C,	2-Butanesulfonyl chloride	549	50	37 7	87/18				
•	2-Methyl-1-propanesulfonyl chloride	549	53	37 7	74/11, 1.4520 ²⁵				
C,	1-Pentanesulfonyl chloride	549	78	37 24	78/3, 1.4547 ²⁵				
C,	Benzenesulfonyl fluoride	550	62	37°	91/14, 1.4932 ¹⁸				
•	Benzenesulfonyl chloride	548	87	37 ⁵	147/45				
	p-Chlorobenzenesulfonyl fluoride	550	74	37 ¹⁹	(49)				
	p-Chlorobenzene sulfonyl	548	85	37 ¹³	(53)				
	chloride	548	89	37 ¹⁹	140/12, (53)				
	o-Nitrobenzenesulfonyl · chloride	549	80	37 ²	(69)				
	<i>m</i> -Nitroben zenes ul fonyl chloride	550	55	37 15	(62)				
	<i>p</i> -Nitrobenzenesulfonyl	549	46 †	37 ¹⁶	144/1.5, (80)				
	chloride	548	90	37 2 0	(77)				
	2,4-Dinitrobenzenesulfonyl chloride	548	72	37 ²	(101)				
C,	1-Heptanesulfonyl chloride	549	50	377	125/9, 1.4564 ²⁵				
•	a-Toluenesulfonyl chloride	549	92	377	(92)				
	p-Toluenesulfonyl chloride	548	90	37 42	(69)				
	p-Methoxybenzenesulfonyl chloride	550	66	37 12	104/0.25, (42)				
	<i>m</i> -Carboxybenzenesulfonyl chloride	550	100	37 11					
C	eta-Phenylethanesulfonyl chloride	549	95	377	122/3, (33)				
	p-Acetaminobenzenesulfonyl chloride	550	61	376	(149)				
C.	Mesitylenedisulfonyl chloride	550	70	37 ²³	(124)				
C 12	p-Azobenzenesulfonyl chloride	548	85	3714	(125)				

TABLE 116. DERIVATIVES OF SULFONIC ACIDS

TABLE 116 (continued)

с _п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)					
	Esters of Sulfonic Acids									
С,	Methyl methanesulfonate	553	56	37 ³⁵	101/25, 1.4140					
C4	n-Butyl chlorosulfonate	552	77	37 ³⁹	79/14, 1.42913					
	eta-Methoxyethyl methanesul- fonate	552	72	37 ³³	80/0.4, 1.4314					
C,	<i>n</i> -Butyl methanesulfonate	552	80	37 36	106/6. 1.4319					
Ċ,	Methyl <i>p</i> -toluenesulfonate	552	90	37 31	161/10 (28)					
č	Ethyl benzenesulfonate	552	75	3712	97/0.3. 1.5092					
	Ethyl p-bromobenzenesul- fonate	552	74	37 12	112/0.15, (39)					
	Ethyl p-nitrobenzenesul- fonate	552	70	37 ¹²	(92)					
C,	Ethyl p-toluenesulfonate	552	62	37 32	(32)					
	Ethyl p-methoxybenzenesul- fonate	552	83	37 12	138/0.3, 1.5230					
	β -Chloroethyl <i>p</i> -toluenesul- fonate	552	69	37 ³⁸	210/21					
C 10	<i>n</i> -Propyl <i>p</i> -toluenesulfonate	552	82	37 ³³	134/0.4. 1.5069					
	γ-Chloropropyl p-toluenesul- fonate	552	55	37 ³⁷	190/5, 1.5225 ²¹					
	eta-Methoxyethyl p -toluenesulfonate	552	82	37 ³²	141/0.2, 1.5085 ²⁵					
C 11	<i>n</i> -Butyl <i>p</i> -toluenesulfonate	552	98	37 ³¹	171/10					
C ₁₂	o-Bromophenyl benzenesul- fonate	552	90	37 ⁴⁰	(56)					
	Phenyl p-bromobenzenesul- fonate	552	86	37 4 0	(116)					
C <u>1</u> 5	eta-Phenoxyethyl p -toluenesul- fonate	552	92	37 ³²	(81)					
C 19	<i>n</i> -Dodecyl <i>p</i> -toluenesulfonate	552	90	37 34	(25)					

For explanations and symbols see pp. xi-xii.

¹Lee and Dougherty, I. Ore. Chem., 5, 83 (1940). ²Schreiber and Shriner, J. Am. Chem. Soc., 56, 115 (1934); Wertheim, Org. Syntheses, Coll. Vol. II, 471 (1943). ³Hubacher, Ore. Syntheses, Coll. Vol. II, 455 (1943); Fuson et al., J. Org. Chem., 11, 469 (1946); Rheinboldt and Motzkus. Ber., 72, 657 (1939). ⁴Hearst and Noller, Org. Synthesis, 30, 58 (1950); J. Am. Chem. Soc., 70, 3955 (1948). ⁵ Adams and Marvel, Org. Syntheses, Coll. Vol. I, 84 (1941). ⁶Smiles and Stewart, Org. Syntheses. Coll. Vol. I, 8 (1941). 7 Johnson and Sprague, J. Am. Chem. Soc., 58, 1348 (1936), 59, 1837, 2439 (1937). *Weston and Suter, I. Am. Chem. Soc., 61, 389 (1939). ⁹ Suter and Weston in Organic Reactions, Vol. 3, John Wiley & Sons, New York. 1946. p. 164. ¹⁰ Newton, I. Am. Chem. Soc., 65, 2439 (1943). ¹¹ Brand, Gabel, and Rosenkranz, Ber., 70, 304 (1937). ¹² Morgan and Cretcher, I. Am. Chem. Soc., 70, 375 (1948). 13 Shepherd and English. I. Ore. Chem., 12, 449 (1947). 14 Pearl, J. Org. Chem., 10, 205 (1945). 15 Hodgson and Whitehurst, J. Chem. Soc., 482 (1944). ¹⁶ Barber, J. Chem. Soc., 102 (1943). 17 Johnson and Douglass, J. Am. Chem. Soc., 61, 2549 (1939). ¹⁸ Huntress and Carten, J. Am. Chem. Soc., 62, 511 (1940); Huntress and Autenrieth, ibid., 63, 3446 (1941). ¹⁹ Kulka, J. Am. Chem. Soc., 72, 1216 (1950). ²⁰ Demeny, Rec. trav. chim., 48, 1146 (1929). ²¹ Bernoulli and Stauffer, Helv. Chim. Acta, 23, 640 (1940). ²² Helberger, Manecke, and Fisher, Ann., 562, 33 (1948). ²³ Backer, Rec. trav. chim., 54, 545 (1935). 24 Douglass and Johnson, J. Am. Chem. Soc., 60, 1486 (1938). 25 Folkers, Russell, and Bost, J. Am. Chem. Soc., 63, 3530 (1941). ²⁶ Bergeim and Braker, J. Am. Chem. Soc., 66, 1459 (1944). ²⁷ Bauer and Rosenthal, J. Am. Chem. Soc., 66, 611 (1944). ²⁸ Shepherd, I. Org. Chem., 12, 275 (1947). 29 Galat, Ind. Eng. Chem., 36, 192 (1944). ³⁰ Helferich and Grünert, Ber., 73, 1133 (1940). ³¹ Kranzfelder and Sowa, J. Am. Chem. Soc., 59, 1490 (1937); Roos, Gilman, and Beaber, Org. Syntheses, Coll. Vol. I, 145 (1941), note 4. 32 Tipson, I. Org. Chem., 9, 235 (1944). ³³ Chapman and Owen, J. Chem. Soc., 582 (1950). ³⁴ Marvel and Sekera, Org. Syntheses, 20, 50 (1940). ³⁵ Bissinger, Kung, and Hamilton, J. Am. Chem. Soc., 70, 3940 (1948). 36 Sekera and Marvel, J. Am. Chem. Soc., 55, 346 (1933). ³⁷ Rossander and Marvel, J. Am. Chem. Soc., 50, 1493 (1928). ³⁸Clemo and Tenniswood, J. Chem. Soc., 2550 (1931). ³⁹ Levaillant, Ann. chim., (11) 6, 494 (1936). 40 Sekera, J. Am. Chem. Soc., 55, 421 (1933); Hazlet, ibid., 59, 287 (1937). ⁴¹ Marvel, Helfrick, and Belsley, J. Am. Chem. Soc., 51, 1273 (1929). 42 Ray and Soffer, J. Org. Chem., 15, 1039 (1950).

Thioanalogs of Other Oxygenated Compounds

CONTENTS

METHOD	PAGE
Table 117. Sulfur Analogs of Other Oxygenated Organic Compounds	828
References	830

Thioanalogs of ketones,¹ acetals,^{5, 11, 13} carboxylic acids,^{3, 4, 8} esters,^{6, 7, 9, 10, 12, 15} amides,^{17, 18, 50} isocyanates,²⁰⁻²⁹ urethanes,³³ and ureas^{40-43, 51, 52} are often prepared by reactions similar to those used for the corresponding oxygenated compounds. In Table 117 are listed a few of these compounds. The method numbers are those for the introduction of the corresponding oxygenated group. Sometimes the thioanalogs are obtained directly from the oxygenated compounds by heating with sulfur or compounds of sulfur, for example the preparation of thioamides by the action of phosphorus sulfide on acid amides.^{2, 14, 16}

Aryl thiocyanates, ArSCN, are formed by direct thiocyanation of the aromatic nucleus ^{30, 31, 49} or by treating diazonium salts with metallic thiocyanates.^{32, 36} Methods for the thiocyanation of organic compounds have been reviewed.⁵³

828 THIOANALOGS OF OTHER OXYGENATED COMPOUNDS Ch. 38

TABLE 117. SULFUR ANALOGS OF OTHER OXYGENATED ORGANIC COMPOUNDS

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., $n_{\rm D}^t$, (M.p.)
	Ть	ioacids an	d Thiole	sters	
C2	Thioacetic acid (thiolacetic acid)	250	72	38 ⁸	88-92
C,	Methyl thiolacetate	286	55 t	3812	96/760, 1.4600 ²⁵
	Methyl bromothiolacetate	286	82	38 ¹⁵	77/15
C₄	Ethyl thiolacetate	286	70	386	116, 1.4503 ²⁸
·	-	288	92	38 ⁷	109-115
C.	Thiofuroic acid	250	62	38 ³	102/16, 1.589 24
C,	Isobutyl thiolacetate		60	38°	152/744
•	t-Butyl thiolacetate	286	81	38 ¹⁰	38/14, 1.4490 ²⁴
c,	Ethyl orthothioformate		26	38 ³⁷	234
C 10	γ -Bromopropyl thiolbenzoate	286	75	38 ¹⁹	149/1, 1.5950 ²⁵
C 13	Methyl thiolaurate	286	89	384	113/1, 1.4642 ²⁵
		Thioa	mides		
	Thiopsopionamide		32	38 16	(42)
C,	Thionicotinamide	354	86	3817	(181)
с,	Thioformanilide		100	38 ³⁸	
c.	• •-Chlorothioacetanilide		54	38 2	(142)
- 8 - 8	p-Nitrothioacetanilide		70	3814	(175)
	·	Thiou	reas		
	S-Mathulthiousanium culfate		84	28 46	(235)
C 2	N-Methylthiourea	416	81	38 ⁴¹	(121)
~			00	2044	(100)
C3	Bromosthulthiourog		89 60	38.40	(198) (174)
-		410	00	50 20 1 1	(1/4)
C,	N-t-Butyl thiourea	416	99	3831	(1/1)
C,	a-Phenylthiourea		/6	38 ⁴⁵ 29 54	(155)
	o-Chlorophenylthiourea	410	4) 61	38 52	(146)
		410		50 20 f 7	(1)()
C ₈	S-Benzylthiouronium chloride		100	38**	(1/4)
<u> </u>	a-Naphthylthiourea	410	80		
		Thioc	yanates		
C4	Isopropyl thiocyanate	413	79	38 ²⁶	150
Сó	n-Amyl thiocyanate	413	85	38 23	91/16, 1.4620 23
	a-Furfuryl thiocyanate	413	70	38 -	112/27, 1.5614
с,	o-Chlorophenyl thiocyanate		53	38 36	160/45
	o-Nitrophenyl thiocyanate	••••	64	38 32	(136)
C,	Tetramethylethylene dithio- cyanate	413	55	38 ²⁵	(61)
C,	p-Thiocyanodimethylaniline		67	38 *	(74)

TABLE 117. OTHER SULFUR ANALOGS

TABLE 117 (continued)

с <u></u>	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.)
	_	Isothi	ocyanate	s	
С,	Methyl isothiocyanate		76	3834	118
C s	Methallyl isothiocyanate	413	95	38 22	64/10
с,	Phenyl isothiocyanate	••••	78	38 48	121/35
	p-Chlorophenyl isothiocyanate	411	81	38 ²⁷	(45)
	o-Nitrophenyl isothiocyanate	411	96	38 ²⁹	(72)
	p-Nitrophenyl isothiocyanate	411	85	38 ²¹	(113)
C,	Benzoyl isothiocyanate	414	64	38 ³⁵	135/18
		Other Sul	fur Anal	ogs	
C ₁	Thiosemicarbazide	416	70	3839	(184)
C,	Formaldehyde dimethyl mer- captal	129	85	38 ¹³	149
C۶	4-t-Butylthiosemicarbazide	416	90	38 ⁵¹	(138)
C,	Methyl phenyl thiourethane	416	63	38 ³³	(93)
C,	Formaldehyde dibutyl mer- captal	129	60	38 ⁵	
C 13	Thiobenzophenone	222	50	381	174/14, (54)

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 38

¹Staudinger and Freudenberger, Org. Syntheses, Coll. Vol. II, 573 (1943). ² Beilenson and Hamer, I. Chem. Soc. 1228 (1936). ³Patton, I. Am. Chem. Soc., 71, 3571 (1949). ⁴Ralston, Segebrecht, and Bauer, J. Org. Chem., 4, 502 (1939). ⁵Westlake and Dougherty, J. Am. Chem. Soc., 63, 658 (1941). ⁶ Wenzel and Reid, I. Am. Chem. Soc., 59, 1089 (1937); Baker and Reid, ibid. 51, 1568 (1929). ⁷Hurd and Williams, I. Am. Chem. Soc., 58, 965 (1936). ^aClarke and Hartman, I. Am. Chem. Soc., 46, 1731 (1924); cf. ref. 55. ⁹Ipatieff and Friedman, I. Am. Chem. Soc., 61, 73 (1939). ¹⁰ Rylander and Tarbell, *I. Am. Chem. Soc.*, 72, 3021 (1950). ¹¹ Wenzel and Reid, I. Am. Chem. Soc., 59, 1090 (1937); Sjöberg, Ber., 75, 27 (1942). ¹² Arndt, Loewe, and Ozansov, Ber., 72, 1862 (1939); cf. ref. 6. ¹³ Böhme and Marx. Ber., 74, 1672 (1941). ¹⁴ Fries and Wolter, Ann., 527, 71 (1937). ¹⁵ Arens and van Dorp. Rec. trav. chim., 66, 409 (1947). ¹⁶Erlenmever et al., Helv. Chim. Acta, 31, 1153 (1948). 17 Karrer and Schukri, Helv. Chim. Acta, 28, 821 (1945). 18 Ralston, Vander Wal, and McCorkle, J. Org. Chem., 4, 68 (1939). ¹⁹ Kariala and McElvain, I. Am. Chem. Soc., 55, 2966 (1933). ²⁰ McKee and Bost, *I. Am. Chem. Soc.*, 68, 2506 (1946). ²¹ Dver and Johnson, J. Am. Chem. Soc., 54, 781 (1932). ²² Bruson and Eastes, I. Am. Chem. Soc., 59, 2012 (1937). ²³ Allen, I. Am. Chem. Soc., 57, 198 (1935). ²⁴ Kirner and Richter, *I. Am. Chem. Soc.*, 51, 3141 (1929). 25 Youtz and Perkins, J. Am. Chem. Soc., 51, 3510 (1929). ²⁶ Shriner, Org. Syntheses, Coll. Vol. II, 366 (1943). ²⁷ Dyson, Ore. Syntheses, Coll. Vol. I, 165 (1941). 28 Wagner-Jauregg, Arnold, and Hippchen, J. prakt. Chem., 155, 216 (1940). ²⁹ Erlenmeyer and Ueberwasser, Helv. Chim. Acta, 23, 329 (1940). ³⁰ Wood and Fieser, J. Am. Chem. Soc., 63, 2323 (1941). ³¹ Fichter and Schönmann, Helv. Chim. Acta. 19, 1411 (1936). ³² Wagner-Jauregg and Helmert, Ber., 75, 942 (1942); Dienske, Rec. trav. chim., 50, 407 (1931). 33 Bost and Andrews, J. Am. Chem. Soc., 65, 900 (1943). ³⁴ Moore and Crossley, Org. Syntheses, 21, 81 (1941). ³⁵ Ambelang and Johnson, *I. Am. Chem. Soc.*, 61, 632 (1939). ³⁶ Challenger, Higginbottom, and Huntington, J. Chem. Soc., 29 (1930). ³⁷ Post, I. Org. Chem., 6, 832 (1941). ³⁸ Todd et al., 1. Chem. Soc., 363 (1937). ³⁹ Sah and Daniels, Rec. trav. chim., 69, 1547 (1950). ⁴⁰ Masters and Bogert, *J. Am. Chem. Soc.*, 64, 2710 (1942). ⁴¹ Berkebile and Fries, J. Chem. Education, 25, 618 (1948). ⁴² Moore and Crossley, Org. Syntheses, 21, 83 (1941). ⁴³ Cressman, Org. Syntheses, 27, 56, 57 (1947). 44 Allen, Edens, and Van Allan, Org. Syntheses, 26, 34 (1946). 45 Frank and Smith, Org. Syntheses, 28, 89 (1948). ⁴⁶ Shildneck and Windus, Org. Syntheses, Coll. Vol. II, 411 (1943).

REFERENCES FOR CHAPTER 38

47 Chambers and Watt, 1. Org. Chem., 6, 377 (1941).

48 Dains, Brewster, and Olander, Org. Syntheses, Coll. Vol. I, 447 (1941).

49 Brewster and Schroeder, Org. Syntheses, Coll. Vol. II, 574 (1943).

⁵⁰ Chabrier and Renard, Bull. soc. chim. France, (5) 16, D272 (1949).

⁵¹ Schmidt et al., Ann., 568, 196 (1950).

⁵² Erlenmeyer and Ueberwasser, Helv. Chim. Acta, 23, 330 (1940).

⁵³ Kaufmann in Newer Methods of Preparative Organic Chemistry, Interscience Publishers, New York, 1948, p. 369.

⁵⁴ Kurzer, Org. Syntheses, 31, 21 (1951).

55 Ellingboe, Org. Syntheses, 31, 105 (1951).

554. Reduction of the Heterocyclic Nucleus

Heterocyclic Compounds

CONTENTS

DACE

いたの

METHOD	INGE
554. Reduction of the Heterocyclic Nucleus	833
555. Reduction of Cyclic Amides	834
556. Reduction of Heterocyclic Aldehydes and Ketones	835
557. Dehydrogenation of Heterocyclic Compounds	835
558. Alkylation of the Heterocyclic Nucleus	836
559. Decarboxylation of Heterocyclic Acids	838
560. Cyclization of 1,4-Glycols and Related Compounds	838
561. Cyclization of 1,4-Dicarbonyl Compounds	840
562. Condensation of α -Chloro Ketones with β -Keto Esters	840
563. Condensation of a-Amino Ketones and Carbonyl Compounds (Knorr)	841
564. Interaction of Grignard Reagents and γ -Chloro Nitriles	841
565. Sulfurization of Hydrocarbons	841
566. Interaction of 1,2-Dicarbonyl Compounds with Ethers or Sulfides	842
567. Elimination of Hydrogen Chloride from N-Chloro Amines	842
568. Catalytic Dehydrocyclization	842
569. Cyclodehydration of Aryl Ketones	843
570. Intramolecular Condensation of Substituted Aryl Carbonyl Compounds	843
571. Elimination of Ammonia from Phenylhydrazones (Fischer Indole Syn-	
thesis)	844
572. Intramolecular Condensation of o-Aminobenzyl Ketones and Related	
Compounds	845
573. Pyridine Compounds by Ring Closure	845
574. Piperidines by Ring Closure	846
575. Quinoline Compounds by Ring Closure	847
576. Interaction of Grignard Reagents and N-Methyl-a-pyrrolidone	848
Table 118. Heterocyclic Compounds	849
References	854

In this chapter are listed twenty-three methods for the formation of the more common heterocyclic nuclei and several reactions for their modification, namely, reduction, dehydrogenation, and alkylation.

The syntheses of heterocyclic compounds containing various functional groups are discussed in preceding chapters.

The chemistry of the heterocyclic compounds has been reviewed in several excellent works.^{18, 19, 222}

Reduction of heterocyclic compounds parallels reduction of aromatic compounds with the added factor that fission of the ring may occur. In most instances, catalytic hydrogenation is preferred to chemical reduction, purer products and more consistent results being obtained.

In the furan series, extensive studies have been made for the catalytic hydrogenation of furan and furfural. Furan is converted to tetrahydrofuran in almost quantitative yields. Catalysts and conditions include palladous oxide at 50° and 7 atm., Raney nickel at 150° and 150 atm., and Raney nickel in butyl alcohol at 50° and atm., pressure.⁹⁶ Furfural is hydrogenated quantitatively to furfuryl alcohol upon absorption of one molecular equivalent of hydrogen (platinum oxide) and further reduced to tetrahydrofurfuryl alcohol with traces of ring-cleavage products, namely, 1.2and 1,5-pentanediols and 1-pentanol.⁹⁷ a-Furoic acid gives the tetrahydro compound in a similar way. Important derivatives of furfural like β -(2furyl)-acrolein, furfuralacetone, and ethyl β -(2-furyl)-acrylate are reduced to tetrahydrofuryl compounds in excellent yields over nickel catalysts at 125-175°.95,98 The interaction of Grignard reagents and furfural followed by nuclear hydrogenation is a good route for making alkyltetrahydrofurylcarbinols of the type (C4H7O)CHOHR.99 Catalytic dehydration of the alcohols with subsequent hydrogenation furnishes tetrahydrofurylalkanes.¹⁰⁰

Catalytic hydrogenation of the thiophene nucleus has been successfully accomplished over a supported palladium catalyst at low temperature and pressure.¹⁰⁸

Pyrroles may be hydrogenated over a platinum catalyst in acetic acid at 4 atm. and 70°⁹ or over a nickel catalyst without solvent at 110 atm. and 180°.^{75,109} N-Substituted pyrroles are more reactive.^{75,110,112} Partial and complete hydrogenation of phenylpyrroles, phenylindoles, carbazoles, and acridines may be accomplished with either a copper chromite or Raney nickel catalyst.¹¹¹

Synthesis of a piperidine compound is commonly carried out by reduction of the corresponding pyridine derivative. An excellent discussion has been presented.¹¹³ Earlier techniques concerned with reduction by the action of sodium and alcohol have been largely replaced by procedures of catalytic hydrogenation. An example is the reduction of pyridine to piperidine in 83% yield over nickel at 170-200°.⁹⁵ Reduction of its homologs occurs in the same way. Platinum oxide is poisoned by pyridine

bases, but it will catalyze reduction of the hydrochlorides or acetates conveniently at low temperature and pressure. Absolute ethanol, dioxane, and acetic acid are preferred as solvents. In this manner, a number of N-substituted pyridines like N-ethylpyridine, N- β -hydroxyethylpyridine, and N-carbethoxymethylpyridine are reduced.¹¹⁶ Nicotinic acid is also hydrogenated to piperidine-3-carboxylic acid over platinum oxide catalyst;¹¹⁷ the corresponding ester is reduced over a nickel catalyst.⁹⁵ 3and 4-Hydroxypyridines are reduced by catalytic hydrogenation and by sodium-ethanol, respectively, to the corresponding hydroxypiperidines, but the 2-isomer is changed to 2-piperidone instead of 2-hydroxypiperidine.^{115, 119} The aminopyridines respond to reduction in a way similar to their hydroxy analogs; 3- and 4-aminopiperidine can be made, but 2-iminopiperidine is formed rather than 2-aminopiperidine.¹¹⁹⁻¹²¹

Pyridines containing side chains are hydrogenated to piperidine derivatives in good yields over platinum catalyst. The products include, for example, β -(4-piperidyl)-propionic acid,¹²² γ -(2-piperidyl)-propionic acid,¹²³ 1-(α -piperidyl)-2-ethanol,¹²⁴ 4-(α -piperidyl)-1-methoxybutane,¹²⁵ and 2-aminomethylpiperidine.¹²⁶

The pyridine ring as present in quinoline and its derivatives may be selectively hydrogenated. Thus, quinoline hydrogenated over copperchromium oxide yields *py*-tetrahydroquinoline (97%).⁹⁵ Partial or complete hydrogenation to *py*-tetrahydro- or decahydro-quinoline is accomplished with Raney nickel catalyst.¹⁵¹ Isoquinoline gives *py*-tetrahydroisoquinoline in 92% yield by means of copper-chromium oxide catalyst and hydrogen.¹⁵⁰ Catalytic hydrogenation of isoquinoline over platinum in glacial acetic acid with sulfuric acid leads to a mixture of *cis*- and *trans*-decahydroisoquinolines.¹⁵² The quinolines may also be reduced with sodium and alcohol.¹⁵³

555. Reduction of Cyclic Amides

The reduction of substituted 2-pyridones with sodium and hot *n*-butyl alcohol represents the final step in a convenient synthesis for certain piperidines having alkyl, aryl, or carbethoxy groups in the 3- or 4-positions. The yields range between 60% and 90%. The starting 2-pyridones are made by the catalytic reduction of γ -cyano esters.¹⁰⁶ For example, hydrogenation of methyl γ -cyano- γ -phenylbutyrate,

C₆H₅CH(CN)CH₂CH₂CO₂CH₃, over Raney nickel gives 5-phenyl-2-pyri-

done, $R = C_6 H_5$ in above equation, which is then reduced with sodium and *n*-butyl alcohol to 3-phenylpiperidine (50% over-all).

556. Reduction of Heterocyclic Aldehydes and Ketones

Many heterocyclic compounds are made from aldehydes and ketones by reduction procedures which have been applied in the synthesis of hydrocarbons (method 3). Typical examples are considered here.

2-Methylfuran is best prepared by the vapor-phase hydrogenation of furfural over a copper chromite catalyst at 1 atm. and 200-300°. Full experimental details have been given.¹⁹⁸ Homologs have been made by reduction of 2-acylfurans by the Wolff-Kishner procedure.¹⁸¹

2-Ethylthiophene may be obtained in 91% yield by a modified Wolff-Kishner reduction of 2-acetylthiophene. Other thiophene ketones, also aldehydes, have been converted in the same way in 70% to 90% yields.¹⁹⁹ Reduction by the Clemmensen procedure gives 38% to 55% yields.²⁰⁰

3-Éthylpyridine is made in 80% yield by heating 3-acetylpyridine by a modified Wolff-Kishner procedure.²⁰⁴ Other 2- and 3-alkylpyridines have been formed in the same way.^{205, 206}

A unique method for preparing 4-alkylpyridines consists in treatment of pyridine with aliphatic anhydrides in the presence of zinc dust. The intermediate 1,4-diacyl-1,4-dihydropyridines are not isolated but are further reduced to the 4-alkylpyridines by the action of zinc dust and acetic acid.¹⁹⁵ The procedure is illustrated by the synthesis of 4-ethylpyridine (38% over-all).²⁰⁷

557. Dehydrogenation of Heterocyclic Compounds

Certain heterocyclic compounds, particularly those containing a nitrogen atom, have been prepared in high yields by catalytic dehydrogenation. Several catalysts are available including those employed for hydrogenation (cf. method 2).

Representative compounds having a pyrrolidine or piperidine nucleus have been dehydrogenated in benzene solution under pressure at 250-350° over a nickel catalyst, e.g., 1-(*n*-amyl)-pyrrolidine to 1-(*n*-amyl)pyrrole (88%), indoline to indole (75%), and 1,2,3,4-tetrahydrocarbazole to carbazole (95%).¹⁵⁴ Indole is also prepared by the dehydrogenation of its 2,3-dihydro derivative over palladium in boiling xylene (62%).¹¹¹ Partially hydrogenated alkylpyridines are dehydrogenated over palladized asbestos.¹⁰⁵ 2,4-Diphenylpyrrole is synthesized by the selenium dehydrogenation of its 2,3-dihydro compound (46%).¹⁵⁵

Decahydroquinoline and decahydroisoquinoline are dehydrogenated over palladium to the corresponding bz-tetrahydro derivatives, a valuable procedure for making these compounds.^{152, 156} 1-Methylisoquinoline is prepared by refluxing its 3,4-dihydro derivative with excess Raney nickel until the temperature reaches 248°, the boiling point of the desired product (75%).

Chloranil in boiling xylene has been shown to be an excellent dehydrogenation agent for the preparation of carbazoles from 1,2,3,4-tetrahydrocarbazoles (75-95%). By this procedure, carbazoles substituted in the 1-, 2-, and 3-positions with alkyl, halo, alkoxyl, carboxyl, or nitro groups are readily made.¹⁵⁸ The starting materials are available by ring closures of cyclohexanone-m-phenylhydrazones. A palladium-carbon catalyst for the same purpose is also noteworthy, the yields of alkylcarbazoles being 86-100%.¹⁵⁹

Tetrahydrothiophene can be dehydrogenated to thiophene over platinum in 32% yield.¹⁶⁰

558. Alkylation of the Heterocyclic Nucleus

Heterocyclic compounds containing a nitrogen atom commonly undergo N-alkylation or C-alkylation. N-Methyl pyrrole can be prepared by interaction of methyl iodide with potassium pyrrole (40%).¹⁷⁰ N-Carbethoxy pyrrole is made from chloroformic ester and potassium pyrrole.¹⁷¹ The C-alkylation of pyrroles has been discussed.¹⁷⁷ 3-Alkylindoles are made by the alkylation and decarboxylation of indole-2-carboxylic acid.⁶⁴ The conditions for alkylation of pyrrolidine are analogous to those employed for the alkylation of a secondary amine. Thus, pyrrolidine on treatment with *n*-butyl bromide and potassium hydroxide in boiling benzene is converted to the N-butyl derivative in 40% yield.¹⁶⁸ Compounds having functional groups in the side chain are made in the same way. An illustration is the interaction of pyrrolidine and propylene chlorohydrin in the presence of sodium hydroxide to form 1-(1-pyrrolidyl)-2-propanol (77%).¹⁰⁹ Carbazole also undergoes N-alkylation with alkyl sulfates and chlorohydrins in strong caustic solution.^{179,180} It reacts with iodobenzene at 200° in the presence of copper-bronze and potassium carbonate to give N-phenylcarbazole (65%).¹⁶⁹

Alkyl or aryl groups may be joined to pyridine compounds (1) through an active methyl group jn the *alpha* or gamma position, (2) directly at a nuclear carbon atom, or (3) at the nitrogen atom to form quaternary alkylor aryl-pyridinium salts. A comprehensive discussion of the alkyl- and aryl-pyridines made by these routes has been presented.¹⁷⁸

In the first instance, excess α - or γ -picoline is treated at low temperatures with sodium amide and an alkyl halide. The yields of C-monoalkylpyridines are lowered by alkylation at the nitrogen atoms, dehydrohalogenation of the alkylating agent, and further alkylation of the product at the site of the remaining active hydrogens.¹⁸⁷

Long-chain halides undergo this reaction at 100°, no C-dialkylated products being formed.¹⁸⁹ In alkylations with aryl-substituted alkyl halides, $Ar(CH_2)_nX$, n=1 to 3, yields are improved by performing the reaction rapidly in liquid ammonia (56-99%). Also, quinoline methylated in the 2or 4-position reacts in the same way.¹⁸⁸ A methyl group in the 3-position of pyridine or quinoline is unreactive.

Direct nuclear attachment is accomplished by the interaction of an organometallic compound and pyridine. An example is the synthesis of

2-phenylpyridine in 49% yield from phenyllithium and pyridine.¹⁹⁰ The procedure has been applied in the preparation of 2-ethylquinoline (30%).¹⁹⁴ Another procedure consists in coupling aryldiazonium salts with pyridine to form arylpyridines in 20% to 80% yield; however, a mixture of α , β , and γ -isomers results.¹⁹¹ By heating benzyl chloride and pyridine in the presence of a copper catalyst, a mixture of 2- and 4-benzylpyridines is obtained; these compounds can be separated by fractional distillation.¹⁹³

Extensive studies of the alkylation of thiophene and its derivatives with olefins and alcohols have been made.¹⁹⁶ The catalysts are the same as those employed for the alkylation of hydrocarbons. Alkylation occurs predominently in the 2-position, and the yields are in the range of 60% to 80%.

The interaction of furan and aryldiazonium chlorides in the presence of alkali leads to 2-arylfurans, e.g., 2-phenyl-, 2-p-halophenyl-, and 2-p-nitrophenylfuran; however, the yields are low (15-22%).¹⁹⁷

559. Decarboxylation of Heterocyclic Acids

A carboxyl group is removed from a heterocyclic nucleus in much the same way as from an aromatic nucleus (method 13), i.e., by thermal decomposition. The pyrolysis is catalyzed by copper or copper salts and is frequently carried out in quinoline solution. The reaction is important in the synthesis of various alkyl¹⁸¹ and halo furans. Furoic acid loses carbon dioxide at its boiling point (205°) to give furan (85%).¹⁸² A series of halo furans have been made in 20–97% yields by pyrolysis of the corresponding halofuroic acids. The 5-iodo acid decarboxylates at a temperature of 140°,¹⁸³ whereas the 3- and 5-chloro acids require copperbronze catalyst at 250°.¹⁸⁴

Carboxyl groups on the pyrrole nucleus are removed by the action of superheated steam on aqueous alkaline solutions of the carboxylic acids.¹⁸⁶

Carboxyl groups adjacent to carbonyl groups in the nucleus present the familiar β -keto acid structure and are decarboxylated by refluxing with hydrochloric acid.¹¹⁵

Heterocyclic carboxylic acids have also been decarboxylated by pyrolysis of their calcium,⁸⁷ silver,¹⁴⁶ and ammonium²⁰² salts.

560. Cyclization of 1,4-Glycols and Related Compounds

where Z=O, S, or NH

1,4-Glycols readily lose water in the presence of acid catalysts. 1,4-E-stanediol is dehydrated by 1% phosphoric acid at 270° to tetrahydrofuran (95%).¹ Furfural is obtained by acid treatment of carbohydrate materials containing pentoses, CH₂OH(CHOH)₄CHO.⁶ Analogous furan aldehydes may be prepared from other sugars; e.g., the fructose portion of sucrose yields 5-hydroxymethylfurfural. With hydrochloric acid, the corresponding 5-chloromethylfurfural is obtained.⁴ The chloromethyl group in the latter compound may be reduced in the presence of the aldehyde group by stannous chloride. The over-all yield of 5-methylfurfural from cane sugar is 11%.⁵

Elimination of hydrogen bromide from 1,2-dibromo-4-butanol, BrCH₂CHBrCH₂CH₂OH, is accomplished with powdered potassium hydroxide in dry ether.⁴¹ The resulting β -bromotetrahydrofuran loses another molecule of hydrogen halide when heated with excess powdered base. The over-all yield of dihydrofuran is 62%.⁹ This elimination reaction has been extended to the preparation of β -bromofurans and 2,5dihydrofurans having two alkyl groups on one of the α -carbon atoms.⁴⁰

For the preparation of tetrahydrothiophenes, 1,4-dihalides are allowed to react with sodium sulfide.^{7, 9, 223}

Pyrrole and N-substituted pyrroles are formed by a reaction analogous to the conversion of sugars to furan aldehydes. Ammonium and substituted ammonium salts of mucic acid, $HO_2C(CHOH)_4CO_2H$, are cyclized and decarboxylated by pyrolysis. The yields of pyrrole¹⁰ and its N-phenyl¹¹ and N-methyl¹² derivatives are about 40%. Tetrahydropyrroles (pyrrolidines) are formed from various 4-substituted amines by elimination of water, ammonia, or hydrogen halide.¹⁴⁻¹⁷

Similar elimination reactions are employed in the synthesis of the benzologs of five-membered heterocyclic compounds. For example, β -phenylethyl alcohols having hydroxyl, sulfhydryl, and amino groups in the ortbo position are cyclized to the dihydro derivatives of benzofuran, benzothiophene, and benzopyrrole, respectively.⁴⁶ Likewise, dehydrohalogenation of β -(o-hydroxyphenyl)-ethyl bromide gives dihydrobenzofuran in 72% yield.⁴⁸

The α -methyl derivative is produced from the acetate of o-allylphenol, HOC₄H₆CH₂CH=CH₂, by the addition of hydrogen bromide in the absence of peroxides followed by dehydrohalogenation of the free phenol with potassium hydroxide. In the presence of air or peroxides the mode of addition of hydrogen bromide is reversed and cyclization gives benzopyran.⁴⁹ β -Keto derivatives are prepared by a similar ring closure.⁵¹ 561. Cyclization of 1,4-Dicarbonyl Compounds

where Z=O, S, or NH

Dienolic forms of 1,4-dicarbonyl compounds are dehydrated by sulfuric acid, phosphorus pentoxide, and like catalysts to substituted furans.^{20, 23, 221} Diacylethylenes, RCOCH=CHCOR, undergo similar ring closure in reducing media.^{21, 22}

In the thiophene series, phosphorus sulfide converts 1,4-diketones^{24, 26, 223} and sodium salts of succinic²⁵ and alkylsuccinic²⁷ acids to the five-membered heterocyclic compounds. The yields are low, usually 20-30% from the succinates and 60% from the diketones.

Acetonylacetone, $CH_3COCH_2CH_2COCH_3$, is cyclized to 2,5-dimethylpyrrole by heating to 100° with ammonium carbonate. The yield is 86%. This reaction has been modified and extended to the syntheses of N-alkyl-2,5-dimethylpyrroles by the substitution of amines for ammonia and removal of water by aze otropic distillation with benzene,³⁰

Five-membered heterocyclic compounds of the furan, thiophene, and pyrrole series are interconvertible by one-step catalytic processes.^{31, 32} For example, at 450° over aluminum oxide catalyst, furan is converted to pyrrole by ammonia and to thiophene by hydrogen sulfide. The yields are 30%.

562. Condensation of a-Chloro Ketones with β -Keto Esters

Interaction of α -chloro ketones and β -keto esters in the presence of ammonia leads to both furans and pyrroles.⁴⁴ The ring closures are dissimilar, however, in that the positions of the substituent groups on the nuclei are not the same in the two series. The pyrrole ring closure prob-

ably involves an intermediate β -aminocrotonic ester,

Ch. 39

 $R'C(NH_2) = CHCO_2C_2H_5$.⁴³ The synthesis of furans by this method has been improved and extended by substituting pyridine for ammonia as the condensing agent⁴² and by using α,β -dichloroethyl ether as a source of chloroacetaldehyde.^{42, 45}

563. Condensation of a-Amino Ketones and Carbonyl Compounds (Knorr)

A general reaction for the formation of the pyrrole nucleus consists in the treatment of an α -amino ketone with another ketone having a reactive α -methylene group.³⁷ The α -amino ketone is conveniently prepared from the ketone by nitrosation and reduction and then, without isolation, it is allowed to condense with a second carbonyl compound, viz., RCOCH₂R \rightarrow RCOC(=NOH)R \rightarrow RCOCH(NH₂)R. An example is the condensation of ethyl α -aminoacetoacetate (R₁=CO₂C₂H₅, R₂=CH₃) with acetoacetic ester (R₃=CO₂C₂H₅, R₄=CH₃) to give 2,4-dimethyl-3,5dicarbethoxypyrrole (64%).³⁸ The synthesis of 3-acetyl-5-carbethoxy-2,4dimethylpyrrole from ethyl acetoacetate and acetylacetone also illustrates the procedure.³⁹

564. Interaction of Grignard Reagents and γ -Chloro Nitriles

 α -Substituted pyrrolines are conveniently made by the action of aliphatic or aromatic Grignard reagents on γ -chloro nitriles followed by hydrolysis, ammonolysis, or pyrolysis of the intermediate N-bromomagnesium ketimine.³⁶ An example is the conversion of γ -chlorobutyronitrile and phenylmagnesium bromide to 2-phenylpyrroline (55%).³⁵ The 1-position of the double bond is favored.

565. Sulfurization of Hydrocarbons

$$HC - CH = CH_2 \xrightarrow{s} HC CH$$

Thiophene is obtained in 6% yield by passing butadiene into molten sulfur at 320-420°. The reaction is general and affords somewhat higher yields (31-40%) of methylated thiophenes from homologs of butadiene.^{8, 223} The free-radical nature of the reaction has been discussed.¹³ Dibenzothiophene is conveniently prepared by heating biphenyl and melted sulfur with aluminum chloride at 120°. The yield is 47%.⁵⁷

566. Interaction of 1,2-Dicarbonyl Compounds with Ethers or Sulfides 33, 223

567. Elimination of Hydrogen Chloride from N-Chloro Amines ³⁴

where $R = CH_3$, C_2H_5 , $n - C_3H_7$, or $n - C_4H_9$ (80%)

568. Catalytic Dehydrocyclization

Several benzologs of furan and thiophene are conveniently formed by procedures of ring closure over dehydrogenation catalysts. o-Ethylphenol is cyclized at 620° over a palladium catalyst to benzofuran (11%).⁵³ Chromium oxide on alumina at 450° converts o-ethylthiophenol to benzothiophene (42%).⁵⁴ Alkyl groups in the *alpha* and *beta* positions are obtained by suitable variation of structure in the alkyl side chain. For the preparation of benzothiophene, o-ethylthiophenol may be replaced by the more convenient starting materials, hydrogen sulfide and styrene⁵⁶ or hydrogen sulfide and ethylbenzene.⁵⁵

569. Cyclodehydration of Aryl Ketones

The formation of these heterocyclic systems by this method of ring closure has been reviewed.⁵⁸ Yields in the benzofuran series are poor. A successful application to the synthesis of certain benzothiophenes has been described involving cyclization of arylketosulfides in the presence of zinc chloride or phosphorus pentoxide (85-90%).⁵⁹

The indole system has been the most extensively studied, particularly in regard to the mechanism of cyclization.⁷⁸ It is noteworthy that in some instances an isomerization of the anilinoketone occurs, viz., R'CH(NHR)COR'' to R'COCH(NHR)R''. From a preparative standpoint, the method is valuable in the formation of several indoles in excellent yields, e.g., 2,3-dimethylindole (85%)⁷⁹ and 2-ethyl-3-methylindole (92%).⁸⁰ Condensation of aniline derivatives of 2-chlorocyclohexanone yields the corresponding tetrahydrocarbazoles.⁸¹

570. Intramolecular Condensation of Substituted Aryl Carbonyl Compounds

where Z = O or S and $Y = CH_3$ or OR

Benzofurans and benzothiophenes are sometimes obtained by condensation of active methylene and aldehyde groups in *ortho* substituents on the benzene ring.⁶⁰⁻⁶² The starting materials in the furan series are conveniently prepared *in situ* from phenolic aldehydes and α -halo ketones or α -halo esters. 後に

お間できる

66.2.4 B.S.

「日本

The Claisen-type condensation of acyl derivatives of o-toluidine furnishes a useful general synthesis of indoles.

where Y=H or R

Cyclization of acetyl-o-toluidine occurs with sodium amide at 250° to give 2-methylindole (83%).⁷⁶ The formyl derivative of toluidine requires the presence of potassium ions for condensation to indole (79%).⁷⁷ Potassium alkoxide or a mixture of sodium alkoxide and potassium acetate is effective.

571. Elimination of Ammonia from Phenylhydrazones (Fischer Indole Synthesis)

An important general method for preparing indoles involves the catalytic elimination of ammonia from phenylhydrazones of carbonyl compounds having an α -methylene group.⁶⁸ Catalysts include zinc chloride,⁶⁹ cuprous chloride,⁷⁵ boron fluoride etherate,⁷² dilute sulfuric acid, alcoholic hydrochloric acid, and glacial acetic acid.⁷¹

Some ring closures occur rapidly at room temperature, others on heating. As an example (equation above), the phenylhydrazone of acetone on heating with zinc chloride in methylnaphthalene yields 2-methylindole in 80% yield.⁶⁹ In a similar manner 2-phenylindole is synthesized (80%).⁷⁰ If N-methylphenylhydrazine is employed, the N-methylindole results.⁷² The phenylhydrazone of ethyl pyruvate on heating with sulfuric acid in acetic acid forms indole-2-carboxylic acid (58%).⁶⁶ When the phenylhydrazone has nuclear substituents like alkyl, halo,⁷³ or nitro⁷⁴ groups, the corresponding 4-, 5-, 6-, or 7-substituted indoles are obtained. When phenylhydrazine is added to a boiling mixture of cyclohexanone and acetic acid, hydrazone formation and ring closure occur in a single operation to yield 1,2,3,4-tetrahydrocarbazole (87%).⁷¹

572. Intramolecular Condensation of o-Aminobenzyl Ketones and Related Compounds

This ring closure takes place readily whenever the carbonyl and amino groups occur in the relative positions shown above. Reduction of o-nitrophenylacetonitrile by stannous chloride produces indole rather than the corresponding amino aldehyde.⁶⁷ The synthesis is most useful for the preparation of indole-2-carboxylic acid by reduction of o-nitrophenylpyruvic acid with ferrous sulfate and ammonia^{63, 66} or with sodium hydrosulfite.⁶⁴ The ethyl ester is obtained by a similar reduction with zinc and acetic acid ⁶³ or by catalytic hydrogenation of ethyl o-nitrophenylpyruvate over platinum oxide catalyst.⁶⁵

573. Pyridine Compounds by Ring Closure

The above equation represents the classical pyridine synthesis of Hantzsch, the starting materials being an aldehyde, a β -keto ester, and ammonia. The over-all yield of 3,5-dicarbethoxy-2,6-dimethylpyridine from formaldehyde, acetoacetic ester, and ammonia is 49-58%.⁸⁷ A study of substituted aromatic aldehydes in this synthesis has been made.⁹² This is one of many condensations of aliphatic compounds that leads to pyridine derivatives. Although these condensations have been subdivided in various ways for purpose of discussion,^{84, 94} the lines of demarcation among them are not sharp. The β -keto ester may be replaced by most 1,3-dicarbonyl compounds or potential 1,3-dicarbonyl compounds. The nitrogen atom may be a part of a simple organic molecule such as β -aminocrotonic ester⁹¹ or cyanoacetamide.^{90, 93} With cyanoacetamide, the amide group is active in the condensation and the product is a 3-cyano-2-pyridone. In several of these reactions, formation of a 1,5dicarbonyl compound or derivative thereof is possible before ring closure takes place. 1,5-Diketones⁸⁹ or cyclohexenones,⁸⁸ which are cleaved to 1,5-diketones, may be used directly in this synthesis.

Simple saturated and olefinic aldehydes condense with ammonia to give alkylpyridines (Chichibabin), but the products are frequently complex mixtures from which pure compounds are separated with difficulty.⁸⁶ An exception is the preparation of 5-ethyl-2-methylpyridine in 53% yield from paraldehyde and ammonium hydroxide.⁸⁵ In an extensive study of the reaction, it has been pointed out that other single products can sometimes be obtained in fair yields by proper choice of reagents and conditions.¹²⁷

574. Piperidines by Ring Closure

A variety of difunctional compounds having groups in the 1,5-positions undergo intramolecular reaction to give piperidines. Common interacting groups are halo,¹⁰¹ hydroxyl,¹⁰² and amino. The yields vary within wide limits. 1,5-Diamino compounds are cyclized during reduction of the corresponding dicyanides. For example, catalytic hydrogenation of glutaronitrile over a nickel catalyst gives piperidine (22%).¹⁰⁷ Likewise, the cyclic amides, 2-piperidones, are formed by interaction of amino and ester groups during the catalytic reduction of γ -cyano esters.¹⁰⁶ 1,4,5,6-Tetrahydropyridines are sometimes prepared in good yield by the action of ammonia on δ -bromo ketones.^{103, 105}

Ring closure in the 4-position of the piperidine nucleus by an intramolecular Claisen condensation of di- $(\beta$ -carbethoxyethyl)-amines and related compounds leads to 4-piperidones in excellent yields.¹¹⁵

575. Quinoline Compounds by Ring Closure

Quinolines are formed by refluxing aniline or substituted anilines with glycerol and nitrobenzene (Skraup). The yield of guinoline from aniline is 84-91%.¹³⁶ The nitrobenzene serves as an oxidizing agent and may be replaced by arsenic acid,^{133, 137, 145, 147} by nitrobenzenesulfonic acid,¹⁴³ or in some modifications of the reaction by ferric chloride.¹⁴⁰ The reaction is exothermic and sometimes difficult to control. Various techniques, catalysts, and solvents have been proposed to alleviate this difficulty.^{129, 137, 139} The reaction may proceed by way of the intermediate formation of acrolein and its anil or by the addition of the aniline to the double bond of acrolein. These possibilities have suggested other compounds as starting materials in the synthesis. Thus, the glycerol may be replaced by two molecules of acetaldehyde or glycol (Döbner-Miller),140 substituted glycerols,¹⁴⁶ pyruvic acid, acetoacetic ester (Conrad-Limpack-Knorr),^{132, 142} or various combinations of simple carbonyl compounds.^{135, 137, 143} The relationship of these modifications to the original Skraup reaction has been discussed.¹⁶¹ Many guinoline derivatives have been prepared by these reactions, but most of the compounds are beyond the scope of this book.^{128-149, 172, 173} Many functional groups including halo,¹⁴³ methoxyl,^{128, 133, 140, 147} carboxyl,^{131, 138} and nitro^{130, 133, 145} have been present in the reactants. Substituents in the ortho or para positions of the aniline present no problem in orientation. An excellent study of the directive influence of various substituents in the meta position has been made.¹⁴⁶ Rearrangement of nuclear substituents is rare but accounts for the failure of at least one Skraup reaction.141

Ring closures are also effected from precursors obtained by condensations of o-aminobenzaldehyde and related compounds. These condensa-

tions differ from the above reactions in that the number 4 carbon of the quinoline was originally in the *ortho* position of the aniline.^{174, 175}

The preparation of isoquinolines by methods of ring closure has been reviewed.²²⁴

576. Interaction of Grignard Reagents and N-Methyl-a-pyrrolidone²¹⁶

R = Methyl, ethyl, n-propyl, n-butyl, or phenyl (50-70% over-all)

TABLE 118. HETEROCYCLIC COMPOUNDS

TABLE 118. HETEROCYCLIC COMPOUNDS [†]

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.
			Fura	ns	
C.	Furan	559	71	39 182	31/760
			65	39 ¹⁸⁵	
	Dihydrofuran	560	62	39°	67/744, 1.4321
	Δ^{3} , 4-Dihydrofuran	560	28	39³	67, 1.428 ¹⁵
	Tetrahydrofuran	554	93	39 ° 6	66
C5	2-Methylfuran	556	93	39 198	63/737 •
	a-Methyltetrahydrofuran	554	83	39 ⁹⁵	
		560	40	392	80
C,	a-Ethyltetrahydrofuran	554	78	39 100	108/758, 1.4190 ¹¹
•	2,2-Dimethyl-2,5-dihydro- furan	560	60	39*0	83, 1.4155 ¹⁷
	a-Vinylfuran	19	20	2166	97/748, 1.4950 ²⁵
		27	73	2 471	98-101
с,	2-n-Propylfuran	556	36	39 181	115. 1.4410 ²⁵
•	2-Isopropyl furan	559	55	39 181	$108, 1,4466^{25}$
	2-Isopropenylfuran	19	56	2 425	57/75, 1.4966 ²⁵
	a-n-Propyltetrahydro- furan	554	91	39 ¹⁰⁰	135/773, 1.4256 ¹⁰ , 1.4230 ²⁵
C,	2-n-Butylfuran	556	54	39 ¹⁸¹	138, 1.4460 ²⁵
	2-1-Butylfuran	559	60	39 ¹⁸¹	120, 1.4380 25
	a -n- Butyltetrahydrofuran	554	68	39 ¹⁰⁰	160/768, 1.4315°
	Benzofuran (coumarone)	559	72	39 201	60/12
		568	11	39 ⁵³	172, 1.5631 ²⁴ , 103Pi
	2, 3-Dihydroben zofuran	560	72	39 4 8	79/17, 1.5495
C,	a-n-Amyltetrahydrofuran	554	70	39 100	71/14, 1.436210
	2-Methylbenzofuran	568	30	3953	196/730, 1.5539 ²⁴ , 74Pi
	2-Methyl-2, 3-dihydro- benzofuran	560	30	39 *	81/15, 1.5309
C 10	2-Phenylfuran	558	22	39 ¹⁹⁷	95/10, 1.5920
C 12	Dibenzofuran	560	95	39 4 7	(87)
C 16	2,5-Diphenylfuran	561	86	39 22	(90)
		·	Thiopher	nes	
C4	Thiophene	561	31	39 ³²	84
		561	30	39 25	86
	Tetrahydrothiophene	560	50	39°	120/760, 1.5046
		560	64	39 225	120, 1.5037 ²¹
		554	71	39 108	

[†]Heterocyclic compounds containing the common functional groups are listed in the tables in the appropriate chapters.

For explanations and symbols see pp. xi-xii.

C₅ N-Methylpyrrole

a-Methylpytrole

C₅ L2-Dimethylpyrrole

roline

N-Methylpyrrolidine

2,4-Dimethylpyrrule

2,5-Dimethylpyrrole

1-Methyl-N-methylpyr-

HETEROCYCLIC COMPOUNDS

Ch. 39

TABLE 118. HETEROCYCLIC COMPOUNDS

851

TABLE 118 (continued)

с _п	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv			
	Pyrroles (continued)							
C6	a-Ethylpyrroline	564	46	39 35	140, 87Pi			
	a-Ethylpyrrolidine	560	22	39 16	123/742, 1.446215			
	2,4-Dimethylpyrrolidine	554	68	39 109	111			
	2,5-Dimethylpyrrolidine	554	67	39 ¹⁰⁹	105			
С _в	2,4-Dimethyl-3-ethyl- pyrrole	3	58 t	39 ³⁹	94/18			
	N-n-Butylpyrrolidine	554	88	39 110	124Pi			
		558	40	39 ¹⁶⁸	88/63, 125Pi			
		567	80	39 34	155/758, 1.437 ²⁷			
	2-lsobutylpyrrolidine	560	71	39 14	164			
	Benzopyrrole (indole)	557	75	39 154				
		557	62	39 111	133/12, 254, (52)			
		559	55	39 66	120/3, (52)			
		570	79	39 77	144/27, (53)			
	2,3-Dihydroindole	572	60	39 111	231			
C,	2-Methylindole	570	83	39 ⁷⁶	119-126/3-4, (57)			
-		571	80	39 ⁶⁹				
C 10	1-(n-Amyl)-pyrrole	557	88	39 154	82/15, 1.4694			
	N-Phenylpyrrole	560	43	39 11	(61)			
	2-Phenylpyrrole		35	39 11	(129)			
	a-Phenylpyrroline	564	55	39 ³⁵	124/15			
	N-Cyclohexylpyrrolidine	554	90	39 95	214, 1.4792 ²⁵			
	N-Phenylpyrrolidine	554	63	39 °5	116/9, 1.5803 ²⁵			
	2-Phenylpyrrolidine	554	55	39 111	116/15, 1.5390 ²⁵ , 164HCl			
		560	78	39 17	239/756, 149Pi			
	3-Ethylindole	558	62	39 64	156/20, (37)			
	2,3-Dimethylindole	569	85	39 **	(108)			
C 11	2-Ethyl-3-methylindole	569	92	39 ⁸⁰	130/2, (66)			
	1,2,3-Trimethylindole	569	90	39 ⁷⁹	284/762, (19)			
C 12	2,3-Diethylindole	571	46	39 ⁷⁵	167/15			
	Dibenzopyrrole (car•		54	39 32	(246)			
	bazole	557	95	39 1 59	(245)			
		557	95	39 154				
	1,2,3,4-Tetrahydrocar- bazole	571	85	39 71	(116)			
C 13	N-Methylcarbazole	557	86	39 1 59	(88)			
	2-Methylcarbazole	557	90	39 159	(260)			
	3-Methylcarbazole	55 7	9 9	39 159	(207)			
C 14	2-Phenylindole	571	80	39 ⁷⁰	(188)			
C 16	2,4-Diphenylpyrrole	557	46 †	39 155	(176)			
C 18	N-Phenylcarbazole	558	65	39 ¹⁶⁹	(93), 129Pi			

For explanations and symbols see pp. xi-xii.

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Thioph	enes (c	ontinued)	
C,	2-Methylthiophene	556	78	39 199	113, 1.5203
		561	11	39 ³²	113, 1.5210
	3-Methylthiophene	561	30	39 27	120
		565	40	39 ⁸	115/748, 1.5169 ²⁵
C,	2-Ethylthiophene	556	91	39 ¹⁹⁹	134, 1.5122
Ū	2.3-Dimethylthiophene	556	82	39 ¹⁹⁹	140, 1.5188
	2.5-Dimethylthiophene	556	78	39 199	136, 1.5132
		561	58	39 24	135
	3,4-Dimethylthiophene	565	31	39 ⁸	148, 1.5187 ²⁵
	a-Vinylthiophene	19	74	2 166	63/50, 1.5698 ²⁵
		19	100	39 213	1.561223
		20	44	2 456	63/50, 1.5710 ²⁵
		29	29	39 ²¹⁴	73/69, 1.5697 25
		29	29	2 455	73/69, 1.5697 ²⁵
С,	2-n-Propylthiophene	556	89	39 199	159, 1.5050
,	2-lsopropylthiophene	558	72	39 196	154/760, 1.5043
	2,3,5-Trimethylthiophene	561	40	39 26	165/746, 1.5131
C _a	2-s-Butylthiophene	558	48	39 ¹⁹⁶	76/24, 1.5013
	2-1-Butylthiophene	558	66	39 ¹⁹⁶	164, 1.4979
	Benzothiophene (thia-	568	63	39 56	221, (31)
	naphthene)		30 🕆	39 ⁸³	104/20
	2,3-Dihydrobenzothio- phene	560	100	39 **	107/13.5, 234
с.	2-t-Amylthiophene	558	80	39 ¹⁹⁶	189/760, 1,5007
,	3-Methylbenzothiophene	569	85	39 ⁵⁹	125/25, 1,6229, 120Pi
	5-Methylbenzothiophene	556	49	39 ²⁰³	110/13, (22)
Cue	2-Phenylthiophene	605	37	317 13	95/3, (35)
C 12	Dibenzothiophene	565	47	39 57	154/3, (99), 125Pi
			Pyrr	oles	
C.	Pyrrole	560	40	39 ¹⁰	131
-		561	30	39 ³¹	34/16, 132/756
	Pyrrolidine	554	65	39 °	89/760, 1,4426

39 170

39 12

39 ³²

39 110

39 12

59 136

39 24

31 216

558

560

561

554

559

559

561

576

50

39

24

100

97

95

Ső

50

117/749

150, 1.5012

140, 1.4913²⁵

80/25, 1.500 22

114

78

72/25

131

.

HETEROCYCLIC COMPOUNDS

Ch. 39

TABLE 118 (continued)

с "	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv.			
	Pyridines							
C۶	Piperidine	554 574	83 22	39 ⁹⁵ 39 ¹⁰⁷	105/740 106, 151Pi			
С ₆	2-Methylpiperidine 4-Methylpiperidine (4- pipecoline)	554 554	90 60	39 ⁹⁵ 39 ¹¹⁴	119/740, 1.4495* 129, 1.4382*			
C,	2-Ethylpyridine	5	86 80	39 212 30 205	146/12, 1.4966, 111Pi 107Pi			
	3-Ethylpyridine 4-Ethylpyridine 2, 3-Dimethylpyridine 2. 6-Dimethylpyridine	556 556 557 573	80 38 † 90 36	39 204 39 207 39 105 39 87	166/760, 130Pi 165/760, 1.5010, 170Pi 164, 188Pi 143/743			
	β -Vinylpyridine 2,3-Dimethyl-1,4,5,6- tetrebydropyridine	20 574	20 67	2 457 39 ¹⁰⁵	144Pi 154-157, 155Pi			
	N-Ethylpiperidine 3-Ethylpiperidine	554 555	100 70	39 116 39 106	127 155 *, 140HCl			
C 8	4 -n- Propylpyridine 2-Methyl-3-ethyl- pyridine	556 556	64 63	39 ¹⁹⁵ 39 ²⁰⁸	189, 132Pi 69/14, 141Pi			
	5-Ethyl-2-methyl- pyridine	573	53	39 ⁸⁵	66/17, 1.4971			
	2,3,4-Trimethylpyri- dine	573	20	39 ¹²⁷	80/25, 1.5118, 164Pi			
	2,4,6-Trimethylpyridine (sym-collidine)	573	37	39 ⁸⁸	62/11, 1.4939, 156Pi			
	4-Isopropylpiperidine	574	26	39 ¹⁰¹	63/10			
C,	3 -n- Butylpyridine 4 -n -Butylpyridine	556 556	60 47	39 206 39 195	39/0.5, 1.4909, 90.5Pi 209			
	a-s-Butylpyridine 4-Isobutylpyridine	558 556	59 30	39 ¹⁹² 39 ¹⁹⁵	93/23, 91Pi 199			
C 10	a-Amylpyridine 2-n-Amyl-1,4,5,6-tetra- hydropyridine	558 574	45 84	39 ¹⁸⁷ 39 ¹⁰³	110/28 95/9			
	a-n-Amylpiperidine	554	74	39 ¹⁰³	87/10			
Cıı	2-Phenylpyridine 2-Phenyl-1,4,5,6-tetra- hydropyridine	558 574	49 66	39 190 39 104	140/12 142 - 150/20, 182Pi			
	N-Phenylpiperidine	554 574	100 56	39 ¹¹⁶ 39 ¹⁰²	260/754 256/750, 106/4, 146Pi			
	2-Phenylpiperidine 3-Phenylpiperidine	554 555	80 57	39 95 39 106	112/9 142/19, (15), 144HCl			
	4-Phenylpiperidine	554 555	85 60	39 • 5 39 106	(50) 137-147/21, (60)			

TABLE 118. HETEROCYCLIC COMPOUNDS

TABLE	118	(continued)
INDLL	110	(communea)

с _{<i>п</i>}	Compound	Method	Yield (%)	Chapter ^{ref.}	B.p./mm., n ^t _D , (M.p.), Deriv
		Pyrid	ines (<i>c</i> o	ontinued)	
Cız	2-Benzylpyridine	558	75	39 ¹⁹³	277/730, 140Pi 289/730, 139Pi
	N-Benzylpiperidine	574	33	39 ¹⁰²	120/11, 166Pi
C 13	2-Phenethylpyridine	558	68	39 ¹⁸⁸	146/10, 127Pi
	4-Phenethylpyridine	558	94	39 ¹⁸⁸	(71)
		Quinolin	nes and	Isoquinoline	
с,	Quinoline	575	60	39 136	112/14
	py-Tetrahydroquinoline	554	97	39 ⁹⁵	
		554	100	39 151	121/13, 1.5897 ²⁵
	<i>bz</i> -Tetrahydroquinoline	557	36	39 156	103/10, 158Pi
	py-Tetrahydroisoquino- line	554	92	39 ¹⁵⁰	236, 1.5749 ²² , 195Pi *
	<i>bz</i> -Tetrahydroisoquino- line	557	25	39 ¹⁵²	144Pi
	Decahydroquinoline Decahydroisoquinoline	554	90	39 ¹⁵¹	90/13, 1.4911 ²⁵ , (27)
	(cis-)	554	80	39 ¹⁵²	150Pi
	(trans-)		10		177Pi
C 10	2-Methylquinoline (quinaldine)	575	50	39 ¹⁴³	247 *
	3-Methylquinoline	575	49	39 143	253, 1.6160, 188Pi
		575	80	39 174	
	4-Methylquinoline	7	87	39 211	127/15
	(lepidine)	575	73	39 140	99/3, (9), 1.6197, 212Pi
	6-Methylquinoline	7	87	39 211	137/12
	8-Methylquinoline	7	90	39 21 1	(55)
	l-Methylisoquinoline	557	75	39 157	126/10, 232Pi
C11	2-Ethylquinoline	558	30	39 ¹⁹⁴	130/15, 149Pi
	3-Ethylquinoline	575	54	39 1 43	266, 1.5988, 199Pi
	2,3-Dimethylquinoline	575	50	39 ¹⁶⁶	(69), 229Pi
	2,4-Dimethylquinoline	575	80	39 ¹³⁵	150/20
C 15	3-Phenylquinoline	575	12	39 148	(52), 205Pi

For explanations and symbols see pp. xi-xii.

REFERENCES FOR CHAPTER 39

855

REFERENCES FOR CHAPTER 39 ¹U. S. Dept. Commerce. Office of Technical Services. Repts. PB 1661. 1812. ²Bennett and Philip, I. Chem. Soc., 1937 (1928). ³Valette, Ann. chim., (12) 3, 674 (1948). ⁴Haworth and Jones, I. Chem. Soc. 667 (1944); Gilman and Dickey. I. Am. Chem. Soc., 52, 2010 (1930); Teunissen, Rec. trav. chim., 49, 788 (1930). ^sRinkes, Org. Syntheses. Coll. Vol. II. 393 (1943). Adams and Voorhees, Org. Syntheses, Coll. Vol. I, 280 (1941). ⁷Karrer and Schmid. Helv. Chim. Acta. 27. 116 (1944); cf. ref. 225. ⁸Shepard, Henne. and Midglev. I. Am. Chem. Soc. 56. 1355 (1934). ⁹ Robles, Rec. trav. chim., 58, 111 (1939). ¹⁰McElvain and Bolliger. Org. Syntheses. Coll. Vol. I. 473 (1941). ¹¹ Allen, Gilbert, and Young, I. Org. Chem., 2, 230 (1937); also ref. 111. ¹² Rapoport and Jorgensen, J. Org. Chem., 14, 664 (1949). ¹³Horton, I. Ore. Chem., 14, 767 (1949). ¹⁴ Menschikoff and Schdanowitsch, Ber. 69, 1799 (1936). 15 Albertson and Fillman, I. Am. Chem. Soc., 71, 2818 (1949). ¹⁶ Müller and Feld. Monatsh.. 58, 17 (1931). ¹⁷ Knott, I. Chem. Soc., 186 (1948). ¹⁸ Elderfield, Heterocyclic Combounds. Vol. 1. John Wiley & Sons, New York, 1950. ¹⁹ Morton, The Chemistry of Heterocyclic Compounds. McGraw-Hill Book Co.. New York and London, (1946). ²⁰ Ref. 18, pp. 127-132. ²¹ Lutz, I. Am. Chem. Soc. 51, 3008 (1929). ²² Lutz and Rowlett, J. Am. Chem. Soc., 70, 1359 (1948). 23 Gilman and Burmer, Rec. trav. chim., 51, 667 (1932). 24 Farrar and Levine, I. Am. Chem. Soc., 72, 4433 (1950). ²⁵ Phillips, Org. Syntheses, Coll. Vol. II, 578 (1943). 26 Youtz and Perkins, J. Am. Chem. Soc., 51, 3511 (1929). 27 Linstead. Noble. and Wright. I. Chem. Soc., 915 (1937). 28 Steinkopf and Thormann, Ann., 540, 4 (1939). ²⁹ Young and Allen, Org. Syntheses, Coll. Vol. II, 219 (1943). ³⁰ Bishop, J. Am. Chem. Soc., 67, 2261 (1945). ³¹Wilson, J. Chem. Soc., 63 (1945); cf. ref. 32. 32 Jurjew, Ber., 69, 440, 1002 (1936). 33 Backer and Stevens, Rec. trav. chim., 59, 423, 899 (1940). ³⁴Coleman, Nichols, and Martens, Org. Syntheses, 25, 14 (1945). 35 Cloke, J. Am. Chem. Soc., 51, 1174 (1929); Craig, Bulbrook, and Hixon, ibid., 53, 1831 (1931). ³⁶Cloke et al., J. Am. Chem. Soc., 67, 1587 (1945); 68, 126 (1946). ³⁷ Knorr and Lange, Ber., 33, 2998 (1902). ³⁸ Fischer, Org. Syntheses, Coll. Vol. II, 202 (1943). ³⁹ Fisher, Org. Syntheses, 21, 67 (1941). ⁴⁰Colonge and Garnier, Bull. soc. chim. France, (5) 15, 432 (1948). ⁴¹Amstutz, J. Org. Chem., 9, 310 (1944). ⁴² Gilman, Burtner, and Smith, Rec. trav. chim., 51, 408 (1932); Blomquist and Stevenson, J. Am. Chem. Soc., 56. 148 (1934); Scott and Johnson, ibid., 54, 2552 (1932).

43 Korschun, Ber., 38, 1125 (1905).

44 Feist, Ber., 35, 1545 (1902). ⁴⁵ Reichstein and Zschokke, Helv. Chim. Acta, 14, 1272 (1931): 15, 270 (1932). ⁴⁶ Bennett and Hafez, *I. Chem. Soc.*, 287 (1941). ⁴⁷ Cullinane and Davies, Rec. trav. chim. 55, 881 (1936) ⁴⁸Chatelus, Ann. chim., (12) 4, 530 (1949). ⁴⁹ Hurd and Hoffman, I. Org. Chem., 5, 218 (1940). ⁵⁰ Adams and Rindfusz, I. Am. Chem. Soc., 41, 655 (1919). ⁵¹ Shriner and Witte. I. Am. Chem. Soc. 61, 2328 (1939); Horning and Reisner. ibid., 70, 3619 (1948). ⁵² Price and Krishnamurti, I. Am. Chem. Soc., 72, 5335 (1950). ⁵³Hansch. Saltonstall, and Settle, I. Am. Chem. Soc., 71, 943 (1949). ⁵⁴Hansch and Blondon, I. Am. Chem. Soc., 70, 1561 (1948). 55 Hansch and Hawthorne. I. Am. Chem. Soc., 70, 2495 (1948). ⁵⁶ Moore and Greensfelder, I. Am. Chem. Soc., 69, 2008 (1947). ⁵⁷ Gilman and Nobis. I. Am. Chem. Soc., 67, 1479 (1945); Gilman and Jacoby, I. Org. Chem., 3, 108 (1938). 58 Bradsher, Chem. Revs. 38, 447 (1946). ⁵⁹ Werner, Rec. trav. chim., 68, 509, 518 (1949). ⁶⁰Shriner and Anderson, I. Am. Chem. Soc., 61, 2706 (1939); Stoermer, Chydenius, and Schinn, Ber., 57, 74 (1924). ⁶¹ Reichstein et al., Helv. Chim. Acta. 18, 816 (1935). 62 Fieser and Kennelly, J. Am. Chem. Soc., 57, 1614 (1935). 63 Johnson et al., J. Am. Chem. Soc., 67, 423 (1945); cf. ref. 64. ⁶⁴Cornforth and Robinson, I. Chem. Soc., 680 (1942). 65 Brehm, J. Am. Chem. Soc., 71, 3541 (1949); cf. ref. 63. ⁶⁶ Elks, Elliot, and Hems, I. Chem. Soc., 629 (1944). ⁶⁷ Stephen, I. Chem. Soc., 1876 (1925). 68 Van Order and Lindwall, Chem. Revs., 30, 69 (1942). ⁶⁹ Fischer, Ber., 19, 1564 (1886); Ger. pat. 238,138; Frdl., 10, 332 (1910-1912). ⁷⁰ Shriner, Ashley, and Welch, Org. Syntheses, 22, 98 (1942). ⁷¹Rogers and Corson, Org. Syntheses, 30, 90 (1950). ⁷²Snyder and Smith, J. Am. Chem. Soc., 65, 2452 (1943). ⁷³Carlin and Fisher, I. Am. Chem. Soc., 70, 3421 (1948). ⁷⁴Schofield and Theobald, I. Chem. Soc., 796 (1949). ⁷⁵ Arbusow, Saizew, and Rasumow, Ber., 68, 1792 (1935). ⁷⁶ Allen and Van Allan. Ore. Syntheses. 22, 94 (1942); Madelung, Ber., 45, 1128 (1912). ⁷⁷ Tyson, Ore. Syntheses, 23, 42 (1943); Galat and Friedman, I. Am. Chem. Soc., 70, 1280 (1948). ⁷⁸ Julian et al., J. Am. Chem. Soc., 67, 1203 (1945); Brown and Mann, J. Chem. Soc., 858 (1948). ⁷⁹ Janetzky and Verkade, Rec. trav. chim., 65, 699 (1946). ⁸⁰ Janetzky and Verkade, Rec. trav. chim., 65, 909 (1946). ⁸¹Campbell and McCall, J. Chem. Soc., 2870 (1950). ⁸² Morgan and Wallis, J. Soc. Chem. Ind. (London), 57T, 358 (1938); 50, 94T (1931); Waterman and Vivian, J. Org. Chem., 14, 295 (1949). 83 Hansch and Lindwall, J. Org. Chem., 10, 383 (1945). ⁸⁴ Bergstrom, Chem. Revs., 35, 91-103 (1944). ⁸⁵ Frank, Pilgrim, and Riener, Org. Syntheses, 30, 41 (1950); Graf and Langer, I. prakt. Chem., 150, 153 (1938). ⁸⁶ Tchitchibabine, Bull. soc. chim. France, (5) 4, 1826 (1937).
⁸⁷ Singer and McElvain, Ore. Syntheses, Coll. Vol. II, 214 (1943). 88 Frank and Meikle, J. Am. Chem. Soc., 72, 4184 (1950). ⁸⁹ Merz and Richter, Arch. Pharm., 275, 294 (1937). 90 Gruber and Schlögl, Monatsh., 81, 83 (1950). 91 Baumgarten and Dornow, Ber., 72, 563 567, 859 (1939); Dornow, ibid., 72. 1548 (1939); Dornow and Peterlein, ibid., 82, 257 (1949). ⁹²Hinkel et al., I. Chem. Soc., 750 (1929); 1835 (1931); Bodforss, Ber., 64, 1108 (1931). 93 Domow, Ber., 73, 153 (1940); Wenner and Plati, J. Org. Chem., 11, 751 (1946). ⁹⁴Ref. 18, pp. 452-472; ref. 19, pp. 186-190. 95 Adkins, Reactions of Hydrogen, University of Wisconsin Press, Madison, 1937, pp. 62-68. ⁹⁶Starr and Hixon, Org. Syntheses, Coll. Vol. II, 566 (1943). ⁹⁷ Kaufmann and Adams, I. Am. Chem. Soc., 45, 3029 (1923); ref. 95. ⁹⁸Hinz, Meyer, and Schücking, Ber., 76, 676 (1943); cf. ref. 95, 99 Paul, Bull, soc. chim. France, (5) 4, 846 (1937), ¹⁰⁰ Paul, Bull. soc. chim. France. (5) 5, 1053 (1938). ¹⁰¹ Piantanida, I. prakt. Chem., 153, 260 (1939). ¹⁰² Scriabine, Bull. soc. chim. France, (5) 14, 456 (1947). ¹⁰³ Franke and Kroupa, Monatsh., 69, 198 (1936). 104 Salathiel, Burch, and Hixon, J. Am. Chem. Soc., 59, 984 (1937). ¹⁰⁵ Finkelstein and Elderfield, J. Org. Chem., 4, 365 (1939). 106 Koelsch, J. Am. Chem. Soc., 65, 2093, 2458, 2459, 2460 (1943). 107 Henecka, Chem. Ber., 82, 111 (1949). ¹⁰⁸ Mozingo et al., I. Am. Chem. Soc., 67, 2092 (1945). 109 Reid et al., J. Am. Chem. Soc., 70, 3100 (1948). 110 Craig and Hixon, J. Am. Chem. Soc., 53, 187 (1931). 111 Adkins and Coonradt, J. Am. Chem. Soc., 63, 1563 (1941). 112 Rainey and Adkins, J. Am. Chem. Soc., 61, 1104 (1939). ¹¹³ Ref. 18, pp. 631-642 114 Elderfied, Pitt, and Wempen, J. Am. Chem. Soc., 72, 1343 (1950). 115 McElvain et al., J. Am. Chem. Soc., 70, 1822 (1948); 51, 924 (1929); Fuson, Parham, and Reed, ibid., 68, 1239 (1946); Howton, J. Org. Chem., 10, 277 (1945); Cardwell and McOuillin, I. Chem. Soc., 711 (1949). ¹¹⁶ Hamilton and Adams, J. Am. Chem. Soc., 50, 2260 (1928). ¹¹⁷ McElvain and Adams, I. Am. Chem. Soc., 45, 2745 (1923). 118 Cavallito and Haskell, I. Am. Chem. Soc., 66, 1166 (1944). ¹¹⁹ Koenigs and Neumann, Ber., 48, 956 (1915); Renshaw and Conn, J. Am. Chem. Soc., 60, 745 (1938). ¹²⁰Nienburg, Ber., 70, 635 (1937). ¹²¹ Grave, J. Am. Chem. Soc., 46, 1460 (1924). 122 Kleiman and Weinhouse, J. Org. Chem., 10, 562 (1945). 123 Doering and Weil, I. Am. Chem. Soc., 69, 2461 (1947). ¹²⁴ Burtner and Brown, J. Am. Chem. Soc., 69, 630 (1947). ¹²⁵Norton et al., J. Am. Chem. Soc., 68, 1572 (1946). ¹²⁶Norton et al., I. Am. Chem. Soc., 68, 1330 (1946). 127 Frank and Seven, J. Am. Chem. Soc., 71, 2629 (1949). 128 Kaslow and Raymond, J. Am. Chem. Soc., 68, 1102 (1946); cf. refs. 129 and 149.

129 Elderfield et al., J. Am. Chem. Soc., 68, 1584 (1946).

¹³⁰Linsker and Evans, *I. Am. Chem. Soc.*, 68, 149, 874 (1946); cf. ref. 145. ¹³¹Campbell et al., I. Am. Chem. Soc., 68, 1845 (1946). 134 Reynolds and Hauser, Ore. Syntheses, 29, 70 (1949). 133 Mosher, Yanko, and Whitmore, Org. Syntheses, 27, 48 (1947). 134 Price and Roberts, Ore. Syntheses, 28, 38 (1948). 135 Vaughan, Ore. Syntheses, 28, 49 (1948). ¹³⁶Clarke and Davis, Org. Syntheses, Coll. Vol. I, 478 (1941). ¹³⁷ Yale and Bernstein, J. Am. Chem. Soc., 70, 254 (1948); 69, 1230 (1947). ¹³⁸ Jones et al., I. Am. Chem. Soc., 70, 2847 (1948). 159 Cohn and Gustavson, I. Am. Chem. Soc., 50, 2709 (1928); Cohn, ibid., 52, 3685 (1930). 140 Campbell and Schaffner, J. Am. Chem. Soc., 67, 86 (1945). 141 Frisch, Silverman, and Bogert, J. Am. Chem. Soc., 65, 2432 (1943). 142 Kaslow and Marsh, J. Org. Chem., 12, 457 (1947). 143 Utermohlen, I. Org. Chem., 8, 544 (1943). 144 Reitsema, Chem. Revs., 43, 43 (1948), cf. ref. 118. 145 Le Fevre and Le Fevre, I. Chem. Soc., 1472 (1935). 146 Bradford, Elliott, and Rowe, J. Chem. Soc., 437 (1947). 147 King and Sherred, J. Chem. Soc., 415 (1942). 148 Warren, J. Chem. Soc., 1366 (1936). 149 Cromwell, Caughlan, and Gilbert, J. Am. Chem. Soc., 66, 401 (1944). 150 Cromwell and Cram, J. Am. Chem. Soc., 65, 301 (1943). 151 Palfray, Bull. soc. chim. France, (5) 7, 433 (1940). 152 Witkop, J. Am. Chem. Soc., 70, 2617 (1948). ¹⁵³ Allewelt and Day, J. Org. Chem., 6, 384 (1941); Elderfield and Kreysa, J. Am. Chem. Soc., 70, 44 (1948). 154 Adkins and Lundsted, J. Am. Chem. Soc., 71, 2964 (1949). 155 Allen and Wilson, Org. Syntheses, 27, 33 (1947). ¹⁵⁶ Ehrenstein and Bunge, Ber., 67, 1715 (1934). 157 Barrows and Lindwall, J. Am. Chem. Soc., 64, 2430 (1942). 158 Barclay and Campbell, I. Chem. Soc., 530 (1945). ¹⁵⁹ Horning, Horning, and Walker, J. Am. Chem. Soc., 70, 3935 (1948). 160 Jurjew and Borissow, Ber., 69, 1395 (1936). ¹⁶¹ Ref. 19, pp. 262-267. 162 Clemo and Swan, J. Chem. Soc., 869 (1945). ¹⁶³ Johnson, Woroch, and Buell, J. Am. Chem. Soc., 71, 1901 (1949). 164 Renshaw and Friedman, J. Am. Chem. Soc., 61, 3321 (1939). 165 Briggs and De Ath, I. Chem. Soc., 456 (1937). ¹⁶⁶ Petrow, I. Chem. Soc., 693 (1942). 167 Andrus and Johnson, Org. Syntheses, 23, 90 (1943). 168 Ochiai, Tsuda, and Yokoyama, Ber., 68, 2291 (1935). 169 Dunlop and Tucker, J. Chem. Soc., 1945 (1939). ¹⁷⁰ Hess and Wissing, Ber., 47, 1416 (1914). ¹⁷¹ Tschelinzeff and Maxoroff, Ber., 60, 194 (1927). 172 Phillips, Elbinger, and Merritt, J. Am. Chem. Soc., 71, 3986 (1949). ¹⁷³ Kaslow and Cook, J. Am. Chem. Soc., 67, 1969 (1945). 174 Willimott and Simpson, J. Chem. Soc., 2809 (1926). 175 Fuson and Burness, J. Am. Chem. Soc., 68, 1270 (1946). ¹⁷⁶ Fourneau, Trefouel, and Wancolle, Bull. soc. chim. France, (4) 47, 738 (1930).

¹⁷⁷ Ref. 18, pp. 295-299, 306-307.

¹⁷⁸ Ref. 18, pp. 487-490. 179 Buu-Hoi and Rover, Rec. trav. chim., 66, 533 (1947). ¹⁸⁰ Flowers, Miller, and Flowers, I. Am. Chem. Soc., 70, 3019 (1948). 181 Gilman and Calloway, J. Am. Chem. Soc., 55, 4203 (1933). 182 Dolliver et al., I. Am. Chem. Soc., 60, 442 (1938); Wilson, Org. Syntheses, Coll. Vol. I. 274 (1941); Gilman and Lousinian, Rec. trav. chim., 52, 156 (1933). 183 Gilman, Mallory, and Wright, I. Am. Chem. Soc., 54, 734 (1932). ¹⁸⁴Shepard, Winslow, and Johnson, *J. Am. Chem. Soc.*, 52, 2085 (1930); Whittaker, Rec. trav. chim., 52, 354 (1933). 185 Wilson, J. Chem. Soc., 61 (1945). 186 Fischer, Ore. Syntheses, Coll. Vol. II, 217 (1943); Corwin and Krieble, J. Am. Chem. Soc., 63, 1830 (1941). ¹⁸⁷Chichibabin, Bull. soc. chim. France, (5) 3, 1607 (1936); (5) 5, 429, 436 (1938). ¹⁸⁸ Bergstrom, Norton, and Seibert, J. Org. Chem., 10, 452 (1945). 189 Knight and Shaw, I. Chem. Soc., 682 (1938); Brody and Bogert, I. Am. Chem. Sec., 65, 1075 (1943). 190 Evans and Allen, Org. Syntheses, Coll. Vol. II, 517 (1943). ¹⁹¹ Haworth, Heilbron, and Hey, J. Chem. Soc., 349 (1940). ¹⁹² Doering and Pasternak, J. Am. Chem. Soc., 72, 143 (1950). ¹⁹³Crook, J. Am. Chem. Soc., 70, 416 (1948). ¹⁹⁴ Woodward and Kornfeld, J. Am. Chem. Soc., 70, 2508 (1948). ¹⁹⁵ Arens and Wibaut, Rec. trav. chim., 61, 59 (1942); cf. ref. 207. ¹⁹⁶Caesar, J. Am. Chem. Soc., 70, 3623 (1948); Pines, Kvetinskas, and Vesely ibid., 72, 1568 (1950); Kutz and Corson, ibid., 68, 1477 (1946). ¹⁹⁷ Johnson, I. Chem. Soc., 895 (1946). ¹⁹⁸Schniepp, Geller, and Korff, J. Am. Chem. Soc., 69, 672 (1947); Burnette et al., Ind. Eng. Chem. 40, 502 (1948); cf. Reichstein, Helv. Chim. Acta, 13, 347 (1930). 199 King and Nord, J. Org. Chem., 14, 638 (1949); Buu-Hoi, Hoan, and Khoi, ibid., 15, 959 (1950). ²⁰⁰ Campaigne and Diedrich, J. Am. Chem. Soc., 70, 391 (1948). ²⁰¹ Reichstein and Baud, Helv. Chim. Acta, 20, 893 (1937). ²⁰²Harvey and Robson, I. Chem. Soc., 100 (1938). ²⁰³ Tarbell, Fukushima, and Dam, J. Am. Chem. Soc., 67, 1643 (1945). 204 Fand and Lutomski, J. Am. Chem. Soc., 71, 2931 (1949). ²⁰⁵ Furst, J. Am. Chem. Soc., 71, 3550 (1949). ²⁰⁶ Frank and Weatherbee, I. Am. Chem. Soc., 70, 3482 (1948). ²⁰⁷ Frank and Smith, Org. Syntheses. 27, 38 (1947). ²⁰⁸ Domow and Machens, Ber., 73, 355 (1940). ²⁰⁹ Sawyer and Andrus, Org. Syntheses, 23, 25 (1943). ²¹⁰ Rinkes, Org. Syntheses, Coll. Vol. II, 393 (1943). ²¹¹Neumann et al., Org. Syntheses, 26, 45 (1946), also note 6. ²¹² Frank and Phillips, I. Am. Chem. Soc., 71, 2804 (1949). ²¹³Nazzaro and Bullock, I. Am. Chem. Soc., 68, 2121 (1946). ²¹⁴ Strassburg, Gregg, and Walling, J. Am. Chem. Soc., 69, 2141 (1947). ²¹⁵ Gilman and Melstrom, J. Am. Chem. Soc., 70, 1655 (1948); Stoermer and Kahlert, Ber., 35, 1636 (1902). ²¹⁶Craig, J. Am. Chem. Soc., 55, 295 (1933). ²¹⁷ Albert and Ritchie, Org. Syntheses, 22, 5 (1942); Lehmstedt and Schrader, Ber., 70, 838 (1937); Goldberg and Kelly, J. Chem. Soc., 102 (1946).

²¹⁸ Allen and McKee, Org. Syntheses, Coll. Vol. II, 15 (1943).

²¹⁹ Albert, J. Chem. Soc., 1225 (1948).

²¹⁰ Elpem and Hamilton, J. Am. Chem. Soc., 68, 1436 (1946); Fisher and Hamer, J. Chem. Soc., 1907 (1934).

²²¹ Nowlin, J. Am. Chem. Soc., 72, 5754 (1950).

¹²²Hartough, Thiophene and Its Derivatives, Interscience Publishers, New York, 1951; Hollins, The Synthesis of Nitrogen Ring Compounds, E. Benn, Ltd., London, 1924.

²²³ Wolf and Folkers in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, p. 410.

²²⁴ Whaley and Govindachari in Organic Reactions, Vol. 6, John Wiley & Sons, New York, 1951, pp. 74 and 151; Gensler, *ibid.*, p. 191.

225 Tarbell and Weaver, J. Am. Chem. Soc., 63, 2940 (1941).

In the interest of economy compounds listed in the tables are not repeated as a separate index. However, compounds and accompanying information may be found in the appropriate tables.

Acetals, elimination of alcohol from, 40 halogenation, 101, 102 hydrolysis, 172, 287, 293 preparation, 172, 261, 293 preparations listed in table 23, 268 reaction, with acyl halides, 234 with diols, 265 Acetoacetic ester condensation, 345 Acetoacetic ester synthesis, 327, 430 Acetylenes, addition, of alcohols, 265 of carboxylic acids, 344, 491 of hydrogen cyanide, 603 alkylation, 80 aryl, oxidation, 350 carbethoxylation, 489 catalytic hydration, 340 condensation, 48 conversion to amides, 573 coupling, 81 formylation, 297 partial reduction, 46 preparation, 78 preparations listed in table 4, 83 purification, 80 Acetylenic acetals, preparation, 268 Acetylenic acids, catalytic hydration, 341 decarboxylation, 79, 81 esterification, 481 preparation, 79, 413, 419 preparations listed in table 45, 455 α,β -Acetylenic acids, preparation, 425 Acetylenic alcohols, alkylation by alkyl sulfates, 229 catalytic hydration, 340 conversion to vinylacetylenes, 57 coupling, 81 dehydration, 34 isomerization to olefinic ketones, 343 oxidation, 323, 419 preparation, 160, 162, 165, 178 preparations listed in table 14, 201

Acetylenic alcohols-Continued reaction, with carboxylic acids, 341 with hydrogen halides, 90 with phosphorus halides, 91 Acetylenic aldehydes, preparation, 79, 297 preparations listed in table 28, 305 Acetylenic amines, alkylation, 81 preparation, 79, 81, 672 preparations listed in table 84, 695 Acetylenic cyanides, hydrolysis, 413 preparation, 82 preparations listed in table 69, 617 α,β -Acetylenic cyanides, preparation, 593 Acetylenic esters, reaction with organometallic compounds, 167 Acetylenic ethers, preparation, 79, 81, 229 preparations listed in table 19, 240 Acetylenic halides, addition of alcohols, 266 coupling, 81 preparation, 79, 81, 90, 91 preparations listed in table 10, 129 reaction, with metallic cyanides, 593 with organometallic compounds, 81 reduction, 56 Acetylenic ketones, preparation, 323 preparations listed in table 35, 370 α,β -Acetylenic ketones, preparation, 333 Acids, see Carboxylic acids Acylals, preparation, 484, 498 a-Acylamido ketones, preparation, 568 Acylaminomalonic acids, alkylation, 435 Acyl azides, degradation to aldehydes, 296 preparation, 565, 575 preparations listed in table 65, 584 pyrolysis, 640, 675 Acyl cyanides, see & Keto cyanides

Acvl halides, acylation of esters by, 347 addition, to acetylene, 321 to aldehydes, 498 to olefins, 343 γ -aryl, cyclization, 319 carbalkoxy, isomerization, 334 dehydrohalogenation, 407 halogenation, 103 hydrolysis, 418, 426 in the Friedel-Crafts reaction, 317 preparation, 546 preparations listed in table 61, 550 purification, 319 reaction, with acetals, 234 with acetylenes, 267 with amides, 576 with ammonia or amines, 566 with anhydrides, 560 with carboxylic acids, 549, 558 with carboxylic acid salts, 559 with cyclic ethers, 93 with diazoalkanes, 771 with esters, 560 with ethers, 498 with hydrogen halides, 548 with hydroxy compounds, 481 with metallic cyanides, 595 with olefins, 320 with organometallic compounds, 166, 333 with pyridine, 558 with silver cyanate, 641 with sodium azide, 575 with tertiary amines, 330 with ureas, 647 reduction, in Grignard reactions, 166 to alcohols, 155 to aldehydes, 291 Acylmalonic acids, decarboxylation, 330 Acylmalonic esters, decarboxylation, 347 Acyloins, see a-Hydroxy ketones a-Acyloxy cyanides, hydrogenolysis, 609 a-Acyloxy ketones, preparation, 341 Adkins hydrogenation reaction, 156 Alcohols, addition, to acetylenes, 265 to cyanides, 485, 634 to dihydropyran, 266

Alcohols, addition-Continued to olefinic compounds, 232 to oxides, 233 alkylation, by halogen compounds, 226 by sulfates, 228 by sulfites, 228 of amines by, 667 aminomethylation, 674 bromination of tertiary, 107 cvanoethylation, 602 dehydration, to ethers, 230 to olefins, 32 dehydrogenation, to aldehydes, 290 to ketones, 325 esterification, 480 haloalkylation, 230 oxidation, and esterification, 481 by ketones. 324 to acids, 419 to aldehydes, 289 to ketones, 323 preparation, 148 preparations listed in table 11, 182 reaction, with acyl halides, 481 with anhydrides, 482 with carbamyl chlorides, 647 with carbonyl compounds, 261 with a-diazoketones, 234, 487 with esters, 486 with hydrogen halides, 89 with hydrogen sulfide, 781 with imino esters, 542 with isocvanates, 645 with ketene dimers, 483 with ketenes, 483 with lactones, 495 with orthothioformates, 542 with phosgene, 483 with phosphorus halides, 91 with sulfonyl halides, 823 with sulfuryl chloride, 823 with thionyl chloride, 92 with urea. 647 with vinyl esters, 265 reduction, of carbonyl compounds by, 152 to hydrocarbons, 8 Aldehydes, addition, of acyl halides, 498 of bisulfites, 814

INDEX

Aldehydes, addition-Continued of hydrogen cyanide, 604 to olefins, 350 aminomethylation, 673, 674 bimolecular reduction, 154 condensation, aldol, 49, 174 benzoin, 178 with alkyl hydrogen malonates, 53. 496 with amides, 575, 576 with amines, 728 with anhydrides, 55 with benzyl cyanide, 55 with benzyl halides, 256 with chloroform, 176 with cyanoacetic acid, 601 with cyanoacetic ester, 54, 604. 608 with esters, 53, 176 with a-halo esters, 34, 177, 254, 255 with a-halo ketones, 256 with hippuric acid, 345 with hydantoin, 437 with β -keto esters, 54 with malonic acid, 52 with malonic ester, 53 with malononitrile, 55 with nitroparaffins, 55, 176 with pyruvic acid, 54 with rhodanine, 598 conversion to a-amino cyanides, 605 cyanoethylation, 602 haloalkylation of alcohols by, 230 halogenation, 100, 549 intermolecular oxidation-reduction, 153, 423, 494 oxidation, to acids, 419 to esters. 494 with peracetic acid, 169 preparation, 279 preparations listed in table 25, 298 reaction, with acetic anhydride, 102 with alcohols, 262 with alkyl sulfites, 262 with diazomethane, 340 with diketene, 350 with diols, 262 with epoxides, 266 with hydrazoic acid, 609

Aldehydes, reaction-Continued with ketene, 483, 536 with organometallic compounds. 159 with orthoesters, 264 with phosphorus pentahalides, 105 with sodium nitrohydroxamate, 577 reduction, by alcohols, 152 to hydrocarbons, 5 to hydroxy compounds, 149 reductive amination, 662, 663 Aldehyde trimers, halogenation, 102 Aldimines, see Schiff bases Aldo acids, lactonization, 533 preparation, 414 preparations listed in table 49, 462 Aldo esters, preparations listed in table 56, 517 reaction with organometallic compounds, 161 Aldo ethers, preparation, 228, 287. 289 preparations listed in table 31, 307 reduction, 151 Aldol condensation, 49, 153, 174 Aldols, see β -Hydroxy aldehydes Aldonitrones, 607

Alkanes, see Hydrocarbons

decarboxvlation, 343

preparation, 344, 491

Alkoxy acids, cleavage, 93

preparation, 228, 414

preparation, 418, 435

esterification, 481

Alkenyl ester dibromides, cleavage,

Alkoxy acetals, preparation, 263, 271

preparations listed in table 48, 460

a-Alkoxy acids, decomposition, 295

Alkoxy acyl halides, preparation, 547

1-Alkoxyalkyl esters, preparation, 484

Alkoxy esters, preparation, 228, 495

Alkoxy aldehydes, see Aldo ethers

Alkoxy amides, hydrolysis, 416

preparations listed in table 61, 553

preparations listed in table 63, 582

preparations listed in table 55, 516

 β -Alkoxy acids, preparation, 496

Alkenyl esters, bromination, 344

Alkenes, see Olefins

344

INDEX

a-Alkoxy esters, decomposition to ketones, 341 elimination of alcohol from, 40 hydrolysis, 417 reaction with organometallic compounds, 167, 294 β -Alkoxy esters, preparation, 233 Alkoxy halides, see Halo ethers Alkoxy ketals, elimination of alcohol from, 41 preparation, 275 β -Alkoxy ketals, preparation, 266 N-Alkylanilines, rearrangement, 671 Alkyl carbonates, alcoholysis, 487 carbethoxylation by, 488 preparation, 483, 487 reaction, with amines, 678 with organomagnesium compounds, 497 Alkyl chloroformates, carbethoxylation by, 489 preparation, 483 reaction with amines, 646 Alkyl chlorosulfites, preparation, 484 reaction with salts of carboxylic acids, 484 Alkyl chlorosulfonates, preparation, 823 9-Alkylfluorenes, preparation, 16 Alkyl groups, oxidation to carboxyl groups, 421 replacement by halogen, 98 Alkyl halides, see Halides Alkyl hydrogen malonates, decarboxylation, 496 Alkyl phosphates, alkylation of amines by, 667, 669 Alkylphthalimides, preparation, 676 reaction with hydrazine, 676 Alkyl sulfates, alkylation, of acetylenes by, 80 of alcohols by, 228 of amines by, 667-669 of β -keto esters by, 347 of ketones by, 339 of malonic esters by, 489 of nitriles by, 600 reaction, with metallic cyanates, 641 with metallic cyanides, 591 with salts of carboxylic acids, 484

Alkyl sulfites, rearrangement to sulfonic esters, 823 S-Alkylthiouronium salts, hydrolysis, 779 preparation, 779 Allenes, isomerization, 82 preparation, 40, 56, 81 Allyl esters, cleavage in Grignard reactions. 166 Allylic bromination of olefins, 104 Amides, acidolysis, 569 acylation, 576 N-alkylation, 572, 678 condensation with aldehydes, 575. 576 condensation with amines, 635 cyclic, hydrolysis, 416 reduction, 834 degradation to aldehydes, 296 dehydration, 596 dismutation to cyanides and acids, 597 N-halogenation, 103 Hofmann degradation, 674 hydrolysis, 412, 415 intramolecular condensation, 576 preparation, 416, 426, 565 preparations listed in table 63, 578 reaction, with alcohols, 480 with amines, 568 with isocyanates, 647 with organomagnesium compounds. 335 with phosphorus pentahalides, 97, 284 reduction, to alcohols, 156 to amines, 660 N-substituted, hydrolysis, 678 Amidines, preparation, 634 preparations listed in table 77, 639 Amination, of aromatic nuclei, 670 of cyclic imines, 671 of halides, 665, 666 of oxides, 672 of unsaturated compounds, 672 Amine hydrobromides, reaction with nitrogen trioxide, 94 Amines, acylation, by acyl halides, 566 by amides, 568 by anhydrides, 567

INDEX

Amines, acylation-Continued by carboxylic acids, 567 by ketenes, 571 addition to α,β -olefinic ketones, 672 alkylation, 666 aromatic, carboxylation, 425 condensation with nitroso compounds, 765 conversion to phenols, 168 coupling with diazonium salts, 764 formylation, 282 in Skraup synthesis, 847 nitration, 748 nuclear nitrosation, 742 oxidation, 742 reaction with bisulfites, 814 rearrangement, 671 reduction of the nucleus, 661 carboxymethylation, 437 condensation, with amides, 635 with carbonyl compounds, 728 dehydrogenation to nitriles, 609 diazotization, 770, 772 N-halogenation, 103 nitrosation, 741 nuclear dehydrogenation, 681 preparation, 653 preparations listed in table 81. 683 pyrolysis, 43 reaction, with acetylene, 672 with alkyl carbonates, 678 with allvl alcohol, 672 with chloroformates, 646 with cyanides, 635 with cyclic imines, 671 with α,β -dihalo ketones, 730 with hydroxylamine-O-sulfonic acid, 734 with isocyanates, 645 with β -keto esters, 682 with lactones, 576 with olefin sulfides, 781 with orthoformates, 636 with phosgene, 640 with urea or nitrourea, 646 reductive alkylation, 662, 663 reductive debenzylation, 665 Amino acetals, preparation, 271

Amino acids, preparation, by Gabriel reaction, 679 by haloform reaction, 423 by Hofmann degradation, 675 by malonic ester synthesis, 429 from amino alcohols, 420 from amino cyanides, 416 from amino esters, 417 preparations listed in table 90, 706 reductive alkylation, 663, 664 a-Amino acids, acylation, 568 benzoylation, 566 diazotization, 770 preparation, by reduction of oximino acids, 658 by the Curtius reaction, 676 by the Schmidt reaction, 677, 678 from acylaminomalonates, 435 from amino alcohols, 420 from a-amino cyanides, 414 from azlactones, 436 from a-halo acids, 666 from hydantoins, 437 from a-keto acids, 663 β -Amino acids, preparation, from aminomalonic esters, 429 from β -phthalimido cyanides, 415 Amino alcohols, see Hydroxy amines Amino aldehydes, preparations listed in table 88, 704 reaction with organometallic compounds, 161 β -Amino aldehydes, reduction, 152 Amino amides, preparation, 570, 657 preparations listed in table 63, 583 Amino cyanides, alcoholysis, 486 preparation, 657, 679 preparations listed in table 92, 711 reduction to diamines, 659 a-Amino cyanides, hydrolysis, 414 preparation, 414, 605-607 β -Amino cyanides, hydrolysis, 415 Amino esters, diazotization, 407 preparation, 486, 657, 665 preparations listed in table 91, 710 reaction with organometallic com-

pounds, 167

a-Amino esters, ammonolysis, 569

reduction, 157

hydrolysis, 417

preparation, 485

INDEX

 β -Amino esters, hydrolysis, 417 preparation, 673 Amino ethers, preparation, 228, 660, 665.669 preparations listed in table 87, 702 a-Amino ethers, preparation, 674 Amino halides, see Halo amines Amino ketones, aromatic, preparation, 657 in haloform reaction, 423 preparation, 328, 333, 669, 679 preparations listed in table 89, 705 reaction with diols, 263 reductive amination, 663 a-Amino ketones, preparation, 658 reaction, with alkali cyanides, 595 with organometallic compounds, 164 reduction, 152 β -Amino ketones, preparation, 672 reaction with organometallic compounds, 164 reduction, 152 Aminomethylation, 673 Amino oximes, reduction, 658 Amino phenols, oxidation to quinones, 399 preparation, 656, 665 preparations listed in table 86, 701 Ammonolysis of halogen compounds, 665 Ando synthesis of a-hydroxy acids, 428 Anhydrides, acylation of ketones by, 342 addition to aldehydes, 498 condensation, 349 with aromatic aldehydes, 55 disproportionation, 559 hydrolysis, 418 in the Friedel-Crafts reaction, 317, 319. 322 olefinic, addition to dienes, 560 preparation, 558 preparations listed in table 62, 561 pyrolysis, 404, 405 reaction, with acyl halides, 560 with ammonia or amines, 567 with hydroxy compounds, 482 with inorganic acid halides, 548 with olefins, 320 with organometallic compounds, 333

Anhydrides -Continued reduction to alcohols, 155 reduction to lactones, 535 Arenes, see Hydrocarbons, aromatic Arndt-Eistert reaction, 433, 487, 573 Arvl esters, Fries rearrangement, 344 hydrolysis, 169 preparation, 169 Arvl halides, see Halides Aryloxy acids, preparation, by acetoacetic ester synthesis, 430 by malonic ester synthesis, 429 from aryloxy alcohols, 419 from aryloxy cyanides, 414 preparations listed in table 48, 460 Aryloxy acyl halides, preparation, 547 preparations listed in table 61, 553 Aryloxy esters, preparations listed in table 55, 516 Aryloxy halides, see Halo ethers Arylsulfonohydrazides, decomposition, 283 Azides, see Acyl azides Azines, ring dehydrogenation, 680 Azlactones, hydrolysis to a-keto acids, 344 preparation, 436 reduction, 436 Azo compounds, oxidation, 766 preparation, 764 preparations listed in table 108, 767 reduction, 735 reductive cleavage, 665 Azoxy compounds, preparation, 764 preparations listed in table 108, 767 Barbier-Wieland degradation, 420 Barium salts of acids, decarboxylation, 331 Beckmann rearrangement of oximes, 572 Benzidine rearrangement, 682 Benzilic acid rearrangement, 435 Benzils, see a-Diketones Benzofurans, preparation, by dehydrocyclization, 842 from aryl carbonyl compounds, 843 Benzoin condensation, 178 Benzoins, see a-Hydroxy ketones Benzothiophenes, preparation, by dehydrocyclization reactions, 842 from arylketosulfides, 843

Betaines, preparation, 485

INDEX

Carboxylic acids -Continued

Boord olefin synthesis, 38, 231 Bouveault-Blanc reaction, 155 von Braun reaction, 97 Bucherer reaction, 168, 670 Bunte salts, 797

Cannizzaro reaction, 153, 423 Carbalkoxy acyl halides, preparation, 547.548 preparations listed in table 61, 554 Carbalkoxy amides, preparation, 566 Carbamates, hydrolysis, 678 preparation, 645, 678 preparations listed in table 79, 649 reaction with phosphorus pentachloride. 641 Carbamic acids, reaction with phosgene, 640 Carbamyl chlorides, preparation, 640 reaction with alcohols, ammonia or hydrazines, 647 Carbazoles, alkylation, 837 preparation from tetrahydro derivatives. 836 preparations listed in table 118, 851 Carbethoxylation, 488 Carbonates, see Alkyl carbonates Carbonyl compounds, see Aldehydes and Ketones Carboxy amides, preparations listed in table 63. 583 Carboxy esters, preparation, 482, 488 preparations listed in table 58, 522 ω -Carboxy esters, electrolysis, 498 Carboxy lactones, preparation, 534 Carboxylic acids, acylation by acyl halides. 558 addition, to acetylenes, 344, 491 to ketenes, 559 to olefins, 491 aminomethylation, 673, 674 γ -aryl, cyclization, 319 decarboxylation, 13, 331 decomposition, 294 dehydration to anhydrides, 559 esterification, 480 halogenation, 102 heterocyclic, decarboxylation, 838 preparation, 181, 411 preparations listed in table 42, 439

pyrolysis, 404 reaction, with acetylenic carbinols. 341 with acyl halides, 549 with amides, 569 with ammonia or amines, 567 with a-diazoketones, 496 with diazomethane, 485 with diazonium salts, 337, 498 with hydrazoic acid, 677 with inorganic acid halides, 546 with organometallic compounds, 166 reduction of aromatic nuclei in, 433 reduction to alcohols, 155 sulfonation, 812 Carboxylic anhydrides, see Anhydrides Carboxylic esters, acylation, 329, 347 acylation of ketones by, 342 acylation of nitriles by, 348 alcoholysis, 486 alkylation, 489 aminomethylation, 673, 674 aromatic, nuclear reduction, 493 carbethoxylation, 488 condensation, 329, 345 acyloin, 178 condensation with benzaldehyde, 176 halogenation, 102 hydrogenation, 156 hydrolysis, 169, 416 preparation, 479 preparations listed in table 50, 500 pyrolysis, 41, 404 reaction, with acyl halides, 560 with ammonia, 568 with hydrazine, 569 with hydroxylamine, 569 with inorganic acid halides, 547 with organomagnesium compounds, 165, 336 reduction, 155

reduction, 155 Chalcones, preparation, 51 reaction with organomagnesium compounds, 335 Chichibabin reaction, 846 Chlorocarbonates, *see* Alkyl chloroformates Chloroimines, preparation, 729

Chlorosulfites, see Alkvl chlorosulfites Chugaev reaction, 42 Claisen condensation. of aromatic aldehvdes, 53 of esters, 345 Claisen rearrangement of allvl ethers. 173 Clemmensen reduction, of carbonyl compounds, 5 of keto acids, 432 Conrad-Limpack-Knorr synthesis of aninolines, 847 Curtius rearrangement of azides, 296. 349, 640, 675 Cvanamides, alcoholysis, 648 hydrolysis, 647. 680 Cyanides. acvlation. 348 addition, of alcohols to, 634 of ammonia or amines to, 635 of olefins to. 571 alcoholysis, 485, 542 alkylation, 599 amination, 636 carbethoxylation, 489 condensation to β -iminonitriles, 730 hydrolysis, to acids, 412 to amides, 570 preparation, 590 preparations listed in table 66, 610 reaction, with dialkylaminomagnesium halides, 636 with Grignard reagents, 332, 729 reduction, to aldehvdes, 292 to amines, 658 Cvano acetals, preparation, 598 Cyanoacetic ester condensation, 608 Cvanoacetic ester synthesis, 429, 601 Cyano acids, esterification, 481 preparation, 593, 607, 608 preparations listed in table 74, 622 a-Cyano acids, decarboxylation, 429, 601 olefinic, addition of hydrogen cyanide, 603 Cvano acvl halides, preparation, 547 preparations listed in table 61, 554 Cyano aldehydes, hydrolysis, 414 preparations listed in table 73, 621 Cyano amides, preparation, 570 preparations listed in table 63, 583

Cvanoaminolysis of carbonyl compounds. 605 Cyano esters, hydrolysis, 427 preparations listed in table 75, 623 reaction with organomagnesium compounds, 333 a-Cyano estets, alcoholysis, 485 alkylation, 429, 600 cvanoethylation, 602 hydrolysis, 429 olefinic, hydrogenation, 608 preparation, 54, 601 preparation, 489, 600 B-Cyano esters, hydrolysis, 413 γ -Cvano esters, hydrogenation, 834 Cvano ethers, hydrolysis, 414 preparation, 228, 593 preparations listed in table 72, 619 reaction with Grignard reagents, 333 reduction to amino ethers. 660 Cvanoethylation, 602 Cyanogenation of aromatic compounds. 595 Cvano halides, see Halo cyanides Cyanohydrins, see Hydroxy cyanides Cvanohydrin synthesis, 414, 604 Cyano imides, preparation, 434 Cvano ketones. see Keto cyanides a-Cyano lactones, preparation, 534 Cyclodehydration of ketones and alcohols, 15, 843 Darzens condensation, 255 Diacetylenes. partial reduction. 46 preparation, 80, 81 preparations listed in table 5. 84 1.2-Diacyloxy compounds, preparation, 484 Diacyl sulfides, preparation, 558 Dialdehydes, preparation, 286, 291 preparations listed in table 26, 303 Diamides, dehydration, 597 Hofmann degradation, 675 preparations listed in table 63, 580 Diamines, alkylation, 668 preparation, by amination of imines, 671

> by reductive alkylation, 663, 664 by the Curtius reaction, 676 by the Gabriel reaction, 679

INDEX

Diamines, preparation-Continued by the Hofmann degradation reaction. 675 from aminonitriles, 659 from amino oximes, 658 from halides, 666 from nitro compounds, 655 preparations listed in table 82 691 reductive alkylation, 663, 664 Diazoacetic ester, addition to olefinic compounds, 498 Diazoalkanes, preparation, 769 teaction, with acvl halides, 771 with carbonyl compounds, 340 Diazoamino compounds, isomerization, 766 Diazo compounds, preparation, 769 preparations listed in table 109, 774 a-Diazoketones, alcoholysis and rearrangement, 487 ammonolysis and rearrangement, 573 hydrolysis, 181 and reatrangement, 433 preparation, 95, 771 pyrolysis to ketenes, 406 reaction, with alcohols, 234 with carboxylic acids, 496 with hydrogen halides, 95 reduction, with hydrogen iodide, 350 with LiAlH₄, 152 Diazonium borofluorides, 95, 168 Diazonium perbromides, 94 Diazonium salts, conversion, to aryl halides, 94 to nitro compounds, 49 coupling, with aromatic nuclei, 12 with olefinic acids, 45 with phenols and amines, 764 with pyridines, 837 hydrolysis to phenols, 167 preparation, 769 preparations listed in table 109, 774 reaction, with acrylonitrile, 609 with carboxylic acids, 337, 498 with furan. 838 with mercaptans, 789 with metallic cyanides, 594 with potassium ethyl xanthate, 779 with sulfur dioxide, 807

Diazonium salts-Continued reduction, to hydrazines, 734 to hydrocarbons, 14 Diazosulfides, decomposition, 789 Dibenzofutans, nitration, 747 sulfonation, 812 Dibromo-, see Dihalo-1.4-Dicarbonyl compounds, cyclization to heterocyclic compounds, 840 See also Dialdehydes and Diketones 1.1-Dicarboxylic acids, decarboxylation, 426 dehydration to anhydrides, 559 esterification, 481 halogenation, 103 in the Simonini reaction, 97 monoalkyl esters, see Carboxy esters olefinic, preparation. 54 preparation, by the Guareschi reaction, 434 from acid salts, 424 from evano esters, 430 from cyclic alcohols, 420 from dicvanides, 413 from malonic esters, 427 from unsaturated acids, 431 preparations listed in table 43, 447 pyrolysis, 405 reaction, with esters, 488 with utea, 597 Dicarboxylic esters, acidolysis, 488 condensation, with aldehydes, 176 with esters (acyloin), 178 a-cvano, preparation, 601 halogenation, 103 hydrolysis, 169 partial, 417 preparation, from dihalides, 169

from olefinic diesters, 493

reaction, with ammonia, 568

with hydrazine, 569

reduction to diols, 157

alkylation, 426, 489

cvanoethylation, 602

decarboxylation, 496

halo, preparation, 491

preparations listed in table 51, 503

1.1-Dicarboxylic esters, acylation, 330

1,1-Dicarboxylic esters-Continued hydrolysis, 427 olefinic, preparation, 491 preparation, 426, 488, 493, 494 preparations listed in table 51, 503 reaction with nitrous acid, 658 Dicyanides, hydrolysis, 413 olefinic, addition of hydrogen cyanide, 603 preparation, 55 preparation, 592, 597, 604 preparations listed in table 67, 614 a,β -Dicyano esters, preparation, 604 Dieckmann reaction, 345 Diels-Alder reaction, 48, 560 Diene synthesis with quinones, 401 Dienes, see Diolefins Diethers, preparation, 227 preparations listed in table 17, 238 Dihalides, alkylation of malonic ester by, 490, 491 ammonolysis, 666 dehydrohalogenation, 78 in the Williamson reaction, 228 partial amination, 668 preparation, by halogen exchange, 94 from diols, 91, 92 from olefins, 107 preparations listed in table 8, 120 reaction, with carboxylic acid salts, 169 with metallic cyanides, 593 gem-Dihalides, dehydrohalogenation, 37 hydrolysis, to aldehydes, 285 to ketones. 349 preparation, 105 1,2-Dihalides, dehalogenation, 39 dehydrohalogenation, 37 hydrolysis and rearrangement, 296, 341 hydrolysis to diols, 169 olefinic, dehalogenation, 40 1.4-Dihalides, preparation, 93 reaction with sodium sulfide, 838 1,5-Dihalides, preparation, 93, 97 Dihalo acetals, elimination of halo and alkoxyl groups from, 39 Dihalo acids, preparation, 107 a, a-Dihalo acids, preparation, 103 a, B-Dihalo acids, decarboxylation, 44 Dihalo aldehydes, preparation, 107

Dihalo esters, dehydrohalogenation, 38 preparation, 107 α,β -Dihalo ethers, coupling with Grignard reagents, 39, 231 preparation, 100 α,β' -Dihalo ethers, preparation, 230, 234 β , β '-Dihalo ethers, preparation, 232 Dihalo ketones, preparation, 107 a.a-Dihalo ketones, preparation, 100 α,β -Dihalo ketones, reaction with amines, 730 Dihydrazides, preparation, 569 Dihydrobenzofurans, preparation, 839 Dihydrobenzopyrroles, preparation, 839 Dihydrobenzothiophenes, preparation, 839 Dihydroxy acids, preparation, 179 Dihydroxy compounds, alkylation in the Williamson reaction, 227 dehydration, 33, 256 dehydrogenation to lactones, 536 esterification, 481 preparation, by bimolecular reduction of ketones, 154 by cleavage of oxides, 172 by hydrolysis of esters, 169 by reduction of dihydric phenols, 158 by reduction of esters, 157 from dicarbonyl compounds, 150 preparations listed in table 12, 193 1.2-Dihydroxy compounds, dehydration and rearrangement, 341 oxidative cleavage, 290 preparation, from dihalides, 169 from diketones, 150 from hydroxy ketones, 162 from olefins, 179 from oxides, 172 1.3-Dihydroxy compounds, preparation, 150, 157 1.4-Dihydroxy compounds, cyclization to furans, 838 dehydrogenation, 325 preparation, 150 Diketenes, hydrolysis, 330 reaction, with aldehydes, 350 with aromatic hydrocarbons, 320 with olefinic alcohols, 343 Diketo esters, cleavage, 346

INDEX

a, β -Diketo esters, preparation, 326 α, γ -Diketo esters, decarbonylation, 495 preparation, 342, 495 Diketones, alkylation, 339 aromatic, preparation, 320 preparations listed in table 33, 363 a-Diketones, cleavage, 423 oxidative cleavage, 290 partial reduction, 151 preparation, 323, 325, 326, 350 reaction with ethers or sulfides, 842 rearrangement, 435 reduction, 150 β -Diketones, cyclic, cleavage, 438 hydrogenolysis, 348 partial reduction, 151 preparation, 338, 342 reaction with acyl halides, 482 reduction, 150 γ -Diketones, cleavage, 438 internal condensation, 51 preparation, 350 reduction, 150 δ -Diketones, internal condensation, 52 Dinitro compounds, aromatic, partial reduction, 657 preparation, 750 preparations listed in table 98, 753 1.3-Dinitroparaffins, preparation, 751 Diolefins, see also Allenes addition, of halogen, 107 of hydrogen halide, 106 of hypohalous acid, 109 oxidation, 421 preparation, 33, 41, 46 preparations listed in table 3, 63 1.3-Diolefins, addition, of a-chloro ethers, 108 of dienophiles, 48 of olefinic anhydrides, 560 allylic bromination, 105 preparation, 36, 40 reaction with sulfur dioxide, 802 sulfurization, 841 1,4-Diolefins, preparation, 39 Diols, see Dihydroxy compounds Dioxolones, reductive cleavage, 435 Disulfides, preparations listed in table 112, 799 reaction with organolithium compounds, 789 reduction, 780

Disulfones, ethylene, cleavage, 808 Dithiocyanates, action of sodium sulfide, 790 Dithiols, preparations listed in table 110, 782 Doebner condensation, 52 Döbner-Miller synthesis of quinolines, 847 Duff reaction, 282 Elbs hydrocarbon synthesis, 16

Elbs oxidation of phenols, 181 Enolate salts, carbonation, 425 Enol esters, acylation, 342 halogenation, 102, 263 preparation, 102, 482, 483 Epoxides, see Oxides Epoxy ethers, preparation, 234 Epoxy ketones, preparation, 255 a-Epoxy ketones, rearrangement, 435 Esters, see Carboxylic esters Etard reaction, 288 Ethers, aromatic, acylation, 322 cyanogenation, 596 haloalkylation, 37 halogenation, 99 nitration, 748 cleavage, 92, 171, 498 elimination of alcohol from, 40 halogenation, 99 preparation, 226 preparations listed in table 16, 235

Fischer-Hepp reaction, 742 Fischer indole synthesis, 844 Friedel-Crafts reaction, acylation, 317 alkylation, 2 halohydrins in, 36 limitations, 330, 332 preparation, of sulfinic acids by, 808 of sulfones and sulfoxides by, 802 unsaturated acids in, 434 Fries rearrangement, 344 Furans, acylation, 319 cleavage to γ -diketones, 350 halogenation, 99 in Friedel-Crafts reaction, 422 preparation, by decarboxylation reactions, 838 from carbonyl compounds, 835 from dicarbonyl compounds, 840, 842

Furans, preparation—*Continued* from halo ketones and keto esters, 840 from hydroxy halides, 839 preparations listed in table 118, 849 reaction with diazonium salts, 838 reduction, 833

Gabriel reaction, 679 Gattermann-Koch reaction, 280 Gattermann reaction, 94, 280 Glycerides, preparation, 481, 482 Glycidamides, preparation, 570 Glycidic acids, decarboxylation, 295 pyrolysis, 348 Glycidic esters, preparation of, 254, 255 Glycols, see Dihydroxy compounds Glyoxals, see a-Keto aldehydes Grignard reagents, see Organomagnesium compounds Guareschi reaction, 434 Guerbet reaction, 181

Halides, alkylation, of acetylenes by, 80 of amides by, 572 of amines by, 666 of a-cyano esters by, 429 of hydrazine by, 733 of β -keto esters by, 346 of ketones by, 339 of malonic esters by, 426, 489 of nitriles by, 599 of nitro compounds by, 749 of phthalimide by, 679 of guinones by, 400 ammonolysis, 665 aryl, alkylation, 109 alkylation of amines by, 667 coupling of, 12 nitration, 748 condensation, by sodium amide, 47 with hydrocarbons, 108 coupling with organometallic compounds, 9 dehydrohalogenation, to acetylenes, 78 to olefins, 36

Halides-Continued halosulfonation, 822 hydrolysis, 170 preparation, 88 preparations listed in table 7, 111 reaction, with alkali hydrosulfides. 778 with alkali sulfites, 813 with alkoxides, 226 with hexamine, 282, 670 with metallic cyanides, 591 with metallic halides, 93 with metallic sulfides, 788 with salts of carboxylic acids. 484 with Schiff bases, 680 with silver nitrite, 749 with sodium amide, 682 with sodium disulfide, 798 reduction. 8 Halo acetals, amination, 669 dehydrohalogenation, 37, 79 preparation, 101, 263, 269 Halo acids, amination, 669 decarboxylation, 79 dehydrohalogenation, 38, 79 esterification, 481 in the Williamson reaction, 228 lactonization, 535 preparation, by cleavage of ethers, 93 from halo alcohols, 419 from halo cvanides, 413 preparations listed in table 46, 455 reaction with metallic cyanides, 593 a-Halo acids, ammonolysis, 666 preparation, 102, 418, 428 β -Halo acids, decarboxylation, 44 preparation, 106, 496 Haloacyl halides, dehalogenation, 406 dehydrohalogenation, 38 hydrolysis, 418 preparation, 547 preparations listed in table 61, 552 Halo alcohols, see Hydroxy halides Halo aldehydes, oxidation, 419 preparations listed in table 29, 305 reaction with alcohols, 236 selective reduction, 152

a-Halo aldehydes, amination, 669

preparation, 101 Haloalkylation, of alcohols, 230 of aromatic compounds, 104 a-Haloalkyl esters, preparation, 498 β -Haloalkyl esters, preparation, 485 Halo amides, preparations listed in table 63, 581 a-Halo amides, preparation, 566 reaction with carbonyl compounds. 575 N-Halo amides, preparation, 103 Halo amines, alkylation, 669 aromatic, preparation, 655 coupling with organometallic compounds, 46 preparation, 92, 93, 668, 679 preparations listed in table 85, 695 N-Halo amines. cyclization. 842 preparation, 103 a-Halo azides, reatrangement, 349 Halo cyanides, amination, 669 hydrolysis, 414 in the Williamson reaction, 228 preparation, 92, 94, 593 preparations listed in table 70, 617 a-Halo cyanides, dehydrohalogenation, 38 preparation, 91 reduction to cyanides, 608 γ -Halo cvanides, interaction with Grignard reagents, 841 β -Halo cyanides, preparation, 106 Halo esters, alkylation of esters by, 489, 491 alkylation of β -keto esters by, 495 amination, 669 dehydrohalogenation, 38 hydrolysis, 417 in the Williamson reaction, 228 preparation, 92, 93, 94, 110, 496 preparations listed in table 53, 509 a-Halo esters, addition to olefins, 108 alkylation of cyano esters by, 601 condensation with ketones, 351 preparation, 103 reaction with ethyl orthoformate, 265 β -Halo esters, preparation, 91, 106 γ -Halo esters, preparation, 108 reaction with alkali, 254

INDEX

 ω -Halo esters, preparation, 97 Halo ethers, addition to olefins, 232 alkylation of malonic ester by, 491 amination, 669 coupling with organometallic compounds, 39, 46 dehydrohalogenation, 37, 79 in acetoacetic ester synthesis, 347 olefinic, preparation, 39 preparation, 91-94, 100, 110, 228. 229 preparations listed in table 20, 240 a-Halo ethers, addition to butadiene. 108 bromination, 100 coupling with organomagnesium compounds, 231 preparation, 230, 234 reaction with metallic cyanides, 593 β -Halo ethers, elimination of halo and alkoxyl groups, 39 preparation, 231 reaction with metallic cyanides, 593 γ -Halo ethers, preparation, 232 Haloform reaction, 422, 488 Haloforms, see Trihalides Halohydrins, see Hydroxy halides Halo ketals, preparation, 266, 274 Halo ketones, amination, 669 dehydrohalogenation, 37 in the Williamson reaction, 228 olefinic, reaction with alcohols, 266 preparation, 92, 93, 321, 324, 332, 334 preparations listed in table 36, 370 reaction, with alcohols, 236 with metallic cyanides, 593 with organomagnesium compounds, 335 selective reduction, 152 a-Halo ketones, alkylation of malonic ester by, 491 cleavage, 422 condensation, with aldehydes, 256 with β -keto esters, 840 Favorsky rearrangement of, 497 hydrolysis, 170 preparation, 95, 100, 328, 344, 422 reaction, with Grignard reagents, 163. 253, 296 with sodium ethoxide, 267

a-Halo ketones-Continued rearrangement, 435 reduction, 151 β -Halo ketones, dehydrohalogenation, 320 preparation, 104, 343 Halo lactones, preparation, 534, 535 Halomalonates, reduction, 499 Halo phenols, preparations listed in table 15, 205 Hell-Volhard-Zelinsky reaction, 103 Heterocyclic compounds, preparation, 832 preparations listed in table 118. 849 Hexamine, reaction with halides, 282, 670 Hoesch-Houben reaction, 321 Hofmann degradation of amides, 103, 296, 674 Hofmann exhaustive methylation, 43 Hydantoins, hydrolysis, 437 preparation, 437 Hydrazides, conversion to aldehydes, 283 preparation, 565, 569 preparations listed in table 65, 584 reaction with nitrous acid, 575 Hydrazines, alkylation, 733 oxidation, 766 preparation, 733 preparations listed in table 94, 736 reaction, with carbamyl chlorides, 647 with isocyanates, 645 Hydrazobenzenes, rearrangement, 682 Hydrazones, addition of hydrogen cyanide, 606 alkaline decomposition, 5 hydrolysis, 286 oxidation, 82, 406, 770 preparation, 337 Hydrocarbons, aromatic, acylation, 317 alkylation, 2 carboxylation, 425 condensation with chloral, 297 condensation with ethylene oxide, 181 condensation with olefinic amines, 682

Hydrocarbons, aromatic-Continued condensation with olefinic halides, 108 coupling with diazonium salts, 12 cyanogenation, 595, 596 formylation, 280, 281 haloalkylation, 104 halosulfonation, 822 oxidation, 287, 398, 421 preparation, 1 preparations listed in table 1, 18 reaction with SO₂, 808 reduction. 6 sulfonation, 802, 811 dehydrogenation, 3 halogenation, 98 naphthenic, preparation, 1 preparations listed in table 1, 17 nitration, 746 oxidation of methylene groups in, 326 paraffinic, preparation, 1 preparations listed in table 1, 17 reaction with carbon monoxide, 350 Hydroxamic acids, Lossen degradation of. 676 preparation, 419, 565, 569, 576, 577 β -Hydroxy acetals, dehydration, 34 preparation, 267 Hydroxy acids, alkylation, 229 esterification, 481 intramolecular esterification, 533 preparation, from lactones, 417 from olefinic acids, 179 preparations listed in table 47, 458 a-Hydroxy acids, condensation with acetone, 435 cyanohydrin synthesis, 414 decomposition, 294 degradation to ketones, 349 dehydration, 34 oxidation, 295 preparation, by the Ando synthesis, 428 by the benzilic acid rearrangement, 435 from a-bromo acids, 170 from aketo acids, 164 from anitroölefins, 419 reduction, 431

INDEX

 β -Hydroxy acids, dehydration, 34 Hydroxy aldehydes, alkylation, 229 oxidation, 419 preparations listed in table 30, 306 a-Hydroxy aldehydes, preparation, 164, 170.287 β -Hydroxy aldehydes, dehydration, 49 preparation, 174 reduction, 150 Hydroxy amides, preparation, 566, 569 preparations listed in table 63, 582 Hydroxy amines, see also Amino phenols oxidation, 420 preparation, by Gabriel reaction, 679 by Grignard reaction, 161, 164 by reductive alkylation, 663, 664 from amino esters, 157 from amino ketones, 152 from halo alcohols, 669 from isonitroso ketones, 658 preparations listed in table 86, 698 reductive alkylation, 663, 664 β -Hydroxy amines, cyclization to imines, 729 oxidative cleavage, 290 preparation, from carbamates, 678 from diazo ketones, 152 from hydroxy cyanides, 660 from nitro alcohols, 656 from oxides, 672 γ -Hydroxy amines, preparation, from allyl alcohol, 672 from β -aminoacrylates, 158 from β -amino aldehydes, 152 from carbamates, 678 Hydroxy cyanides, preparations listed in table 71, 619 ·a-Hydroxy cyanides, alcoholysis, 486 dehydration, 35 preparation, 604, 605 reaction, with aldehydes, 605 with ammonia, 606 with Grignard reagents, 332 with phosphorus halides, 91 with thionyl chloride, 608 reduction, 660 β -Hydroxy cyanides, hydrolysis, 414 Hydroxy esters, preparation, by Grignard reaction, 161 from keto esters, 151

Continued from lactones, 496 preparations listed in table 54, 513 a-Hydroxy esters, oxidation, 324 preparation, 151, 486 reaction with ketenes, 483 β -Hydroxy esters, dehydration, 34 preparation, 151, 176, 177 reaction with phosphorus halides, 91 reduction, 157 γ -Hydroxy esters, preparation, 152 ω -Hydroxy esters, preparation, 494 Hydroxy ethers, oxidation, 419 preparation, by alcoholysis of oxides. 233 by alkylation of glycols, 227 by alkylation of phenols, 229 by Grignard reactions, 161, 163, 165 from aldo ethers, 151 from alkoxy esters, 157 preparations listed in table 21, 246 a-Hydroxy ethers, dehydration, 34 preparation, 165, 167 B-Hydroxy ethers, decomposition, 294 preparation, 294 Hydroxyethylation of phenols, 229 Hydroxy halides, alkylation, 229 amination, 669 cyclization to furans, 838 dehydration, 34 haloalkylation, 230 in the Friedel-Crafts reaction, 36 in the Williamson reaction, 228 oxidation, 419 preparation, by aldol condensation, 176 by Grignard reactions, 161, 163, 165 from halo esters, 157 from halo ketones, 151, 152 from olefins, 109 from oxides, 110 preparations listed in table 15, 202 reaction, with alkali, 253, 254 with metallic cyanides, 593 Hydroxy ketals, preparation, 263, 267, 274 Hydroxy ketones, alkylation, 229 in haloform reaction, 423

oxidation, 323

Hydroxy esters, preparation-

INDEX

Imino esters-Continued

preparation, 485, 634

Hydroxy ketones-Continued preparation, from acetylenic carbinols, 341 from cyanohydrins, 332 from diketones, 151 from diols, 325 from keto oximes, 163 preparations listed in table 37, 375 a-Hydroxy ketones, alkylation, 340 isomerization, 170 oxidation. 289 oxidative cleavage, 290 preparation, by alkylation of acyloins, 340 by benzoin condensation, 178 from a-diazoketones, 181 from diketones, 151 from Grignard reagents on a-nitroso ketones, 163, 336 from keto esters, 170 preparations listed in table 37, 375 reduction. 150 β -Hydroxy ketones, dehydration, 50 preparation, 150, 151, 164, 174 Hydroxy lactones, preparation, 534 Hydroxylamines, preparation, 655 a-Hydroxylamino cyanides, preparation, 607 Hydroxyl group, protection, 171, 266, 483 Hydroxy olefins, see Olefinic alcohols a-Hydroxy sulfonic acids, conversion to a-amino cyanides. 606 preparation, 606 reaction with metallic cvanides, 605 Imides, N-alkylation, 572

condensation with aldehydes, 575 N-halogenation, 103 preparation, 565, 568, 576 preparations listed in table 64, 583 Imines, addition of hydrogen cyanide, 606 amination, 671 cyclic, reaction with mercaptans, 789 preparation, 293, 728 preparations listed in table 93, 731 Imino chlorides, preparation, 284, 292 reduction, 284, 292 Imino esters, alcoholysis, 542 ammonolysis, 635

preparations listed in table 76, 637 pyrolysis to amides. 576 Imino ethers, see Imino esters Imino ketones, preparation, 730 β -Iminonitriles, hydrolysis, 351 preparation, 730 Indoles, alkylation, 836 preparation, by Fischer synthesis, 844 from o-aminobenzyl carbonyl compounds, 845 from anilinoketones, 843 from o-toluidines, 844 preparations listed in table 118, 851 Isocyanates, hydrolysis, 674, 675, 678 preparation, 640 preparations listed in table 78, 642 reaction, with alcohols, 645 with amides, 647 with amines, 645 with diazomethane, 576 with Grignard reagents, 571 with hydrazines, 645 Isonitroso compounds, see also Oximes a-Isonitroso ketones, reaction with Grignard reagents, 163, 287 reduction to amino ketones, 658

preparations listed in table 95, 743 reduction to amino ketones, 658 Isoquinolines, cyanogenation, 607 dehydrogenation, 836 hydrogenation, 834 preparation, by ring-closure reactions, 848 from polyhydro derivatives, 836 preparations listed in table 118, 853 Isothiocyanates, hydrolysis, 678

preparations listed in table 117, 829

Jacobsen reaction, 15 Japp-Klingemann reaction, 337

Ketals, carbalkoxy, reduction, 157 preparation, 261 preparations listed in table 24, 273 Ketene, condensation with carbonyl compounds, 536 Ketene acetals, preparation, 267, 269 Ketene dimers, depolymerization, 407 reaction with alcohols, 483

INDEX

Ketenes, addition of carboxylic acids. 559 preparation, 404 preparations listed in table 41, 409 reaction, with amines, 571 with hydroxy compounds, 483 Ketimine salts, hydrolysis, 332 preparation, 332 β -Keto acetals, preparation, 266 reaction with Grignard reagents, 267 Keto acids, esterification, 481 lactonization, 533 preparation, by cleavage of β -keto esters, 328 by succinovlation, 322 from acylcyclohexanones, 438 from cyclic ter.-alcohols, 437 from Grignard reagents and ester acid halides. 334 preparations listed in table 49, 462 a-Keto acids, decarboxylation, 295 olefinic, preparation, 54 oxidative degradation, 422 preparation, by oxidation of acetyl groups, 422 by oxidation of methylene groups, 326 from acyl cyanides, 414 from azlactones, 344 from hydroxy acids, 324 from keto amides, 416 from keto esters, 417 from oximino esters, 337 reaction with organometallic compounds, 164 reduction, 432 reductive amination, 663 β -Keto acids, cleavage, 430 nitrosation, 740 preparation, 341, 425, 429 γ -Keto acids, preparation, 324, 495 pyrolysis to lactones, 537 reduction, 432 Keto alcohols, see Hydroxy ketones Keto aldehydes, preparations listed in table 39, 381 reaction with alcohols, 263 a-Keto aldehydes, condensation with aromatic hydrocarbons, 178 internal oxidation-reduction, 435 oxidative cleavage, 290 preparation, 282, 285, 288

 β -Ketoalkylpyridinium iodides, alkaline cleavage, 434 Keto amides, hydrolysis, 416 preparation, 569, 571, 576 preparations listed in table 63, 582 Keto amines, see Amino ketones Keto cyanides, preparations listed in table 73, 621 a-Keto cyanides, hydrolysis, 414 preparation, 414, 595 β -Keto cyanides, alcoholysis, 486 preparation, by acylation of nitriles, 348 by hydrolysis of β -iminonitriles, 351 from β -keto amines, 595 from phenacyl halides, 593 reduction to β -hydroxy amines, 660 Y-Keto cyanides, preparation, 603 Keto diesters, preparation, 326 β -Keto diesters, cleavage to ketones. 330 Keto esters, internal condensation, 51 preparation, 322, 334 preparations listed in table 57, 517 reaction, with diols, 263 with organometallic compounds, 534 reduction, 151, 498 a-Keto esters, decarbonylation, 494 hydrolysis, 417 partial reduction, 151 preparation, 322, 324, 337 reaction, with organometallic compounds, 164 with orthoesters, 264 β -Keto esters, acylation, 346 O-acylation, 330, 482 alkvlation, 327, 328, 346 by halo esters, 495 ammonolysis, 569 cleavage, to esters, 495 to ketones, 327 cvanoe thylation, 602 halogenation, 328 nitrosation, 407 olefinic, 54, 343 preparation, by alcoholysis of keto cyanides, 486 by alkylation of β -keto esters, 347

INDEX

 β -Keto esters, preparation—Continued by carbethoxylation of ketones. 488 by Claisen condensation, 494 by cleavage of diacyl esters. 346 by condensation of esters, 345 by diazomethane on keto acids. 485 by ketene dimers on alcohols, 483 by the Reformatsky reaction, 351 from Grignard reagents on cyano esters, 333 from olefinic keto esters, 338 preparations listed in table 57, 517 reaction, with aldehydes, 54, 176 with amines, 682 with a-halo ketones, 840 with hydrazoic acid, 678 with nitrous acid, 333, 658 reduction, 157 γ -Keto esters, preparation, 495 reduction, 152 Keto ethers, preparation, 322, 324, 328. 333, 334 preparations listed in table 38, 378 reduction, 151 a-Keto ethers, reaction with Grignard reagents, 163, 294 β -Keto ethers, preparation, 234 γ -Keto ethers, preparation, 233 a-Keto isocyanates, preparation, 641 Keto lactones, preparation, 537 a-Keto lactones, cleavage, 56 Ketols, see Hydroxy ketones Ketones, acylation, 342 addition of hydrogen cyanide, 604 alkylation, 339, 416 aminomethylation, 673, 674 aryl, cyclodehydration, 15, 843 bimolecular reduction, 153 carbethoxylation, 488 cleavage, 416, 574 condensation, aldol, 50, 174 by diacetyl peroxide, 350 with amines, 728 with a-amino ketones, 841 with benzyl cyanide, 55 with chloroform, 176 with cvanoacetic acid, 601 with cvanoacetic ester, 54, 604, 608

Ketones, condensation-Continued with esters of dibasic acids, 54 with a-halo esters, 34, 177, 254, 255, 351 with malononitrile, 55 with nitro compounds, 55 with pyridine or guinoline, 181 conversion, to amides (Willgerodt), 573 to a-amino cyanides, 605 cvanoethylation, 602 cyclic, dehydrogenation, 180 oxidation, 420 formulation, 282 haloalkylation, 104 halogenation, 100 heterocyclic, reduction, 835 iodination in pyridine, 434 nitrosation, 599, 740 oxidation, by selenium dioxide, 288 of a-methylene groups in, 326 to esters. 494 oximination, 739 preparation, 316 preparations listed in table 32, 352 pyrolysis, 404 reaction, with acetylenic organometallic compounds, 162 with diazomethane, 340 with diols. 262 with epoxides, 266 with formamide, 664 with a-halo amides, 575 with hydrazoic acid, 574, 636, 677 with ketene, 483, 536 with organometallic compounds, 161 with orthoesters, 264 with phosphorus pentahalides, 105 reduction, by alcohols, 152 by Grignard reagents, 162 to hydrocarbons, 5 to hydroxy compounds, 149 reductive amination, 662, 663 reductive hydrazination, 735 Kiliani cvanohvdrin synthesis, 605 Knoevenagel condensation, 52, 496, 608 Knorr reaction, 841 Kolbe reaction, 426

preparation, 576 preparations listed in table 63, 579 Lactones, addition of hydrogen cyanide, 607 alcoholysis, 496 conversion to cyclic ketones, 320 hydrolysis, 417 preparation, 533 preparations listed in table 59, 538 reaction, with alcoholic hydrogen halide, 496 with amines, 576 with mercaptides, 790 with thionyl chloride, 496 reduction, 155 β -Lactones, decarboxylation, 42 preparation, 483 γ -Lactones, dehydration to cyclopentenones, 343 oxidation with bromine, 324 Leuckart reaction, 663, 779 Lossen degradation of hydroxamic acids, 676

Lacia s. hydrolysis, 416

Malonic ester synthesis, 426 Mannich bases, preparation, 674 pyrolysis, 43 reaction with enolates, 51 Mannich reaction, 43, 673 Markownikoff rule, 788 Meerwein-Ponndorf-Verley reaction, 152 Mercaptans, alkylation, 787 cyanoethylation, 602 haloalkylation, 789 halogenation, 821 oxidation, 797 preparation, 778 preparations listed in table 110, 782 reaction with lactones, 790 Methylene groups, nitrosation, 740 oxidation. 326 O-Methylhydroxylamine, reaction with Grignard reagents, 681 Methyl xanthates, pyrolysis, 42 Michael condensation, 52, 436, 492, 603, 751

Naphthols, see under Phenols Naphthoquinones, oxidation, 399

Nencki reaction, 321 Nitriles, see Cvanides Nitro acetylenes, preparation, 79, 81 Nitro acids, decarboxylation, 750 esterification, 481 preparation, 415, 417 preparations listed in table 104, 757 Nitro acyl halides, preparation, 547 preparations listed in table 61, 554 Nitro alcohols, cleavage in basic media, 656 dehvdration, 35 oxidation, 324 preparation, 152, 176 preparations listed in table 101, 755 reduction to amino alcohols, 654, 655 Nitro aldehydes, aromatic, reduction to amino aldehvdes, 656 preparation, 289 preparations listed in table 103, 757 selective reduction, 152 Nitro amides, preparations listed in table 63, 583 Nitro amines, preparation, 657, 680 preparations listed in table 107, 750 reduction to diamines, 654, 655 Nitro compounds, alkylation, 749 condensation with carbonyl compounds, 176 hydrolysis, to acids, 418 to ketones, 348 preparation, 746 preparations listed in table 97, 752 rearrangement to hydroxamic acids. 576 reduction, to amines, 654 to azo and azoxy compounds, 765 to hydroxylamines, 655 to oximes, 740 reductive alkylation, 663 Nitro cyanides, hydrolysis, 415 preparations listed in table 106, 759 reduction to amino cyanides, 654. 657 Nitro esters, hydrolysis, 417

preparations listed in table 105, 758 reduction to amino esters, 657

Nitro ethers, preparations listed in table 102, 756 reduction to amino ethers, 654 Nitro halides, aromatic, ammonolysis, 666 reduction, 655 dehydrohalogenation, 79 preparations listed in table 100, 754 Nitro ketals, hydrogenation, 264 Nitro ketones, aromatic, reduction to amino ketones, 657 preparations listed in table 103, 757 a-Nitro ketones, preparation, 324 Nitrones, 607 Nitro olefins, preparation, 35, 42, 43, 55 preparations listed in table 99, 754 reduction to olefinic amines, 654 reduction to oximes, 740 a-Nitro olefins, addition, of alcohols, 233 of anions (Michael), 492 hydrolysis, 419 reaction, with amines, 673 with ammonia, 673 with nitroparaffins, 751 reduction to oximes, 337 Nitroparaffins, see also Nitro compounds acid treatment, 296 addition to a-nitro olefins, 751 aminomethylation, 674 condensation with aldehydes, 337 cvanoethylation, 602 reduction to amines, 654 reductive alkylation, 663 Nitro phenols, preparations listed in table 101, 755 reduction, 656 N-Nitrosoamines, decomposition, 741 reduction to hydrazines, 734 Nitrosoanilines, hydrolysis, 680 Nitroso compounds, condensation with amines, 765 oxidation, 751 preparation, 739 preparations listed in table 96, 744 reduction, 407 C-Nitroso compounds, preparations listed in table 96, 744 N-Nitroso compounds, decomposition, 769 preparations listed in table 96, 744 Nitrosoureas, reduction, 648

Nitrourea, reaction with amines, 646 reduction, 648

Olefinic acetals, preparation, 263 preparations listed in table 23, 268 α,β -Olefinic acetals, preparation, 37 Olefinic acetylenes, addition of alcohols, 233, 266 alkylation, 80 partial reduction, 46 preparation, 34, 39, 46, 48, 80 preparations listed in table 6, 84 Olefinic acids, addition, of halogen, 107 of hydrogen halide, 106 of hypohalous acid, 109 alkaline degradation, 434 decarboxylation, 44 esterification, 481 hydroxylation, 179 lactonization, 534 preparation, by Grignard reaction, 425 by malonic ester synthesis, 428 from acetylenic acids, 46 from acyl halides, 418 from hydroxy acids, 34 from olefinic aldehydes, 419 from ole finic cyanides, 413 preparations listed in table 44, 451 reduction, 431 selective reduction, 157 a, β -Olefinic acids, amination by hydroxvl amine, 673 coupling with diazonium salts, 45 preparation, 38, 43, 52, 55, 423, 426 β, γ -Olefinic acids, isometization, 47, 52, 54 Olefinic acyl halides, hydrolysis, 418 preparation, 547, 549 preparations listed in table 61, 551 Olefinic alcohols, alkylation by alkyl sulfates, 229 dehydration, 33, 42 isomerization, to aldehydes, 296 to ketones, 349 preparation, by Grignard reaction, 160, 162, 165 from acetylenic alcohols, 46 from dihydropyran, 173 from olefinic esters, 157

INDEX

Olefinic esters-Continued

of halogen, 107

epoxidation, 255

pounds, 167

alcoholysis, 486

37, 41

selective reduction, 157

amines, 673

a-bromo, preparation, 56

selective reduction, 493

from halo ethers, 37

 α,β -Olefinic esters, addition, of

of anions (Michael), 492

preparation, 40, 43, 53, 486, 497

Olefinic ethers, preparation, by alkyla-

from acetylenic ethers, 46

 α,β -Olefinic ethers, preparation, 34.

Olefinic halides, addition of halo

alkylation, of amines by, 668

with hydrocarbons, 108

dehydrohalogenation, 36, 78

in the Williamson reaction, 227

by halogen exchange, 94

from dihalides, 36

from diolefins, 106

from dihalo acids, 44

from halo alcohols, 34

of malonic esters by, 491

condensation, by sodium amide, 47

coupling with organometallic com-

in acetoacetic ester synthesis, 328.

preparation, by allylic bromination,

by Grignard coupling reactions, 46

from olefinic alcohols, 90, 91, 92

preparations listed in table 9, 125

ethers. 232

pounds. 45

hydrolysis, 170

104

347

preparations listed in table 18, 238

tion of alcohols, 227, 229

by Grignard coupling reactions, 46

of organometallic compounds, 492

preparation, 34, 485

hydrolysis, 417

addition, of alcohols, 233

of hydrogen halide, 106, 491

preparations listed in table 52, 506

reaction with organometallic com-

Olefinic alcohols, preparation-Continued from olefinic ketones, 151, 152 preparations listed in table 13, 197 reaction, with diketene, 343 with hydrogen halide, 90 with phosphorus halides, 91 reduction, 158 Olefinic aldehydes, addition of halogen, 107 bimolecular reduction, 154 oxidation, 419 preparation, 287, 289 preparations listed in table 27, 303 reaction, with alcohols, 263 with organometallic compounds, 160 selective reduction, 149, 151, 152 α,β -Olefinic aldehydes, addition, of amines, 673 of anions (Michael), 492 condensation, aldol, 49 with anhydrides, 56 with malonic acid, 53 preparation, 34, 37, 42, 43, 49, 281, 285 selective reduction, 291 Olefinic amides, dehydration, 598 preparations listed in table 63, 580 Olefinic amines, condensation with aromatic hydrocarbons, 682 preparations listed in table 83, 694 α,β -Olefinic amines, reduction, 681 Olefinic cyanides, addition of hydrogen halide, 106 alcoholysis, 485 alkylation, 600 hydrolysis, 413 preparation, 592, 600 preparations listed in table 68, 615 reaction with hydrogen peroxide, 570 α,β -Olefinic cyanides, addition of alcohols, 233 epoxidation, 255 hydrogenation, 608 preparation, 35, 38, 55, 597, 598, 601.602 Olefinic esters, see also Alkenyl esters

INDEX

Olefinic halides-Continued reaction, with metallic cyanides, 592 with nitryl chloride, 751 Olefinic ketones, addition, of halogen, 107 of hypohalous acid, 109 aromatic, preparation, 321 cyclic, preparation, 51, 52 preparation, by acetoacetic ester synthesis, 328 by the Grignard reaction, 332, 334 preparations listed in table 34, 366 reaction with organometallic compounds, 162 selective reduction, 152 a, B-Olefinic ketones, addition, of alcohols, 233 of anions (Michael), 492 of malonic ester, 330 amination, 672 a-bromo, preparation, 56 condensation with furans, 349 epoxidation, 255 in haloform reaction, 423 preparation, by acylation of olefins, .320 by aldol condensation, 49 by ester pyrolysis, 42 from acetylenic alcohols, 343 from halo ketones, 37 from Mannich bases, 43 reaction, with alkali cyanides, 603 with Grignard reagents, 335 with ketene, 536 reductive alkylation, 662 selective reduction, 337 γ , δ -Olefinic ketones, preparation, 340, 343 Olefinic lactones, preparations, 534-537 Olefinic phenols, preparations listed in table 13, 200 a,β -Olefinic sulfones, addition of anions (Michael), 492 Olefins, acylation, 38 addition, of acyl halides, 343 of alcohols, 232 of aldehydes, 350 of a-bromocarboxylic esters, 108 of carboxylic acids, 491

Olefins, addition-Continued of diazoacetic ester, 498 of halo ethers, 232 of halogen, 106 of hydrogen cyanide, 603 of hydrogen halide, 105 of hypohalous acid, 109 of polyhalides. 107 to cyanides, 571 allylic bromination, 36, 104 condensation, with halides, 108 with phenols, 179 conversion to amides (Willgerodt), 573 hydration, 174 hydroformylation, 282 hydroxylation, 179, 254 isomerization, 47 oxidation, of methylene groups in, 326 to acids, 420 ozonolysis, 288, 325, 421 preparation, 31 preparations listed in table 2, 58 reaction, with acyl halides, 320 with anhydrides, 320 with peracids, 254 reduction to paraffins, 7 sulfonation, 812 Oppenauer oxidation, 289, 324 Organocadmium compounds, reaction with acyl halides, 333 reaction with anhydrides, 333 Organocopper compounds, acetylenic, oxidation, 81 Organolithium compounds, acetylenic, reaction with ketones, 163 carbonation, 424 coupling with halides, 9, 10, 11 olefinic, reaction with aldehydes, 160 oxidation, 159 reaction, with disulfides, 789 with halogen, 96 with ketones, 162 with pyridines, 837 with sulfur, 780 Organomagnesium compounds, acetylenic, alkylation, 80 carbonation, 425 coupling with ClCN, 82

東京に主要の名素

INDEX

Organomagnesium compounds, acetylenic-Continued reaction with aldehyde, 160 reaction with anhydrides, 333 reaction with ketones, 162, 163 reaction with oxides, 165 alkoxy, reaction with aldehydes, 161 reaction with halides, 46 reaction with oxides, 165 amino, reaction with ketones, 164 carbonation, 424 coupling, with acetylenic halides, 81 with diethylaminocarbonyl chloride, 576 with halides. 9 with halo ethers. 39, 231 with olefinic halides, 45 from dihalides, 681 hydrolysis, 9 in the Claisen condensation, 345 olefinic, coupling with halides, 45 reaction with aldehydes, 160 reaction with ketones, 162 reaction with nitriles, 332 reaction with oxides, 165 oxidation, 159 reaction, with acids, 166 with acyl halides, 166, 334 with aldehydes, 159 with aldo esters, 161 with alkoxy esters, 167, 294 with alkyl carbonates, 497 with alkyl sulfates, 11 with alkyl sulfonates, 11, 803 with amides, 335 with amino aldehydes, 161 with amino esters, 167 with amino ketones, 164 with anhydrides. 333 with carboxylic acids, 166 with chloral, 418 with chloroamine, 681 with γ -chloro nitriles, 841 with cyanides, 332, 636, 729 with diazomethane, 735 with N.N-diethyloxamate, 416 with dihalotetrahydropyrans, 173 with dioxolones, 435 with esters, 165, 336 with ethoxymethyleneaniline, 293

Organomagnesium compounds, reaction-Continued with haloalkyl sulfonates, 96 with halogen, 96 with halo ketones, 163, 253, 296, 335 with a-hydroxy ketones, 162 with isocyanates, 571 with isonitrosoketones, 287 with keto acids, 164 with keto esters, 164, 534 with keto ethers, 163, 294 with ketones, 161 with keto oximes, 163 with O-methylhydroxylamine, 681 with N-methyl-a-pyrrolidone, 848 with olefinic aldehydes, 160 with α,β -olefinic esters, 492 with olefinic ketones, 162, 335 with orthoformic esters, 264, 293 with oxides. 164 with oximes, 729 with salts, 336 with Schiff bases, 681 with sulfur. 780 with sulfur dioxide, 808 reduction by, 162, 166 Organomercury compounds, reaction with halogen, 96 Organopotassium compounds, coupling with halides. 10 Organosodium compounds, acetylenic, alkylation, 80 carbonation, 425 reaction with aldehydes, 160 reaction with anhydrides, 333 reaction with ketones, 162, 163 reaction with oxides, 165 coupling with halides, 10 oxidation, 159 reaction with oxides, 165

Organozinc compounds, coupling with

reaction, with acyl halides, 334

Ortho esters, a-halo, elimination of

halo and alkoxy groups, 39

halides, 9, 10

with ketones, 177

preparation, 543

halogenation, 543

preparation, 542

INDEX

Ortho esters-Continued preparations listed in table 60, 544 pyrolysis, 267 reaction, with arylamines, 636 with carbonyl compounds, 264 with Grignard reagents, 264, 293 Orthothioformates, alcoholysis, 542 Oxides, addition, of alcohols, 233 of bisulfites, 814 of hydrogen cyanide, 609 of hydrogen halide, 110 amination. 672 conversion to cyclic sulfides, 789 a-cyano, preparation, 593 halo, reaction with organometallic compounds, 165 isomerization, 296 preparation, 253 preparations listed in table 22, 257 reaction, with carbonyl compounds, 266 with hydrogen sulfide, 789 with mercaptans, 789 with organometallic compounds. 164 with water, 172 reductive cleavage, 172 Oximes, addition of hydrogen cyanide, 606 dehydration, 598 hydrolysis of, 286, 336 oxidation to hydroxamic acids, 576 preparation, 739 preparations listed in table 95, 743 reaction, with Grignard reagents, 729 with phosphorus pentachloride. 285 rearrangement, 572 reduction to amines, 658 a-Oximino acids, dehvdration and decarboxylation, 598 preparation, 598, 599, 658 reduction to amino acids, 658 a-Oximino aldehydes, preparation, 164 a-Oximino esters, hydrolysis, 337 preparation, 740 reduction, 330 a-Oximino ketones, preparation, 163, 740 pyrolysis, 599

Ozonides, cleavage to acids, 421 hydrogenation, 288, 326 Paraconic acids, pyrolysis, 54 Perkin condensation, 52 Phenolic aldehydes, preparation, 281. 282 Phenolic esters, see Aryl esters Phenolic ketones, preparation, 321. 344 Phenols, acylation, 321, 322 addition to olefinic compounds, 232 alkylation, by alcohols or olefins, 179 by alkyl sulfates, 229 by halogen compounds, 227 aminomethylation, 674 carboxylation, 426 coupling with diazonium salts. 764 cyanoethylation, 596, 602 dehydration to ethers, 231 dimethylaminomethylation, 179 esterification, 481 formylation, 281, 282 halogenation, 99 nitration, 748 nitrosation, 742 oxidation (Elbs), 181 oxidation to guinones, 399 partial reduction, 338 preparation, by dehydrogenation of cyclic ketones, 180 by Elbs oxidation of phenols, 181 by nuclear alkylation of phenols. 179 by rearrangement of allyl ethers. 173 from arvl amines (Bucherer), 168 from aryl esters, 169 from aryl ethers, 171 from diazonium salts, 167 from organometallic compounds, 159 from guinones, 154 from sulfonic acid salts, 167 preparations listed in table 11, 187 protection, see Hydroxyl group, reaction, with acyl halides, 481 with ammonia, 670

with anhydrides, 482

「「「

1

一方法

「人」「「「「「「」」」」」

の時にある。

INDEX

Phenols, reaction-Continued with bisulfites, 814 with chloroform, 484 with ketenes, 483 with phosgene, 483 with phosphorus halides, 91 reduction, 8 sulfomethylation, 814 Phenylhydrazones in Fischer indole synthesis, 844 Phthalimide, alkylation and hydrolysis, 679 Picolines, alkylation, 837 carbethoxylation, 489 Pinacol rearrangement, 341 Pinacols, see Dihydroxy compounds Piperidines, dehydrogenation, 836 preparation, by ring-closure reactions, 846 from pyridines, 833 from 2-pyridones, 834 preparations listed in table 118, 852 Piperidones by ring-closure reactions, 846 Polyhalides, reductive elimination of halogen, 97 Polyhydric alcohols, preparation, 153 Pschorr synthesis, 13 Pyrazines, preparation, 658 Pyrazolines, pyrolysis, 485 Pyridines, acylation, 349 alkylation, 837 amination, 671 halogenation, 99 hydrogenation, 833 hydroxylamination, 741 preparation, by Hantzsch synthesis. 845 from carbonyl compounds, 835 from piperidines, 836 preparations listed in table 118, 852 reaction with organolithium compounds, 837 sulfonation, 812 Pyridinium salts, interaction with pnitroso-dimethylaniline, 285 2-Pyridones, preparation, 834 Pyrroles, alkylation, 836 hydrogenation, 833 preparation, by decarboxylation reactions, 838

Pyrroles, preparation—Continued

from amino ketones, 841 from ammonium salts, 839 from dicarbonyl compounds, 840 from halo ketones and keto esters. 840 from pyrrolidines. 836 preparations listed in table 118, 849 Pvrrolidines, dehydrogenation, 836 preparation from N-chloro amines. 842 Pyrrolidones, preparation, 658, 660 Pyrrolines, preparation from γ -chloro nitriles, 841 Ouaternary ammonium salts, preparation, 665, 668 pyrolysis, 43 Quaternary imine salts, hydrolysis, 680 Quinolines, alkylation, 837 amination, 671 cyanogenation, 607 dehydrogenation, 836 halogenation, 104 nitration, 747 preparation, by ring closure, 847 from polyhydro derivatives, 836 preparations listed in table 118, 853 selective hydrogenation, 834 sulfonation, 812 Ouinones, alkylation, 400 oxidation, 289, 420 preparation, 398 preparations listed in table 40, 402 reduction, 154 Reductive alkylation of ammonia or amines, 662 Reductive amination of carbonyl compounds. 662 Reformatsky reaction, 177, 351, 575 Reimer-Tiemann reaction, 281

Reimer-Tiemann reaction, 281 Rhodanine synthesis of nitriles, 413, 598 Rosenmund reduction of acyl halides, 291 Rosenmund-von Braun nitrile synthesis, 591

Salts of carboxylic acids, reaction, with acyl halides, 559

INDEX

Salts of carboxylic acids, reaction-Continued with alkyl sulfates, 484 with dihalides. 169 with Grignard reagents, 336 with halides, 484 with halogen, 96 Sandmeyer reaction, synthesis, of arvl cvanides, 594 of arvl halides, 94 Schiemann reaction, 95 Schiff bases, see also Imines addition, of Grignard reagents, 681 of hydrogen cyanide, 606 alkylation, 680 hydrolysis, 284 preparation, 284, 295 reduction to amines, 660 Schmidt reaction, 574, 609, 677 Schotten-Baumann reaction, 482 Semicarbazides, interaction with dithio acids, 286 preparation, 645 preparations listed in table 80, 649 Semicarbazones, alkaline decomposition, 5 hydrolysis, 286, 337 preparation, 286 Simonini reaction, 96 Skraup synthesis of quinolines, 847 Sörensen reaction, 435 Sommelet reaction, 282 Stephen reaction, 292 Stilbenes, preparation, 44, 45, 47, 56 Stobbe condensation, 54 Strecker reaction, 605, 813 Strecker synthesis of a-amino acids, 414 Styrenes, a-alkyl, preparation, 36 β -halo, preparation, 44 preparation, 33, 37, 41, 44 Sulfenyl halides, preparation, 822 Sulfides, oxidation, 801 preparation, 787 preparations listed in table 111, 791 Sulfinates, alkylation, 801 Sulfinic acids, oxidation, 812 preparation, 807 preparations listed in table 114, 809 Sulfo group, see Sulfonic acids Sulfonamides, preparation, 822

886

Sulfones, ethylene, pyrolysis, 56 oxidation, 812 preparation, 801 preparations listed in table 113, 804 Sulfonic acids, preparation, 811 preparations listed in table 115, 815 reaction with inorganic acid halides, 821 rearrangement of alkyl groups in, 15 replacement of sulfo group, by cvano, 594 by halo, 95 by hydrogen, 15 by hydroxyl, 167 Sulfonic esters, alkylation, of amines by. 667 of esters by, 489 of hydroxy compounds by, 228 of β -keto esters by, 347 of phthalimide by, 679 cleavage by metallic halides, 91 haloalkyl, coupling with Grignard reagents, 96 preparation, 823 preparations listed in table 116, 825 reaction, with Grignard reagents, 803 with metallic cyanides, 591 Sulfonyl halides, ammonolysis, 822 preparation, 821 preparations listed in table 116, 824 reaction with Grignard reagents, 803 reduction, 780, 798, 807 Sulfoxides, oxidation, 812 preparation, 801 preparations listed in table 113, 804 Tetracarboxylic esters, preparation, 490 Tetrahalides, dehalogenation, 40 Tetrahydrocarbazoles, preparation, 843, 845 Tetrahydrofurans, preparation, from 1.4-diols, 839 from furans, 833 Tetrahydrothiophenes, preparation from 1.4-dihalides, 839 Tetramethylammonium salts, pyrolysis, 497 Thioamides, preparation by Willgerodt reaction, 573

preparations listed in table 117, 828 Thiocarbonyl compounds, catalytic decomposition, 47 Thiocyanates, preparations listed in table 117, 828 Thiol esters, hydrolysis, 779 preparation, 292, 779 preparations listed in table 117, 828 reduction, 292 Thiols, oxidation, 812 Thiophenes, acylation, 319 alkylation, 838 formylation, 281 haloalkylation, 104 halogenation, 99 hydrogenation, 833 nitration. 747 preparation, by cyclization reactions, 839 from carbonyl compounds, 835 from dicarbonyl compounds, 840, 842 from diolefins, 842 from tetrahydro derivatives, 836 preparations listed in table 118, 849 Thiophenols, alkylation, 787 preparation, 778 preparations listed in table 110, 782 Thiosulfates, alkyl, decomposition of, 797 preparation, 797 Thiourea, alkylation, 779 preparations listed in table 117, 828 Tischenko reaction, 494 Tolanes, preparation, 82

Thioamides-Continued

Tricarboxylic esters, preparation, 490 Trienes, preparation, 47 Trihalides, alcoholysis, 499 cvancethylation, 602 hydrolysis, 418 reaction with sodium alkoxides, 543 Trihalo ketones, alcoholysis, 488 Triketones, preparation, 326

Ullmann synthesis, of biaryls, 12 of ethers, 227 Ureas, acvlation, 647 hydrolysis, 678 preparation, 645 preparations listed in table 80, 649 reaction with phthalic anhydride. 676.679 Urethanes, see Carbamates

Varrentrapp reaction, 434 Vinylation, 48 Vinyl carbinols, isomerization to ketones, 349 Vinyl esters, reaction with alcohols, 265

Willgerodt reaction, 573 Williamson reaction, 226 Wohl-Ziegler reaction, 104 Wolff-Kishner reduction, 5, 432 Wurtz-Fittig reaction, 10 Wurtz reaction, 10

Xanthates, see also Methyl xanthates hydrolysis, 779 oxidation, 813