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IX

The last twenty years of the last millennium are characterized by complex automati-
zation of industrial plants. Complex automatization of industrial plants means a
switch to factories, automatons, robots and self adaptive optimization systems. The
mentioned processes can be intensified by introducing mathematical methods into
all physical and chemical processes. By being acquainted with the mathematical
model of a process it is possible to control it, maintain it at an optimal level, provide
maximal yield of the product, and obtain the product at a minimal cost. Statistical
methods in mathematical modeling of a process should not be opposed to tradi-
tional theoretical methods of complete theoretical studies of a phenomenon. The
higher the theoretical level of knowledge the more efficient is the application of sta-
tistical methods like design of experiment (DOE).

To design an experiment means to choose the optimal experiment design to be
used simultaneously for varying all the analyzed factors. By designing an experi-
ment one gets more precise data and more complete information on a studied phe-
nomenon with a minimal number of experiments and the lowest possible material
costs. The development of statistical methods for data analysis, combined with de-
velopment of computers, has revolutionized the research and development work in
all domains of human activities.

Due to the fact that statistical methods are abstract and insufficiently known to all
researchers, the first chapter offers the basics of statistical analysis with actual exam-
ples, physical interpretations and solutions to problems. Basic probability distribu-
tions with statistical estimations and with testings of null hypotheses are demon-
strated. A detailed analysis of variance (ANOVA) has been done for screening of fac-
tors according to the significances of their effects on system responses. For statisti-
cal modeling of significant factors by linear and nonlinear regressions a sufficient
time has been dedicated to regression analysis.

Introduction to design of experiments (DOE) offers an original comparison be-
tween so-called classical experimental design (one factor at a time-OFAT) and statis-
tically designed experiments (DOE). Depending on the research objective and sub-
ject, screening experiments (preliminary ranking of the factors, method of random
balance, completely randomized block design, Latin squares, Graeco-Latin squares,
Youdens squares) then basic experiments (full factorial experiments, fractional fac-
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torial experiments) and designs of second order (rotatable, D-optimality, orthogonal,
B-designs, Hartleys designs) have been analyzed.

For studies with objectives of reaching optima, of particular importance are the
chapters dealing with experimental attaining of an optimum by the gradient method
of steepest ascent and the nongradient simplex method. In the optimum zone up to
the response surface, i.e. response function, one can reach it by applying second-
order designs. By elaborating results of second-order design one can obtain square
regression models the analysis of which is shown in the chapter on canonical analy-
sis of the response surface.

The third section of the book has been dedicated to studies in the mixture design
field. The methodology of approaching studies has been kept in this field too. One
begins with screening experiments (simplex lattice screening designs, extreme ver-
tices designs of mixture experiments as screening designs) through simplex lattice
design, Scheffe's simplex lattice design, simplex centroid design, extreme vertices
design, D-optimal design, Draper-Lawrence design, full factorial mixture design,
and one ends with factorial designs of process factors that are combined with mix-
ture design so-called "crossed" designs.

The significance of mixture design for developing new materials should be partic-
ularly stressed. The book is meant for all experts who are engaged in research, devel-
opment and process control.

Apart from theoretical bases, the book contains a large number of practical exam-
ples and problems with solutions. This book has come into being as a product of
many years of research activities in the Military Technical Institute in Belgrade. The
author is especially pleased to offer his gratitude to Prof. Dragoljub V. Vuković,
Ph.D., Branislav Djukić, M.Sc. and Paratha Sarathy, B.Sc. For technical editing of
the manuscript I express my special gratitude to Predrag Jovanić, Ph.D., Drago
Jauković, B.Sc., Vesna Lazarević, B.Sc., Stevan Raković, machine technician,
Dušanka Glavač, chemical technician and Ljiljana Borkovic.

Morristown, February 2004 Živorad Lazić
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Natural processes and phenomena are conditioned by interaction of various factors.
By dealing with studies of cause-factor and phenomenon-response relationships,
science to varying degrees, has succeeded in penetrating into the essence of phe-
nomena and processes. Exact sciences can, by the quality of their knowledge, be
ranked into three levels. The top level is the one where all factors that are part of an
observed phenomenon are known, as well as the natural law as the model by which
they interact and thus realize the observed phenomenon. The relationship of all fac-
tors in natural-law phenomenon is given by a formula-mathematical model. To give
an example, the following generally known natural laws can be cited:

E ¼ mw2

2
; F ¼ ma ; S ¼ vt ; U ¼ IR ; Q ¼ FW

The second group, i.e. at a slightly lower level, is the one where all factors that are
part of an observed phenomenon are known, but we know or are only partly aware
of their interrelationships, i.e. influences. This is usually the case when we are faced
with a complex phenomenon consisting of numerous factors. Sometimes we can
link these factors as a system of simultaneous differential equations but with no so-
lutions to them. As an example we can cite the Navier-Stokes’ simultaneous system
of differential equations, used to define the flow of an ideal fluid:
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An an even lower level of knowledge of a phenomenon is the case when only a

certain number of factors that are part of a phenomenon are known to us, i.e. there
exists a large number of factors and we are not certain of having noticed all the vari-
ables. At this level we do not know the natural law, i.e. the mathematical model by
which these factors act. In this case we use experiment (empirical research) in order
to reach the noticed natural law.
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Copyright � 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31142-4



I Introduction to Statistics for Engineers

As an example of this level of knowledge about a phenomenon we can cite the
following empirical dependencies Darcy-Weisbah’s law on drop of fluid pressure
when flowing through a pipe [1]:

Dp ¼ k
L
D
r
W2

2

Ergun’s equation on drop of fluid pressure when flowing through a bed of solid
particles [1]:

Dp
H

¼ 150
1�e
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� �2lf
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e2
rf
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dp

The equation defining warming up or cooling of fluid flows inside or outside a
pipe without phase changes [1]:
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The first case is quite clear: it represents deterministic and functional laws, while
the second and third levels are examples of stochastic phenomena defined by sto-
chastic dependencies. Stochastic dependency, i.e. natural law is not expressed in in-
dividual cases but it shows its functional connection only when these cases are ob-
served as a mass. Stochastic dependency, thus, contains two concepts: the function
discovered in a mass of cases as an average, and smaller or greater deviations of in-
dividual cases from that relationship.

The lowest level in observing a phenomenon is when we are faced with a totally
new phenomenon where both factors and the law of changes are unknown to us,
i.e. outcomes-responses of the observed phenomenon are random values for us.
This randomness is objectively a consequence of the lack of ability to simultaneously
observe all relations and influences of all factors on system responses. Through its
development science continually discovers new connections, relationships and fac-
tors, which brings about shifting up the limits between randomness and lawfulness.

Based on the mentioned analysis one can conclude that stochastic processes are
phenomena that are neither completely random not strictly determined, i.e. random
and deterministic phenomena are the left and right limits of stochastic phenomena.
In order to find stochastic relationships the present-day engineering practice uses,
apart from others, experiment and statistical calculation of obtained results.

Statistics, the science of description and interpretation of numerical data, began
in its most rudimentary form in the census and taxation of ancient Egypt and Baby-
lon. Statistics progressed little beyond this simple tabulation of data until the theo-
retical developments of the eighteenth and nineteenth centuries. As experimental
science developed, the need grew for improved methods of presentation and analy-
sis of numerical data.

The pioneers in mathematical statistics, such as Bernoulli, Poisson, and Laplace,
had developed statistical and probability theory by the middle of the nineteenth cen-
tury. Probably the first instance of applied statistics came in the application of prob-
ability theory to games of chance. Even today, probability theorists frequently choose

2



I Introduction to Statistics for Engineers

a coin or a deck of cards as their experimental model. Application of statistics in
biology developed in England in the latter half of the nineteenth century. The first
important application of statistics in the chemical industry also occurred in a factory
in Dublin, Ireland, at the turn of the century. Out of the need to approach solving
some technological problems scientifically, several graduate mathematicians from
Oxford and Cambridge, including W. S. Gosset, were engaged. Having accepted the
job in l899, Gosset applied his knowledge in mathematics and chemistry to control
the quality of finished products. His method of small samples was later applied in
all fields of human activities. He published his method in 1907 under the pseudo-
nym “Student”, known as such even these days. This method had been applied to a
limited level in industry up to 1920. Larger applications were registered during
World War Two in military industries. Since then statistics and probability theory
are being applied in all fields of engineering.

With the development of electronic computers, statistical methods began to thrive
and take an evermore important role in empirical researches and systemoptimization.

Statistical methods of researching phenomena can be divided into two basic
groups. The first one includes methods of recording and processing-description of
variables of observed phenomena and belongs to Descriptive statistics. As a result of
applying descriptive statistics we obtain numerical information on observed phe-
nomena, i.e. statistical data that can be presented in tables and graphs. The second
group is represented by statistical analysis methods the task of which is to clarify the
observed variability by means of classification and correlation indicators of statistic
series. This is the field of that Inferential statistics, however, cannot be strictly set
apart from descriptive statistics.

The subject of statistical researches are the Population (universe, statistical masses,
basic universe, completeness) and samples taken from a population. The population
must be representative of a collection of a continual chemical process by some fea-
tures, i.e. properties of the given products. If we are to find a property of a product,
we have to take out a sample from a population that, by mathematical statistics the-
ory is usually an infinite gathering of elements-units.

For example, we can take each hundredth sample from a steady process and
expose it to chemical analysis or some other treatment in order to establish a certain
property (taking a sample from a chemical reactor with the idea of establishing the
yield of chemical reaction, taking a sample out of a rocket propellant with the idea
of establishing mechanical properties such as tensile strength, elongation at break,
etc.). After taking out a sample and obtaining its properties we can apply descriptive
statistics to characterize the sample. However, if we wish to draw conclusions about
the population from the sample, we must use methods of statistical inference.

What can we infer about the population from our sample? Obviously the sample
must be a representative selection of values taken from the population or else we
can infer nothing. Hence, we must select a random sample.

A random sample is a collection of values selected from a population of values in
such a way that each value in the population had an equal chance of being selected

Often the underlying population is completely hypothetical. Suppose we make
five runs of a new chemical reaction in a batch reactor at constant conditions, and
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I Introduction to Statistics for Engineers

then analyze the product. Our sample is the data from the five runs; but where is
the population? We can postulate a hypothetical population of “all runs made at
these conditions now and in the future”. We take a sample and conclude that it will
be representative of a population consisting of possible future runs, so the popula-
tion may well be infinite.

If our inferences about the population are to be valid, we must make certain that
future operating conditions are identical with those of the sample.

For a sample to be representative of the population, it must contain data over the
whole range of values of the measured variables. We cannot extrapolate conclusions
to other ranges of variables. A single value computed from a series of observations
(sample) is called a “statistic”.

Mean, median and mode as measures of location
By sample mean X we understand the value that is the arithmetic average of prop-
erty values X1;X2;X3; ;Xi. When we say average, we are frequently referring to the
sample mean, which is defined as the sum of all the values in the sample divided by
the number of values in the sample. A sample mean-average is the simplest and
most important of all data measures of location.

X ¼
XXi

n
(1.1)

where:
X is the sample mean-average of the n-values,
Xi is any given value from the sample.

The symbol X is the symbol used for the sample mean. It is an estimate of the
value of the mean of the underlying population, which is designated l. We can
never determine l exactly from the sample, except in the trivial case where the sam-
ple includes the entire population but we can quite closely estimate it based on sam-
ple mean. Another average that is frequently used for measures of location is the
median. The median is defined as that observation from the sample that has the
same number of observations below it as above it. Median is defined as the central
observation of a sample where values are in the array by sizes.

A third measure of location is the mode, which is defined as that value of the mea-
sured variable for which there are the most observations. Mode is the most probable
value of a discrete random variable, while for a continual random variable it is the
random variable value where the probability density function reaches its maximum.
Practically speaking, it is the value of the measured response, i.e. the property that
is the most frequent in the sample. The mean is the most widely used, particularly
in statistical analysis. The median is occasionally more appropriate than the mean
as a measure of location. The mode is rarely used. For symmetrical distributions,
such as the Normal distribution, the mentioned values are identical.

4



I Introduction to Statistics for Engineers

Example 1.1 [2]
As an example of the differences among the three measures of location, let us con-
sider the salary levels in a small company. The annual salaries are:

President 50.000
Salesman 15.000
Accountant 8.000
Foreman 7.000
Two technicians, each 6.000
Four workmen, each 4.000
If the given salaries are put in the array we get:

4:000; 4:000; 4:000; 4:000|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mode

; 6:000|fflffl{zfflffl}
median

; 6:000; 7:000; 8:000; 15:000; 50:000

During salary negotiations with the company union, the president states that the
average salary among the 10 employees is 9000$/yr, and there is certainly no need
for a raise. The union representative states that there is a great need for a raise
because over half of the employees are earning 6000$ or less, and that more men
are making 4000$ than anything else. Clearly, the president has used the mean; and
the union, the median and mode.

Measures of variability, the range, the mean deviation and variance
As we can see, mean or average, median and mode are measure of Location. Having
determined the location of our data,wemight next ask how the data are spread out about
mean. The simplest measure of variability is range or interval. The range is defined as
the difference between the largest and smallest values in the sample.

(interval-range) = Xmax–Xmin (1.2)

This measure can be calculated easily but it offers only an approximate measure
of variability of data as it is influenced only by the limit values of observed property
that can be quite different from other values. For a more precise measure of variabil-
ity we have to include all property-response values, i.e. from all their deviations from
the sample mean, mostly the average. As the mean of the values of deviation from
the sample mean is equal to null, we can take as measures of variability the mean
deviation. The mean deviation is defined as the mean of the absolute values of devia-
tion from the sample mean:

m ¼ 1
N

XN
i¼1

Xi � X
�� �� (1.3)

The most popular method of reporting variability is the sample variance, defined as:

S
2
X ¼

Pn
i¼1

Xi�X
� �2
n�1

(1.4)
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I Introduction to Statistics for Engineers

A useful calculation formula is:

S2X ¼ n
P

X2
i �

P
Xið Þ2

n n�1ð Þ (1.5)

The sample variance is essentially the sum of the squares of the deviation of the
data points from the mean value divided by (n-1). A large value of variance indicates
that the data are widely spread about the mean. In contrast, if all values for the data
points were nearly the same, the sample variance would be very small. The standard
deviation sx is defined as the square root of the variance. The standard deviation is
expressed by the same units as random variable values. Both standard deviation and
the average are expressed by the same units. This characteristic made it possible to
mutually compare variability of different distributions by introducing the relative
measure of variability, called the coefficient of variation:

kv ¼
SX
X

¼
SX
X

100% (1.6)

A large value of variation coefficient indicates that the data are widely spread
about the mean. In contrast, if all values for the data points were nearly the same,
the variation coefficient would be very small.

Example 1.2 [2]
Suppose we took ten different sets of five random observations on X and then calcu-
lated sample means and variances for each of the ten groups.

Sample Value Sample mean Sample variance

1 1;0;4;8;0 2.6 11.8

2 2;2;3;6;8 4.2 7.2

3 2;4;1;3;0 2.0 2.5

4 4;2;1;6;7 4.0 6.5

5 3;7;5;7;0 4.4 8.8

6 7;7;9;2;1 5.2 12.2

7 9;9;5;6;2 6.2 8.7

8 9;6;0;3;1 3.8 13.7

9 8;9;5;7;9 7.6 2.8

10 8;5;4;7;5 5.8 2.7

Means 4.58 7.69

We would have ten different values of sample variance. It can be shown that these
values would have a mean value nearly equal to the population variance r

2
X . Similar-

ly, the mean of the sample means will be nearly equal to the population mean
l. Strictly speaking, our ten groups will not give us exact values for r

2
X and l. To

obtain these, we would have to take an infinite number of groups, and hence our
sample would include the entire infinite population, which is defined in statistics as
Glivenko’s theorem [3].
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1.1 The Simplest Discrete and Continuous Distributions

To illustrate the difference between values of sample estimates and population pa-
rameters, consider the ten groups of five numbers each as shown in the table. The
sample means and sample standard deviations have been calculated from appropri-
ate formulas and tabulated. Usually we could calculate no more than that these val-
ues are estimates of the population parameters l and r

2
X , respectively. However in

this case, the numbers in the table were selected from a table of random numbers
ranging from 0 to 9 – Table A. In such a table of random numbers, even of infinite
size, the proportion of each number is equal to 1/10. This equal proportion permits
us to evaluate the population parameters exactly:

l ¼ 0þ1þ2þ3þ4þ5þ6þ7þ8þ9
10

¼ 4:50 ;

r
2
X ¼ 0�4:5ð Þ2þ 1�4:5ð Þ2þ::: 9�4:5ð Þ2

10
¼ 8:25

We can now see that our sample means in the ten groups scatter around the pop-
ulation mean. The mean of the ten group-means is 4.58, which is close to the popu-
lation mean. The two would be identical if we had an infinite number of groups.
Similarly, the sample variances scatter around the population variance, and their
mean of 7.69 is close to the population variance.

What we have done in the table is to take ten random samples from the infinite
population of numbers from 0 to 9. In this case, we know the population parameters
so that we can get an idea of the accuracy of our sample estimates.

& Problem 1.1
From the table of random numbers take 20 different sample data
with 10 random numbers. Determine the sample mean and sample
variance for each sample. Calculate the average of obtained “statis-
tics” and compare them to population parameters.

1.1
The Simplest Discrete and Continuous Distributions

In analyzing an engineering problem, we frequently set up a mathematical model
that we believe will describe the system accurately. Such a model may be based on
past experience, on intuition, or on a theory of the physical behavior of the system.

Once the mathematical model is established, data are taken to verify or reject it.
For example, the perfect gas law (PV = nRT) is a mathematical model that has been
found to describe the behavior of a few real gases at moderate conditions. It is a
“law” that is frequently violated because our intuitive picture of the system is too
simple.

Inmany engineering problems, the physicalmechanismof the system is too complex
and not sufficiently understood to permit the formulation of even an approximately
accurate model, such as the perfect gas law. However, when such complex systems
are in question, it is recommended to use statistical models that to a greater or less-
er, but always well-known accuracy, describe the behavior of a system.

7



I Introduction to Statistics for Engineers

In this chapter, we will consider probability theory, which provides the simple sta-
tistical models needed to describe the drawing of samples from a population, i.e.
simple probability models are useful in describing the presumed population under-
lying a random sample of data. Among the most important concepts of probability
theory is the notion of random variable. As realization of each random event can be
numerically characterized, the various values, which take those numbers as definite
probabilities, are called random variables. A random variable is often defined as a
function that to each elementary event assigns a number. Thus, influenced by ran-
dom circumstances a random variable can take various numerical values. One can-
not tell in advance which of those values the random variable will take, for its values
differ with different experiments, but one can in advance know all the values it can
take. To characterize a random variable completely one should know not only what
values it can take but also how frequently, i.e. what the probability is of taking those
values. The number of different values a random variable takes in a given experi-
ment can be final. If random variable takes a finite number of values with corre-
sponding probabilities it is called a discrete random variable. The number of defective
products that are produced during a working day, the number of heads one gets
when tossing two coins, etc., are the discrete random variables. The random variable
is continuous if, with corresponding probability, it can take any numerical value in a
definite range. Examples of continuous random variables: waiting time for a bus,
time between emission of particles in radioactive decay, etc.

The simplest probability model
Probability theory was originally developed to predict outcomes of games of chance.
Hence we might start with the simplest game of chance: a single coin. We intuitively
conclude that the chance of the coin coming up heads or tails is equally possible.
That is, we assign a probability of 0.5 to either event. Generally the probabilities of
all possible events are chosen to total 1.0.

If we toss two coins, we note that the fall of each coin is independent of the other.
The probability of either coin landing heads is thus still 0.5. The probability of both
coins falling heads is the product of the probabilities of the single events, since the
single events are independent:

P (both heads) = 0.50 � 5 = 0.25

Similarly, the probability of 100 coins all falling heads is extremely small:

P (100 heads) = 0.5100

A single coin is an example of a “Bernoulli" distribution. This probability distribu-
tion limits values of the random variable to exactly two discrete values, one with
probability p, and the other with the probability (1-p). For the coin, the two values
are heads p, and tails (1-p), where p = 0.5 for a “fair” coin.

The Bernoulli distribution applies wherever there are just two possible outcomes
for a single experiment. It applies when a manufactured product is acceptable or
defective; when a heater is on or off; when an inspection reveals a defect or does not.
The Bernoulli distribution is often represented by 1 and 0 as the two possible out-

8



1.1 The Simplest Discrete and Continuous Distributions

comes, where 1 might represent heads or product acceptance and 0 would represent
tails or product rejection.

Mean and variance
The tossing of a coin is an experiment whose outcome is a random variable. Intui-
tively we assume that all coin tosses occur from an underlying population where the
probability of heads is exactly 0.5. However, if we toss a coin 100 times, we may get
54 heads and 46 tails. We can never verify our intuitive estimate exactly, although
with a large sample we may come very close.

How are the experimental outcomes related to the population mean and variance?
A useful concept is that of the “expected value”. The expected value is the sum of all
possible values of the outcome of an experiment, with each value weighted with a
probability of obtaining that outcome. The expected value is a weighted average.

The “mean” of the population underlying a random variable X is defined as the
expected value of X:

l ¼ E Xð Þ ¼
P

Xipi (1.7)

where:
l is the population mean;
E(X) is the expected value of X;

By appropriate manipulation, it is possible to determine the expected value of var-
ious functions of X, which is the subject of probability theory. For example, the
expected value of X is simply the sum of squares of the values, each weighted by the
probability of obtaining the value.

The population variance of the random variable X is defined as the expected value
of the square of the difference between a value of X and the mean:

r
2 ¼ E X � lð Þ2 (1.8)

r
2 ¼ E X

2 � 2Xlþ l
2

	 

¼ E X

2
	 


� 2lE Xð Þ þ l
2

(1.9)

As E(X) = l, we get:

r
2 ¼ E X

2
	 


� l
2

(1.10)

By using the mentioned relations for Bernoulli’s distribution we get:

E Xð Þ ¼
P

Xipi ¼ pð Þ 1ð Þ þ 1� pð Þ 0ð Þ ¼ p (1.11)

E x
2

	 

¼
P

X
2
i pi ¼ pð Þ 1

2
	 


þ 1� pð Þ 0
2

	 

¼ p (1.12)

So that l= p, and r2 = p-p2 for the coin toss:

p = 0.5; l= 0.5; r2 = 0.25;

9
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1.1.1
Discrete Distributions

A discrete distribution function assigns probabilities to several separate outcomes of
an experiment. By this law, the total probability equal to number one is distributed
to individual random variable values. A random variable is fully defined when its
probability distribution is given. The probability distribution of a discrete random
variable shows probabilities of obtaining discrete-interrupted random variable val-
ues. It is a step function where the probability changes only at discrete values of the
random variable. The Bernoulli distribution assigns probability to two discrete out-
comes (heads or tails; on or off; 1 or 0, etc.). Hence it is a discrete distribution.

Drawing a playing card at random from a deck is another example of an experiment
with an underlying discrete distribution, with equal probability (1/52) assigned to
each card. For a discrete distribution, the definition of the expected value is:

E Xð Þ ¼
P

Xipi (1.13)

where:
Xi is the value of an outcome, and
pi is the probability that the outcome will occur.

The population mean and variance defined here may be related to the sample
mean and variance, and are given by the following formulas:

E X
� �

¼ E
P

Xi

�
n

� �
¼
P

E Xið Þ
.
n ¼

P
l=n ¼ nl=n ¼ l (1.14)

E X
� �

¼ l (1.15)

Equation (1.15) shows that the expected value (or mean) of the sample means is
equal to the population mean.

The expected value of the sample variance is found to be the population variance:

E S
2

	 

¼ E

P
Xi�X
� �2
n�1

" #
(1.16)

Since:P
Xi � X
� �2¼PX

2
i � 2

P
XXi þ

P
X

2 ¼
P

X
2
i � nX

2
(1.17)

we find that:

E S
2

	 

¼

E
P

X2
i

	 

�nE �XX2

	 

n�1

¼
P

EX2
i �nE �XX2

	 

n�1

(1.18)

It can be shown that:

E X
2
i

	 

¼ r

2 þ l
2
;E X
� �2¼ r2

n
þ l

2
(1.19)

so that:

E S
2

	 

¼

n r2þl2
h i

�r2�nl2

n�1
(1.20)

10
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and finally:

E S
2

	 

¼ r

2
(1.21)

The definition of sample variance with an (n-1) in the denominator leads to an
unbiased estimate of the population variance, as shown above. Sometimes the sam-
ple variance is defined as the biased variance:

S
2 ¼

P
Xi�X
� �2

n
(1.22)

So that in this case:

E S
2

	 

¼ n�1

n
r
2

(1.23)

A more useful and more frequently used distribution is the binomial distribution.
The binomial distribution is a generalization of the Bernoulli distribution. Suppose
we perform a Bernoulli-type experiment a finite number of times. In each trial,
there are only two possible outcomes, and the outcome of any trial is independent of
the other trials. The binomial distribution gives the probability of k identical out-
comes occurring in n trials, where any one of the k outcomes has the probability p
of occurring in any one (Bernoulli) trial:

P X ¼ kð Þ ¼ n
k

� �
p
k
1� pð Þn�k

(1.24)

The symbol n over k is referred to as the combination of n items taken k at a
time. It is defined as:

n
k

� �
¼ n!

k! n�kð Þ! (1.25)

Example 1.3
Suppose we know that, on the average, 10% of the items produced in a process are
defective. What is the probability that we will get two defective items in a sample of
ten, selected randomly from the products, drawn randomly from the product popu-
lation?

Here, n= 10; k = 2; p = 0.1, so that:

P X ¼ 2ð Þ ¼ 10
2

	 

� 0:1ð Þ2� 0:9ð Þ8¼ 0:1938

The chances are about 19 out of 100 that two out of ten in the sample are defec-
tive. On the other hand, chances are only one out of ten billion that all ten would be
found defective. Values of P(X=k) for other values may be calculated and plotted to
give a graphic representation of the probability distribution Fig. 1.1.

11
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0.4

0.3

0.2

0.1

0
100 1 2 3 4 5 6 7 8 9

P(X=k)

Figure 1.1 Binomial distribution for p = 0.1 and n = 10.

Table 1.1 Discrete distributions.

Distributions Mean Variance Model Example

Bernoulli
xi = 1 with p ; xi = 0 with (1-p)

p p(1- p) Single experiment,
two possible outcomes

Heads or tails with a coin

Binomial
P x¼kð Þ ¼

n
k

� �
p
k
1� kð Þn�k

np np(1- p) n Bernoulli experi-
ments with k out-
comes of one kind

Number of defective
items in a sample drawn
without replacement
from a finite population

Hypergeometric
P X¼kð Þ ¼

M
k

	 

N�M
n�k

	 
.
N
n

	 
 n�M
N

n�M N�Mð Þ N�nð Þ
N2 N�1ð Þ

M objects of one kind,
N objects of another
kind. k objects of
kind M found in a
drawing of n objects.
The n objects
are drawn from the
population without
replacement after each
drawing.

Number of defective
items in a sample drawn
without replacement
from a finite population.

Geometric
P X¼kð Þ ¼ p 1� pð Þk

1�p
p

1�p

p2
Number of failures
before the first
success in a sequence
of Bernoulli trials.

Number of tails before
the first head.

Poisson
P X¼kð Þ ¼ e

�kt
ktð Þk k!

. kt kt Random occurrence
with time. Probability
of k occurrences in
interval of width t. k is
a constant parameter

Radioactive decay, equip-
ment breakdown

12
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One defective item in a sample is shown to be most probable; but this sample
proportion occurs less than four times out of ten, even though it is the same as the
population proportion. In the previous example, we would expect about one out of
ten sampled items to be defective. We have intuitively taken the population propor-
tion (p = 0.1) to be the expected value of the proportion in the random sample. This
proves to be correct. It can be shown that for the binomial distribution:

l ¼ np; r
2 ¼ np 1� pð Þ (1.26)

Thus for the previous example:

l ¼ 10� 0:1 ¼ 1; r
2 ¼ 10� 0:1� 0:9 ¼ 0:9

Example 1.4 [4]
The probability that a compression ring fitting will fail to seal properly is 0.1. What
is the expected number of faulty rings and their variance if we have a sample of 200
rings?

Assuming that we have a binomial distribution, we have:

l ¼ n� p ¼ 200� 0:1 ¼ 20; r
2 ¼ np� 1� pð Þ ¼ 200� 0:1� 0:9 ¼ 18

A number of other discrete distributions are listed in Table 1.1, along with the
model on which each is based. Apart from the mentioned discrete distribution of
random variable hypergeometrical is also used. The hypergeometric distribution is
equivalent to the binomial distribution in sampling from infinite populations. For
finite populations, the binomial distribution presumes replacement of an item
before another is drawn; whereas the hypergeometric distribution presumes no re-
placement.

1.1.2
Continuous Distribution

A continuous distribution function assigns probability to a continuous range of val-
ues of a random variable. Any single value has zero probability assigned to it. The
continuous distribution may be contrasted with the discrete distribution, where
probability was assigned to single values of the random variable. Consequently, a
continuous random variable cannot be characterized by the values it takes in corre-
sponding probabilities. Therefore in a case of continuous random variable we
observe the probability P(x £ X £ Dx) that it takes values from the range (x,x+Dx),
where Dx can be an arbitrarily small number. The deficiency of this probability is
that it depends on Dx and has a tendency to zero when Dx fi0. In order to overcome
this deficiency let us observe the function:

f xð Þ ¼ lim
Dx!0

P x�X�xþDxð Þ
Dx

; f xð Þ ¼ dP xð Þ
dx

(1.27)
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which does not depend on Dx and that is called the probability density function of con-
tinuous random variable X. The probability that the random variable lies between
any two specific values in a continuous distribution is:

P a � X � bð Þ ¼
ðb
a

f xð Þdx (1.28)

where f(x) is the probability density function of the underlying population model.
Since all values of X lie between minus infinity and plus infinity �1;þ1½ �, the
probability of finding X within these limits is 1. Hence for all continuous distribu-
tions:

ðþ1

�1

f Xð Þdx ¼ 1 (1.29)

The expected value of a continuous distribution is obtained by integration, in con-
trast to the summation required for discrete distributions. The expected value of the
random variable X is defined as:

E Xð Þ ¼
ðþ1

�1

xf xð Þdx (1.30)

The quantity f(x)dx is analogous to the discrete p(x) defined earlier so that Equa-
tion (1.30) is analogous to Equation (1.13). Equation (1.30) also defines the mean of
a continuous distribution, since l= E(X). The variance is defined as:

r
2 ¼

ðþ1

�1

x � lð Þ2 f xð Þdx (1.31)

or by expression:

r
2 ¼

ðþ1

�1

x
2
f xð Þdx �

ðþ1

�1

xf xð Þdx

2
64

3
75
2

(1.32)

The simplest continuous distribution is the uniform distribution that assigns a
constant density function over a region of values from a to b, and assigns zero prob-
ability to all other values of the random variable Figure 1.2.

The probability density function for the uniform distribution is obtained by inte-
grating over all values of x, with f(x) constant between a and b, and zero outside of
the region between a and b:

ðþ1

�1

f xð Þdx ¼
ðb
a

f xð Þdx ¼ 1 (1.33)
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After integrating this relation, we get:

f xð Þ ¼ 1Ðb
a

dx

¼ 1
b�a

; f xð Þ ¼ const (1.34)

f(X)= 1
b-a

0 a Xb
0

f(X)

Figure 1.2 Uniform Distribution

Next to follow is:

l ¼ E Xð Þ ¼
ðb
a

xdx
b� a

¼ 1
2

aþ bð Þ (1.35)

We also get that:

r
2 ¼

ðb
a

x
2
dx

b� a
� 1

2
aþ bð Þ

h i2
¼ b� að Þ2

12
(1.36)

Example 1.5
As an example of a uniform distribution, let us consider the chances of catching a
city bus knowing only that the buses pass a given corner every 15 min. On the aver-
age, how long will we have to wait for the bus? How likely is it that we will have to
wait at least 10 min.?

The random variable in this example is the time T until the next bus. Assuming
no knowledge of the bus schedule, T is uniformly distributed from 0 to 15 min. Here
we are saying that the probabilities of all times until the next bus are equal. Then:

f tð Þ ¼ 1
15�0

¼ 1
15

The average wait is:

E Tð Þ ¼

Ð15
0

t dt

15
¼ 7:5
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Waiting at least 10 min. implies that T lies between 10 and 15, so that by
Eq. (1.28):

P 10 � T � 15ð Þ ¼
Ð15
10

dt
15

¼ 1
3

In only one case out of three will we need to wait 10 min. or more. The probability
that we will have to wait exactly 10 min. is zero, since no probability is assigned to
specific values in continuous distributions. Characteristics of several continuous dis-
tributions are given in Table 1.2.

Table 1.2 Continuous distributions

Distribution and density Mean Variance Model Example

Uniform
f xð Þ ¼ 1= b� að Þa<x<b

1
2

aþ bð Þ b�að Þ2

12

f(x) = constant Waiting for a bus

Negative exponentials
f xð Þ ¼ ke

�kx
; x > 0

1
k

1

k2
Describes distribution of
time between the succes-
sive events in a Poisson
distribution

Time between emission
of particles in radioactive
decay.

Normal
f xð Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp � 1
2

x�l
r

	 
2� � l r
2

Gaussian distribution Many experimental situa-
tions

Standard normal

f yð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � y2

2

 ! 0 1 A special case of the
normal distribution

Many experimental situa-
tions

Chi-square

f xð Þ ¼
x

k
2
�1

	 

expð�x

2
Þ

k

2
�1

	 

! 2

k
2

; x > 0

k 2k Distribution of a sum of
squares of independent
standard normal variables.
k is referred to as “degrees
of freedom”

Statistical tests on
assumed normal distri-
bution.

1.1.3
Normal Distributions

The normal distribution was proposed by the German mathematician Gauss. This
distribution is applied when analyzing experimental data and when estimating ran-
dom errors, and it is known as Gauss’ distribution. The most widely used of all con-
tinuous distributions is the normal distribution, for the folowing reasons:

. many random variables that appear during an experiment have normal distri-
butions;

. large numbers of random variables have approximately normal distributions;

16



1.1 The Simplest Discrete and Continuous Distributions

. if a random variable have not does a normal distribution, not even approxi-
mately, it can then be transformed into a normal random variable by relative-
ly simple mathematical transformations;

. certain complex distributions can be approximated by normal distribution
(binomial distribution);

. certain random variables that serve for verification of statistical tests have
normal distributions.

Gauss assumed that any errors in experimental observationswere due to a largenum-
ber of independent causes, each of which produced a small disturbance. Under this
assumption the well-known bell-shaped curve has been obtained. Although it ade-
quately describes many real situations involving experimental observations, there is no
reason to assume that actual experimental observations necessarily conform to the
Gaussian model. For example,Maxwell used a related model in deriving a distribution
function for molecular velocities in a gas; but the result is only a very rough approxima-
tion of the behavior of real gases. Error in experimental measurement due to com-
bined effects of a large number of small, independent disturbances is the primary
assumption involved in the model on which the normal distribution is based. This
assumption leads to the experimental form of the normal distribution.

The assumption of a normal distribution is frequently and often indiscriminately
made in experimental work, because it is a convenient distribution on which many
statistical procedures are based. Many experimental situations, subject to random
error, yield data that can be adequately described by the normal distribution, but this
is not always the case.

The terms l and r
2
are initially defined simply as parameters in the normal distri-

bution function. The term l determines the value on which the bell-shaped curve is
centered and r

2
determines the “spread” in the curve Fig. 1.3.

A large variance gives a broad, flat curve, while a small variance yields a tall, nar-
row curve with most probabilities concentrated on values near l.

The mean or expected value of the normal distribution is obtained by applying
Eq. (1.28):

   σ

   σ

   σ

=1,0

=2,0

=3,0

f(X)

0,35

0,3

0,25

0,2

0,15

0,1

0,05

0
0 2 4 6 8 10 12 14 16 18 20

X

x

x

x

Figure 1.3: How the varaince affects normal distribution curve.
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E Xð Þ ¼ 1
r
ffiffiffiffiffiffi
2p

p Ðþ1

�1
X exp � 1

2
X�l
r

� �2� �
dx (1.37)

Integration of Eq. (1.37) is tedious, and is most easily accomplished by using a
table of definite integrals. To integrate, we define a new variable:

y ¼ x�l

r
) x ¼ ryþ l; dx ¼ rdy (1.38)

Since l and r are constant, Eq. (1.37) becomes:

E Xð Þ ¼ 1
r
ffiffiffiffiffiffi
2p

p Ðþ1

�1
r
2
y exp � y2

2

 !
dyþ lr

Ðþ1

�1
exp � y2

2

 !
dy

" #
(1.39)

We find that the first integral is null. For the second integral, we get from a table
of definite integrals:

ðþ1

�1

exp � y
2

2

 !
dy ¼

ffiffiffiffiffiffi
2p

p
) E Xð Þ ¼ l (1.40)

A similar analysis shows that the variance of X is simply r
2
X . The standard normal

distribution is obtained by defining a standardized variable z:

z ¼ x�l
r

) x ¼ rzþ l; dx ¼ rdz (1.41)

So that the probability density function becomes:

f zð Þ ¼ 1ffiffiffiffiffiffi
2p

p e
�z

2

2 (1.42)

In this case, lz ¼ 0; r
2
z ¼ 1. The graph of standard normal distribution is illus-

trated in Fig. 1.4, and a brief tabulation given in Table 1.3 from Table B.
About 68% of the area under the curve lies between z = 1 and z = +1 (one stan-

dard deviation on either side of the mean). Statistically, from Eq. (1.28):

P �1 � z � 1ð Þ ¼
Ðþ1

�1

f zð Þdz ¼ 1ffiffiffiffiffiffi
2p

p Ðþ1

�1

exp � z2

2

 !
dz

The integral is evaluated from Table 1.3:

P �1 � z � 1ð Þ ¼ P z � 1ð Þ � P z � �1ð Þ ¼ 0:8413� 0:1587 ¼ 0:6816
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0,3

0,2

0,1

0
–3 –2 –1 0 1 2 3

0,3413 0,3413

0,1360 0,1360

0,0214 0,0214

f(Z)

,

Figure 1.4 Standard normal distribution curve

0

P(Z<z)

z

P Z � zð Þ ¼
Ðz

�/

1ffiffiffiffiffiffi
2p

p exp � y2

2

 !
dy

Table 1.3 Abbreviated table of standard normal distribution

z 0.0 0.1 0.2 0.3 0.4 0.5 0.9

–3.0

–2.0

–1.0

–0.0

0.0013
0.0228
0.1587
0.500

0.179
0.1357
0.4602

0.0139
0.1151
0.4207

0.0107
0.0968
0.3821

0.0082
0.0808
0.3446

0.0062
0.0668
0.3085

0.0019
0.0287
0.1841

+0.0
+1.0
+2.0
+3.0

0.500
0.8413
0.9772
0.9987

0.5398
0.8643
0.9821

0.5793
0.8849
0.9893

0.6179
0.9032
0.9893

0.6554
0.9192
0.9918

0.6915
0.9332
0.9938

0.8159
0.9713
0.9981
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Example 1.6
For example, suppose we have a normal population with l ¼ 6; r

2 ¼ 4, and we want
to know what percentage of the population has values greater than 9?

By Eq. (1.41), z ¼ 9�6
2

¼ 1:5. From Table 1.3 P(z < 1.5) = 0.9332, and P(z > 1.5) =

1–P(z < 1.5) = 1–0.9332 = 0.0668. Hence about 6.68% of the population has values
greater than 9.

& Problem 1.2 4
Using Table 1.3 i.e. Table B for standard normal distribution, deter-
mine probabilities that correspond to the following Z intervals.

a) 0 £ Z £ 1.4 ; b) –0.78 £ Z £ 0 ; c) –0.24 £ Z £ 1.9;
d) 0.75 £ Z £ 1.96; e) –¥Z £ 0.44; f) –¥Z £ 1.2;
g) –1 £ Z £ 1; h)–1.96 £ Z £ 1.96; i) –2.58 £ Z £ 2.58

Approximations to discrete distribution
It has already been mentioned that certain distributions can be approximated to a
normal one. As the size of the sample increases, the binomial distribution asympto-
tically approaches a normal distribution. This is a useful approximation for large
samples.

Example 1.7
For example, suppose that we wish to know the probability of obtaining 40 or less
heads in 100 tosses of a coin. From Eq. (1.24), we sum all 40 values of P:

P X � 40ð Þ ¼
X40
k¼0

100
k

	 

0:5ð Þ100

This expression would be very tedious to evaluate, so we use the normal approxi-
mation. By Eq. (1.26) we get:

l= 100 � 0.5 = 50 ; r
2
= 100 � 0.5 (1–0.5) = 25

Then, by Eq. (1.41) it follows:

Z ¼ 40�50
5

¼ �2:0;P z � �2ð Þ ¼ 1� P z � 2ð Þ ¼ 1� 0:9772 ¼ 0:0228

so that: P(X<40) = 0.0228 or 2.28%. For small samples, the approximation is
improved by adding 0.5 to the X in Eq. (1.41):

Z ¼ Xþ0:5�npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1�pð Þ

p (1.43)
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& Problem 1.3
Determine z1 if the probability is that Z is between:

a) P �1 � Z � z1ð Þ ¼ 0:92
b) P �1:6 � Z � z1ð Þ ¼ 0:03

& Problem 1.4
A sample of 36 observations was drawn from a normally distributed
population having a mean of 20 and variance of 9. What portion of
the population can be expected to have values greater than 26?

& Problem 1.5 [4]
The average particulate concentration in micrograms per cubic
meter for a station in a petrochemical complex was measured every
6 hours for 30 days. The resulting data are given in table.

5 7 9 12 13 16 17 19 23 24 41
18 24 6 10 16 14 23 19 8 20 26
15 6 11 16 12 22 9 8 15 18 13
7 13 14 8 17 19 11 21 9 55 72
23 24 12 220 25 13 8 9 20 61 48
565 65 10 43 20 45 27 20 72 12 115
130 82 55 26 52 34 66 112 40 34 89
85 95 28 110 16 19 61 67 45 34 32
103 72 67 30 21 122 42 125 50 57 56
25 15 46 30 35 40 16 53 65 78 98
80 65 84 91 71 78 58 26 48 21

A new air pollution regulation requires that the total particulate
concentration be kept below 70+5 mg m3.

a) What is the probability that the particulate concentration on any day will fall
within this allowed range?

b) What is the probability of exceeding the upper limit?
c) What is the probability of operating in the absolutely safe region below 65

mg/m3?

& Problem 1.6:
A random variable has a normal distribution with the following
parameters: l ¼ 8; r ¼ 4. Find:

a) P(5<X<10); b) P(10<X<15); c) P(X>15); d) P(X<5)?

& Problem 1.7
Let us suppose that the body weights of 800 students have a normal
distribution with mean l= 66 kg and standard deviation r = 5 kg.
Find the number of students whose weight is:

a) between 65 and 75 kg;
b) over 72 kg.
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& Problem 1.8
A machine is mounted for production of metal rods 24 cm long,
with a tolerance rate of e = 0.05 cm. Based on long-time observation
it is established that r = 0.03. On the assumption that lengths of X
metal rods have a normal distribution calculate the percentage of
metal rods that will be placed in tolerance range. How large should
this tolerance be so that 95 per cent of produced metal rods should
be within these tolerance limits?

& Problem 1.9
In the lab mixer 20 batches of a composite rocket propellant were
mixed under identical conditions, all of them having the same com-
position. Test strands were taken out of the obtained propellant and
their burning rates were measured at 70 bar of pressure. The burn-
ing rate average is �XX=8.5 mm/s , and the calculated variance is
r
2
=0.30. What number of strands has the burning rate:

a) between 8 and 9 mm/s;
b) over 9 mm/s;
c) below 8 mm/s.

1.2
Statistical Inference

After gathering a set of experimental data, we usually wish to use it to draw a con-
clusion about the underlying population. For example, from data on the yield of a
chemical reactor, we may want to:

. Decide whether the average yield from several runs at constant operating
conditions equals that required by economic factors;

. Determine whether one set of operating conditions gives a significantly high-
er yield than another;

. Estimate the average yield to be expected in further runs at specified operat-
ing conditions;

. Find a quantitative equation that can be used to predict the yield at various
operating conditions.

We can use various methods of statistical inference to arrive at these conclusions.
Because the original data are subject to experimental error and may not exactly fit
our presumed model, we can draw a conclusion only within specified limits of cer-
tainty. We can never make completely unequivocal inferences about a population by
using statistical procedures.

Statistical inference may be devided into two broad categories:

. hypothesis testing;

. statistical estimation.
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1.2 Statistical Inference

In the first case, we set up a hypothesis about the population and then either
accept or reject it by a test using sample data. The first two examples in the first
paragraph above involve hypothesis testing. In the first example, the hypothesis
would be that the average yield equals the required yield.

Estimation involves the calculation of numerical values for the various population
parameters (mean, variance, and so on). These numerical values are only estimates
of the actual parameters, but statistical procedures permit us to establish the accu-
racy of the estimate.

1.2.1
Statistical Hypotheses

A statistical hypothesis is simply a statement concerning the probability distribution
of a random variable. Once the hypothesis is stated, statistical procedures are used
to test it, so that it may be accepted or rejected. Before the hypothesis is formulated,
it is almost always necessary to choose a model that we assume adequately describes
the underlying population. The choice of a model requires the specification of the
probability distribution of the population parameters of interest to us. When a statis-
tical hypothesis is set up, then the corresponding statistical procedure is used to
establish whether the proposed hypothesis should be accepted or rejected. Generally
speaking, we are not able to answer the question whether a statistical hypothesis is
right or wrong. If the information from the sample taken supports the hypothesis,
we do not reject it. However, if those data do not back the statistical hypothesis set
up, we reject it.

In principle, two hypotheses are set up:

. primary or null hypothesis H0 ;

. alternative hypothesis H1

If we accept the null hypothesis H0 we automatically reject the alternative hypoth-
esis H1.

A large number of statistical hypotheses are of the kind that test specific or range
values of one or more distribution parameters. Such hypotheses are tested by using
the properties of sample data. As simple drawing of a sample from a population
does not have to mean that we obtained a completely representative sample, we are
likely apt to make certain errors even when accepting or rejecting a hypothesis.

Types of errors
When testing statistical hypotheses, two types of error may be defined, together with
their probability of occurrence.

. Type I error: Rejecting H0 when it is true. Let a equal probability of rejecting
H0 when it is true. This term is also referred to as the “level of significance”
of the test.

. Type II error: Accepting H0 when it is false (that is, when H1 is true). Let b
equal the probability of accepting H0 when it is false.
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I Introduction to Statistics for Engineers

One can generally say that a and b are risks of accepting false hypotheses. Ideally
we would prefer a test that minimized both types of errors. Unfortunately, as a
decreases, b tends to increase, and vice versa. Apart from the terms mentioned we
should introduce the new term power of a test. The power of a test is defined as the
probability of rejecting H0 when it is false. Symbolically it is: power of a test = 1-b or
probability of making a correct decision.

The test statistic
To make a test of the hypothesis, sample data are used to calculate a test statistic.
Depending upon the value of the test statistic, the primary hypothesis H0 is
accepted or rejected. The critical region is defined as the range of values of the test
statistic that requires a rejection H0. The test statistic is determined by the specific
probability distribution and by the parameter selected for testing.

Procedure for testing a hypothesis
The general procedure for testing a statistical hypothesis is:

1. Choose a probability model and a random variable associated with it. This
choice may be based on previous experience or intuition.

2. Formulate H0 and H1. These must be carefully formulated to permit a mean-
ingful conclusion.

3. Specify the test statistic.
4. Choose a level of significance a for the test.
5. Determine the distribution of the test statistic and the critical region for the

test statistic.
6. Calculate the value of the test statistic from a random sample of data.
7. Accept or reject H0 by comparing the calculated value of the test statistic with

the critical region.

The following examples illustrate the procedure for a statistical test [7]. In the
first, we consider a very simple test on a single observation. The second applies the
seven-step procedure to a test on the mean of a binomial population using a normal
approximation. Here, and in the third example, we introduce the idea of one-sided
and two-sided tests, while in the fourth example we illustrate the calculation of Type
II error, and the power function of a test.

Example 1.8
A single observation is taken on a population that is believed to be normally distrib-
uted with a mean of 10 and a variance of 9. The observation is X=16. Can we con-
clude that the observation is from the presumed population?

To answer this question, we follow the seven-step procedure:

1. The probability model is a normal distribution: l=10; r2=9. The random vari-
able is the value of X.
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1.2 Statistical Inference

2. The primary hypothesis H0:X=16 , is from a population that is normally dis-
tributed with N (10; 9).
The alternate hypothesis H1: X=16, is not from the presumed population.

3. Since we have only one observation for X, the test statistic is simply its stan-
dardized value, Z ¼ X � lð Þ

�
rX . The standard normal tables give the distri-

bution of this statistic.
4. Choice of the level of significance a: is arbitrary. We will use a=0.01 and

a=0.05 because one of these values is commonly used.
5. The test statistic is distributed normally with l=10 and r

2

X
=9, if H0 is true. A

value of X that is too far above or below the mean should be rejected, so we
select a critical region at each end of the normal distribution. As illustrated in
Fig. 1.5, a fraction 0.025 of the total area under the curve is cut off at each
end for a=0.05. From the tables (Table B), we determine that the limits corre-
sponding to these areas are Z=-1.96 and Z=1.96; so that if our single observa-
tion falls between these values, we accept H0. The corresponding values for
a=0.01 are Z=–2.58.

6. Find the value for:

Z ¼ 16�10ffiffiffi
9

p ¼ 2:0

7. Since 2>1.96, we reject H0 at a=0.05. But since 2<2.58, we accept H0 at
a=0.01.

0
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Figure 1.5 Critical region for two-sided test

If we are willing to risk rejecting H0 when it is true five times out of 100, we can
reject it here; but if we wish to reduce the risk of rejecting a true hypothesis to one
chance out of 100, then we must accept H0 for the example. Normally, we do not
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carry along two values for a. A single desired level of significance is chosen initially,
and the decision is based on it. This almost trivial example illustrates the test proce-
dure and demonstrates the meaning of the level of significance of a test.

Example 1.9
Experience in tire manufacture at a given plant shows that an average of 4.8% of the
tires are rejected as imperfect. In a recent day of operation, 60 out of 1000 tires were
rejected. Is there any reason to believe that the manufacturing process is function-
ing improperly?

This problem can be reduced to a test on the sample value. We may use the data
on long-range operation to estimate the population parameter (p=0.048), since we
have no other way of knowing it. We again follow the seven-step method:

1. This is a binomial distribution with two outcomes: acceptance or rejection.
However, since the sample size is large, we may use the normal approxima-
tion. Since p=0.048, we know that the population mean is: l=np=1000 �
0.048=48
and the population variance is:
r2=np (1-p)=1000 � 0.048(1-0.048)=45.7

2. As the problem is stated, the primary hypothesis is not clearly shown. We
choose to compare the mean of the population that is presumed to underlie
the day’s production to the long-range population mean:

H0:l£48; H1 :l>48

The question then is whether the day’s rejection rate of 60 is sufficiently high
to reject the hypothesis that the rejection rate is 48 or less.

3. Since we are using a normal approximation, the test statistic is simply the
standard normal variable:

Z ¼
X�0:5�l

0
r

The subtraction of 0.5 from the sample value improves the normal approxi-
mation. It is called the “continuity correction”. The numerator of the equation
is the deviation of the sample value from the population mean. The denomi-
nator is simply the standard deviation of the presumed population.
Thus, Z is the number of standard deviations away from the mean at which
we find the sample value X. Here we have used the sample value X as an
estimate of the population mean presumed to underlie the day’s production.

4. Let a=0.05. That is, we will risk rejecting the true hypothesis that l=48 is one
chance in 20.

5. To determine the critical region, we must know the distribution of the test
statistic. In this case, Z is distributed as the standard normal distribution.
With H0:l<48 and a=0.05, we determine that the critical region will include
5% of the area on the high end of the standard normal curve Fig. 1.6. The
Z-value that cuts off 5% of the curve is found to be 1.645, from a table of
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1.2 Statistical Inference

normal distribution such as Table B. Therefore, if our calculated Z is greater
then 1.645 we reject H0.

6. For this case, r2=45.7; X=60; l=48; n=1000, and:

Z ¼ 60�0:5�48ffiffiffiffiffiffiffiffiffi
45:7

p =1.70

7. Since 1.70 >1.645, we reject H0 and calculate that a rejection rate of 60 out of
1000 tires is significantly higher than the 4.8% rejection rate. We might now
proceed to seek the cause of this change by checking the manufacturing pro-
cess.

f(X)

X

0
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0,3

0,4

4321-1-2-3-4 0
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  α 
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=0,05

=0,05
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Figure 1.6 Critical region for one-sided test

Suppose instead of finding 60 imperfect tires in 1000, we had found 6 in a sample
of 100. Then our solution gives:

Z ¼ 6�0:5�4:8ffiffiffiffiffiffiffiffiffi
4:57

p ¼ 0:327; a=0.05

Therefore, with a= 0.05 as before, we would accept H0. Rejection of 6 tires out of
100 is not significantly different from the population proportion of 0.048, but 60 out
of 1000 is significantly different. This illustrates the effect of sample size on statisti-
cal tests. A smaller sample is more influenced by random fluctuations than is a larg-
er one; so that the same proportionate difference in a larger sample is statistically
more significant than in a smaller one.

This example illustrates a one-sided test, that is the critical region is on one side of
the probability distribution because of the way the hypotheses are stated.
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Example 1.10
Suppose we had chosen to test whether the daily rejection rate of 60 out of 1000 was
significantly different from the population proportion of 0.048, rather than signifi-
cantly higher than the population proportion as in the previous example. In this
case, the hypotheses would be:

H0 : l=48; H1 : l<48 or l>48

This is two-sided test. The critical region is split into two parts, one rejecting values
that are too low and the other rejecting values that are too high. With a = 0.05, each
critical region has an area of a/2=0.25. As shown in Example 1.8 Fig. 1.5, the corre-
sponding Z-values are Z=–1.96. We will reject H0 if the calculated Z is less than
-1.96 or greater than 1.96. With a two-sided test, H0 is accepted for 60/1000 and
6/100. For this problem, we would probably be more concerned with a rejection rate
that was too high, so that the one-sided test would be more appropriate than the
two-sided one.

Example 1.11
Determine the power of the test in Example 1.10 for the alternate hypothesis that
the mean is really 50, using the sample size 1000.

In this case, we choose a single value from the alternate hypothesis of Example
1.10. From H1 : l>48, we select H1 : l=50.

The power varies with the value selected for the alternate hypothesis. Our hypoth-
eses are then:

H0 : l=48 ; H1 : l=50

The two distributions based on these hypotheses are plotted in Fig. 1.7, where
both variances are presumed to be 45.7 (Example 1.9).

With a ¼ 0.05, for the two-sided test, Z¼1.96 and X ¼ 48þ 1:96
ffiffiffiffiffiffiffiffiffi
45:7

p
¼ 61:3.

This is the lower limit of the upper critical region as shown under the H0 curve
Fig. 1.7. Similarly, X ¼ 48� 1:96

ffiffiffiffiffiffiffiffiffi
45:7

p
¼ 34:7 is the upper limit of the lower critical

region. Therefore if X lies between 34.7 and 61.3, H0 is accepted regardless of
whether it is true or not.

Here we have omitted the continuity correction. This is permissible for large sam-
ple sizes. In addition, the method used here is only approximate because it assumes
the variance is constant regardless of H1. If H1 :l¼50 were true and H0 thereby
false, the curve for H1 in Fig. 1.7 would be the correct one; but the limits 34.7 and
6l,3 still define the region of acceptance of H0. Because H0 would be accepted when
H1 is true if X falls between (34.7; 61.3), then the area under the curve H1 between
these limits is b, which is the probability of a type II error. The area is labeled in
Fig. 1.7. To determine this area, we use the original limits with the curve for H1 to
determine the standardized limits of the b region.

Upper limit : Z ¼ 61:3�50ffiffiffiffiffiffiffiffiffi
45:7

p ¼ 1:67

Lower limit : Z ¼ 34:7�50ffiffiffiffiffiffiffiffiffi
45:7

p ¼ �2:26
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Figure 1.7 Evaluation of type II error

From the normal tables, Table B we have:

P(Z£1.67)=0.9525; P(Z£-2.26)=1-P(Z£2.26)=1-0.9881=0.0119,

Therefore:

b=P(-2.26£Z£1.67)=0.9525-0.0119=0.9406.

The power is therefore only:

1-b=0.0594.

Suppose now that we repeat the calculation of the power for other specific values
of H1 and plot them as shown in Fig. 1.8. Inspection of Fig. 1.8 shows that the
power would vary from a value of a where H1:l=48 to a value of 1.0 where H1:–¥.
Such calculations yield the power function curve, as shown in Fig. 1.8. As expected,
the further l1 is removed from l0=48, the higher is the probability of rejecting the
false hypothesis H0. Inspection of Fig. 1.7 shows that b decreases as a increases, so
that we could obtain a higher power at the sacrifice of the level of significance. A
higher power at the same a is possible if a large sample size is used.

In this part, we have considered the fundamentals of statistical tests and have
seen that no test is free from possible error. We can reduce the probability of reject-
ing a true hypothesis only by running a greater risk of accepting a false hypothesis.
We note that a larger sample size reduces the probability of error.

A demand for a specially high level of significance of at least 0.9999 is present in
rocket technology and spacecraft industry. In order to reach the mentioned level of
significance, there has to be an almost disappearing level of b so that there is no
chance of mounting a defective part into the mentioned crafts.
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1.3
Statistical Estimation

Engineers are often faced with the problem of using a set of data to calculate quanti-
ties that they hope will describe the behavior of the process from which the data
were taken. Because the measured process variable may be subject to random fluc-
tuations as well as to random errors of measurement, the engineers calculated esti-
mate is subject to error, but how much? Here is where the method of statistical esti-
mation can help.

Statistical estimation uses sample data to obtain the best possible estimate of pop-
ulation parameters. The p value of the Binomial distribution, the l value in Poison’s
distribution, or the l and r values in the normal distribution are called parameters.
Accordingly, to stress it once again, the part of mathematical statistics dealing with
parameter distribution estimate of the probabilities of population, based on sample
statistics, is called estimation theory. In addition, estimation furnishes a quantitative
measure of the probable error involved in the estimate. As a result, the engineer not
only has made the best use of this data, but he has a numerical estimate of the accu-
racy of these results.

Estimates of two kinds can be made, point estimate and interval estimate.
Point estimate uses the sample data to calculate a single best value, which esti-

mates a population parameter. The point estimate is one number, a point on a
numeric axis, calculated from the sample and serving as approximation of the
unknown population distribution parameter value from which the sample was tak-
en. Such a point estimate alone gives no idea of the error involved in the estimation.
If parameter estimates are expressed in ranges then they are called interval estimates.
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J. Neuman calls these intervals confidence intervals, for as parameter-interval esti-
mates, ranges with known confidence level are chosen. An interval estimate gives a
range of values that can be expected to include the correct value with a certain speci-
fied percentage of the time. This provides a measure of the error involved in the esti-
mate. The wider the range of the interval estimate, the poorer the point estimate.

1.3.1
Point Estimates

The best point estimate depends upon the criteria by which we judge the estimate.
Statistics provides many possible ways to estimate a given population parameter,
and several properties of estimates have been defined to help us choose which is
best for our purposes.

Example 1.12 [8]
Suppose that we have made 11 runs on a pilot-plant reactor at constant conditions
and have obtained the following values of the percentage yield of desired product:
32, 55, 58, 59, 59, 60, 63, 63, 63, 63, 67.

The data fluctuate because of uncontrolled variables and measurement error. Sup-
pose we want the best single value of the yield, where “best” means the yield that we
can expect in future runs at the same conditions. We could calculate the sample
mean �XX=58.4, the median m=60 and the mode 63. But perhaps the 32% yield was a
run involving some error of which we are unaware. We cannot arbitrarily drop the
run without knowing the cause of the low value, but the mean places undue weight
on it.

We might use the median (60) as the best estimate of future yields, since the med-
ian does not weight the lowest value unduly. On the other hand, we were able to
obtain 63% yield 4 times out of 11. Perhaps this value (the mode) is the best esti-
mate of future operation at carefully controlled conditions. Obviously, statistics can-
not make the judgments required in this example. If we can say that the sample
mean (58.4) is the best estimate of the population under certain conditions, provid-
ing the data come from a random sample of the population. If the 32% yield is as
likely to occur as any other value, then the mean is the best estimate.

Several properties of estimates help us to determine which estimate is best for
our purposes. We will consider three here:

. consistency

. bias,

. efficiency.

Consistency
This tends to give the correct value of the population parameter as the sample size is
increased. For example, as n approaches infinity, the sample mean �XX tends to the
population mean l so �XX is a consistent estimate of l.
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Bias
An estimate is unbiased if on the average it predicts the correct value. Mathemati-
cally, an estimate is unbiased if its expected value is equal to the population para-
meter that it is estimating. For example, the sample mean �XX is an unbiased estimate
of the population mean l because:

E(�XX)=l

On the other hand, the sample variance defined by Eq. (1.4) is biased:

S
2
X ¼

P
i

Xi��XX
� �2

n

Because, as shown:

E S
2
X

	 

¼ n�1

n
r
2
X

This means that the condition has not been fulfilled:

E S
2
X

	 

¼ r

2
X

or that this kind of variance estimation is not unbiased but biased. The population
variance unbias estimation is given by the sample variance in the following form:

S
2
X ¼

Pn
i¼1

Xi��XX
� �2
n�1

Random variable estimations have, apart from the mean, their own variance. It
has been proved that when choosing an estimation it is not sufficient to require an
estimation to be consistent and biased. It is easy to cite examples of different estima-
tions for consistent and biased basic population means. The criterion for a better
estimation is: an estimation is better the smaller dispersion it has. Let us assume
that we have two consistent and biased estimations h1 and h2 for a population para-
meter and let us suppose that h1 has smaller dispersion than h2.. Fig. 1.9 presents
distributions of the given estimations.

It is clear from the figure that both estimations have the same mean, or:

E(h1)=E(h2)= population parameter

The random variable values h1 are more centered around the population para-
meter than the h2 ones (i.e. estimations). This means that the average error made in
multiple population parameter estimation by means of h1 will be smaller than when
we do the same for h2. The h1 estimation can be said to be more efficient.

Efficiency
This is an important property of an estimate. An efficient estimate is the one that
gives values that are in general closest to the correct value. A measure of the spread
of values around a true value is the variance. The statistical estimate that has the
smallest variance is said to be the efficient estimate, and all others are compared
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Figure 1.9 Probability distributions of estimations h1 and h2

with it by taking the ratio of the variances. For example, for a normally distributed
population, the mean has the minimum variance r

2
X

.
n; while the variance of the

median is pr
2
X

.
2n. The efficiency of the median as an estimate of the location of

the normal population is then:

E ¼
r2X
.
n

pr2X
.
2n

¼ 2
p
¼ 0:637 or 63:7%

Efficiency is usually a more important property than unbiasedness. A statistic
may prove to be unbiased because large deviations on either side of the correct value
cancel each other, but it would be highly inefficient.

1.3.2
Interval Estimates

As it has been mentioned, apart from point estimates there exist the parameter
interval estimates. No matter how well the parameter estimate has been chosen, it is
only logical to test the estimate deviation from its correct value, as obtained from the
sample. For example, if in numerical analysis one obtains that the solution of an
equation is approximately 3.24 and that –0.03 is the maximal possible deviation
from the unknown correct solution of the equation, then we are absolutely sure that
the range (3.24-0.03=3.21; 3.24+0.03=3.27) contains the unknown correct solution of
the equation. Therefore the problem of determining the interval estimate is formu-
lated in the following way:

Let the observed property of X elements of a population have a distribution deter-
mined by density function f(X). Let us randomly draw from this population a sample of
n observations X1,X2,...,Xn. We determine two values for the beforehand probability
(1-a) close to 1.0 , so that the unknown population parameter value is within this range,
while the a probability is outside it. Interval limits are determined by the given sample
X1,X2,...,Xn. We say that (Za=2 ;Z1�a=2 ) is the confidence interval for the population para-
meter if its correct value is within the range with beforehand given probability 1-a.
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The probability 1-a is called the confidence coefficient of the confidence interval.
The interval defined in this way is referred to as a confidence interval, and the ends of
the interval are called confidence limits. The quantity (1-a) is the confidence coefficient,
we can write down:

P Za=2 � population parameter � Z1�a=2

	 

¼ 1� a (1.44)

The interval (Za=2 ;Z1�a=2 ) is a random variable changed from sample to sample.
Some of these intervals will contain the population parameter, others not. However
in a large sample, the relative frequency of cases when the interval will contain the
population parameter will be approximately 1-a. For a case when it does not have
the population parameter, the relative frequency does not go over a.

If we, for instance, choose that 1-a=0.95 we can expect about 95% of samples to
give the confidence interval containing the population parameter. These 0.95 inter-
vals will be called 95% confidence intervals.

By choosing 1-a=0.99, we can expect the confidence interval to contain the popu-
lation parameter in some 99 out of 100 cases. But, as will be shown later, the confi-
dence interval corresponding to the coefficient 1(a=0.99, is greater than the one in
the case 1-a=0.95. This increase in confidence interval is the bad outcome of the
confidence coefficient increase. Which of the 1-a confidence coefficient values to
choose in the actual case depends on what error risk is acceptable.

Confidence interval for the mean the variance of which is known
Let us suppose that from a normal population the value l of which is unknown, the
variance r

2
X known, a sample X1,X2,...,Xn. was drawn. The confidence interval for l

should be determined.
Based on central limit theorem [3] the average �XX has a normal distribution

n
�
l; r

2
X

.
n
�
, or:

E �XX
� �

¼ l ; r
2
�XX ¼ r

2
X

.
n (1.45)

For testing the hypothesis on the population mean we can use the following sta-
tistic:

Z ¼
�XX�l

rX
� ffiffiffi

n
p (1.46)

For a two-sided test, we noted that when Z was less than za=2 or greater than
z1�a=2 we rejected the primary hypothesis H0 . We accepted H0 if Z lay between za=2
and z1�a=2 . The probability that Z lies between these limits is therefore simply (1-a).
Stating this mathematically, we get:

P(za=2<Z<z1�a=2 )=1- a (1.47)

Substituting for Z gives:

P(za=2<
�XX�l

rX
� ffiffiffi

n
p <z1�a=2 )=1- a (1.48)
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Or, the confidence interval is:

za=2<
�XX�l

rX
� ffiffiffi

n
p <z1�a=2 )za=2

rXffiffiffi
n

p <�XX � l<z1�a=2
rXffiffiffi
n

p (1.49)

Then we reverse the signs and add �XX to each term to give:

�XX–z1�a=2
rXffiffiffi
n

p <l<�XX–za=2
rXffiffiffi
n

p (1.50)

Since za=2=–z1�a=2 we may rewrite Eq. (1.50) in a more conventional form:

�XX+za=2
rXffiffiffi
n

p <l <�XX+z1�a=2
rXffiffiffi
n

p (1.51)

Substituting Eq. (1.51) in Eq. (1.48) then gives:

P(�XX+za=2
rXffiffiffi
n

p <l<�XX+z1�a=2
rXffiffiffi
n

p )=1- a (1.52)

Equation (1.52) gives an interval estimate of l. The estimate is centered on �XX and
extends (z1�a=2rX =

ffiffiffi
n

p ) on either side of it.

Example 1.13
From the reactor data given earlier, 32, 55, 58, 59, 59, 60, 63, 63, 63, 63, 67 determine
an interval estimate of yield, presuming that the population variance is r

2
X=81.

Earlier we found the sample mean to be �XX=58.4. For a=0.05; Za=2=–1.96 and
Z1�a=2=+1.96. Substituting the values into Eq. (1.52) then gives:

P 58:40� 1:96
9ffiffiffiffiffi
11

p � l � 58:40þ 1:96
9ffiffiffiffiffi
11

p
� �

¼ 0:95 (1.53)

P 53:09 � l � 63:71ð Þ ¼ 0:95 (1.54)

The interval defined in this way is referred to as a confidence interval, and the
ends of the interval are called confidence limits. The quantity (1-a) is the confidence
coefficient. We must remember that �XX and hence the confidence limits are the ran-
dom variables in this statistic; whereas l is a constant. Thus, with continued sam-
pling, we could obtain other sets of confidence limits. For example, suppose we
make another set of 11 runs and get yields of:

47, 53, 56, 58, 58, 61, 61, 62, 64, 64, 65,

Then,

�XX=59.0,

and the confidence interval is:

P 63:69 � l � 64:31ð Þ ¼ 0:95 (1.55)

Equation (1.54) states that 95 out of 100 of these calculated random intervals will con-
tain l. Or less precisely, we can be 95% confident that the interval calculated actually
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contains l. If we want to be more certain, wemust use a smaller level of significance a.
For example, with a=0.01, the interval estimate of Eq. (1.54) becomes:

P 51:41 � l � 65:39ð Þ ¼ 0:99 (1.56)

This broader confidence interval is more likely to contain l. If we want to be abso-
lutely certain (P=1.0) that the interval contains l, we must write:

P �1 � l � 1ð Þ ¼ 1:0 (1.57)

which gives a rather useless interval. The interval estimated in Eq. (1.54) is some-
times stated another way:

l=58.40 –5.31(a=0.05) (1.58)

Hypothesis testing with interval estimates
The confidence interval may be used to test a hypothesis about the population para-
meter on which the confidence interval is based. For example, suppose that by using
the data of Example 1.13 we wished to test:
H0 : l=57
H1 : l<57 or l>57

If the confidence interval includes the hypothesized value given in H0, then we
accept H0. For the first set of data, Eq. (1.54) shows that we should accept H0 because
57 lies in the interval:

P 53:09 � l � 63:71ð Þ ¼ 0:95:

This procedure is really equivalent to our earlier method of hypothesis testing, as
an inspection of Eqs. (1.47)–(1.52) shows. In this part and the previous one, we have
outlined the principles of statistical tests and estimates. In several examples, we
have made tests on the mean, assuming that the population variance is known. This
is rarely the case in experimental work. Usually we must use the sample variance,
which we can calculate from the data. The resulting test statistic is not distributed
normally, as we shall see in the next part of this chapter.

Tests and estimates on the statistical mean
The mean is perhaps the most important single parameter in many experimental si-
tuations because it pin-points the basic location of a population.

In most tests and estimates on the mean, it is assumed that the observations in
the sample have been drawn independently from a normal population. This
assumption is not as restrictive as it first appears because of the central limit theo-
rem.

This theorem, which is of far-reaching importance in statistics, states that:

. The sum of identically distributed independent random variables is normally
distributed for large sample size regardless of the probability distribution of
the population of the random variable,

. When n tends to be infinite, the random variable distribution X tends to have
normal distribution.
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The consequence is:
If the random variables X1,X2,...,Xn are independent and have the same probabil-

ity distribution where:

E Xið Þ ¼ l ; E r
2
X

	 

¼ r

2
X

then the random variable probability distribution �XX ¼
P

Xi

�
n tends to a normal dis-

tribution with parameters l and rX =
ffiffiffi
n

p
. As a consequence of the central limit theo-

rem, many test statistics may be assumed to be distributed normally providing that
the number of observations n is large, and even though we do not know the under-
lying distribution. The normal approximation to the binomial distribution that we
have used earlier results from the application of the central limit theorem, because
the binomial distribution is the sum of independent Bernoulli distributions. How
large must n be? Strictly speaking, the normal distribution is approached asymptoti-
cally as n approaches infinity. Practically, the size of sample depends on the preci-
sion desired.

For a binomial distribution, the normal approximation can be used with good
accuracy for sample sizes as low as 8, providing the binomial k is arbitrarily
increased by 0.5 in calculating the approximate normal statistic. For values of the
parameter p near 0 or 1, a larger sample must be used to obtain an accurate approx-
imation.

One conclusion derived from the central limit theorem is that for large samples
the sample mean �XX is normally distributed about the population mean l with var-
iance r

2
�XX , even if the population is not normally distributed. This means that we can

almost always presume that �XX is normally distributed when we are trying to esti-
mate or make a test on l, providing we have a large sample.

We have also seen that �XX is an unbiased, efficient, consistent estimate of l, if the
sample is from an underlying normal population. If the underlying population devi-
ates substantially from normality, the mean may not be the efficient estimate; and
some other measure of location such as the median may be preferable. We have pre-
viously illustrated a simple test on the mean with an underlying normal population
of known variance. We shall review this case briefly, applying it to tests between two
means, and then proceed to tests where the population variance is unknown.

Tests and estimates with variance known
As discussed earlier, the simplest test on the mean presumes an underlying normal
population with known variance, and establishes the hypotheses:

H0 : l � l0 H0 :l>l0 (1.59)

where l0 is some preselected numerical value. These hypotheses yield a one-sided
test, with the critical region at the upper side of the normal distribution. We might
also formulate other hypotheses:

H0 : l � l0 H1 : l � l0 (1.60)

or:

H0 : l ¼ l0 H : l � l0 or l � l0 (1.61)
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The choice among the three sets depends upon what we wish to test. If we wish
to show that l is higher than l0, we use the first test. If we wish to test whether l is
less than l0, we use the second set. To show that l is simply unequal to l0, we use
the third set with a two-sided critical region. All of these sets use the test statistic:

Z ¼
�XX�l

rX
� ffiffiffi

n
p (1.62)

where Z is distributed normally, with mean equal to zero and variance of one, and
where rX is known. As shown earlier, the interval estimate that is equivalent to this
test on l is:

P(�XX+za=2
rXffiffiffi
n

p <l<�XX+z1�a=2
rXffiffiffi
n

p )=1-a

This interval estimate is really based on the two-sided test of the third set of
hypotheses previously given. Although it is possible to define “one-sided” confidence
intervals based on the other two sets of hypotheses (1.59) and (1.60), such one-sided
intervals are rarely used. By one-sided, we mean an interval estimate that extends
from plus or minus infinity to a single random confidence limit. The one-sided con-
fidence interval may be understood as the range one limit of which is the probability
level a and the other one –¥.

Comparison of two means: variances known
When the two variances are equal, we may test whether two means are equal by
using:

H0 : l1 ¼ l2 H0 : l1 � l2 or l1 � l2 (1.63)

with the test statistic:

Z ¼
�XX1��XX2� l

1
�l

2

	 

rX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�
n1þ1

�
n2

q (1.64)

When H0 is true, l1 � l2 ¼ 0, Eq. (1.64) is simplified. The distribution of Z is
normal for underlying normal populations, or for large sample sizes. If the two
populations have different variances, the test statistic is:

Z ¼
�XX1��XX2� l

1
�l

2

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2X1

.
n1þr2X2

.
n2

r (1.65)

where r
2
X1

andr
2
X2

are the known variances of the two populations.

Tests and estimates with variance unknown
Usually when we have collected some data and wish to use them for tests or estima-
tions, we have no idea of the numerical value of the population variance. As a result,
the tests requiring known variance cannot be used. Instead, we calculate the sample
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variance and use it in place of the population variance. For example, Eq. (1.62)
becomes:

T ¼
�XX�l

0

SX
� ffiffiffi

n
p (1.66)

The new statistic “t” is usually referred to as “student’s” t-distribution Table C, after
W.S. Gosset, who first worked out its distribution. For a normal population:

T ¼
�XX�l

0

	 
.
rX
� ffiffiffi

n
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

	 

n�1ð ÞS2X
r
2
X

� �s (1.67)

where the numerator is the standard normal variable Z and where n� 1ð ÞS2
X

.
r
2
Xhas a

chi-square distribution. The quantity (n-1) is called the “degrees of freedom”.

Table 1.4 Selected values for t-distribution

Degrees of freedom
(n-1)

t0.90 t0.95 t0.975 t0.99 t0.995

1 3.08 6.31 12.7 31.8 63.7

2 1.89 2.92 4.30 6.96 9.92

3 1.64 2.35 3.18 4.54 5.84

4 1.53 2.13 2.78 3.75 4.60

5 1.48 2.01 2.57 3.36 4.03

6 1.44 1.94 2.45 3.14 3.71

7 1.42 1.90 2.36 3.00 3.50

8 1.40 1.86 2.31 2.90 3.36

9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

15 1.34 1.75 2.13 2.60 2.95

20 1.32 1.72 2.09 2.53 2.84

25 1.32 1.71 2.06 2.48 2.79

30 1.31 1.70 2.04 2.46 2.75

¥ 1.28 1.64 1.96 2.33 2.58

Remark: For t values at lower values of ; ta = – t1–a
Hence, t0.05= - t0.95 = - 2.35 for (n - 1)=3

A few values of the t-distribution are given in an accompanying table. We note
that t values are considerably higher than corresponding standard normal values for
small sample size; but as n increases, the t-distribution asymptotically approaches
the standard normal distribution. Even at a sample size as small as 30, the deviation
from normality is small, so that it is possible to use the standard normal distribution
for sample sizes larger than 30 (n‡30) and in most cases, for n<30 t-distribution is
used. This is equivalent to assuming that S

2
X is an exact estimate of r

2
X at large sam-

ple sizes (n>30).
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We can also evaluate tests and estimates on the mean with variance unknown. If
we calculate S

2
X from data, the test statistic equivalent to Eq. (1.62) is:

T ¼
�XX�l

0

SX
� ffiffiffi

n
p (1.68)

and the confidence interval is:

P �XX þ ta=2SX =
ffiffiffi
n

p
� l � �XX þ t1�a=2SX =

ffiffiffi
n

p	 

¼ 1� a (1.69)

where T is distributed as Student’s t with (n-1) degrees of freedom. The seven-step
procedure may be used with this T test, as shown in the following example.

Example 1.14
To test the hypothesis that l=63, use reactor-yield data:

32; 55; 58; 59; 59; 60; 63; 63; 63; 63; 67.

We first calculate the sample variance as follows:

S
2
X ¼

P
Xi��XX
� �2
n�1

¼ n
P

X2
i �

P
Xi

� �2
n n�1ð Þ ¼11�38340�6422

11 11�1ð Þ ¼ 87:05 ) SX ¼ 9:33

The seven-step procedure follows:

1. The underlying distribution is assumed to be normal;
2. H0: l=63; H1 : l<63 or l>63
3. The test statistic is: T ¼

	
�XX � l

0


.	
SX
� ffiffiffi

n
p 


4. Let a=0.05
5. Test statistic T is distributed as Student’s t with n-1=10 degrees of freedom.

From Table 1.4, we find t1�0:5=2 ¼ t0:975 ¼ 2:23 ; t0:05=2 ¼ t0:025 ¼ �2:23
for the two-sided test and a=0.05

6. Since �XX ¼ 58:4 ) T ¼ 58:4� 63:0ð Þ
�

9:33
� ffiffiffiffiffi

11
p� �

¼ �1:64
7. Accept H0 since -2.23<-1.64<2.23

Example 1.15
Make an interval estimate of the yield from the reactor in Example 1.14 for a 95%
confidence level.

P 58:4� 2:23� 9:33
� ffiffiffiffiffi

11
p

� l � 58:4þ 2:23� 9:33
� ffiffiffiffiffi

11
p� �

¼ 0:95

P 52:14 � l � 64:66ð Þ ¼ 0:95

Comparison of means, variances unknown
If we wish to compare two means with population variances unknown, we have two
situations. The sample variances may be presumed equal or unequal.

If the two variances are unknown but presumed equal, we calculate a pooled sam-
ple variance:

S
2
p ¼ n1�1

� �
S2
1þ n2�1
� �

S22
n1þn2�2

(1.70)
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Then the test statistic is:

T ¼
�XX1��XX2

Sp

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r (1.71)

where T has (n1+n2(2) degrees of freedom. If the two variances are presumed
unequal, we use:

T ¼
�XX1��XX2ffiffiffiffiffiffiffiffiffiffiffiffi

S
2
1

n1
þS

2
2

n2

s (1.72)

where T is distributed with f degrees of freedom, and:

f ¼
S2
1

.
n1þS2

2

.
n2

	 
2
S
2
1

�
n1

� �2
n1þ1

þ S
2
2

�
n2

� �2
n2þ1

� 2 (1.73)

The interval estimate for the difference in any two means corresponding to the
test in Eq. (1.71) is:

P �XX1 � �XX2 þ ta=2Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

s
� l1 � l2 � �XX1 � �XX2 þ t1�a=2Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

s" #
¼ 1� a

(1.74)

If we cannot assume that the two variances S
2
1 andS

2
2 are equal, i.e. we cannot cal-

culate the “pooled variance”, then (1-a) 100% confidence interval is based on the
following statistic:

T ¼
�XX1��XX2� l

1
�l

2

	 

S21
.
n1þS2

2

.
n2

	 
0:5 (1.75)

where the T statistic has an approximate t-distribution with f degrees of freedom:

f ¼
S2
1

.
n1þS2

2

.
n2

	 
2
S
2
1

�
n1

� �2
n1�1

þ S
2
2

�
n2

� �2
n2�1

(1.76)

so that:

P �tf ;1�a=2 � T � tf ;1�a=2

h i
¼ 1� a (1.77)

tf ;1�a=2 -is obtained from the Table C (Appendix).
By replacements we get (1-a) 100% confidence interval:

P �XX1 � �XX2 � tf ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S2
2

n2

s
� l1 � l2 � �XX1 � �XX2 þ tf ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S2
2

n2

s" #
¼ 1� a

(1.78)
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Example 1.16
Using 95% confidence interval, determine whether the mean nitric acid corrosion
rate of metal A is different from that of metal B. The data on 10 runs for each metal
under identical conditions are:

A: 40; 42; 42; 43; 46; 47; 47; 48; 49; 50;

B: 39; 41; 41; 44; 45; 45; 46; 47; 48; 48.

For metal A and B we have:

A: �XX1= 45.4; S
2
1=11.60;

B: �XX2= 44.4; S
2
2=9.82;

The variances are nearly the same, so we shall pool them:

S
2
p ¼ 9�11:60þ9�9:82

18
¼ 10:71 ; Sp ¼ 3:27

Substituting in Eq. (1.74), with t0:975 ¼ 2:10 ; t0:025 ¼ �2:10 for f =18 degrees of
freedom:

P 45:4� 44:4ð Þ þ �2:10ð Þ � 3:27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

þ 1
10

r
� l1 � l2 � 45:4� 44:4ð Þ

�
þ2:10� 3:27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

þ 1
10

r #
¼ 0:95

P �2:7 � l1 � l2 � 4:07
� �

¼ 0:95

Because the interval includes zero, we may accept the hypothesis H0 that the
means for each metal are not different:

H0:H0 : l1 ¼ l
2

or H1 : l1 � l2 ¼ 0

1.3.3
Control Charts

The concept of a confidence interval may be used to set up a statistical control chart
on the mean. Let us consider the reactor from Example 1.14. Suppose we want to
use the results of the 11 runs to establish a procedure for operation of the reactor in
future runs.

Let us establish a criterion whereby we conclude that the reactor is not in control
if the mean of five measurements of yield is more than three standard deviations
away from the population mean (as determined by the earlier 11 runs). Then we can
establish upper and lower control limits on a control range �XX–3r, outside of which
we initiate corrective action on the reactor operation.
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Example 1.17
Construct a control chart for the reactor from Example 1.14. Use this chart to deter-
mine whether the reactor is under statistical control for the following averages of
five measurements of yield taken at hourly intervals:

Time: 1 2 3 4 5 6 7 8 9 10
�XX , Yield: 55 60 62 52 45 44 43 44 42 43

From the earlier data, we take the sample parameters as our estimate of the popu-
lation parameters

l=�XX=58.4; rX =SX =9.33;

From Eq. (1.69), the upper control limit is:

58:4þ 3� 9:33
� ffiffiffi

5
p

¼ 70:8

and the lower control limit is:

58:4� 3� 9:33
� ffiffiffi

5
p

¼ 46:0

These control limits are plotted on the control chart, along with the hourly yield
data as shown in Fig. 1.10.

80

70

60

50

40
1 2 3 4 5 6 7 8 9 10

(%)Yield

Statistical
control
range

Time (H)

center lineControl

Figure 1.10 Control chart for reactor operation

The reactor was within the control limits until the 5th hour, at which time some
corrective action should have been undertaken to restore the yield. As it is, the yield
seems to have settled at about 43%, which is outside the control range.

The choice of three standard deviations of the control limits is common. It is
equivalent to a=0.027. That is, only 27 out of 1000 average yields are likely to fall
outside of the control range because of random fluctuations. Therefore we are quite
justified in assuming that yields less than 46% are due to something other than ran-
dom fluctuations.
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1.3.4
Control of Type II error-b

Numerous experimental studies and conclusions are brought down to testing the
null hypothesis through the obtained observation sample. The so far presented
method, i.e. the significance confidence test, takes into account only the type I error
a. The new approach, in order to completely fulfill the requirements of an experi-
menter, chooses the number of sample observations, so that considerably larger dif-
ferences, useful for the experimenter, can almost always be discovered by a signifi-
cance test.

This kind of an experiment is said to have type II error control, i.e. the error of
not discovering the real deviation from the null hypothesis. The probability of mak-
ing type II error is marked b.

In experiments in which mean values are compared, the number of observations
that should be made depends, as might be expected, on the quantities:
r-the experimental error standard deviation;
d-the size of difference between the means it is important to detect;
a-the risk of asserting a difference when none exists; that is the level of probability
at which the significance test is made;
b-the risk of asserting no difference when a difference of d exists.

Obviously, the number of observations of a sample is the function a, b and
D=d/r. D is the standard difference expressed in standard deviations. To determine
the number of observations in a sample for different comparison tests we use
Tables F and G.

When the standard deviation is known, the formula for determing the number of
observations in an experiment where two means are compared is easy to be formu-
late.

The case will be considered in which it is desired to compare the mean �XX of a
sample of observations with a standard value l0 . Suppose

�XX* is the value that the
mean of the sample must exceed for the difference to be significant. In accordance
with Eq. (1.62) we have:

�XX
� ¼ l0 þ Zar=

ffiffiffi
n

p
(1.79)

If �XX * is so chosen, there is only a risk a that the sample mean �XX will exceed �XX*

when l ¼ l0 . When l is equal to l0 þ d
�
l� l0 ¼ d

�
, there exists the risk b of not

accepting this assertion but accepting the incorrect hypothesis that l ¼ l0 .
This is the risk that the sample mean �XX falls short of �XX *, and consequently

�XX
� ¼ l0 þ d� Zbr=

ffiffiffi
n

p
(1.80)

Subtracting the second Eq. (1.80) from the first Eq. (1.79) it will be seen that both
equations are satisfied when:

d ¼ Za þ Zb

	 

r=

ffiffiffi
n

p
) n ¼ Za þ Zb

	 
2
r
2
.
d
2

(1.81)

n ¼ Za þ Zb

	 
2.
D

2
(1.82)
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where D(=d=r) is the difference it is important to detect, expressed as a multiple of
the standard deviation

The experimenter should therefore perform the number of experiments indicated
by Eq. (1.82) and make a test of significance at the level a.

If the result is significant, we should say that a real difference has occurred; if it is
not significant, we should say that no difference as large as d has occurred. The
chances of obtaining a significant result when no difference has occurred and of
obtaining a nonsignificant result when a difference l� l0 ¼ d has occurred will
thus be a and b, respectively.

Example 1.18 [9]
Primers of pressed tetryl are used for initiating charges of explosives. A factor affect-
ing their initiating power is their density. For a certain purpose it was desirable that
the density of the primers should exceed 1.4 g/cm3. A scheme was required so that a
decision whether to accept the batch as satisfactory or reject it because the average
density was too low could be based on the results obtained from testing a fairly small
randomly drawn sample of primers from the batch. The standard deviation was
known from past experience to be 0.03 and the mean density when the presses were
operating normally was 1.54.

A random sample of n primers will be drawn from the batch, the density of each
primer measured, and the sample mean is calculated �XX . If �XX exceeds the value �XX*,
the batch will be accepted; if �XX falls short of this value it will be rejected.

To ensure that good batches are nearly always accepted and bad batches nearly
always rejected it was decided that the following requirements should be satisfied:

. If the sample mean density �XXwas as low as 1.50 there should be a 99%
chance of rejection (or a 1% chance of acceptance).

. If the sample mean density assumed the value �XX=1.54 there should be a 98%
chance of acceptance (or a 2% chance of rejection).

Under the given conditions the value to be compared with the sample mean is
1.50, while the significance level and type II error are a=0.01; b=0.02 and d=1.54-
1.50=0.04, respectively.

Thus: D=d/r=0.04/0.03=1.33. The standardized normal distribution table gives:
Za=1.326 and Zb=2.054. Using the Eq. (1.82): n=10.8»11, and the Eq. (1.80):
�XX*=1.521. This is illustrated for the present example in Fig. 1.11.
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   α   α =0,02 =0,01

1,50 1,54

1,521

Batch mean, µ
1,521

Figure 1.11 Distribution of means for samples of 11 primers

1.3.5
Sequential Tests

The preceding part has indicated the basis on which the experimenter can decide
what number of observations is required to make comparative experiments conclu-
sive, on the assumption that this number must be decided before the experiment is
performed. When, as is common in chemical and physical research, the observa-
tions are obtained one after another, it is generally possible to adopt an alternative
procedure in which, after each observation is made, a simple statistical test is
applied to determine whether the results obtained so far indicate a definite conclu-
sion from the experiment, or whether more observations are needed to make the
experiment decisive. The experiment thus terminates as soon as a definite conclu-
sion can be drawn, and the average number of observations required in experiments
carried out in this manner tends to be definitely less than when the number has to
be decided beforehand. Consequently this sequential method of performing com-
parative experiments has definite advantages, particularly when the observations are
expensive or time consuming. It is often only half of the number required by non-
sequential testing, or in cases of unexpected large effects-differences, sequential test-
ing can offer an answer after only one or two observations. In sequential testing a
decision is made after each new observation based on all previously obtained infor-
mation, aimed at asserting whether:

. to accept the null hypothesis that no change of importance has occurred;

. to accept the aslternative hypothesis that a real change has occurred;

. to continue taking observations.

Sequential tests are best explained graphically. As each new observation comes to
hand, the value of a function of all observations recorded up to that time is calcu-
lated and plotted against the number of observations on a chart such as shown in
Fig. 1.12.
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On the chart are two boundary lines, the positions of which depend upon the
risks a and b, of errors of type I and type II, the magnitude of the difference it is
important to detect, etc. The lines divide the chart into three zones: (1) in which the
Null Hypothesis is accepted; (2) in which the alternative hypothesis is accepted; and
(3) in which there is no decision.

The sequential test then consists in plotting the function of the observations f(X)
against the number of observations n and continuing to take observations so long as
the plotted points f(X) fall within (3). As soon as point falls outside this zone, that is,
either in zone (1) (acceptance of the H0), or in zone (2) (acceptance of the H1), the
observations are discontinued and the indicated decision is taken.

In practice the chart is often changed with the boundary values being calculated
in advance for each value of n. The test is then made by successive comparisons of
the value f(X) with the appropriate limits.

2

3
1

f(x)

Accepting
alternative
hypothesis

Continue

taking

observations

Number of observations

Accepting null hypothesis

Figure 1.12 Sequential test chart

One-sided sequential testing-comparison of a mean with a standard value
Suppose it is required to test whether the population mean l of a series of observa-
tions is equal to some standard value l0 . As before, d denotes the difference it is
important to detect, r the standard deviation, a the risk of asserting a significant
difference when none exists, and b the risk of asserting no significant difference
when the mean value is really l=l0+d.

The function f(X) plotted for this test is simply the total T of the observations up
to the time considered, and the boundaries are parallel straight lines with slope S,
cutting the axis of T at h1 and h0.. The values h0, h1 and S are given by the equations:

h0 ¼ �br
2
.
d ; h1 ¼ ar

2
.
d ; S ¼ l0 þ 1=2d (1.83)

a ¼ ln 1� bð Þ=a ; b ¼ ln 1� að Þ=b (1.84)

Table H gives values of a and b for commonly used values of a and b
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Example 1.19 [9]
Apply sequential test to Example 1.18 so as to point out the difference between
sequential and nonsequential testing. It was assumed that r was constant and equal
to 0.03, and the procedure was planned so that there would only be a small risk
(a=0.01) of accepting a bad batch, that is a batch with mean density as low as
l0=1.50 g/cm3, and a small risk (b=0.02) of rejecting a good batch, that is a batch
with mean density l1=1.54 g/cm3. Thus d=0.04, r=0.03, a=0.01, and b=0.02. It was
found that for the nonsequential test n=11 observations would be required and that
the test should be made by calculating the mean of a sample of eleven, rejecting the
batch if the mean was less than �XX*=1.521 g/cm3 and accepting it otherwise.

Had it been convenient to use a sequential scheme then as each primer was tested
the total T of the observations to date would be calculated and plotted on a chart
with suitable boundary lines. It will be found in practice that if l0 is large compared
with d these boundary lines will rise very steeply and appear to be very close togeth-
er, so that the chart will be difficult to use. Since the test is to detect a difference, it
will not be affected if a constant amount is subtracted from each observation. For
purposes of convenience, therefore, instead of considering the actual density we
consider the amount by which the density exceeds 1.40, that is to say, 1.40 is sub-
tracted from each observation. Then:

l0=0.10; l1=0.14; h0=-0.0878; h1=0.1032; S=0.12;

To construct the chart convenient values are chosen for the two scales, making
the vertical axis the axis of T and the horizontal axis the axis of n. Points are marked
off 0.1032 unit above zero and 0.0878 unit below zero on the axis of T, and through
these points lines are drawn that rise by 0.12 unit of T for each unit increase in n. A
chart is then obtained like that in Fig. 1.13.
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0,6

0,4

0,2

-0,2

h

h
1

0
1 2 3 4 5

S=0,12

Cumulative total

Accept batch

Reject batch

Number of observations

Figure 1.13 Sequential test in control

Suppose, for example, the first five observations were: 1.551; 1.527; 1.581; 1.517;
1.547. Subtracting 1.40, these would be treated as: 0.151; 0.127; 0.181; 0.117; 0.147,
and the cumulative totals: 0.151; 0.278; 0.459; 0.576; 0.723, would be plotted against
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the value n=1, 2, 3, 4 and 5, respectively. As will be seen from Fig. 1.13, the last point
is in the zone of acceptance, and testing would therefore end and the batch would
be accepted at this stage.

Alternative methods of presenting the results
In most cases it is quicker to calculate limits T0 and T1 for each value of n from the
expressions:

T0 ¼ h0 þ ns ; T1 ¼ h1 þ ns (1.85)

Table 1.5 Limit values

n 1 2 3 4 5 6 7 8

T0 0.0322 0.1522 0.2722 0.3922 0.5122 0.6322 0.7522 0.8722

T1 0.2232 0.3432 0.4632 0.5832 0.7032 0.8232 0.9430 1.0632

The taking of observations is then continued so long as T lies between T0 and T1.
In the example given here, assuming as before that 1.40 is subtracted from each
observation, these limits are as shown in Table 1.5.

For the particular set of observations previously given, the successive cumulative
totals T were: T=0.151; 0.278; 0.459; 0.576 and 0.723. Testing would therefore be dis-
continued at this stage with acceptance of the batch, since for the first time T falls
outside one of the boundaries denoted by T0 and T1 (n=5 for T5=0.723 is outside the
range 0.5122–0.7032).

Two-sided sequential testing
The technique so far considered is appropriate for testing whether a mean value is
significantly greater than some specified value when the standard deviation is accu-
rately known. A precisely similar procedure is used to test whether a mean value is
significantly less than the specified value. When, however, the alternative hypothesis
is that l may depart from l0 , in either direction, the test procedure will be different.
The value d will now be the deviation (positive or negative) from the specified value
that it is desired to detect. A suitable test1) can be obtained by superimposing two
one-sided tests, say A and B, in each of which the error of the type I is set at a/2,
and d is taken to be positive in one test and negative in the other.

The procedure consists of plotting the cumulative sum of the observations, taken
with l0 as the origin, on a chart such as Fig. 1.14 on which both sets of boundary
lines are shown.

The lines divide the chart into a number of zones, which may be merged into
three shaded zones and the unshaded zone shown. In the upper shaded zone the
hypothesis that a real increase has occurred will be accepted l>l0 , in the center
shaded zone the hypothesis that no important change has occurred will be accepted
l=l0 , and in the lower shaded zone the hypothesis that a real decrease has occurred
will be accepted l<l0 . The logic of this procedure may be seen by considering the
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Test A

Test B

2

1

3

4 5

µ > µ

µ = µ
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Cumulative total

Real increase

Continue
taking
observations

No important

change

Real decrease

Figure 1.14 Sequential test chart: double-sided testing

nature of the two individual tests A and B. A tests the hypothesis that no increase of
importance has occurred l>l0 against the alternative that a real increase has
occurred, and B tests the hypothesis that no decrease of importance has occurred
against the alternative that a real decrease has occurred l>l0 . The boundary lines
are given by the formulas

T0 ¼ h0 þ ns
T1 ¼ h1 þ ns



A

T0 ¼ h0 þ ns
T1 ¼ h1 þ ns



B (1.86)

where:

h0 ¼ �b
0
r
2
.
d ¼ �h

0
0

h1 ¼ a
0
r
2
.
d ¼ �h

0
1

S ¼ d=2 ¼ �S
0

(1.87)

a
0 ¼ ln 1� bð Þ=1=2a

b
0 ¼ ln 1� a=2ð Þ=b

d is taken to be positive.
The calculations are simplified by the use of Table H, the values of a

0
and b

0
being

found directly by entering the table with the risk of the error of the type I equal to
1/2 a and the risk of the error of the type II equal to b.

Example 1.20 [9]
In an investigation of factors affecting strength of synthetic fibers a modification
was made in the preparation of the material and a series of separate preparations of
fiber was made in pairs, one of the regular and one of the modified material; and a
number of properties of the resulting fibers were determined. The results for each
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pair of observations were known before the next pair were carried out, so that a
sequential test could be employed. The most important property measured was the
breaking load, and it was known from past experience that the standard deviation of
the difference between repeat preparations with respect to this property was approxi-
mately 10 units. The experiment was designed so that the risk a of asserting non-
existent changes was a=0.05 and so that a difference of d=–10 would normally be
detected with 90% certainty.

Applying the sequential test to the differences of observed breaking load in repeat
pairs of observations, then:

l0=0; l1=–10 since d =–10; a=0.05; b=0.1; r=10; h0=-22.8; h1=35.8; S =5.

Based on the mentioned values the boundary lines are drawn:

T0 ¼ �22:8þ 5n
T1 ¼ 35:8þ 5n



;

T0 ¼ 22:8� 5n
T1 ¼ �35:8� 5n



;

A graphic illustration of a sequential test chart is in Fig. 1.15.
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Figure 1.15 Sequential testing-synthetic fiber

In one experiment the following values were recorded for the differences in
breaking load between synthetic fibers prepared in two different ways: 7; 5; 8;-11;
10; 8;-9; 6;-7. The cumulative sums of the observations are 7; 12; 20; 9; 19; 27; 18; 24;
17, and the points are plotted in Fig. 1.15. The line crosses the limit T0 at the ninth
observation, so the hypothesis that no important change in breaking load has
occurred is accepted. Exactly the same procedure can be done analytically.
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1.4
Tests and Estimates on Statistical Variance

After determining the location of a set of data by tests or estimates on the mean, we
next check the variability of the data. How seriously do the data scatter about the
mean? If the scatter is large, a given observation is less reliable than if the scatter is
small.

A measure of the scatter or variability of data is the variance, as discussed earlier.
We have seen that a large variance produces broad-interval estimates of the mean.
Conversely, a small variability, as indicated by a small value of variance, produces
narrow interval estimates of the mean. In the limiting case, when no random fluc-
tuations occur in the data, we obtain exact identical measurements of the mean. In
this case, there is no scatter of data and the variance is zero, so that the interval esti-
mate reduces to an exact point estimate.

In practice, random fluctuations in process variables and random errors of mea-
surement are always present. If our measurements are sufficiently sensitive, we will
pick up these random fluctuations, and the variance of the measurements will not
be zero.

Obviously, we need tests and estimates on the variability of our experimental
data. We can develop procedures that parallel the tests and estimates on the mean as
presented in the previous section. We might test to determine whether the sample
was drawn from a population of a given variance; or we might establish point or
interval estimates of the variance. We may wish to compare two variances to deter-
mine whether they are equal. Before we proceed with these tests and estimates, we
must consider two new probability distributions. Statistical procedures for interval
estimates of a variance are based on chi-square and F-distributions. To be more pre-
cise, the interval estimate of a r

2
variance is based on v

2
-distribution while the esti-

mate and testing of two variances is part of a F-distribution.

v2-chi-square distribution
The chi-square distribution was discussed briefly in the earlier section on probability
distributions. Suppose we have (k+1) independent standard normal variables. We
then define v

2
as the sum of the squares of these (k+1) variables. It can be shown

that the probability density function of v
2
is:

f x
2

	 

¼

x2
	 
k2�1

exp �x2
.
2

	 

k

2
�1

	 

!2k=2

(1.88)

Because v
2
is the square of standard normal variables, it has no negative values:

0 � v
2 � 1

The distribution depends on the number of independent variables included in the
summation. The parameter of the v

2
distribution is the degrees of freedom (k),
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which is one less than the number of observations. A brief table of the v
2
distribu-

tion is given in Table 1.6, and a few representative curves are shown in the accompa-
nying chart Fig. 1.16:

Table 1.6 Selected values of the v2-distribution

Degrees of
freedom k

v20.005 v20.01 v20.025 v20.05 v20.95 v20.975 v20.99 v20.995

1 0.000 0.000 0.001 0.004 3.84 5.02 6.63 9.88

2 0.010 0.020 0.051 0.103 5.99 7.38 9.21 10.6

3 0.072 0.115 0.216 0.352 7.81 9.35 11.3 12.8

4 0.207 0.297 0.484 0.711 9.49 11.1 13.3 14.9

5 0.412 0.554 0.831 1.15 11.1 12.8 15.1 16.7

6 0.676 0.872 1.24 1.64 12.6 14.4 16.8 18.5

7 0.989 1.24 1.69 2.17 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 15.5 17.5 20.1 22.0

9 1.73 2.09 2.70 3.33 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 18.3 20.5 23.2 25.2

15 4.60 5.23 6.26 7.26 25.0 27.5 30.6 32.8

20 7.43 8.26 9.59 10.9 31.4 34.2 37.6 40.0

25 10.5 11.5 13.1 14.6 37.7 40.6 44.3 46.9

30 13.8 15.0 16.8 18.5 43.8 47.0 50.9 53.7
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Figure 1.16 Chi-square distributions are unsymmetrical

Based on the value that takes (0; ¥) and Fig. 1.16 we can see that the unsymmetri-
cal distribution is in question. The v

2
-distribution is derived from Maxwell’s distri-

bution of molecular velocities in gases [5].
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For values k‡30 , the v2 -distribution may be approximated from the standard nor-
mal distribution:

v
2

a;k
¼ 1

2
Za þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� 1

ph i2
(1.89)

where Za is the equivalent percentile of the standard normal variable.
The mean of the v

2
distribution is k, and the variance is 2k. Because v

2
is the

sum of identically distributed variables, its distribution is asymptotically normal, as
shown by the central limit theorem. This can be seen in the accompanying figure
for large values of k. For large values of k, we can write:

Z ¼ v
2 � k

	 
. ffiffiffiffiffi
2k

p
(1.90)

Equation (1.90) gives values that are approximately distributed as the standard
normal variable. The v

2
distribution will be used later for tests on the variance,

because the following statistic has the v
2
distribution with k degrees of freedom as

shown by Brownlee [10].

v
2

k
¼ kS

2
X

.
r
2
X (1.91)

The F-distribution
The F-distribution is used to compare the variances of two populations. Suppose we
calculate the sample variances S

2
1 and S

2
2 , for two populations of size n1 and n2.

Then F is defined as:

F ¼ S21
S22

(1.92)

where F is distributed as the F-distribution with n1-1 and n2-1 degrees of freedom. If
we let k1=n1-1 and k2=n2-1 and use the relations in Eq. (1.91) we may rewrite Eq.
(1.92):

F ¼
r21v

2

k1

�
k1

r22v
2

k2

�
k2

(1.93)

If r
2
1 ¼ r

2
2 , which is frequently the condition being tested, we get:

F ¼
v2
k1

�
k1

v2
k2

�
k2

(1.94)

We see that F is the ratio of two chi-square distributions, each divided by its
degrees of freedom. The F-distribution is usually written as F(k1, k2), denoting the
degrees of freedom. It can be easily shown that:

Fa(k1, k2)=1 / F1-a (k2, k1) (1.95)
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Table 1.7 Selected values of the F-distribution for F{0.95}

k2 Degrees of freedom in larger variance, k1

1 2 3 4 5 6 7 8 9 10 20 30 ¥

1 161 200 216 225 230 234 237 239 241 242 248 250 254

2 18.51 19.0 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.44 19.46 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.66 8.62 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.74 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.56 4.50 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.44 3.38 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.15 3.08 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 2.93 2.86 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.77 2.70 2.54

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.12 2.04 1.84

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 1.93 1.84 1.62

¥ 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.57 1.46 1.00

Using the Table 1.7, we note that the following value of F gives:

F0:05 6; 10ð Þ ¼ 1
F0:95 10;6ð Þ ¼

1
4:06

¼ 0:246

The F-distribution is very widely used in statistical procedures. It is the distribu-
tion used in the analysis of variance, which will be considered later. In this section,
we use the F-distribution in tests of equality of the variances of two populations.

Interrelationships of several distributions
In this chapter of statistics for engineers we have so far introduced four important
probability distributions used in statistical tests and estimates. These are:

. Standard normal distribution, Z;

. Student’s t-distribution, tk ;

. CHI-square distribution, v
2

k
;

. F-distribution, F(k1, k2).

Here we summarize several relationships among these four distributions:
1. As the sample size approaches infinity, t approaches the standard normal

variable for the same a:

tk!1 ¼ Z (1.96)

This is evident by an inspection of the Tables B and C. For example:

t0:975!1 ¼ Z0:975 ¼ 1:96

2. As n !¥ approaches infinity, the ratio v
2

k
/k approaches 1.0. As a result:
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Fa k1 ;1ð Þ ¼ v
2

k1

.
k1 (1.97)

For example, an inspection of Tables 1.6 and 1.7 shows that:

F0:95 5;1ð Þ ¼ v
2
5;0:95

.
5 ¼ 11:10=5 ¼ 2:21

3. The chi-square distribution is related to the normal distribution by:

v
2
1;a ¼ Z

2
1�a=2 (1.98)

For example:

v
2
1;0:05 ¼ Z

2
1�0:05=2 ) 3:84 ¼ 1:96

2 ¼ 3:84

4. The F-distribution is related to the t-distribution by:

Fa 1; k2ð Þ ¼ t
2
k2 ;1�a=2 (1.99)

For example:

F0:95 1; 10ð Þ ¼ t
2
10;0:975 ) 4:96 ¼ 2:23

2 ¼ 4:96

Tests and estimates on a single variance
As shown earlier, the sample variance S

2
X is an ubiased estimate of the population

variance r
2
X . If the sample is from the normal population, S

2
X is also the efficient

estimate; so that S
2
X is usually the best point estimate of r

2
X . The mean deviation or

range may also be used to estimate the population standard deviation rX ; but these
estimates are biased, less efficient and inconsistent.

If we wish to test whether a sample is drawn from a population of a specific
known variance, we have a two-sided test:

H0 : r
2
X ¼ r

2
0

H1 : r
2
X � r

2
0 or r

2
X � r

2
0

Assuming H0 is correct, the test statistic is that given in the next form:

v
2

k
¼ kS

2
X

.
r
2
0 (1.100)

The critical region is split between the high and low ends of the distribution:

kS
2
X

.
r
2
0 � v

2

a=2;k
or kS

2
X

.
r
2
0 � v

2

1�a=2;k
(1.101)

If we wish to test whether the variance of a product exceeds a given value, we
have a one-sided hypothesis:

H0 : r
2
X � r

2
0 H1 : r

2
X � r

2
0

and a one-sided critical region:

kS
2
X

.
r
2
0 � v

2

1�a=2;k
(1.102)

The confidence interval that is equivalent to the two-sided test is obtained from
the critical regions:

P kS
2
X

.
v
2

1�a=2;k
� r

2
X � kS

2
X

.
v
2

a=2;k

h i
¼ 1� a (1.103)
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Example 1.21
Determine point and interval estimates for the population variance of the reactor
yield data of earlier Example 1.12:

Yield%: 32; 55; 58; 59; 59; 60; 63; 63; 63; 63; 67.

The best point estimate is the sample variance, which was already calculated as
S
2
X =87.05 so that SX=9.33. Using the Eq. (1.103) we get the variance interval estimate

for a=0.05:

k=n-1=10; v
2
0:975 ¼ 20:5; v

2
0:025 ¼ 3:25:

P
�
10� 87:05=20:5 � r

2
X � 10� 87:05=3:25

�
¼ 0:95

P
�
42:26 � r

2
X � 267:85

�
¼ 0:95

The extremly wide range is the consequence of the large sample variance.

Comparison of two variances
The F-statistic may be used to test the quality of two population variances. The
hypotheses are:

H0 : r
2
1 ¼ r

2
2 H1 : r

2
1 � r

2
2 or r

2
1 � r

2
2 (1.104)

The test statistic is: F ¼ S
2
1

.
S
2
2 which has the F-distribution with k1 and k2

degrees of freedom.

Example 1.22
Determine whether the assumption of equal variances in Example 1.16 was justi-
fied. In the earlier problem, we found:

S
2
1=11.60; n1=10; S

2
2=9.82; n2=10.

The seven-step procedure is used:

1. It is necessary to assume that both populations are normally distributed. The
random variables are X1 and X2, the corrosion rate for each metal A and B.

2. H0 : r
2

1
¼ r

2

2
H1 : r

2

1
� r

2

2
or r

2

1
� r

2

2

3. The test statistic is: F ¼ S
2

1

.
S
2

2
4. Let a=0.10
5. F is distributed as F(9;9), and the critical region is:

F � F0:05 9; 9ð Þ and F � F0:95 9; 9ð Þ
From Table 1.7 or Table E, the value is: F0.95(9;9)=3.18;
F0.05(9;9)=1/F0.95(9;9)=1/3.18=0.314

6. For this test: F=11.60/9.82=1.18
7. Since: 0.314<1.18<3.18, we accept H0. There is no significant difference in

the variances.
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The interval estimate for the ratio of variances is:

P
S2
1

.
S2
2

F
1�a=2

k1;k2

	 
 � r21
r22

�
S21
.
S22

F
a=2

k1 ;k2
� �

2
4

3
5 ¼ 1� a (1.105)

For the previous example:

P 0:371 � S21
S22

� 3:6

" #
¼ 0:90

Recapitulation of statistic tests

Table 1.8 Testing l when r2 is known

Statistic: Z ¼
�XX�loffiffiffiffiffiffiffiffiffiffi
r2=n

q
Null hypothesis Alternative Rejection region H0

H0 : l= l0 H1: l „ l0 Z [ –z1–a/2 or Z] z1–a/2
H0 : l £ l0 H1: l > l0 Z ] z1–a
H0 : l ‡ l0 H1: l < l0 Z [ –z1–a

Table 1.9 Testing l when r2 unknown

Statistic: T ¼
�XX�lo
S
. ffiffiffi

n
p

Null hypothesis Alternative Rejection region H0

H0 : l= l0 H1: l „ l0 Z ] tn–1,1–a/2 or T[ –tn–1,1–a/2
H0 : l £ l0 H1: l] l0 T] tn–1,1–a
H0 : l ‡ l0 H1: l[ l0 T[ –tn–1,1–a

Table 1.10 Testing l1-l2 when r1
2 and r2

2 are known

Statistic: Z ¼
�XX1��XX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1
=n1þ r2

2
=n2

q
Null hypothesis Alternative Rejection region H0

H0 : l1 – l2 = 0 H1 : l1 – l2 „ 0 Z ] z1–a/2 or Z [ –z1–a/2
H0 : l1 – l2 £ 0 H1 : l1 – l2 ] 0 Z ] z1–a
H0 : l1 – l2 ‡ 0 H1 : l1 – l2 [ 0 Z [ –z1–a
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Table 1.11 Testing l1-l2 when r1
2 and r2

2 unknown but equal

Statistic: T ¼
�XX1��XX2

Sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1þ 1=n2

q ; f ¼ n1 þ n2 � 2

Null hypothesis Alternative Rejection region H0

H0 : l1 – l2 = 0 H1 : l1 – l2 „ 0 T < -tf,1–a/2 or T > tf,1–a/2
H0 : l1 – l2 £ 0 H1 : l1 – l2 ] 0 T > tf,1–a
H0 : l1 – l2 ‡ 0 H1 : l1 – l2 [ 0 T = – tf,1–a

Table 1.12 Testing the variance r2

Statistic: v2 ¼ ðn�1ÞS2
r2
0

; k ¼ n� 1

Null hypothesis Alternative Rejection region H0

H0 : r
2
= r

2
0 H1 : r

2 „ r
2
0

v2 ] v2n–1,1–a/2 or v2 [ v2n–1;a/2

H0 : r
2 £ r

2
0 H1 : r

2
] r

2
0

v2 ] v2n–1,1–a

H0 : r
2 ‡ r

2
0 H1 : r

2
[ r

2
0

v2 [ v2n–1,1a

Table 1.13 Testing r1
2=r2

2

Statistic: F ¼
S2
1

S2
2

; k1 ¼ n1 � 1; k2 ¼ n2 � 1

Null hypothesis Alternative Rejection region H0

H0 : r
2
1 = r

2
2 H1 : r

2
1 „ r

2
2

F] Fk1,k2,1–a/2 or F [ Fk1,k2,a/2

H0 : r
2
1 £ r

2
2 H1 : r

2
1 ] r

2
2

F ] Fk1,k2,1–a

H0 : r
2
1 ‡ r

2
2 H1 : r

2
1 [ r

2
2

F[ Fk1,k2,a

& Problem 1.10 [4]
Successive colorimetric determinations of the normality of a
K2Cr2O7 solution were as follows 1.22; 1.23; 1.18; 1.31; 1.25; 1.22;
1.24 ð�10

�4 Þ. Sample variance is r
2
X=49� 10

�10
. Determine 95%

confidence interval of the mean.

& Problem 1.11 [4]
“Frigid-Flow Co.” has received final test results on the company’s
new heat exchanger. The values given below are overall heat-transfer
coefficients: 60; 63; 60; 68; 70; 72; 65; 61; 69; 67 BTU/h ft

2
�F. At the

99% confidence level, what minimum value for the exchanger’s
overall heat-transfer coefficient can the company suggest?
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& Problem 1.12
Successive determinations of the opened bottles of HCl were found
to be, expressed in normalities:

Bottle N1 : 15.75; 15.64; 15.92;
Bottle N2 : 15.58; 15.49; 15.72;

The producer informs that the last delivery has the HCl concentra-
tion variance r

2
=0.016. Determine the 95% confidence interval for

l1-l2, where l1 and l2 are the means of HCl concentrations.

& Problem 1.13
In order to compare the effects of two solid catalyst component con-
centrations on NO2 reductions, six groups of observations were
made. Each group consisted of three replicates of five observations
each, that is, a total of 15 determinations were made for each con-
centration. The concentrations (in mass per cent) were 0.5 and
1.0%. The reduction data are summarized below.

Catalyst type A : 5.18 5.52 5.42
Catalyst type B : 5.58 5.62 5.82.

Do the catalysts have the same efficiency rate?

& Problem 1.14 [4]
Five similar determinations of the cold water flow rate to a heat
exchanger were, in [GPM]: 5.84; 5.76; 6.03; 5.90; 5.87. Compute a
95% confidence interval for the imprecision affecting this measur-
ing operation?

& Problem 1.15 [4]
Reaction temperatures in degrees centigrade (measured on two dif-
ferent days) for two catalyst concentrations were:

Concentration A: 310.95; 308.86; 312.80; 309.74; 311.03; 311.89;
310.93; 310.39; 310.24; 311.89; 309.65; 311.85;
310.73.

Concentration B: 308.94; 308.23; 309.98; 311.59; 309.46; 311.15;
311.29; 309.16; 310.68; 311.86; 310.98; 312.29;
311.21.

Find a 98% confidence interval for r1=r2.
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& Problem 1.16
Data taken from the plate and frame filter press located in the unit
operations laboratory are used to determine a, the specific cake
resistance, of a calcium carbonate slurry. Several values of a,
expressed in ft/lb, have been calculated from data taken during the
fall semester.

2.49�10
11
; 2.40�10

11
; 2.43�10

11
; 2.30�10

11
; 2.53�10

11
;

2.67�10
11
; 2.60�10

11
; 2.50�10

11
; 2.54�10

11
; 2.55�10

11
.

Based on these values, predict the interval within which 90% of all
such values calculated in the future must fall.

& Problem 1.17
Due to the burning of cotton plant wastes (hulls, leaves, etc.), the
sulfate content in the air over a town is highest during the month of
November. If the data given below are the mean values of sulfate
content during the month of November (analysis of air perform
daily) over the past 10 years.

Sulfate content SO
2�
4 mg/m

3
: 10.83; 8.90; 14.71; 12.35; 11.86;

13.80; 11.75; 9.68; 9.33; 10.9.

Determine the 95% confidence interval during next November.

& Problem 1.18 [4]
A company engaged in the manufacture of cast iron has employed a
system of raw material and processing procedures that has pro-
duced a product whose overall population average silicon content
was 0.85%. A new contract was put into effect in which a new sup-
plier of raw material supplanted the old one. During the first month
of operation using the new material, random samples of the product
silicon content were found to be:

1.13; 0.80; 0.85; 0.60; 0.97; 0.92; 0.94; 0.72;
1.17; 0.87; 0.36; 0.68; 0.73; 0.82; 0.79; 0.87;
0.92; 0.81; 0.97; 0.48; 1.00; 0.92; 0.61; 0.81;
0.71; 0.97; 0.89; 0.68; 1.00; 1.16.

What are your 99% confidence limits on the silicon content of the
iron using the new raw material.

& Problem 1.19 [4]
An experiment conducted to compare the tensile strengths of the
types of synthetic fibers gave the breaking strength shown below in
thousands of pounds force per square inch (PSI):

Fiber A: 14 4 10 6 3 11 12
Fiber B: 16 17 13 12 7 16 11 8 7.

Calculate the 99% confidence interval for the difference between the
means.
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& Problem 1.20 [4]
The following data were obtained for the calibration of the Ruska
dead weight gauge used with our Burnett PVT Apparatus. The weights
corresponding to the 1.000 PSI loading had the following apparent
masses:

26.03570; 26.03581; 26.03529; 26.03573; 26.03575; 26.03551;
26.03588; 26.03586; 26.03599; 26.03533; 26.03570.

Can we say that the average apparent mass does not exceed 26.5?

& Problem 1.21
Fifty determinations of a certain concentration yielded the following
values:

54.20; 51.73; 52.56; 53.55; 56.15; 57.50; 54.25; 54.46;
53.08; 53.82; 54.15; 53.10; 51.56; 53.43; 53.77; 55.88;
54.96; 58.51; 54.65; 55.13; 51.12; 53.73; 55.01; 55.57;
53.95; 53.39; 54.30; 52.89; 57.35; 55.77; 52.22; 54.55;
56.78; 56.00; 57.27; 54.89; 57.05; 56.25; 56.35; 56.52;
56.91; 52.35; 52.02; 52.94; 58.16; 57.73; 55.33; 54.13;
56.60; 55.21.

Test the hypothesis H0 : l‡55.0 with the 99% confidence level.

& Problem 1.22
Observing the values in Problem 1.12, there is enough reason to
believe that both bottles were filled up with HCl in the same produc-
tion line. The mean variance of concentration for the last year of
production is 0.016. Can we trust the assumption that both bottles
were filled with HCl from the same batch?

& Problem 1.23
On a pilot-plant for producing composite rocket propellant four
batches of the same composition were made under the same process
conditions with the batch of 10 micron ammonium perchlorate
ground at that moment. A month later the same ammonium per-
chlorate was used to make three batches of the composite propel-
lants with the same composition. From the obtained propellant
experimental rocket motors were static fired. The following burning
rates at 70 [bar] pressure were determined from the calculated burn-
ing rate laws:

Batch of AP A: 14.199; 14.531; 14.197; 14.193
Batch of AP B: 14.398; 14.418; 14.307.

Test the means of the composite propellant burning rates at 70 [bar].

& Problem 1.24
Test the variances in the previous example.

62



1.5 Analysis of Variance

& Problem 1.25
On a pilot-plant for producing composite rocket propellant four
batches of the same composition were made under the same process
conditions with the two different burning-rate catalysts. From the
obtained propellant experimental rocket motors were static fired.
The following burning rates at 70 [bar] pressure were determined
from the calculated burning rate laws:

Catalyst A: 14.199;14.531;14.197;14.193; Catalyst B: 15.716; 15.612;
15.682; 15.715.

Are there significant differences in catalyst effects on burning rates?

1.5
Analysis of Variance

The technique known as analysis of variance (ANOVA)2) uses tests based on variance
ratios to determine whether or not significant differences exist among the means of
several groups of observations, where each group follows a normal distribution. The
analysis of variance technique extends the t-test used to determine whether or not
two means differ to the case where there are three or more means.

The analysis of variance is used very widely in the biological, social and physical
sciences. The technique was first developed by R. A. Fisher and his colleagues in
England in the 1920s. Fisher has said that the analysis of variance is merely “a con-
venient way of arranging the arithmetic". This statement points out that the statistical
principles underlying the analysis of variance are quite simple; but the calculations
can become quite involved, so that they require careful and systematic arrangement.

Analysis of variance is particularly useful when the basic difference between the
groups cannot be stated quantitatively. For example, suppose we wish to determine
whether there are any differences among the effects of four polymerization catalysts
on the setting time of a particular plastic. We make several runs under identical con-
ditions with each catalyst. We can then determine whether the mean setting times
for the four catalysts are different by using a one-way analysis of variance to deter-
mine the effect of one independent variable (type of catalyst) on the dependent vari-
able (setting time). However, we cannot describe the type of catalyst by a quantitative
relationship. On the other hand, we might run a similar experiment in which we
use four different concentrations of a single catalyst. Now we can relate the four
groups quantitatively by concentration of catalyst. We could still use the analysis of
variance to see whether a change in concentration had any effect.

We might extend our first example using four different catalysts to study the
effect of temperature as well. We could pick three different temperatures and deter-
mine the setting rate for each of the four catalysts. This would require a two-way
analysis of variance to determine significant differences among the 12 setting times
that we would obtain.
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Finally, we might add a third independent variable, catalyst concentration, to type
of catalyst and temperature of setting. We then would use a three-way analysis of var-
iance to determine whether differences in means exist. Of course, as additional inde-
pendent variables are added, the calculations become much more complex, so that
they are better carried out on a digital computer.

Notation and arithmetic
Although the principles of analysis of variance are simple, the notation and arith-
metic can be quite confusing at first contact. For this reason, we begin by discussing
a few conventions in notation and arithmetic that we will use later. Suppose we have
the following matrix:

Table 1.14 Data matrix

Column 1 2 · · · j · · · J

1 X11 X12 · · · X1j · · · X1J

2 X21 X22 · · · X2j · · · X2J

R · · · · ·

· · · · ·

O · · · · ·

i Xi1 Xi2 · · · Xij · · · XiJ

W · · · · ·

· · · · ·

· · · · ·

I XI1 XI2 · · · XIj · · · XIJ

Sums I X�1 X�2 · · · X�j · · · X�J
Means �XX�1 �XX�2 · · · �XX�j · · · �XX�J

Each data point is subscripted, first to identify its column location and second to
identify its row location. Thus, X32 (read “X” three two) is the data point in the third
column and second row. Each column may be regarded as size I random sample
drawn from the normal population. This matrix might represent the example of
one-way analysis of variance given earlier. The columns would be the four catalysts
and the rows would simply identify the succesive runs made at identical conditions.

In the two-way example, the columns would again be the four catalysts, the rows
would be the three temperatures, and each X would be a single value of the setting
time for a given temperature and catalyst. Thus, X32 is the setting time using the
third catalyst and the second temperature.

We designate a general location in the matrix of data as Xij, where i refers to the
column, and j to the row. The sum of values in the i-th column is:

Xi� ¼
XJ
j¼1

Xij (1.106)
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The dot refers to the direction that has been summed. The mean of the values in
the i-th column is then:

�XXi� ¼ Xi�
J

(1.107)

Similarly, the sum for any row j is:

X�j ¼
XI
i¼1

Xij (1.108)

ant the mean is:

�XX�j ¼
X�j
I

(1.109)

The sum of all the values in the matrix is designated by �XX�� where:

X�� ¼
XI
i¼1

XJ
j¼1

Xij ¼
XI
i¼1

Xi� ¼
XJ
j¼1

X�j (1.110)

The mean of all the values in the matrix is called the grand mean �XX�� where:

�XX�� ¼ X��
IJ

(1.111)

From here on, to simplify the equations, we will designate:

XI
i¼1

¼
X
i

;
XJ
j¼1

¼
X
j

The same as before, capital letters denote random variable and the small ones the
concrete value of the variable.

One-way analysis of variance
In one-way analysis of variance, we have several groups for which we wish to test
equality of means. To apply the standard methods, we must assume that each group
is normally distributed and that the population variance r

2
X is constant among the

groups. In other words, one-way analysis of variance is used in situations when we
want to test the J population means. The procedure is based on the assumption that
each J group of observations is a random sample from normal population with its
variance r

2
X ¼ r

2
that is mutual for all the groups.

Actually, analysis of variance may be applied where these criteria are not exactly
met; but the procedure is based on these assumptions.

Suppose we wish to estimate the population variance. There are two possible esti-
mates. First, we might use a pooled estimate such as that in an earlier section, in
which we used the t-test on two means. A second method of estimating the popula-
tion variance is to calculate the variance of the group means around the grand
mean.
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Pooled variance estimates
In the pooled estimate, we calculate the sample variance for each group (each col-
umn of data in a one-way analysis). Then we weigh each of these estimates by its
degrees of freedom to obtain a pooled sample variance. For any column i, the sam-
ple variance is:

S
2
j ¼

P
i

Xij��XX�j

� �2
I�1

(1.112)

We have already asserted that E S
2
j

� �
¼ r

2
for each j. We will assume for simplici-

ty that each column contains the same number of values (i.e. J is constant). We have
J estimates of the form of Eq. (1.112). To pool them, we weigh each by its degrees of
freedom (I-1), add and divide by the total degrees of freedom J(I-1): The pooled sam-
ple variance3) is then:

S
2
p ¼

P
j

I�1ð ÞS2j
h i
J I�1ð Þ (1.113)

Combining Eqs. (1.112) and (1.113) gives:

S
2
p ¼

P
j

P
i

Xij��XX�j

� �2" #
J I�1ð Þ ¼ SSW

J I�1ð Þ ¼ MSW (1.114)

In this equation, the term SSW is refereed to as the the sum of squares within
groups or error sum of squares. The quantity SSW when divided by the appropriate
degrees of freedom J(I-1) is referred to as the mean square or error mean square
and is denoted by MSW. As Eq. (1.114) is not particularly convenient for calculation
purposes, it can be presented in the more usable form:

S
2
p ¼

P
i

P
j

Xij

� �2
�
 P

j

X2
�j

!,
I

J I�1ð Þ ¼ SSW

J I�1ð Þ ¼ MSW (1.115)

The pooled estimator of the population variance, S
2
p , is an unbiased estimator for

r2 regardless of whether the population means l1, l2,..., lJ are equal or not, because
it takes into account deviations from each group mean �XX�j , j=1, 2,..., J. Unbiasedness
follows from Eq. (1.114) since:

E S
2
p

� �
¼

P
j

E
P
i

Xij��XX�j

� �2,
I�1ð Þ

 !
J

¼

P
j

E S2j

� �
J

¼ r
2

(1.116)
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Variance of group means
A second method of estimating the population variance r2 is to calculate the sample
variance of the group means around the grand mean by use of:

S
2
�XX ¼

P
j

�XX�j��XX��

� �2
J�1

(1.117)

If the group population means are all equal, then S
2
�XX is an unbiased estimate of

the variance of the population mean r
2
�XX . To obtain an estimator of the population

variance r2 recall that:

S
2
�XX ¼ S2

X

I
(1.118)

Combining Equs. (1.117) and (1.118) we have our second estimator of the popula-
tion variance r2:

S
2 ¼

I
P
j

�XX�j��XX��

� �2
J�1

¼ SSB

J�1
¼ MSB (1.119)

The quantities SSB and MSB are usually referred to as the between groups sum of
squares and mean square for between groups, respectively. Eq. (1.119) is not suitable
for practical calculations so it is transformed into the following expression:

S
2 ¼

 P
j

X2
�j

!,
I�X2

��
.
IJ

J�1
¼ SSB

J�1
¼ MSB (1.120)

The estimator S2 given in Eqs. (1.119) and (1.120) is an unbiased estimator of r2

only when the group population means are equal. If the population means
l1, l2,..., lJ are not all equal then the estimator S2 overestimates r2, that is E(S2 )>r2.
The estimators S2 and S

2
p are linked by a very important identity given by:X

j

X
i

Xij � �XX��

� �2
¼ I

X
j

�XX�j � �XX
2
��

� �2
þ
X
j

X
i

Xij � �XX�j

� �2
(1.121)

The left-hand side of Eq. (1.121) is usually referred to as the total sum of squares
corrected for the mean and is denoted by SSTC. Combining Eqs. (1.114), (1.119) and
(1.121) gives:

SSTC=SSB+SSW (1.122)

In other words the total variations are partitioned into two components, a compo-
nent SSB that reflects variation among groups and a component SSW that reflects
experimental error or sampling variation. The degrees of freedom associated with
SSTC are also partitioned into the degrees of freedom associated with SSB and SSW,
i.e., IJ-1=(J-1)+J(I-1). If the means l1, l2,..., lJ are all equal then S

2
p and S2 are inde-

pendent so that the random variable:
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F ¼ S2

S2p
¼

SSB

J�1
SSW

JðI�1Þ

¼ MSB

MSW

(1.123)

has an F-distribution with J-1 and J(I-1) degrees of freedom. The Eq. (1.123) illus-
trates the variance analysis basis; two variances were compared in order to test the
mean equality. Thus under H0: l1=l2=...=lJ we would expect the value of F to be
close to 1. If H0 is not true then the value S2 would tend to be larger than S

2
p , which

would force F to be larger than 1. Consequently, based on the data, the hypothesis
H0 would be rejected if the computed F-value, is too large. That is, the rejection re-
gion is of the form:

F � Fk1 ;k2 :1�a

where:

k1=J-1 and k2=J(I-1)

Fisher introduced the following table for a clear presentation of variance analysis
results:

Table 1.15 One-way analysis of variance

Source of variation f Sum of squares Mean square Test statistic

Between columns J-1 SSB ¼

P
j

X2
�j

I
� X2

��

IJ
MSB ¼ SSB

J�1
MSB
MSW

Within columns – error J(I-1) SSW ¼
P
i

P
j

X
2
ij �

X2
�j
I

MSW ¼ SSW
J I�1ð Þ –

Total JI-1 SST ¼
P
i

P
j

X
2
ij �

X2
��
IJ

– –

Example 1.23 [11]
A quantity of each of three chemical fertilizers was applied to three groups of five
corn plants each, with all plants growing under identical conditions of temperature,
rainfall, soil, seed, etc. From the following measures of corn growth (height after
one month), determine whether there is any reason for one fertilizer to be better
than another:
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Fertilizer

No1 No2 No3
23 16 18
21 23 22

Height 24 20 25
17 21 21
19 18 20

X�1=104 X�2=98 X�3=106
�XX�1=20.8 �XX�2=19.6 �XX�3=21.2

First, we evaluate the summations:

X
i

X
j

Xij

� �2
¼ 23

2 þ 21
2 þ 24

2 þ 17
2 þ 19

2 þ 16
2 þ :::þ 20

2 ¼ 6420

X
j

X
2
�j ¼ 104

2 þ 98
2 þ 106

2 ¼ 31656

X
2
�� ¼ 104þ 98þ 106ð Þ2¼ 94864

Then from Equs. (1.115) and (1.120), we get:

S
2
p ¼

6420�31656

5

3 5�1ð Þ ¼ 7:40 ; k1 ¼ 12

S
2 ¼

31656

5
�94864

3�5

3�1
¼ 3:50 ; k2 ¼ 2

From this point, we may use the 7-step test procedure:

1. Assume underlying normally distributed populations for each fertilizer
group. All groups have constant population variance r

2

1
¼ r

2

2
¼ r

2

3
.

2. H0:l1=l2=l3 H1 : H0 is not true

3. Test statistic: F ¼ S
2

S2
p

4. Let a=0.05
5. We reject H0 if F is higher than F0.95(2;12)=3.88
6. F=3.50/7.40=0.47
7. Accept H0 since 0.47<3.88

Thus, there is no reason to believe that one fertilizer promotes growth more than
another. Generally speaking, analysis-of-variance problems are not solved in the
form used in this example. A standard form called the analysis-of-variance table has
been developed, and it is particularly useful for more complex problems:
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SST ¼
P
i

P
j

X
2
ij �

X2
��

IJ
¼ 6420� 94864

3�5
¼ 95:8

SSB ¼

P
j

X2
�j

I
� X2

��

IJ
¼ 31656

5
� 94864

3�5
¼ 7:0

SSW ¼ SST � SSB ¼ 95:8� 7:0 ¼ 88:8

Table 1.16 Analysis of variance

Source of variation f SS MS F F2;12;0.95

Between groups 2 7.0 3.50 0.47 3.88

Within groups 12 88.8 7.40 – –

Total 14 95.8 – – –

Example 1.24 [4]
The amount of fluoride in the local water supply was determined by the four colori-
metric methods in a comparative study A, B, C and D. Five replications were made
for each test. To preclude bias from variations in the sample over the time required
for the analysis, all samples were taken from a single 10-gal carboxy of water. The
results in ppm are:

A: 2; 3; 6; 5; 4;
B: 5; 4; 4; 2; 3;
C: 1; 3; 2; 4; 4;
D: 2; 1; 1; 2; 1.

a) Are the methods equivalent? Use the 5% significance level.
b) What are the 95% confidence limits on the values obtained from each meth-

od.

a) We first calculate the required sums and squares:

X�A ¼ 20;
P
i

X
2
iA ¼ 90; �XX�A ¼ 4:0;

P
j

X
2
�j ¼ 969 ;

X�B ¼ 18;
P
i

X
2
iB ¼ 70; �XX�B ¼ 3:6;

P
i

P
j

X
2
ij ¼ 217;

X�C ¼ 14;
P
i

X
2
iC ¼ 46; �XX�C ¼ 2:8; X�� ¼ 59;

XD ¼ 7;
P
i

X
2
iD ¼ 11; �XXD ¼ 1:4:

We calculate the pooled sample variance:

S
2
p ¼

P
i

P
j

X2
ij�

P
j

X
2
�j

I

J I�1ð Þ ¼ 217�193:8
16

¼ 1:45
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S
2 ¼

P
j

X
2
�j

I
�X

2
��

IJ

J�1
¼

969

5
�59

2

20

3
¼ 6:58

F ¼ S2

S2p
¼ 6:58

1:45
¼ 4:54 � F3;16;0:95 ¼ 3:24

Table 1.17 Analysis of variance

Source of variation f SS MS F F3;16.0,95

Between groups 3 19.75 6.58 4.54 3.24

Error 16 23.20 1.45 – –

Total 19 42.95 – – –

Based on F test reject H0 and conclude that there are significant differences
among the applied methods.

b) For 16 degrees of freedom, at the 95% confidence level, t16;0.975=2.120 and
t16;0.025=-2.120. The standard error is found as before:

S�pp ¼ Spffiffi
I

p ¼
ffiffiffiffiffiffiffiffiffi
1:45

p ffiffiffi
5

p ¼ 0:5386

The confidence limits for the means corresponding to the four colorimetric meth-
ods are:
lA : 4.0–2.12 � 0.5386)2.96<lA<5.04
lB : 3.6–2.12 � 0.5386)2.56<lB<4.64
lC : 2.8–2.12 � 0.5386 )1.76<lC<3.84
lD : 1.4–2.12 � 0.5386)0.36<lD<2.44

Example 1.25 [12]
The conductivity of four different coatings on cathode tubes was tested. As only four
types of coatings were tested, we had a one-way experiment on four levels. The men-
tioned levels were qualitative as we had no quantitative measure for coating types. Five
cathode tubeswere tested for each coating. The sequence of conductivitymeasurements
was completely random. The obtained results are given in the following table:

Coating
I II III IV
56 64 45 42
55 61 46 39
62 50 45 45
59 55 39 43
60 56 43 41

If we subtract 50 from each value we shall obtain coded values, which to a great
extent will simplify the arithmetic and has no influence on the F-statistic.
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I II III IV
6 14 –5 –8
5 11 –4 –11
12 0 –5 –5
9 5 –11 –7
10 6 –7 –9

X�j = 42; 36; –32; –40; X�� = 6
I 5; 5; 5; 5; I � J=20P
X

2
ij = 386 378 236 340

PP
X

2
ij = 1340

SST ¼
X
i

X
j

X
2
ij � X

2
��
IJ

¼ 1340� 6
2

20
¼ 1338:2

SSB ¼

P
j

X2
�j

I
� X2

��

IJ
¼ 5684

5
� 62

20
¼ 1135:0

SSW ¼ SST � SSB ¼ 1338:2� 1135:0 ¼ 203:2

Table 1.18 Analysis of variance

Source of variation f SS MS F F3;16;0.95

Between groups 3 1135.0 378.3 29.8 3.24

Error 16 203.2 12.7 – –

Total 19 1338.2 – – –

Since the calculated F-criterion value is greater than the tabulated one, the null
hypothesis can be rejected with 95% confidence level, i.e. the alternative hypothesis
that there is a statistical difference between the used coatings is accepted.

Model for one-way analysis of variance
Up to now the technique of calculations in analysis of variance has been analyzed in
more detail. Now let us briefly consider the analysis of variance theory. Let us con-
sider the model for a one-way analysis of variance. Here it is assumed that the col-
umns of data are J-random samples from J-independent normal populations with
means l1,l2,...,lJ, and common variance r2. The one-way analysis of variance tech-
nique will give us a procedure for testing the hypothesis: H0: l1=l2=...=lJ;against
the alternative H1: at least two li not equal. The statistical model gives us the struc-
ture of each observation in the I�J matrix:

Xij=lj+eij (1.124)

This model says that the dependent variable Xij is made up of two parts: the first
part l that is the mean of the population corresponding to the j-th column (popula-
tion) and the second part, eij, the random experimental error that is taken to have
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mean 0, i.e., E(eij)=0. This must be the case since E(Xij)=lij. The model in Eq. (1.124)
can be written as:

Xij=lj+l-l+eij=l+(lj-l)+eij=l+aj+eij (1.125)

where:

l ¼ �ll ¼

P
j

l
j

J
is called the grand population mean

aj ¼ l
j
� �ll is called the effect of the j-th population.

Eq. (1.125) states that any experimental value is the sum of a term representing
the general location of the grand population mean plus a term aj showing the dis-
placement of a given population from the general location, plus a term giving the
random experimental error eij of the particular observation.

The eij are independent and normally distributed with mean 0 and variance r2,
and it is the result of random fluctuations in the process and measurement errors.
The population grand mean may be considered the main addend for Xij.

The aj is the column contribution (the contribution that arises if the column pop-
ulation means are different so that each column mean would be different from the
grand population).

This means that aj has already been defined as:

aj ¼ l
j
� �ll (1.126)

Note that aj is a constant for any column in a specific analysis of variance as
shown in Fig. 1.17.

    ε

    α     α
   α 

          
   µ

1 2
3

1 3

X
ij

ij

f(X)

Population 2

Population 1 Population 3

2µµ µ

Figure 1.17 Model defines terms for one-way AHOVA
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If all the columns are equal, l=lj and aj=0. Therefore, the hypothesis
H0:l1=l2=...=lJ is the same as the hypothesis H1 : aj=0 for all j. One is generally
interested in the hypothesis H0: a1=a2=...=aJ=0, which states that there is no popula-
tion or column effect. This means that the variation in �XX�1 ; �XX�2 ; :::; �XX�j is due to
experimental error and not to any difference in population means. To test the
hypothesis H0 we use the F-statistic given in Eq. (1.123):

F ¼

SSB

J�1
SSW

J I�1ð Þ

¼ MSB

MSW

The rejection region at significance level a is F>FJ-1,J(I-1),1-a.
Recall from Eq. (1.116) that:

E S
2
p

� �
¼ E MSWð Þ ¼ r

2

Furthermore, if H0: a1=a2=...=aJ is true, then:

E(S2)=E(MSB)=r
2.

However, if H0 is not true then E(S2)„r2. To show this, consider:

E S
2

� �
¼ r

2 þ I
J � 1

X
j

a
2
j (1.127)

Eq. (1.116) indicates that the pooled estimate S
2
p is unbiased, and Eq. (1.127)

biased estimation S2. For the F-test we use the unbiased estimate of r2 in the
denominator of the F-ratio and the biased estimate in the numerator.

Two-way analysis of variance
If we desire to study the effects of two independent variables (factors) on one depen-
dent factor, we will have to use a two-way analysis of variance. For this case the col-
umns represent various values or levels of one independent factor and the rows rep-
resent levels or values of the other independent factor. Each entry in the matrix of
data points then represents one of the possible combinations of the two independent
factors and how it affects the dependent factor. Here, we will consider the case of
only one observation per data point. We now have two hypotheses to test. First, we wish
to determine whether variation in the column variable affects the column means. Sec-
ondly, we want to know whether variation in the row variable has an effect on the row
means. To test the first hypothesis, we calculate a “between columns” sum of squares:
and to test the second hypothesis, we calculate a “between rows” sum of squares. The
between-rowsmean square is an estimate of the population variance, providing that the
rowmeans are equal. If they are not equal, then the expected value of the between-rows
mean square is higher than the population variance. Therefore, if we compare the be-
tween-rows mean square with another unbiased estimate of the population variance,
we can construct an F test to determine whether the row variable has an effect. Defi-
nitional and calculational formulas for these quantities are given in Table 1.19.

74



1.5 Analysis of Variance

Table 1.19 Two-way analysis of variance

Source of
variation

Degrees
of

freedom

Sum of squares-definition Sum of squares-
practical calculation

Mean squares Test
statistic

Between
columns

J-1 SSC ¼ I
P
j

�XX�j � �XX��

� �2
SSC ¼

P
j

X2
�j

I
� X2

��

IJ
MSC ¼ SSC

J�1
MSC
MSE

Between rows I-1 SSR ¼ J
P
i

�XXi� � �XX��
� �2

SSR ¼

P
i

X2
i�

J
� X2

��

IJ
MSR ¼ SSR

I�1
MSR
MSE

Residual

variance-error

(I-1)(J-1) SSE ¼
P
i

P
j

Xij � �XXi� � �XX�j þ �XX��

� �2
SSE ¼ SST
�SSC � SSR

MSE ¼ SSE

I�1ð Þ J�1ð Þ –

Total IJ-1 SST ¼
P
i

P
j

Xij � �XX��

� �2
SST ¼

P
i

P
j

X
2
ij �

X2
��

IJ
– –

We note from Table 1.19 that the sums of squares between rows and between col-
umns do not add up to the defined total sum of squares. The difference is called the
sum of squares for error, since it arises from the experimental error present in each
observation. Statistical theory shows that this error term is an unbiased estimate of
the population variance, regardless of whether the hypotheses are true or not. There-
fore, we construct an F-ratio using the between-rows mean square divided by the
mean square for error. Similarly, to test the column effects, the F-ratio is the be-
tween-columns mean square divided by the mean square for error. We will reject the
hypothesis of no difference in means when these F-ratios become too much greater
than 1. The ratios would be 1 if all the means were identical; and the assumptions
of normality and random sampling hold. Now let us try the following example that
illustrates two-way analysis of variance.

Example 1.26 [11]
Determine whether the type of catalyst or temperature has any effect on the setting
time of a new plastic from the following data. The measured variable-response is
elapsed setting time (in minutes) to a uniform criterion of hardness.

Temperature Catalyst
[�C] No1 No2 No3 No4
25 25 28 22 24 X1� = 99
50 27 29 23 23 X2� = 102
75 30 32 26 29 X3� = 117

X�1 = 82 X�2 = 89 X�3 = 71 X�4 = 76 X�� = 318

The analysis-of-variance table is constructed from the following quantities calcu-
lated from the data:

I=3; J=4;
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j

X
2
�j ¼ 82

2 þ 89
2 þ 71

2 þ 76
2 ¼ 25462

X
2
�� ¼ 318

2 ¼ 101124X
i

X
2
i� ¼ 99

2 þ 102
2 þ 117

2 ¼ 33894

X
i

X
j

X
2
ij ¼ 25

2 þ 27
2 þ :::þ 23

2 þ 29
2 ¼ 8538

Inspection of Table 1.20 shows that we reject the hypotheses of no effect of the
column variable or the row variable. Both type of catalyst and temperature seem to
have an effect. Of course, we have made only a preliminary survey. We would now
take more data to determine which catalyst was best and to evaluate a quantitative
relationship on the temperature effect.

Table 1.20 Analysis of variance

Source of variation f SS MS F FT

Between columns 3 60.3 20.1 28.7 F3;6;0.95=4.76

Between rows 2 46.5 23.3 33.3 F2;6;0.95=5.14

Error 6 4.2 0.7 – –

Total 11 111.0 – – –

Example 1.27 [4]
In an experiment to determine the effects of varying the reflux ratio on the number
of required stages Xij used in the separation of benzene and toluene, four different
lab groups used the same four reflux ratios with the following results:

Reflux ratio
Lab group No1 No2 No3 No4

1 11.4 9.2 7.5 6.2 X1� = 34.3
2 10.7 8.6 8.3 5.9 X2� = 33.5
3 11.9 8.7 9.3 5.4 X3� = 35.3
4 9.9 9.0 7.1 5.6 X3� = 31.6

X�1 = 43.9 X�2 = 35.5 X�3 = 32.2 X�4 = 23.1 X�� = 134.7

SST ¼
X
i

X
j

X
2
ij � X

2
��
IJ

¼ 1195:7� 18144:09
4� 4

¼ 61:1644

SSC ¼

P
j

X
2
�j

I
� X

2
��
IJ

¼ 4757:91
4

� 1134:0056 ¼ 55:4719
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SSR ¼

P
i

X
2
i�

J
� X

2
��
IJ

¼ 4543:39
4

� 1134:0056 ¼ 1:8419

SSE=SST-SSC-SSR=3.8506

Table 1.21 Analysis of variance

Source of variation f SS MS F FT

Reflux ratio 3 55.4719 18.4906 43.222 F3;9;0.95=3.86

Lab group 3 1.8419 0.6139 1.435 F3;9;0.95=3.86

Error 9 3.8506 0.4278 – –

Total 15 61.1644 – – –

When the calculated values of F are compared to F3;9;0.95=3.86 it is seen at once
that the differences in the number of required stages is significantly affected by the
reflux ratio. No significant differences between lab groups were found.

Example 1.28 [12]
Determine whether car tires of different producers have different wear-out rates
after 40.000 km. Mark the car tire types as: A, B, C and D. The wear-out of car tyres
will be tested on four types of cars. As each car needs four tyres, the experiment will
test 16 tyres, four of each type. The experiment was done by each car having one
type of each tyre. The sequence of putting tyres on wheels was completely random
in order to center and eliminate the effect of differences between the wheels, if it
exists at all.

Apart from determining whether the car-tyre type has a significant influence on
wear-out, decide how much the car type influences it. The obtained data have been
given in millimeters.

Table 1.22 Analysis of variance

Car type Tire type X�j

A B C D

I 17 14 12 13 56

II 14 14 12 11 51

III 13 13 10 11 47

IV 13 8 9 9 39

X�j 57 49 43 44 193 = X��P
X

2
ij 823 625 469 492

P
i

P
j

X
2
ij ¼ 2409
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SST ¼
X
i

X
j

X
2
ij � X

2
��
IJ

¼ 2409� 37249
16

¼ 80:94

SSC ¼

P
j

X
2
�j

I
� X

2
��
IJ

¼ 9435
4

� 37249
16

¼ 30:69

SSR ¼

P
i

X
2
i�

J
� X

2
��
IJ

¼ 9467
4

� 37249
16

¼ 38:69

SSE=SST-SSC-SSR=11.56

Table 1.23 Analysis of variance

Source of variation f SS MS F FT

Tire type 3 30.69 10.23 7.99 F3;9;0.95=3.86

Car type 3 38.69 12.90 10.08 F3;9;0.95=3.86

Error 9 11.56 1.28 – –

Total 15 80.94 – – –

The above results allow us to conclude with 95% confidence that different car tyre
types and different types of cars have important influences on tyre wear-out. The
same conclusion can be drawn even at 99% confidence level as F3;9;0.99=6.99.

Model for two-way analysis of variance
For a two-way analysis of variance the assumed model is:

Xij=l+ai+bj+eij (1.128)

where:
Xij is assumed to come from a normal population with mean lij and variance r2;

l ¼ �ll�� ¼

P
i

P
j

l
ij

IJ
;

ai ¼ �ll
i� � �ll�� ;

b
j
¼ �ll�j � �ll�� ;

�ll
i� ¼

P
j

l
ij

J
; �ll�j

¼

P
i

l
ij

I
:

The parameter l is the contribution of the grand mean, ai is the contribution of
the i-th level of the row variable, bj is the contribution of the j-th level of the column
variable, and eij is the random experimental error. The model in Eq. (1.128) does not
contain what is usually referred to as row-column interaction; that is, the row and
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column effects are additive. The restrictions (or assumptions) related to the model
in Eq. (1.128) are:P

i

ai ¼ 0 and
P
j

b
j
¼ 0

These follow from:

ai ¼ �ll
i� � �ll�� and b

j
¼ �ll�j � �ll�� :

Two hypotheses related to the model are:

H0: l1(=l2(=...=lI and
H0: l(1=l(2=...=lJ

The first hypothesis says that there is no row effect, that is, the means across rows
have the same value. Similarly, the second hypothesis says there is no column effect.
The two hypotheses above can be written equivalently as:

H0:a1=a2=...=aI=0 (1.129)

H0: b1=b2=...=bJ=0 (1.130)

Furthermore, it can be shown (just as for the one-way model) that the expected
mean squares are:

E MSRð Þ ¼ r
2 þ J

I � 1

X
i

a
2
i

E MSCð Þ ¼ r
2 þ I

J � 1

X
j

b
2

j

E(MSE)=r
2

Thus, to test H0: all ai=0, we use the F-statistic with I-1 and (I-1)(J-1) degrees of
freedom.

F ¼ MSR

MSE

The rejection region is: F>F(I-1),(I-1)(J-1),1-a. Similarly, to test H0 all bj=0, we use
F-statistic with J-1 and (I-1)(J-1) degrees of freedom.

F ¼ MSC

MSE

The rejection region is: F>F(J-1),(I-1)(J-1),1-a.

Confidence intervals and tests of hypotheses
In the two-way model for analysis of variance:

Xij=l+ai+bj+eij
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it may be of interest to compare the effects due to two rows, say a1 and a2, if: H0: all
ai=0 has been rejected. The mean for the i-th row is:

Xi� ¼ lþ ai þ �bb� þ �eei�

where:

�bb� ¼

P
j

b
j

J
¼ 0 and �eei�

¼

P
j

eij

J
;

since:

�XX1� � �XX2� ¼ a1 � a2 þ �ee1� � �ee2� and E �XX1� � �XX2�
� �

¼ a1 � a2

since:

E eij

� �
¼ 0 for all i and j

Now MSE is an unbiased estimator for r2 and the random variable:

T ¼
�XX1���XX2�� a1�a2

� �
S�XX1��XX2

¼
�XX1���XX2�� a1�a2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r2

1

J
þ1

J

� �s ¼
�XX1���XX2�� a1�a2

� �ffiffiffiffiffiffiffiffiffiffiffiffi
MSE

2

J

r (1.131)

has a t-distribution with (I-1)(J-1) degrees of freedom.
Referring to Eq. (1.74) (1-a) 100% confidence interval for a1-a2 can be con-

structed:

�XX1� � �XX2� � tk;1�a=2
2MSE

J

� �0:5

(1.132)

where:

k=(I-1)(J-1).

If these confidence limits cover the value zero then we accept H0: a1=a2, that is,
there is no significant difference between the effects due to rows 1 and 2.

They can also be used for any pair of column effects if the difference of the sam-
ple means is replaced by �XX�1 � �XX�2 and J is replaced with I.

Consider the random variable
P
i

ci �XXi , where c1, c2,..., cI are any constants. It is

not difficult to show that
P
i

ci �XXi has mean
P
i

ci lþ aið Þand variance
P
i

c
2
i r

2
=J .

Now if we assume
P
i

ci ¼ 0, then the mean becomes:X
i

ciai

since:X
i

cil ¼ l
X
i

ci ¼ 0

The linear combination
P
i

ciai is called a contrast if
P
i

ci ¼ 0.
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Let L ¼
P
i

ci �XXi� be a contrast. Then L has a normal distribution with meanP
i

ciai and variance
P
i

c
2
i r

2
=J. Thus the random variable:

T ¼
L�l

L

rL
¼

P
i

ci
�XXi��

P
i

ciaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

J

P
c2i

r (1.133)

has a t-distribution with (I-1)(J-1) degrees of freedom. From this we obtain a (1-a) �
100% confidence interval for the contrast

P
i

ciai :

X
i

ci �XXi� � tk;1�a=2
MSE

J

X
i

c
2
i

 !0:5

�
X
i

ciai �
X
i

ci �XXi� þ tk;1�a=2
MSE

J

X
i

c
2
i

 !0:5

(1.134)

where:

k=(I-1)(J-1).

Similarly, for the contrast
P
j

ajbj :

X
j

aj �XX�j � tk;1�a=2
MSE

I

X
j

a
2
j

0
@

1
A0:5

�
X
j

ajbj �
X
j

aj �XX�j þ tk;1�a=2
MSE

I

X
j

a
2
j

0
@

1
A0:5

(1.135)

Example 1.29
Using the results of analysis of variance in Example 1.27 determine the 95% confi-
dence interval for contrast b1-b2.

For the contrast we need to use the interval given in Eq. (1.135). Since:

a1=1, a2=-1; MSE=0.4278; I=4; k=(I-1)(J-1)=9; t9;0.975=2.262; �XX�1 ¼10.475;
�XX�2 ¼ 8:875,

the 95% confidence interval are:

�XX1� � �XX2� � 2:62
0:4278

4
1þ 1ð Þ

� �0:5

¼ 10:475� 8:875� 1:046

¼ 1:600� 1:046 ) 0:544; 2:646ð Þ

Since the confidence interval does not contain zero we can say that b1-b2>0 or
b1>b2 or that the effect from the first reflux ratio is greater than that from the second
reflux ratio. Confidence intervals can also be constructed for contrasts in the one-
way model Xij=l+aj+eij. Confidence limits are:
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j

cjaj ¼
X
j

cj l
j
� l

� �
¼
X
j

cjlj

at the a level of significance is:

X
j

cj �XX�j � tJ I�1ð Þ;1�a=2
MSE

J I � 1ð Þ

P
j

c
2
j

I

0
BB@

1
CCA

0:5

(1.136)

Example 1.30
For the fluoride data of Example 1.24 determine a 95% confidence interval on aA-aB.
The contrast is:

aA-aB=lA-l-(lB-l)=lA-lB.

From the results of Example 1.24 we have: �XX�A ¼ 4:0; �XX�B ¼ 3:6; J(I-1)=4(5-1)=16;
MSE=1.45; CA=1; CB=-1 and t16;0.975=2.120. The 95% confidence limits on lA-lB are,
from Eq. (1.136):

4:0� 3:6� 2:120
1:45
16

1
5
þ 1
5

� �� �0:5

¼ 0:4� 2:120� 0:1904 ) �0:0036; 0:8036ð Þ

Since the interval contains zero we conclude that there is no difference between
methods A and B.

Interaction
Two-way analysis of variance (and higher classifications) leads to the presence of in-
teractions. If, for example, an additive A is added to a lube oil stock to improve its
resistance to oxidation and another additive, B, is added to inhibit corrosion by the
stock under load or stress, it is entirely possible that the performance of the lube oil
in a standard ball-and-socket wear test will be different from that expected if only
one additive has present. In other words, the presence of one additive may adversely
or helpfully affect the action of the other additive in modifying the properties of the
lube oil. The same phenomenon is clearly evident in a composite rocket propellant
where the catalyst effect on burning rate of the propellant drastically depends on the
influence of fine oxidizer particles. These are termed antagonistic and synergistic
effects, respectively. It is important to consider the presence of such interactions in
any treatment of multiply classified data. To do this, the two-way analysis of variance
table is set up as shown in Table 1.24.

In two-way analysis of variance with no replications, interaction of factors was
part of the experimental error or more precisely of the residual variance. To separate
the interaction from the residual variance or from experimental error variance, it is
necessary to replicate design point, i.e. all combinations of rows and columns k
times.

82



1.5 Analysis of Variance

Table 1.24 Two-way analysis of variance with interactions

Source
of variation

Degrees
of

freedom

Sum of squares-definition Sum of squares-
practical calculation

Mean
squares

Test
statistic

Between
columns

J-1 IK
P
j

�XX�j� � �XX���

� �2
SSC ¼

P
j

X2
�j�

IK
� X2

���

IJK
MSC ¼ SSC

J�1
F ¼ MSC

MSE

Between
rows

I-1 JK
P
i

�XXi�� � �XX���
� �2

SSR ¼

P
i

X2
i��

JK
� X2

���

IJK
MSR ¼ SSR

I�1
F ¼ MSR

MSE

Interaction

columns-

rows

(J-1)(I-1) K
P
i

P
j

�XXij� � �XXi�� � �XX�j� þ �XX���

� �2
SSCR ¼

P
i

P
j

X2
ij�

K
�

P
i

X2
i��

JK

�

P
j

X2
�j�

IK
þ X2

���

IJK

MSCR ¼ SSCR

I�1ð Þ J�1ð Þ F ¼ MSCR

MSE

Error IJ(K-1)
P
i

P
j

P
k

Xijk � �XXi�� � �XX�j� þ �XX���

� �2
SSE¼SST�SSC

�SSR�SSCR

– –

Total IJK-1
P
i

P
j

P
k

Xijk � �XX���

� �2 P
i

P
j

P
k

X
2
ijk � X

2
��� IJK= – –

Three-way analysis of variance
Based on models and assumptions of one-way and two-way analyses of variance
with or without replications of design points, it is possible to generalize for multi-
ple-way analysis of variance. It is of interest to present the three-way analysis of var-
iance for it is used quite often. In the case of a three-way analysis of variance the
total number of observations is N=IxJxKxL, where I, J and K are numbers of levels
or columns, rows and layers. L is the number of design-point replications or the
number of observations in cells. Fig. 1.18 shows the tridimensional arrangement of
columns, rows and layers.

K layers

I rows

J columns

L data in cells

Figure 1.18 Arrangement of data in columns, rows and layers to represent three-way ANOVA
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In calculation for the three-way analysis without replicating L=1, the same con-
ventions in the notations were followed as for one and two-way analysis of variance.

X��� ¼
P
i

P
j

P
k

Xijk ;
�XX��� ¼ X���

IJK (1.137)

X
2
i�� ¼

P
j

P
k

Xijk

 !2

(1.138)

Presentation of definitions and procedures for the three-way analysis of variance,
no replications of the design points L=1, is given in Table 1.26. For this kind of anal-
ysis with replicating L>1, the calculation is given in Table 1.27. The convention on
notations were followed here:

X���� ¼
P
i

P
j

P
k

P
l

Xijkl ;
�XX���� ¼ X����

IJKL
; X

2
i��� ¼

P
j

P
k

P
l

Xijkl

 ! 2

(1.139)

Example 1.31 [13]
The following results were obtained in a two-factor, two-level experiment involving a
study of the effect of temperature, time on the percentage yield of a reaction:

Temperature [�C]
Time 110 115 120 Xi��
1h 5; 6 9; 7 10; 11 48.0
2h 10.8 11; 12 13; 15 69.0

X�j� = 29.0 39.0 49.0 X��� = 117.0PP
X

2
�jk = 225.0 395.0 615.0

PPP
X

2
ijk = 1235.0

Table 1.25 Analysis of variance

Source of variation f SS MS F FT

Temperature 2 50.00 25.00 20.00 F2;6;0.95=5.14

Time 1 36.75 36.75 29.40 F1;6;0.95=5.99

Interaction 2 0.00 0.00 0.00 F2;6;0.95=5.14

Error 6 7.50 1.25 – –

Total 11 94.25 – – –

SST ¼
X
i

X
j

X
k

X
2
ijk �

X
2
���

IJK
¼ 1235:0� 117:0

2

2� 3� 2
¼ 94:25

SSC ¼

P
j

X
2
�j�

IK
� X

2
���

IJK
¼ 29

2 þ 39
2 þ 49

2

2� 2
� 117:0

2

2� 3� 2
¼ 50:0
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SSR ¼

P
i

X
2
i��

JK
� X

2
���
IJK

¼ 48
2 þ 69

2

3� 2
� 117:0

2

2� 3� 2
¼ 36:75

SSCR ¼

P
i

P
j

X
2
ij�

K
�

P
i

X
2
i��

JK
�

P
j

X
2
�j�

IK
þ X

2
���

IJK
¼

¼ 112þ182þ:::þ212þ282

2
� 482þ692

3�2
� 292þ392þ492

2�2
þ 117:02

2�3�2
¼ 0:0

SSE ¼ SST � SSC � SSR � SSCR ¼ 94:25� 50:0� 36:75þ 0:0 ¼ 7:50

The results clearly show that temperature and time at 95% and 99% confidence
level respectively have a significant effect on production yield. It is also clear that
there is no interaction between temperature and time factors. Experimental error is
small with respect to interaction so that the used measurement equipment can be
considered satisfactory.

Example 1.32 [12]
The influence of glass types and coatings on specific conductivity was tested in
developing cathode tubes for TV sets. From each obtained value 260mA were sub-
tracted so that the coded values are:

Type of coating
Type of glass A B C Xi��Þ:

1 4; 6; 5 8; 10; 7 2; 5; 6 53.0
2 -6;-5;-4 0;-4;-5 -8;-7;-6 -45.0

X�j� = 0.0 16.0 -8.0 X��� = 8.0

PP
X

2
�jk ¼ 154; 0 254.0 214.0

PPP
X

2
ijk ¼ 622; 0

I=2;J=3;K=3

SST ¼ 622:0� 8:02

2�3�3
¼ 618:44

SSC ¼ 0:02þ16:02þ �8ð Þ2

2�3
� 8:02

2�3�3
¼ 53:33� 3:56 ¼ 49:77

SSR ¼ 532þ �45ð Þ2

3�3
� 8:02

2�3�3
¼ 537:11� 3:56 ¼ 533:55

SSCR ¼ 152þ �15ð Þ2þ:::þ132þ �21ð Þ2

3
� 537:11� 53:33þ 3:56 ¼ 1:79

SSE=618.44-49.77-533.55-1.79=33.33
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1.5 Analysis of Variance

Table 1.28 Analysis of variance

Source of variation f SS MS F FT.

Type of coating 2 49.77 24.88 8.95 F2;12;0.95=3.89

Type of glass 1 533.55 533.55 191.92 F1;12;0.95=4.75

Interaction 2 1.79 0.89 0.32 F2;12;0.95=3.89

Error 12 33.33 2.78 – –

Total 17 618.44 – – –

The analysis of variance clearly shows that glass type has a dominant influence
on cathode tube conductivity. The effect of coating type is also significant, while in-
teraction is of no importance.

Example 1.33 [10]
A group of 24 mice was randomly divided into six subgroups of four and each
mouse got an insulin shot. Taking into account three levels of insulin doses and two
procedures of preparing insulin, A and B, reduction of sugar per cent in the blood
of mice was measured some time after injecting insulin. The obtained results are
shown in the following table:

Table 1.29 Analysis of variance

Doses Xi��

2.29 3.63 5.57

Preparation

A

17 64 62
21 48 72 636
49 34 61
54 63 91

B

33 41 56
37 64 62 576
40 34 57
16 64 72

X�j� 267 412 533 1212 = X���P
j

P
k

X
2
�jk 10361 22554 36443 69358

SST=69358-61206=8152 ; SSC=65640.25-61206=4434.25
SSR=61356-61206=150.00 ; SSCR=188275-65640.25-61356+61206=72.75
SSE=8152-4434.25-150-72.75=3495
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Table 1.30 Analysis of variance

Source of varia-
tion

f SS MS F FT

Doses 2 4434.25 2217.125 11.419 F2;18;0.95=3.55

Preparation 1 150.00 150.000 0.773 F1;18;0.95=4.41

Interaction 2 72.75 36.375 0.187 F2;18;0.95=3.55

Error 18 3495.00 194.167 – –

Total 23 8152.00 – – –

Thus, we can with 95% confidence level say that reduction of sugar percent in the
blood of mice is significantly influenced only by the size of insulin dose.

Example 1.34 [15]
The following results were obtained in a three-way, two-level experiment where tem-
perature A, pressure B and catalyst C effects on chemical reaction yield were ana-
lyzed:

Table 1.31 Analysis of variance

A1 A2 Xi��

C1 C2 C1 C2

B1 58 64 71 78 271

B2 53 63 69 81 266P
j

X�jk 111 127 140 159 X��� ¼ 537P
j

P
k

X
2
�jk 6173 8065 9802 12645

P
i

P
j

P
k

X
2
ijk ¼ 36685

X1�� ¼ 58þ 64þ 71þ 78 ¼ 271; X2�� ¼ 53þ 63þ 69þ 81 ¼ 266;
X��� ¼ 537;X

2
��� ¼ 288369P

i

X
2
i�� ¼ 271

2 þ 266
2 ¼ 144197;

P
i

P
j

P
k

X
2
ijk ¼ 36685

P
j

X
2
�j� ¼ 58þ 64þ 53þ 63ð Þ2þ 71þ 78þ 69þ 81ð Þ2¼ 146045

P
k

X
2
��k ¼ 58þ 71þ 53þ 69ð Þ2þ 64þ 63þ 78þ 81ð Þ2¼ 144797

P
i

P
j

X
2
ij� ¼ 58þ 64ð Þ2þ 71þ 78ð Þ2þ 53þ 63ð Þ2þ 69þ 81ð Þ2¼ 73041

P
i

P
k

X
2
i�k ¼ 58þ 71ð Þ2þ 68þ 78ð Þ2þ 53þ 69ð Þ2þ 63þ 81ð Þ2¼ 72425

P
j

P
k

X
2
�jk ¼ 58þ 53ð Þ2þ 64þ 63ð Þ2þ 71þ 69ð Þ2þ 78þ 81ð Þ2¼ 73331
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SSC ¼

P
j

X2
�j�

IK
� X2

���

IJK
¼ 146045

2�2
� 288369
2�2�2

¼ 465:1

SSR ¼

P
i

X2
i��

JK
� X2

���

IJK
¼ 144197

2�2
� 288369
2�2�2

¼ 3:1

SSL ¼

P
k

X2
��k

IJ
� X2

���

IJK
¼ 144797

2�2
� 288369
2�2�2

¼ 153:1

SSCR ¼

P
i

P
j

X2
ij�

K
�

P
i

X2
i��

JK
�

P
j

X2
�j�

IK
þ X2

���

IJK

¼ 73041
2

� 144197
2�2

� 146045
2�2

þ 288369
2�2�2

¼ 6:1

SSCL ¼

P
j

P
k

X2
�jk

I
�

P
j

X2
�j�

IK
�

P
k

X2
��k

IJ
þ X2

���

IJK

¼ 73331
2

� 146045
2�2

� 144797
2�2

þ 288369
2�2�2

¼ 1:1

SSRL ¼

P
i

P
k

X2
i�k

J
�

P
i

X2
i��

JK
�

P
k

X2
��k

IJ
þ X2

���

IJK

¼ 72425
2

� 144197
2�2

� 144797
2�2

þ 288369
2�2�2

¼ 10:1

SSCRL ¼
P
i

P
j

P
k

X
2
ijk �

P
i

P
j

X2
ij�

K
�

P
j

P
k

X2
�jk

I
�

P
i

P
k

X2
i�k

J

þ

P
i

X2
i��

JK
þ

P
j

X2
�j�

IK
þ

P
k

X2
��k

IJ
� X2

���

IJK
¼

¼ 36685� 73041
2

� 73331
2

� 72425
2

þ 144197
2�2

þ 146045
2�2

þ 144797
2�2

� 288369
2�2�2

¼ 0:125

This is an example of three-way analysis of variance with no design-point replica-
tion. As we have only one value for each set of factors, the variance or the mean
square within the cell as an estimate of system variance cannot be calculated. In the
lack of error variance, or rather Reproducibility variance. Interaction of a higher order
can be used as error estimate for the F-test. Although all statisticians do not agree
with this approach, the three-way interaction variance C � R � L was taken as the
error estimate for F-test. The tabular results show that only the effects of columns
and layers, or temperature and catalyst, are significant. Pressure and interaction are
not important at the 95% confidence level. The other approach in estimating repro-
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ducibility variance is to join several interactions. We can assume that all four
interac-

Table 1.32 Analysis of variance

Source of variation f SS MS F FT

Between columns 1 465.1 465.1 3720 F1;1;0.95=161

Between rows 1 3.1 3.1 24.8 F1;1;0.95=161

Between layers 1 153.1 153.1 1223 F1;1;0.95=161

Interaction C � R 1 6.1 6.1 48.8 F1;1;0.95=161

Interaction C � L 1 1.1 1.1 8.0 F1;1;0.95=161

Interaction R � L 1 10.1 10.1 80 F1;1;0.95=161

Interaction C � R � L 1 0.125 0.125 – –

tions are unimportant, i.e. we can join their degrees of freedom and sums of squares
to obtain the estimate of variance error. In that case the degree of freedom is k=4
and the sum of squares 6.1+1.1+10.1+0.125=17.425; so that MSE=4.28. With the
F1;4;0.95=7.71 value, the mean square for any effect must exceed the value
4:28� 7:71 ¼ 33:0; so that the effect could be statistically important at 95% confi-
dence level. This proves again that in this case only the effects of temperature and
catalyst are statistically significant.

Example 1.35 [14]
Transfer of mass from liquid into solid particles of an expanded fountain-fluidized
bed is developed in the annulus and fountain according to the following criterion
equation

Sh ¼ A� Re
a
A � Re

b
S � H

D

� �c

where:
Sh is Sherwood’s-criterion;
ReA and ReS- Reynold’s Number – criteria for annulus and fountain, and
H/D-height simplex of the added active coal bed versus column diameter.

By varying ReA, ReS and H/D, we obtained the values of Sherwood’s-criterion as
shown in the table. By applying analysis of variance, verify the given criterion equa-
tion by establishing the effects of the observed factors on the basis of experimental
values.
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Table 1.33 Analysis of variance

ReS1 ReS2 Xi���

ReA1 ReA2 ReA1 ReA2

ðH0=DÞ1 2.023 2.235 2.110 2.123 16.958
2.024 2.212 2.112 2.119
[4.047] [4.447] [4.222] [4.242]

ðH0=DÞ2 1.790 1.897 1.966 1.983 15.265
1.782 1.868 1.988 1.991
[3.572] [3.765] [3.954] [3.974]

X�jk� 7.619 8.212 8.176 8.216 X���� = 32.223P
j

P
k

P
l

X
2
�jkl 14.569 16.976 16.730 16.894 65.169

I=2; J=2; K=2; L=2; N=IJKL=16 ;P
i

P
j

P
k

P
l

X
2
ijkl ¼ 65:169; X���� ¼ 32:223; X

2
���� ¼ 1038:322;

P
i

P
j

P
k

X
2
ijk� ¼ 130:335;

P
i

X
2
i��� ¼ 16:958

2 þ 15:265
2 ¼ 520:594;

P
j

X
2
�j�� ¼ 7:619þ 8:212ð Þ2þ 8:176þ 8:216ð Þ2¼ 519:319

P
k

X
2
��k� ¼ 7:619þ 8:176ð Þ2þ 8:212þ 8:216ð Þ2¼ 519:361

P
i

P
j

X
2
ij�� ¼ 4:047þ 4:447ð Þ2þ 4:222þ 4:242ð Þ2þ 3:572þ 3:765ð Þ2þ 3:954ð

þ3:974Þ2 ¼ 260:472P
i

P
k

X
2
i�k� ¼ 4:047þ 4:222ð Þ2þ 3:572þ 3:954ð Þ2þ 4:447þ 4:242ð Þ2þ 3:765ð

þ3:974Þ2 ¼ 260:408

P
j

P
k

X
2
�jk� ¼ 4:047þ 3:572ð Þ2þ 4:447þ 3:765ð Þ2þ 4:222þ 3:954ð Þ2þ 4:242ð

þ3:974Þ2 ¼ 259:836

SST ¼
P
i

P
j

P
k

P
l

X
2
ijkl �

X2
����

N
¼ 65:169� 32:2232

16
¼ 0:274

SSL ¼

P
k

X2
��k�

IJL
� X2

����

N
¼ 519:361

2�2�2
� 64:895 ¼ 0:025;

SSC ¼

P
j

X2
�j��

IKL
� X2

����

N
¼ 519:319

2�2�2
� 32:2232

16
¼ 0:020

SSR ¼

P
i

X2
i���

JKL
� X2

����

N
¼ 520:594

2�2�2
� 64:895 ¼ 0:179
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SSCR ¼

P
i

P
j

X2
ij��

KL
�

P
i

X2
i���

JKL
�

P
j

X2
�j��

IKL
þ X2

����

N

¼ 260:472
2�2

� 520:594
2�2�2

� 519:319
2�2�2

þ 64:895 ¼ 0:024

SSCL ¼

P
j

P
k

X2
�jk�

IL
�

P
j

X2
�j��

IKL
�

P
k

X2
��k�

IJL
þ X2

����

N

¼ 259:836
2�2

� 519:319
2�2�2

� 519:361
2�2�2

þ 64:895 ¼ 0:019

SSRL ¼

P
i

P
k

X2
i�k�

JL
�

P
i

X2
i���

JKL
�

P
k

X2
��k�

IJL
þ X2

����

N

¼ 260:408
2�2

� 520:594
2�2�2

� 519:361
2�2�2

þ 64:895 ¼ 0:003

SSE ¼
P
i

P
j

P
k

P
l

X
2
ijkl �

P
i

P
j

P
k

X2
ijk�

L
¼ 65:169� 130:335

2
¼ 0:001

SSCRL=SST-SSC-SSR-SSL-SSCR-SSCL-SSRL-SSE

=0.274-0.020-0.179-0.025-0.024-0.019-0.003-0.001=0.003

Table 1.34 Analysis of variance

Source of variation F SS MS F FT

Res of fountain 1 0.020 0.020 166.67 F1;8;0.95=5.32

H0D simplex 1 0.179 0.179 1491.67 F1;8;0.95=5.32

ReA annulus 1 0.025 0.025 208.33 F1;8;0.95=5.32

ReS � H0/D 1 0.024 0.024 200.00 F1;8;0.95=5.32

ReS � ReA 1 0.019 0.019 158.33 F1;8;0.95=5.32

H0/D � Rea 1 0.003 0.003 25.000 F1;8;0.95=5.32

ReS � H0/D � Rea 1 0.003 0.003 25.000 F1;8;0.95=5.32

Error 8 0.001 0.00012 – –

Total 15 0.274 – – –

It is of interest for variance methodology that complex values such as non dimen-
sional Reynold’s numbers and simplex were used as factors in this example. Analy-
sis of variance has shown that all factors and interactions are important, which veri-
fies the assumed criterion equation. The low error value of the experiment charac-
terizes good experiment reproducibility and simultaneously indicates the fact that
all essential factors have been taken into consideration.
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Example 1.36 [4]
The table below gives the results of an experiment as niacin-contents in peeled and
processed peas of three granulations (A, B and C), after three kinds of preparations
(R1, R2 and R3).

Table 1.35 Peeled peas

A B C

R1 R2 R3 R1 R2 R3 R1 R2 R3

65 90 44 59 70 83 88 80 123
87 94 92 63 65 95 60 81 95
48 86 88 81 78 88 96 105 100
28 70 75 80 85 99 87 130 131
20 78 80 76 74 81 68 122 121
22 65 70 85 73 98 75 130 115
24 75 73 64 61 95 96 121 127
47 98 88 96 71 95 98 125 99
28 95 77 91 63 90 84 172 101
42 66 72 65 54 76 82 133 111

411 817 759 760 694 900 834 1199 1123

Table 1.36 Processed peas

A B C

R1 R2 R3 R1 R2 R3 R1 R2 R3

62 106 126 150 138 150 146 52 100
113 107 193 112 120 112 172 97 133
171 79 122 136 135 126 138 112 125
135 122 115 120 126 123 124 116 124
123 125 126 118 120 125 113 121 115
132 96 110 134 132 110 121 99 122
120 111 98 125 135 125 125 120 112
117 116 115 114 124 120 116 121 116
153 124 112 112 137 110 165 122 99
132 126 109 120 125 125 137 134 105

1258 1112 1226 1241 1292 1226 1357 1094 1151

These tables give:

I=2; J=3; K=3; L=10; N=I � J � K � L=180. ; X���� = 18454 X
2
���� = 340 550 116P

i

P
j

P
k

P
l

X
2
ijkl ¼ 65

2 þ 87
2 þ 48

2 þ :::þ 116
2 þ 99

2 þ 105
2 ¼ 22054828;
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Table 1.37 Peeled Peas Table 1.38 Processed Peas

A B C A B C

R1 1258 1241 1357 R1 411 760 834

R2 1112 1292 1094 R2 817 694 1199

R3 1226 1226 1151 R3 759 900 1123

Sum 3596 3759 3602 Sum 1987 2354 3156

By compiling the given sums, we can make up the following three tables:

Table 1.39 Accessory Table Table 1.40 Accessory Table Table 1.41 Accessory Table

Peeled Processed Sum Peeled Processed A B C Sum

A 1987 3596 5583 R1 2005 3856 R1 1669 2001 2191 5861

B 2354 3759 6113 R2 2710 3498 R2 1929 1986 2293 6208

C 3156 3602 6758 R3 2782 3603 R3 1985 2126 2274 6385

Sum 7497 10957

The following arithmetic is necessary for analysis of variance:P
i

X
2
i��� ¼ 7497

2 þ 10957
2 ¼ 176260858 ;P

j

X
2
�j�� ¼ 5583

2 þ 6113
2 þ 6758

2 ¼ 114209222

P
k

X
2
��k� ¼ 5861

2 þ 6208
2 þ 6385

2 ¼ 113658810

P
i

P
j

X
2
ij�� ¼ 1987

2 þ 2354
2 þ 3156

2 þ 3596
2 þ 3759

2 þ 3602
2 ¼ 59485522

P
i

P
k

X
2
i�k� ¼ 2005

2 þ 2710
2 þ 2782

2 þ 3856
2 þ 3498

2 þ 3603
2 ¼ 59189998

P
j

P
k

X
2
�jk� ¼ 1669

2 þ 1929
2 þ 1985

2 þ 2001
2 þ 1986

2 þ 2126
2 þ 2191

2 þ 2293
2

þ2274
2 ¼ 38144306P

i

P
j

P
k

X
2
ijk� ¼ 411

2 þ 760
2 þ 834

2 þ 817
2 þ 694

2 þ 1199
2 þ 759

2 þ 900
2

þ1123
2 þ 1258

2 þþ1241
2 þ 1357

2 þ 1112
2 þ 1292

2 þ 1094
2

þ1226
2 þ 1226

2 þ 1151
2 ¼20 073 704

SST=2 054 828-1 891 945=162 883 ; SSC=1 958 454-1 891 945=66 509
SSR=1 903 487-1 891 945=11 542 , SSL=1 894 314-1 891 945=2 369
SSCR=1 982 851-1 958 454-1 903 487+1 891 945=12 855
SSCL=1 973 000-1 958 454-1 894 314+1 891 945=12 177
SSRL=1 907 215-1 903 487-1 894 314+1 891 945=1 359 ; SSE=2 054 828-2 007
370=47 458
SSCRL=2007370-1982851-1973000-1907215+1958454+1903487+1894314-
1891945=8614
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Table 1.42 Analysis of variance

Source of variation f SS MS F FT

Between columns 1 66509 66509.00 227.03 F1;162;0.95=3.84

Between rows 2 11542 5771.00 19.70 F2;162;0.95=3.00

Between layers 2 2369 1184.50 4.04 F2;162;0.95=3.00

Interaction C � R 2 12855 6427.50 21.94 F2;162;0.95=3.00

Interaction C � L 2 12177 6088.50 20.78 F2;162;0.95=3.00

Interaction R � L 4 1359 339.75 1.16 F4;162;0.95=2.37

Interaction C � R � L 4 8614 2153.5 7.35 F4;162;0.95=2.37

Error 162 47458 292.95 – –

Total 179 162883 909.96 – –

The table clearly shows that all factors and interactions are statistically significant
at 95% confidence level except for the second-order interaction R � L. It should be
noted that columns refer to granulometric contents of peas, sorts to peeled and pro-
cessed peas, and layers to preparation kinds (R1, R2 and R3).

Example 1.37 [17]
Analysis of variance has also been applied in testing three factors of composite
rocket propellant burning rate in Crawford’s-bomb at 100bar and 20 �C temperature.
The analyzed factors are: contents of fine fraction in bimodal oxidizer mixture (C);
contents ratio of oxidizer mixture-aluminum powder (B) and contents of burning
rate catalyst (A). The obtained burning rate values are given in the table in mm/s:

Table 1.43 Analysis of variance

A1 A2
P

C1 C2 C1 C2

7.1 7.5 9.8 15.6

B1 7.0 7.0 9.6 15.9 79.5

[14.1] [14.5] [19.4] [31.5]
7.8 9.1 10.6 20.0

B2 7.8 9.4 11.1 20.8 96.6

[15.6] [18.5] [21.7] [40.8]
29.7 33.0 41.1 72.3 176.1

I=2; J=2; K=2; L=2; N=I � J � K � L=16 ;P
i

P
j

P
k

P
l

X
2
ijkl ¼ 2250:09; X���� ¼ 176:1; X

2
���� ¼ 31011:21

P
i

X
2
i��� ¼ 79:5

2 þ 96:6
2 ¼ 15651:81P

j

X
2
�j�� ¼ 29:7þ 33:0ð Þ2þ 41:1þ 72:3ð Þ2¼ 16790:85
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P
k

X
2
��k� ¼ 29:7þ 41:1ð Þ2þ 33:0þ 72:3ð Þ2¼ 16100:73

P
i

P
j

X
2
ij�� ¼ 14:1þ 14:5ð Þ2þ 19:4þ 31:5ð Þ2þ 15:6þ 18:5ð Þ2þ 21:7þ 40:8ð Þ2

¼ 8477:83P
i

P
k

X
2
i�k� ¼ 14:1þ 19:4ð Þ2þ 15:6þ 21:7ð Þ2þ 14:5þ 31:5ð Þ2þ 18:5þ 40:8ð Þ2

¼ 8146:03P
j

P
k

X
2
�jk� ¼ 14:1þ 15:6ð Þ2þ 14:5þ 18:5ð Þ2þ 19:4þ 21:7ð Þ2þ 31:5þ 40:8ð Þ2

¼ 8887:59P
i

P
j

P
k

X
2
ijk� ¼ 14:1

2 þ 14:5
2 þ 19:4

2 þ 31:5
2 þ 15:6

2 þ 18:5
2 þ 21:7

2 þ 40:8
2

¼ 4498:81

SST ¼
P
i

P
j

P
k

P
l

X
2
ijkl �

X2
����

N
¼ 2250:09� 31011:21

16
¼ 311:89

SSC ¼

P
j

X2
�j��

I�K�L
� X2

����

N
¼ 16790:85

8
� 31011:21

16
¼ 160:66

SSR ¼

P
i

X2
i���

J�K�L
� X2

����

N
¼ 15651:81

8
� 31011:21

16
¼ 18:28

SSL ¼

P
k

X2
��k�

I�J�L
� X2

����

N
¼ 16100:73

8
� 31011:21

16
¼ 74:39

SSCR ¼

P
i

P
j

X2
ij��

K�L
�

P
i

X2
i���

J�K�L
�

P
j

X2
�j��

I�K�L
þ X2

����

N

¼ 8477:83
2�2

� 15651:81
2�2�2

� 16790:85
2�2�2

þ 31011:21
16

¼ 2:33

SSCL ¼

P
j

P
k

X2
�jk�

I�L
�

P
j

X2
�j��

I�K�L
�

P
k

X2
��k�

I�J�L
þ X2

����

N

¼ 8887:59
2�2

� 16790:85
2�2�2

� 16100:73
2�2�2

þ 31011:21
16

¼ 48:65

SSRL ¼

P
i

P
k

X2
i�k�

J�L
�

P
i

X2
i���

J�K�L
�

P
k

X2
��k�

I�J�L
þ X2

����

N

¼ 8146:03
2�2

� 15651:81
2�2�2

� 16100:73
2�2�2

þ 31011:21
16

¼ 5:64
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SSE ¼
P
i

P
j

P
k

P
l

X
2
ijkl �

P
i

P
j

P
k

X2
ijk�

L
¼ 2250:09� 4498:81

2
¼ 0:69

SSCRL ¼ SST � SSC � SSR � SSL � SSCR � SSCL � SSRL � SSE

¼ 311.89–160.66–18.28–74.39–2.33–48.65–5.64–0.69 = 1.25

Table 1.44 Analysis of variance

Source of variation f SS MS F FT

Factor A 1 160.66 160.66 1868.14 F1;8;0.95=5.32

Factor B 1 18.28 18.28 212.56 F1;8;0.95=5.32

Factor C 1 74.39 74.39 865.00 F1;8;0.95=5.32

Interaction A � B 1 2.33 2.33 27.09 F1;8;0.95=5.32

Interaction A � C 1 48.65 48.65 565.70 F1;8;0.95=5.32

Interaction B � C 1 5.64 5.64 65.58 F1;8;0.95=5.32

Interaction A � B � C 1 1.25 1.25 14.53 F1;8;0.95=5.32

Error 8 0.69 0.086 – –

Total 15 311.89 – – –

The mentioned analysis of variance clearly shows that the most important influ-
ence (the top F-criterion calculated value) on the burning rate of composite rocket
propellant comes with catalyst content change. One can also notice the high F-criter-
ion value of the interaction A � C, or the interactions of catalyst and fine fraction
contents in the oxidizer mixture. As the significance of second-order interactions
means that the power of influence of one factor on response depends on the level
the other factor is at, we can conclude that the efficiency of the burning-rate catalyst
does not depend only on its mass but also on granulometric contents of the oxidizer.
Small experimental error indicates that its reproducibility is very good and that, in
general, all factors influencing the composite rocket propellant burning rate have
been taken into consideration.
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& Problem 1.26 [9]
The following three process factors were tested to determine the
influence of conditions in the technology of isatin production:

. factor A-basic raw material concentration;

. factor B-time of reaction;

. factor C-temperature of reaction.

Table 1.45 Analysis of variance

C1 C2

B1 B2 B1 B2

A1 6.08 6.53 6.79 6.73
6.31 6.12 6.77 6.49

A2 6.04 6.43 6.68 6.08
6.09 6.36 6.38 6.23

The results are given in the table. By applying analysis of var-
iance, select the factors according to effects of their influence on the
measured chemical reaction yield.

& Problem 1.27 [4]
The following data give the yields of a product that resulted from
trying catalysts from four different suppliers in a process. Deter-
mine:

Catalyst
I 36 33 35 34 32 34
II 35 37 36 35 37 36
III 35 39 37 38 39 38
IV 34 31 35 32 34 33

a) Are yields influenced by catalysts?
b) What are your recommendations in the selection of a catalyst?
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& Problem 1.28 [4]
Random samples of size ten were drawn from normal populations
A, B, C and D. The measurements of property X are given in the
table below along with totals and sums of squares in columns.

Are there significant differences between the population means?

Table 1.46 Analysis of variance

XA XB XC XD

3.355 0.273 3.539 3.074
1.086 2.155 2.929 3.103
2.367 1.725 3.025 2.389
0.248 0.949 4.097 4.766
1.694 0.458 2.236 2.553
1.546 1.455 3.256 3.821
1.266 2.289 3.374 1.905
0.713 2.673 1.781 2.350
0.000 1.800 2.566 1.161
3.406 2.407 2.510 2.122P

Xi� 15.681 16.184 29.313 27.244 X��
�XX 1.5681 1.6184 2.9313 2.7244P

j

X
2
ij 37.071327 32.339668 90.081121 83.620342

P
i

P
j

X
2
ij

& Problem 1.29
Samples of steels from four different batches were analyzed for car-
bon content. The results are shown below for quadruplicate determi-
nations by the same analyst. Are the carbon contents (given in
weight per cent) of these batches the same? What are the 99% con-
fidence limits on the average carbon content of each?

Table 1.47 Analysis of variance

No1 No2 No3 No4

0.39 0.36 0.32 0.43
0.41 0.35 0.36 0.39
0.36 0.35 0.42 0.38
0.38 0.37 0.40 0.41

X�j 1.54 1.43 1.50 1.61 X�� ¼ 6:08
�XX�j 0.3850 0.3575 0.3750 0.4025P
j

X
2
�j 0.5942 0.5115 0.5684 0.6495

P
i

P
j

X
2
ij ¼ 2:3236
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& Problem 1.30
The torque outputs for several pneumatic actuators at several differ-
ent supply pressures are given in the table below.

a) Do the different supply pressures significantly affect the output?
b) Does the output vary for the different models?

Table 1.48 Analysis of variance

P1 P2 P3

A 205 270 340

B 515 700 880

C 1775 2450 3100

D 7200 9600 12100

& Problem 1.31 [4]
Results of a laboratory analysis for the specific rate constant for the
saponification of ethyl acetate by NaOH at 0 [ �C] are given below.
One of the runs was performed with an electric stirrer, while the
others were hand stirred. The results were analyzed by the differen-
tial and integral methods. Does the electric stirrer make a significant
difference to the results? Does the method of analysis of data make
a significant difference?

Table 1.49 Analysis of variance

With stirrer Without stirrer

Integral 0.02058 0.02121 0.01849 0.01816

Method 0.02214 0.02073 0.01951 0.01884

Differential 0.01995 0.02003 0.01725 0.01752

Method 0.01968 0.01982 0.01696 0.01726

& Problem 1.32 [12]
Observe an experiment aimed at defining the factors that have an
essential effect on energy consumption in processing metal on a
lathe with ceramic cutting tools. In metal processing, in fact, the
energy is measured by a dynamometer and it is proportional to
power consumption. Some of the factors influencing the observed
response are: type of cutting tools, angle of cutting, depth of cutting,
speed of moving the metal, type of cutting, and turning speed of
axis. In this experiment the cutting depth was fixed at 2.5mm, speed
of moving the metal at 0.3mm/min, and turning speed was fixed at
1000min

-1
.
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The other three factors were varied on three levels: type of cutting
tools, angle of cutting and type of cutting. The experiment data after
four replications are given in the table:

Table 1.50 Analysis of variance

Type of cutting Cutting tools T1 Cutting tools T2

Cutting angle
15(B1)

Cutting angle
30(B2)

Cutting angle
15(B1)

Cutting angle
30(B2)

Continuously
C1

29.0 28.5 28.0 29.5
26.5 28.5 28.5 32.0
30.5 30.0 28.0 29.0
27.0 32.5 25.0 28.0

With interruption
C2

28.0 27.0 24.5 27.5
25.0 29.0 25.0 28.0
26.5 27.5 28.0 27.0
26.5 27.5 26.0 26.0

& Problem 1.33 [10]
In developing a procedure for bacteriological testing of milk,
samples were tested in an apparatus that includes two components:
bottles and kivets. All six combinations of two bottle types and three
kivet types were tested ten times for each sample. The table contains
data on the number of positive tests in each of ten testings. If we
remember section 1.1.1 then the obtained values of positive tests are
a random variable with the binomial distribution. For a correct
application of the analysis of variance procedure, the results should
be normally distributed. It is therefore possible to transform the
obtained results by means of arcsine mathematical transformation
for the purpose of example of three-way analysis of variance with no
replications, no such transformations are necessary. The experiment
results are given in the table:
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Table 1.51 Analysis of variance

Bottles I II

Kivets A B C A B C

Milk
samples

1 1 1 1 3 2
3 4 2 2 1 3
3 2 4 3 3 6
2 4 1 1 0 0
2 1 3 2 4 6
1 1 2 0 2 1
5 5 5 3 5 5
1 1 1 0 2 0
0 1 2 2 2 2
3 4 5 1 1 3
0 0 4 0 2 1
0 1 2 0 3 1

& Problem 1.34 [21]
Comparative analysis of different technological solutions for produ-
cing nitrate compounds was done in lab conditions. Three factors of
importance for nitrate compounds production yield were tested:

a) Time of dosing the nitric acid-A;
b) Time of mixing the reaction mixture-B;
c) The factor of mixture remains from the previous batch-C.

The experimental results are given in the table:

Table 1.52 Analysis of variance

C1 C2

A1 A2 A1 A2

B1 87.2 88.4 86.7 89.2

B2 82.0 83.0 83.4 83.7
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& Problem 1.35 [9]
Paste is produced in a batch-type technological procedure. Three
samples (A, B, and C) were taken from each batch and each of them
tested twice for tearing strength. The obtained results and their
sums are in the table. Do the analysis of variance.

Table 1.53 Analysis of variance

Batch Sample A Sample B Sample C Sum Mean

Sum Sum Sum

1 50.3 49.8 100.1 50.1 49.5 99.6 51.1 49.4 100.5 300.2 50.03

2 45.8 45.4 91.2 44.4 44.7 89.1 44.7 44.4 89.1 269.4 44.90

3 41.0 41.4 82.4 42.7 41.6 84.3 43.1 43.3 86.4 253.1 42.18

4 48.7 50.0 98.7 48.0 50.4 98.4 47.9 48.5 96.4 293.5 48.92

5 48.9 49.4 98.3 48.4 46.8 95.2 46.5 45.4 91.9 285.4 47.57

6 47.0 46.1 93.1 47.4 47.2 94.6 45.1 47.5 92.6 280.3 46.72

7 46.3 45.0 91.3 44.6 44.0 88.6 45.6 44.2 89.8 269.7 44.95

8 44.9 42.3 87.2 45.1 43.4 88.5 43.3 41.6 84.9 260.6 43.43

9 55.7 55.4 111.1 56.3 56.3 112.6 55.1 55.0 110.1 333.8 55.63

Sum 853.4 850.9 841.7 2546.0 –

Mean 47.4 47.3 46.8 47.1 –

& Problem 1.36 [9]
The table shows logarithms of CaCO3-chalk filling weights from two
deposits A and B as determined in 11 laboratories with three replica-
tions. Use analysis of variance to determine whether there are sig-
nificant differences between labs or chalk deposits.

Table 1.54 Analysis of variance

Labora-
tory

Chalk A Chalk B Mean

Mean Mean

1 0.851 0.851 0.851 0.851 0.681 0.686 0.681 0.683 0.767
2 0.863 0.866 0.860 0.863 0.690 0.690 0.695 0.692 0.777
3 0.854 0.854 0.854 0.854 0.686 0.686 0.690 0.687 0.771
4 0.863 0.869 0.869 0.867 0.690 0.690 0.690 0.690 0.779
5 0.869 0.872 0.872 0.871 0.699 0.703 0.699 0.700 0.786
6 0.875 0.869 0.872 0.872 0.686 0.690 0.686 0.687 0.780
7 0.485 0.857 0.851 0.851 0.672 0.672 0.681 0.675 0.763
8 0.869 0.869 0.872 0.870 0.699 0.695 0.695 0.696 0.783
9 0.857 0.857 0.857 0.857 0.681 0.681 0.681 0.681 0.769
10 0.869 0.881 0.875 0.875 0.695 0.690 0.690 0.692 0.783
11 0.881 0.881 0.881 0.881 0.708 0.708 0.708 0.708 0.795

Mean 0.865 0.690 0.777
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& Problem 1.37 [9]
Effects on physical properties of vulcanized rubber were analyzed in
a research lab. Based on research results the influence of three fac-
tors on the strength of vulcanized rubber was tested:

a) five qualities of rubber filler- factor A;
b) three methods of previous rubber treatment-factor B;
c) four qualities of raw rubber-factor C.

Do the analysis of variance.

Table 1.55 Analysis of variance

Factor C

Factor B Factor B Factor B Factor B

Factor A 404 478 530 381 429 528 316 376 390 423 482 550
392 418 431 239 251 249 186 207 194 410 416 452
348 381 460 327 372 482 290 315 350 383 376 496
296 291 333 165 232 242 158 279 220 301 306 330
186 198 125 129 157 197 105 163 190 213 200 255

& Problem 1.38 [9]
In a chemical plant nine aluminum alloys were tested for their resis-
tance to corrosion. Four locations were chosen inside the chemical
plant for this experiment and at each such place one plate of all nine
alloys was placed. Exposure to chemical corrosion lasted one year.
After the experiment four researchers examined the plates randomly
and gave a mark from 1 to 10 to each plate depending on the
observed resistance to corrosion. The experiment was aimed at
asserting which of the offered aluminum alloys had the best resis-
tance to corrosion at one or at all locations of the chemical plant. It
was also interesting to see how much the researchers agreed or dis-
agreed in their estimates of resistance to corrosion. Thus, the experi-
ment had included three factors: nine aluminum alloys, four loca-
tions and four researchers. Experimental results are shown in the
following table:
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Table 1.56 Analysis of variance

Location Researcher Alloys Sum

I II III IV V VI VII VIII IX

I A 5 5 5 4 6 6 1 6 7 45

B 4 5 5 4 5 3 1 5 7 39

C 7 7 7 7 8 5 4 7 7 59

D 6 5 4 5 7 6 3 6 7 49

Sum 22 22 21 20 26 20 9 24 28 192

II A 8 7 7 7 5 4 5 4 5 52

B 7 8 6 7 6 5 3 7 8 57

C 9 9 9 9 8 6 7 8 8 73

D 8 8 7 7 5 5 7 4 5 56

Sum 32 32 29 30 24 20 22 23 26 238

III A 4 4 5 3 4 3 0 5 5 33

B 1 3 3 2 5 2 0 4 5 25

C 5 5 5 6 6 4 3 7 9 150

D 3 3 7 2 3 3 1 6 6 34

Sum 13 15 20 13 18 12 4 22 25 142

IV A 6 5 6 5 6 4 4 7 5 48

B 1 3 6 5 5 4 3 6 5 38

C 5 5 7 6 8 7 5 8 8 59

D 5 3 5 3 5 3 3 7 6 40

Sum 17 16 24 19 24 18 15 28 24 185

Grand mean 84 85 94 82 92 70 50 97 103 757

& Problem 1.39 [4]
The following values show the percentage of conversion of vinegar
acid into anhydride of vinegar acid at 750 �C by catalytic cracking at
different percentages of triethyl phosphate (TEP) as catalyst. The
input flow of material was changeable.

a) Does the catalyst percentage affect conversion?
b) Does the input flow of material affect conversion?

Table 1.57 Analysis of variance

Flow
GAL/l

Level of catalyst

0.5% TEF 0.3% TEF 0.1% TEF

200.0 77.85 76.03 73.87

147.0 89.12 88.94 87.65

98.5 99.09 97.14 91.78

61.0 99.55 99.51 97.60
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& Problem 1.40 [4]
In an air-water contact utilizing a packed tower, the water-air contact
is occurring whereby the gas film heat transfer coefficient depends
on the flow of liquid and gaseous phases. By varying these two
flows, coefficient values of heat transfer were obtained and they are
presented in the table:

Table 1.58 Analysis of variance

Gas flow
G

Liquid flow L

190 250 300 400

200 200 226 240 261

400 278 312 330 381

700 369 416 462 517

1100 500 575 645 733

a) Perform the indicated two-way AHOVA for these data. Use the a=0.01 sig-
nificance level.

b) Which variable has the greater effect on the heat transfer coefficient?

& Problem 1.41 [18]
This problem presents the results of researching strength at tear of
adhesive systems on surfaces with no primers and those where pri-
mers were applied. A distinction was also made as for thickness of
the sample. Values of strength at tear with an asterix were obtained
from samples of one thickness and those without an asterix from
samples of different thickness.

Apply the two-way analysis of variance to values with an asterix so
as to determine the significance of effects of different adhesive sys-
tems and previous preparation of surface.
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Table 1.59 Analysis of variance

Adhesive systems Adhesive systems

I II III IV I II III IV

W 60.0* 57.0* 19.8* 52.0* W 59.0* 51.0* 29.4* 49.0*

i 73.0 52.0 32.0 77.0 i 78.0 52.0 37.8 77.0
t 63.0* 52.0* 19.5* 53.0* t 48.0* 44.0* 32.2* 59.0*

h 79.0 56.0 33.0 78.0 h 72.0 42.0 36.7 76.0
57.0* 55.0* 19.7* 44.0* 51.0* 42.0* 37.1* 55.0*

P 70.0 57.0 32.0 70.0 n 72.0 51.0 35.4 79.0

r 53.0* 59.0* 21.6* 48.0* o 49.0* 54.0* 31.5* 54.0*

i 69.0 58.0 34.0 74.0 75.0 47.0 40.2 78.0
m 56.0* 56.0* 21.1* 48.0* p 45.0* 47.0* 31.3* 49.0*

e 78.0 52.0 31.0 74.0 r 71.0 57.0 40.7 79.0
r 57.0* 54.0* 19.3* 53.0* i 48.0* 56.0* 33.0* 58.0*

74.0 53.0 27.3 81.0 m. 72.0 45.0 42.6 79.0

& Problem 1.42
Repeat Problem 1.41 but for values with no asterix.

& Problem 1.43
As the values with an asterix in Problem 1.41 mean that they were
obtained for one thickness of the sample and those with no asterix
for another one, apply the three-way analysis of variance for all the
data in Problem 1.41 taking into account the new sample thickness
factor.

& Problem 1.44
In a pilot-plant for producing composite rocket propellants 12
batches were produced, by which seven experimental rocket motors
were cast and cured for each batch. By static firing of these motors
at 25 �C burning-rate laws as a function of pressure were obtained.
From such a law a rate value at 70bar pressure was obtained. The
propellant batches were mixed with two batches of ammonium per-
chlorate and two types of catalysts. Besides, each batch was repeated
three times. The burning-rate data at 25 �C and P=70bar for all mix-
ing conditions of the propellants are given in the table below. By
applying the two-way analysis of variance with replication, deter-
mine with 95% confidence level whether the catalyst type and pre-
paration of 10 lm of ammonium perchlorate essentially affect the
propellant burning rate at 25 �C and 70bar?

109



I Introduction to Statistics for Engineers

Table 1.60 Analysis of variance

Catalyst A Catalyst B

Batch AP (A) 14.199 14.197 14.193 15.716 15.612 15.682

Batch AP (B) 14.398 14.418 14.307 15.616 15.912 15.482

Summary of analysis of variance
Analysis of variance is a procedure by which the total variance is divided into sources
of variations. Depending on the experiment design done, it is possible to separate
from the total variance a different number of sources of variations. However, no
matter how many sources of variations were selected, they all refer both to those
that occur under the influence of systematic variations and to the error resulting
from random variations. The aim of applying the analysis of variance method is to
answer the question: is the difference between the obtained response means for the
tested factors a result of the influence of tested factors or has it occurred randomly.

In solving the problem we shall start from the null hypothesis, which assumes
that the response means for the tested factors are the same and that the existing
differences have occurred randomly.

Hence the null hypothesis is:

H0 : �XX1 ¼ �XX2 ¼ ::: ¼ �XXi

The answer to the question is obtained by either accepting or rejecting the null
hypothesis, achieved through the analysis of variance method and performed in the
following way:

. If the obtained differences of the response means for the varied factors are
significant, the null hypothesis is rejected and we conclude that they result
from the influence of the factor.

. If the obtained differences are not important, we accept the null hypothesis
and consider the existing differences as random ones.

Practically, this is what it looks like:
If the calculated value of the applied statistical test is lower than the associated

tabular value for the threshold or level of significance a, i.e. the confidence is (1-a) �
100%,the influence or effect of the factor is not statistically significant. The hypoth-
esis is accepted and we conclude that the differences between the means are a con-
sequence of random fluctuation factors.

If the calculated value of the applied statistical test is above the associated tabular
value for the threshold or level of significance a, i.e. the confidence is (1-a) � 100%,
the difference or effect is statistically significant. The hypothesis is rejected and the
conclusion is that such a difference may in the future be expected in (1-a) � 100%
cases provided the experiment is done under identical conditions. Hence only in a �
100% cases can a different outcome be expected.

To enable successful application of analysis of variance, certain assumptions that
are in the basis of models and conclusions drawn should be fulfilled. One of the
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basis assumptions is additivity of effects of some tests and model components in
general. The next assumption is that eij error has a normal distribution for each test
individually and for the experiment as a whole. The third one refers to the statistical
equality or homogeneity of test variances. The given assumptions justify the use of
the F-test.

Barttlet’s test for equality of variances
The analysis of variance technique for testing equality of means is a rather robust
procedure. That is, when the assumption of normality and homogeneity of variances
is “slightly” violated the F-test remains a good procedure to use. In the one-way
model, for example, with an equal number of observations per column it has been
exhibited that the F-test is not significantly effected. However, if the sample size var-
ies across columns, then the validity of the F-test can be greatly affected. There are
various techniques for testing the equality of k variances r

2
1 ; r

2
2 ; :::; r

2
k . We discuss

here the most widely used technique, Barttlet’s v2 test for homogeneity of variances.
Let S

2
1 ;S

2
2 ; :::;S

2
k , be k independent sample variances corresponding to k normal

populations with means li and variance r
2
i , (i=1.2,...,k). Suppose n1-1, n2-1,...,nk-1,

are the respective degrees of freedom. Barttlet [19] proposed the statistic:

v
2 ¼ lnVð Þ

Pk
i¼1

ni � 1ð Þ �
Pk
i¼1

ni � 1ð ÞlnS2
i

" #,
‘ (1.140)

where:

V
2 ¼

Pk
i¼1

ni � 1ð ÞS2i

" #, Pk
i¼1

ni � 1ð Þ
" #

(1.141)

and ln denotes the natural logarithm. The denominator in Eq. (1.140) is defined by:

‘ ¼ 1þ 1
3 k�1ð Þ

Pk
i¼1

1
ni�1

� 1

,Pk
i¼1

ni � 1ð Þ
" #

(1.142)

It can be shown that the statistic in Eq. (1.140) has an approximate v2-distribution
with k-1 degrees of freedom when used as a test statistic for H0 : r

2
1 ¼ ::: ¼ r

2
k. Giv-

en k random samples of sizes n1, n2,...,nk, from k independent normal populations
the statistic v2 in (1.140) can be used to test H0. Recall that a sample variance is:

S
2 ¼

Pn
i¼1

X
2
i � n�XX

2

 !,
n� 1ð Þ (1.143)

If all the samples are of the same size, say n, then Barttlet’s statistic in Eq. (1.140)
becomes:

v
2 ¼ n� 1ð Þ klnV �

Pk
i¼1

lnS
2
i

 !
=‘

" #
(1.144)

where:

‘ ¼ 1þ 1þ kð Þ= 3k n� 1ð Þ½ �
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The connection between natural and decade logarithms gives:

v
2 ¼ 2:3026 n� 1ð Þ klogV �

Pk
i¼1

logS
2
i

 !,
‘ (1.45)

If ni=n, and i=1, 2,..., k, then:

V ¼
Pk
i¼1

S
2
i

 !,
k (1.46)

The rejection region for testing H0: r
2
1 ¼ r

2
2 ¼ ::: ¼ r

2
k is v

2 � v
2

k�1ð Þ;1�a
.

Example 1.38 [4]
In an experiment to determine the effects of sample size and amount of liquid phase on
the height equivalent to a theoretical plate (HETP) in gas chromatography, it was neces-
sary to utilize solid support material from different batches. It was therefore imperative
that the resulting data be checked for homogeneity prior to attempting to develop any
quantitative expressions regarding the effects of these variables on HETP. Several sets
of data points were selected at random and examined using Bartlett’s test.

In particular, a set of four HETP values obtained for cyclohexane for a 4 ll sample
injected into a 40% b, b¢-oxydipropionitrile column were:

X1=0.44; X
2
1 ¼ 0:1936

X2=0.44; X
2
2 ¼ 0:1936

X3=0.40; X
2
3 ¼ 0:1600

X4=0.43; X
2
4 ¼ 0:1849

P
Xi ¼ 1:71;

P
X

2
i ¼ 0:7321 ; �XX ¼ 1:71

4
¼ 0:4275; �XX

2 ¼ 0:18275625

S
2 ¼

Pn
i¼1

X2
i �n�XX2

n�1
¼ 0:7321�4�0:18275625

3
¼ 3:583� 10

�4

The variance of 10 cyclohexane data sets, each consisting of four observations, are
thus calculated and presented below. In this case ni=4; and i=1, 2,...,10 and k=10.

Liquid phase, b, b¢-oxydipropionitrile S
2
i logS

2
i

40%-4 ml sample 0.0003583 -3.44575
30%-8 ml sample 0.0002250 -3.64782
20%-10 ml sample 0.0002250 -3.64782
20%-4 ml sample 0.0000916 -4.03810
10%-4 ml sample 0.0000916 -4.03810
5%-10 ml sample 0.0003000 -3.52288
5%-2 ml sample 0.0002250 -3.64782
3%-8 ml sample 0.0002250 -3.64782
3%-6 ml sample 0.0003000 -3.52288
10%-2 ml sample 0.0002250 -3.64782

0.0022665 -36.80681
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The computations needed to calculate v
2
according to Eq. (1.145) are:

V=0.0022665/10=0.00022665 logV=-3.64464
k logV=10 (-3.64464)=-36.4464
‘ = 1+11/30 � 3=1.1222
v2=2.3026 � (4-1)[-36.4464-(-36.80681)]/1.1222=2.218

The tabular value v
2
9;0:975=19.0 is considerably higher than the arithmetic so that

with a 95% probability one can assert that the variances are equal. A simpler and
more frequently used test for equality of variances is Cochran’s test.

Cochran’s test for equality of variances
Cochran’s test on equality of variances is relatively simple and its arithmetic is
brought down to calculating:

C ¼ S2i maxP
i

S2
i

(1.147)

where:

S
2
i max is the largest variance in a sequence of tested variances,P
i

S
2
i -the sum of all test variances in the experiment.

If the arithmetic of Cochran’s test is below the tabular value, the null hypothesis
that variances are equal is accepted. Tabular values are in Table I and are determined
for the associated threshold or significance level a=0.05 and degree of freedom:
f1=n-1 number of data used in calculating the variance S

2
i is reduced by one, or in

other words the number of replicated design points (trials) is reduced by one and
the f2-number of variances or number of trials.

Example 1.39
Apply Cochran’s test for equality of variances to Example 1.38.

The previous example gives:

S
2
i max=0.0003583 ;

P
i

S
2
i =0.0022665 ; f1=n-1=4-1=3 ; f2=10 ; a=0.05.

C=0.000383/0.0022665=0.1689 ; C3;10;0.95=0.3733

Due to the fact that the calculated value is smaller than the tabular value, the null
hypothesis that variances are equal is accepted.

Data transformation
By transformation, the original experimental data obtain other values on the basis of
which the analysis of variance is done. There are three main reasons for its applica-
tion:

. to achieve equality of variances;

. to achieve normality of data distribution;

. to make the test effects additive.
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F-distribution is influenced only by test additivity which has been mentioned as
the third reason for data transformation. It is good that all three assumptions of
analysis of variance are achieved by one transformation. Generally speaking, trans-
formation will be applied always when there is a link between the test means in the
experiment and their variances. Due to such a general condition, one should find
the corresponding transformation. We shall first indicate the cases when no form of
transformation could be applied:

. The test averages are approximately equal while their variances are heteroge-
neous.

. The test averages are independent of their variances.

. Variances are equal but distributions are heterogeneous.
In such a case the solution could be to apply one of the nonparametric statistical

procedures. Even in this case, nonparametric statistics is characterized by less rigor-
ous assumptions than those for parametric one, and it is relatively less efficient.
There are different forms of transformation. We shall present here the most widely
applied ones in research studies.

Transformation based on square root from data X¢=
ffiffiffiffi
X

p
is applied when the test

values and variances are proportional as in Poisson’s distribution. If the data come
from counting up and the number of units is below 10 transformation form
X¢=

ffiffiffiffiffiffiffiffiffiffiffiffi
Xþ 1

p
and \text X¢=

ffiffiffiffi
X

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
X þ 1

p
is used. If the test averages and their stan-

dard deviations are approximately proportional, we use the logarithm transforma-
tion X¢=log X. If there are data with low values or they have a zero value, we use
X¢=log (X+1). When the squares of arithmetical averages and standard deviations
are proportional we use the reciprocal transformation: X¢=1/X or X¢=1/(X+1) if the
values are small or are equal to zero. The transformation arc sin

ffiffiffiffi
X

p
is used when

values are given as proportions and when the distribution is Binomial. If the test
value of the experiment is zero then instead of it we take the value 1/(4n), and when
it is 1, 1-1/(4n) is taken as the value and n is the number of values. Transforming
values where the proportion varies between 0.30 and 0.70 is practically senseless.
This transformation is done by means of special tables suited for the purpose.

Dilemmas often occur in actual cases in spite of such clear indications on which
transformation to apply. There exist several formal procedures that may be of great
help. A relatively simple procedure will be presented.

The calculation consists of taking in different transformations at each trial the
highest and lowest values and establishing the range from their difference. Then
the ratio between the largest and smallest ranges is established. The smallest ratio
in the given transformation indicates the transformation form to be applied. As an
illustration we shall take the experiment [20] with one factor where the influence of
herbicides on weeds is researched and where the factor is varied on six levels and
each test replicated five times.
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Table 1.61 Herbicide influence on weeds in sugar beet

Number of
replications

Factor levels Sum

A B C D E F

1 520 268 162 120 142 35 1247

2 530 270 164 121 149 30 1264

3 530 280 152 126 140 35 1263

4 490 269 148 111 141 24 1183

5 457 278 158 120 149 25 1187

Sum 2527 1365 784 598 721 149 6144

Table 1.62 Transformation on basis of largest and smallest trial values

Factor Largest and smallest
value ratio

A B C D E F

Largest value (V) 530 280 164 126 149 35

Smallest value (M) 457 268 148 111 140 24

Interval 73 12 16 15 9 11 73/9=8.11ffiffiffiffi
V

p
23.02 16.73 12.81 11.22 12.21 5.92ffiffiffiffiffi

M
p

21.38 16.37 12.17 10.54 11.83 4.90

Interval 1.64 0.36 0.64 0.68 0.38 1.02 1.64/0.36=4.55

log V 2.7243 2.4472 2.2148 2.1004 2.1732 1.5441

log M 2.6599 2.4281 2.1703 2.0453 2.1461 1.3802

Interval 0.0644 0.0191 0.0445 0.0551 0.0271 0.1639 0.1639/0.0191=8.58

1/V 0.00186 0.00357 0.00609 0.00794 0.00671 0.02857

1/M 0.00219 0.00373 0.00676 0.00901 0.00714 0.04167

Interval 0.00033 0.00016 0.00067 0.00107 0.00043 0.01310 0.01310/0.00016=81.88

1=
ffiffiffiffi
V

p
0.04344 0.05977 0.07806 0.08913 0.08190 0.16892

1=
ffiffiffiffiffi
M

p
0.04677 0.06109 0.08217 0.09488 0.08453 0.20408

Interval 0.00333 0.00132 0.00411 0.00575 0.00263 0.03516 0.03516/0.00132=26.64

This procedure indicates that the transformation is the square root from data and
is the most suitable for results of the experiment the aim of which was to find out
the influence of herbicides on weeds in sugar beet. Before and after the application
of transformation the normality of the data distribution should be checked.

Check of the null hypothesis on normality of data distribution
If the distribution of data or random value is unknown we can make up a histogram
from them. Intervals associated with groups of random values within the same
ranges are drawn on the abscissa. A rectangle the height of which is equal to the
frequency of results appearing within the interval is drawn above each range, where
ng in ng/N is the number of values within the observed range. The following algo-
rithm for drawing up the histogram may be suggested:
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. The region of random value changes Xmin-Xmax is divided into e ranges. The
number of e ranges is determined by the formula:

e=1+3.2 log N (1.148)

where:
N is the number of data in a sample.
The range width is calculated from equation:

Dg ¼ Xmax�Xmin
e (1.149)

. The number of data ng(g=1, 2,..., e) within the range Dg or the frequency of
values in the associated interval pg is determined:

pg ¼
ng
N (1.150)

. Values falling within the g range have the characteristic mean X
�
g
:

X
�
g
¼

Xg�1�Xg
2 (1.151)

. Histogram pg! Xg-1– Xg.

After drawing up the histogram, the hypothesis on distribution normality of the
obtained variation sequence is checked. The check is done by means of the criterion
for estimating the difference between theoretical and empirical distributions. The
most frequently used is Pirson’s, criterion, determined by the formula:

v
2
R ¼

Pe
g¼1

ng�Np
_

g

� �2
N�p

_

g

(1.152)

where:
e is the number of ranges;
N is the number of values in a random sample;
Ng is the number of values within interval g;

p
_
g is the probability of values falling within interval g as calculated by the theoretical
distribution.

Pirson’s criterion has f =e-k-1 degrees of freedom, where for a normal distribution
k=2. The p

_
g probability is calculated by formula:

p
_

g ¼ F0 zgþ1

� �
� F0 zg

� �
(1.153)

where:
zg is the left g-interval limit, or:

zg ¼ X�
g ��XX
SX

(1.154)

and F(z)-Laplace’s-function:

F zð Þ ¼ 1ffiffiffiffiffiffi
2p

p Ðz
0

e
�X

2
�
2
dx (1.155)
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The values of the normed Laplace’s-function are in Table J (appendix). When
determining the given values zg=zmin is replaced by –¥, and zg=zmax by +¥. When
the calculated value of the Pirson criterion is below the tabular value the null
hypothesis on normal distribution of data is accepted:

v
2
R � v

2
TAB: (1.156)

Example 1.40
In a chemical reactor 200 temperature values have been measured. The largest and
smallest deviations from the average temperature were Xmax=30 and Xmin=-20. The
values have been divided into 10 ranges. The accuracy of the measured temperatures
was –1 [ �C]. By using Pirson’s criterion with a=0.05 significance level, check the law
on data distribution.

The mean and variance estimates are obtained from expressions:

�XX ¼
P10
g¼1

X
�
g pg ¼ 4:30 [ �C] ; S

2
X ¼

P10
g¼1

X
2
g pg � �XX ¼ 94:20[ �C] ; SX=9.71 [ �C]

Table 1.63 Results of previous calculations

Number of ranges Limits of ranges
Xg � Xgþ1

No. of values in the
ragne ng

Range center
X
�
g

Relative frequency
pg ¼ ng=N

1 -20 – -15 7 -17.5 0.035
2 -15 –10 11 -12.5 0.055
3 -10 – -5 15 -7.5 0.075
4 -5 – 0 24 -2.5 0.120
5 0 – 5 49 2.5 0.245
6 5 – 10 41 7.5 0.205
7 10 – 15 26 12.5 0.130
8 15 – 20 17 17.5 0.085
9 20 – 25 7 22.5 0.035
10 25 – 30 3 27.5 0.015

From Eq. (1.154) we can calculate the standardized and normal values of a ran-
dom value, and then from Table J determine the F0(zg) value keeping in mind that
for zg<0 F0(zg)=-F0(‰zg‰). We can then form Table 1.64 by using (1.153) and (1.152).

Due to the small number of data in range g=10 we join it to range g=9. The num-
ber of degrees of freedom is therefore reduced by one. The arithmetic value for v

2
R is

calculated from Eq. (1.152):

v
2
R ¼ 7:09; f ¼ e� ‘� 1 ¼ 9� 2� 1 ¼ 6

From Table D, v
2
TAB: ¼ 12:6 is obtained for f =6 and a=0.05, so that:

v
2
R ¼ 7:06 � v

2
TAB: ¼ 12:6
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Table 1.64 Calculation results

g zg F0(zg) p
_

g
N� p

_

g
ðng�N�p

_

g Þ
2

N�p
_

g

1 –¥ -0.5000 0.0239 4.78 1.04

2 -1.99 -0.4761 0.0469 9.38 0.28

3 -1.47 -0.4292 0.0977 19.54 1.05

4 -0.96 -0.3315 0.1615 32.30 2.13

5 -0.44 -0.1700 0.1979 39.58 2.24

6 0.07 0.0279 0.1945 38.90 0.11

7 0.59 0.2224 0.1419 28.38 0.20

8 1.10 0.3643 0.0831 16.62 0.01

9 1.62 0.4474 0.0526 10.52 0.03

10 2.13 0.4834 – – –

11 +¥ – – – –

Hence the hypothesis on normal distribution of measured temperature values in
the chemical reactor is accepted.

Rejection of outliers
Outliers in a random sample often bring about wrong conclusions when testing and
estimating parameters. Such values have to be rejected in a sample with great cau-
tion for this other extreme may affect the outcome of conclusions. The following
procedure is suggested in reference [21]:

Dmax ¼ Xmax � �XX (1.157)

where:
Xmax is the sample outlier.
Estimate the value:

Dmaxj j � C � SX (1.158)

where:
C is the constant.
The outlier Xmax is rejected from the sample if the inequality (1.158) is fulfilled.

The procedure may be repeated several times whereby standard deviation SX is deter-
mined from the remaining sample values each time. The constant C is determined
from the t-Student’s criterion by means of expression:

N�C2 fþf0�1
� �

f fþf0�
NC

2

f

� �
2
664

3
775
0:5

	 t
f0þf�1
a¼0:05 (1.159)

where:
f =N-1; the degree of freedom of variance estimate S

2
X ;

f0 is any number of additional degrees of freedom (usually f0=0).

118



1.5 Analysis of Variance

Example 1.41
The following values of a product content have been measured by gas chromatogra-
phy: X1=23.2; X2=23.4; X3=23.5; X4=24.1; X5=25.5. Is X5 the outlier and can it be
rejected from this sample of values?

The calculated sample mean when X5 is rejected is: �XX=23.55.

Dmax ¼ Xmax � �XX
		 		 ¼ 25:5� 23:55j j ¼ 1:95 ;N ¼ 5 ; n ¼ N � 1 ¼ 5� 1 ¼ 4

S
2
X ¼

Pn
i¼1

Xi��XX
� �2
n�1

¼

P4
i¼1

Xi�23:55
� �2

4�1
¼ 0:15 ; SX ¼ 0:39

For the significance level a=0.05; N=5; f =4 from Eq. (1.159) we get:

5�C2�3

4
4�5C

2

4

2
64

3
75
0:5

¼ 2:35

The result of this equation is C=1.44, so that in accord with Eq. (1.158) we get:

Dmaxj j ¼ 1:95 � C � SX ¼ 1:44� 0:39 ¼ 0:56 and the hypothesis that X5 is not
the outlier is rejected.

& Problem 1.45
From Table A of random numbers, 150 double digit numbers have
been chosen. The data are in the next table. Check the normality of
data distribution with 95% confidence level by using Pirson’s criter-
ion.

Table 1.65 Random numbers

Number of
intervals

Interval limits Number of
data in the range

Frequency

1 0 – 9 16 0.107

2 10 – 19 15 0.100

3 20 – 29 19 0.127

4 30 – 39 13 0.087

5 40 – 49 14 0.093

6 50 – 59 19 0.127

7 60 – 69 14 0.093

8 70 – 79 11 0.073

9 80 – 89 13 0.087

10 90 – 99 16 0.107
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& Problem 1.46
Data about average air temperatures for 320 days are given in the
table. Check the normality of the temperature values by using
Pirson’s criterion with 5% significance level.

Table 1.66 Air temperatures

Number of
intervals

Interval limits Number of
data in the range

1 -40 – -30 5

2 -30 – -20 11

3 -20 – -10 25

4 -10 – 0 42

5 0 – 10 88

6 10 – 20 81

7 20 – 30 36

8 30 – 40 20

9 40 – 50 8

10 50 – 60 4

& Problem 1.47
The acidity of products of alcohol chlorinating has been measured
by a pH meter. The following values have been obtained: 4.2; 4.4;
4.0; 4.2; 4.4; 4.6; 4.4; 4.6; 4.4; 5.2; 4.8; 4.5; 4.2. Is the value pH=5.2
the outlier?

& Problem 1.48
Four batches of the same sort of composite rocket propellant have
been cast in a lab. After curing, the experimental rocket motors
were static fired at normal temperature. The following burning-rate
values at P=70bar pressure have been obtained: 14.199 ; 14.531 ;
14.197 ; 14.193. Does the burning-rate value V=14.531mm/s repre-
sent the outlier with 95% confidence level?

1.6
Regression analysis

Regression is a highly useful statistical technique for developing a quantitative rela-
tionship between a dependent variable (response) and one or more independent
variables (factors). It utilizes experimental data on the pertinent variables to develop
a numerical relationship showing the influence of the independent variables on a
dependent variable of the system.

Throughout engineering, regression may be applied to correlating data in a wide
variety of problems ranging from the simple correlation of physical properties to the
analysis of a complex industrial system. For example, in a catalytic reactor involving
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1.6 Regression analysis

a complex chemical reaction, regression methods have been used to develop an
equation relating yield of desired product to entering concentrations, temperature,
pressure, and residence time. In chemical engineering, regression may be applied
to correlating data in a wide variety of problems, ranging from the simple correla-
tion of physical properties to the analysis of a complex industrial reactor. If nothing
is known from theory about the relationship among the pertinent variables, a func-
tion may be assumed and fitted to experimental data on the system.

Frequently a linear function is assumed. In other cases where a linear function
does not fit the experimental data properly, the engineer might try a polynomial or
exponential function. In a large number of cases theory produces incomplete mod-
els. Regression analysis is used in such cases for determining unknown coefficients
in a theoretical equation from available experimental data. The theory of burning a
rocket propellant, for instance, supposes that the linear burning rate changes,
depending on pressure, in this way:

V=b pn (1.160)

In this case experimental data will be used for determining constants b and n by
applying regression analysis.

1.6.1
Simple Linear Regression

In the simplest case the proposed functional relationship between two variables is:

Y=b0+b1X+e (1.161)

In this model Y is the dependent variable, X is the independent variable, and e is a
randomerror (or residual) which is the amount of variation inYnot accounted for by the
linear relationship. The parameters b0 and b1 are called the regression coefficients that
are unknown and are to be estimated. The variable X is not a random variable but takes
on fixed values. It will be assumed that the errors e are independent and have a nor-
mal distribution with mean 0 and variance r

2
, regardless of what fixed value of X is

being considered. Taking the expectation of both sides of Eq. (1.161), we have:

E(Y)=b0+b1X (1.162)

where we note that the expected value of the errors is zero.
For a fixed value of X, the expectation in Eq. (1.162) is usually denoted by:

E Yð Þ ¼ E Y=Xð Þ ¼ l
Y=X

Thus we can write:

E Yð Þ ¼ E Y=Xð Þ ¼ l
Y=X

¼ b0 þ b1X (1.163)

Eq. (1.163) is called the regression of Y on X. The only random variables in Eq.
(1.161) are Y and e. Since the e is normally distributed, the random variable Y has a
normal distribution with mean lY/X=b0+b1X and variance r2.. Geometric interpreta-
tion of the linear regression is shown in Fig. 1.19.
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Figure 1.19 Geometric interpretation of linear regression

In order to estimate the relationship between Y and X suppose we have n observa-
tions on Y and X, denoted by (X1,Y1), (X2,Y2), ..., (Xn,Yn). By Eqs.. (1.161) and (1.163)
we can write the assumed relationship between Y and X as:

Y=E(Y/X)+e (1.164)

The objective here is to estimate b0, and b1 and thus E(Y/X) or Y in terms of the n
observations. If b0 and b1 denote estimates of b0 and b1 then an estimate of E(Y) is
denoted by Y

_
¼ E

_
Yð Þ ¼ b0 þ b1X.

As mentioned before, one must differentiate population parameters and sample
estimates of population parameters. The equation that describes population is given
by expression (1.162). The population in this case is the basis for a hypothetical
physical model that is correctly described by the given regression (1.162). We, how-
ever, take a data sample, or carry out the experiment presupposing the mathematical
model set up is valid, and then using experimental results or the sample data, we
calculate b0 and b1 as estimates of population parameters b0 and b1 . Thus each ob-
served Yi can be written as:

Yi ¼ Y
_

i þ ei ; i ¼ 1:2; :::; n (1.165)

where:

Y
_

i is the estimate Yi,

ei is error estimate ei .
The linear regression may be written as:

Yi=b0+b1Xi+ei=b0+b1Xi+ei, i=1.2,...,n (1.166)

The Eq. (1.166) is illustrated in Fig. 1.20.
The point (Xi, Yi) denotes the i-th observation. The “true” error or residual is

Yi-(b0+b1Xi), the difference between the observed Yi and the true unknown value
b0+b1Xi. The observed residual ei is Yi-(b0+b1Xi)=Yi � Y

_

i , which is the difference be-
tween the observed Yi and the estimated Y

_

i ¼ b0 þ b1Xi . The problem is now to
obtain estimates b0 and b1 from the sample for the unknown parameters b0 and b1.
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1.6 Regression analysis

This can best be done by the method of least squares. This method minimizes the
sum of squares of the differences between the predicted values and the experimental
values for the dependent variable. This method minimizes the sum of square differ-
ences between estimates and experimental values of dependent variable-responses.
The method is based on the principle that the best estimators of b0 and b1 are those
that minimize the sum of squares due to error, SSE.

Y

X                           X

Y

Y=E(Y)=b +b  X

b    β

    ε
e

i
i

0
0

0 1 i

i

i

E(Y)=E(Y/X)=    β    β0 1    +   Xi  (Xi,  Yi)

Figure 1.20 True and estimated regression lines

The error sum of squares is:

SSE ¼
Pn
i¼1

e
2
i ¼

Pn
i¼1

Yi � Y
_

i

� �2
(1.167)

SSE ¼
Pn
i¼1

Yi � b0 � b1Xið Þ2 (1.168)

To determine the minimum, the partial derivative of the error sum of squares
with respect to each constant is set equal to zero to yield:

@ SSE

� �
@b0

¼ @

@b0

Pn
i¼1

Yi � b0 � b1Xið Þ2
" #

¼ 0 (1.169)

@ SSE

� �
@b1

¼ @

@b1

Pn
i¼1

Yi � b0 � b1Xið Þ2
" #

¼ 0 (1.170)

These equations (1.169) and (1.170) are called normal equations. Carrying out the
differentiation, we obtain:

nb0 þ b1
P
i

Xi ¼
P
i

Yi (1.171)

b0
P
i

Xi þ b1
P
i

X
2
i ¼

P
i

XiYi (1.172)
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where all the summations go from i=1 to i=n. The solutions to these normal equa-
tions are:

b0 ¼ �YY � b1 �XX (1.173)

b1 ¼

P
i

Xi��XX
� �

Yi��YY
� �

P
i

Xi��XX
� �2 (1.174)

The estimator b1 can also be written in the form:

b1 ¼

P
i

XiYi�n�XX �YYP
i

X2
i �n�XX2 (1.175)

The error sum of squares can be written as:

SSE ¼
P
i

Yi � �YY
� �2�b

2
1
P
i

Xi � �XX
� �2

(1.176)

The first term on the right-hand side of Eq. (1.176) is the total corrected sum of
squares SSTC, of the Ys. The linear relationship between X and Y accounts for a
reduction of b

2
1
P
i

Xi � �XX
� �2

in SSTC. That is, if there is no linear relationship be-
tween X and Y, b1=0, then

P
i

Yi � �YY
� �2¼ SSE . If there is a linear relationship be-

tween X and Y, then SSE (or SSTC) is reduced by an amount b
2
1
P
i

Xi � �XX
� �2

, which
is called the sum of squares due to regression and is denoted by SSR. Equation
(1.176) can be written as:

SSE=SSTC-SSR (1.177)

or:

SST ¼
P
i

Y
2
i ¼ n�YY

2 þ SSE þ SSR ¼ SSM þ SSE þ SSR (1.178)

Thus regression analysis may be looked upon as the process of partitioning the
total sum of squares, SST into three parts:

(1) The sum of squares due to the mean-SSM;
(2) The sum of squares due to error SSE (or deviation about the regression line);
(3) The sum of squares due to regression-SSR.
Another way of stating this result is that each Yi value is made up of three parts

(or partitioned into three segments), each one leading to the corresponding sum of
squares. That is,

Yi ¼ �YY þ Y
_

i � �YY
� �

þ Yi � Y
_

i

� �
; i ¼ 1:2; :::; n (1.179)

Figure 1.21 shows the partition of Y in graphical form:
It should be noted that the estimated regression line always passes through the

point �XX ; �YY
� �

. This is obvious from:

Y ¼ b0 þ b1Xi ¼ �YY � b1 �XXi þ b1Xi (1.180)
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Figure 1.21 Partitioning of total sum of squares in simple linear
regression

It can be shown that SSE/(n-2) is an unbiased estimator of r2. Furthermore,
SSE/r

2 has a v2 distribution with n-2 degrees of freedom.

1.6.1.1 Interval Estimation in Simple Linear Regression
Prior to determining confidence intervals or determining test procedures to be used,
we recall three assumptions in the model Y=b0+b1X :

. The independent variable X is a fixed variable whose values can be observed
without error;

. For any given value of X, Y is normally distributed with mean lY/X=b0+b1X
and variance r

2

Y=X
¼ r

2
.

. That the variance can be represented as r
2
¼ r

2

e
which is the same for each

X. The estimator for r2, as previously mentioned is:

S
2 ¼ MSE ¼ SSE

n�2
¼

P
i

Yi�Y
_

i

� �2
n�2

¼
P
i

Y
2
i �

P
i

Yi

 !2,
n

" #,
n� 2 (1.181)

For a linear regression one can give the interval estimate of parameter b1 or the
slope of the regression line, of its b0 intercept on the Y-axis, of the true mean Y for
any value X (lY/X=E(Y)) and the true predicted value, Yi corresponding to a fixed val-
ue of X. The variances of the estimators of these parameters can be shown to be:

S
2
b1

¼ S2P
i

Xi��XX
� �2 ¼ S2

P
i

X2
i �

P
i

Xi

 !2,
n

(1.182)

S
2
b0

¼ 1
n
þ

�XX2P
i

Xi��XX
� �2

2
664

3
775� S

2 ¼ 1
n
þ X��XX

� �2
P
i

X2
i �

P
i

Xi

 !2,
n

0
BBBBB@

1
CCCCCA� S

2
(1.183)
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S
2

l
_

Y=X

¼ 1
n
þ X��XX

� �2P
i

Xi��XX
� �2

2
664

3
775� S

2 ¼ 1
n
þ X��XX

� �2
P
i

X2
i �

P
i

Xi

 !2,
n

2
666664

3
777775� S

2
(1.184)

S
2

Y
_ ¼ 1þ 1

n
þ X��XX

� �2P
i

Xi��XX
� �2

2
664

3
775� S

2 ¼ 1þ 1
n
þ X��XX

� �2
P
i

X2
i �

P
i

Xi

 !2,
n

2
666664

3
777775� S

2

(1.185)

For a significance level, a, the (1-a)100% confidence interval for parameter b1 is:

b1 � Sb1
� tn�2;1�a=2 � b1 � b1 þ Sb1 � tn�2;1�a=2 (1.186)

For parameter b0:

b0 � Sb0
� tn�2;1�a=2 � b0 � b0 þ Sb0 � tn�2;1�a=2 (1.187)

With (1-a) � 100% confidence level, the confidence interval for lY/X is:

Y
_
� S

l
_

Y=X

� tn�2;1�a=2 � l
Y=X

� Y
_
þ S

l
_

Y=X

� tn�2;1�a=2 (1.188)

The confidence interval for any Y value at the corresponding X value and signifi-
cance level a is:

Y
_
� S

Y
_ � tn�2;1�a=2 � Y � Y

_
þ S

Y
_ � tn�2;1�a=2 (1.189)

It should be noted that the confidence interval for lY/X is narrower than the asso-
ciated interval for Y, for the latter takes into account the variability of individual Y
values. This comes from the fact that:

S
2

Y
_ ¼ S

2

l
_

Y=X

þ S
2

(1.190)

or S
2

Y
_ � S

2

l
_

Y=X

. If, after calculating the confidence interval for any parameter, it

turns out that it includes the value null, then with a (1-a)100% confidence one can
assert that the associated parameter is not essential, i.e. such a parameter is left out
of the regression equation.

Example 1.42 [4]
An intermediate step in a reaction process is A!B. While this reaction is carried
out at atmospheric pressure, the temperature varies from 1 to 10 �C. As an initial
step in the optimization of this process, the relation between conversion of A and
temperature must be obtained. Pilot-plant studies have provided the following data:

X: 1 2 3 4 5 6 7 8 9 10
Y: 3 5 7 10 11 14 15 17 20 21
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where:
X-temperature, and
Y-is yield

After obtaining the regression model, calculate the confidence intervals for
regression parameters.

Assume that the model Y=b0+b1X+e may describe the experimental data in a sat-
isfactory way. This time from experimental data we calculate:P

Xi ¼ 55:0;
P

Yi ¼ 123:0;
P

XiYi ¼ 844:0

P
X

2
i ¼ 385:0;

P
Y
2
i ¼ 1855:0;

P
Xið Þ

P
Yið Þ ¼ 6765:0

P
Xið Þ2¼ 3025:0;

P
Yið Þ2¼ 15129:0; n ¼ 10

�XX ¼
P

Xi

n
¼ 5:5; �YY ¼

P
Yi

n
¼ 12:3

P
Xi � �XX
� �

Yi � �YY
� �

¼
P

XiYi �
P

Xi�
P

Yi

n
¼ 167:5

P
Xi � �XX
� �2 ¼

P
X

2
i �

P
Xi

� �2
n

¼ 82:5

P
Yi � �YY
� �2 ¼

P
Y
2
i �

P
Yi

� �2
n

¼ 342:1

b1 ¼
P

Xi��XX
� �

Yi��YY
� �P

Xi��XX
� �2 ¼ 2:0303; b0 ¼ �YY � b1 �XX ¼ 1:1333

Y
_
¼ 1:1333þ 2:0303� X

SSE ¼
P
i

Yi � �YY
� �2 � b

2
1
P
i

Xi � �XX
� �2 ¼ 2:025

S
2 ¼ SSE

n�2
¼ 0:2531; S ¼

ffiffiffiffiffi
S
2

p
¼ 0:5031

a) 95% confidence interval for b0 according to Eqs. (1.183) and (1.187):

Sb0 ¼ 1
10

þ 5:52

82:5

 !1=2

�0:031 ¼ 0:3437

1:1333� t8;0:975 � Sb0
� b0 � 1:1333þ t8;0:975 � Sb0

1.1333-2.306 � 0.3437<b0>1.1333+2.306 � 0.3437
0.3437<b0>1.9259

b) 95% confidence interval for b1 according to Eqs. (1.182) and (1.186):

Sb1 ¼ 0:5031ffiffiffiffiffiffiffiffiffi
82:5

p ¼ 0:05539
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2.0303-2.306 � 0.05539<b1<2.0303+2.306 � 0.05539
1.9026<b1<2.1580

c) 95% confidence interval for lY/X when X=4 according to Eq. (1.184) and (1.188):

S
l
_

Y=X

¼ 1
10

þ 4�5:5ð Þ2

82:5

" #1=2
�0:5031 ¼ 0:1795

Y
_
¼ 1:1333þ 2:0303� 4 ¼ 9:2545

9.2545-2.306 � 0.1795<lY/X<9.2545+2.306 � 0.1795
8.8406<lY/X<9.6684

d) 95% confidence interval for Y when X=4 according to Eqs. (1.185) and (1.189):

S
Y
_ ¼ 1þ 0:1273ð Þ1=2�0:5031 ¼ 0:5341

9.2545-2.306 � 0.5341<Y<9.2545+2.306 � 0.5341
8.0229<Y<10.4861

Example 1.43 [22]
Monthly consumption of water steam was measured in a production plant. Simulta-
neously the monthly average temperature of atmosphere was taken. The obtained
pairs of values are in the table:

Table 1.67 Water steam consumption

Number of data 1 2 3 4 5 6 7 8 9 10 11 12 13

T [�F] 35.3 29.7 30.8 58.8 61.4 71.3 74.4 76.7 70.7 57.5 46.4 28.9 28.1

Steam consumption 10.98 11.13 12.51 8.40 9.27 8.73 6.36 8.50 7.82 9.14 8.24 12.19 11.88

Number of data 14 15 16 17 18 19 20 21 22 23 24 25

T [�F] 39.1 46.8 48.5 59.3 70.0 70.0 74.5 72.1 58.1 44.6 33.4 28.6

Steam consumption 9.57 10.94 9.58 10.09 8.11 6.83 8.88 7.68 8.47 8.86 10.36 11.08

Determine coefficients of linear regression and 95% confidence intervals for all
parameters.P

Xi ¼ 1315;
P

Yi ¼ 235:60; �XX ¼ 52:60; �YY ¼ 9:424;

P
XiYi ¼ 11821:4320;

P
X

2
i ¼ 76323:42; n ¼ 25;

P
Y
2
i ¼ 2284:1102;

b1 ¼
PP

XiYi�
P

Xi�
P

Yi

nP
X2
i �

P
Xið Þ2
n

¼
11821:4320�1315�235:60

25

76323:42�1315
2

25

¼ �0:079829

b0 ¼ �YY � b1 � �XX ¼ 9:424� ð�0:079829� 52:60Þ
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Y
_
¼ 13:623005� 0:079829� X

P
Yi � �YY
� �2¼PY

2
i �

P
Yi

� �2
n

¼ 2284:1102� 235:602

25
¼ 63:82

P
Xi � �XX
� �2¼PX

2
i �

P
Xi

� �2
n

¼ 76323:42� 13152

25
¼ 7154:42

SSE ¼
P

Yi � �YY
� �2 � b

2P
Xi � �XX
� �2 ¼ 63:82� ð�0:079829Þ2 � 7154:42 ¼ 18:23

S
2 ¼ SSE

n�2
¼ 18:23

23
¼ 0:7926;S ¼ 0:8903

a) 95% confidence interval for b1

S
b
_ ¼ 0:8903ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7154:42
p ¼ 0:0105

-0.079829-t23;0.975 � Sb1<b1<-0.079829+t23;0.975 � Sb1

-0.079829-2.07 � 0.0105<b1<-0.079829 + 2.07 � 0.0105
-0.1015 <b1<-0.0581

b) 95% confidence interval for b0

Sb0 ¼ 1
25

þ 52:60
7154:42

� �1=2

�0:8903 ¼ 0:3799

13.623005-2.07 � 0.3799 <b1<13.623005 + 2.07 � 0.3799
12.836612 <b1<14.409398

c) 95% confidence interval for the response mean lY/X whenX ¼ �XX :

S
l
_

Y=X¼�XX

¼ 1
25

þ 0:0

� �1=2

�0:8903 ¼ 0:1781 ;

Y
_
¼ �YY ¼ 9:424; �XX ¼ 52:60;

9:424� 2:07� 0:1781 � l
_

Y=X¼�XX
� 9:424þ 2:07� 0:1781 ;

9:05531 � l
_

Y=X¼�XX
� 9:7927

The standard deviation for estimating the mean Y has a minimal value for X ¼ �XX,
and it rises when X takes values on either side of �XX . In other words, the farther away
X was taken from the mean �XX , the greater the error in estimating the mean Y for a
given X value may be expected. It is obvious if we take the following X value:

X=28.60; S
l
_

Y=X¼�XX

=0.3091 ; 8:7842 � l
_

Y=X
� 10:0638

Provided we continue this calculation we shall obtain its geometric interpretation
as shown in Figure 1.22.

Both the figure and previous calculation show that the width of 95% confidence
interval round the regression line changes depending on the value X takes. The
obtained limit lines of the 95% confidence interval are hyperbolas.
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Figure 1.22 Geometric presentation of 95% confidence interval

1.6.1.2 Analysis of Variance of Simple Linear Regression
We have previously introduced the sum of squares due to error as MSE=SSE/(n-2)
and said that it is the unbiased estimate of error variance r2 because E(MSE)=r

2 no
matter whether the null hypothesis H0:b1=0 is correct or not. It is easy to prove that
the expected value of the regression mean square, MSR=SSR/1, is the biased esti-
mate of variance r2 if not b1=0. This can be written in the form:

E MSRð Þ ¼ E
SSR

1

� �
¼ r

2 þ b
2

1

P
Xi � �XX
� �2 � r

2
(1.191)

The two above-mentioned expected values of the mean squares suggest introduc-
tion of F-test for testing the null hypothesis H0: b1=0.

F ¼ MSR

MSE

(1.192)

The given ratio of mean squares due to regression and error has F-distribution
with f1=1 and f2=n-2 degrees of freedom if the null hypothesis H0:b1=0 is correct.
The null hypothesis is rejected if the obtained value F>F1;n-2;1-a is above the tabular
one. Since MSR and MSE are the estimates r2 provided H0:b1=0, then the null
hypothesis with a significance level is rejected if the F-ratio is considerably above 1
for E(MSR)>r

2 when H0:b1=0 is not true.
Analysis of variance for the linear regression is given in the usual way in

Table 1.68.
Apart from the mentioned one, the analysis of variance is also frequently used

where the total sum of squares SST is corrected for the mean sum of squares SSM.
Such a sum of squares is called the total corrected sum of squares SSTC=SST-SSM.
Analysis of variance of the linear regression with total corrected sum of squares is
given in Table 1.69.
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Table 1.68 AOV of linear regression

Source of variation f SS MS E(MS) Test
statistic

Average (0) 1 n�YY
2 ¼ SSM MSM ¼ SSM – –

Regression (b1) 1 b1
P
i

Xi � �XX
� �

Yi � �YY
� �

¼ SSR MSR ¼ SSR r
2 þ b

2
1

P
i

Xi � �XX
� �2

MSR
MSE

Error or residual n-2
P
i

Yi � Y
_

i

� �2
¼ SSE MSE ¼ SSE = n� 2ð Þ �

2 –

Total n
P
i

Y
2
i ¼ SST – – –

Table 1.69 AOV of linear regression

f SS MS Test statistic

Regression (b1) 1 b1
P
i

XiYi �
P
i

Xi

 ! P
i

Yi

 !,
n

" #
MSR ¼ SSR

MSR
MSE

Error or residual n-2
P
i

Yi � Y
_

i

� �2
MSE ¼ SSE

n�2ð Þ –

Total corrected sum n-1
P
i

Y
2
i �

P
i

Yi

 !2,
n – –

Different from the previous one, this table of analysis of variance introduces dif-
ferent expressions for sums of squares that are more suitable for calculations.

Example 1.44
Do analysis of variance for the regression analysis in Example 1.42, or the obtained
linear regression.

The calculated value of analysis of variance is F=1343.6 for the null hypothesis
H0:b1=0. However, since the tabular value is F1;8;0.95=5.32 the null hypothesis is
rejected and the alternative hypothesis accepted that the regression coefficient b1
with 95% confidence level is statistically significant.
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Table 1.70 Analysis of variance

Source of variation f SS MS E(MS) Test statistic

Average b0 1 1512.900 1512.900 – –

Regression b1 1 340.075 340.075 �
2 þ 82; 5 
 �̂�2

1
340;075
0;2531

¼ 1343; 6

Residual 8 2.025 0.2531 �
2

–

Total 10 1855.000 – – –

Example 1.45
Do analysis of variance for the linear regression obtained from experimental value
in Example 1.43.

Table 1.71 Analysis of variance

Source of variation f SS MS F FT

Regression b1 1 45.59 45.59 57.52 F1;23;0.95=4.28

Residual 23 18.23 0.7926 – –

Corrected total 24 63.82 – – –

Since the calculated value is F=57.52>FTAB=4.28 it can be with 95% confidence
level asserted that the regression coefficient b1 is statistically greater than zero and
that it should be kept in the linear regression.

1.6.1.3 Lack of Fit of the Simple Linear Regression4)

The test for lack of fit of the regression model breaks up the residual sum of squares
into a sum of squares for lack of fit and an experimental error sum of squares. This
can be done only if we have some values of X for which we have more than one
value for Y. This concept of separating a sum of squares or experimental error var-
iance from the residual sum of squares or residual variance has been known from
the chapter on analysis of variance. It should be noted that replicating the trial in
this case, and in general, does not mean keeping the X value in the experiment con-
stant and reading Y response several times, but a literal taking of the same X value
in different times and measuring or single reading of Y each time. Thereby experi-
ments or trials are done between such times for other X values. Suppose that of the
n Xs there are k distinct Xs, where k<n, which occur with frequencies n1,n2, ...,nk ,
where n1+n2+...+nk=n. The sum of squares of the ni, Ys corresponding to an Xi:

Pni
j¼1

Yj � �YY
� �2

¼
Pni
j¼1

Y
2
j � ni �YY

2 ¼ SSEð Þ
i

(1.193)
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1.6 Regression analysis

is a sum of squares due to experimental error. The pooled sum of squares due to
experimental error is denoted by:

SSE ¼
Pk
i¼1

SSEð Þ
i

(1.194)

with next degrees of freedom:

Pk
i¼1

ni � 1ð Þ ¼ n� k (1.195)

The mean square due to experimental error is:

MSE ¼ SSE

n�k
(1.196)

The usual residual sum of squares is:

SSRES: ¼
Pn
i¼1

Yi � Y
_� �2

with (n-2) degrees of freedom. The lack of fit of sum of squares is:

SSLF=SSRES.-SSE (1.197)

with n-2-(n-k)=k-2 degrees of freedom or the mean lack of fit of sum of squares is:

MSLF ¼ SSLF

k�2
(1.198)

The critical region in testing H0: Lack of fit is FiFk�2;n�k;1�awhere:

F ¼ MSLF

MSE

(1.199)

has an F-distribution with k-2 and n-k degrees of freedom.
If the obtained value of F-ratio is below the tabular value Fk-2;n-k;1-a then the null

hypothesis that the linear regression is adequate to (1-a) 100% confidence level is
accepted. Hence the linear regression variance analysis should also include check of
lack of fit of linear regression. If in variance analysis of F-ratio for lack of fit is statis-
tically:

. Significant, it shows that the obtained linear regression does not adequately
describe the experimental results. The next step is establishing the reason for
lack of fit.

. Insignificant, there is no reason to doubt lack of fit of the obtained regression
model, and mean sums of squares of experimental error and lack of fit can
be used for variance estimate r2.

Some of the standard situations in doing regression analysis are given in
Fig. 1.23.
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X

X

Y

Y

X

X

Y Example 1
. Model :Y ¼ b

0
þ b

1
X þ e

. No lack of fit

. Significant linear regression

. Use model: Y
_

¼ b0 þ b1X

Example 2
. Model: Y ¼ b

0
þ b

1
X þ e

. No lack of fit

. Linear regression not significant

. Use model: Y
_

¼ �YY

Example 3
. Model: Y ¼ b

0
þ b

1
X þ e

. Significant lack of fit

. Significant linear regression

. Use model:
Y
_

¼ b0 þ b1X þ b11X
2

Example 4
. Model: Y ¼ b

0
þ b

1
X þ e

. Significant lack of fit

. Linear regression not significant

. Use model:
Y
_

¼ b0 þ b1X þ b11X
2

Figure 1.23 Typical linear regression situations
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Example 1.46 [22]
To demonstrate analysis of variance for linear regression model, the following
experimental results were used:

Table 1.72 Experimental results

No X Y No X Y No X Y

1 1.3 2.3 9 3.7 1.7 17 5.3 3.5

2 1.3 1.8 10 4.0 2.8 18 5.3 2.8

3 2.0 2.8 11 4.0 2.8 19 5.3 2.1

4 2.0 1.5 12 4.0 2.2 20 5.7 3.4

5 2.7 2.2 13 4.7 5.4 21 6.0 3.2

6 3.3 3.8 14 4.7 3.2 22 6.0 3.0

7 3.3 1.8 15 4.7 1.9 23 6.3 3.0

8 3.7 3.7 16 5.0 1.8 24 6.7 5.9

After calculating the given experimental data the following linear regression is
obtained: Y

_
¼ 1:436þ 0:338X . Do the analysis of variance by determing the lack of

fit of the regression model.
Analysis of variance with no setting apart of the residual variance into experimen-

tal error and lack of fit variance is given in the table:

Table 1.73 Analysis of variance

Source of variation f SS MS F FT

Regression b1 1 6.326 6.326 6.569 F1;22;0.95=4.30

Residual 22 21.192 0.963 – –

Corrected total 23 27.518 – – –

The procedure of calculating the experimental error variance or the so-called pure
error consists of:

SE for X=1.3 is:

SSEð Þ
X¼1:3

¼
PnX¼1:3

j¼1

Y
2
j � nX¼1:3 � �YY

2 ¼ 2:3
2 þ 1:8

2 � 2
2:3þ1:8

2

� �2

¼ 0:5 2:3� 1:8ð Þ2¼ 0:125

with degrees of freedom f =n-k=2-1=1;
SSE for X=4.7 is:

SSEð Þ
X¼4:7

¼
PnX¼4;

j¼1

Y
2
j � nX¼4:7 � �YY

2 ¼ 5:4
2 þ 3:2

2 þ 1:9
2 � 3

5:4þ3:2þ1:9
3

� �2

¼ 6:26

with degree of freedom f =n-k=3-1=2
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After continuing such calculations for other replicated trials we obtain:

Table 1.74 Analysis of variance

Value X Pni
j

Yj � �YY
� �2 Degrees of freedom f

1.3 0.125 1

2.0 0.845 1

3.3 2.000 1

3.7 2.000 1

4.0 0.240 2

4.7 6.260 2

5.3 0.980 2

6.0 0.020 1

Total 12.470 11

Now that the sum of squares of experimental error SSE =12.470 with the degree
of freedom f =11; has been calculated, we can offer the analysis of variance table
with the lack of fit variance:

Table 1.75 Analysis of variance

Source of variance f SS MS F FT

Regression b1 1 6.326 6 ,326 6:326
0:963

¼ 6:569
F1;22;0.95=4.30

Residual 22 21.192 0.963 – –

Corrected total 23 27.518 – – –

Lack of fit 11 8.722 0.793 0:793
1:134

¼ 0:699
F11;11;0.95=2.82

Pure error 11 12.470 1.134 – –

Due to the fact that the calculated value of F=0.699<F11;11;0.95=2.82 there is no rea-
son to doubt the lack of fit of the linear regression.

1.6.2
Multiple Regression

Multiple regression can be used to develop a quantitative equation relating a depen-
dent variable with several independent variables. In multiple linear regression, any
number of independent variables may be considered:

Y ¼ b0 þ b1X1 þ b2X2 þ :::þ bpXp þ e (1.200)

Assumptions of a multiple regression analysis are identical to those for linear
regression except for the p independent variables in this case. To reach regression
coefficient estimates bi by the method of least squares, we again have to minimize
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the sum of squares due to errors. Similarly, as in linear regression, we have n data
for Y and X1 ,X2 ,...Xp , therefore sum of squares of errors:

SSE ¼
P
i

e
2
i ¼

P
i

Yi � Y
_

i

� �2
¼
P
i

Yi � b0 � b1X1i � b2X2i � :::� bpXpi

� �
(1.201)

The sum of squared errors between the observed value and predicted value is
minimized by taking the partial derivative (SSE)/bi with respect to each parameter
and setting each result equal to zero:

nb0 þ b1
P

X1i þ b2
P

X2i þ :::þ bp
P

Xpi ¼
P

Yi

b0
P

X1i þ b1
P

X
2
1i þ b2

P
X1iX2i þ :::þ bp

P
X1iXpi ¼

P
X1iYi

b0
P

X2i þ b1
P

X1iX2i þ b2
P

X
2
2i þ :::þ bp

P
X2iXpi ¼

P
X2iYi

b0
P�

Xpi þ b1
P�

X1iXpi þ b2
P�

X2iXpi þ :::þ bp
P�

X
2
pi ¼

P�
XpiYi

here the values are summed for all i=1,..., n data points. To obtain regression coeffi-
cient estimates b0, b1, ... , bp it is necessary to solve the given simultaneous system
of linear equations. The simplest way for this is to use matrix algebra or digital com-
puters. In the case of p independent variables the sum of squares due to error is:

SSE ¼
P
i

Yi � Y
_

i

� �2
where:

Y
_

i ¼ b0 þ b1X1 þ :::þ bpXp

It is easy to prove:

SSE ¼
P
i

Yi � Y
_

i

� �2
¼
P
i

Yi � �YYi

� �2� b1
P
i

X1i � �XX1

� �
Yi � �YYi

� �"

þ:::þ bpi
P
i

Xpi � �XXp

� �
Yi � �YYi

� �
� (1.202)

where:

�XXj ¼
Pn
i¼1

Xji

n
.

The sum that is in the central parenthesis is the sum of squares due to regression
SSR so that:

SSE=SSTC-SSR; SSTC=SSE+SSR

where:

SSR ¼ b1
P

X1i � �XX1

� �
Yi � �YY
� �

þ :::þ bp
P

Xpi � �XXp

� �
Yi � �YY
� �

(1.203)
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It is of particular importance to do statistical testing of the null hypothesis:

H0: b1=b2=...=bp=0

Testing this null hypothesis is done by analysis of variance of multiple regression
shown in Table 1.76. It should also be noted that the unbiased estimate r2 is given
as:

MSE ¼
P

Yi�Y
_

i

� �2
n�p�1

.

Table 1.76 Analysis of varaince of multiple regression

Source of variation f SS MS Test statistic

Regression p SSR MSR=SSR/p MSR/MSE

Error-residual n-p-1 SSE MSE=SSE/(n-p-1) –

Total n-1 SSTC – –

The test statistic is the F=MSR/MSE ratio which is compared to the tabular value
Fp;(n-p-1);1-a. If: F>Fp;(n-p-1);1-a the null hypothesis is rejected and the alternative one
accepted.

Example 1.47 [4]
It is necessary to relate the per cent gas absorbed in a tower, Y, to the gas tempera-
ture X1 and the vapor pressure of the absorbing liquid, X2 . The following data are
available:

Table 1.77 Experimental values

Y X1 X2

6.0 113.5 3.2
10.0 130.0 4.8
20.0 154.0 8.4
30.0 169.0 12.0
50.0 187.0 18.5
80.0 206.0 27.5
100.0 214.0 32.0

The postulated model is Y=b0+b1X1+b2X2+e. Determine regression coefficients
and do analysis of variance of multiple regression. From tabulated data the following
values are calculated:P

X1i ¼ 1251:5;
P

X2i ¼ 107:9;
P

X1iX2i ¼ 20359:0;

P
X

2
1i ¼ 211344:25;

P
X

2
2i ¼ 2371:339;

P
X1i

P
X2i ¼ 134411:0;
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P
X1ið Þ2¼ 1566252:25;

P
X2ið Þ2¼ 11534:75;

P
Yi ¼ 297:5;P

X1iYi ¼ 57478:0;
P

X2iYi ¼ 6971:70;
P

Y
2
i ¼ 20338:25;

P
X1i

P
Yi ¼ 372321:25;

P
X2i

P
Yi ¼ 31951:49;

�XX1 ¼ 156:4375; �XX2 ¼ 13:4249; �YY ¼ 37:1875

P
X1i � �XX1

� �2¼ 15562:75;
P

X2i � �XX2

� �2¼ 929:4951;P
X1i � �XX1

� �
X2i � �XX2

� �
¼ 3557:914P

X1i � �XX1

� �
Yi � �YY
� �

¼ 10937:84;
P

X2i � �XX2

� �
Yi � �YY
� �

¼ 2927:762;P
Yi � �YYi

� �2¼ 9274:968

Regression coefficients are obtained by solving the system of equations:

8b0 þ 1251:5b1 þ 107:9b2 ¼ 297:5
1251:5b0 þ 211344:25b1 þ 134411:00b2 ¼ 57478:0
107:9b0 þ 134411:00b1 þ 11534:75b2 ¼ 31951:49

:

8<
:
b1=-0.13840 ; b2=3.6796 ; b0=9.4398 ;

Linear regression has this form:

Y
_
¼ 9:4398� 0:1384� X1 þ 3:6796� X2

To analyze the variance we calculate the sum of squares due to regression.

SSR ¼ b1
P

X1i � �XX1

� �
Yi � �YY
� �

þ b2
P

X2i � �XX2

� �
Yi � �YY
� �

=-0.1384 � 10937.84+3.6796 � 2927.762=9259.196

and the sum of squares due to error:

SSE ¼
P

Yi � Y
_� �2

¼
P

Yi � �YY
� �2�SSR ¼9274:968� 9259:196 ¼ 15:772

Table 1.78 Analysis of variance

Source of variation f SS MS F FT

Regression 2 9259.196 4629.598 1467.850 F2;5;0.95=5.79

Residual-error 5 15.772 3.154 – –

Total 7 9274.968 – – –

Based on analysis of variance with 95% confidence level the null hypothesis: H0:
b1=b2=0 is rejected, for the calculated value F =4629.598/3.154 = 1467.850 is consid-
erably above the tabular value F2;5;0.95=5.79.
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1.6.3
Polynomial Regression

In the case of polynomial or curvilinear regression, as given by the model:

Y=b0+b1X+b2X
2+bpX

p+...+e (1.204)

there is only one independent variable: X. However, p-1 other independent variables
are defined as powers of X. This kind of p-degree polynomial regression may be
brought down to multiple linear regression by introducing these changes: W1=X;
W2=X

2;... ;Wp=X
p. In a multiple regression with independent variables Wp, we deter-

mine the regression coefficients by the procedure given in the previous section. The
polynomial regression is reduced to the multiple linear regression model given by
Eq. (1.204) with independent variables W1, W2, ...,Wp.

As an example consider the quadratic model:

Y=b0+b1X+b2X
2+e (1.205)

In this case W1=X and W2=X
2 and the normal equations are, given n observations

on X and Y:

nb0 þ b1
P
i

W1i þ b2
P
i

W2i ¼
P
i

Yi

b0
P
i

W1i þ b1
P
i

W
2
1i þ b2

P
i

W1iW2i ¼
P
i

W1iYi

b0
P
i

W2i þ b1
P
i

W1iW2i þ b2
P
i

W
2
2i ¼

P
i

W2iYi

8>>>>><
>>>>>:

(1.206)

However,

W1i ¼ Xi ;W2i ¼ X
2
i

Thus the normal equations become:

nb0 þ b1
P
i

Xi þ b2
P
i

X
2
i ¼

P
i

Yi

b0
P
i

Xi þ b1
P
i

X
2
i þ b2

P
i

X
3
i ¼

P
i

XiYi

b0
P

X
2
i þ b1

P
X

3
i þ b2

P
X

4
i ¼

P
X

2
i Yi

8>>>>><
>>>>>:

(1.207)

The equations (1.207) can be solved for b0, b1 and b2. Extensions to polynomials of
higher degree are obvious and the solution follows in the same manner.

It should be pointed out that when one speaks of a linear model in regression the
term linear means linear in the parameters b0, b1,..., bp and not in the independent
variable X. Other examples of linear models (linear in the parameters) are:

Y ¼ b0 þ b1 logX þ b2X
2 þ e

Y ¼ b0 þ b1e
�X þ b2X

1=2 þ e

Y ¼ b0 þ b1e
�X1 þ b2X

2
2 þ b3X3 þ e

The mentioned regressions are linear by their regression coefficients but not by
their independent variables. Nonlinearity by independent variables is easily brought
down to linearity through these changes:
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W1 ¼ logX ; W2 ¼ X
2
; ) Y ¼ b0 þ b1W1 þ b2W2 þ e

W1 ¼ e
�X

; W2 ¼ X
1=2

; ) Y ¼ b0 þ b1W1 þ b2W2 þ e

W1 ¼ e
�X1 ; W2 ¼ X

2
2 ; W3 ¼ X3 ; ) Y ¼ b0 þ b1W1 þ b2W2 þ b3W3 þ e

All regression equations, linear by their regression coefficients, are analyzed by
thus far developed methods. If an equation is not linear by coefficients we then deal
with nonlinear regression equations, the analysis of which is very complicated and
requires iterative procedures.

For instance, Van Laar’s equation for the coefficient of activity of binomial mix-
ture or the steam-liquid balance, is nonlinear by coefficients A and B, as shown in
the equation.

logc1 ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AX1

1�X1ð ÞB

r (1.208)

Suppose we have a set of empirical-experimental data for two variables and that
the obtained data may be described by linear regressions. Which of the linear regres-
sions can describe the experimental data will be known after checking their lack of
fit. It should be pointed out that a large number of linear regressions are at our dis-
posal and that some of them have for this particular case been given in Fig. 1.24.
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Figure 1.24 Useful forms for empirical equations

Tabular values of linear regression coefficients for regressions shown in Fig. 1.24
are given in Table 1.79.
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Table 1.79 Regression coefficients of linear regressions

Regression General form Regression coefficients Curve

b0 b1 b2
A Y=b0+b1X 1 1 · A1

10 -1 · A2

1 1 0.05 B1

B Y=b0+b1X+b2X
2 1 1 -0.05 B2

10 -1 0.05 B3

10 -1 -0.05 B4

C Y=b0+b1/X 1 10 · C1

20 -10 · C2

One can notice in Fig. 1.24 that the form of some linear regressions, especially
group B, is very sensitive to a change in regression coefficient value.

Example 1.48 [4]
It is believed that the effect of temperature on catalyst activity is quadratic. The pro-
posed model is:

Y=b0+b1X+b2X
2+e.

Eight different temperatures (coded X data below) were used. The resulting activ-
ities are given as Y. Determine the polynomial regression coefficients.

Y: 0.846; 0.573; 0.401; 0.288; 0.209; 0.153; 0.111; 0.078;
X: 2; 4; 6; 8; 10; 12; 14; 16;

If we let W1=X and W2=X
2 , the model reduces to the form

Y=b0+ b1W +b2W2+e

Following the same procedure as for multiple linear regression, the values of the
regression coefficients are:

b0=1.05652; b1=-0.13114; b2=0.00447

The resulting regression equation is then:

Y
_
¼ 1:05652� 0:13114� X þ 0:00447� X

2

Example 1.49 [23]
We will develop an equation from the data on the heat capacity of benzene vapor as
a function of temperature. Experimental values are shown in an accompanying
table:

Cp cal/K gmol: 19.65; 26.74; 32.80; 37.74; 41.75; 45.06; 47.83; 50.16;
T K 300; 400; 500; 600; 700; 800; 900; 1000.
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1.6 Regression analysis

Based on analysis of point distribution on a scatter diagram, the plotted data are
clearly not linear, so a three-term polynomial will be used:

Cp=b0+b1T+b2T
2

Cp=b0+b1T+b21/T
Cp=b0+b1T
Cp=b1T

Calculate the linear regression coefficients for all given regression models and
present them graphically.. The linear regression Cp=b0+b1T+b2T

2 is brought by the
method of least squares down to the following system of normal equations:

nb0 þ b1
P

T þ b2
P

T
2 ¼

P
Cp

b0
P

T þ b1
P

T
2 þ b2

P
T
3 ¼

P
CpT

b0
P

T
2 þ b1

P
T
3 þ b2

P
T
4 ¼

P
CpT

2

8><
>:
From the data given: n=8P

Cp=19.65+...+50.16=301.73P
T=300+...+1000=5200P
T
2
=3002+...+10002=3.8�106P

T
3
=3003+...+10003=3.016�109P

T
4
=3004+...+10004=2.5316�1012P

CpT=19.65�300+...+50.16�1000=214115P
CpT

2
=19.65�3002+...+50.16�10002 =166.0315�106

Substituting these values in normal equations we get the regression coefficients:

b0=-13.212 ; b1=0.12395 ; b2=-6.24�10
-5

so that the regression becomes:

Cp=-13.212+0.12395T-6.2400�10
-5T2

Calculations for all plotted regressions are in the next table.
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Table 1.80 Calculation and experimental values

Temperature
[K]

Heat capacity
[cal/gmol K]

Calculated data for regressions

A B C D

300 19.65 18.36 18.08 22.72 16.90
400 26.74 26.38 27.53 27.01 22.54
500 32.80 33.16 33.66 31.29 28.17
600 37.74 38.70 38.25 35.57 33.81
700 41.75 42.98 41.80 39.86 39.44
800 45.06 46.01 44.82 44.14 45.08
900 47.83 47.80 47.44 48.42 50.71
1000 50.16 48.34 49.89 52.71 56.35

A geometric interpretation of all four linear regressions is given in Fig. 1.25.

C: Cp=9.8738+0.042834 T

D: Cp=0.056346 T
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Cp=-13,212+0,12395T -6,2400x10 T
-5 2

A:

Cp=46,93+0,012763T -9803,4/ TB:

Heat capacity

experimental data

Temperature [K]

Figure 1.25 Compare the fit between the data and the plotted
regression equations

1.6.4
Nonlinear Regression

We often meet mathematical models in engineering practice that are not linear
either by their regression coefficients or their independent variables. The non linear-
ity by their independent variables belongs to polynomial analysis, and this was ela-
borated in the previous section. Nonlinearity by regression coefficients, however, is
a heavier problem and it is nowadays solved by iterative procedure helped by fast
digital computers. The procedures of determining regression coefficients in non-
linear regressions itself is given in reference [22].
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1.6 Regression analysis

A nonlinear model that occurs quite frequently is:

Y ¼ b0 � e
b
1
X

(1.209)

This model is usually handled by means of taking the natural log of both sides of
the equations yielding.

lnY=lnb0+b1X (1.210)

Letting Z=lnY, a0=lnb0 and b1=b1, the model thus reduces to the linear model:

Z=a0+a1X (1.211)

Nowadays the method of least squares is applied to determine the regression coef-
ficients a0 and a1.

The following nonlinear method is also met in practice:

Y=b0b1
X (1.212)

This nonlinear model becomes linear when logarithms and substitutions are
introduced.

logY=logb0+X logb1 (1.213)

Substitutions:

Z=logY, logb0=a0; log b1=a1 Z=a0+a1X

One should be careful in using transformations such as the above, since if it is
assumed that the original variable is normally distributed, then the transformed
variable may not be. The homogeneity of variance property may be likewise violated.
Frequently, however, the original assumption of normality may not be justified and
the transformed variables have a distribution closer to normal.

Example 1.50 [4]
The vapor pressure of water absorbed on silica gel can be expressed as a function of
the vapor pressure of pure water for various gel loadings in spacecraft humidity-
water-recovering systems. For the water loading of 0.1 lb water/lb dry silica gel, the
following data were obtained:

p, absorbed H20: 0.038; 0.080; 0.174; 0.448; 1.43; 5.13; 9.47;
p, pure H2O: 0.2 0.4 0.8 2.0 6.0 20.0 35.0

A plot of the p data on Log-Log paper yields a straight line so an equation of the form:

Y ¼ b0X
b1 .

By applying logarithms and the following substitutions we get the linear regres-
sion model:

logY=logb0+b1logX

Substitutions: Z=logY, a0=logb0, W=log X so that:

Z=a0+b1W
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The following quantities are then calculated:

�ZZ ¼ �0:254785; �WW ¼ 0:390065;
P

Z ¼ �1:783492;
P

W ¼ 2:730458

P
Z

2 ¼ 5:400247;
P

W
2 ¼ 5:429265;

P
ZW ¼ 3:950120;

P
Wð Þ2

¼ 7:455401;

P
Zð Þ2¼ 3:3180843;

P
Z
P

W ¼ �4:869750:

Coefficients are obtained by solving normal equations.

Z=-0.670018+1.06452W

By conversion into original variables we get:

Y
_
¼ 0:21379� X

1:06452

Example 1.51
In a pilot plant for producing composite rocket propellants a batch of propellant was
produced with the idea of characterizing it by measuring the linear burning rate at
different pressures in Crawford’s bomb. The following values were obtained experi-
mentally:

V mm/s: 11.71; 13.63; 17.25; 18.92;
P bar : 50.6; 75.3; 116.3; 138.8.

Based on theoretical and empirical knowledge the relationship between burning
rate and pressure had the form:

V=bPn

Determine the coefficients in the given nonlinear regression model.
The obtained values were:

b=1.744
n=0.482.

1.7
Correlation Analysis

Having determined that a relationship exists between variables, the next question
that arises is that of how closely the variables are associated. The strongest and clos-
est relationship between variables is the functional relationship, i.e. the relationship
where each value of one independent variable corresponds to the exact value of a
dependent variable. A weak relationship between variables, subject to smaller or
greater diversions, is called correlation or stochastic.

The statistical techniques that have been developed to measure the amount of
association between variables are called correlation methods. A statistical analysis per-
formed to determine the degree of correlation is called a correlation analysis. For
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example, the circle area and its radius are functionally connected, while the variables
that give the burning rate and pressure of a propellant show a correlational and sto-
chastic relationship. The term used to measure correlation is referred to as a correla-
tion coefficient. The correlation coefficient measures how well the regression equa-
tion fits the experimental data. As such, it is closely related to the standard error of
estimate.

It has been mentioned before that the first orientation on the form of relationship
between variables is given by graphic presentation of experimental values in a coor-
dinate system. Such a graph is called a scatter diagram. The distribution of points in
the scatter diagram determines the direction and form of the relationship and up to
a point its strength. Fig. 1.26 shows cases of positively stronger and negatively weaker
linear correlations as well as cases of noncorrelation;

Y

X X

Y Y

X

Figure 1.26 Cases of different correlation¢s

To measure the strength of linear relationship between X and Y use the relation
(1.179):

Yi � �YY ¼ Y
_

i � �YY
� �

þ Yi � Y
_

i

� �
(1.215)

If there was a full and functional relationship between X and Y factors, then all Yi

experimental values would be equal to the values from regression Y
_

i and all the data
points in the scatter diagram would fall on the regression line. In such a case there
would be no diversions of experimental values of a dependent variable from regres-
sion. Namely, the second member of the right-hand side of formula (1.215) would
equal zero. Similarly, by analyzing the sum of squares versus Eq. (1.177)
SSTC=SSR+SSE we would get SSE=0, or a perfect description of experimental data by
regression equation. The other extreme case is when there is no linear connection
between variables. In that case all the values of the real regression Y

_

i are equal to
the arithmetic average of the dependent variable �YY , or the first number of the right-
hand side of formula (1.215) would equal zero SSR =0. The coefficient of determination
is defined in accord with previous explanation r2:

r
2 ¼ SSR

SSTC

¼ SSTC�SSE

SSTC

¼ 1� SSE
SSTC

(1.216)
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The coefficient of determination is that proportion of the total variability in the
dependent variable that is accounted for by the regression equation in the indepen-
dent variable(s). A value for r2 of 1 indicates that the fitted regression equation
accounts for all the variability of the values of the dependent variable in the sample
data. At the other extreme, a value of 0 for r2 indicates that the regression equation
accounts for none of the variability. In other cases it has values between zero and
one, and its value will therewith approach one if the linear relationship is stronger
and zero if it is weaker. The coefficient of determination root square is called the
correlation coefficient r.

According to all things said for the coefficient of determination, the correlation
coefficient itself is a measure of the strength of relationship and it takes values be-
tween –1 and +1. When the correlation coefficient nears one the linear relationship
between variables is strong, and when it is close to zero it means that there is no
linear relationship between variables. This, however, does not mean that there is no
relationship between variables, which might even be strong, of a certain curved
shape. We point out that the correlation coefficient is an indefinite number, i.e. it
does not depend on the units the variables have been expressed in.

The following is accepted as an empirical rule:

. correlation coefficient up to 0.30 indicates a weak relationship and is of
uncertain validity;

. correlation coefficient between 0.50 and 0.70 indicates a significant relation-
ship and is of practical importance;

. correlation coefficient above 0.90 means a strong relationship.

In statistical studies it is often more convenient to determine the correlation coef-
ficient and then the regression equations.

1.7.1
Correlation in Linear Regression

For the simple linear regression model, Y=b0+b1X+e, the sum of squares due to
regression is:

SSR ¼ b
2
1
P
i

Xi � �XX
� �2

Thus for the simple linear model we have:

r
2 ¼ SSR

SSTC

¼
b21
P
i

Xi��XX
� �2

P
i

Yi��YY
� �2 ¼

P
i

Xi��XX
� �

Yi��YY
� �" #2

P
Xi��XX
� �2P

Yi��YY
� �2 (1.217)

since:

b1 ¼

P
i

Xi��XX
� �

Yi��YY
� �

P
Xi��XX
� �2 we have: r ¼

P
i

Xi��XX
� �

Yi��YY
� �

P
Xi��XX
� �2P

Yi��YY
� �2
 �1=2 (1.218)
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Example 1.52
Referring to the data of Example 1.42 and using Eq. (1.218) we calculate the simple
linear correlation coefficient as:

r
2 ¼ 167:52

82:5�342:1
¼ 0:994; r ¼

ffiffiffiffiffiffiffiffiffiffiffi
0:994

p
¼ 0:996

indicating that the regression equation accounts for 99.4% of the variability of the
data about �XX . Since

P
i

Xi � �XX
� �

Yi � �YY
� �

=167.5, r ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:994

p
¼ 0:996. This means

that X and Y are positively correlated. This means that as X increases or decreases
the corresponding values of Y increase or decrease, accordingly. This also implies
that the slope of the regression line is positive. In this example, the value of the cor-
relation coefficient is quite high, r=0.996, indicating a “strong” linear relationship.
Part of the variability 0.6% is not explained by the regression model and it is the
consequence of not taking into account all the factors affecting the response variabil-
ity, of not choosing the right form of a regression model, and of measurement
errors. We have mentioned earlier that the square root of coefficient of determina-
tion gives the correlation coefficient r=0.996 a positive one as:

P
i

Xi � �XX
� �

Yi � �YY
� �

¼ þ167:5

The positive correlation means: if X increases or decreases the corresponding val-
ues of Y increase or decrease too. The correlation coefficient may also be expressed
by covariance of sample SXY as:

b1 ¼ SXY

S2X
(1.219)

so that:

r ¼ SXY

SX SY
(1.220)

Coefficient of determination-regression statistical significance-lack of fit of regression
It has already been mentioned that the coefficient of determination is that propor-
tion of the total variability in the dependent variable that is accounted for by the
regression equation in the independent variable(s). A value for r2 of 1 indicates that
the fitted regression equation accounts for all the variability of the values of the de-
pendent variable in the sample data. At the other extreme, a value of 0 for r2 indi-
cates that the regression equation accounts for none of the variability.

A conclusion cannot, however, be drawn that the high value of the coefficient of
determination simultaneously means a statistical significance of regression. In fact,
one can obtain a value of 1 for r2 by simply fitting a regression equation that
includes as many (statistically estimable) terms as there are observations (i.e., data
points). When the number of observations exceeds the number of terms in the
regression equation by only a small number then the coefficient of determination
might be large, even if there is no true relationship between the independent and
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dependent variables. For example, the chances are one in ten of obtaining a value of
r2 as high as 0.9756 in fitting a simple linear regression equation to the relationship
between an independent variable X and a normally distributed dependent variable Y
based on only 3 observations, even if X is totally unrelated to Y, i.e., this result can
occur 10% of the time, even if the two variables are unrelated. On the other hand,
with 100 observations a coefficient of determination of 0.07 is sufficient to establish
statistical significance of a linear regression at the 1% level. More generally,
Table 1.81 indicates the value of r2 required to establish statistical significance for a
simple linear regression equation.

Table 1.81 Values of r
2
for a simple regression

Sample
size

Statistical significance level

a=0.1 a=0.05 a=0.01

3 0.9756 0.9938 0.9998

4 0.810 0.9030 0.9800

5 0.65 0.77 0.92

6 0.53 0.66 0.84

7 0.45 0.57 0.77

8 0.39 0.50 0.70

9 0.34 0.44 0.64

10 0.03 0.40 0.59

11 0.27 0.36 0.54

12 0.25 0.33 0.50

13 0.23 0.31 0.47

14 0.21 0.28 0.44

15 0.19 0.26 0.41

20 0.14 0.20 0.31

25 0.11 0.16 0.26

30 0.09 0.13 0.22

40 0.07 0.10 0.16

50 0.05 0.08 0.13

100 0.03 0.04 0.07

Note that Table 1.81 applies only for a simple linear regression equation. For the
case of multiple regression, statistical significance of the overall regression equation
can be determined by the F-ratio in the analysis of variance [22]. Practical signifi-
cance and statistical significance are not equivalent. With a small sample, it is possi-
ble not to obtain any evidence of a statistically significant regression relationship be-
tween two variables even if their true relationship is quite strong. This is because, as
seen above, a relatively high value of r2 is required to show a regression equation to
be statistically significant when only a small number of observations are used. On
the other hand, a regression equation based on only a modest (and practically unim-
portant) true relationship may be established as statistically significant if a suffi-
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ciently large number of observations are available. For example, it was seen that
with 100 observations a value for r2=0.07 was sufficient to establish a highly signifi-
cant statistical linear relationship between two variables.

Furthermore, the magnitude of r2 depends directly on the range of variation of the
independent variables for the given data. The coefficient of determination thus
decreases with a decrease in the range of variation of the independent variables, assum-
ing the correct regressionmodel is being fitted to the data. For example, Fig. 1.27 shows
the fitted regression equation between an independent variable, X, and a dependent
variable, Y, based on 110 equally spaced values of X over the range from 10 to 20.
The estimated coefficient of determination is r2=0.89. However, if one had available
only the 30 observations in the range 14 to 16 (see Fig. 1.28), the resulting coeffi-
cient of determination from the fitted regression equation would be only r2=0.21.

Thus a large value of r2 might reflect the fact that the data had been obtained over
an unrealistically large range of variation. Conversely, a small value of r2 might be
due to the limited range of the independent variables. This is sometimes the case in
analyzing data from a manufacturing process in which normal plant practice
restricts the range of the process variables. Note also that a large and statistically sig-
nificant coefficient of determination does not assure that the chosen regression
model adequately represents the true relationship for all purposes. A coefficient of
determination of r2 =0.99, even if statistically significant , for a regression model in-
volving only linear terms for each of independent variables, does not mean that a
model that also includes quadratic and interaction terms could not conceivably yield
a significantly better fit, nor that the “real cause variables” have been included in the
regression equation.
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1.7.2
Correlation in Multiple Linear Regression

In multiple linear regression where the model is:

Y=b0+b1X1+b2X2 +...+bpXp+e (1.221)

the coefficient of determination is, according to Eq. (1.203):

r
2 ¼ SSR

SSTC

¼
b1
P
i

X1i��XX1

� �
Yi��YY
� �

þ:::þbp
P
i

Xpi��XXp

� �
Yi��YY
� �" #

P
i

Yi��YY
� � (1.222)

Eq. (1.222) is analogous to (1.217). The coefficient r2 as defined by Eq. (1.222) is
called the multiple coefficient of determination or the multiple correlation coefficient r.

Example 1.53
Themultiple coefficient of determination may be obtained for the data of Example 1.47
as a means of determining the “goodness of fit” of the regression equation already
estimated. Eq. (1.222) is used to give:

r
2 ¼ b1

P
X1i��XX1

� �
Yi��YY
� �

þb2
P

X2i��XX2

� �
Yi��YY
� �P

Yi��YY
� �

therefore,

r2=(-0.12748�10937.84+3.60271�2959.17)/9274.97=0.9991; r=0.9995.

Such a high correlation coefficient indicates that the regression model describes
the experimental data extremely well. Apart from the mentioned multiple correla-
tion coefficient the following partial coefficient of determination:

r
2
X1X2

=0.8712; r
2
X1Y =0.8288; r

2
X2Y =0.9956

It is clear that from the partial coefficient of determination r
2
X2Y=0.9956 and multi-

ple coefficient of determination r
2
X1X2Y=0.9991 very little was gained by adding X1 to

the correlation.

& Problem 1.49 [22]
A study was made on the effect of temperature on the yield of a che-
mical process. The following data (in coded form) were collected:

X: -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5;
Y: 1; 5; 4; 7; 10; 8; 9; 13; 14; 13; 18;

Determine:

. Assuming a model, Y=b0+b1X+e, what are the least squares estimates
of regression coefficients.

. Do analysis of variance for significance level a=0.05.

. What are the confidence limits for 1 (a=0.05).
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. What are the confidence limits (1-a =95%) for the true mean value of
Y when X=3.

. What are the confidence limits (1-a =95%) for the true mean value of
Y when are X=3 and X=-2.

& Problem 1.50 [22]
Thirteen specimens of 90/10 Cu-Ni alloys, each with a specific iron
content, were tested in a corrosion-wheel setup. The wheel was
rotated in salt sea water at 30 ft/sec for 60 days. The corrosion was
measured in weight loss in milligrams/square decimeter/day, MDD.
The following data were collected:

X%Fe: 0.01; 0.48; 0.71; 0.95; 1.19; 0.01;
Y loss in MDD: 127.6; 124.0; 110.8; 103.9; 101.5; 130.1;
X%Fe: 0.48 ; 1.44; 0.71; 1.96; 0.01; 1.44; 1.96;
Y loss in MDD: 122.0; 92.3; 113.1; 83.7; 128.0; 91.4; 86.2.

Determine coefficients in the linear regression model and do ana-
lysis of variance taking into account check of lack of fit of the
obtained regression model.

& Problem 1.51 [24]
Two colorimetric methods were compared by measuring the con-
tents of a chemical component. Based on experimental results deter-
mine whether there exists linear regression dependence between
the method’s.

Method I: 3720; 4328; 4655; 4818; 5545; 7278; 7880; 10085; 11707;
Method II: 5363; 6195; 6428; 6662; 7562; 9184; 10070; 12519; 13980.

& Problem 1.52 [24]
Temperature functions were mechanically tested for prepared sap-
phire samples. Find the linear regression dependence between the
measured Young¢s-modulus and temperature.

X �C: 30; 100; 200; 300; 400; 500; 600; 700; 800;
Y: 4642; 4612; 4565; 4513; 4476; 4433; 4389; 4347; 4303;
X �C 900; 1000; 1100; 1200; 1300; 1400; 1500;
Y: 4251; 4201; 4140; 4100; 4073; 4024; 3999.

& Problem 1.53 [10]
Two procedures were tested in developing a method for measuring
blood flow. Based on obtained results determine whether there
exists linear correlation between the procedures, and if there is, give
the linear regression analysis of variance.

X: 1190; 1455; 1550; 1730; 1745; 1770; 1900; 1920; 1960.
Y: 1115; 1425; 1515; 1795; 1715; 1710; 1830; 1920; 1970.
X: 2295; 2335; 2490; 2720; 2710; 2530; 2900; 2760; 3010.
Y: 2300; 2280; 2520; 2630; 2740; 2390; 2800; 2630; 2970.

153



I Introduction to Statistics for Engineers

& Problem 1.54
Moisture content in the mixture of a product has an influence on
density of the final product. The moisture of the analyzed mixture
has been controlled and the density of the final product measured.
Experimental values offered:

X%: 4.7; 5.0; 5.2; 5.2; 5.9; 4.7; 5.9; 5.2; 5.3; 5.9; 5.6; 5.0;
Yg/cm3: 3; 3; 4; 5; 10; 2; 9; 3; 7; 6; 6; 4.

Determine:

a) linear regression model Y=b0+b1X+e;
b) 95% confidence interval for b1 ;
c) analysis of variance and check lack of fit of the model.

& Problem 1.55 [4]

The relation between the heat capacity of liquid sulfuric acid in
cal/g �C and temperature in �C is as follows:

Ccal/g �C: 0.377; 0.389; 0.396; 0.405; 0.466; 0.458;
T �C: 50; 100; 150; 200; 250; 300

Determine regression coefficients in the linear regression:
Cp=b0+b1T+e.

& Problem 1.56 [4]
The irritant factor Y of polluted air can be determined as a function
of the concentrations of SO2 and NO2 in the atmosphere. The fol-
lowing data are available where X1 = parts NO2 per ten million parts
of air and X2 = parts SO2 per hundred million parts of air. Deter-
mine the irritant factor as a function of X1 and X2:

X1: 10; 12; 15; 16; 19; 21; 25; 28;
X2: 12.5; 15; 18; 21; 26; 30; 35; 40;
Y: 65; 72; 82; 95; 110; 122; 125 130.

& Problem 1.57
In the production of ethylene glycol from ethylene oxide, the conver-
sion of ethylene to ethylene oxide, X, is a function of the activity Z1

of the silver catalyst and the residence time Z2 . the following coded
data are available:

X: 12.1; 11.9; 10.2; 8.0; 7.7; 5.3; 7.9; 7.8; 5.5; 2.6;
Z1: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9;
Z2: 7; 4; 4; 6; 4; 2; 1; 1; 1; 0.

a) Write a suitable model;
b) What portion of the data does your regression equation explain?
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& Problem 1.58 [4]
Two supposedly identical Brook’s-model R-2-65-5 rotameters with
316 stainless-steel spherical floats were calibrated for helium service
at 20 psig input, 74 �F . Let YmlHe/min. =flow rate and X mm=scale
reading. The data are below:

X: 10; 10; 14; 16; 19; 20; 25; 30; 30; 35;
Y1 : 9.2; 9.5; -; 15.0; -; 21.3; 29.4; 41.0; 40.5; 54.0;
Y2 : 8.4; 8.6; 12.6; -; 18.6; 18.0; 27.0; 36.8; 36.3; 49.1.

X: 35; 40; 40; 45; 45; 50; 50; 55; 55; 60;
Y1: 55.0; 68.0; 68.8; 86.0; 88.1; 103.2; 104.6; 124.0; 123.1; 144.0
Y2: 50.0; 64.8; 64.8; 81.3; 82.0; 100.4; 97.0; 114.7; 117.0; 134.0

& Problem 1.59 [25]
Magnetic material is mechanically separated from the slurry of
ground ore and rolled into balls that are to be sent to furnaces for
producing small balls. To reinforce the material better and to give it
greater hardness a binder such as natural peat is usually added. The
content of the binder has an effect on ball hardness, as can be seen
from experimental values.

Y: 3.6; 9.8; 14.7; 16.2; 16.0; 15.5.
X: 0.0; 4.0; 8.0; 12.0; 16.0; 20.0.

Determine the relationship between grinding and content of the
binder.

& Problem 1.60
The temperature effect on bleaching of a final product was deter-
mined experimentally. The obtained data are:

X K: 460; 450; 440; 430; 420; 410; 450; 440;
Y bleaching degree: 0.3; 0.3; 0.4; 0.4; 0.6; 0.5; 0.5; 0.6;
X K: 430; 420; 410; 400; 420; 410; 400
Y bleaching degree: 0.6; 0.6; 0.7; 0.6; 0.6; 0.6; 0.6;

Determine:

a) Linear regression model Y=b0+b1X+e.
b) Analysis of variance and check lack of fit of the regression model.
c) 95% confidence interval for the mean Y for X values.
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2.0
Introduction to Design of Experiments (DOE)

Design of experiments, like any other scientific discipline, has its own terminology,
methodology and subject of research. The title of this scientific discipline itself
clearly indicates that it deals with experimental methods. A large number of experi-
ments is done in research, development and optimization of the system. This
research is done in labs, pilot plants, full-scale plants, agricultural lots, clinics, etc.
An experiment may be physical, psychological or model based. It may be performed
directly on the subject or on its model. The model usually differs from the subject in
its dimensions and sometimes in its nature. The experiment may also be done on
an abstract mathematical model. When a model describes the subject precisely
enough, the experiment on the subject is generally replaced by an experiment on
the model. Lately, due to a rapid development of computer technology, physical
models are more frequently replaced by abstract mathematical ones.

An experiment takes a central place in science, particularly nowadays, due to the
complexity of problems science deals with. The question of efficiency of using an
experiment is therefore imposed. J. Bernal has made an estimation that scientific
research is organized and done fairly chaotically so that the coefficient of its usability
is about 2%. To increase research efficiency, it is necessary to introduce something
completely new into classical experimental research.

One kind of innovation could be, to apply statistical mathematical methods or to
develop design of experiments-DOE. DOE is a planned approach for determiniing cause
and effect relationships.

Hereby, the following is essential:

. reduction or minimization of total number of trials;

. simultaneous varying of all factors that formalizes experimenter’s activities;

. choice of a clear strategy that enables reliable solutions to be obtained after
each sequence of experiments.

The methodology of design of experiments has in developed countries made a
special expansion in solving very complex problems in all fields of human activities.
It should be pointed out that an important place in this expansion was the develop-
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II Design and Analysis of Experiments

ment of electronic computers, for they greatly accelerated and alleviated statistical
calculations.

Chemical and engineering studies, as for those in other fields, are based on com-
plex, long-term and relatively expensive experiments. Experimental work is included
in:

. physical and chemical studies for establishing constants and properties of
elements, chemical compounds and materials;

. routine analyses of raw materials, intermediates and final products;

. lab studies for designing and developing technological processes;

. optimization of technological procedures in the lab, pilot-plant and full-scale
plant systems;

. optimization of mixture or “composition-properties”;

. mathematical modeling of a system;

. selection of factors by the significance of their effects on a measured value-
response;

. estimates and definitions of theoretic model constants, etc.

Hence, wherever experiments exist there should be new scientific disciplines
dealing with their designing and analysis.

The efficiency of experimental research is determined by the degree of precision
and completeness of data and information about the system that is being tested.
This degree results from applying the methodology of design on the experiments
and on the way the obtained experimental data are analyzed. It is important at this
point to consider the manner in which the experimental data were collected as this
greatly influences the choice of the proper technique for data analysis. Before going
any further it is well to point out that the person performing the data analysis
should be fully aware of several things:

. What is the objective of the research?

. What is considered a significant research finding?

. How are the data to be collected and what are the factors that effect the
responses?

If an experiment has been properly designed or planned, the data will be collected
in the most efficient form for the problem being considered. Experimental design is
the sequence of steps initially taken to insure that the data will be obtained in such a
way that its analysis will lead immediately to valid statistical inferences. Before a
design can be chosen, the following questions must be answered:

. How to measure the response and the factor’s effect?

. How many of the factors will affect the response?

. How many of the factors will be considered simultaneously?

. How many replications (repetitions) of the experiment will be required?

. What type of data analysis is required (regression, ANOVA, etc.)?

. What level of difference in effects is considered significant?
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The purpose of statistically designing an experiment is to collect the maximum
amount of relevant information with a minimum expenditure of time and
resources. It is important to remember also that the design of experiment should be
as simple as possible and consistent with the requirements of the problem. Hence,
design of experiments requires a new approach to research, which is far from the
traditional (classical) methods of empirical research. The traditional approach
demands considerable material expense and is more time consuming, for the effect
of each factor experiment may be designed to investigate one factor at a time so that
all other independent variables (factors) are held constant. This is the so-called clas-
sical experimental design and is the one that has been favored almost exclusively
among scientists and engineers. At the same time, the factors have no more than 4
or 5 different values (levels of variation) as the total number of trials is particularly
big. If, for instance, the effect of five factors is to be tested where each of them may
be varied at five levels, then for the complete testing of the research subject it is nec-
essary to realize 55=3125 different combinations of factors-trials with no trial replica-
tions meant to reduce experimental errors. The plotted number of classical experi-
mental design points is hard to realize, so that in practice their number is reduced
at the expense of either reducing the investigated factor space-domain or the num-
ber of factor levels. In both cases, the confidence of conclusions, based on experi-
mental results, is reduced.

Besides, a significant part of information obtained in a similar way is of no practi-
cal use for it refers to the region of factor space-domain, which is far from its opti-
mum. Even more drastic errors are possible if all the necessary trials are done. How-
ever, due to the huge time consumption, uncontrolled changes in the quality of inlet
raw materials or in the experimental plant are not accounted for. The first and final
trial results of an experimental program are not comparable from the accuracy point
of view. As an important drawback of classical experimenting, there also appears the
fact that it is impossible to single out the effects of interactions between the ana-
lyzed factors. This has a great influence on the errors in estimating the responses as
functions of observed factors. An additional difficulty also arises in an estimate on
the lack of fit of the obtained mathematical model since the experimental error is
usually missing. Finally, interpreting the results of a classical experiment becomes
difficult, because a simultaneous analysis is impossible due to a large number of
tables and graphs.

Most of these problems can be avoided by applying the design of experiments
and a simultaneous increase in efficiency of empirical research. The consumption
of research time may be reduced ten or more times. Referring to the example where
five factors are analyzed, it is possible to do the designed experiment with 32 trials
only by using rotatable design of second order. Cases are known when, by applying
the design of experiments, an optimal solution has been reached and where a classi-
cal experiment had no solution in a reasonable time period.

By using the design of experiments, a researcher’s intuition is developed and his
way of thinking changed. It may therefore be said, that the design and analysis of an
experiment is a scientific method in elaborating experimental results, in finding
optimal solutions and in research that has the experiment as their subject. Design
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of experiments also uses a traditional approach in the research, namely the use of
experimental data to obtain a mathematical model of a system. In a general case
and from a mathematical point of view, the used mathematical models may end up
being complicated mathematical functions.

Response, aim function or optimization criterion may have the form:

y=f(xi, zi, wi ) (2.1)

where:
y is response, aim function, optimization criterion;
xi are the controllable independent variables, factors;
zi,wi are variables and constants that affect y but are uncontrollable;
f is the function that defines y, xi, zi, wi relationships.

Besides, one should also keep in mind the equations and non-equations that
define the constraints of controllable factors. Equation (2.1) defines the constraints
of a research subject. Research solutions may be considered optimal if they are the
maximum and minimum of the response function for the given constraints.

It has to be remembered that each model is an approximate solution and gener-
ally is not a correct description of the research subject. Optimal solution of a model
is therefore considered an approximate optimum of the real system. This assertion
is both good and bad. The good side is that the models are not complicated, since, to
be close to the real system, they would have to be very complex. On the other hand,
insufficient reality of a model reduces the solution confidence.

In classical research methods, the main objective is to define the rule/law, which
has the property of an absolute category, at a given level of knowledge. The law is
either unconditionally correct or not. Such an approach makes studying a complex
system difficult, for when many factors have complex effects it is difficult to find the
correct mathematical system in accord with the laws. Also, approximate solutions
are senseless for we cannot talk about “bad” and “good” laws. In the new approach to
solving problems, or in design of experiments, the mathematical model is not abso-
lute. It only offers an approximate idea on the research subject and one may speak
of “good” and “bad” mathematical models. The essence of design of experiments is
that it enables optimal solutions to be obtained even when it is really impossible to
get a functional (deterministic) mathematical model and define a rule precisely. It is
characteristic for design of experiments that it uses polynomial models since the
quality of approximation may be improved by increasing a polynomial degree. Such
models are especially suitable for solving optimization problems as it makes it possi-
ble to take into account the effects of interaction and a large number of factors.
Besides, it makes it easy to estimate the degree of lack of fit of polynomial models of
different orders.

A designed or active experiment is based on using general methodological con-
cepts such as regression and correlation analysis, analysis of variance, randomiza-
tion, optimal use of factor space, successive experimenting, replication, compact-
ness of information, statistical estimates, etc.

The regression analysis mathematical apparatus is used in the design of experi-
ments. It is therefore suggested to take into account assumptions of regression anal-
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ysis when performing an experiment. This means that the trial results are indepen-
dently and normally distributed random values of equal variances. In other words,
the experimental results in each trial are obtained with certain probability so that
the distribution of such values in each trial is subject to the normal distribution law,
and variances typical for them are practically equal. The law on the distribution of
experiment results is observed because, the random value is defined if its distribu-
tion law is known. The stress is on the normal distribution for then the used mathe-
matical model is the most efficient. The law on normal distribution of data is most
frequently met in practice. The fact that some experimental results do not submit to
this law is not upsetting as by mathematical transformations, given in section 1.5,
such results may be brought down to the normal distribution law. Equality of ran-
dom-value variances is of particular importance in experiments with a minimal
number of runs or design of experiments due to their confidence level. This condi-
tion is fulfilled if the variance of one trial is equal to the same variance of any other
trial. This variance equality is checked by tests from section 1.5. In the case of
inequality, it is solved by identical transformations, same as for the normality of data
distribution. These checks may be easily performed since replication of trials is
available and replicated trials are a principle of design of experiments.

One assumption of regression analysis is the increased precision of measuring or
fixing a factor. When measuring or fixing a factor, such conditions are recom-
mended where a factor measurement error is incomparably smaller when compared
to an error in determining a response.

Randomization is also an important idea in the design of experiments. It has to
do with the random sequence of doing trials so as to annul the influence of system-
atic factors, which are difficult to stabilize and control. In this way one of the main
concepts of classical experiment, having to do with the necessity of fixing distur-
bance factors, is disrupted. Randomization is the means used to eliminate any bias
in the experimental units and/or treatment of combinations-trials. If the data are
random it is safe to assume that they are independently distributed. Errors asso-
ciated with experimental units, which are adjacent in time or space will tend to be
correlated, thus violating the assumption of independence. Randomization helps to
make this correlation as small as possible so that the analyses can be carried out as
though the assumption of independence were true.

The idea of the concept of successiveness in doing an experiment is as follows.
Empirical research should consist of separate successive stages or series of trials and
not of designing a complete experimental research in advance. An active experiment
should have the property of successiveness, or, each next stage is projected and de-
signed based on the results of previous trials.

Optimality of using the factor space for an adequate multifactor experiment
means an increase in experiment efficiency proportional to the increase in the num-
ber of its factors.

The estimate precision of a polynomial model regression coefficients rises with
an increase in the number of factors, because the diameter of the sphere of factor
space, within which variation limits of each factor lie, also increases.
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The concept of information compactness refers to the result analysis of a de-
signed experiment. This means that final results do not require a large number of
tables and graphs.

The concept of statistical estimates refers to the threshold or significance level
where the estimate of a parameter, model or solution is either accepted or rejected.

Finally, it should be pointed out once again that obtaining as precise and com-
plete information on a studied chemical or physical system as possible, with a mini-
mal number of experiments and the lowest possible expenses, is the necessary con-
dition for efficient research work. Therefore, application of modern mathematical
and statistical methods in designing and analyzing experimental results is a real
necessity in all fields and phases of work, starting with purely theoretical considera-
tions of a process, its research and development, all the way to designing equipment
and studying optimal operational conditions of a plant.

All empirical research methodologies may be divided into two large groups:

. classical or passive,

. active or statistically designed.

Classical design of experiments-one factor at a time
Experiments may be designed to investigate one factor at a time so that all other
independent variable-factors are held constant. This is the so-called classical experi-
mental design. A classical experiment means researching mutual relationships be-
tween variables of a system, under “specially adapted conditions”.

Let us observe an example of system research where the effects of k factors on p
levels are to be determined. As we mention above, the classical system of experi-
menting requires each factor to be tested at p levels while others are kept constant at
chosen fixed values. The total number of trials to be done by this scheme is:

N=k(p-1)+1 (2.2)

Assume we have the production in a chemical reactor whereby the product yield y
is essentially affected by three factors: X1 reaction mixture temperature, X2 pressure
in reactor and X3 time of reaction. If all factors are changed at two levels (p=2) then
the research program is encompassed by four trials (N=4). The lower level factor val-
ues are marked by the symbol “-” and the upper ones by “+”. The conditions of
doing each run are shown in Table 2.1.

Table 2.1 Experimental combinations

Number of
trials

Factor level combinations y Remark

X1 X2 X3

1 – – – y1 Reference run

2 + – – y2
3 – + – y3
4 – – + y4
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After realizing each trial, it is possible to determine factor effects on product
yields:

EX1=y2-y1; temperature effect on yield;

EX2=y3-y1; pressure effect on yield; (2.3)

EX3=y4-y1; time effect on yield;

Based on data analysis one can conclude that:

. lack of experimental error;

. lack of interaction effects;

. the result of referential trial (y1) is overestimated for it is used three times in
determining the effects.

Based on this kind of analysis the researcher may decide to check the precision of
the results by repeating the trials. Precision is the repeatability of the results of a
particular experiment. However, apart from the possibility of determining experi-
mental error, the trial repeating does not offer new information.

Statistical design of experiments-DOE
The mentioned deficiencies of the classical design of an experiment may efficiently
be removed and overcome by statistical design and calculation of obtained results by
means of methods of statistical analysis.

If for the studied example, instead of repetition, the experimental program is
expanded by additional combinations of factor levels-trials, as shown in Table 2.2,
we get an experiment with eight trials.

Table 2.2 Additional experimental combinations

Number of
trials

Factor level combinations y Remark

X1 X2 X3

5 + + – y5
6 + – + y6
7 – + + y7
8 + + + y8

A complete design of experimental research, which includes all eight design
points, is one of the best-known statistical experimental designs, the so-called full
factorial design.

Factorial design of experiments, combined with statistical methods of data analy-
sis, offers wider and more differentiated information on the system, while conclu-
sions are of greater usability. The results of all the eight runs in the analyzed exam-
ple serve for determining the factor effects, with seven trials being independent pos-
sibilities of testing the effects and one serving for their comparison with the chosen
fixed values. Three out of seven independently determined factor effects serve for
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finding its basic effect: EX1; EX2 and EX3 and the other four to determine their mutual
interactions: EX1X2 EX1X3 EX2X3 and EX1X2X3, following these expressions:

Table 2.3 Full factorial design2
k

Number of
trials

Factor level combinations Response
y

Remark

X1 X2 X3

1 – – – y1 Reference trial

2 + – – y2
3 – + – y3
4 + + – y4
5 – – + y5
6 + – + y6
7 – + + y7
8 + + + y8

EX1=(y2+y4+y6+y8)/4-(y1+y3+y5+y7)/4
EX2=(y3+y4+y7+y8)/4-(y1+y2+y5+y6)/4
EX3=(y5+y6+y7+y8)/4-(y1+y2+y3+y4)/4
EX1X2=(y1+y4+y5+y8)/4-(y2+y3+y6+y7)/4 (2.4)
EX2X3=(y1+y2+y7+y8)/4-(y3+y4+y5+y6)/4
EX1X3=(y1+y3+y6+y8)/4-(y2+y4+y5+y7)/4
EX1X2X3=(y2+y3+y5+y8)/4-(y1+y4+y6+y7)/4

As has been said before, in the case of the classical experiment, which with repli-
cation has N=2�4=8 trials, the results of three trials are used for establishing basic
factorial effects, one as a referential value and the remaining four for determining
experimental error. The advantages of factorial design are evident and they prove to
be the best in experiments with a larger number of factors. Basic advantages of
design of experiment when compared to the one factor at a time classical one, are as
follows:

. it makes possible asserting lawfulness of phenomena in the experimental
space-domain as a whole, and hence drawing conclusion on results is of
wider usability value;

. it offers wider possibilities of testing, the effects of factor varying on final
result, since results of all trials are used for calculation of the effects;

. it enables establishing the size of factor interactions, moreover, this is the
only way such interactions may be determined;

. data accuracy from an active experiment is reached through considerably
fewer statistically designed trials, i.e. at the same number of trials an active
experiment offers more complete and precise information;

. the final research objective set up is achieved in a systematic, well thought
out and organized way in a short time with considerably fewer runs and the
lowest possible material costs;
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. in a classical experiment one is usually unable to take into account uncon-
trolled changes, errors resulting from material variation, bias errors and
errors resulting from the sequence of testing;

. a classical experiment has a lack of information about experimental error,
which serves as an estimate of the lack of fit for the obtained mathematical
model;

. when doing a classical experiment one obtains clumsy tables and graphs that
are difficult for a simultaneous analysis;

. an active experiment eliminates one of the main assumptions of classical
experimentation having to do with the necessity of fixing disturbance factors.
A researcher is consciously suggested to make random situations-randomiza-
tions so that hard to stabilize and uncontrolled factors could have a random
character;

. an active experiment has a successive property, or, each next stage is pro-
jected and designed based on results of a previous series of trials;

. an active experiment changes the way of the experimenter’s reasoning,
increases his intuition and makes him active in projecting further stages of
an experiment, requires use of empirical and scientific background;

. a classical experiment is a special case of an active statistical design of experi-
ment where the individual effect of certain factors on system response is
tested. From a mathematical point of view, a classical experiment offers par-
tial effect, while the active one gives the total effect, for with it all factors are
simultaneously varying in the experiment.

Table 2.4 shows basic statistical designs for all kinds of quantitative and categori-
cal/qualitative factors.

Table 2.4 Basic DOE Designs

Experimental design Factors Application

Simple comparative designs Categorical/qualitative and
quantitative

Check of method, testing of
single factor effect

Random blocks and Latin
squares

Differences between batches,
treatments, samples

Calculation of effects with
elimination of inequality of
experimental conditions

Fractional replicate designs Categorical/qualitative and
quantitative

Screening of factors

Random balance design Categorical/qualitative and
quantitative

Screening of factors

Full factorial designs Categorical/qualitative,
quantitative and combined

Choice of factors, calculation of
main effects and interactions

Central composite rotatable
designs

Quantitative Regression models of second
order

Central composite orthogonal
designs

Quantitative Regression models of second
order
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Table 2.4 Continued

Experimental design Factors Application

Simplex lattice design Quantitative Mixture problems, regression
models of second and higher
orders

Extreme vertex design Quantitative with constraints Mixture problems, regression
models of second and higher
orders

Hartley's, Kono’s, Kifer’s,
D-Optimal

Quantitative Regression models

Higher-order designs Quantitative Regression models of higher
order

2.1
Preliminary Examination of Subject of Research

2.1.1
Defining Research Problem

Experimental research of the system must be preceded by preliminary examination of
the subject of research aimed at obtaining information necessary for defining the
research objective.

The modern approach to experimental research presupposes that to obtain the
optimal solution it is necessary to define the research problem correctly. It should be
defined in such a way to enable the most efficient algorithms and methods of a de-
signed experiment. For a concrete definition of a research problem, it is necessary to
formulate clearly its objective, choose the research subject model and analyze its pre-
liminary information. Special attention should be paid to the setup conditions in the
problem with reference to the capability of the available experimental plant. The
next step is the choice of preliminary design of experiment. When choosing it one
must take into account all the singularities of the research problem and all known
design of experiments must be analyzed in this respect. The design or method that
is most efficient in the particular analyzed case is chosen. The methods and designs
of experiments for further research stages will be considered after completing and
analyzing the previous research. As Fig. 2.1 shows, the new approach to experimen-
tal research requires long prior preparation of the experiment aimed at increasing
experimentation efficiency.

The research objective may be defined if the research subject or optimization sub-
ject is defined, if its requirements are known and if there exist interactions that
change the quality of a research subject with the change of requirements.

The next step is choice of research subject model. It has been said before that
design of experiments rests on cybernetic concepts about the research subject. A
“black box› is therefore recommended as the research subject model, which will be
affected by various controllable factors. The defining principles of such a model cor-
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Procedure after obtaining research results

Defining optimum
Maintaining optimum

Compromise solution

Determining partial optimums

Third-order model
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Figure 2.1 Block diagram of experimental research

respond to the researcher’s preliminary knowledge on insufficient awareness of the
mechanism of multifactor research-problem phenomenon.

Figure 2.2 shows the black-box model. The inlets indicated by arrows X1, X2,..., Xk

are the possibilities of affecting the research subject. The outlet arrows y1, y2,..., ym
or outlets are responses, optimization criteria or aim functions.
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Input variables are controllable, uncontrollable and disturbance variables. Controlla-
ble variables or factors X1, X2,..., Xk are variables, that can be directed or that can
affect the research subject in order to change the response. They can be numerical
(example: temperature) or categorical (example: raw material supplier). Uncontrolla-
ble variables Z1, Z2,..., Zp are measured and controlled during the experiment but
they cannot be changed at our wish. They can be a major cause for variability in the
responses. Other sources of variability are deviations around the set points of the
controllable factors, plus sampling and measurement error. Furthermore, the sys-
tem itself may be composed of parts that also exhibit variability. Disturbance, non
controlled variables W1, W2,..., WQ are immeasurable and their values are randomly
changed in time.

Factors may have associated values called levels of variations. Each state of a black
box has a definite combination of factor levels. The more different states of the black
box that exist, the more complex is the research subject. Formalization of prelimi-
nary information includes: analysis of reference data, expert opinions and use of
direct data, which enables correct selection of response, factors and null point or cen-
ter of experiment. Factor limitations are also defined at this stage. If the research is
linked with several following responses, then response limitations also have to be
analyzed. The next phase refers to defining the research problem. When defining
this problem one must keep in mind the research-subject model, and in a general
case it is Eq. (2.1) that defines the link between the inlet and outlet of the black box.
Defining the research problem is possible only now when its aim has been deter-
mined, the criteria established, the factors, limitations and null point defined. The
problem is a simple one when only one response or optimization criterion is in
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question. In the case of several optimization criteria or multiple response optimization
the problem becomes very complex.

Defining a research objective by its difficulty may be divided into three levels:

. screening factors regarding statistical significance of their effect on response;

. obtaining a mathematical model of research subject;

. optimization of the research subject.

Optimization of a research subject is the hardest research problem. It should
immediately be noted that different optimization problems appear in practice. In
most cases extreme problems are present, problems of searching for extremes
(minima and maxima) of a response function in the case of one response and with
factor limitations. Most such problems have to do with finding the maxima of outlet
and minima of inlet parameters. There are situations too where response improve-
ment with regard to initial state in null point is required. Often, there is a demand
for finding the local optimum if there are more of these.

Finding the mathematical model of the research subject is the lower level of a
research objective. It is obligatory for a large number of problems. This obligation
comes after the end of factor screening or after finding the optimum. The general
form of the research subject mathematical form is:

y=j(X1,X2,...,Xk) (2.5)

where:
y is response, optimization criterion, value that is measured during the experiment;
X1, X2,..., Xk-are controllable factors that are changed during the experiment.

The aim function may in this case be called response function for it is literally the
response to factor change. Geometrically, a response surface corresponds to a
response function.

It has been said before that we use polynomial models in the design of experi-
ments. Therewith we, in principle, approximate the response function (2.5) by a
polynomial.

y ¼ b0 þ
Pk
i¼1

b
i
Xi þ

Pk
i;j¼1

b
ij
XiXj þ

Pk
i¼1

b
ii
X

2
ii þ ::: (2.6)

where:
b0, bi, bij, bii are theoretical regression or polynomial coefficients.

Based on experimental values, the real regression coefficients are estimated, so
that:

ŷy ¼ b0 þ
Pk
i¼1

biXi þ
Pk
i;j¼1

bijXiXj þ
Pk
i¼1

biiX
2
ii þ ::: (2.7)

where:
ŷy is predicted-calculated response value,
b0, bi, bij, bii are real regression coefficients.
From regression coefficient values one may estimate the factor effects or the

degree of influence of associated factors on response. Geometrically, Eq. (2.7) is the
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response surface in the k-dimensional region. This basic surface may, for a more
detailed study of the optimum region, be cut two-dimensionally for constant
response values, with the idea of obtaining a contour graph, which can easily be pre-
sented geometrically in a plane.

Lack of fit of the obtained model has to be statistically checked, so that, if needed,
the polynomial degree may be augmented. Knowing the mathematical model of the
research subject for several responses is a prerequisite in solving optimization with
multiple responses. The computation of this is solved geometrically or by use of com-
puters and the method of linear algebra.

2.1.2
Selection of the Responses

Selection of the responses is one of the most important problems of a preliminary
study of the research subject, since a correct definition of research objective means
correct selection of the responses. An incorrect selection of the responses annuls all
further research activities. Depending on the subject and research objective, optimi-
zation parameters or responses may be quite different. To formalize the procedure
of selection of the responses, with no intention of being detailed and complete, Fig.
2.3 gives the block diagram of the most frequently used optimization parameters.

This block diagram includes the most frequently used responses in practice and it
can help the researcher to find his way in a real situation. Real situations are by rule
very complex and usually require simultaneous analysis of several system responses.
Each research subject may, in principle, be characterized by a population or any

Stability

Optimization parameters

Techno economicEconomic Technical-technological Other

Loss Cost effectiveness Yield
Psychological

Statistical

Esthetic
Productivity

Total cost Security

Durability

Physical
properties

Time needed
for experiment

Coefficient
of usefulness

Mechanical
properties

Microbiological
properties

Physical-chemical properties of product

Figure 2.3 Block diagram of response selection
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other response sub population, given in Fig. 2.3. Optimization of such a research
subject may be done only when a unique optimization parameter has been selected.
In such a case, all other responses are not optimization parameters but are taken as
constraints. The other way is to make one, so-called general response, from all ana-
lyzed responses.

For a research subject parameter to be a response, it has to fulfill certain condi-
tions. A response should be:

. quantitative,

. singular,

. statistically effective,

. universal,

. physically realistic,

. simple,

. easily measurable

System response should be quantitative, i.e. its property must be its ability to be
expressed by ciphers. Its manner of measurement in any combination of factors,
which determine it, must also be known. The sum of values taken by a response is
called the domain of response. The domain of optimization parameter determination
may be continuous and discrete, limited and unlimited. A chemical reaction yield, for
example, is a continuous, limited response for it changes continually in a limited
range from 0 to 100%. The number of rejected products and the number of plant
damages are examples of discrete and (on one side) limited regions of response
determination. When it is impossible to determine a response quantitatively, we use
the method of ranking. By this method, definite estimates or ranks are corresponded
to an optimization parameter by a predetermined defined scale. The ranked
response obtained has a discrete limited determination region. A rank is a quantita-
tive response estimate with a definite degree of subjectivity, i.e. it is associated with
qualitative response meanings. For any physically measurable response it is possible
to make up a response with ranks. Thereby one has to keep in mind the fact that the
rank method gives a less sensitive response, which makes studying finer effects
impossible.

Singularity of response is such a property of a quantitative parameter where one
and only one response value, with precision up to the size of experimental error, cor-
responds to a definite factor combination. It is obvious that the opposite is not valid,
for several factor combinations may correspond to one response value.

Besides the two mentioned properties, an optimization parameter should also be
statistically effective. This response property is brought down to the choice of opti-
mization parameter with the highest possible precision of determination. When this
response precision is insufficient, the number of trials is increased.

The universality of optimization parameter means a many-sided and total charac-
terization of a research subject. With regards to universality, technological optimiza-
tion parameters are not universal enough for they do not include a property such as
cost efficiency of a process. General optimization parameters have universality, as
they are a function of the necessary number of individual properties.
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Another desire for an optimization parameter is also to have physical sense, to be
simple and easy to measure. The physical sense of a response has to do with result
interpretation, and simplicity and ease of measurement when doing an experiment.

With regards to the research subject as a system, which may consist of several
subsystems, it should be kept in mind that in that case we can talk about local opti-
mization parameters. Discovering local optima often does not mean that we have
the optimum for the whole system.

Apart from the analyzed requirements to be fulfilled by an optimization para-
meter, one should also, when choosing the response, keep in mind the fact that this
parameter affects, up to a point, the choice of the research subject model. Economic
parameters are by their nature additive, so that they can be easily modeled by simple
functions, which is not applicable to physical and chemical responses.

2.1.2.1 Subject of Research with Several Responses
Research problems with one response undoubtedly have an advantage. In practice,
however, we mostly meet research subjects with several responses, which often
means a literally large number of responses. Thus, for example, when producing
rubber, plastic and other composite materials one must take into account responses
such as: physical-chemical, technological, economic, mechanical (tensile strength,
elongation, module, etc.) and others. One can define the mathematical model for
each of the mentioned responses but simultaneous optimization of several func-
tions is mathematically impossible.

In such cases we usually do the optimization by one response, which by the defi-
nition of the research objective, is the most important, while for others we impose
constraints. A useful thing in such situations is to find a possibility of reducing the
number of responses. This is where correlation analysis comes in. By means of cor-
relation analysis one should determine correlation-coefficient pairs between all pos-
sible responses.

If one response is marked y1, and the other one y2 and if the number of runs they
are measured in is N, then the correlation coefficient in case of u=1, 2,..., N number
of trials, is given by expression:

ry1 y2 ¼
PN
u¼1

y1u � �yy1ð Þ y2u � �yy2ð Þ
" #, PN

u¼1

y1u � �yy1ð Þ2 y2u � �yy2ð Þ2
" #1=2

(2.8)

where:

�yy1 ¼
PN
u¼1

y1u=N �yy2 ¼
PN
u¼1

y2u=N

From the correlation analysis it is known that the correlation-coefficient value lies
between -1 and +1. If an increase in the value of one response causes the other one
to rise, their correlation coefficient has a positive value. The closer a correlation coef-
ficient value is to one, the more the value of one response depends on the value of
the other one, i.e. there is a linear connection between responses so that only one
response may be followed on the actual research subject. It should be noted once

172



2.1 Preliminary Examination of Subject of Research

again that the correlation coefficient has a clear meaning only in the case of the line-
ar relationship and normal distribution of the parameters.

At a high correlation coefficient value, either of the two analyzed responses may
be discarded as it adds no new information on the subject of research. Our sugges-
tion is to eliminate the response that is either hard to measure or its physical inter-
pretation is difficult.

Design of experiments insists on measuring all responses and then, by means of
correlation analysis, research subject models for the least possible number of
responses or for general response are made up. This does not mean that there are no
cases in practice when correlated responses are used.

Summary
Problems of choosing responses of complex research subjects have been analyzed.
The optimization parameter is, in fact, a reaction or response to factor level changes
that define the status of a research subject. Responses may be economic, technoeco-
nomic, technical-technological, statistical, psychological, etc. A response should be
quantitative, singular, statistically effective, universal, physically real, simple and
easily measurable. For responses with no quantitative measurement, the ranking
method is used. Out of all responses typical for a research subject, only one or a gen-
eral response is taken. Other responses are used as constraints.

2.1.2.2 General Response
It is difficult to single out one response as the most important one out of a large
number of responses that characterize a research subject. When this happens we
have the situation described in the previous chapter. A harder problem is to make
up one, a so-called general response [1].

Each response has its physical sense and its dimension. To join such models, it is
first necessary to introduce a non dimensional scale for each response. The scale
must be of the same kind for all responses that are generalized. The choice of the
scale is not a routine job and it depends on preliminary information we have about
the responses and on the precision which is required from the general response.

After choosing the non dimensional scale for each response, one should define
the rules of combining partial responses. A unique rule or algorithm does not exist.

Simple general response
Assume that a research subject is characterized by n partial responses yu(u=1, 2,...,
n) and that each of these responses is measured in N trials. Then the value of the u-
responses in the i-th run is yui (i=1, 2,..., N). Each of the given responses yu has its
physical interpretation and its dimension. If we introduce the non dimensional scale
with only two values 0 and 1, the 0 would correspond to all those values of partial
responses that are unsatisfactory by their quality, and the 1 would correspond exactly
to those that are satisfactory. The transformed values of partial responses according
to the non dimensional scale are marked y

�
ui . y

�
ui and it is the transformed value of

the u response in the i-th trial. After the transformation we obtained non-dimen-
sional partial responses that should now be generalized. Since partial responses take
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the values 0 and 1, it would be logical to make up the general response with the
same values 0 and 1. Thereby the general response should have the value 1 only
when all partial responses have the value 1. When only one of the partial responses
takes the value 0, the general response must also have the same value. For such
imposed conditions the general response satisfies this mathematical expression:

Yi ¼
�Qn
u¼1

y
�
ui

�1=n
(2.9)

where:
Yi is the general response in the i-th trial.

Qn
u¼1

is the multiply of transformed partial responses y
�
1i,y� 2i,...,y� ui.

The general response definition by the formula (2.9) may be simplified by delet-
ing the exponent 1/n without affecting its core.

Yi ¼
Qn
u¼1

y
�
ui (2.10)

Example 2.1
In developing an optimal technological procedure of producing a new plastic mate-
rial, the product quality had these seven characteristic responses: y1 thermostability,
y2 material shining, y3 keeping of properties at low temperatures, y4 elasticity mod-
ule at 20 �C, y5 tensile strength, y6 elongation at break and y7 number of folds before
rupture.

These transformations are introduced for the given partial responses.

y
�
1i ¼

1; if y1i � 100 ;
0; if y1i � 100 ;

�
y
�
2i ¼

1; if y2i � 20 ;
0; if y2i � 20 ;

�

y
�
3i ¼

1; if y3i � �18 ;
0; if y3i � �18 ;

�
y
�
4i ¼

1; if y4i � 120 ;
0; if y4i � 120 ;

�

y
�
5i ¼

1; if y5i � 200 ;
0; if y5i � 200 ;

�
y
�
6i ¼

1; if y6i � 200 ;
0; if y6i � 200 ;

�
y
�
7i ¼

1; if y7i � 25 ;
0; if y7i � 25 ;

�
Experimental data of the nine trials are given in Table 2.5.
Two general responses are defined for a complex characterization of the material;

the first, a general response

Y1 ¼
h
y
�
1 � y

�
2 � :::� y

�
7

i1=7
takes into account the producer’s and buyer’s demands, while the other general
response that considers only the buyer’s demands has the form

Y2 ¼
h
y
�
3 � y

�
5 � y

�
7

i1=3
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Table 2.5 Original, transformed and general responses

No.
trials

Natural, original responses Transformed, partial responses General
responses

y1 y2 y3 y4 y5 y6 y7 y
�
1 y

�
2 y

�
3 y

�
4 y

�
5 y

�
6 y

�
7 Y1 Y2

1 272 14 -25 103 215 299 103 1 1 1 1 1 1 1 1 1

2 187 20 –23 91 179 254 29 1 0 1 1 0 1 1 0 0

3 162 21 –24 102 216 270 99 1 0 1 1 1 1 1 0 1

4 461 14 –25 114 198 251 54 1 1 1 1 0 1 1 0 0

5 267 14 –21 105 208 268 31 1 1 1 1 1 1 1 1 1

6 250 24 –27 99 220 304 46 1 0 1 1 1 1 1 0 1

7 489 12 –25 123 201 238 33 1 1 1 0 1 1 1 0 1

8 380 14 –23 116 230 292 126 1 1 1 1 1 1 1 1 1

9 580 29 –22 100 215 304 48 1 0 1 1 1 1 1 0 1

Only three technological procedures may be recommended by the first, general
response. If only the producer’s demands are considered, the materials obtained in
seven trials have a satisfactory quality. If for each of the partial responses we known
the best-ideal value to be reached, then the general criterion may be made up by tak-
ing into account the given property. Marked with yu0 is the best ideal value of
response u. We can then consider the difference yui-yu0 as the measure for reaching
the ideal value of partial response. The given difference may not be used to define a
general criterion for two reasons. The first is that the analyzed difference has the
dimension of the associated partial response. The other is that it may have a nega-
tive and a positive sign. To switch to a non dimensional value, it is sufficient to
divide the observed difference by the associated best value: (yui-yu0)/yu0.

To eliminate the sign, it is sufficient to square it. In that case the general response is:

Y1 ¼
Pn
u¼1

yui�yu0
yu0

" #2
(2.11)

If, in a trial, all partial responses correspond by their values to the associated ideal
values, then the general response has the value zero Y=0. That is the general
response value that one should try to reach in this case. The closer to zero the better.
The deficiency of this procedure for generalization is that each partial response in
general response has the same part or the same importance. The practice tells us
that all responses are not of the same importance but, moreover, are very different.

Thementioned deficiencymay be removed by introducing a significance coefficient au.

Y1 ¼
Pn
u¼1

au
yui�yu0
yu0

" #2
(2.12)

so that:

Pn
u¼1

au ¼ 1; au � 0:
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To assert the response significance degree and to determine the significance coef-
ficient, use the method of expert estimate [2, 3]. The analyzed algorithms for constru-
ing general responses have nevertheless been simple. For more complex general
responses it is necessary to define the transformation scale, which will take into
account finer differences between partial responses.

The desirability function
The most frequently used general response is Harington’s [1, 4] overall desirability
function. The basis of this construction of a general response is transformation of
partial responses into a non-dimensional desirability scale. To construct a desirability
scale we use the prepared, elaborated table of standard estimates, Table 2.6.

Table 2.6 Standard estimates on desirability scale

Standard
estimates

Desires Quality of product

1.00 Excellent The ultimate in “satisfaction” or quality, and improvement beyond this
point would have no appreciable value

1.00–0.80 Very good Acceptable and excellent, represent unusual quality, or performance,
well beyond anything commercially available

0.80–0.63 Good Acceptable and good. represents an improvement over the best com-
mercial quality, the latter having the value of 0.63

0.63–0.37 Satisfactory Acceptable but poor. quality is acceptable to the specification limits,
but improvement is desired

0.37–0.20 Bad Unacceptable. materials of this quality would lead to failure of the pro-
ject

0.20–0.00 Very bad Completely unacceptable

Partial responses transformed into the non dimensional scale are marked
du(u=1.2,...,n) and called partial desirability or individual desirability. As shown in
Table 2.6 the desirability scale has the range from 0.0 to 1.0. Two characteristic limit
values for quality are within this range 0.37 and 0.63. The 0.37 value is approxi-
mately l/e=0.36788, where e is the basis of the natural logarithm, and 0.63 is 1-1/e.

Due to mathematical interpretation of the desirability function, it is rational, con-
venient and practical to join the desired value d=0.37 to any of the quality properties
in a product specification, under the assumption that limit values for the quality
really exist. The other practical value of the desirability function or the scale is the
limit value 0.63, i.e. the value that corresponds to the best commercial quality of the
product, which exists and is acceptable. The mentioned two limit values are geomet-
rically two points of the curve, which is described by the equation.

d=exp [-exp (-y)]=e
�e

�y

(2.13)

The geometric presentation of Eq. (2.13) is in Fig. 2.4. The desirability scale values
are inserted on the ordinate from 0 to 1. The response values of the coded dimen-
sion (y¢) are on the abscissa. The beginning of the abscissa or its null is the exact
point to which the ordinate 0.37 corresponds. It should be noted that the point with
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coordinates (0; 0.37) corresponds to the first fold point of the curve. The same may
be said for the value 0.63. The chosen curve in Fig. 2.4 is adequate to the real situa-
tions as it is continuous, monotonous, smooth and besides, the curve ends are less
sensitive than the center zone. The coded response or axis y¢ is, in principle, divided
into 3 or 6 ranges with reference to zero. The choice of number of intervals is impor-
tant as it determines the curve slope.

Example 2.2
Let one of the responses be a chemical reaction yield with limit values 0.0% and
100.0%.

Assume that the 100% yield is equal to the desirability scale of value 1, and 0.0%
to the value 0.

d
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Figure 2.4 Desirability function

The choice of other critical points depends on a series of circumstances such as
result requirements, researcher abilities, etc. Take the case where the yield is 50%.
The 70% yield is hard to imagine as it may be impossible due to side chemical reac-
tions. After such an assertion it is clear to a researcher that even the 70% yield is the
same as that of 100%. That, in fact, is the second point of the researcher’s choice
and its value on the desirability scale is close to one. The third point should limit the
“very good” region, which on the desirability scale is between 0.8 and 1.0. To choose
the corresponding response value for this point has so far been the hardest job. If it
is hard to obtain a 70% yield, then 60% would definitely be satisfactory, and that is
the third point on the abscissa. One should not be sure in this conclusion if the
experimental equipment for measuring the yield has a great error and it is unable to
differentiate the 60% and 70%. A researcher who is a greater optimist should choose
the yield 67% for the required value. For the region of good results (0.80–0.63) he
may choose the yield values between 60–55%. The already reached value in the
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experiment of 50% will be taken as the lower limit of satisfactory results. The 45%
yield is simply a bad result. The performed correspondence has been geometrically
shown in Fig. 2.4 with I as the abscissa. In a case when we dispose with a technolog-
ical process that has a 95% yield, all this looks different. In that case, greater purity
of the product may be demanded and it, apart from other measures taken, may
demand a larger yield of 98%. Such a case has been geometrically shown in the
same figure by the abscissa II. It should be added that such a desirability scale is
possible only through precise yield measurements. The situation is quite different
when synthesis of a new product is in question, which so far has not succeeded in
giving a new product, even for identification. At a yield of 2%, for example, we are
unable even to identify the product and a 10% yield would be a real success. This
case is also depicted in Fig. 2.4, as abscissa III.

A curve of desire is often used as amonogram.Thus, in the case of I if the yield is 63%
one obtains a 0.9 desirability estimate inFig. 2.4. This procedure of reading the desirabil-
ity scale from a diagram is often used in practice. In case this method is not precise
enough, one uses the analytical method. This means that the coded response y¢ is read
and then the obtained value is replaced inEq. (2.13), wherefrom the desirability estimate
is calculated. In the previous example only one, quantitative response has been ana-
lyzed, it being the chemical reaction yield. The problem gets harder if the qualitative
response is in question. In both the first and the second case, it is crucial to determine
the acceptable and unacceptable quality limits.Hereby one has to remember that limita-
tionsmay be one-sided, yu£ymax or yu£ymin, and double-sided, ymin£yu£ymax. Two situations
are possible. The first, a simpler one, is when the researcher disposes with information
on requirements for each partial response or has clear specifications inwhich either one
or both limitations are defined. Then the estimate on the desirability scale d=0.37 corre-
sponds to ymin if we have a one-sided limitation or ymax for yu£ymax. In the case of a dou-
ble-sided value limitation d=0.37 both ymin and ymax correspond. In the other situation,
the researcher has no specifications available so that the limit values on the desirability
scale are determined based on the runs done and the researcher’s intuition. It is obvious
that in such cases one should not be satisfiedwith the researcher’s opinion and intuition
for it can be highly subjective. Therefore opinions of several researchers are used with a
check of the degree of accord in their opinions by the rank correlationmethod.

Transformation of partial responses into partial/individual desirability functions
Assume we have an experiment where we dispose with specifications with one or
two limit values for each partial response. For those values outside the limit values
we have du=0, and within them du=1. If ymin is the lower limit value of the specifica-
tion and if yu‡ymin then the partial desirability function for a one-sided limitation is:

du ¼ 0; if yu � ymin ;
1; if yu � ymin ;

�
(2.14)

By analogy for a double-sided limitation it is:

du ¼ 0; if yu � ymin and yu � ymax ;
1; if ymin � yu � ymax ;

�
(2.15)
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In this way we have reached the simple general response, which has been analyzed
before. The desirability scale has come down to a simple scale with two classes. Both
these cases Eqs. (2.14) and (2.15) are shown in Fig. 2.5.

d

y

1,0

0,0
min y ymaxmin

0,0

1,0

yy

d

Figure 2.5 Partial desirability function with one- and double-sided limitation

Here we have a very simple classification on acceptable and unacceptable quality,
which is rarely met in practice. Transformation of partial responses into a partial
desirability, in a large number of cases uses Table 2.6 and desirability (2.13).

For one-sided limitations yu£ymax or yu‡ymin , partial desirability, limited on one
side, is shown in Fig. 2.6.
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Figure 2.6 One-sided desirability
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Figure 2.7 Double-sided desirability

Many responses have such one-sided limitations: tensile strength, strain at break,
shock toughness, etc. One can see this in Example 2.2 where for all given responses
the limitation yu‡ymin is valid. The other form of limitations yu£ymax is typical for
responses such as: humidity, specific weight, content of valuable ingredients, etc.
Double-sided desirability limitation is shown in Fig. 2.7.

Double-sided limitation ymin£yu£ymax is met more seldom than one-sided and it is
more complicated for transformation. The following responses may be mentioned
as examples of double-sided limitations: the molecule weight of a material, bulk
density, etc. The transformation in Fig. 2.7 is mathematically given as:

d ¼ e
�
���y0 ���n

(2.16)

where:
e is the constant of natural logarithm e=2.71828;
n is the positive number (0<n<¥);
y¢ is the linear transformation of the property variable or of partial response yu ;
y¢=–1, when yu=ymin is the lower limit value of specification for the observed quality;
y¢=+1, when yu=ymax is the upper limit value of the quality specification;
y¢-is the absolute value of y¢;

Any value of the partial response (of the observed quality) marked as yu may be
transformed into y¢ by means of the expression:

y
0 ¼ 2yu� ymaxþymin

� �
ymax�ymin

(2.17)

Equation (2.16) is a family of curves for which it is valid that:

. they asymptotically approach d=0 when the absolute value
��y¢�� is above 1.0 ;

. they pass throughd=1/e=0.37when the absolute value
��y¢�� is equal to one ��y¢��=1;
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. they pass through d=1.0 halfway between the lower and upper limit values of
the product quality specification.

The exponent in Eq. (2.16) determines the curve slope; when n increases the
curve approaches faster the limit case d=0.0 outside the specified limits, and d=1.0
between the limit values. For any desirability curve that corresponds to Eq. (2.16), n
may be calculated by choosing a d value between 0.6 and 0.9, by finding the absolute
value y¢ and replacing it in the equation:

n ¼ ln ln1=d
ln y0
�� �� (2.18)

Overall desirability
After choosing the desirability scale and after the transformation of partial
responses into partial desirability it is possible to approach constructing the general
response D, which is called Harrington’s over all desirability or Harrington’s general
response. To generalize or switch from du to D is possible by the formula:

D ¼
Qn
u¼1

du

" #1=n
(2.19)

Equation (2.19) is mathematically the geometric mean of partial responses. The
example may be meeting all properties of the material with application require-
ments. When a property of the material does not satisfy the specification (i.e., the
material is brittle and fragile at a certain temperature), then it cannot be used. If a
partial desirability is du=0, this property must be true of over-all desirability D=0. On
the contrary, D=1 when and only when all partial desirability is du=1(u=1.2,...,n).
Over all desirability is highly sensitive to changes in individual ones. The principle
of getting estimates on the desirability scale given in Table 2.6, apart from it being
valid for partial ones, is also valid for d1, d2, ..., dn=0.63, D=0.63, or if d1, d2, ...,
dn=0.37, D=0.37 too, etc. Over-all desirability includes various partial responses such
as: technological, techno economic, physical-chemical, economic, esthetics, etc.
Example 2.1 considers construction of an over all response by using the desirability
scale with only two values 0 and 1.

Example 2.3
Based on data on partial responses from Example 2.1, make up Harrington’s general
response.

As one-sided limited partial responses are in question, use the one-sided limited
desirability as given in Fig. 2.8.

Transformed partial responses into partial desirability are shown in Table 2.7. Fol-
lowingHarrington’s general response:

D1 ¼ d1 � d2 � d3 � d4 � d5 � d6 � d7
� �1=7
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Figure 2.8 Desirability scale

four technological procedures obtained good marks, and five procedures have been
satisfactory. By general response:

D2 ¼ d3 � d5 � d7
� �1=3

which considers only the buyer’s demands, three procedures were very good and six
satisfactory. By comparing the obtained solutions with those from Example 2.1, it is
obvious that Harrington’s general response is finer.

For obtaining coded values y¢ three ranges have been taken in this example or
these codes: -3;-2;-1;0;+1;+2;+3. When the desirability curve should be regulated,
this may be achieved by changing the number of ranges. To enable the transforma-
tion given in Table 2.7, Table 2.6 should be completed by this information:

di yi
' y1 y2 y3 y4 y5 y6 y7

1.00–0.80 3.0 300 7 –30 80 300 330 100
0.80–0.63 1.5 200 10 –25 90 250 280 80
0.63–0.37 0.85 120 15 –20 105 220 250 60
0.37–0.20 0.00 100 20 –18 120 200 200 25
0.20–0.00 –0.50 95 40 –15 130 150 150 20
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Table 2.7 Partial responses, partial desirability and overall desirability

No.
trial

Partial responses Partial desirability’s

y1 y2 y3 y4 y5 y6 y7 d1 d2 d3 d4 d5 d6 d7 D1 Mark D2 Mark

1 272 14 –25 103 215 299 103 0.98 0.67 0.80 0.71 0.55 0.80 1.00 0.77 G 0.76 G

2 187 20 –23 91 179 254 29 0.77 0.36 0.73 0.79 0.32 0.53 0.29 0.50 S 0.41 S

3 162 21 –24 102 216 270 99 0.68 0.35 0.75 0.72 0.55 0.56 0.99 0.63 G 0.74 G

4 461 14 –25 114 198 251 54 1.00 0.67 0.80 0.47 0.38 0.53 0.57 0.60 S 0.56 S

5 257 14 –21 105 208 268 31 0.97 0.67 0.70 0.63 0.44 0.54 0.39 0.60 S 0.49 S

6 250 24 –27 99 220 304 46 0.95 0.32 0.90 0.70 0.63 0.81 0.48 0.65 G 0.62 S

7 489 12 –25 123 201 238 33 1.00 0.72 0.80 0.35 0.38 0.50 0.40 0.53 S 0.50 S

8 380 14 –23 116 230 292 126 1.00 0.67 0.73 0.44 0.67 0.79 1.00 0.73 G 0.79 G

9 580 29 –22 100 215 304 48 1.00 0.30 0.72 0.70 0.55 0.81 0.52 0.63 S 0.60 S

Remark: D1=[d1 � d2 � d3 � d4 � d5 � d6 � d7]
1/7 D2=[d3 � d5 � d7]

1/3

G-good mark S-satisfactory mark

Overall desirability is an abstract definition and therefore some of its properties
have to be analyzed, such as: lack of fit and statistical effectiveness. It has been
asserted that the effectiveness and sensitivity of partial and overall desirability are
not lower than the same properties of any technological response. Overall desirabil-
ity is quantitative, singular, statistically effective, adequate, etc. It has found a large
application in the research of polymeric materials, rubber products, etc.

2.1.2.3 Ranking of the Qualitative Responses
Among the response requirements of a research subject that have to be met in the
first place is that it has to be quantitative. A researcher usually keeps to this require-
ment, however there are situations when it cannot be met, and the researcher has to
deal with qualitative responses. Due to the fact that in the case of qualitative
responses the efficiency of experimental research is reduced, one should try to trans-
form these responses into quantitative ones. For this, one may use the transforma-
tion of qualitative response by desirability scale into partial desirability.

Example 2.4 [5]
In a full-scale plant for producing double-base propellants a study was done to dis-
cover a high-energetic propellant with a high burning rate and low temperature sen-
sitivity. The problem of making such a propellant consisted in a high percentage of
ignitions, even up to 66% of the total number of batches. In the discovery and the
elimination of inflammability causes of certain batches when gelled on rollers, a
great problem was the qualitative response of propellant inflammability, or lack of
possibility to quantitatively express the propellant ignition at gelling. The research
program for discovering these causes included eight trials that were repeated once.
It should be noted that as a correct propellant is production in this case is consid-
ered, the propellant produced after 30 passes over rollers for gelling. The data of all
trials are shown in Table 2.8. Do the ranking of the qualitative response.
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Table 2.8 Ranking of the qualitative response

No.
of trials

I Production-qualitative
response

Rank II Production-qualitative
response

Rank �ddn

1 Done with no problems 1.00 Done with no problems 1.00 1.000

2 Done with crackling 0.85 Done with no problems 1.00 0.925

3 Ignition in 22 passes 0.58 Ignition in 10 passes 0.37 0.475

4 Ignition in 17 passes 0.44 Done with no problems 1.00 0.720

5 Done with no problems 1.00 Done with crackling 0.78 0.890

6 Ignition in 25 passes 0.68 Ignition in 20 passes 0.53 0.603

7 Ignition in 15 passes 0.54 Done with no problems 1.00 0.770

8 Done with crackling 0.92 Done with no problems 1.00 0.960

Ranking is done by using the one-sided desirability given in Fig. 2.9.
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Figure 2.9 Response ranking by desirability scale

Summary
The construction of the general response is linked to defining one quantitative
response to a research subject with several partial responses, each of which has its
own physical interpretation and dimension. To form from such different partial
responses a unique response, it is necessary to transform all partial responses into
non dimensional values by a unique scale. It is therefore necessary when defining a
general response first to choose the scale for doing the transformation. The scale
must be unique for all partial responses to be transformed. The choice of the scale
depends on preliminary information about partial responses and on the required
precision of the general response.

The next problem is choosing the rule by which the transformed partial responses
will be combined into general response. There is no rule, and the way to choose the
combinations is not defined. Certain approaches that a researcher might use have
been presented.
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2.1.3
Selection of Factors, Levels and Basic Level

Having selected the system response, we start choosing factors, levels of the factors
and center point of the design (basic level or the null point). By factor we understand
the controllable independent variable that corresponds to one possibility of influ-
ence on the object of research. A factor is considered defined if its name and domain
of factors are determined. A factor may take several values in this field. The chosen
factor values, both qualitative and quantitative, are called factor variation levels. Fac-
tor variation levels in the design of experiments are coded values. Under factor inter-
val of variation we understand the difference between two factor levels, which in
their coded form have value one. When selecting the factors one should pay atten-
tion to the conditions they must meet.

Factors should be:

. controllable

. of high measurement precision

. singular

. concordant

. noncorrelated linear-wise.

The controllable requirement of factors is linked to the possibility of setting them
on several levels and maintaining those levels precise enough. Or, by changing fac-
tor values, one changes the research subject status or controls the subject.

Factor singularity means its property to directly change the status of a research
subject, i.e. it is not a function of other factors and it may be fixed to any value in
the domain of factors.

Factor concordance is a property that makes it possible for all factor combinations
to be realized in an experiment. This property is very important when an experiment
with several simultaneous factor variations is designed. It is not a rare case where
the lack of this property brings about a change in defining a research problem,
excluding some factors from the experiment, or it changes the domain of factors.

The question of linear correlation between factors deserves special attention.
There is a rule saying that in the case of a linear correlation between factors it is
impossible to design an experiment. This is connected with the requirement to keep
in each design point of experiment-trial (one combination of factor levels) each factor
at a corresponding level, independent from the others. Besides, in the case of a line-
ar correlation between two factors, it is sufficient for only one of them to be included
in the experiment, for inclusion of the other one does not offer any additional infor-
mation on the research subject. The optimization problem is often complicated if all
the observed factors can not be expressed quantitatively. The existence of categori-
cal/qualitative factors is connected with insufficient knowledge of the researched
phenomenon or subject of research. Through a better level of knowledge about the
research subject, categorical/qualitative factors change into quantitative ones. When
categorical/qualitative factors are present, an optimization problem may be solved
in two ways:
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. separately for each level of categorical/qualitative factor and then by compar-
ing the obtained optimal solutions;

. simultaneously for all levels by quantitative defining of a factor on several levels.

Selection of one of these two ways depends on the particular problem. The first one
mostly gives more reliable results but requires a longer time and is more costly. When
we have good preliminary information on a research subject, we may use, in an experi-
ment, the complex factors-similarity criteria, component concentration, logarithms, sim-
plexes of geometric dimensions, etc. [6].When defining factors it is important to take all
those potential factors thatmay affect the research subject. If we forget one of the crucial
factors, this eventually may have very bad consequences for the researcher. Namely, a
forgotten factor will, during the experiment, act randomly taking random values out of
the researcher’s control, which means that the value of a trial error will increase.
When the forgotten factor remains at a fixed level we may infer a false optimum as
there is no guarantee that the fixed level of the factor is optimal.

In practice we are often faced with a research subject that has several technological
phases and where the response is measured in its last phase. In that case, the subject is
studied cybernetically as a “black box”, like a unique technological phase with all the fac-
tors that corresponded to individual technological phases. We had no responses by indi-
vidual technological phases in this case, but this may occur. Moreover, response optima
by individual phases contradict the general optimumsystem. This indicates that optimi-
zation by individual phases of a research subject is justified and possible. In this
way it is possible to incorporate into the design of an experiment, factors from var-
ious phases of a research subject, but this is not always necessary.

When selecting a domain of factors one should pay special attention to choosing
the center point of the design (basic level or the null point). The choice of a null point is
associated with selection of the initial status of the research subject to perform opti-
mization. As optimization is connected with improvement of the subject status in
comparison with the status in the null point, it is desirable that the point is in the
optimum region or as close to it as possible. If the mentioned research was preceded
by other experiments on the same subject, the status having the most convenient
response value is taken as the null experiment. The null point is quite often the cen-
ter of the domain of factors. The most important alternatives in selecting the basic
and null levels are shown in Fig. 2.10.

Having defined the null point, we choose the factor intervals of variation. The selec-
tion of these factors means determining such factor values, which in their coded
form have the values +1 and -1. When choosing this factor in the experimental
domain we obtain a subdomain, symmetrical to the null point, which is used in the
first experimental phase. When choosing the factor interval of variation one must
keep in mind the fact that factor values corresponding to levels +1 and -1 must be
different enough from those that correspond to the null level. Therefore in almost
all cases, the variation interval (e) is taken as twice as large as the error fixing factor.
Too large a factor variation interval is also a problem, for it reduces the efficiency of
finding an optimum, especially in regards to the steepest ascent method. On the con-
trary, a small variation interval does not present a problem in practice, since the
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domain of factors is generally known in advance, including the information on
expected order of the mathematical model. The variation interval must not be too
small, for in that case, the response effects may not be registered. Block schemes
are shown in Figs. 2.11–2.13.
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Figure 2.10 Block diagram for choice of center point
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Figure 2.11 Block diagram of accepting factor variation intervals
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The presented block diagrams link the factor-fixing accuracy, range of response
change and response-surface curvature with the width of factor-variation interval.
When selecting a factor variation interval one should, if possible, account for the
number of factor variation levels in the experimental domain. Depending on the
number of these levels, are the experiment range and optimization efficiency.
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In a general case, a design point number (number of trials – different stages of
research subject) depends on factor level number and is written:

N=pk (2.20)

where:
N is number of design points – trials;
p is number of factor levels and
k is number of factors.

The relation (2.20) is correct for the case of the same number of variation levels of
each factor. The minimal number of factor level variations is two and it is most fre-
quent in the first phase of research. Those are upper and lower levels marked as +1
and -1. Factor variations on two levels are applied in screening experiments, in the
phase of movement to the optimum and when describing the research subject by
linear models. This number of factor levels is not sufficient to obtain second-order
models, for a set of lines of different degrees of curving may be drawn through the
two points. With an increased number of factor levels, experimental sensitivity is
raised, but also the number of design points. To obtain a second order model it is
necessary to do an experiment where factors vary at three, four or more levels. In
our case, the number of factor variation levels is determined in accord with the
research conditions and the plotted design of experiment. Hence problems may
appear when the research includes categorical/qualitative factors or those that
change discretely. A categorical/qualitative factor, for example, has no evident physi-
cal sense for the null level. This deficiency of categorical/qualitative factors does not
affect optimization efficiency in the case of the linear model. The situation is more
complicated when, in modeling the second order, one must account for categorical/
qualitative factors (a factor must be varied at least at three levels). Accounting for
these deficiencies, it is recommended to include categorical/qualitative factors only
in the screening experiments and in the methods of designing experiments, which
have nothing to do with obtaining nonlinear models, such as: analysis of variance,
random balance method, full-factorial designs on two levels, etc. Factor selection is
completed by making a list of all factors that are of interest in the researcher’s opin-
ion. Thereby, factor names and marks, their ranges, variation levels and null-point
coordinates, are defined.

It is important once again to note that, when considering factors, all variables hav-
ing the least possible chance to affect the research subject are included. It is better
in such a situation to include more factors, for the nonessential ones will be rejected
in the process of selection. An example of defining factors is shown in Table 2.9:
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Table 2.9 Selections of factors

Name and mark of factor Variation levels Variation
interval e

–2 –1 0 +1 +2

Temperature, �C-X1 140 150 160 170 180 10

Pressure, bar-X2 0 2.5 5 7.5 10 2.5

Concentration, g/cm3-X3 0 10 20 30 40 10

Time, min-X4 30 60 90 120 150 30

Mass, kg-X5 100 160 200 250 300 50

From the total number of noted factors, the researcher chooses those that may be
varied during the experiment while he keeps the others at constant levels. When the
number of selected factors is more than seven, a possibility of doing the screening
experiments has to be considered. For a relatively small number of factors, an
experiment is done to reach the optimum or to obtain the mathematical model of
the research subject, depending on what the objective of the researcher’s problem is.

Finally, we call the extreme values those factors can take, without changing the
physical-chemical properties of research subject, physical limits of factors, and the
interval X1max-X1min domain of factors. Geometric interpretation is shown in Fig. 2.14.
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Figure 2.14 Domain of factors

Domain of factors is marked “O”. The figure clearly shows that intervals of factor
variations are part of the domain of factors when the optimization problem is being
solved. This is necessary in order to realize movement towards optimum in this
domain. The experiment domain is in the same figure marked by letter “E”. In stud-
ies with an objective of approximation or interpolation, that is mathematical model-
ing, the factor-variation intervals cover the whole of the domain of factors. For a two-
factor experiment the upper level of factors X1 and X2 corresponds to values X1max,-
and X2max, while the lower levels have values X1min, X2min. Domain of factors “O” is
in that case called interpolational, and “E” the domain of extreme experiment.
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Summary
In this section we have defined a factor as a variable that may affect the research
subject. For a variable to be a factor, it must, besides others, fulfill the requirement
that it is controllable and singular.

To control a factor means to bring it to a corresponding value or level and keep it
constant during a design point-trial, or to change it by a previously set up program.
This is exactly the special property of an active or designed experiment. Design of an
experiment is possible only in a case when a researcher may, according to his own
program, assign the associated values or levels to factors.

Factors should directly change the research subject state. It is hard to control a
factor that is a function of other variables, but this does not mean that in a design of
experiments, complex factors, such as logarithms, similarity criteria etc., may not be
used. Besides the mentioned requirements, factors should be concordant and linear-
ly uncorrelated. When some of the significant factors have been left out in selection,
a researcher may get a wrong optimum or a big trial error. Factors can be qualita-
tive/categorical and quantitative. The accuracy of fixing a factor should be high and
should depend on the factor variation range. Selection of a factor is especially impor-
tant in defining a research problem and the result of experimental research greatly
depends on it.

2.1.4
Measuring Errors of Factors and Responses

An important property of design of experiments is a search for increased accuracy
in fixing a factor and measuring an error. The researcher must be able to determine
and estimate a measurement error correctly. Measurements and measurement
errors are a subject of special study, see [7, 8].

Measurement should not be brought down to simply determining a measured
value but also to estimating errors in measurements, called the measurement error.
There are several kinds of errors in measurement: robust, systematic and random.

Robust errors result from disrupting basic conditions for measuring, researcher’s
error, etc. A researcher is asked to check the probability of appearance of a robust
error. A robust error appears as a measured value that is drastically different from
others. This error may be avoided if another researcher who is ignorant of former
measurements repeats it. The same effect may be achieved when the same
researcher repeats measurements after some time when he has already forgotten
the results the of first ones. Such a result has to be rejected if a robust error has
been discovered.

Systematic errors appear as a result of the activity of certain factors and in cases
of numerous repetitions of the same measurement. This kind of error occurs when
measuring is done with an instrument with incorrect calibration. A systematic error
is discovered by measurements with different instruments or different methods of
the same magnitude. We distinguish among several kinds of systematic errors:
known nature and unknown magnitude and systematic errors of unknown origin.
Systematic errors of known origin and magnitude are not a problem as they may be
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included into measurement results as corrections. The problem is the other aspects
of systematic errors, error theory, which is based on theoretical probability laws. As
processing the results of designed experiment accepts only random errors, only this
kind of error is the subject of analysis. Random measurement errors are character-
ized by an associated distribution law. The distribution of random errors is mostly
suited to the normal distribution law given in Sect. 1.1.3. Normal distribution is
defined by the arithmetic mean of random value �XX and sample variance S2. The val-
ue �XX is the most probable value of measured property and is calculated by the well-
known formula:

�XX ¼
Pu
i¼1

Xi

	
u (2.21)

where:
Xi are measured values;
u is number of repeated measurements.

Variance value or variance measurement is in this case also determined by the
well-known formula:

r
2 � S

2 ¼

Pu
1

Xi��XX
� �2
u�1

(2.22)

The positive value from the variance measurement root square is called the error
mean square or standard error.

r»S=+
ffiffiffiffiffi
S
2

p
(2.23)

When estimating measurement results, the important thing is not only to know
its accuracy but also the measurement confidence. The degree of measurement the
confidence is estimated from confidence interval as defined by the level of signifi-
cance. Let X denote the actual measurement value and DX the error in measuring
the mean �XX , then:

P �XX � DX � X � �XX þ DX
� �

1� a (2.24)

where 1-a is the confidence coefficient or the probability that the measurement
result is within the confidence interval (2.24). For a 5% level of significance, the con-
fidence interval limits for the measurement mean may by determined if we know
the measurement variance for a corresponding number of measurements:

X ¼ �XX 	 1:96
Sffiffiffi
u

p (2.25)

This indicates that to know the measurement random error it is not sufficient to
know its magnitude only (confidence interval of measurement error) but also the
significance level that facilitates the confidence estimate of the obtained measure-
ments. Using the error mean square as a measurement accuracy property is conve-
nient because that value in a normal distribution is associated with a confidence or
confidence coefficient of 0.68 probability. The doubled error mean square 2S has
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0.95 confidence and 3S has 0.997 confidence level. To know the error mean square
indicates a possibility to establish the measurement confidence interval for any con-
fidence coefficient. Table 2.10 is suitable for such calculations, which for the asso-
ciated confidence 1-a contains DX values expressed as error mean square (h=DX/S),

Table 2.10 Confidence interval coefficient

h=DX/S 3.9 2.6 2.4 2.0 1.65 0.7 0.3 0.15 0.05

1-a 0.9999 0.990 0.984 0.950 0.90 0.51 0.24 0.12 0.04

Example 2.5
100 measurements (u=100) were done for an unknown property. Using expression
(2.21) the mean of all measurements �XX=1.27 was determined. The calculation by
expression (2.22) offered the measurement error mean square S=0.032. Determine
the measurement confidence interval for confidence coefficient 1-a=0.98.

Table 2.10 gives for the associated confidence that h=2.4, so that:

DX=h�S=2.4�0.032=0.08

The measurement confidence interval is:

�XX � 0:08 � X � �XX þ 0:08

1.19£X£1.35 or X=1.27–0.08

This problem may set up another problem. What is the probability for �XX=1.27 and
S=0.032 results of individual measurements not to fall outside the measurement
confidence interval 1.19£X£1.35?

For DX=0.08 we obtain:

h ¼ DX
S

¼ 0:08
0:032

¼ 2:4

Probability 0.984 corresponds to the value h=2.4 in Table 2.10. Hence 98.4% of all
individual measurements fall within their confidence interval. The confidence inter-
val of individual measurements has evidently been analyzed so far. However, in
practice it is very important to know the deviation of the arithmetic measurement
mean from the actual X value. This problem was more generally solved in Sect.
1.3.2. Hence, the value DX is determined as follows:

DX ¼ 	 t�Sffiffiffi
u

p (2.26)

where:
t is Student’s distribution, Table C;
S is error mean square of measurements;
u is number of measurements.

We know that with an increase in confidence or its coefficient the t-value also
rises, which means that DX also goes up resulting in a decrease of accuracy in deter-
mining X. In accord with Eq. (2.26), to maintain accuracy in measuring X, it is nec-
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essary to reduce the error mean square of measurement S or to increase the number
of measurements u. Eq. (2.26) has this form when we consider the relation:

P �XX � t�Sffiffiffi
u

p � X � �XX þ t�Sffiffiffi
u

p
� �

¼ 1� a (2.27)

Equation (2.27) is used to determine the confidence interval or its limit of arith-
metic measurement mean, to the actual measurement value for the given confi-
dence coefficient and the number of measurements.

Example 2.6
Determine confidence interval limits within which is the average measurement val-
ue at a=0.05. Five measurements were done (u=5). The arithmetic mean is �XX=31.2
and S=0.24. From Table C for a=0.05 and f =u-1=5-1=4 we obtain t0.05=2.78 so that:

DX ¼ 	 2:78�0:24ffiffiffi
5

p ¼ 	0:30

31.20-0.30£X£31.20+0.30

X=31.20–0.30

Hence we may assert with 0.95 confidence that the actual measurement value is
between 30.90 and 31.50. For the same values from Example 2.6 we may ask the
following question: What is the probability or confidence that average measurement
value �XX=31.20 does not differ from its actual value by more than 0.20? By using Eq.
(2.26) we get:

t ¼ DX�
ffiffiffi
u

p

S
¼ 0:20�

ffiffiffi
5

p

0:24
¼ 1:86

For the obtained arithmetic value of Student’s criterion t=1.86 and for f =u-1=4
from Table C we have a=0.14 or 1-a=0.86. Analogous calculations show that for the
same error mean square of measurements and for the same DX=0.20, an increase
in the number of measurements to 10 (u=10) allows an increase in confidence to
0.97, for:

t ¼ 0:20�
ffiffiffiffiffi
10

p

0:24
¼ 2:6

Hence, calculations from relation (2.26) facilitate determining the necessary num-
ber of measurements (u). Thereby, it is of course necessary to previously define the
size of the random value that may be accepted and the coefficient or degree of mea-
surement confidence. In practice, we are satisfied with the level that is not above
0.5%. Table 2.11 is used for practical determination of the necessary number of mea-
surements, for known measurement confidence 1-a and for different confidence
interval limits expressed by the error mean square of measurement DX/S.
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Table 2.11 Number of measurements

DX/S Necessary number of measurements 1-a

0.90 0.95 0.99 0.999

1.0 5 7 11 17

0.5 13 18 31 50

0.4 19 27 46 74

0.3 32 46 78 127

0.2 70 99 171 277

If it comes out that to reduce random error it is necessary to increase the number
of measurements drastically, it is more acceptable to try to find a way to reduce ran-
dom error by increasing measurement accuracy or by reducing the error mean
square of measurement S. This may be achieved by changing the measurement
method or using more up-to-date equipment. Knowledge of the error mean square
of measurement obtained from its results may be used to discover robust (extreme)
measurement values. When a researcher thinks that a measurement has an extreme
value, then the following Student’s t-criterion value is calculated:

t ¼ XE��XX
S

(2.28)

where:
XE is extreme measurement value;
�XX is arithmetic mean of other measurements but without extreme.
The calculated t-criterion value is then compared with the tabular value for the

associated degree of freedom and significance level. When the calculated value is
above the tabular, it means that the extreme measurement value is a robust error
and it should be rejected.

Example 2.7
The mean �XX=6.500 from u=41 was obtained in measuring a property. The associated
error mean square has a S=0.133 value. The researcher assumes that singular mea-
surement XE=6.866 is a robust error.

Checking shows this:

t ¼ 6:866�6:500
0:133

¼ 2:75

From Table C we obtain tT=2.74 for confidence level a=0.01 and f =u-1=41-1=40.
Since tR=2.75>tT=2.74 it confirms that the researcher was right and that the analyzed
measurement should be dropped. Note that the same procedure of rejection of
extreme values was demonstrated in Sect. 1.5.

When doing experimental research, one should distinguish several kinds of
errors: measurement error, trial error and experiment error. These errors will be ana-
lyzed in detail in a subsequent chapter.
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2.2
Screening Experiments

2.2.1
Preliminary Ranking of the Factors

We shall here consider the methods that are applied in processing reference data
and which simultaneously serve as the first phase of experimental research in cases
when from the total number of factors we should select the most important ones. In
this phase of formalizing the preliminary information, it is very useful to apply a
psychological experiment. This experiment is a method of objective processing of the
data obtained from either researchers, specialists in the observed field, or reference
literature. This kind of experiment facilitates objective knowledge of a research sub-
ject, accepting or rejecting of preliminary stated hypotheses, objective comparison of
effects of different factors on system response and, hence, a correct selection of fac-
tors for the active experiment phase. The method of preliminary ranking of the factors,
is based on the methods of rank correlation [9]. The subject of this method is that
factors, in accord with preliminary information, are ranked according to the order of
their effects on the response system. The effect of each factor is judged by the rank-
place, each researcher has given to it (based on the researcher’s enquiry, expert
papers, literature, etc.) in ranking all the factors by their assumed effect (quantitative
effect unknown) on response. When gathering information from each researcher,
he is required to fill in the enquiry on the order of effects of the given factors on a
certain response. The enquiry includes factors, their dimensions and assumed varia-
tion intervals. The researcher fills in the enquiry by defining the place of each factor
in a ranking order. Each enquired researcher may, simultaneously, supplement the
enquiry by new facts and suggested variation intervals. The enquiry results or rank-
ing by reference data is processed in this way.

First sums of ranks by factors (
Pm
1

aij ), then differences (Di) between sums of
ranks for each factor and average sums of ranks and sums of squares deviations (S)

are determined:

Di ¼
Pm
1

aij �

Pk
1

Pm
1

aij

k
¼
Pm
1

aij � T (2.29)

S ¼
Pm
1

Dið Þ2 (2.30)

where:
aij is rank of factor i with researcher j,
m is number of researchers,
k is number of factors,
T is average sum of ranks.
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The obtained results facilitate constructing the rank graph. However, prior to that,
one should determine the degree of opinion concordance of all the researchers by
the concordance coefficient:

x ¼ 12�S

m2 k3�k
� �

�m
Pm
1

Tj

(2.31)

where:

Tj ¼
P

t
3
j � tj

� �
tj is number of equal ranks in ranking j.

Before drawing a conclusion based on the concordance coefficient, it is necessary
to test its significance. Thereby one should keep in mind that value m(k-1)x has an
v2 distribution with f =k-1 degrees of freedom. The arithmetic value of the v2 criter-
ion is calculated by the formula:

v
2 ¼ 12�S

mk kþ1ð Þ� 1

k�1

Pm
1

Tj

(2.32)

The hypothesis on concordance of the researchers’ opinions is accepted if by the
given degrees of freedom and a significance level the calculated value v2 is above
the tabular one [10].

Starting with concordance of the researchers’ opinions, the rank graph is con-
structed by inserting factors on the abscissa and the associated sums of ranks on the
ordinate, but in the opposite direction. Due to the direction of inserting the sums of
ranks, the larger rectangle above the abscissa corresponds to a smaller sum of ranks.
Depending on the shape of the rank curve, which connects the histogram rectangles,
different decisions may be made.

. When the rank curve has the shape as in Fig. 2.15, factors from the first half
of the graph enter the basic experiment;
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. When the rank curve is continually decreasing as in Figs. 2.16 and 2.17, all
factors are included into the next active experiment for selecting factors.

a

X X X X . . . . . .

ij

3

Σ

1 5 2

Figure 2.16 Rank graph

X X X X2
. . . . . .

aijΣ

10 9 7

Figure 2.17 Rank graph

Example 2.8 [11]
A composite rocket propellant is mixed up in a vertical planetary mixer. The viscosity
of the mixed propellant depends on eight factors according to the reference litera-
ture. Those factors are: X1 mixing temperature; X2 time of mixing after addition of
the third portion of ammonium perchlorate; X3 mixing rate; X4 mixture mass; X5

mixing time after addition of the first portion of ammonium perchlorate; X6 mixing
time after addition of the second portion of ammonium perchlorate; X7 mixing time
of premix and X8 vacuum in the mixer. The outcomes of the inquiry by eight
researchers are presented in Table 2.12. Complete factor selection based on the sig-
nificance of their effect on dynamic viscosity, by applying the method of prior rank-
ing of the factors.

The following values may be taken from Table 2.12:

Pn
1

Tj ¼ 120; T ¼ 36; S ¼ 2019:50; so that:

x ¼ 12�2019:50

82 83�8
� �

�8�120
¼ 0:77

Since the concordance coefficient values are significantly different from zero, one
may say that there is concordance among the opinions of eight researchers. To be
sure, the significance of the concordance coefficient was checked by Eq. (2.32).

v
2 ¼ 12�2019:50

8�8ð8þ1Þ� 1

8�1
�120

¼ 43:36; f ¼ 8� 1 ¼ 7:
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Table 2.12 Results of ranking factors

Researchers
m

aij
Tj ¼

P8
i�1

t
3
j � tj

� �
X1 X2 X3 X4 X5 X6 X7 X8

1 1 2 6.5 6.5 4 4 4 8 24+6=30

2 1 2 3.5 3.5 7.5 7.5 5.5 5.5 6+6+6=18

3 1 2.5 2.5 5 5 5 7.5 7.5 6+6+6=18

4 2.5 1 2.5 4 5.5 5.5 7 8 6+6=12

5 1 2.5 2.5 4 5.5 7 8 8 6+6=12

6 1 3 2 4 5 6 7 8 0

7 1 2 3 4 5 6 7 8 0

8 1 2.5 4.5 6 2.5 4.5 8 7 0Pm
1

aij
9.5 19.5 26.0 36.0 40.0 44.0 53.0 60.0 Pm

1

Tj ¼ 120

Di -26.5 -16.5 -10.0 0.0 4.0 8.0 17.0 24.0

(Di)
2 702.25272.25100.00 0.0 16.0 64.0 289.0 576.0

Pk
1

�ið Þ2 ¼ 2019:50

From Table D for a=0.05 and degrees of freedom f =7, the tabular value is
v
2
7;95%=14.1. Since the calculated value of, v2 criterion is above the tabular value, the
hypothesis on concordance of the researchers’ opinions is accepted. This conclusion
allows us to construct the rank graph in Fig. 2.18. The rank graph clearly shows an
equal distribution, so these eight factors should be included in the active experiment
for factor selection.
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Example 2.9 [12]
A system consisting of a column and a cooler, produces a material characterized by
density as a system response. The density of the observed product is affected by six
factors: X1 chlorine consumption; X2 water consumption in the column; X3 phleg-
matizer consumption; X4 temperature in column; X5 level of liquid in column and
X6 water consumption in cooler. The opinions of four researchers are given in
Table 2.13. Check the concordance of the researchers’ opinions.

Table 2.13 Results of ranking factors

Researchers
m

aij Tj ¼
P

t
3
j � tj

� �
X1 X2 X3 X4 X5 X6

1 1.5 5 1.5 4 3 6 23-2=6

2 2 3 1 4.5 4.5 6 23-2=6

3 2 3 1 5.5 5.5 4 23-2=6
4 1.5 3.5 1.5 5 3.5 6 (23-2+23-2)=12Pm

1

aij
7 14.5 5 19 16.5 22

P
Tj=30

Di -7 0.5 -9 5 2.5 8

(Di)
2 49 0.25 81 25 6.25 64

P6
1

�ið Þ2 ¼ 225:5

x ¼ 12�225:5

42 63�6
� �

�4�30
� 0:805; v

2
R ¼ 12�225:5

4�6 6þ1ð Þ� 1

6�1
�30

¼ 16:1

Since the tabular value is v
2
T=11.07 for a=0.05 and f =6-1=5, the hypothesis on the

concordance of the researchers’ opinions is accepted. A histogram of sums of ranks
is shown in Fig. 2.19.

The rank histogram shows that the sum of ranks does not change evenly, so that
we can accept the solution to include the following four factors into the basic design
of experiment: X3, X1, X2, and X5. A more cautious approach to drawing conclusions
suggests a more detailed check of all six factors in an active experiment for screen-
ing factors such as, the method of random balance.

& Problem 2.1
A study about the effect of twelve factors of material preparation
with regard to fiber tensile strength was done in the textile industry.
Four researchers were asked about the prior ranking of the factors.
The rank matrix obtained on the basis of a research poll is shown in
Table 2.14. Check the concordance of researchers’ opinions and
choose the significant factors for the next step of experimental
research.
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Table 2.14 Results of ranking of the factors

Researchers
m

aij Tj=Rtj
3-tj

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

1 8 10.5 10.5 10.5 1 2.5 2.5 10.5 5 4 7 6 60+6=66

2 8 9 10 11 1 6.5 6.5 12 2 3 4 5 8-2=6

3 6 7.5 7.5 11 2 4.5 4.5 12 1 3 9.5 9.5 6+6+6=18
4 7 4 8 10.5 2 10.5 10.5 10.5 1 3 5.5 5.5 60+6=66Pm

1

aij
29 31 36 43 6 24 24 45 9 13 26 26 P4

1

Tj ¼ 156

Di 3 5 10 17 -20 -2 -2 19 -17 -13 0 0

(Di)
2 9 25 100 289 400 4 4 361 289 169 0 0

P12
1

�ið Þ2 ¼ 1650

& Problem 2.2
In a process of chlorinating titanium, seven technological factors
were suggested to be analyzed. Five researchers were asked prior to
ranking of the factors. The rank matrix is shown in Table 2.15.
Determine the concordance coefficient for the researchers’ opi-
nions.

Table 2.15 Results of ranking of factors

Researchers
m

aij Tj

X1 X2 X3 X4 X5 X6 X7

1 1 2 6 4 7 3 5

2 1 2 7 6 3 5 4

3 7 1 6 4 2 5 3

4 3 1 5 6 4 7 2

5 1 2 6 4 5 7 3Pm
1

aij
13 8 30 24 21 27 17

P
Tj=0

D -7 -12 10 4 1 7 -3

(Di)
2 49 144 100 16 1 49 9 S=368
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& Problem 2.3 [16]
The selection of factors from the work [16] was done by the significance of their
effects on caoutchouc drying and after processing the opinions of eighteen
researchers. The analysis included these eleven factors:: X1 inlet and outlet
moisture ratio; X2 pH value in the sixth apparatus; X3 pH value in the seventh
apparatus; X4 NaCl consumption; X5 serum consumption in the sixth appara-
tus; X6 serum consumption in the seventh apparatus; X7 serum temperature;
X8 latex type; X9 fat content in caoutchouc; X10 latex fat consumption on
machine and X11 quantity of latex on the surface. Outcomes of the ranking of
the factors are shown in Table 2.16. Determine the concordance coefficient and
check its significance.

Table 2.16 Results of ranking of factors

Researchers
m

aij tj

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 2 5.5 5.5 5.5 8.5 8.5 10.5 2 2 5.5 10.5 3+4+2+2

2 1 8 3 6 11 10 7 2 9 5 4 0

3 1 4 7 8 6 10 11 3 5 2 9 0

4 3 9 1 4 9 9 5 9 6 2 9 5

5 9 11 1.5 6 7.5 7.5 3 10 4 1.5 5 2+2

6 2.5 2.5 8.5 6 6 8.5 10.5 2.5 6 2.5 10.5 4+2+3+2

7 2 2 6 6 6 9 10.5 2 6 6 10.5 3+5+2

8 1 2.5 6 6 6 6 10 2.5 6 10 10 2+5+3

9 1.5 5.5 9 5.5 9 9 9 3.5 9 1.5 3.5 2+2+2+5

10 1 7 7 2 7 7 7 3.5 3.5 10 11 2+5

11 2 5.5 5.5 7 9 9 9 3 4 1 11 2+3

12 5.5 2.5 10 8 5.5 11 2.5 2.5 8 2.5 8 4+2+3

13 5 2.5 9.5 7.5 9.5 11 2.5 1 5 5 7.5 3+2+2+2

14 5 3.5 6.5 3.5 9 10 8 1.5 6.5 1.5 11 2+2+2

15 2 1 9 5 7 8 10 3 4 6 11 0

16 1.5 7 4 7 10 10 10 3 5 1.5 7 2+3+3

17 1 4 10 9 7 8 6 2 5 3 11 0

18 5.5 5.5 2 3.5 8.5 8.5 8.5 1 3.5 8.5 11 2+2+4P18
1

aij
51.5 98.5 111 105.5 141.5 160 140.5 57 97.5 75.5 160.5 P18

1

Tj ¼ 946
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& Problem 2.4 [14]
Sixteen factors were defined in the process of refining petroleum
oils. By the method of prior ranking, determine the concordance
coefficient and check its significance. Concordance of data from
reference literature is checked based on ranking outcomes shown in
Table 2.17.

Table 2.17 Results of ranking of factors

R.
m

aij

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

1 1 2 1 1 2 1 1 2 2 4 3 2 4 5 5 3
2 1 4 1 1 3 1 1 2 2 4 3 2 4 4 5 3
3 1 2 5 1 3 1 5 4 4 4 3 4 3 3 1 4
4 2 2 2 2 3 2 1 2 4 2 3 3 2 2 3 4
5 2 3 2 2 2 2 1 2 3 2 1 3 4 3 3 4
6 2 2 2 1 2 1 3 2 2 2 3 2 2 2 2 4
7 3 3 2 2 3 2 1 3 2 4 2 3 3 2 4 3
8 3 1 4 3 2 2 2 3 3 3 4 3 3 3 4 3
9 1 2 4 4 2 4 4 2 3 3 3 4 3 4 4 4
10 2 2 4 4 3 2 3 2 2 4 2 4 5 4 3 5
11 1 3 2 2 4 2 5 4 4 2 4 3 2 4 3 3
12 2 1 5 4 2 5 4 3 2 3 3 5 5 3 3 4
13 3 1 5 4 3 5 4 3 4 2 2 5 3 3 5 4
14 2 2 5 2 2 2 1 3 4 2 4 5 3 4 3 4
15 2 2 5 3 3 3 3 5 2 2 3 4 4 3 4 3
16 1 1 4 2 2 4 3 2 3 3 3 4 3 3 3 3
17 3 1 4 3 2 5 3 2 4 3 3 3 2 3 3 3

P17
1

aij

32 34 37 39 42 44 45 46 48 50 51 62 55 56 58 63 RTj=615

Di 16 14 11 9 6 4 3 2 0 2 3 14 7 8 10 15
(Di)

2 256 196 121 81 36 16 9 4 0 4 9 196 49 64 100 225 S=1366

2.2.2
Active Screening Experiment-Method of Random Balance

The application of screening experiments is obligatory when operating with a rela-
tively large number of factors (k‡7), because in the first phase, it facilitates the inclu-
sion of all those factors that do not affect the response greatly. Thus, they also con-
siderably simplify the research of the factor space-domain and the modeling of the
response surface. An active selective method, which may be applied in solving this
problem is the analysis of variance.

Analysis of variance, as has been said in Sect. 1.5, is based on the fact that the
significant effects of certain factors depends on their contribution to the response
variance. The analysis of variance is in practice less frequently used in cases of a
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large number of factors for it requires a relatively large number of design points-
trials.

The efficiency of active screening experiments may be greatly improved by using
the method of random balance. This method facilitates a relatively simple selection of
significant factors above the noise level or the level of random response variation, in a
limited number of design points. The method is based on the same principle as
analysis of variance, i.e. on the fact that the significance of certain factor effects
depends of their contribution to the response variance [15]. The selection of factors
by significance of their effect on response is realized by the method of random bal-
ance in two phases: in the first phase the matrix of design of experiment is defined,
the experiment takes place and based on its results scatter diagrams are constructed.
In the second phase, significant factors are taken from scatter diagrams, and their
selection is proved by calculations familiar from analysis of variance [15].

Constructing the design of experiments matrix is preceded by coding the factors,
the selection of variation levels and by determining the experiment center. When
choosing factor-variation levels one should take care for them to be upper and lower
limits of normal production or factor variation limit values in the domain of the
actor. Factor coding, choice of variation levels and determining the center of the
experiment are done by the rules valid for all methods of design of experiments. By
the random balance method, factors are mostly varied on two levels (+1;-1), although
varying on more than two levels is possible. The number of design points in a
matrix is defined so as to be divisible by two. This property simplifies calculations
and facilitates estimating linear effects in all cases.

A design matrix by the method of random balance may be constructed in two ways:

. by random distribution of variation levels (+;-) by columns with the help of
the random numbers table;

. by random mixing of rows of regular fractional replicas of factorial experi-
ments.

The second method of constructing a design matrix is much more widespread,
while the first method of pure random balance is less efficient and used less fre-
quently. When using fractional replicas one can profit from semireplicas from a full
factorial experiment. A semireplica may be used for one half of the factors directly,
while for the other half, levels are determined by a random choice of rows from the
same semi replica. The factors in a random balance matrix are distributed in such a
way that significant factors in concordance with prior information or the method of
prior ranking of factors, are in the first part of the matrix. This principle may in
some cases reduce the number of design points in the next phases, especially if after
applying the method of random balance we try to find the optimum. After construct-
ing the matrix, a check should be done in this way:

. the matrix is correct provided there are no correlated columns in it, i.e. the
marks in two different columns coincide or do not coincide;

. a matrix must not have columns whose scalar product with any other column
gives a column with the same signs.
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Processing the obtained results is done after performing the experiment by the
constructed matrix. As it has been said, the outcomes are analyzed by scatter dia-
grams for each factor. Outcomes of the design point for each factor on the diagram
are inserted into upper (+) and lower (-) factor levels for all design points of the
experiment. The scatter diagram number corresponds to the number of factors.
Each factor effect is considered independently from others and is at first determined
visually, based on the differences of the response means in the upper and lower lev-
els. The median is taken as the response mean at the associated level. Besides, based
on the number of so-called division points in the upper and lower levels of the scatter
diagram, one may judge the significance of factor effects on response. The existence
of a large enough number of division points is a strong reason to separate the signif-
icant factor, even in cases when the difference between median is small [15].
Visually selected effects are estimated quantitatively by means of auxiliary tables with
several inputs. In principle, those are the tables with two or three inputs, so that all
the necessary mark combinations usually are within the random balance matrix.
Construction of auxiliary tables and the calculation of associated effects are identical
to the analysis of variance. By dividing the obtained effects by two, the associated
regression factor coefficients (bi) are estimated. The significance of obtained effects
is checked by the Students t-criterion along with the corresponding threshold or sig-
nificance level. Having selected significant factors we correct the initial design point
results so as to annul the chosen effects. The response value with a changed sign is
added to all response values that correspond to (+) level of the chosen effect. This, in
fact, is good for annulling median differences for the levels of the observed factor.
Following this correction, the procedure is repeated by including factor interactions.
The moment to stop screening factors depends on the Fisher criterion:

F ¼ S
2
R

.
S
2
Y (2.33)

where:

. S
2

R
is value variance of all design points;

. S
2

Y
is variance of system reproducibility as determined by outcomes of repli-

cated experiment design points-trials.

Variance S
2
R is determined after each result correction, and then the associated

value of Fisher’s criterion is calculated and compared to the tabular value for the cho-
sen significance level. Selection of a factor is stopped at the moment when the var-
iance of the corrected response values is statistically much smaller than the repro-
ducibility system variance. The following examples will demonstrate construction of
a design matrix for the method of random balance, by random mixing of kinds of
regular fractional replicas or of a full factorial experiment. The procedure consists of
breaking all factors into groups that function as research subject physics or as
results of prior ranking of the factors. Groups should thereby consist of not more
than five to six factors. Design matrix of full factorial experiment1) or fractional factor-
ial experiment2) corresponds to each group, with types of a random order. A better

205

1) Full factorial experiment FUFE 2) Fractional factorial experiment FRFE



II Design and Analysis of Experiments

solution is the grouping with three-four factors and the correspondence of the
FUFE matrix.

Example 2.10 [17]
Filtration conditions were studied in a process of producing dyes. The filtration phe-
nomenon is expressed with these four factors:
X1 concentration of a solution being filtered;

(+) upper level-, concentrated solution;
(-) lower level, diluted solution;

X2 time of dosing solution;
(+) upper level, fresh solution;
(-) lower level, old solution;

X3 contents of filler in solution;
(+) upper level, filler present;
(-) lower level, filler not present;

X4 temperature of solution;
(+) upper level, higher temperature;
(-) lower level, lower temperature.
Following the procedure of the matrix construction, the factors are divided into

two groups of two factors each. The first group consists of X1 and X2, and the other
one of X3 and X4 factors. A FUFE matrix has four design points for two factors and
is shown in Table 2.18.

Table 2.18 FUFE Table 2.19 Matrix of random balance

Number Factors Number Factors Response

D.P. X1 X2 D.P. X1 X2 X3 X4 Y

1 – – 1 + – – + 114

2 + – 2 – – + + 106

3 – + 3 – + + – 120

4 + + 4 + + – – 132

By random choice from matrix FUFE or Table 2.18, we take for the first group of
2., 1., 3. and 4., row respectively. For the second group of factors we take in the same
way 3., 4., 2. and 1. row from the FUFE matrix. In this way, the design matrix for
the random balance method is constructed. In this example, the response is repre-
sented by the product purity y.

The values for product purity shown in Table 2.19 were obtained after the experi-
ment. Scatter diagrams are drawn from the response value for each factor. The scat-
ter diagram for all four factors is shown in Fig. 2.20.

The median is determined on this diagram for each factor level. When the num-
ber of points in one level is odd 2n+1, then the median is marked in the point n+1.
If the number of points is even 2n, the median passes through the point that is the
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Figure 2.20 Scatter diagram

arithmetic average between n and n+1 points. The difference between the upper
and lower level medians, gives the effect of the associated factor:

EX1
¼ 123� 113 ¼ þ10

EX2
¼ 126� 110 ¼ þ16 (2.34)

EX3
¼ 120� 114 ¼ þ6

EX4
¼ 114� 120 ¼ �6

Due to the calculated effects, the significant factors after the first screening are X1

and X2.
These factors are then quantitatively checked by forming an auxiliary table with

two inputs:

Table 2.20 Table with two inputs

+X1 -X1

+X2 132 120

. . . . . .
�yy1 ¼ 132 �yy2 ¼ 120

-X2 114 106

. . . . . .
�yy3 ¼ 114 �yy4 ¼ 106

These effects of selected factors are obtained from Table 2.20:

EX1
¼ þX1ð Þ � �X1ð Þ ¼ �yy1þ�yy3

2
� �yy2þ�yy4

2
¼ þ10

EX2
¼ þX2ð Þ � �X2ð Þ ¼ �yy1þ�yy2

2
� �yy3þ�yy4

2
¼ þ16

(2.35)
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To obtain an answer to the question whether other factors are significant too, it is
necessary to exclude effects of selected factors and then repeat the procedure. The
effects of selected factors are analyzed in such a way that in each design point where
X1 is in the upper level of (+) response value factor effect X1 is added with a changed
sign (EX1

=-10), and where X2 is in the upper level of (+) response value EX2
is added

with a changed sign (EX2
=-16). In this way, Table 2.21 is obtained with corrected

responses.

Table 2.21 Design matrix with corrected responses

Number
d.p.

Factors Responses

X1 X2 X3 X4 y y¢

1 + – – + 114 104

2 – – + + 106 106

3 – + + – 120 104

4 + + – – 132 106

If we now reconstruct the scatter diagram we will see that effects for factors X3

and X4 are irrelevant and close to zero. The conclusion is that factors X3 and X4 are
insignificant. Besides selecting factors by their significance, it is necessary to single
out the interaction effects. Signs for associated interactions are obtained by simply
multiplying the signs of associated factors, as shown in Table 2.22.

Table 2.22 Design matrix with interactions

Number
trials

Factors Interactions Response
y

X1 X2 X3 X4 X1X2 X1X3 X1X4 X2X4 X2X3 X3X4

1 + – – + – – + – + – 114

2 – – + + + – – – – + 106

3 – + + – – – + – + – 120

4 + + – – + – – – – + 132

Only even interactions are analyzed, since higher-order interactions are less prob-
able. Drawing scatter diagrams for all even interactions is a troublesome job. Scatter
diagrams are therefore constructed for those even interactions for which there is an
indication that they may be crucial. An indication is that higher effects are obtained
from interactions where point dispersion of factors in upper and lower levels is
reversed. Scatter diagram of even interactions is obtained in the same way as for the
factors and is shown in Fig. 2.21.

Interaction effects X1X3, X2X3 and X2X4 are singled out from the scatter diagram.
An auxiliary table, Table 2.23, with three inputs is formed for the given interactions.
Vacancies in this table indicate that interaction columns X1X3 and X2X4 are intercor-
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Figure 2.21 Scatter diagram

related. This is also proved by the equality of signs, which does not allow actual cal-
culation of the effects. Table 2.24 with two inputs is therefore formed with interac-
tion columns X1X3 and X2X4 left vacant. In a larger number of design points and for
more factors, column intercorrelation is hardly probable. Finally, we may conclude
that by the method of random balance these significant factors and interactions
were singled out:

. factor X1 with effect EX1=+10;

. factor X2 with effect EX2=+16;

. even interaction X2X4;

. even interaction X1X3.

Table 2.23 Table with three inputs

+X1X3 -X1X3

+X2X4 -X2X4 +X2X4 -X2X4

+X1X3 . . .
. . .
132

�yy1 ¼ 132

. . .

. . .

. . .

. . .

. . .

. . .

114
120
. . .

�yy4 ¼ 117

-X1X3 . . .
. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

106
. . .
. . .

�yy8 ¼ 106
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Table 2.24 Table with two inputs

+X2X4 -X2X4

+X1X3 132
. . .

�yy1 ¼ 132

. . .

. . .

. . .
-X1X3 . . .

. . .

. . .

114
106
120

�yy4 ¼ 113

Interaction effects X1X3 and X2X4 could not be singled out due to column correla-
tion, so they remained mixed.

This example, too, has shown the advantage of constructing the design matrix for
the method of random balance from FUFE and FRFE, since for the two obtained
factors X1 and X2 we already have a finished experiment by a full factorial design.
These results are for all four design points of the design in Table 2.19. Since the
method of random balance also gives the effects, they may be divided by two to
obtain regression coefficients for a robust approximation of response:

y
_ ¼ �yyþ 10=2� X1 þ 16=2� X2 ¼ 114þ 106þ 120þ 132ð Þ=4þ 5X1 þ 8X2

y
_ ¼ 118þ 5X1 þ 8X2 ; �1 � X1 � 1 ; �1 � X2 � 1

� �
(2.36)

The following could be said, after all things disclosed, about the active method of
screening factors or the method of random balance:

. the method of random balance is effective in complicated, unclear situations
when fast screening of factors is necessary; the method is the more effective
the fewer significance factors exist, since an increase in their number
increases the design-point variance;

. the method of random balance is more of a new approach to an experiment
then the processing of experiment data;

. even untrained researchers may profit from the method, even in situations
with a large number of factors;

. the method facilitates singling out significant factors with sufficient confi-
dence level;

. the method of random balance is primarily meant for researchers in labs and
pilot-plants since in full-scale plants it requires disrupting of the current pro-
cess conditions.

Advantages and disadvantages of the method are shown in Table 2.25:
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Table 2.25 Advantages and disadvantages of random balance method

No. Advantages Disadvantages

1 Possibility to include many factors, decrease
in risk to omit a factor

Unclear determination of risk and reduction
of chance to omit a factor

2 Assumes exponential ranking of factors,
which seems natural

Difficult to expect exponential distribution of
factors

3 Random design, simple designing is used,
experiment are less strict

System designs, standard designs,
orthogonality are all better

4 Few design points necessary, designs
oversaturated

Not enough information, effect estimates
mixed

5 Error slightly bigger but the problem is
screening most significant factors

Less significant factors are hard to detect

6 Simple graphic analysis It is present with other methods

7 Possibility to vary factors on several levels This complicates interaction

8 Numerous examples of application No theoretical ground dangerous to
recommend it

9 Simple model More complex model needed

For practical application several prepared design matrixes by the method of ran-
dom balance [18]–[20] are recommended.

Table 2.26 k=8

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8

1 – – + + – + – +

2 + + + + + – – +

3 – + + – + – + –

4 + – – + + + + +

5 – + – + – – – –

6 + + – – – – + +

7 – – – – – + + –

8 + – + – + + – –
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Table 2.27 k=10

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 – – – – – – – – + +

2 + + – – – + + – – –

3 + – + + + + – + – –

4 – + + + + – – – – –

5 + – + – – + – – + –

6 – + + – – + + + – +

7 – – – + + + – – – +

8 + + – + + + – + + +

9 + – – – + – + + – –

10 – + – – + – + – + –

11 – – + + – – + + + +

12 + + + + – – – + – –

13 + – – + – + + – + +

14 – + – + – – – + + –

15 – – + – + – + – – –

16 + + + – + + + + + –

Table 2.28 k=5

No.
D.P.

Factors

X1 X2 X3 X4 X5

1 + + + – –

2 + + – – +

3 + – + + –

4 + – – + +

5 – + + + +

6 – + – + –

7 – – + – +

8 – – – – –
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Table 2.29 k=12

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

1 – + – + + + + – + + + +

2 – – + – – – – – + + + –

3 – + + – + – – – – – + +

4 + – – – + + – – – + – –

5 + – – + – – – + – + + +

6 – + – – + – – – + – – –

7 + + – – – + + – + – – +

8 – – + + + – – + + + – –

9 – – + + – – + + + – + +

10 – + + – – – + + + + + –

11 + + – + + + – – – + – +

12 – – – – – + + + – + + –

13 + + + + + + – – – + – +

14 – – – + – + + – – – – –

15 – – – + – + – + + – – +

16 + – – – + – – – + + + –

17 + + + + – + – + + + – +

18 + – + – + – + + – – – –

19 + – + – – – + + – – + +

20 – + – + – + + + + + – –

21 – + + – + + + – – – + +

22 + – + + + – – – + – + –

23 + + + + – + + + – – – +

24 + + – – + – + + – – + –
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Table 2.30 k=14

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

1 – – + + + – + – + – + + – +

2 + – – + – – – – – + – – – +

3 – + – + + – – + + + + – + –

4 + + + + + + – – + + – + – +

5 – – – – – + + + – – + – – –

6 + – + – + + + – + + + – + +

7 – + + – – + + – + + – + + –

8 + + – – – – – + – – + – – –

9 – – + – – + – + – + + + + +

10 + – – – – + – – – – – – + +

11 – + – – + – + – + – – – – –

12 + + + – + – – – – – – – + –

13 – – – + + + – + – + + + + –

14 + – + + – – + + + – + + – –

15 – + + + – – + + + + – + + +

16 + + – + + + + + – – – + – +

Table 2.31 k=19

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

1 – – + + + – + + + – + – – – – – – – –

2 + – – + + – + + – – + + – + + – + + –

3 – + – + + + – + + + + – + – – – + + +

4 + + + + + – + – + – + + + – + + – + –

5 – – – – + + – + + + – – – + + + + – +

6 + – + – + – + – – – + – – + + – – + +

7 – + + – + – + + – – – + + – – – + + –

8 + + – – + + – – – – + – + – + + + – –

9 – – + – – – – + + + – – + – + + + – +

10 + – – – – – – – – – – – – – – – – – +

11 – + – – – + + + + + + + – + + – – + –

12 + + + – – – – + – + + – + + – + – – –

13 – – – + – + + – + – – + + + – + – + +

14 + – + + – – – – + + + – – – – + + – –

15 – + + + – + + + – + + + – – + + – + +

16 + + – + – + + + + + – + – – + – + – +

17 – – + + – + – + – – + – + + – – + – –
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Table 2.31 Continued

No.
D.P.

Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

18 + – – + – + – – – + + + + + + – – – –

19 – + – + – + – – – – + + – – + – + + +

20 + + + + – – + – + – – + – – + + – – –

21 – – – – – – + – – – – – + – – + + + –

22 + – + – – + – + – – – – – + – + – + +

23 – + + – – + – – – + – – – – + – + + +

24 + + – – – + + + – + – + + + + – – + –

25 – – + – + – + + – + + – – + – + + – –

26 + – – – + – + + + – + + + + – – + – +

27 – + – – + + – – + + – + – + – + + + +

28 + + + – + – + – – – – – + + – – – + +

29 – – – + + + – – + + + + + – – – – – +

30 + – + + + – – + + + – – + + – + – – +

31 – + + + + – – – + – – + – + + + – + –

32 + + – + + + + – + + – + + – + + + – +

It should be noted that when doing an experiment by the method of random bal-
ance, it is not necessary to have a random order of doing design points, since the
randomization principle has been introduced in constructing the matrix.

Example 2.11
Adhesion on “HLORIN”-type fibers, has been studied as a function of five process
factors. The names of factors, with their variation levels, are shown in Table 2.32.
Matrix 23 of full factorial experiment has been used in constructing random balance
matrix. The design matrix by the method of random balance with experimental
results is shown in Table 2.33. Note that each design point was repeated 20 to 50
times due to high non reproducibility of the system.

Table 2.32 Variation levels

Factors Levels

– +

X1 pressing temperature �C 140 170

X2 pressing pressure kp/cm2 5 20

X3 time of pressing min 0.5 2.5

X4 time of preprocessing min 1 3

X5 fiber nature Viscose Capronate
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Table 2.33 Design matrix

No.
D.P.

Factors Response
�yy

X1 X2 X3 X4 X5

1 + + + – – 32.6

2 + + – – + 15.2

3 + – + + – 18.9

4 + – – + + 15.2

5 – + + + + 14.6

6 – + – + – 33.1

7 – – + – + 14.0

8 – – – – – 24.5

Scatter diagram was constructed based on the results from Table 2.33. The effects
of factors X2 and X5 were visually screened out from the scatter diagram shown in
Fig. 2.22
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Figure 2.22 Scatter diagram

Table 2.34 is formed for the two separated factors with two inlets. Effects of factors
X2 and X5 are quantitatively determined from the table. Then, a significance check
of obtained effects is done by the Students t-criterion.

Table 2.34 Table with two inputs

+X2 -X2

+X5 15.2
14.6

P
y1 ¼ 29:8
�yy1 ¼ 14:9

15.2
14.0

P
y2 ¼ 29:2
�yy2 ¼ 14:6

-X5 33.1
32.6

P
y3 ¼ 65:7
�yy3 ¼ 32:9

24.5
18.9

P
y4 ¼ 43:4
�yy4 ¼ 21:7
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EX5
¼ �yy1þ�yy2

2
� �yy3þ�yy4

2
¼ 14:9þ14:6

2
� 32:9þ21:7

2
¼ �12:52

EX2
¼ �yy1þ�yy3

2
� �yy2þ�yy4

2
¼ 14:9þ32:9

2
� 14:6þ21:7

2
¼ þ5:72

Significance check of the effects:

tX5
¼ �yy1þ�yy2
� �

� �yy3þ�yy4
� �

SR

ffiffiffiffiffiffiffiffiffiP 1

ni

r ¼ 14:9þ14:6�32:9�21:7ffiffiffiffiffiffiffiffiffi
8:52

p ¼ �8:57

tX2
¼ �yy1þ�yy3
� �

� �yy2þ�yy4
� �

SR

ffiffiffiffiffiffiffiffiffiP 1

ni

r ¼ 14:9þ32:9�14:6�21:7ffiffiffiffiffiffiffiffiffi
8:52

p ¼ þ3:92

where:
�yy1 ; �yy2 ; �yy3 ; �yy4 are response means by cells of auxiliary table;

S
2
R is response variance by cells;

ni is number of design points in each cell.

The value
P

S
2
R

.
ni is obtained by calculations shown in Table 2.35.

Table 2.35 Calculation of variance S
2
R

Number of
cells

ni P
yi

P
yið Þ2

P
y
2
i S

2
R ¼

P
y2i

ni�1
�

P
yi

� �2
ni ni�1
� � S2R

ni

1 2 29.8 888.04 444.2 016 0.08

2 2 29.2 852.64 427.4 1.08 0.54

3 2 65.7 4316.49 2158.4 0.12 0.06

4 2 43.4 1883.56 957.5 15.68 7.84P
8 8.52

The number of degrees of freedom is the difference between the total number of
experimental design points and the number of cells, in this case it is:

f =8-4=4.

For the threshold or significance level a=0.05 and for f =4 we have the tabular val-
ue of Students criterion tT=2.78. Since the calculated values are above The tabular
values for the T-test, the separated effects are statistically significant with 95% confi-
dence. The next step was correction of response values for -5.72 and +12.52 in those
design points where X2 and X5 are in the upper levels. After a response correction a
new scatter diagram was constructed for the factors and even interactions. X3 and
X2X5 were visually separated with their effects -5.42 and -1.98, respectively. The sig-
nificance check of these effects showed that X2X5 had 95% and X3 90% confidence
levels. After the correction of corrected responses with the effects of factors X3 and X2X5,
the variance of twice-corrected responses S

2
R=1.27, approached the reproducibility var-
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iance S
2
R=0.50. A check of Fisher’s criterion offered the value FR=1.27/0.50=2.54. Since

the tabular value is F0.05=2.36, further process of screening factors is stopped.

Table 2.36 Summarized results

Screening phase Visual screening Effect values tR bi

Initial response values X5

X2

-12.52
+5.75

8.57
3.92

-6.26
+2.86

First response correction X5X3 -5.42
-1.98

6.69
2.22

-2.71
-0.99

Second response correction X4X1 -1.97
-1.13

1.54
1.62

-0.54
-0.57

Hence, the adhesion of fibers is significantly affected by factors X5; X2 and X3.
The expected effect of X1 factor proved to be marginal. This may be explained only
by the fact that its value in the center of the performed experiment is either maximal
or its variation interval has been badly chosen. Further experiments have proved the
first assumption. The summarized result of the method of random balance is shown
in Table 2.36.

Example 2.12 [18]
Factors were not screened out in Example 2.8 by the method of prior ranking, so
that a matrix of random balance was constructed for all eight factors, Table 2.37. The
experiment was done by one replication of the design point in order to establish the
variance of system reproducibility.

Table 2.37 Design of experiment

Factors Responses

Basic level 60 50 60 1200 15 15 6 310

Variation interval 10 30 40 400 5 5 4 305

Upper level (+) 70 80 100 1600 20 20 10 615

Lower level (-) 50 20 20 800 10 10 2 5

Number of design
points

X1 X2 X3 X4 X5 X6 X7 X8 y01 y02 �yy

1 – – + + – + – + 528.00 540.80 534.40

2 + + + + + – – + 345.60 345.30 345.45

3 – + + – + – + – 512.00 521.60 516.80

4 + – – + + + + + 713.60 576.00 644.80

5 – + – + – – – – 1067.20 912.00 989.60

6 + + – – – – + + 870.40 832.00 851.20

7 – – – – – + + – 1648.00 1657.60 1652.80

8 + – + – + + – – 572.80 454.40 513.60

Note: Sy
2=3678.89; f =8(2-1)=8
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The scatter diagram was constructed from the obtained response values, Fig. 2.23.
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Figure 2.23 Scatter diagram

Based on the scatter diagram factors, X3 and X5 are visually screened out. A table
with two inputs is formed for these factors. Quantitative effects are calculated from
the auxiliary table and then checked by the t-test. Since both effects are significant,
the first correction is done and then the procedure is repeated. Factors X4 and X8 are
visually screened out in the second step. Quantitative calculation of effects and t-test
show that only factor X8 is significant. The effect of this factor is annulled by the
second response correction. Now, interactions are introduced into the scatter dia-
grams so that X1X7 and X5X8 are visually screened out. Quantitative values of the
effects of these two interactions were not statistically important. Since Table 2.38
shows that the variance of corrected responses is significantly close to reproducibili-
ty variance, the selection procedure is over. The diagram in Fig. 2.24, which clearly
shows a reduction in residual variance (S

2
R), is especially important for the method

of random balance.
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Figure 2.24 Corrected responses
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Table 2.38 Corrected responses

No.
D.P.

Factors Corrected responses

X1 X2 X3 X4 X5 X6 X7 X8 �yy y
0

y
00

y
000

1 – – + + – + – + 534.40 942.56 1204.85 1428.83

2 + + + + + – – + 345.45 1051.37 1313.66 1313.66

3 – + + – + – + – 516.80 1222.72 1222.72 1222.72

4 + – – + + + + + 644.80 942.56 1204.85 1428.83

5 – + – + – – – – 989.60 989.60 989.60 1213.58

6 + + – – – – + + 851.20 851.20 1113.49 1337.47

7 – – – – – + + – 1652.80 1652.80 1652.80 1652.80

8 + – + – + + – – 513.60 1219.52 1219.52 1219.52

�yy 756.08 1109.04 1240.19 1352.18
S
2
R 173411.41 65758.33 36817.62 22484.50

F ¼ S
2
R=S

2
y 47.14 17.87 10.01 6.11

Note: Sy
2=3678.89; f =8; Reproducibility variance FT(7;8;0.99)=6.18

Example 2.13 [15]
Due to the advantages and disadvantages of the method of random balance, which
have been mentioned in this section, a demonstration of efficiency of the method
will be given in this example on an artificially constructed problem and where we
know, in advance, the effects that should be screened. It will also be shown that, gen-
erally speaking, the method of random balance with more than two levels of factor
variation has no advantage. A demand for more than two levels is justified only in
cases with qualitative factors.

Assume that twelve factors, X1 to X12, should be screened. The random balance
matrix will consist of two independent semi-replicas of a 26 full factorial experiment,
with rows or design points that are randomly distributed. The 32 design points thus
synthesized will start with the values taken from a normal population with the
mean 100 and the standard deviation d0=2.0. The effects of factors have been intro-
duced in the way that the following values were added to the best values of selected
factors in the upper level (+):
value -15 added to factor X7

value -12 added to factor X4

value +10 added to factor X10 and X11

value +8 added to factor X1

value +6 added to factor X5 and X8

value +4 added to factor X2

value -4 added to factor X9

Table 2.39 shows groupings of factors with associated semireplicas of 26 full fac-
torial design.
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Table 2.39 Semireplica of full factorial design 2
6

First group of factors X1 X2 X3 X4 X5 X6

Secon group of factors X7 X8 X9 X10 X11 X12

1 + + + + + +

2 + + + + – –

3 + + + – + –

4 + + + – – +

5 + + – + + –

6 + + – + – +

7 + + – – + +

8 + + – – – –

9 + – + + + –

10 + – + + – +

11 + – + – + +

12 + – + – – –

13 + – – + + +

14 + – – + – –

15 + – – – + –

16 + – – – – +

17 – + + + + –

18 – + + + – +

19 – + + – + +

20 – + + – – –

21 – + – + + +

22 – + – + – –

23 – + – – + –

24 – + – – – +

25 – – + + + +

26 – – + + – –

27 – – + – + –

28 – – + – – +

29 – – – + + –

30 – – – + – +

31 – – – – + +

32 – – – – – –

Table 2.40 shows a complete design matrix by the method of random balance;
original data taken from normal population y0; y synthesized response to which val-
ues of effects were added and the phases of factor screening with corrected response
yI; yII; yIII and yIV and their standard deviations.

The catter diagram, Fig. 2.25, has been constructed for response y. Medians for
upper and lower levels of associated factors were used on the same diagrams in
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order to select the factors visually. Median or effect value differences were also given
on the scatter diagram.

Table 2.40 Design of experiment

No.
D.P.

Combinations Factors y0 Responses

X1-X6 X7-X12 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 y YI yII yIII yIV

1 18 7 – + + + – + + + – – + + 101 78 103 103 103 98

2 8 32 + + – – – – – – – – – – 99 103 92 101 96 96

3 4 6 + + + – – + + + – + – + 100 97 99 99 99 94

4 6 16 + + – + – + + – – – – + 100 77 91 100 95 95

5 3 19 – + + – + – – + + – + + 99 113 102 102 97 97

6 23 5 – + – – + – + + – + + – 96 77 90 99 94 94

7 17 4 – + + + + – + + + – – + 97 66 91 100 95 95

8 26 27 – – + + – – – – + – + – 99 93 105 105 100 100

9 31 2 – – – – + + + + + + – – 99 86 99 99 94 99

10 15 28 + – – – + – – – + – – + 99 93 82 91 91 96

11 28 3 – – + – – + + + + – + – 102 87 100 100 100 100

12 16 25 + – – – – + – – + + + + 100 100 89 97 92 97

13 30 13 – – – + – + + – – + + + 103 72 97 106 101 101

14 11 22 + – + – + + – + – + – – 106 124 113 113 108 103

15 27 8 – – + – + – + + – – – – 98 83 96 105 100 95

16 19 15 – + + – + + + – – – + – 99 88 101 101 101 96

17 14 23 + – – + – – – + – – + – 100 96 97 97 97 97

18 20 18 – + + – – – – + + + – + 100 100 100 100 100 100

19 22 20 – + – + – – – + + – – – 98 72 84 93 93 98

20 32 17 – – – – – – – + + + + – 100 86 86 95 95 100

21 25 1 – – + + + + + + + + + + 100 69 94 103 98 98

22 2 26 + + + + – – + – + + – – 101 103 104 104 99 99

23 1 11 + + + + + + – – + – + + 96 77 91 91 91 91

24 7 21 + + – – + + – + – + + + 100 104 93 102 102 97

25 21 30 – + – + + + – – – + – + 96 84 96 96 96 96

26 12 12 + – + – – – + – + – – – 100 89 91 100 95 95

27 24 24 – + – – – + – + – – – + 102 92 92 101 101 101

28 10 9 + – + + – + + – + + + – 101 78 92 101 96 96

29 5 29 + + – + + – – – – + + – 101 87 88 97 97 97

30 9 10 + – + + + – + – + + – + 100 81 95 95 95 95

31 13 31 + – – + + + – – – – + + 103 99 100 100 100 100

32 29 14 – – – + + – + – – + – – 99 72 97 97 97 97

Standard deviation sr 2.1 13.5 6.6 4.3 3.6 2.6
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2.2 Screening Experiments

Factors X1; X4 and X7 with their respective effects EX1=13.0, EX4=14.5 and
EX7=19.5 are also screened out visually from the scatter diagram. A statistical signifi-
cance check of these effects is done by quantitative calculation of their values
through a table with three inputs and a check with the Students t-test. An auxiliary
table with three inputs is shown in Table 2.41.

120

110

100

90

80

70

60

50
-X -X -X-X -X -X -X -X -X -X -X -X

y

1 2 3 4 5 6 7 8 9 10 11 12+ + + + + + + + + + + +

EX  =13.01 EX   =14.54 EX   =19.57

Figure 2.25 Scatter diagram

Table 2.41 Auxilliary table with three inputs

-X4 +X4

-X7 +X7 -X7 +X7

124
113
104
103
100
93P

y1 ¼ 637
�yy1 ¼ 106:17

97
89

P
y2 ¼ 186
�yy2 ¼ 93:00

103
99
96
87

P
y3 ¼ 385
�yy3 ¼ 96:25

81
78
77
77

P
y4 ¼ 313
�yy4 ¼ 78:25

+X1

100
92
86

P
y5 ¼ 278
�yy5 ¼ 92:67

88
87
86
83
77P

y6 ¼ 421
�yy6 ¼ 84:20

93
84
72

P
y7 ¼ 249
�yy7 ¼ 83:00

78
72
72
69
69P

y8 ¼ 357
�yy8 ¼ 71:40

-X1
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The effects of factors are calculated thus:

EX1
¼ �yy1þ�yy2þ�yy3þ�yy4

4
�
�yy5þ�yy6þ�yy7þ�yy8

4
¼

¼ 106:17þ93:00þ96:25þ78:25
4

� 92:67þ84:20þ83:00þ71:40
4

¼ þ10:60

EX4
¼

�yy3þ�yy4þ�yy7þ�yy8
4

�
�yy1þ�yy2þ�yy5þ�yy6

4
¼

¼ 96:25þ78:25þ83:00þ71:40
4

� 106:17þ93:00þ92:67þ84:20
4

¼ �11:87

EX7
¼

�yy2þ�yy4þ�yy6þ�yy8
4

�
�yy1þ�yy3þ�yy5þy7

4
¼

¼ 93:00þ78:25þ84:20þ71:40
4

� 106:17þ96:25þ92:67þ83:00
4

¼ �12:81

The check of effects is done by the Students t-criterion. Arithmetic values of the t-
test are determined from these relations:

tX1
¼

�yy1þ�yy2þ�yy3þ�yy4
� �

� �yy5þ�yy6þ�yy7þ�yy8
� �

SR

ffiffiffiffiffiffiffiffiffiP 1

ni

r (2.37)

tX4
¼

�yy3þ�yy4þ�yy7þ�yy8
� �

� �yy1þ�yy2þ�yy5þ�yy6
� �

SR

ffiffiffiffiffiffiffiffiffiP 1

ni

r (2.38)

tX7
¼

�yy2þ�yy4þ�yy6þ�yy8
� �

� �yy1þ�yy3þ�yy5þ�yy7
� �

SR

ffiffiffiffiffiffiffiffiffiP 1

ni

r (2.39)

By comparison of arithmetic values of the t-criterion with tabular ones, we can
see that the effects of factors X1, X4 and X7 are statistically significant. Screening
then, continues by response correction or by annulling the screened out effects and
repeating the procedure. Finally, the following effects were screened out and com-
pared to additional effects in the phase of defining this example.

Factors Given effects Estimated effects Multiple regression effect estimate
X7 15 13 15.9
X4 12 12 12.1

X10X11 10 8 10.1
X1 8 11 8.7
X5X8 6 5 6.2
X3 4 4 4.9
X9 4 5 5.1

Former experience of the author of this book, in applying the method of random
balance, indicates that there have been no situations where this method has not
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screened out significant factors. Even if a case appears where no most significant
factors may be selected, the response variance will not be reduced, even after correct-
ing the response. This means that the most important factors have not been
included into the experiment. This, of course, does not mean that it is a method
error.

& Problem 2.5
The method of prior ranking factors has been unsuccessfully
applied on the data in Problem 2.4 about factors that affect the pet-
roleum oils refining procedure by phenol. A design matrix was con-
structed for this reason and for all sixteen factors, for an experimen-
tal screening by the method of random balance. The design matrix
with outcomes of the experiment is shown in Table 2.42. Process
the results by the method of random balance.

2.2.3
Active Screening Experiment Plackett-Burman Designs

There is annother standard two-level design as active screening design, which the
literature recommends, that provides the choice of 4, 8, 16, 32 or more trials-runs,
but only the power of two. In 1946, Plackett and Burman [64] invented the alternative
two-level designs that are multiples of four. The 12-, 20-, and 28-run Plackett-Burr-
man designs are of particular interest, because they fill gaps in the standard designs.
Unfortunately, these particular Plackett-Burman designs have very messy alias struc-
tures. For example, the 11th factor in the 12-runs choice, which is very popular,
causes each main effect to be partially aliased with 45 two-factor interactions. In the-
ory, you can get away with this if absolutely no interactions are present, but this is a
very dangerous assumption. Because of the unexpected aliasing that occurs with
many Plackett-Burman designs, it is recommended to avoid them in favor of the
standard two-level designs.

Some of the available software packages for design of experiments use Plackett-
Burman designs.

& Problem 2.6 [12]
In an optimization process of isomerization of sulfanilamide, a
design of experiments has been in the first phase defined by a
method of random balance with the idea of doing a screening active
experiment. The design of experiments with its results is shown in
Table 2.43. Screen factors by significance of their effects on the mea-
sured value.
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2.2 Screening Experiments

Table 2.43 Design of experiment

No.
D.P.

Factors Responses

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y yI

1 + + + – – + – – + – 67.5 2.02

2 – + – – – + – + – – 83.7 18.20

3 + – + + – + + + + + 27.8 35.31

4 + – + – + + – – + + 21.6 37.40

5 – – – – + + – + – – 5.0 12.51

6 – + – + – + + – + – 84.8 19.32

7 + + – – – – – – – + 67.5 9.75

8 – – + + – – – + – + 8.5 16.85

9 + – – + + + + – + + 9.7 25.56

10 + + + + + – + + + – 70.5 13.30

11 – – + – + – – – + + 7.5 23.36

12 + – – – + – + – – – 7.2 14.71

13 + + – + – – + – + – 70.5 5.02

14 – + + + + – – + – + 85.2 35.58

15 – + + – + + + + – – 84.8 26.83

16 – – – + – – + + – + 8.0 16.35

2.2.3
Completely Randomized Block Design

In empirical or experimental research it is necessary to determine system stability
and reproducibility of the results. In the case of an experiment with a larger number
of design points there appears to be a problem of providing the same conditions for
doing the design points. The experiment is therefore designed so as to do research
in groups of design points blocks, where equality of conditions is higher than in the
complete field of research. In this way we can single out the effects of inequality of
conditions from other factors. The design of experiments that provide this are called
completely randomized block design. Such designs are used in research with a single
factor or they belong to the single-factor design group. Results of an experiment
done by a randomized complete block design are analyzed by the method of analysis
of variance, which has been elaborated in detail in Sect. 1.5.

Since these randomized blocks are applied to single out inequality effects of a
research subject from factor effects, the variance of analysis confidence is increased
as experimental error is diminished. The block denotes the part of design points
where experimental error is lower than in the experiment as a whole.

To screen out the effects of systematic errors, the effects of factor-level variations
are researched in each block by random order. This is the origin of the term rando-
mized complete-block design. These blocks originate from studies in agronomy, for
in it there appeared the most drastic case of inequality of agricultural lots where
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experiments have been done. To eliminate this inequality, the lots have been divided
into blocks or more equal areas. The size and number of blocks primarily depends
on the research subject and possibility to equalize experimental conditions, and they
are two counter-balanced requirements on which processing confidence of results
depends. A small number of blocks means simple calculations of analysis of var-
iance but also greater lack of confidence due to their inequality. When designs of
completely randomized blocks are used, an assumption is introduced that outcome
levels may be different in different blocks but that relative factor effects are the same
in all blocks. This assumption means in practice that there is no interaction between
blocks and factors, i.e. even if it exists it is negligible in relation to the factor effect.
Interaction is part of experimental error and when it is large, inferences of analysis
of variance are not certain. One of the basic objectives of designing experiments by
completely randomized blocks, when an experiment is done in full-scale plants, is
that the time element is reduced. In a normal operation of a chemical plant, in
batches or continuosly, systematic variations in product properties appear. Some-
times these variations may be explained by seasonal influences, such as change in
temperature of cooling water, for example, a change in quality of raw materials, etc.
However, frequently there are neither explanations for the mentioned fluctuations
nor can they can be controlled. The question is not about temporary, random varia-
tions that are considered normal in production, but about slow changes in the aver-
age level. Therefore, in designing an experiment in such plants, one must take care
of separating the effects of temporary trends. This does not mean that the designs of
completely randomized blocks are limited only to full-scale. But on the contrary,
they are limited to labs and pilot plants where trials for one experiment are done in
a longer time period and where there exists a probability of systematic variations
and trends [21].

Example 2.14 [21]
In a production plant, it should be determined experimentally whether four kinds of
catalyst preparations affect the yield. Namely, four methods of preparing catalysts in
a 6-month time period have been researched. One should thereby know that each
trial lasts one week. If each catalyst is being researched for a month, there may
appear differences due to changes in the efficiency level of the plant, a change in
raw materials or the like. If each catalyst is tested for seven days and all four in later
weeks, the variation effect is less significant, but the experiment loses its precision,
since each catalyst is being researched in a shorter time period. To profit from the
six months available for the experiment, it is designed in such a way to split the
entire period into six blocks, with testing all four catalysts in a months time. To avoid
the influence of systematic errors, the catalysts are tested within a month or block in
a completely random order. When a linear change in plant efficiency during the
experiment is expected in advance, then this inequality of research subject may be
eliminated by applying designs of experiments known as latin squares.

It should be noted once again that effects of the four catalysts relatively, with
respect to each other, remain the same in each month, i.e. there is no interaction
between blocks (months) and factor levels (catalyst types). When such an interaction
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exists, but it is not great when compared to the factor effect, the experiment will be
satisfactory. The sensitivity will be reduced since the experiment error has increased
for the effect of interaction.

Analysis of experiment results by design of completely randomized blocks
Since the experimental results, by design of completely randomized blocks, are pro-
cessed by analysis of variance, experimental results of randomized blocks will be
presented as a two-way classification and notation, as introduced in Sect. 1.5. We
only introduce the change that the measured values or response are marked by yij
and factors by Xij. Design of completely randomized block structure is given in
Table 2.44

Table 2.44 Structure of design of completely randomized blocks

Factor levels Blocks Average values

1 2 3 . . . J

1 Y11 Y12 Y13 . . . Y1J
�YY1�

2 Y21 Y22 Y23 . . . Y2J
�YY2�

3 Y31 Y32 Y33 . . . Y3J
�YY3�

. . . . . . . . .

I YI1 YI2 YI3 . . . YIJ
�YYI�

Average values �YY�1
�YY�2 �YY�3 . . . �YY�J �YY��

Table 2.45 Analysis of variance of completely randomized blocks

Source of
variations

f Sum of squares definitions Sum of squares
practical calculations

Mean square Test
statistic

Between
columns of

blocks

J-1 SSC ¼ I
P
j

�YY�j � �YY��

� �2
SSC ¼

P
j

Y2
�J

I
� Y2

��

IJ
MSC ¼ SSC

J�1

MSC
MSE

Between rows
of factor levels

I-1 SSR ¼ J
P
i

Yi� � �YY��
� �2

SSR ¼

P
i

Y2
i�

J
� Y2

��

IJ
MSR ¼ SSR

I�1

MSR
MSE

Residual

variance of

error

(J-1)(I-1) SSE ¼
P
i

P
j

Yij � �YYi� � �YY�j þ �YY��

� �2
SSE ¼ SST � SSC � SSR MSE ¼ SSE

I�1ð Þ J�1ð Þ –

Total IJ-1 SST ¼
P
i

P
j

Yij � �YY��

� �2
SST ¼

P
i

P
j

Y
2
ij �

Y2
��

IJ
– –
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The experiment is done by the design shown in Table 2.44, and the obtained
results processed by analysis of variance. Definitions with calculation forms of anal-
ysis of variance are shown in Table 2.45.

Although block effects are less interesting for the research objective, the large var-
iance value between the blocks means that division into blocks was justified, i.e. that
residual variance has been reduced, which contributed to a higher precision of the
experiment. A high variance value between the blocks means at the same time that
one should find out the causes for such an expressed inequality of experiment con-
ditions. It should be noted that analysis of variance in Table 2.45 comprises perform-
ing the experiment by design of randomized blocks without repeating the measure-
ments.

The basic assumption of this kind of design of experiments without repeating
measurements is that each measured result may be described by this model.

Yij ¼ lþ ai þ b
i
þ eij (2.40)

i=1, 2,..., I; j=1, 2,..., J

where:
l is actual mean effect;
bj is actual block effect;
ai is actual factor effect;
eij is experimental error with normal distribution N(O,r2).

Experiments may be done by design of completely randomized blocks and by
repeating measurements in which case analysis of variance has a different form
(Table 2.46):

It should be noted that the number of measurement replications in the matrix of
design of completely randomized blocks is marked by K. A distinction should also
be made between mean squares for measurement error + experimental error and
measurement error. Often this sum of measurement and experimental errors is just
called experimental error, and measurement error sampling error. To check signifi-
cance of the factor effect, the mean square of joint error or experimental error MSCR

is used.

Example 2.15 [21]
Studies of chlorosulphonizing of acetaniline showed that the obtained yield of
chemical reaction was considerably below theoretical due to losses in the mother liq-
uid. Research of the effects of five possible mixtures of acetaniline on yield was sug-
gested. These five mixtures were marked as A, B, C, D and E. Experiments lasted for
15 days, and since production of one batch of acetaniline lasts 24h, the whole experi-
mental program was divided into three blocks of five batches each. The outcomes
are shown in Table 2.47. The results were processed by analysis of variance and
shown in Table 2.48. These results at 95% confidence coefficient were neither con-
siderable between blocks nor was the effect of different acetaniline mixtures signifi-
cant. However, at 90% confidence F4;8;0.90=2.81, so that the effect of different acetani-
line mixtures was statistically significant. Such a high level of risk in passing a deci-
sion demands further research to select the best option of technological procedure
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II Design and Analysis of Experiments

for acetaniline production. Analysis of variance showed that there were no signifi-
cant differences between blocks, i.e. that no trend of changes in levels of obtained
results was noticed.

Table 2.47 Design of experiment

Block Batch Acetaniline mixture Percentage of loss

I 1 B 18.2

2 A 16.9
3 C 17.0
4 E 18.3
5 D 15.1

II 6 A 16.5
7 E 18.3
8 B 19.2
9 C 18.1
10 D 16.0

III 11 B 17.1
12 D 17.8
13 C 17.3
14 E 19.8
15 A 17.5

Table 2.48 Analysis of variance

Source of variation f SS MS F F2;8;0.95

Blocks 2 1.65 0.82 0.94 4.46

Factor levels 4 11.56 2.89 3.32 3.84

Error 8 6.99 0.87 – –

Total 14 20.20 – – –

Example 2.16 [22]
In an experiment designed as completely randomized blocks, the effect of Co% on
steel tensile strength was researched. Three vessels for producing alloys were used
in experimental procedure. Each measurement of tensile strength was repeated and
outcomes are shown in thousands of PSI-a in Table 2.49.

Table 2.49 Completely randomized blocks with measurements replications

Vessel-block 1% Co 2% Co 3% Co 4% Co

1 49 50 60 62 64 67 71 75

2 44 45 53 56 63 65 65 67

3 53 56 64 65 74 78 76 80
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The results of analysis of variance are shown in Table 2.50.

Table 2.50 Analysis of variance

Sources of variations f SS MS F Ff;6;0.95

Blocks 2 485.3 242.65 42.80 5.14

Factor levels 3 1847.5 615.83 108.61 4.76

Experimental error 6 34.0 5.67 – –

Sampling error 12 45.0 3.75 – –

Total 23 2411.8 – – –

& Problem 2.7 [22]
In the previous experiment, where the effect of cobalt contents on
steel tensile strength was researched, we are now trying to find out
the effect of three percentile contents of cobalt on this response if
each alloy was tempered in each of four furnaces. Twelve alloy
batches were divided into three samples each, so that the tensile
strength for 36 samples were measured. These values in thousands
of PSI for measurements or determinations are shown in Table
2.51. Do the analysis of variance.

Table 2.51 Completely randomized blocks with measurement replications

OK 1% Co 2% Co 3% Co

1 50 47 55 64 59 55 60 66 69

2 43 42 51 48 55 62 59 60 70

3 49 53 57 66 63 65 67 83 75

4 45 49 55 67 63 60 63 72 70

& Problem 2.8
Process the results of previous problem by analysis of variance
assuming that an experiment by design of completely randomized
blocks was done with no measurement replications. Use the means
of replicated measurements for such an analysis, as shown in
Table 2.52

Compare the results of analysis from the previous and from this
problem.

Table 2.52 Completely randomized blocks with no replications

Furnace block 1% Co 2% Co 3% Co

1 50.67 59.33 65.00

2 45.33 55.00 63.00

3 53.00 64.67 75.00

4 49.67 63.33 68.33
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2.2.3.1 Incomplete Random Block Design
Former analysis of designs of completely randomized blocks included designs for
all combinations of factor and block variation levels. In doing these designs in prac-
tice certain results may be lacking due to the impossibility of measurement, lack of
material, error in measurement, etc. According to the number and position of the
missing data one can distinguish balanced and unbalanced incomplete random
blocks. Since balanced are a special case of unbalanced incomplete random blocks,
only unbalanced designs will be analyzed [23]. Let us analyze (I�J)-dimensional
order of experimental results with K missing values, Table 2.53.

Table 2.53 Incomplete random blocks

Factor levels Block

1 2 3 . . . J

1 Y – Y . . . –

2 – Y Y . . . Y

3 Y Y – . . . Y

. . . . . .

I Y Y – . . . Y

Estimate of values is done in order to complete the analysis of variance even
when some values are lacking. There are two methods for this estimate:

. direct method, when fewer data than the sum of lines and columns are miss-
ing;

. constant method, when more data than the sum of lines and columns are
missing.

Direct methods
Missing data Zij are determined from the condition that residual sum of squares
SSE is minimal.

SSE=SST-SSC-SSR (2.41)

where:
SST are sums of squares of deviations of individual results from the mean of all
results;
SSC are sums of squares of deviations of block centers from the mean of all results;
SSR are sums of squares of deviations of factor centers from the mean of all results.

If we now mark the sum of all individual values by S

S ¼
P
i

P
j

Yij þ Zij

� �
the sums of squares may be written as:

234



2.2 Screening Experiments

SST ¼
PP

Y
2
ij þ

PP
Z

2
ij �

S2

IJ
(2.42)

SSC ¼

P
j

Y2
�j

I
� S2

IJ
(2.43)

SSR ¼

P
i

Y2
i�

J
� S2

IJ
(2.44)

After replacing relations (2.42)–(2.44) in Eq. (2.41) we get:

SSE ¼
P
i

P
j

Y
2
ij þ

P
i

P
j

Z
2
ij �

P
j

Y2
�j

I
�

P
i

Y2
i�

J
þ S2

IJ
(2.45)

By partial differentiation of residual sum of squares by Zij and bringing it down
to zero, we obtain normal equations. By solving the simultaneous equations we
determine individual values of results that are not available.

Example 2.17
When testing durability or wear-out of car tires, the effect of four kinds of plastici-
zers was researched. Due to problems in doing the experiment, the following out-
comes were obtained:

Table 2.54 Incomplete random blocks

Plasticizer
Type

Car tire block

1 2 3

A 238 196 254

B 238 213 –

C 279 – 334

D – 308 367

The values Z41; Z32 and Z23 are evidently missing, so that we get Table 2.54:

Table 2.55 Incomplete random blocks

Plasticizer
type

Car tire Sum

1 2 3

A 238 196 254 688

B 238 213 Z23 451+Z23

C 279 Z32 334 613+Z32

D Z41 308 367 675+Z41

Sum 755+Z41 717+Z32 955+Z23 2427+Z23+Z32+Z41
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The residual sum of squares is:

SSE ¼ Z
2
41 þ Z

2
32 þ Z

2
23 þ

PP
Y
2
ij �

451þZ23

� �2
3

� 613þZ32

� �2
3

� 675þZ41

� �2
3

� 755þZ41

� �2
4

� 717þZ32

� �2
4

� 955þZ23

� �2
4

þ 2427þZ23þZ32þZ41

� �2
12

By partial differentiation SSE/Z23; SSE/Z32; SSE/Z41 and bringing it down to zero
we have:

6Z41 þ Z32 þ Z23 ¼ 2538
Z41 þ 6Z32 þ Z23 ¼ 2176
Z41 þ Z32 þ 6Z23 ¼ 2242

8<
: (2.46)

By calculating the system of linear equations we get:

Z41=333.7; Z32=261.3; Z23=274.5.

Constant method
Let us mark block effects by b1, b2, ..., bJ, factor effects by a1, a2, ..., aI , and by m the
mean of all results. By definition

P
bj ¼

P
ai ¼ 0, and the number of independent

constants for estimates is equal to: number of rows + number of columns -1. Let Yij

denote the response value in row i and column j. The expected value in i rows and j
columns based on columns effects and rows effects is ai +bj +m, while the deviation
of experimental values Yij from it is:

Yij-(ai+bj+m) (2.47)

The values that are not available are estimated from the condition that the devia-
tion sum of squares is minimal.

S ¼
P

Yij � ai þ bj þm
� �h i2

(2.48)

Values ai, bj and m are obtained from this system of normal equations:

1
2
@S
@m

¼
PP

Yij �m � bj � ai

� �
¼ 0

1
2
@S
@b1

¼
P

Yi1 �m � b1 � aið Þ ¼ 0
::: ::: :::
1
2
@S
@bJ

¼
P

YiJ �m � bJ � ai

� �
¼ 0 ð2:49Þ

1
2
@S
@a1

¼
P

Y1j �m � bj � a1
� �

¼ 0
::: ::: :::
1
2
@S
@aI

¼
P

YIj �m � bj � aI
� �

¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
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Example 2.18
Expected values of experimental results are shown in Table 2.56 (Example 2.17).

Deviation sum of squares is obtained by squaring the difference of expected val-
ues (Table 2.56) and experimentally obtained results (Table 2.54). By partial differen-
tiation of ai, bj and m and bringing it down to zero, we get the following system of
normal equations:

Table 2.56 Incomplete random blocks

Factor levels Block

1 2 3

1 m+a1+b1 m+a1+b2 m+a1+b3
2 m+a2+b1 m+a2+b2 –

3 m+a3+b1 – m+a3+b3
4 – m+a4+b2 m+a4+b3

2427� 9m � 3 b1 þ b2 þ b3ð Þ � 3a1 � 2 a2 þ a3 þ a4ð Þ ¼ 0
688� 3m � 3a1 � b1 þ b2 þ b3ð Þ ¼ 0
451� 2m � 2a2 � b1 þ b2ð Þ ¼ 0
613� 2m � 2a3 � b1 þ b3ð Þ ¼ 0 ð2:50Þ
675� 2m � 2a4 � b2 þ b3ð Þ ¼ 0
755� 3m � 3b1 � a1 þ a2 þ a3ð Þ ¼ 0
717� 3m � 3b2 � a1 þ a2 þ a4ð Þ ¼ 0
955� 3m � 3b3 � a1 þ a3 þ a4ð Þ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:
Calculations of simultaneous system of equations are:

m=274.708; b1=-2.533; b2=-30.133; b3=32.667; a1=-45.375; a2=-32.875; a3=16.725;
a4=61.525

The values that are not available are determined from obtained constants through
Equ. (2.47):

Yij=m+ai+bj

For example for Z41 we get the same as for the direct method:

Z41=m+a4+b1=274.708+61.525-2.533=333.7

Although this direct method is more adequate for the given example, because the
number of the values that are not available are smaller than the sum of rows and
columns, the constant method has also been demonstrated for the case of compari-
son. It should be noted that both methods are generally used in two-way classifica-
tion such as designs of completely randomized blocks, Latin squares, factorial
experiments, etc. Once the values that are not available are estimated, the averages
of individual blocks and factor levels are calculated and calculations by analysis of
variance done. The degree of freedom is thereby counted only with respect to the
number of experimental values. Results of analysis of variance for this example are

237



II Design and Analysis of Experiments

shown in Table 2.57. The total number of degrees of freedom is 8 and not 3�4-1=11,
since three values have been estimated. Residual variance in incomplete random blocks
therefore has a higher value than in complete ones, so the F-test is less sensitive.

Table 2.57 Analysis of variance of incomplete random blocks

Sources of variation f SS MS F Ff;3;0.95

Blocks 2 4933.87 2466.94 17.36 9.55

Factor levels 3 14733.03 4911.01 36.56 9.28

Error 3 426.30 142.10 – –

Total 8 20093.20 – – –

It is clear from the table of analysis of variance that the factor effect is statistically
highly significant. The effect of blocks is also important, which justifies the division
of experimental conditions into blocks.

2.2.4
Latin Squares

Designs of experiments that are specially useful in research, development and opti-
mization in the phase of screening factors are called Latin squares. As for rando-
mized blocks that are used to eliminate one cause of inequality (nonhomogeneity)
of a research subject, Latin squares are applied to distinguish two causes of inequal-
ity of a research. Inequality of experimental conditions is reduced even more by
applying Latin squares, which facilitates a more precise analysis of the effect of
researched factor. Since Latin squares are primarily used in single-factorial experi-
ments for researching the effect of one factor when double inequality or double divi-
sion into randomized blocks of a research subject is present, one may say that Latin
squares are an expansion of designs of completely randomized blocks or 1/m replica
of type m3 full factorial experiment.

Example 2.19
Consider an experiment where durability or wear-out of four types of car tires have
to be researched. Sixteen tires are at our disposal, four of each type. The research
will be done on four cars. The factor in this case is the type of car tire. There are,
however, two additional factors that affect the durability of tires:

. car type,

. tire position on car.

Let us mark car type as I, II, III and IV and the position of tires on each car as FR,
FL, RL and RR. The latest two factors are singled out as an inequality of experimen-
tal conditions into blocks by rows and columns. Car tire types are placed by random
choice on cars but so that one type of tire is put on one type of car only once in the
same position.
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Design of Latin squares is frequently applied when the effect of one factor on sev-
eral conditionally the same devices is researched for a long time. In that case, rows
of designs correspond to successive time studies, and columns to experimental
devices.

Experimental designs are square in forms (m�m), and the researched factor is
tested once in each step. Table 2.58 shows an example of 4�4 Latin square design.

Table 2.58 Design of experiment of latin square

Rows Columns

1 2 3 4

1 A B C D

2 B C D A

3 C D A B

4 D A B C

It is clear from the table that A, B, C and D are levels of the researched factor. An
important condition for applying design of Latin squares is that in each column and
each row one factor level may appear once and only once.

Analysis of variance of latin squares
The model for a general m x m Latin square with one observation in the cell is:

Yij kð Þ ¼ lþ ai þ b
j
þ sk þ eij kð Þ

¼ 1:2; :::;m; j ¼ 1:2; :::;m; k ¼ 1:2; :::;m:
(2.51)

where:P
ai ¼

P
b
j
¼
P

sk ¼ 0

eij(k) has normal distributions N(0, r2).
Variables ai, bj and sk are actual effects of i rows, j columns and the k factor level.
One can notice that the k index is bracketed to indicate that in the design of Latin

squares there are no m results, as is the case with a three-factorial design with one
design-point replication. Design of Latin squares actually has m2 observations or
data.

Analysis of variance for an m x m Latin square with one observation per cell in
concordance with model (2.51) is shown in Table 2.59. Associated sums of data per
rows, columns and factor are marked Yi� �ð Þ ;Y�j �ð Þ andY�� kð Þ .

Table 2.59 shows that total variance of experimental results is divided into var-
iances of:

. R row-variation sources;

. C column-variation sources;

. T factor-variation sources;

. residual or experimental error.
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The condition for application of Latin squares are interactions that are negligible
with respect to experimental error. As in researching complex system there exist in-
teractions, Latin square designs are not widely applied.

Table 2.59 Analysis of variance of m � m latin square

Source of
variation

f SS MS

Rows m-1 SSR ¼

P
i

Y2
i� �ð Þ

m
�
Y2
�� �ð Þ

m2 MSR ¼ SSR
m�1

Columns m-1 SSC ¼

P
j

Y2
�j �ð Þ

m
�
Y2
�� �ð Þ

m2 MSC ¼ SSC
m�1

Factor m-1 SST ¼

P
k

Y2
�� kð Þ

m
�
Y2
�� �ð Þ

m2 MST ¼ SST
m�1

Residual (m-1)(m-2) SSE ¼
P
i

P
j

P
k

Y
2
ijðkÞ �

Y2
�� �ð Þ

m2 � SSR � SSC � SST MSE ¼ SSE
m�1ð Þ m�2ð Þ

Total m2 P
i

P
j

P
k

Y
2
ij kð Þ �

Y2
�� �ð Þ

m2 –

Example 2.20 [15]
As already defined in Example 2.19, four types of tires A, B, C and D have been
researched by design of Latin squares in this way: sixteen tires, four of each type,
have been put on four cars (I, II, III and IV) under these conditions:

. each car has one tire of each of the four types;

. each type of tire is in positions FL, FR, RL and RR;

. actual position of each of 16 tires has been randomly chosen for 4 � 4 Latin
square.

Wear-out of tires has been measured after 8000 km by a standard procedure. The
obtained results are shown in Table 2.60.

Table 2.60 Design of experiment-latin square

Car Position Yi� �ð Þ

FR FL RR RL

I A 31 B 33 C 47 D 54 165

II B 36 D 53 A 42 C 54 185

III C 51 A 43 D 62 B 49 205

IV D 81 C 78 B 72 A 84 315

Y�j �ð Þ 199 207 223 241 870
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After calculation we obtain:P
Y2
�� �ð Þ

16
¼ 8702

16
¼ 47306:25;P

j

Y2
�j �ð Þ

4
¼ 1992þ2072þ2232þ2412

4
¼ 190260

4
¼ 47565;P

i

Y2
i� �ð Þ

4
¼ 1652þ1852þ2052þ3152

4
¼ 202700

4
¼ 50675;P

k

Y2
�� kð Þ

4
¼ 31þ43þ42þ84ð Þ2þ:::þ 81þ53þ62þ54ð Þ2

4

¼ 2002þ1902þ2302þ2502

4
¼ 47875:

So that:

SSR ¼

P
i

Y2
i� �ð Þ

4
�
Y2
�� �ð Þ
16

¼ 3368:75;

SSC ¼

P
j

Y2
�j �ð Þ

4
�
Y2
�� �ð Þ
16

¼ 258:75;

SST ¼

P
k

Y2
�� kð Þ

4
�
Y2
�� �ð Þ
16

¼ 568:75;

SSE ¼
PPP

Y
2
ij kð Þ �

Y2
�� �ð Þ
16

� SSR � SSC � SST

¼ 51540.00-47306.25-3368.745-258.75-568.75=37.50.

Table 2.61 Analysis of variance

Sources of variation f SS MS F Ff;6;0.95

Rows cars 3 3368.75 1122.917 179.66 4.76

Column positions 3 258.75 86.250 13.80 4.76

Factor tire type 3 568.75 189.583 30.33 4.76

Experimental error 6 37.50 6.250 – –

Total 15 4233.75 – – –

Statistically significant differences between car tires, tire positions and tire types
are clearly evident from analysis of variance. Table 2.60 indicates the highest wear
out of tires on car IV and the lowest on car I. This does not present an error but is
simply the upper and lower limit of tire wear-out in this research.
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Example 2.21 [24]
In finding the composition for neutral light filters based on poly methyl methacry-
late (PMMA) it was necessary to research the effect of four different dyestuffs (X3),
which are prepared in four different ways (X2) and in four concentrations (X1) as for
the filter optical properties. The experiment was done by a 4 x 4 design of Latin
square. Samples of obtained PMMA were tested for light permeability within ranges
of these spectra: 240–300(Y1); 300–340(Y2); 300–1000(Y3) and for general light per-
meability (Y4). GOSTs demand for light filters is that Y1 does not exceed 0.5%; Y2-
20%; Y3-45%, and general permeability to be between 20% and 26%. Since no ana-
lyzed response has a universal property, overall desirability D should be taken as a
representative estimate of the quality of light filter.

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 � d2 � d3 � d4

4
p

(2.52)

where
di are partial desirabilities.

Desirability scale for individual properties is shown in Figs. 2.26 and 2.27:
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The results of design and performance of experiment by 4x4 Latin square are
shown in Table 2.62.
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Table 2.62 Design of experiment by 4x4 latin square

Levels of
variation

Factors Responses

X1 X2 X3 Y1 Y2 Y3 Y4 D

0 0.006 1 A

1 0.008 2 B

2 0.010 3 C

3 0.020 4 E

1 0 0 A 0.1 10.9 35.8 20.5 0.73

2 0 1 B 0.0 46.1 70.1 69.5 0

3 0 2 C 0.1 19.8 72.8 39.5 0

4 0 3 E 0.2 53.0 69.2 66.3 0

5 1 0 B 0.0 44.0 63.8 61.5 0

6 1 1 C 0.0 24.0 72.8 40.9 0

7 1 2 E 0.0 22.5 65.3 48.8 0

8 1 3 A 0.0 5.0 20.1 22.1 0.83

9 2 0 C 0.0 21.0 70.3 34.0 0

10 2 1 E 0.1 32.8 53.8 51.0 0

11 2 2 A 0.0 3.0 29.8 12.8 0.50

12 2 3 B 0.0 16.5 50.8 35.0 0.34

13 3 0 E 0.0 10.0 37.0 31.9 0.66

14 3 1 A 0.1 0.5 9.0 2.3 0

15 3 2 B 0.1 18.0 36.0 26.3 0.67

16 3 3 C 0.0 7.0 70.8 25.8 0

The results of analysis of variance are shown in Table 2.63.

Table 2.63 Analysis of variance

Sources of variations f SS MS F Ff;6;0.95

Factor x1 3 0.333042 0.111014 1.77 4.76

Factor x2 3 0.069641 0.023214 0.37 4.76

Factor x3 3 1.573387 0.524462 8.39 4.76

Experimental error 6 0.374770 0.062462 – –

Total 15 2.350840 – – –

Analysis of variance shows that only factor effect X3 is significant. This means
that out of four different dyestuffs one should choose the most convenient one.
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& Problem 2.9 [21]
The procedure of spraying an insecticide over a treated area is very
important for its efficient use. A study has therefore been done with
the idea of establishing the best procedure for preparing a spraying
insecticide. The following three factors have been researched:

1. type of component mixing;
2. form of active matter;
3. solvent type.

Under the assumption that there is no significant interaction
between the given factors, the design of Latin squares has been
applied. In this case, seven solvent types, methods of mixing and
forms of active matter have been researched. Stability of insecticide
is measured as the response. The results are shown in Table 2.64.
Do the analysis of variance.

Table 2.64 Design matrix of 7 � 7 latin square

Type of mixing Form of active matter Sum

1 2 3 4 5 6 7

1 A 98 B 117 C 89 D 64 E 63 F 123 G 244 807

2 B 69 E 67 A 70 G 70 F 111 D 60 C 218 665

3 C 37 F 83 G 83 B 74 D 70 A 75 E 169 591

4 D 65 G 60 E 91 F 56 C 61 B 59 A 150 542

5 E 56 D 44 B 70 C 68 A 88 G 111 F 220 657

6 F 113 C 105 D 65 A 51 G 83 E 57 B 233 707

7 G 64 A 62 F 65 E 86 B 45 C 108 D 187 617

Sum 502 538 533 469 521 602 1421 4586

& Problem 2.10 [15]
The design of a 4 � 4 Latin square has been used in researching
effects of water pressure, air flow and number of nozzles in opera-
tion on scrubber efficiency. Research outcomes are shown in
Table 2.65. Do the analysis of variance for the given data.

Table 2.65 Design matrix of 4 � 4 latin square

Nozzles in
operation

Air flow Sum

5120 2560 4160 6400

NA 90 81 95 95 361

NC – 80 88 85 253

ND 83 83 88 67 321

NB 96 95 88 94 373

Sum 269 339 359 341 1308
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& Problem 2.11 [25]
An alternator for a missile has been constructed and made. The
alternator is activated by a turbine, and the turbine by the products
of burning of the generator gas from solid rocket propellant. The
alternator is composed of three separate sections that generate
energy, each of them being independent. One section provides
energy for keeping the alternator velocity at 24000 min

-1
. It is com-

posed of a 4-pole stator, 6-pole rotor and axis. The rotor rotates con-
centrically in the stator opening, while the stator is fixed in its box.
The stator consists of coils for direct and alternating currents. The
exit voltage of the alternating current is a function of the inlet direct
current and the number of alternating coils. The rotor is coiled by
laminates 0.004 inches thick. The laminates are covered up for insu-
lation. The experiment is aimed at finding factors and their levels
that affect the alternator performance most significantlly. The
design of experiment was a 55 Latin square with these factors and
levels:

. number of coils for alternating current of stator are these: 145; 150; 155; 160
and 165;

. number of rotor laminates: 230; 240; 250; 260 and 270;

. visual quality of laminate insulation: A; B; C; D and E, where A is the best
and E the worst quality.

The result of measurement is the maximal parasitic voltage of
alternating current. All the measured values have been reduced by
300 to make calculation easier and are shown in Table 2.66. Do the
analysis of variance.

Table 2.66 Design of experiment of 5 � 5 latin square

Rotors Stators Sum

145 150 155 166 165

230 C 10 B 12 A 20 D 6 E 0 48

240 D 9 C 10 B 24 E 0 A 5 48

250 B 12 E 3 C 25 A 7 D 2 49

260 A 16 D 6 E 18 C 4 B -6 38

270 E 14 A 8 D 23 B 9 C 3 57

Sum 61 39 110 26 4 240

245



II Design and Analysis of Experiments

The following Latin squares may be used for practical solving of the problem:

4 � 4
1. 2. 3. 4.

A B C D A B C D A B C D A B C D
B A D C B C D A B D A C B A D C
C D B A C D A B C A D B C D A B
D C A B D A B C D C B A D C B A

5 � 5 6 � 6 7 � 7

A B C D E A B C D E F A B C D E F G
B A E C D B F D C A E B C D E F G A
C D A E B C D E F B A C D E F G A B
D E B A C D A F E C B D E F G A B C
E C D B A E C A B F D E F G A B C D

F E B A D C F G A B C D E
G A B C D E F

8 � 8 9 � 9
A B C D E F G H A B C D E F G H I
B C D E F G H A B C D E F G H I A
C D E F G H A B C D E F G H I A B
D E F G H A B C D E F G H I A B C
E F G H A B C D E F G H I A B C D
F G H A B C D E F G H I A B C D E
G H A B C D E F G H I A B C D E F
H A B C D E F G H I A B C D E F G

I A B C D E F G H

10 � 10
A B C D E F G H I J
B C D E F G H I J A
C D E F G H I J A B
D E F G H I J A B C
E F G H I J A B C D
F G H I J A B C D E
G H I J A B C D E F
H I J A B C D E F G
I J A B C D E F G H
J A B C D E F G H I
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11 � 11 12 � 12
A B C D E F G H I J K A B C D E F G H I J K L
B C D E F G H I J K A B C D E F G H I J K L A
C D E F G H I J K A B C D E F G H I J K L A B
D E F G H I J K A B C D E F G H I J K L A B C
E F G H I J K A B C D E F G H I J K L A B C D
F G H I J K A B C D E F G H I J K L A B C D E
G H I J K A B C D E F G H I J K L A B C D E F
H I J K A B C D E F G H I J K L A B C D E F G
I J K A B C D E F G H I J K L A B C D E F G H
J K A B C D E F G H I J K L A B C D E F G H I
K A B C D E F G H I J K L A B C D E F G H I J

L A B C D E F G H I J K

2.2.5
Graeco-Latin Square

By applying Latin squares one could do studies with three independent factors si-
multaneously or one could analyze the effect of one factor while singling out two
inequalities of a research subject, such as for instance, more experimental devices
and different times of doing the experiment. The concept of Latin squares may easi-
ly be extended to Graeco-Latin squares. This kind of design allows the same number
of levels of a factor to be experimentally researched on the same number of experi-
mental devices in different times and different locations. Use of these designs
results in exceptional savings of time and means, as the total number of design
points has been drastically reduced. However, similar to Latin squares, these designs
may be used only when interactions are statistically insignificant. Graeco-Latin
squares are constructed so that one design of a Latin square with Latin characters is
put over another design of a Latin square but with Greek characters, and in such a
way that each Graeco-Latin pair of characters appears once and only once. In such
conditions one may construct n � n Graeco-Latin squares n„2,6,10. In constructing
Graeco-Latin squares, numbers are frequently used instead of Greek characters.
Generally speaking, rows represent levels of one factor, columns levels of the second
factor, Greek characters or numbers levels of the third factor and Latin characters
levels of the fourth factor. As has already been said, Graeco-Latin squares may be
considered as designs with three types of blocks. Designs of Latin squares n � n
require n2 design points or observations, which is considerably less when compared
to n4 design points in full factorial experimental design.
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The following Graeco-Latin squares may be used for practical needs:

3 � 3 4 � 4 5 � 5
A1 B3 C2 A1 B3 C4 D2 A1 B3 C5 D2 E4
B2 C1 A3 B2 A4 D3 C1 B2 C4 D1 E3 A5
C3 A2 B1 C3 D1 A2 B4 C3 D5 E2 A4 B1

D4 C2 B1 A3 D4 E1 A3 B5 C2
E5 A2 B4 C1 D3

7 � 7 8 � 8
A1 B5 C2 D6 E3 F7 G4 A1 B5 C2 D3 E7 F4 G8 H6
B2 C6 D3 E7 F4 G1 A5 B2 A8 G1 F7 H3 D6 C5 E4
C3 D7 E4 F1 G5 A2 B6 C3 G4 A7 E1 D2 H5 B6 F8
D4 E1 F5 G2 A6 B3 C7 D4 F3 E6 A5 C8 B1 H7 G2
E5 F2 G6 A3 B7 C4 D1 E5 H1 D8 C4 A6 G3 F2 B7
F6 G3 A7 B4 C1 D5 E2 F6 D7 H4 B8 G5 A2 E3 C1
G7 A4 B1 C5 D2 E6 F3 G7 C6 B3 H2 F1 E8 A4 D5

H8 E2 F5 G6 B4 C7 D1 A3

9 � 9 11 � 11
A1 B3 C2 D7 E9 F8 G4 H6 I5 A1 B7 C2 D8 E3 F9 G4 H10 I5 J11 K6

B2 C1 A3 E8 F7 D9 H5 I4 G6 B2 C8 D3 E9 F4 G10 H5 I11 J6 K1 A7

C3 A2 B1 F9 D8 E7 I6 G5 H4 C3 D9 E4 F10 G5 H11 I6 J1 K7 A2 B8
D4 E6 F5 G1 H3 I2 A7 B9 C8 D4 E10 F5 G11 H6 I1 J7 K2 A8 B3 C9
E5 F4 D6 H2 I1 G3 B8 C7 A9 E5 F11 G6 H1 I7 J2 K8 A3 B9 C4 D10
F6 D5 E4 I3 G2 H1 C9 A8 B7 F6 G1 H7 I2 J8 K3 A9 B4 C10 D5 E11
G7 H9 I8 A4 B6 C5 D1 E3 F2 G7 H2 I8 J3 K9 A4 B10 C5 D11 E6 F1
H8 I7 G9 B5 C4 A6 E2 F1 D3 H8 I3 J9 K4 A10 B5 C11 D6 E1 F7 G2
I9 G8 H7 C6 A5 B4 F3 D2 E1 I9 J4 K10 A5 B11 C6 D1 E7 F2 G8 H3

J10 K5 A11 B6 C1 D7 E2 F8 G3 H9 I4
K11 A6 B1 C7 D2 E8 F3 G9 H4 I10 J5

12 � 12
A1 B12 C6 D7 I5 J4 K10 L11 E9 F8 G2 H3
B2 A11 D5 C8 J6 I3 L9 K12 F10 E7 H1 G4
C3 D10 A8 B5 K7 L2 I12 J9 G11 H6 E4 F1
D4 C9 B7 A6 L8 K1 J11 I10 H12 G5 F3 E2
E5 F4 G10H11 A9 B8 C2 D3 I1 J12 K6 L7
F6 E3 H9 G12 B10 A7 D1 C4 J2 I11 L5 K8
G7 H2 E12 F9 C11 D6 A4 B1 K3 L10 I8 J5
H8 G1 F11 E10 D12 C5 B3 A2 L4 K9 J7 I6
I9 J8 K2 L3 E1 F12 G6 H7 A5 B4 C10 D11
J10 I7 L1 K4 F2 E11 H5 G8 B6 A3 D9 C12
K11 L6 I4 J1 G3 H10 E8 F5 C7 D2 A12 B9
L12 K5 J3 I2 H4 G9 F7 E6 D8 C1 B11 A10
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Table 2.67 Analysis of variance of n � n Graeco-Latin square

Source of variations f SS MS

Factor I rows n-1 SSR ¼

P
i

Y2
i� ��ð Þ

n
�
Y2
�� ��ð Þ

n2
MSR ¼ SSR

n�1

Factor II columns n-1 SSC ¼

P
j

Y2
�j ��ð Þ

n
�
Y2
�� ��ð Þ

n2
MSC ¼ SSC

n�1

Factor III latin characters n-1 SSL ¼

P
k

Y2
�� k�ð Þ

n
�
Y2
�� ��ð Þ

n2
MSL ¼ SSL

n�1

Factor IV greek characters n-1 SSG ¼

P
l

Y2
�� �lð Þ

n
�
Y2
�� ��ð Þ

n2
MSG ¼ SSG

n�1

Experimental error (n-1)(n-3) SSE ¼
P
i

P
j

P
k

P
l

Y
2
ij klð Þ

�
Y2
�� ��ð Þ

n2
� SSR � SSC � SSL � SSG

MSE ¼ SSe
n�1ð Þ n�3ð Þ

Total n2-1 SST ¼
P
i

P
j

P
k

P
l

Y
2
ijðklÞ �

Y2
�� ��ð Þ

n2
–

The mathematical model of Graeco-Latin squares has the form:

yij(kl)=l+ai+bj+sk+cl+eij(kl) (2.53)

i, j, k, l=1, 2,..., n
where:P

ai ¼
P

b
j
¼
P

sk ¼
P

c
l
¼ 0

eij(kl)=N (0, r2)

Analysis of variance for Graeco-Latin squares is shown in Table 2.67.

Example 2.22 [21]
The subject of research is a change in technology of tempering copper pipes. The
basic requirement to be observed when doing these changes is that minimal tensile
strength should be 17 T/in2. It has been suggested in the new technological proce-
dure to temper copper pipes at a lower temperature and not to draw them out after
tempering. The experiment has been designed exactly to research the suggested
modification of the technological procedure. In defining the design of experiment
one should take care of inequalities such as variations in material and the inside
temperature of the furnace for tempering. Variations in quality of the initial material
are accounted for by drawing out randomly eight copper pipes on each of eight days.
These eight days are distributed within a three-week period with the idea of covering
normal variations in quality of the observed technological procedure. In order to
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eliminate unequal distribution of furnace temperatures, the furnace has been
divided into eight rows and eight columns, or into 64 shelves. Next, the experiment
has been designed by Graeco-Latin squares with two factors:

. day of production;

. number added to each copper pipe in a sample of eight.

The factor number has no physical meaning and it has been included to enable
identification of tensile strength results for each pipe at different tempering temper-
atures. In a different technological procedure these numbers might indicate the
order of daily production or different procedures of preparing copper pipes, etc.
Results of the experiment by a Graeco-Latin square are shown in Table 2.68. The
table gives rows and columns as positions in the furnace, characters A to H as day of
production, and numbers 1 to 8 as copper pipes in the sample. The results of mea-
surements give tensile strength in tons per square inch.

Table 2.68 Design of experiment of 8 � 8 Graeco-Latin square

1 2 3 4 5 6 7 8 Sum

1 16.6 D3 16.9 H4 17.4 C5 17.4 B6 15.8 E8 18.2 A1 15.7 G2 15.8 F7 133.8

2 15.9 F6 16.4 E5 15.8 G4 19.0 A3 17.6 H2 17.8 B7 18.9 C8 17.1 D1 138.5

3 17.1 B5 16.8 C6 19.2 H3 16.6 D4 15.8 G1 17.8 F8 18.4 E7 18.3 A2 140.0

4 17.7 A4 15.9 G3 16.3 E6 16.0 F5 17.6 C7 17.8 D2 18.1 H1 16.5 B8 135.9

5 17.4 C1 17.0 B2 16.8 D8 19.2 H7 20.3 A5 18.4 E3 15.9 F4 15.7 G6 140.7

6 16.5 E2 16.0 F1 16.9 A7 15.9 G8 17.1 D6 17.5 C4 17.4 B3 19.6 H5 136.9

7 15.8 G7 16.9 A8 15.9 F2 16.5 E1 17.6 B4 19.4 H6 17.1 D5 18.5 C3 137.5

8 18.6 H8 17.4 D7 17.4 B1 19.2 C2 16.8 F3 15.7 G5 17.4 A6 18.4 E4 140.9

Sum 135.6 133.3 135.7 139.8 138.6 142.6 138.9 139.7 1104.2

Table 2.69 Analysis of variance of 8 � 8 Graeco-Latin square

Source of variations f SS MS F Ff;35;0.95

Between rows 7 543.2 77.6 1.47 2.29

Between columns 7 769.9 110.0 2.08 2.29

Between positions ** 14 1313.1 93.8 1.77 1.98

Between days 7 4831.7 690.3 13.05 2.29

Between days * 7 322.2 46.0 0.87 2.29

Experimental error * 35 1852.9 52.9 – –

Total 63 8319.9 – – –

As expected, the effect of differences between numbers is statistically unimpor-
tant and is of the same size as the experimental error. Hence we may join sums of
squares for the factor between numbers and experimental error into a new com-
bined experimental error*, with 42 degrees of freedom. Variations between columns
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and rows in the furnace may also be combined, so that the effect between posi-
tions** in the furnace is at the limit of statistical significance. A high statistical sig-
nificance has the effect of differences between copper pipes from day to day. This
has been later on proved, since compositions of copper pipes in days F and G dif-
fered. As tensile strength level for tempering 300 �C with no later drawing out of all
copper pipes has been below 17, the change in technological procedure cannot be
accepted.

Example 2.23 [25]
The objective of this experiment is to define effects of the following factors on the
corrosion rate of silicon rods: (1) decolorisation of nitric acid, (2) volume of corro-
sion matter, (3) size of silicon rod and (4) time spent in corrosion matter. The experi-
ment went the like this: five bottles of recent nitric acid was exposed to different
sunlight activity until a change in its color from colorless to light yellow occurred.
The same kinds of nitric acid were used to produce a solution for corrosion. Five
groups of silicon rods were sorted out by their weights. Five different volumes of
corrosion matter and five corrosion times were used in the experiment. Order of
doing the design point was random. The corrosion intensity measure is the loss in
weight of silicon rods after rinsing and drying them. The results of the experiment
are shown in Table 2.70.

Table 2.70 Design of experiment of 5 � 5 Graeco-Latin square

Volume of corrosion
matter

Color of nitric acid

1 2 3 4 5

1 65 A1 82 B3 108 C5 101 D2 126 E4

2 84 B2 109 C4 73 D1 97 E3 83 A5

3 105 C3 129 D5 89 E2 89 A4 52 B1

4 119 D4 72 E1 76 A3 117 B5 84 C2

5 97 E5 59 A2 94 B4 78 C1 106 D3

Results of analysis of variance are shown in Table 2.71.

Table 2.71 Analysis of variance of 5 � 5 Graeco-Latin square

Sources of variations f SS MS F Ff;8;0.95

Color of acid 4 227.76 56.94 0.47 3.84

Volume 4 285.76 71.44 0.59 3.84

Size of rods 4 2867.76 716.94 5.96 3.84

Time of corrosion 4 5536.56 1384.14 11.50 3.84

Experimental error 8 962.72 120.34 – –

Total 24 9880.56 – – –
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& Problem 2.12 [25]
Analyze the results of a 44 Graeco-Latin square.

Table 2.72 Design of experiment of 4 � 4 Graeco-Latin square

Rows Columns Sum

1 2 3 4

1 6 A1 4 B3 7 C4 5 D2 22

2 5 B2 6 A4 3 D3 4 C1 18

3 4 C3 5 D1 8 A2 4 B4 21

4 3 D4 2 C2 8 B1 6 A3 19

Sum 18 17 26 19 80

& Problem 2.13 [25]
The data given below are results of 25 design points performed at
five temperatures and with five different time periods, with the idea
of establishing effects of the given factors on conversion in a chemi-
cal reactor. To avoid inequality effects, five chemical reactors and
five operators were included in the experiment. So, 25 design points
were done in five reactors with five operators by design of experi-
ment of a 5�5 Graeco-Latin square in such a way that each operator
used each reactor only once at each temperature and for a constant
conversion time period. Characters denote reactors and numbers
the operators. Do the analysis of variance.

Table 2.73 Design of experiment of 5 � 5 Graeco-Latin square

Temperature Time Sum

30 60 90 120 150

100 16 A1 40 B3 50 C5 20 D2 15 E4 141

125 30 B2 25 C4 62 D1 67 E3 30 A5 214

150 50 C3 50 D5 83 E2 85 A4 45 B1 313

175 80 D4 80 E1 95 A3 98 B5 70 C2 423

200 90 E5 92 A2 98 B4 100 C1 88 D4 468

Sum 266 287 388 370 248 1559

2.2.6
Youdens Squares

Observe the design of an incomplete random block with four blocks and four levels
of researched factor.

This design is shown in Table 2.74.
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Table 2.74 Design of experiment

Block Factor

1 A B C

2 D C A

3 B A D

4 C D B

This kind of design of experiment is known as Youdens square and is in essence
an incomplete design of a Latin square as the fourth column with D factor levels in
the first block, B in the second, C in the third and A in the fourth are missing.
Design of experiment from Table 2.74 may be written differently, as shown in Table
2.75.

Table 2.75 Youdens design of experiment

Block Factor

A B C D

1 a b c –

2 c – b a

3 b a – c

4 – c a b

The design of experiment written in this form is a reconstructed Latin square
design where one of the diagonals has been left out. Generally speaking, Youdens
square is a symmetrically balanced incomplete random block where each factor level
appears once and only once in each block position.

Youdens square is always a Latin square where one or more columns (or rows or
diagonals) have been left out; however, the opposite is not true; a Latin square where
one or more columns (or rows or diagonals) have been left out is not always a You-
dens square, for by leaving out columns from a Latin square the balance in design is
lost. It is, however, possible to construct designs of Youdens squares from all sym-
metrical balanced random blocks [26]. Youdens squares have the same number of
rows and levels of a researched factor but quite a different number of columns.

This notation is used:
1) I number of levels of researched factor;
2) J number of levels of one inequality source-blocks;
3) K number of levels of the second source of inequality;
4) L number of replications of each factor level

Following Youdens squares may be used for practical needs:
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Table 2.76 I=J=7; K=L=3

Rows Columns

1 2 3

1 G A C

2 A B D

3 B C E

4 C D F

5 D E G

6 E F A

7 F G B

Table 2.77 I=J=11; K=L=5

Rows Columns

1 2 3 4 5

1 A B C D E

2 G A F J C

3 I H A F B

4 K I G A D

5 J K E H A

6 H G B C K

7 B F D K J

8 F C K E I

9 C D J I H

10 E J I B G

11 D E H G F

Table 2.78 I=J=7; K=L=4

Rows Columns

1 2 3 4

1 D F G A

2 E G A B

3 F A B C

4 G B C D

5 A C D E

6 B D E F

7 C E F G

Table 2.79 I=J=13; K=L=4

Rows Columns

1 2 3 4 5 6 7 8 9 10 11 12 13

1 A B C D E F G H I J K L M

2 B C D E F G H I J K L M A

3 D E F G H I J K L M A B C

4 J K L M A B C D E F G H I

Table 2.80 I=J=15; K=L=7

Rows Columns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 A B C D E F G H I J K L M N O

2 B C D E F G H I J K L M N O A

3 C D E F G H I J K L M N O A B

4 E F G H I J K L M N O A B C D

5 F G H I J K L M N O A B C D E

6 I J K L M N O A B C D E F G H

7 K L M N O A B C D E F G H I J
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Table 2.81 I=J=16; K=L=6

Rows Columns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 A B C D E F G H I J K L M N O P

2 B C D A F G H E J K L I N O P M

3 C D A B G H E F K L I J O P M N

4 E F G H I J K L M N O P A B C D

5 L I J K P M N O D A B C H E F G

6 M N O P A B C D E F G H I J K L

Table 2.82 I=J=16; K=L=10

Rows Columns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 A B C D E F G H I J K L M N O P

2 C A B E F D J I H G M K L P N O

3 D C A K M G H E L I J B P O F N

4 N E P A H B D C F K O G I J L M

5 M N O P B A F D E C G I J H K L

6 B J H G A I L O M N D C E F P K

7 L K I B O P N A D F C H G E M J

8 J H F L G M A P K O B N C D E I

9 I P L O N K C M J A H E F B D G

10 O M K J L N P G A E F D B I C H

Youdens square I=J=7; K=L=4 is transformed into a balanced incomplete random
block for easier calculation:

It should be noted that levels of second degree of inequality are given by numbers
in brackets.

Table 2.83 Youdens 7 � 4 square

Factor Blocks

1 2 3 4 5 6 7

A (4) (3) (2) (1)

B (4) (3) (2) (1)

C (4) (3) (2) (1)

D (1) (4) (3) (2)

E (1) (4) (3) (2)

F (2) (1) (4) (3)

G (3) (2) (1) (4)
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The previously introduced notation says:

. I number of levels of researched factor;

. J number of levels of one inequality source-blocks;

. K number of levels of the second source of inequality;

. L number of replications of each factor level.

Analysis of variance for Youdens squares is shown in Table 2.84.

Table 2.84 Analysis of variance for youdens square

Sources of variations f SS MS F

Blocks I-1 SS1 ¼

P
j

Y2
�j �ð Þ

K
�
Y2
�� �ð Þ
JK

SS1
I�1

MS1

MSE

Corrected factor I-1 SS2 ¼ I�1

JK2 K�1ð Þ
P
i

KYi�� �
P
j ið Þ

Y�j�

 !2
SS2
I�1

MS2

MSE

Factor J-1 SS3 ¼

P
i

Y2
i��

L
� Y2

���

IL
SS3
J�1

MS3

MSE

Corrected blocks J-1 SS4 ¼ J�1

JK2 K�1ð Þ
P
j

LY�j� �
P
i jð Þ

Yi��

 !2
SS4
J�1

MS4

MSE

Second source of
inequality

K-1 SS5 ¼

P
l

Y2
��l

I
� Y2

���

JK

SS5
K�1

MS5

MSE

Experimental error IK-J-I-K+2 SSE ¼
P
i

P
j

P
k

Y
2
ijl �

Y2
���

JK
� SS1 � SS2 � SS5

SSE
IK�J�I�Kþ2

–

Total IK-1 SST ¼
P
i

P
j

P
l

Y
2
ijl �

Y2
���

JK
SST
IK�1

–

Note: SS1+SS2=SS3+SS4; I=J; K=L.

Example 2.24
In researching resistance on rubber abrasion, a Martindale tester is used for com-
parasions of various rubber samples. Five types of rubbers have been tested in five
cycles on four tester positions. Design of experiment for five rubber types and five
test cycles is the Youdens square shown in Table 2.85
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Table 2.85 Youdens square

Cycle Position on tester

a b c d

1 A B C D

2 E A B C

3 D E A B

4 C D E A

5 B C D E

Design of experiment and test results are shown in a more suitable form for cal-
culations in Table 2.86.

Table 2.86 Youdens square

Rubber type
treatment

Test cycle-block Sum

1 2 3 4 5

A 68 a 33 b 54 c 81 d – 236

B 49 b 31 c 114 d – 40 a 234

C 80 c 91 d – 56 a 50 b 277

D 71 d – 65 a 50 b 48 c 234

E – 51 a 49 b 70 c 89 d 259

Sum 268 206 282 257 227 1240

I=5; J=5; K=4=L

SS1 ¼ 2682þ2062þ2822þ2572þ2272

4
� 12402

5�4
¼ 311362:0

4
� 1537600

20
¼ 960:50

SS2 ¼ 5�1

5�42 4�1ð Þ
4� 236� 268� 206� 282� 257ð Þ2

h
þ:::þ 4� 259� 206� 282� 257� 227ð Þ2 
 ¼ 719:50

SS3 ¼
2362þ2342þ2772þ2342þ2592
� �

4
� 12402

5�4
¼ 374:50

SS4 ¼ 5�1

5�42 4�1ð Þ
4� 268� 236� 234� 277� 234ð Þ2

h
þ:::þ 4� 227� 234� 277� 234� 259ð Þ2 
 ¼ 1305:5

SS5 ¼ 68þ40þ56þ65þ51ð Þ2þ:::þ 81þ114þ91þ71þ89ð Þ2

5
� 12402

20
¼ 5273:20

SST ¼ 68
2 þ 33

2 þ 54
2 þ 81

2 þ :::þ 51
2 þ 49

2 þ 70
2 þ 89

2
� �

� 12402

20
¼ 85358� 76880 ¼ 8478

SSE=8478-960.50-719.50-5273.20=1524.80
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Complete the analysis of variance is shown in Table 2.87.
It is evident that factor and blocks have no statistically significant effect. However,

between sample positions on the tester there exists a statistically significant differ-
ence. Position D gives much higher rubber abrasions, which may mean that sam-
ples of rubber have not been mounted properly in this position.

Table 2.87 Analysis of variance of Youdens square

Sources of variations f SS MS F

Between blocks 4 960.50 reject –

Corrected factor 4 719.50 179.9 0.94

Factor 8 1680.00 – –

Factor 4 374.50 reject –

Corrected blocks 4 1305.50 326.4 1.71

Between blocks 8 1680.00 – –

Between tester positions 3 5273.20 1757.7 9.22

Experimental error 8 1524.80 190.6 –

Total 19 8478.00 – –

Example 2.25 [25]
Raw gasoline and six additives to be added into it were used to test the octane num-
ber of gasoline. Blocks are orders of testing, and columns are testing times. Design
of experiment corresponded to a Youdens 73 square. Results of the experiment are
shown in Table 2.88.

Table 2.88 Youdens 7 � 3 square

Blocks Columns Sum

1 2 3

1 43 A 34 B 47 D 124

2 36 B 32 C 46 E 114

3 33 C 47 D 43 F 123

4 44 D 40 E 33 G 117

5 41 E 35 F 44 A 120

6 36 F 32 G 32 B 100

7 33 G 41 A 27 C 101

Sum 266 261 272 799
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Table 2.89 Youdens 7 � 3 square

Factor Blocks Sum

1 2 3 4 5 6 7

A 43(1) – – – 44(3) – 41(2) 128

B 34(2) 36(1) – – – 32(3) – 102

C – 32(2) 33(1) – – – 27(3) 92

D 47(3) – 47(2) 44(1) – – – 138

E – 46(3) – 40(2) 41(1) – – 127

F – – 43(3) – 35(2) 36(1) – 114

G – – – 33(3) – 32(2) 33(1) 98

Sum 124 114 123 117 120 100 101 799

For the sake of easier calculation Table 2.88 is transformed into Table 2.89.

SS1 ¼ 1242þ1142þ1232þ1172þ1202þ1002þ1012

3
� 7992

7�3
¼ 196:95

SS2 ¼ 7�1

7�32 3�1ð Þ
3� 128� 124� 120� 101ð Þ2

h

þ:::þ 3� 98� 117� 100� 101ð Þ2 
 ¼ 493:62

SS3 ¼ 1282þ1022þ922þ1382þ1272þ1142þ982

3
� 7992

7�3
¼ 608:29

SS4 ¼ 7�1

7�32 3�1ð Þ
3� 124� 128� 102� 138ð Þ2

h

þ:::þ 3� 101� 128� 92� 98ð Þ2 
 ¼ 82:29

SS5 ¼ 43þ36þ33þ44þ41þ36þ33ð Þ2þ:::þ 44þ32þ27þ47þ46þ43þ33ð Þ2

7
� 7992

7�3
¼

¼ 2662þ2612þ2722

7
� 30400:05 ¼ 8:67

SST ¼ 43
2 þ 44

2 þ 41
2 þ 34

2 þ :::þ 36
2 þ 33

2 þ 32
2 þ 33

2
� �

� 7992

7�3
¼ 706:95

SSE=706.95-196.95-493.62-8.67=7.71

Complete analysis of variance is shown in Table 2.90.
Analysis of variance shows that addition of additives to basic gasoline has a statis-

tically significant effect. The order of testing gasoline or differences between blocks
are also statistically very important. The time factor is not statistically significant.
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Table 2.90 Analysis of variance of youdens square

Sources of variations f SS MS F Ff;6;0.95

Order-blocks 6 196.95 – – –

Gasoline type-corrected factor 6 493.62 82.27 64.27 4.28

Gasoline type-factor 6 608.29 – – –

Order-corrected blocks 6 82.29 13.72 10.72 4.28

Time 2 8.67 4.34 3.39 5.14

Experimental error 6 7.71 1.28 – –

Total 20 706.95 – – –

& Problem 2.14 [25]
On the machine for abrasion testing four samples of dyestuff were
tested. The machine has three positions for testing in the same time
simultaneously. Tests have been made in four cycles. The design of
experiment was Youdens 43. Results are shown in the next table. Do
analysis of variance.

Table 2.91 Youdens square

Positions Cycles

1 2 3 4

1 13 A 20 D 23 C 21 B

2 15 B 10 A 26 D 29 C

3 18 C 11 B 15 A 28 D

& Problem 2.15
Seven procedures of a critical material state that their product satis-
fies very precise tensile strength requirements. Each producer has
supplied enough material for four tests. Testing this material has
been designed under seven conditions. Tensile strength tests have
been done on four testers (1, 2, 3 and 4). Testing has been done by
Youdens square design. Process the outcomes of this testing by ana-
lysis of variance.
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Table 2.92 Design of experiment

Conditions Producers Sum

1 2 3 4 5 6 7

1 1.62(4) 2.10(3) 1.50(2) – 2.30(1) – – 7.52

2 – 1.93(4) 1.90(3) 1.77(2) – 1.64(1) – 7.24

3 – – 2.22(4) 1.56(3) 2.29(2) – 1.92(1) 7.99

4 2.14(1) – – 1.58(4) 1.88(3) 1.81(2) – 7.41

5 – 1.65(1) – – 1.61(4) 1.65(3) 2.03(2) 6.94

6 1.99(2) – 1.64(1) – – 1.74(4) 2.46(3) 7.83

7 1.75(3) 2.46(2) – 1.86(1) – – 2.62(4) 8.69

Sum 7.50 8.14 7.26 6.77 8.08 6.84 9.03 53.62

Summary
This chapter about design of experiments refers to screening the factors by the sig-
nificance of their effect on a measured value or response. The researcher has by
applying the mentioned methodology:

. defined all factors and responses of the research subject;

. defined all variable parameters of the research subject as random values;

. clarified the random property of the research subject variables and checked
whether their distribution laws correspond to a normal distribution;

. estimated correlation between variables of the research subject;

. that factors, in accord with preliminary information, are ranked according in
order of their effects on response by using a preliminary ranking method;

. screened out factors into significant and random ones as regards their affect
on the research subject, by the random balance method.

Based on the results of a screening experiment and the objective of the research
problem, the researcher decides about including a system factor and response into
the design of the basic experiment. This does not involve all the information of a
selective experiment:

. Information on factor-variation intervals may be drawn from an active experi-
ment by the random balance method. Thus, linear effects of factors X1X2 in
Example 2.10 considerably exceed the affects of other factors. This simulta-
neously may mean that the selected factor-variation intervals X1(-;+); X2(-;+)
are too high. If this is so, then they should be cut in half in the basic experi-
ment.

. Factor space may be obtained from the matrix of random balance and analy-
sis of variance. Information on number of replications of design points-trials
in the basic experiment is obtained from analysis of variance, and some
proofs about linear or nonlinear relationships between variables of the
research subject from correlation analysis.
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Hence, a more complete conclusion on all that is obtained from screening experi-
ments should include:

. factor space;

. factor-variation intervals;

. preliminary number of design points/trials and replications;

. number of factors and their interactions, which should be included into the
basic experiment.

2.3
Basic Experiment-Mathematical Modeling

General form of mathematical model for a research subject has been defined in
Sect. 2.1.1:

y ¼ j X1 ;X2 ; :::;Xk

� �
To select a mathematical model means to choose a form of mathematical function

and write down the associated equation. The next step is designing and performing
the experiment based on the results of which constants or coefficients of the chosen
mathematical model will be determined. Choice of mathematical model is the next
question. To obtain a satisfactory answer, let us observe the geometrical interpreta-
tion of this model or response functions. The mentioned response function geometri-
cally is often called the response surface. In cases when the response is a function of
several factors, the possibility of geometrical interpretation is lost. We are entering
the area of abstract multidimensional space where it is difficult to get oriented. In
such cases we switch to the language of algebra where computers help us find our
way much more easily.

Let us stick to response geometrical interpretation of “black box” with two input
factors. A simple graphic system with x-y coordinates is sufficient for this. One may
insert values of variation levels of one factor on one axis, and those of the other fac-
tor on another axis. Each ”black box” status will have a corresponding point in the
surface. As has been said in Sect. 2.1.3, factors are defined by their domains. This
means that each factor is defined by its minimal and maximal values where it may
be changed continuously or discontinuously. If the factors are concordant then those
limits in the plane form a rectangle within which are the points that coincide with
“black box” statuses. Dashed lines in Fig. 2.28 mark the limit values of the domain of
factors and full lines the limits of concordant domain of factors. To present graphically
the response values, we use the third axis of the coordinate system, so that the
response surface has the shape given in Fig. 2.29.

The area where the response surface has been constructed is called the factor
space. The area taken by factor axes is often considered as the factor space. A
response function does not have to be geometrically interpreted in a three-dimen-
sional space for a research subject defined by only two factors. For such a presenta-
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tion a space where intersection lines of response surface are projected with planes
parallel to X10 X2 is sufficient. This is shown in Fig. 2.30.
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Figure 2.30 Contour lines

Point M in the figure is the optimum that by one definition of the research prob-
lem objective should be determined. Each intersection line in the plane is a line of
constant response values and is called contour lines-contour diagram.

Since the way of interpreting a response function is clear, the basic question of
finding the optimum with minimal expenses are as follows:

. When all possible response values are available for all combinations of factor
variation levels in the form of a table, there is no problem to define or select
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the model, nor is there a problem to find the optimum. An optimum is the
combination of factors that has the best response value. As there are endless
combinations of factors, this case is of no practical value.

. The second approach consists of choosing a random number of combina-
tions of factor levels and their responses hoping that an optimal value has
been included or in a limit case it is a value close to the optimal. Evidently,
such an approach includes a great risk.

. The third approach involves mathematical modeling or obtaining a mathe-
matical model by which response values outside the region of the experiment
may be extrapolated. Response values that are an optimum or close to it are
estimated.

Lack of all possible response values, for all possible combinations of factor-varia-
tion levels is paid by introduction of assumptions about an unknown model for use
before the start of an experiment. The main assumptions about the model or
response surface refer to continuity, smoothness and existence of an optimum.
Such assumptions allow approximations of response functions by a polynomial in
the vicinity of any factor-surface point. In the case of one optimum, the way we
approach it is not essential, but if there are more, the problem becomes harder.
Fig. 2.31 shows two response functions of one factor. The first one exactly corre-
sponds to the introduced assumptions, and the second one is a case where assump-
tions about smoothness and continuity are broken, for the optimum and peak exist.
If in searching for an optimum in such a function we start gradually from one side,
we shall find the smaller maximum not knowing that a bigger one exists too. If we
know response values in several neighboring points of a factor space, it is possible
to estimate values of the same response in other neighboring points. We may suc-
cessively find such points where the biggest increase (or decrease if a minimum is
looked for) of a response value is expected. Then it becomes clear that the next
experiment should be moved into those very points. This means that we should
move into that direction neglecting others. By introducing a new experiment, we
may determine the direction of fastest response changes again after processing the
outcomes.
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Figure 2.31 Response functions

To put it more clearly, we select a point and a cluster of points around it in the
factor space, that is, we choose a subfactor space in it. The experiment is done in
that region and based on it the first model is defined. Such a model is used to esti-
mate the response outside the experimental region. Such an estimation of a
response is called extrapolation. If the same is done for points within the experimen-
tal region it is then called interpolation. Since extrapolation confidence diminishes
with distance from this region, it is done in its vicinity. Extrapolation outcomes are
used to choose conditions for performing the next experiment. A further procedure
in finding the optimum is repeated. To choose a model for doing the first so-called
basic experiment, it is necessary for the model to fulfill certain requirements.

The analyzed approach to finding the optimum indicates that the model must
have a possibility to estimate the direction of further design points with associated
precision. Since we are unaware of the direction of movement towards the optimum
before defining the model, the accuracy of estimation of the mathematical model
must be the same in all directions. This is to say that estimated values in experiment
region may differ from the real, measured response values for the previously given
magnitude. The model which fulfills this requirement is called adequate, to be dis-
cussed in a separate section.

When several mathematical models fulfill the requirements, then, in principle, a
simpler model is accepted. For us, it is the polynomial model that in the case of two
factors may have these forms:

. Polynomial of the null order:

y=b0 (2.54)

. Polynomial of the first order:

y ¼ b0 þ b1X1 þ b2X2 (2.55)

. Polynomial of the second order:

y ¼ b0 þ b1X1 þ b2X2 þ b12X1X2 þ b11X
2
1 þ b22X

2
2 (2.56)
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. Polynomial of the third order:

y ¼ b0 þ b1X1 þ b2X2 þ b12X1X2 þ b11X
2
1 þ b22X

2
2 þ b112X

2
1 X2

þb122X1X
2
2 þ b111X

3
1 þ b222X

3
2 (2.57)

This means that we have presented the unknown response function by a polynomial
of the corresponding order. The operation of replacing one function with another one is
called approximation. Since a polynomial may be of a different order, it is necessary to
select a polynomial order for the basic experiment or for the first step towards the opti-
mum. The experiment should determine numerical values of the polynomial coeffi-
cient. The valid rule here is: the higher the polynomial order the more coefficients or
design points in the experiment exist. As the objective of a designed experiment is a
minimum of design points, a polynomial of the first-order is selected for the basic
experiment. The first order polynomial contains the information on the gradient direc-
tion or the direction of the fastest response change, and it has, at the same time, the
smallest number of coefficients. The only questionable thing is whether the linear
model will always be adequate. It is however, known inmathematics that each point has
an environment where that model is adequate. The only remaining thing is selection of
the factor subdomain where the linearmodel is adequate. The size of that subdomain is
not known, but lack of fit of the model may be checked by outcomes of the experiment.
Hence, an arbitrary subdomain is selected in advance, to be corrected later to the corre-
sponding size after checking its lack of fit.

In this way the basic experiment is defined for the linear model, and the gradient
that indicates the direction of the fastest response increase or decrease is obtained.
When a response maximum or minimum is searched for, the experimental center is
moved that way and a new experiment for the linear model performed. The proce-
dure is repeated until moving along the gradient has an effect. When this has no
effect, it means we are close to the optimum. Polynomials of higher order, mostly
the second, are used in the optimum region.

All this clearly shows that selection of the subdomain for performing the basic
experiment is very important and it will be discussed in the coming sections.

Apart from optimization, a problem is often set for mathematical modeling or
interpolation. The optimum does not interest us in that case but the model that ade-
quately describes the obtained results in the experimental field. A subdomain is not
chosen in that case, but the polynomial order is moved up until an adequate model
is obtained. When a linear or incomplete square model (with no members with a
square factors) is adequate it means that the research objective corresponds to the
optimization objective.

Summary
Previous considerations have given a model that will be systematically analyzed
when designing a basic experiment. It is the algebraic polynomial of the first-order
or linear model.

To select it, it has been necessary to analyze-geometric interpretation of the
response surface in the factorial domain. The response surface is defined in the
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associated factor space only. In this domain, one response value corresponds to any
combination of factors or state of the research subject. A response surface, apart
from its interpretation in a Cortesian coordinate system, may also be presented in a
plane in the form of a response contour diagram. It has been mentioned that the
mathematical model in the first phase of experimenting serves to determine the gra-
dient or direction of the fastest response change. A model in the form of an analyti-
cal function with one optimum has been adopted. Since the analytical function is in
question, it may be approximated by a polynomial around any point in the factor
space.

Accepting the given assumptions, finding an optimum, as the most complex
problem, is reduced to the following iterative procedure: set up the experiment with
a minimum of design points and from its outcomes determine the model base on
which the gradient is obtained, and the procedure is repeated in that direction until
an optimum is reached. The model must meet the requirements defined by its lack
of fit and simplicity. Adequacy or lack of fit of the model means estimating experi-
mental response values with the necessary accuracy in the experimental region.
Lack of fit of the model is checked after performing the experiment. As a simple
model, a polynomial of the first order has been selected, which is linear by its
unknown coefficients and determined by processing experimental results. The line-
ar polynomial has been selected as it offers a small enough experimental region
where such a model is adequate. Choice of experimental region depends on the
researcher and it is not completely formalized. In the case of having to solve the
problem of modeling or interpolation and not optimization, the experimental region
is fixed beforehand and the procedure completed by obtaining an adequate model in
that region. When a linear model is inadequate, the polynomial level is increased
until the condition of lack of fit is fulfilled.

2.3.1
Full Factorial Experiments and Fractional Factorial Experiments

When designing the basic experiment, the unknown response function (2.5) is, in
principle, approximated by a polynomial of the corresponding degree (2.6) where
regression coefficients are estimated on the basis of experimental results (2.7). A lin-
ear mathematical model is considered in the first phase of a research. Defining the
first order regression model is the first phase of a study objectiveed at obtaining the
interpolation model or function, the knowledge of which facilitates estimating
response values in different points of the studied factorial space. A linear model is,
additionally, also used when moving to the optimum region, the same as when we
use the steepest ascent method as an optimization technique. Later, if necessary, the
polynomial degree is increased. Lack of fit of polynomial models is checked by
methods of statistical analysis.

In defining a linear model, coefficient b0 and all linear regression coefficients are
calculated.

y
_ ¼ b0 þ

Pk
i

biXi þ
Pk
i

bijXiXj (2.58)
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where:

y
_
is response value;

bi are linear regression coefficients;
bij are regression coefficients of double factor interactions.

Accuracy and confidence of the obtained estimates for regression coefficients
depend on the used design of experiments. Choice of the design of experiments has
to do with determining the number of experimental points-trials and such a distri-
bution of those points in a factorial space that facilitates obtaining the necessary
information with a minimal number of design points-trials. When selecting the
design of experiments a design matrix or a standard type table is constructed where all
conditions of doing design points that are part of the chosen design are defined.
Mostly, in a design matrix, rows correspond to different design points-trials and col-
umns to individual factors. Obtaining a linear model has to do with performing full
factorial experiment-FUFE or fractional factorial experiment-FRFE, which is a definite
part of FUFE. FUFE is the experiment where all possible combinations of levels of
factors are realized and experimental results are processed by applying statistical
analysis. The number of FUFE design points-trials is determined from relation
(2.20) where one should know that factors are varied on two levels in FUFE. FUFE
is therefore called the design experiment of the type 2k. In the case of the large num-
ber of factors (k), FUFE requires a large number of trials (N=2k ), so that in that case
FRFE is used more frequently. The FRFE design matrix is called a fractional replica.
When composing FUFE and FRFE matrices coded factor values are used. Coding
factors requires linear transformation of the factor space coordinates with the coor-
dinate beginning in the null point or experimental center and defining the coordinate
axes ratio in units of the factor variation interval. The arithmetic of this transforma-
tion is given in this expression:

Xi ¼
xi�xi0
Dx

(2.59)

where:
Xi is the coded value of the i-th factor (nondimensional magnitude);
xi, xi0 are natural or the real factor values, their current and null values, respectively;
Dx(e) is the natural value of the factor-variation interval. In a design matrix when we
vary factors on two levels (+1; -1) only signs (+;-) exist.

With FRFE we differentiale the existence of regular and irregular replicas. A regular
fractional replica is obtained from a FUFE matrix by dividing it into a number of
parts divisible by two (2, 4, 6, 8, 16, etc.). The obtained replicas are respectively
marked by: 1/2-replica or half-replica, 1/4-replica, 1/8-replica, etc. Irregular replicas
are obtained by taking, for example 3/4 and 5/8 of the FUFEmatrix.

Let us now consider how to construct FUFE and FRFE matrices. The number of
trials is defined in the first column of the FUFE design matrix. The next column is a
fictional variable (x0 =+1) that is used to estimate the b0 free member in the regres-
sion equation. The number of matrix columns that corresponds to the number of
factors. Sometimes columns which correspond to factor interactions are also
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obtained. The number of rows equals the number of design points-trials and is de-
termined as N=2k. An example of FUFE design matrix construction is shown in
Table 2.93. Note that the column of the fictional factor is often dropped. For any num-
ber of factors k, the FUFE design matrix is constructed so that the matrix for (k-1)
factors is repeated twice; first for the lower-level k factor values, and then for the
upper-level ones. Distribution of experimental or design points-trials in factor space
for FUFE and k=2; k=3 is shown in Figs. 2.32 and 2.33.

Table 2.93 FUFE design

No. trials X0 X1 X2 X3 X4 X5

1 + – – – – –

2 + + – – – –

3 + – + – – –

4 + + + – – –

5 + – – + – –

6 + + – + – –

7 + – + + – –

8 + + + + – –

9 + – – – + –

10 + + – – + –

11 + – + – + –

12 + + + – + –

13 + – – + + –

14 + + – + + –

15 + – + + + –

16 + + + + + –

17 + – – – – +

18 + + – – – +

19 + – + – – +

20 + + + – – +

21 + – – + – +

22 + + – + – +

23 + – + + – +

24 + + + + – +

25 + – – – + +

26 + + – – + +

27 + – + – + +

28 + + + – + +

29 + – – + + +

30 + + – + + +

31 + – + + + +

32 + + + + + +
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As the figures show, points of the design 22 are given by the square apex coordi-
nates, and design points of the design 23 by the cube apex coordinates. Design
points for k>3 are distributed in an analogous way. Regression coefficients of
Eq. (2.58) are determined from FUFE outcomes. For k=3, these coefficients are de-
termined:

y
_ ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ b123X1X2X3

(2.60)

b123 regression coefficient of triple interaction;
b12,b13 ,b23 regression coefficients of double interactions;
b1,b2,b3 linear regression coefficients;
b0 free member.
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Figure 2.33 Distribution of points in factor
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It has already been said that based on the magnitude of the linear regression coef-
ficients one may speak about the strength of influence of associated factors on
response. The higher the bi value of the associated factor, the more intensively it
affects response. The sign of those coefficients has to be accounted for too; if bi has
a positive sign, the increase of the associated factor causes an increase in response;
on the contrary, with a negative sign of the linear regression coefficient an increase
in its factor value causes a decrease in the optimization parameter. It is sometimes
more interesting to observe the effect of the i-th factor (its value is equal to 2bi) and
that way estimate the effect of the i-th factor on response as it changes from lower
(-1) to upper (+1) level. This is especially applied in designs that include qualitative
factors. The total number of all possible effects that may be calculated from FUFE
corresponds to the number of N design points-trials. The number of linear regres-
sion coefficients is identical to the number of k factors, included in the FUFE
matrix. To determine the number of factor interactions we use the formula:
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C
m
k ¼ k k�1ð Þ k�2ð Þ::: k�mþ1ð Þ

1�2�3�:::�m
(2.61)

where:
k is number of factors;
m is number of factors in interaction or an interaction order.

When analyzing results of factorial experiments we talk about main effects and in-
teraction effects. Main effects are factor effects and they are the difference of averaged
response for two levels (+1; -1) for the associated factor. In case response difference
for two levels of factor X1 is the same irrespetive of on which level factor X2 (exclud-
ing experimental error), one may say that there exists no interaction between factors
X1 and X2 or that the interaction is X1X2=0. This statement may be graphically pre-
sented. Figures 2.34 and 2.35 show interaction between factors X1 and X2, and Fig.
2.36 indicates that such an interaction is nonexistent.
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Figure 2.34 Response values indicate existence
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Figure 2.36 Response values indicate nonexis-
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Figure 2.35 Response values indicate existence
of interaction X1X2
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It is frequently the case in practice that certain interactions are statistically unim-
portant and those are mostly interactions of a higher order (triple, quadruple, etc.).
This property of higher-order interactions has precisely been used for constructing
fractional replicas. A fractional design is obtained so that statistically unimportant
interactions are replaced in a FUFE column design by a new factor. Here, it should
be pointed out that when forming a fractional replica, FUFE rows are not mechani-
cally divided. A FUFE design may not be simply divided into two parts when we
form a half-replica. Fractional replicas or designs must be formed in accord with the
rule of design saturation. A saturated design denotes the replica that is obtained
when replacing all interaction effects with linear effects of new factors so that the
degree of freedom f =0. The experiment in this case involves a minimal number of
design points, and the outcomes may result in erroneous conclusions if the linear
model is inadequate and if interaction effects significantly affect the linear-effect
estimates. A check of lack of fit of linear models, obtained from saturated designs, is
not feasible as the degree of freedom is f =0.

Taking all this into consideration, unsaturated designs (f>0) or special designs,
which include the influence of interaction effects on linear-effect estimates, are used
in practice. An oversaturated design (f<0) was used in Example 2.12 as a random
balance method design, but a totally different problem was being solved in that case.

To compare estimates of efficiency of fractional replicas, a special criterion called
power of solving a replica is used. This criterion includes a number of linear effects
that have not been aliased/confounded in the given design. In the case of aliased/
confounded effects, we obtain aliased/confounded regression coefficients when pro-
cessing experimental outcomes, which simultaneously characterize both linear and
interaction effects. By mixing the effects on this way, the number of design points-
trials is reduced but at the same time the analysis of experimental outcomes is com-
plicated. From the same FUFE design one may get a replicas with different degrees
of effect mixing or a different power of solving them. A researcher, however, should,
in principle, try to find the replica with the highest possible power of solving it. This
is most often achieved when new linear effects are aliased/confounded with highest-
order interactions. This is exactly the principle used in fractional replicas in
Example 2.12 to form the oversaturated design of the random balance method.
Namely, a replacement of triple interactions by a new factor X1X2X3=X4 has been
done in that design. Higher-order interactions are replaced by new linear effects
because of the fact that we may assume, with a high level of confidence, that those
interactions are less significant than lower-order interactions. Simultaneously, a
probability of obtaining nonaliased/confounded linear effects increases. An estimate
of the power of solving a replica is additionally a complicated case of several factorial
experiments. To alleviate the problem two new terms are introduced: generating ratio
and defining contrast.

Generating ratio is the term that indicates the effect with which the new effect is
aliased/confounded. Actually, when replacing a triple interaction X1X2X3 by X4 fac-
tor, the generating ratio has the form X1X2X3=X4. By increasing the number of sym-
bols in a generating ratio the power of solving a replica is increased. There is a high-
er power of solving a replica in the example X1X2X3=X4 than in the case of X1X2=X4.
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Defining contrast is obtained by multiplying the generating ratio by its associated
factor. The defining contrast, the case, X1X2X3=X4 has the form: 1=X1X2X3X4.

The given ratio helps to determine aliased/confounded effects. For this, it is nec-
essary to multiply successively both sides of the defining contrast by factors from
matrix columns. Factor X4 is in this case obtained:

X4=X1X2X3X4
2=X1X2X3

This system of mixing effects may conveniently be written as regression coeffi-
cients. For factor X4 in this case we obtain:

b4=b4+b123

For other factors and interactions we get:

b1 ¼ b1 þ b
234

; b2 ¼ b2 þ b134 ; b3 ¼ b3 þ b124 ;

b12 ¼ b12 þ b34 ; b13 ¼ b13 þ b24 ; b23 ¼ b23 þ b14

Fractional replicas may also be observed as designs of the type 2k-p , where p is
the number of linear effects aliased/confounded with interaction effects. As has
been said for construction of random balance design, fractional replica 24-1 has been
used in Example 2.12. Design of type 23-1 means two replicas as defined by two gen-
erating ratios X1X2=X3 and -X1X2=X3. For the first half-replica, factor X3 replaces in
the design matrix the column that corresponds to X1X2, Table 2.94.

Table 2.94 Fractional factorial design 2
3�1

No. trials X0 X1 X2 X3=X1X2

1 + + + +

2 + – + –

3 + + – –

4 + – – +

Signs in the interaction column are obtained by simply multiplying the columns
of associated factors.

By multiplying the chosen generating ratio with new factor X3 we obtain the
defining contrast: 1=X1X2X3.

It is then multiplied by each factor from the design 23-1. If the given yields offer
the square of the factor, it is automatically replaced by the number one. Aliased/con-
founded effects for the observed half-replica are given by these ratios:

X1=X2X3; X2=X1X3; X3=X1X2

This means that regression coefficients will be estimated as these aliased/con-
founded effects:

b1=b1+b23; b2=b2+b13; b3=b3+b12;
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To illustrate this let us observe the FUFE 25. In this case we obtain a half-replica
of type 25-1, as given by the generating ratio X5=X1X2X3X4. The associated defining
contrast is: 1=X1X2X3X4X5, and aliased/confounded estimates are defined by these
ratios:

X1 ¼ X2X3X4X5 ; X1X2 ¼ X3X4X5 ; X2X4 ¼ X1X3X5 ;
X2 ¼ X1X3X4X5 ; X1X3 ¼ X2X4X5 ; X2X5 ¼ X1X3X4 ;
X3 ¼ X1X2X4X5 ; X1X4 ¼ X2X3X5

; X3X4
¼ X1X2X5 ;

X4 ¼ X1X2X3X5 ; X1X5 ¼ X2X3X4 ; X3X5 ¼ X1X2X4 ;
X5 ¼ X1X2X3X4 ; X2X3 ¼ X1X4X5 ; X4X5 ¼ X1X2X3 ;

Now consider the FUFE 1/16-replica for eight factors. In this case the design of
type 28-4 is defined by four generating ratios:

X5=X1X2X3X4; X6=X1X2X3;
X7=X1X2X4; X8=X1X3X4;

The design matrix is shown in Table 2.95.

Table 2.95 Fractional factorial design 2
8�4

No.
trials

Design matrix Response

X0 X1 X2 X3 X4 X5 X6 X7 X8 �yyu

1 + + + + + + + + + 18.1

2 + + + – + – – – + 32.1

3 + + – + + – – + – 19.5

4 + + – – + + + – – 20.5

5 + – + + + – – + + 15.0

6 + – + – + + + – + 25.8

7 + – – + + + + + – 24.0

8 + – – – + – – – – 43.8

9 + + + + – – + – – 25.0

10 + – – – – + – + + 52.0

11 + – + + – + – – – 42.6

12 + + – – – – + + + 29.2

13 + + – + – + – – + 25.0

14 + – + – – – + + – 55.0

15 + + + – – + – + – 45.0

16 + – – + – – + – + 34.0

Defining contrasts are:

1=X1X2X3X4X5; 1=X1X2X3X6;
1=X1X2X4X7; 1=X1X3X4X8;
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By multiplying defining contrast (two, three or four) we obtain the general defin-
ing contrast:

1=X1X2X3X4X5=X1X2X3X6=X1X2X4X7=X1X3X4X8=X4X5X6=X3X5X7=X2X5X8=
=X3X4X6X7=X2X4X6X8=X2X3X7X8=X1X2X5X6X7=X1X3X5X6X8=X1X6X7X8=
=X1X4X5X7X8=X2X3X4X5X6X7X8.

By neglecting all higher-order interactions starting with triple ones, we obtain
these estimates of regression coefficients:

b1=b1; b2=b2+b58; b3=b3+b57;
b4=b4+b56; b5=b5+b46+b37+b28; b6=b6+b45;
b7=b7+b35; b8=b8+b25; b12=b12+b38+b47;
b13=b13+b26+b48; b14=b14+b27+b38; b23=b23+b16+b78;
b24=b24+b17+b68; b34=b34+b18+b67; b15=b15.

Depending on interaction significance, one experimental design may be used in
different cases. Thus, a design of experiments with eight design points-trials may be
used [23]:

. in the case of three factors, to calculate all main effects and all interactions
(FUFE);

. in the case of four factors, to calculate main effects and two-factor interac-
tions between three out of all in all four factors, hereby neglecting all other
interactions;

. in the case of five factors, to calculate main effects and two two-factor interac-
tions;

. in the case of six factors, to calculate main effects and one two-factor interac-
tion;

. in the case of seven factors, to calculate main effects, neglecting all interac-
tions.

Now consider a fractional replica of type 215-11, which is the 1/2048-replica of a
FUFE. It is pointless in this case to write down all aliased/confounded estimates as
their number is enormous. As an example, linear effects are aliased/confounded
with 105 even interactions. The design matrix of 215-11 is shown in Table 2.96.

When forming the design matrix of an experiment it is transformed into an opera-
tional matrix by replacing coded values with associated real-actual, dimensional val-
ues. The experiment is done based on an operational matrix. When we obtain
experimental values or responses, we again refer to the design matrix, which is then
completed into arithmetic matrix, by addition of columns associated with interac-
tions that are of interest. Furthermore, regression coefficients are calculated by the
method of least squares as a special method of regression analysis. Linear regression
coefficients are calculated by these formulas:

bi ¼

PN
1

Xiu��yyu

PN
1

X2
iu

¼

PN
1

Xiu��yyu

N
(2.62)
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Table 2.96 Fractional factorial design 2
15�11

No. of trials X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

1 – – – – + + + + + + – – – – +

2 + – – – – – – + + + + + + – –

3 – + – – – + + – – + + + – + –

4 + + – – + – – – – + – – + + +

5 – – + – + – + – + – + – + + –

6 + – + – – + – – + – – + – + +

7 – + + – – – + + – – – + + – +

8 + + + – + + – + – – + – – – –

9 – – – + + + – + – – – + + + –

10 – + – + – + – – + – + – + – +

11 + + – + + – + – + – – + – – –

12 – – + + + – – – – + + + – – +

13 + – + + – + + – – + – – + – –

14 – + + + – – – + + + – – – + –

15 + + + + + + + + + + + + + + +

16 + – – + – – + + – – + – – + +

where:
Xiu is coded Xi factor value in the u-th design point-trial;
�yyu is response average in the u-th design point-trial;
N is total number of design points-trials in design matrix;
u is current number of design points-trials.

The value of the free member in a regression equation (b0) is determined from
the relation:

b0 ¼

PN
1

�yyu

N
(2.63)

Regression coefficients of two-factors interactions are determined thus:

bij ¼

PN
1

XiuXju
�yyu

PN
1

X2
iu

¼

PN
1

XiuXju
�yyu

N
(2.64)

After obtaining regression coefficient values, both their statistical significance and
lack of fit of the obtained regression model are checked.

2.3.1.1 Yates Method
Section 1.5 dealt with the analysis of variance method, which may easily be applied
for FUFE analysis of results. Hereby one should take care to transform the FUFE
design arithmetic matrix into the table, which is required by the analysis of variance
notation. One should also keep in mind the difference in processing designs with
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and without replications of design points-trials. The classical procedure of process-
ing analysis of variance outcomes becomes much more complex with an increase in
the number of factors. To facilitate a routine processing of FUFE designs with a
large number of factors, Yates [27, 28] has developed a simple procedure of present-
ing and processing outcomes. To simplify matters these signs are introduced: fac-
tors are labelled by Latin capitals, design points-trials with all its factors in lower lev-
el (1), and other design points-trials by small letters for factors in the upper levels.
As example, for 23 FUFE, symbols for experimental conditions are shown in
Table 2.97.

Table 2.97 FUFE 2
3
symbols

Trial
symbols

Factor symbols

A B C

(1) – – –

a + – –

b – + –

ab + + –

c – – +

ac + – +

bc – + +

abc + + +

In accordance with former notation, symbols in columns denote variation levels
of associated factors A, B and C.

A small letter in a design point-trial sign means that the factor it represents in a
corresponding design point-trial is set at a higher level, while lack of small letters
means that the associated factors are in the lower level. The sign (1) means that all
factors are in the lower level; a design point-trial marked by (a) indicates that factor
A is in the upper and factor B and C in the lower level, etc.

In accord with calculations by the least square method, the factor A affect is the
difference of average design point-trials or response values in upper and lower lev-
els:

A ¼ 1=4ðaþ abþ ac þ abcÞ � 1=4ðð1Þ þ bþ c þ bcÞ (2.65)

By treating (1), a, b and c as algebraic expressions we get:

A=1/4(a-1)(b+1)(c+1) (2.66)

By analogy we obtain:

A=1/4(a-1)(b+1)(c+1)
B=1/4(a+1)(b-1)(c+1)
C=1/4(a+1)(b+1)(c-1)
AB=1/4(a-1)(b-1)(c+1) (2.67)
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AC=1/4(a-1)(b+1)(c-1)
BC=1/4(a+1)(b-1)(c-1)
ABC=1/4(a-1)(b-1)(c-1)

The Yates algorithm is easily generalized for any 2k FUFE. For k factor A, B, C, ...,
Q, each on two levels, the associated expressions are:

A=(1/2)k-1(a-1)(b+1)(c+1)...(q+1)
AB=(1/2)k-1(a-1)(b-1)(c+1)...(q+1) (2.68)
..............................................................
ABC...Q=(1/2)k-1(a-1)(b-1)(c-1)...(q-1)

The equation for calculating effect A in its developed form may be written as:

4A=-1+a-b+ab-c+ac-bc+abc (2.69)

The structure of the equation for determining an effect and sequence of design
points-trials is the same, so that an effect may be directly determined from design
point-trial or response outcomes by adding associated signs:

– + – + – + – +

Other effects and interactions may be expressed in a completely identical way.
Table 2.98 shows Yates notation and processing for 22, 23, 24, 25, FUFE. The given
procedure for calculating factor and interaction effects, as well as a specific aspect of
two-level designs facilitates a rather simple method of processing results. As the
number of degrees of freedom of factor and interaction effects is one, the sum of
squares is identical to the variance estimate. Since factor effects are obtained from
design point-trial or response outcome differences in upper and lower levels, and
the experimental design is done in only two levels, it is possible to calculate the rela-
tionship between the sum of squares, or an estimate on variance and calculated
effects:

Sum of squares SS =2k-2 (effect)2 (2.70)

Hence, based on calculated effects of individual factors and interactions from rela-
tion (2.70), we obtain a variance estimate, which is further analyzed by the analysis
of variance method. Here, one should remember once again the difference between
two cases in estimating residual variance:

. full factorial designs with no trial replications,

. full factorial designs with trial replications.

One can often find tabular presentation of FRFE in Anglo-Saxon reference litera-
ture. Let us keep here the Yates notation for seven factors A, B, C, D, E, F and G,
which are all varied on two levels. According to FUFE such a design includes 27=128
design points-trials that are given geometrically in Table 2.99. Shaded cells in the
same table give a half-replica with 27-1=64 design points-trials that belong to a 27-1

fractional factorial experiment. Associated geometric interpretations of a 1/4-replica
and of a 1/8-replica are shown in Tables 2.100 and 2.101.
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Table 2.102 offers a researcher several very useful two-level fractional factor
designs with effects that can be estimated (under assumptions that three-factor and
multifactor interactions are negligible). The design of experiments matrix consist of
trials that are given for each FRFE but in a completely random sequence.

Table 2.98 Main effects and interactions for 2
2
; 2

3
; 2

4
; 2

5
FUFE Yates notation

T A B A
B

C A
C

B
C

A
B
C

D A
D

B
D

A
B
D

C
D

A
C
D

B
C
D

A
B
C
D

E A
E

B
E

A
B
E

C
E

A
C
E

B
C
E

A
B
C
E

D
E

A
D
E

B
D
E

A
B
D
E

C
D
E

A
C
D
E

B
C
D
E

A
B
C
D
E

(1) + – – + – + + – – + + – + – – + – + + – + – – + + – – + – + + –

a + + – – – – + + – – + + + + – – – – + + + + – – + + – – – – + +

b + – + – – + – + – + – + + – + – – + – + + – + – + – + – – + – +

Ab + + + + – – – – – – – – + + + + – – – – + + + + + + + + – – – –

c + – – + + – – + – + + – – + + – – + + – – + + – + – – + + – – +

Ac + + – – + + – – – – + + – – + + – – + + – – + + + + – – + + – –

Bc + – + – + – + – – + – + – + – + – + – + – + – + + – + – + – + –

Abc + + + + + + + + – – – – – – – – – – – – – – – – + + + + + + + +

d + – – + – + + – + – – + – + + – – + + – + – – + – + + – + – – +

Ad + + – – – – + + + + – – – – + + – – + + + + – – – – + + + + – –

Bd + – + – – + – + + – + – – + – + – + – + + – + – – + – + + – + –

Abd + + + + – – – – + + + + – – – – – – – – + – + + – – – – + + + +

Cd + – – + + – – + + – – + + – – + – + + – – + + – – + + – – + + –

Acd + + – – + + – – + + – – + + – – – – + + – – + + – – + + – – + +

Bcd + – + – + – + – + – + – + – + – – + – + – + – + – + – + – + – +

Abcd + + + + + + + + + + + + + + + + – – – – – – – – – – – – – – – –

e + – – + – + + – – + + – + – – + + – – + – + + – – + + – + – – +

Ae + + – – – – + + – – + + + + – – + + – – – – + + – – + + + + – –

Be + – + – – + – + – + – + + – + – + – + – – + – + – + – + + – + –

Abe + + + + – – – – – – – – + + + + + + + + – – – – – – – – + + + +

Ce + – – + + – – + – + + – – + + – + – – + + – – + – + + – – + + –

Ace + + – – + + – – – – + + – – + + + + – – + + – – – – + + – – + +

Bce + – + – + – + – – + – + – + – + + – + – + – + – – + – + – + – +

Abce + + + + + + + + – – – – – – – – + + + + + + + + – – – – – – – –

De + – – + – + + – + – – + – + + – + – – + – + + – + – – + – + + –

Ade + + – – – – + + + + – – – – + + + + – – – – + + + + – – – – + +

Bde + – + – – + – + + – + – – + – + + – + – – + – + + – + – – + – +

Abde + + + + – – – – + + + + – – – – + + + + – – – – + + + + – – – –

Cde + – – + + – – + + – – + + – – + + – – + + – – + + – – + + – – +

Acde + + – – + + – – + + – – + + – – + + – – + + – – + + – – + + – –

Bcde + – + – + – + – + – + – + – + – + – + – + – + – + – + – + – + –

Abcde + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
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Table 2.99 Fractional factorial design 2
7�1

A(-) A(+)

B(-) B(+) B(-) B(+)

C(-) C(+) C(-) C(+) C(-) C(+) C(-) C(+)

D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+)

F G(-)

E (-) G(+)

(-) F G(-)

(+) G(+)

F G(-)

E (-) G(+)

(+) F G(-)

(+) G(+)

Table 2.100 Fractional factorial design 2
7�2

A(-) A(+)

B(-) B(+) B(-) B(+)

C(-) C(+) C(-) C(+) C(-) C(+) C(-) C(+)

D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+)

F G(-)

E (-) G(+)

(-) F G(-)

(+) G(+)

F G(-)

E (-) G(+)

(+) F G(-)

(+) G(+)
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Table 2.101 Fractional factorial design 2
7�3

A(-) A(+)

B(-) B(+) B(-) B(+)

C(-) C(+) C(-) C(+) C(-) C(+) C(-) C(+)

D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+) D(-) D(+)

F G(-)

E (-) G(+)

(-) F G(-)

(+) G(+)

F G(-)

E (-) G(+)

(+) F G(-)

(+) G(+)

Example 2.26 [29]
In Example 2.12, the method of random balance, factors have been selected by the
effects of their significance on dynamic viscosity of uncured composite rocket pro-
pellant. The screened-out factors are: X3 mixing speed; X5 time after addition of AP
and X8 vacuum in vertical planetary mixer. Since insufficient vacuum in a mixer
causes bubbles to appear in the cured propellant, the value of this factor is fixed at
the most convenient one. For the other two factors a design of basic experiment has
been done according to a FUFE matrix, as shown in Table 2.103, and aimed at
obtaining the mathematical model of viscosity change.
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2.3 Basic Experiment-Mathematical Modeling

Table 2.103 Full factorial experiment 2
2

Name Mixing speed
x1 min-1

Time
x2 min

Basic level 60 95

Variation

interval

20 85

Upper level 80 180

Lower level 40 10

Trials Design matrix Oper. matrix Response-viscosity p

X1 X2 x1 x2 yu1 yu2 yu3 yu4 yu5 yu6 �yyu

1 – – 40 10 1182.4 1139.2 1136.5 1209.4 1134.6 1159.2 1160.2

2 + – 80 10 622.4 660.8 631.8 602.1 668.6 645.6 638.5

3 – + 40 180 683.2 624.0 682.6 699.5 565.4 611.2 644.3

4 + + 80 180 496.0 486.2 495.6 513.6 450.9 467.2 484.9

Sum 2927.54

Regression coefficients are determined in accordance with relations (2.62) –
(2.64):

b0 ¼

PN
1

�yyu

N
¼ 2927:54

4
¼ 731:98

b1 ¼

PN
1

X1u�yu

N
¼ �1160:2þ638:5�644:3þ484:9

4
¼ �170:28

b2 ¼

PN
1

X2u�yu

N
¼ �1160:2�638:5þ644:3þ484:9

4
¼ �167:38

b12 ¼

PN
1

X1u�X2u�yu

N
¼ 1160:2�638:5�644:3þ484:9

4
¼ 90:58

The mathematical model or linear regression equation has the form:

y
_ ¼ 731:98� 170:28X1 � 167:38X2 þ 90:58X1X2

Since the relation between actual and coded factors is given by expressions:

X1 ¼ x1�60
20

; X2 ¼ x2�95
85

;

the regression equation with actual factors is:

y
_ ¼ 731:98� 170:28

x1�60
20

� 167:38
x2�95
85

þ 90:58
x1�60
20

x2�95
85
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II Design and Analysis of Experiments

Example 2.27 [30]
It is necessary to do mathematical modeling of effects of X1 dyeing time, X2 dye con-
centration and X3 temperature of dyeing on efficiency of dyeing. For this, the FUFE
design from Table 2.93 has been used for the three mentioned factors. Formula
(2.59) has been used in coding the factors, with basic level and variation intervals
being taken into account:

X1 ¼ x1�10
5

; X2 ¼ x2�1:0
0:5

; X3 ¼ x3�85
10

;

The design matrix with operational matrix and outcomes of design points-trials is
given in Table 2.104. Note that design points-trials have been replicated so that the
table gives response means.

Table 2.104 Full factorial experiment 2
3

No.
trials

Design matrix Operational-matrix ResponseP
�yyu

X0 X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 x1min x2% x3�C

1 + – – – + + + – 5 0.5 75 81.08

2 + + – – – – + + 15 0.5 75 85.65

3 + – + – – + – + 5 1.5 75 82.27

4 + + + – + – – – 15 1.5 75 90.40

5 + – – + + – – + 5 0.5 95 84.95

6 + + – + – + – – 15 0.5 95 89.95

7 + – + + – – + – 5 1.5 95 85.25

8 + + + + + + + + 15 1.5 95 88.25

Regression coefficients of linear regression have these values:

b0=85.98; b1=2.60; b2=0.54; b3=1.13;
b12=0.20; b13=-0.59; b23=-0.92; b123=-0.70

and the linear regression has the form:

y
_ ¼ 85:98þ 2:60X1 þ 0:54X2 þ 1:13X3 þ 0:20X1X2 � 0:59X1X3 � 0:92X2X3

�0:70X1X2X3

Example 2.28 [21]
This example analyzes lab research of yields in a nitration process, which gives the
basic product for medicine and dye industries. Three factors assumed to have effects
on yield in the nitration process have been researched:

1. A nitric acid dosing time, h;
2. B mixing time, h;
3. C factor of mixing remnants from previous batch.
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2.3 Basic Experiment-Mathematical Modeling

These factor levels have been used in the experiment:

Factors Lower level Upper level
A 2 7
B 0.5 4
C with no mixture remnants with mixture remnants

Do the outcome analysis by classical and Yates processing. The measurement
results are in Table 2.105.

Table 2.105 Full factorial experiment 2
3

No. Yates Design matrix Operational matrix Response

T A B AB C AC BC ABC A B C yu

1 (1) + – – + – + + – 2 0.5 WITHOUT 87.2

2 a + + – – – – + + 7 0.5 WITHOUT 88.4

3 b + – + – – + – + 2 4 WITHOUT 82.0

4 ab + + + + – – – – 7 4 WITHOUT 83.0

5 c + – – + + – – + 2 0.5 WITH 86.7

6 ac + + – – + + – – 7 0.5 WITH 89.2

7 bc + – + – + – + – 2 4 WITH 83.4

8 abc + + + + + + + + 7 4 WITH 83.7

According to Eq. (2.67) we get:
A=1/4(a+ab+ac+abc)-1/4((1)+b+c+bc)=(88.4+83.0+89.2+83.7)/
4-(87.2+82.0+86.7+83.4)/4
A=1.25
B=1/4(b+ab+bc+abc)-1/4((1)+a+c+ac)=(82.0+83.0+83.4+83.7)/
4-(87.2+88.4+86.7+89.2)/4
B=-4.85
C=1/4(c+ac+bc+abc)-1/4((1)+a+b+ab)=(86.7+89.2+83.4+83.7)/
4-(87.2+88.4+82.0+83.0)/4
C=0.60
AB=1/4((1)+ab+c+abc)-1/4(a+b+ac+bc)=(87.2+83.0+86.7+83.7)/
4-(88.4+82.0+89.2+83.4)/4
AB=-0.60
AC=1/4((1)+b+ac+abc)-1/4(a+ab+c+bc)=(87.2+82.0+89.2+83.7)/
4-(88.4+83.0+86.7+83.4)/4
AC=0.15
BC=1/4((1)+a+bc+abc)-1/4(b+ab+c+ac)=(87.2+88.4+83.4+83.7)/
4-(82.0+83.0+86.7+89.2)/4
BC=0.45
ABC=1/4(a+b+c+abc)-1/4((1)+ab+ac+bc)=(88.4+82.0+86.7+83.7)/
4-(87.2+83.0+89.2+83.4)/4
ABC=-0.50;
T=((1)+a+b+ab+c+ac+bc+abc)=683.60.
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II Design and Analysis of Experiments

Since the effects are doubled in comparison with regression coefficients, it fol-
lows:

b0=T/8=85.45; bA=A/2=0.63; bB=B/2=-2.43; bC=C/2=0.30;
bAB=AB/2=-0.30; bAC=AC/2=0.075; bBC=BC/2=0.225; bABC=ABC/2=-0.25.

To demonstrate the relation between effects and estimates of associated variances,
we will transform Table 2.105 into Table 2.106.

Table 2.106 Analysis of variance

Factors C(-) C(+)

A(-) A(+) A(-) A(+)

B(-) (1) 87.2 a 88.4 c 86.7 ac 89.2

B(+) b 82.0 ab 83.0 bc 83.4 abc 83.7

Variance estimates based on f =1 degrees of freedom are calculated from effects
from Eq. (2.70):

MSA=2
k-2 � A2=23-2 � 1.252 =3.125; MSB=2(-4.85)

2=47.045;
MSC=2 � 0.62=0.720; MSAB=2(-0.6)

2=0.720; MSAC=2 � 0.152=0.045;
MSBC=2 � 0.452=0.405; MSABC=2(-0.5)

2=0.500.

Do not forget that the experiment has been done with no replication of trial, so
that residual variance must be determined based on the interaction variances. To
check whether all interactions may be replaced or some variance interactions not be
included into the residual variance, (as its effect is important and different from
others) use the Bartlett criterion, as shown in Sect. 1.5. By comparing the analysis of
variance outcomes from Problem 1.34 with values obtained here, it is evident that
completely identical outcomes are in question.

Example 2.29 [21]
In lab studies of isatin yield, conditions of the technological procedure in producing
this product from isonitrozoacetylamine have been tested. The effects of three pro-
cess factors have been assessed.

Lower level Upper level

A concentration of basic raw material, % 87 93
B duration of reaction, min 15 30
C temperature of reaction, �C 60 70

Based on previous testing of the research subject, the design of the full factorial
experiment 23 with one replication to determine experimental error has been cho-
sen. To eliminate the influence of systematic error in doing the experiment, the
sequence of doing design point-trials, in accord with theory of design of experi-
ments, has been completely random. The outcomes are given in Table 2.107.
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2.3 Basic Experiment-Mathematical Modeling

Table 2.107 Full factorial experiment 2
3

No. Yates Design matrix Operational
matrix

Response

T A B AB C AC BC ABC A B C yu1 yu2
P

yu

1 (1) + – – + – + + – 87 15 60 6.08 6.31 12.39

2 a + + – – – – + + 93 15 60 6.04 6.09 12.13

3 b + – + – – + – + 87 30 60 6.53 6.12 12.65

4 ab + + + + – – – – 93 30 60 6.43 6.36 12.79

5 c + – – + + – – + 87 15 70 6.79 6.77 13.56

6 ac + + – – + + – – 93 15 70 6.68 6.38 13.06

7 bc + – + – + – + – 87 30 70 6.73 6.49 13.22

8 abc + + + + + + + + 93 30 70 6.08 6.23 12.31

According to Eq. (2.67) we get:

A=-0.191; B=-0.021; C=0.274; AB=-0.001;
AC=-0.161; BC=-0.251; ABC=-0.101; T=51.055.

The sum of squares of effects and interactions or mean square (f =1), is obtained
from Eq. (2.70):

MSA=2
k-1n(Effect)2 = 2 � 2(-0.191)2=0.146

MSB=0.002; MSC=0.300; MSAB=0.000; MSAC=0.104; MSBC=0.253; MSABC=0.041;

SSE ¼

PN
1

Pn
1

yui��yyu
� �2
n�1

¼ 0:200; MSE =SSE/N=0.200/8=0.025.

Note that in preliminary calculations the sum of replicated design points-trials is
taken as the response, and thus the number of replicated design points n is intro-
duced Eq. (2.70). As there exists replication of trials, it is evident that the error sum
of squares is calculated in accord with analysis of variance methodology. To enable
comparison of such variance determination with classical analysis of variance, it is
necessary to transform Table 2.107 into Table 2.108.

Table 2.108 Analysis of variance

Factors C(-) C(+)

B(-) B(+) B(-) B(+)

6.08 6.53 6.79 6.73

A(-) (1) b c bc

6.31 6.12 6.77 6.49
6.04 6.43 6.68 6.08

A(+) a ab ac abc

6.09 6.36 6.38 6.23
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According to calculation of analysis of variance from Sect. 1.5 we get:PPPP
y
2
ijkl=652.70; y��� ¼ 102:11 y

2
��� ¼ 12426:45;P

i

y
2
i���=51.82

2+50.292=5214.40P
j

y
2
�j��=(24.52+25.44)

2+(26.62+25.53)2=5215.62P
k

y
2
��k�=(24.52+26.62)

2+(25.44+25.53)2=5213.24P
i

P
j

y
2
ij��=(12.39+12.65)

2 +(13.56+13.22)2+(12.13+12.79)2+(13.06+12.31)2

=2608.82P
i

P
k

y
2
i�k�=(12.39+13.56)

2+(12.13+13.06)2+(12.65+13.22)2+(12.79+12.31)2

=2607.21P
j

P
k

y
2
�jk�=(12.39+12.13)

2+(12.65+12.79)2+(13.56+13.06)2+(13.22+12.31)2

=2608.82P
i

P
j

P
k

y
2
ijk�=12.39

2+12.652+13.562+13.222+12.132+12.792+13.062+12.312

=1305.00

SST=652.70-10426.45/16=1.045
SSC=5215.62/8-651.65=0.300
SSR=5214.40/8-651.65=0.146
SSL=5213.24/8-651.65=0.002
SSCR=2608.82/4-5214.40/8-5215.62/8+651.65=0.104
SSCL=2608.82/4-5215.62/8-5213.24/8+651.65=0.248
SSRL=2607.21/4-5214.40/8-5213.24/8+651.65=0.000
SSE=652.70-1305.00/2=0.200
SSCRL=1.045-0.300-0.146-0.002-0.104-0.248-0.200=0.04

The completed table of analysis of variance is given in solutions of Problem 1.26

Example 2.30 [21]
A research expansion with another factor has been done in the previous example.
Hence, the effects of these factors have been analyzed in this research:

Lower level Upper level

A concentration of basic raw material, % 87 93
B duration of reaction, min 15 30
C quantity of basic raw material, ml 35 45
D temperature of reaction, �C 60 70

The experiment has been done through the matrix of full factorial experiment 24,
as shown in Table 2.109. Each trial has been done only once, with no replications.
The sequence of doing trials has been completely random.
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2.3 Basic Experiment-Mathematical Modeling

Table 2.109 Full factorial experiment 2
4

No.
trials

Yates Design matrix Operational
matrix

Response

T A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD A B C D yu

1 (1) + – – + – + + – – + + – + – – + 87 15 35 60 6.08

2 a + + – – – – + + – – + + + + – – 93 15 35 60 6.04

3 b + – + – – + – + – + – + + – + – 87 30 35 60 6.53

4 ab + + + + – – – – – – – – + + + + 93 30 35 60 6.43

5 c + – – + + – – + – + + – – + + – 87 15 45 60 6.31

6 ac + + – – + + – – – – + + – – + + 93 15 45 60 6.09

7 bc + – + – + – + – – + – + – + – + 87 30 45 60 6.12

8 abc + + + + + + + + – – – – – – – – 93 30 45 60 6.36

9 d + – – + – + + – + – – + – + + – 87 15 35 70 6.79

10 ad + + – – – – + + + + – – – – + + 93 15 35 70 6.68

11 bd + – + – – + – + + – + – – + – + 87 30 35 70 6.73

12 abd + + + + – – – – + + + + – – – – 93 30 35 70 6.08

13 cd + – – + + – – + + – – + + – – + 87 15 45 70 6.77

14 acd + + – – + + – – + + – – + + – – 93 15 45 70 6.38

15 bcd + – + – + – + – + – + – + – + – 87 30 45 70 6.49

16 abcd + + + + + + + + + + + + + + + + 93 30 45 70 6.23

According to Eq. (2.67) we get:

A=-0.191; B=-0.021; AB=-0.001; C=-0.076; AC=0.034;
BC=-0.066; ABC=0.149; D=0.274; AD=-0.161; BD=-0.251;
ABD=-0.101; CD=-0.026; ACD=-0.006; BCD=0.124; ABCD=0.019

Associated sums of squares are:

SSA=MSA=2
k-2A2=22(-0.191)2=0.1463;

MSB=0.0018; MSC=0.0233; MSD=0.2998; MSAB=0.0000;
MSAC=0.0046; MSAD=0.1040; MSBC=0.0176; MSBD=0.2525;
MSCD=0.0028; MSABC=0.0885; MSABD=0.0410; MSACD=0.0002;
MSBCD=0.0613; MSABCD=0.0014.

By transforming Table 2.109 into Table 2.110 we get analysis of variance:
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Table 2.110 Analysis of variance

D(-) D(+)

C(-) C(+) C(-) C(+)

A(-) B(-) (1) 6.08 c 6.31 d 6.79 cd 6.77

B(+) B 6.53 bc 6.12 bd 6.73 bcd 6.49

A(+) B(-) A 6.04 ac 6.09 ad 6.68 acd 6.38

B(+) Ab 6.43 abc 6.36 abd 6.08 abcd 6.23

The outcomes of analysis of variance are shown in Table 2.111.

Table 2.111 Results of analysis of variance

Sources of variation f MS F F1;5;0.95

Concentration A 1 0.1463 0.76 6.61

Reaction time B 1 0.0018 0.01 6.61

Quantity of raw material C 1 0.0233 0.12 6.61

Temperature of reaction D 1 0.2998 1.56 6.61

AB 1 0.0000 0.00 6.61

AC 1 0.0046 0.02 6.61

AD 1 0.1040 0.54 6.61

BC 1 0.0176 0.09 6.61

BD 1 0.2525 1.31 6.61

CD 1 0.0028 0.01 6.61

ABC+ABD+ACD+BCD+ABCD 5 0.1924 – –

Total 15 – – –

Example 2.31 [25]
A full factorial experiment has been done in a pilot-plant. The research included
refinement of a product by steam distillation. Five factors have been analyzed, each
one at two levels: A concentration, B flow, C volume of solution, D mixing speed and
E solvent and water ratio. Acidity of the product in each of 32 trials has been ana-
lyzed as the response. Outcomes in coded forms are shown in Table 2.112.

Data from Table 2.112 have been analyzed by the Yates technique and outcomes
are given in Table 2.113. The interesting thing in relation to the former example is
that the mechanical method, which does not require knowledge of Eq. (2.67) has
been demonstrated. Column (1) is obtained by adding up the response data pairs to
the column and then by subtracting the data. For example, 19=9+10, 14=8+6,...,11=
5+6, 1=10-9, -2=6-8,...,1=6-5. As shown, differences are taken from the same data
pairs but in this way: the second data minus the first, the fourth minus the third
and so on to the column end. Column (2) is obtained from the first column in the
same way. Column (3) from (2), (4) from (3) and (5) from (4). This calculation is
evidently repeated k times for a full factorial experiment of 2k. Column (5) gives
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2.3 Basic Experiment-Mathematical Modeling

Table 2.112 Full factorial experiment 2
5

A(-) A(+)

D(-) D(+) D(-) D(+)

E(-) E(+) E(-) E(+) E(-) E(+) E(-) E(+)

B(-) C(-) 9 3 11 8 10 9 13 7

C(+) 3 5 7 7 5 6 10 7

B(+) C(-) 8 4 9 8 6 6 16 6

C(+) 6 4 7 5 10 10 13 6

total effects of the factors and interactions. Average effects are obtained by dividing
the totals with N/2.

At the end, the last column represents the sum of squares of factors and interac-
tions. This one can be obtained by dividing the square of values of column (5) (total
effects) by the total number of trials N=2k.

Table 2.113 Yates method 2
5

Trials Response (1) (2) (3) (4) (5) Total effects Average
effects(5)/16

SS=MS
(5)2/32

(1) 9 19 33 57 143 244 T – –

a 10 14 24 86 101 36 16A 2.250 40.500

b 8 8 49 47 23 4 16B 0.250 0.500

ab 6 16 37 54 13 8 16AB 0.500 2.000

c 3 24 22 5 7 -22 16C -1.375 15.125

ac 5 25 25 18 -3 10 16AC 0.625 3.125

bc 6 17 29 15 7 18 16BC 1.125 10.125

abc 10 20 25 -2 1 14 16ABC 0.875 6.125

d 11 12 -1 3 -21 36 16D 2.250 40.500

ad 13 10 6 4 -1 -4 16AD -0.250 0.500

bd 9 11 9 1 7 -4 16BD -0.250 0.500

abd 16 14 9 -4 3 8 16ABD 0.500 2.000

cd 7 15 8 -1 15 -10 16CD -0.625 3.125

acd 10 14 7 8 3 -2 16ACD -0.125 0.125

bcd 7 14 -3 1 3 -18 16BCD -1.125 10.125

abcd 13 11 1 0 11 -14 16ABCD -0.875 *6.125

e 3 1 -5 -9 29 -42 16E -2.625 55.125

ae 9 -2 8 -12 7 -10 16AE -0.625 3.125

be 4 2 1 3 13 -10 16BE -0.625 3.125

abe 6 4 3 -4 -17 -6 16ABE -0.375 1.125

ce 5 2 -2 7 1 20 16CE 1.250 12.500

ace 6 7 3 0 -5 -4 16ACE -0.250 0.500
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Table 2.113 (continued)

Trials Response (1) (2) (3) (4) (5) Total effects Average
effects(5)/16

SS=MS
(5)2/32

bce 4 3 -1 -1 9 -12 16BCE -0.750 4.500

abce 10 6 -3 4 -1 8 16ABCE 0.500 *2.000

de 8 6 -3 13 -3 -22 16DE -1.375 15.125

ade 7 2 2 2 -7 -30 16ADE -1.875 28.125

bde 8 1 5 5 -7 -6 16BDE -0.375 1.125

abde 6 6 3 -2 5 -10 16ABDE -0.625 *3.125

cde 7 -1 -4 5 -11 -4 16CDE -0.250 0.500

acde 7 -2 5 -2 -7 12 16ACDE 0.750 *4.500

bcde 5 0 -1 9 -7 4 16BCDE 0.250 *0.500

abcde 6 1 1 2 -7 0 16ABCDE 0.000 *0.000

Total 244

If in Table 2.113 we look at values of the sum of squares, we may, without testing
them by Bartletts criterion, assume that the fourth- and fifth-order interactions are
insignificant. That is, those sums of squares, marked by asterisks, may be used in
analysis of variance in Table 2.114 as residual variance.

Table 2.114 Analysis of variance

Sources of variations SS f MS F F1;6;0.95

A 40.500 1 40.500 14.96 5.99

B 0.500 1 0.500 – 5.99

C 15.125 1 15.125 5.58 5.99

D 40.500 1 40.500 14.96 5.99

E 55.125 1 55.125 20.36 5.99

AB 2.000 1 – – –

AC 3.125 1 – – –

AD 0.500 1 – – –

AE 3.125 1 – – –

BC 10.125 1 – – –

BD 0.500 1 – – –

BE 3.125 1 – – –

CD 3.125 1 – – –

CE 12.500 1 12.500 4.62 5.99

DE 15.125 1 15.125 5.58 5.99

ABC 6.125 1 – – –

ABD 2.000 1 – – –

ABE 1.125 1 – – –

ACD 0.125 1 – – –
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Table 2.114 (continued)

Sources of variations SS f MS F F1;6;0.95

ACE 0.500 1 – – –

ADE 28.125 1 28.125 10.4 5.99

BCD 10.125 1 – – –

BCE 4.500 1 – – –

BDE 1.125 1 – – –

CDE 0.500 1 – – –

Residual 16.250 6 2.708 – –

Total 275.500 31 – – –

Example 2.32 [25]
In developing a practical industrial fermentation process, we usually start with lab
studies of micro-organism physiological requirements. Micro-organisms are culti-
vated in a liquid media and their growth depends on the substance being formed in
that medium. Formation of the substance, according to previous research, depends
on two components in the medium and two environmental factors: temperature
and aeration. The first two factors are X1 and X2 and the other two X3 and X4. The
experiment has been done by a full factorial type 24 with a single replication. Out-
comes of experiment are shown in Table 2.115.

Table 2.115 Full factorial experiment 2
4

X1(-) X1(+)

X2(-) X2(+) X2(-) X2(+)

X3 32.7 90.4 70.6 115.0

X4 (-) 19.3 89.8 84.5 108.6

(-) X3 20.2 94.1 76.1 133.6

(+) 29.9 96.5 73.3 131.6

X3 50.0 72.6 104.2 81.3

X4 (-) 52.1 76.9 103.4 88.2

(+) X3 50.5 91.8 78.6 108.3

(+) 49.1 86.9 74.1 108.3

The results of analysis of data by Yates methodology are shown in Table 2.116.
Note that, here, the sums of replicate trials have been taken as response values.
Therefore, when calculating, average effects are divided 2(N/2). The situation is sim-
ilar when calculating sums of factor squares and interactions. Sum of squares are
calculated by dividing squares of total effects by total number of data N=n2k (n-num-
ber of replicate trials). Residual sum of squares, as said before, has been determined
according to the equation:
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SSE ¼

PN
1

Pn
1

yui��yyu
� �2
n�1

¼ 321:6

MSE ¼ SSE

N
¼ 321:6

16
¼ 20:1

Table 2.116 Yates method

Trials Response (1) (2) (3) (4) Average
effects (4)/16

MS (4)2/32 F F1;16;0.95

(1) 52.0 207.1 610.9 1239.6 2542.5 – – – –

X1 155.1 403.8 628.7 1302.9 536.9 33.56 9008.2 448.17 4.49

X2 180.2 309.7 655.3 272.0 605.3 37.83 11449.6 569.63 4.49

X1X2 223.6 319.0 647.6 264.9 -185.1 -11.57 1070.7 53.27 4.49

X3 102.1 199.5 146.5 206.0 10.1 0.63 3.2 0.16 4.49

X1X3 207.6 455.8 125.5 399.3 -103.9 -6.49 337.4 16.79 4.49

X2X3 149.5 252.3 173.9 -145.2 -300.7 -18.79 2825.6 140.58 4.49

X1X2X3 169.5 395.3 91.0 -39.9 -16.3 -1.02 8.3 0.41 4.49

X4 50.1 103.1 196.7 17.8 63.3 3.96 125.2 6.23 4.49

X1X4 149.4 43.4 9.3 -7.7 -7.1 -0.44 1.6 0.08 4.49

X2X4 190.6 105.5 256.3 -21.0 193.3 12.08 1167.7 58.09 4.49

X1X2X4 265.2 20.0 143.0 -82.9 105.3 6.58 346.5 17.24 4.49

X3X4 99.6 99.3 -59.7 -187.4 -25.5 -1.59 20.3 1.01 4.49

X1X3X4 152.7 74.6 -85.5 -113.3 -61.9 -3.87 119.7 5.96 4.49

X2X3X4 178.7 53.1 -24.7 -25.8 74.1 4.63 171.6 8.54 4.49

X1X2X3X4 216.6 37.9 -15.2 9.5 35.3 2.21 38.9 1.94 4.49

Residual – – – – – – 20.1 – –

Total – – – – – – – – –

Example 2.33 [31]
This example refers to the use of fractional replica FUFE in testing adhesion of a
thermoplastic polymer and fibre with inclusion of k=7 factors. Application of a frac-
tional replica has proved to be specially useful since FUFE requires 27=128 trials
and enormous time consumption. FRFE type 27-3 with only 16 trials has been used.
FUFE 24 has been used to construct the fractional replica. Here, the following gener-
ating ratios have been introduced: X5=X1X2X4; X6=X2X3X4; X7=X1X2X3X4. Excluding
all effects of triple and higher interactions, these aliased/confounded estimates of
regression coefficients have been obtained:

b1 ¼ b1 þ b67 ; b2 ¼ b2 ; b3 ¼ b3 þ b57 ; b4 ¼ b4 ; b5 ¼ b5 þ b37 ;

b6 ¼ b6 þ b17 ; b7 ¼ b7 þ b35 þ b16 ; b12 ¼ b12 þ b45 ; b13 ¼ b13 þ b56 ;
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b14 ¼ b14 þ b25 ; b23 ¼ b23 þ b46 ; b24 ¼ b24 þ b36 þ b15 ; b34 ¼ b34 þ b26 ;

b27 ¼ b
27
; b47 ¼ b

47
;

Factors signs with variation intervals are shown in Table 2.117.

Table 2.117 Factors with variation intervals

Factors Variation intervals Dx

– 0 +

x1 pressing pressure, kp/cm2 5.0 12.5 20.0 7.5

x2 thermal processing time, min 0.5 1.5 2.5 1.0

x3 temperature, �C 140 155 170 15

x4 pressing time, min 1 2 3 1

x5 dibutylphthalate, % 0 0.5 1.0 0.5

x6 tearing speed, m/min 80 140 200 60

x7 fiber type VISCOSE – KAPRON –

The design matrix with the outcomes of experiment is shown in Table 2.118.
Trials have been replicated 20 times due to the unreliable method of measuring
adhesion.

Table 2.118 Fractional factorial experiment 2
7�5

No.
trials

Design matrix Operational matrix Response

X0 X1 X2 X3 X4 X5 X6 X7 x1 x2 x3 x4 x5 x6 x7 �yyu

1 + + + + + + + + 20 2.5 170 3 1.0 200 K 17.99

2 + – + + + – + – 5 2.5 170 3 0 200 V 15.31

3 + + – + + – – – 20 0.5 170 3 0 80 V 17.16

4 + – – + + + – + 5 0.5 170 3 1.0 80 K 14.75

5 + + + – + + – – 20 2.5 140 3 1.0 80 V 35.49

6 + – + – + – – + 5 2.5 140 3 0 80 K 33.17

7 + + – – + – + + 20 0.5 140 3 0 200 K 38.30

8 + – – – + + + – 5 0.5 140 3 1.0 200 V 24.39

9 + + + + – – – – 20 2.5 170 1 0 80 V 32.23

10 + – + + – + – + 5 2.5 170 1 1.0 80 K 45.64

11 + + – + – + + + 20 0.5 170 1 1.0 200 K 41.17

12 + – – + – – + – 5 0.5 170 1 0 200 V 19.17

13 + + + – – – + + 20 2.5 140 1 0 200 K 17.55

14 + – + – – + + – 5 2.5 140 1 1.0 200 V 14.49

15 + + – – – + – – 20 0.5 140 1 1.0 80 V 18.52

16 + – – – – – – + 5 0.5 140 1 0 80 K 12.50
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Based on the obtained experimental results, regression coefficients of linear
regression have been determined by using Eqs. (2.62)–(2.64).

Y
_
=24.86+2.44 X1+1.62 X2+0.56 X3-0.30 X4+3.14 X5-1.33 X6+2.77 X7

Example 2.34
To produce a textile material resistant to fire, these four qualitative factors have been
tested:

Factors Lower level Upper level
1. A textile material satin monks
2. B textile treatment treatment X treatment Y
3. C washing conditions before washing after washing
4. D direction of testing alongside crosswise

The experiment was done by FRFE matrix of type 24-1. The response was the
burnt-out part of the textile 25.4mm long. Determine the factor and interaction
effects, since there is no point in determining regression coefficients as the factors
are qualitative. To construct fractional 24-1, the design 2 from Table 2.102 was used.
The sequence of trials in the design matrix has been completely random. Outcomes
are shown in Table 2.119.

Table 2.119 Fractional replica 2
4�1

A(-) A(+)

B(-) B(+) B(-) B(+)

C D(-) (1) 4.2 – – ab 2.9

(-) D(+) – bd 5.0 ad 3.0 –

C D(-) – bc 4.6 ac 2.8 –

(+) D(+) cd 4.0 – – abcd 2.3

Table 2.120 Yates analysis 2
4�1

Trials Response (1) (2) (3) Average effects (3)/4 Estimated effects

(1) 4.2 7.2 15.1 28.8 – T

ad 3.0 7.9 13.7 -6.8 -1.70 A

bd 5.0 6.8 -3.3 0.8 0.20 B

ab 2.9 6.9 -3.5 -2.0 -0.50 AB+CD

cd 4.0 -1.2 0.7 -1.4 0.35 C

ac 2.8 -2.1 0.1 -0.2 -0.05 AC+BD

bc 4.6 -1.2 -0.9 -0.6 -0.15 BC+AD

abcd 2.3 -2.3 -1.1 -0.2 -0.05 D

Total 28.8 – – – – –
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The Yates procedure as demonstrated in Example 2.31 was used to estimate the
effects. Here, one should do the following: shift k=k¢ where k¢=k-p. Total effects
divided by 2k¢-1 offer average effects. Outcomes of Yates analysis are shown in
Table 2.120.

Example 2.35 [32]
The following chemical reaction has been studied in a chemical laboratory:

A+B+CfiD+other products

The reaction takes place with solvent E being present. Five factors, as shown in
Table 2.121, were varied in lab conditions. In designing the experiment it has been
assumed that interaction effects are not significant. The experiment was therefore
done by 25-2 or 1/4-replica each. The design matrix with experimental outcomes is
shown in Table 2.122.

Table 2.121 Factors and intervals

Factors Levels

– +

x1 quantity of solvent E, cm
3 200 250

x2 quantity C, mol/molA 4.0 4.5

x3 concentration C, % 90 93

x4 reaction time, h 1 2

x5 quantity B, mol/molA 3.0 3.5

These generating ratios have been used to construct the matrix: X4=X1X2X3;X5=-X2X3

Table 2.122 Fractional factorial experiment 2
5�2

No.
trials

Design matrix Operational matrix Response

X1 X2 X3 X4 X5 x1 x2 x3 x4 x5 yu %

1 – – – – – 200 4.0 90 1 3 34.4
2 – – + + + 200 4.0 93 2 3.5 51.6
3 – + – + + 200 4.5 90 2 3.5 31.2
4 – + + – – 200 4.5 93 1 3 45.1
5 + – – + – 250 4.0 90 2 3 54.1
6 + – + – + 250 4.0 93 1 3.5 62.4
7 + + – – + 250 4.5 90 1 3.5 50.2
8 + + + + – 250 4.5 93 2 3 58.6
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The following regression coefficients have been obtained by processing the
results:

b0=48.5; b1=b1-b45=7.9; b2=b2-b35=-2.2; b3=b3-b25=6.0;
b123=b4-b15=0.4; b23=b5-b14+b23=-0.4; b13=b13+b24=-1.8; b12=b12+b34=0.2.

Example 2.36 [12]
All the thus far formalized steps in defining and performing an experiment are
being demonstrated in this example. The process of separating mercury from caus-
tic, as part of the process of extraction in a batch reactor with a mixer, is being
tested.

Selection of system response
Mercury content at the process outlet has been accepted as the system response.
The response is quantitative and it can be easily measured on an atomic absorption
spectrometer with an accuracy of up 1�10-6%.

Selection of factors
These factors affect the mercury content at the process outlet:

1) RPM of the mixer, min-1;
2) dwell time of caustic solutions, min;
3) temperature of solution, �C;
4) initial mercury content in caustic, %;
5) quantity of extraction material, g;
6) Solubility of mercury in the solvent, mg/g.

Previous experiment
A one-factor experiment was done, which showed that, in the assumed experimental
region, the quantity of extracted material and its saturation with mercury are of no
importance. As in this experiment, a caustic with constant mercury content of
12�10-4% was used, this factor is also excluded from considerations. After this selec-
tion the following factors have remained:

x1 number of mixer rotations, min-1; x2 temperature of solution, �C;
x3 dwell time of solution, min.

Description of experimental equipment
Mercury extraction is done in the lab glass reactor consisting of a thick glass vessel
69 mm in diameter and 200 mm high. The vessel is electrically heated with a possi-
bility of regulation of –1 �C. Mixing is done by a glass mixer with two blades and a
possibility of regulating rotation from 250 to 4000 min-1. The reactor construction
makes both the batch and the continual operations possible. Industrial nonfiltered
caustic solution of 43 to 46% is used in the experiment. Mercury content in such a
solution has been from 8 � 10-4 to 18 � 10-4%.

Definition of the problem
Find extraction conditions of mercury from caustic solution so that at the process
outlet we get the minimal mercury content.
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Factor space
These limits of factors were selected for all factors based on previous experiments
and theoretical knowledge:

1000 £ x1 £ 4000 min-1 70 £ x2 £ 130 �C 0 £ x3 £ 100 min

Selection of null level
This experimental center was suggested based on previous information:

x10=2500 min-1 x20=100 �C x30=45 min

Selection of variation interval
These variation intervals were chosen to realize the basic experiment:

Dx1=500 min-1 Dx2=10 �C Dx3=15 min

Construction of the design matrix
Mathematical modeling of the process has to be done according to the problem defi-
nition. FUFE is therefore used with double replication of design points. The design
matrix with experimental outcomes is shown in Table 2.123

Table 2.123 Full factorial experiment 2
3

Name x1 x2 x3 Calculated regression coefficients

Basic 2500 100 45 b0=2.95 � 10-4; b1=0.45 � 10-4;

Variation interval 500 10 15 b2=-1.066 � 10-4; b3=0.92 � 10-4;

Upper level 3000 110 60 y
_ ¼ 2; 95 � 10�4 þ 0; 45 � 10�4

X1 � 1; 066 � 10�5
X2 þ 0; 92 � 10�4

X3

Lower level 2000 90 30

Trials X0 Design matrix Operational matrix Response � 104

X1 X2 X3 x1 x2 x3 yu1 yu2 �yyu

1 + + + + 3000 110 60 1.09 0.71 0.90

2 + – + + 2000 110 60 1.34 0.94 1.14

3 + + – + 3000 90 60 3.07 2.65 2.86

4 + – – + 2000 90 60 3.42 3.02 3.22

5 + + + – 3000 110 30 2.90 2.50 2.70

6 + – + – 2000 110 30 3.01 2.59 2.80

7 + + – – 3000 90 30 3.74 3.34 3.54

8 + – – – 2000 90 30 6.64 6.26 6.45

A check of statistical significance must be done for the calculated regression coef-
ficients and a check of lack of fit for the regression model. Both checks are a subject
of statistical analysis that will be elaborated in more detail in the next chapter. The
check of the obtained regression model has shown that it is inadequate, so that we
have to reduce variation intervals of factors and increase the number of design-point
replications.
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Example 2.37 [12]
The effects of temperature, solution concentration and duration of the process on
the crystallization speed of aluminum fluorid (AlF3) have been tested in industrial
conditions of its production. Average crystallization of AlF3 in%/h has been taken
as the system response. FUFE 23 with three parallel design points in the experimen-
tal center has been used as a design of the experiment. These three parallel design
points are used to estimate experimental error that is necessary for checking the sig-
nificance of regression coefficients and lack of fit of the obtained regression. All
design points have not been replicated in this case as the experiment has been done
in industrial conditions. The design matrix with outcomes of the test and data pro-
cessing are shown Table 2.124.

Table 2.124 Full factorial experiment 2
3

Name x1 x2 x3 Linear regression

Basic level 90 22 2

Variation interval 10 4 0.5 y
_ ¼ 9:34þ 0:89X1 þ 2:15X2 þ 1:41X3

Upper level 100 26 2.5

Lower level 80 18 1.5

Trials x0 Design matrix Operational matrix Response

X1 X2 X3 x1 x2 x3 yu

1 + + + + 100 26 2.5 9.86

2 + – + + 80 26 2.5 9.09

3 + + – + 100 18 2.5 6.35

4 + – – + 80 18 2.5 6.41

5 + + + – 100 26 1.5 15.00

6 + – + – 80 26 1.5 12.02

7 + + – – 100 18 1.5 9.48

8 + – – – 80 18 1.5 6.52

9 + 0 0 0 90 22 2 9.12

10 + 0 0 0 90 22 2 10.30

11 + 0 0 0 90 22 2 5.80

Example 2.38 [12]
The process of obtaining alkyl sulphonate in an autoclave with a mixer has been
studied. Basic reagents were: water solution of sodium hydrosulfite 36-38% and
industrial olefin fractions at 240-320 �C. NaNO3 and oxygen from air were used as
initiators of the reaction of free radicals. System factors are: x1 reaction time, h; x2
temperature of reaction, �C; x3 mole ratio of sodium hydrosulfite and olefin; x4 mole
ratio of NaNO3 and olefin; x5 volume ratio of N-propanol and olefin. System
response is a yield of alkyl sulfonate as a per cent of theoretical yield. FRFE design
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25-2 has been used in the experiment with these generating ratios: X4=X1X2X3;
X5=-X1X2. Determine coefficients of the linear regression model.

Determine aliiased/confounded effects in accord with generating ratios or defin-
ing contrasts:

1 ¼ X1X2X3X4 ¼ �X1X2X5 ¼ �X3X4X5

X1 ¼ X2X3X4 ¼ �X2X5 ¼ �X1X3X4X5

X2 ¼ X1X3X4 ¼ �X1X5 ¼ �X2X3X4X5

X3 ¼ X1X2X4 ¼ �X1X2X3X5 ¼ �X4X5

X4 ¼ X1X2X3 ¼ �X1X2X4X5 ¼ �X3X5

X5 ¼ X1X2X3X4X5 ¼ �X1X2 ¼ �X3X4

Taking into account preliminary information on the insignificance of double, tri-
ple- and higher-order interactions, we obtain these estimates of main effects:

b1=b1+b234-b25-b1345; b2=b2+b134-b15-b2345;
b3=b3+b124-b1235-b45; b4=b4+b123-b1245-b35; b5=b5+b12345-b12-b34.

The design of experiments with outcomes is shown in Table 2.125.

Table 2.125 Fractional factorial experiment 2
5�2

Name x1 x2 x3 x4 x5 Regression coefficients

Basic level 2.0 100 1.5 0.2 2.0 b0=27.21 b1=4.837

Variation interval 1.0 10 0.5 0.1 1.0 b2=2.86 b3=0.81

Upper level 3.0 110 2.0 0.3 3.0 b4=0.38 b5=11.08

Lower level 1.0 90 1.0 0.1 1.0

Trials X0 Design matrix Operational matrix Response

X1 X2 X3 X4 X5 x1 x2 x3 x4 x5 yu

1 + – – – – – 1.0 90 1.0 0.1 1.0 14.5

2 + + + – – – 3.0 110 1.0 0.1 1.0 18.6

3 + – – + + – 1.0 90 2.0 0.3 1.0 13.8

4 + + – + – + 3.0 90 2.0 0.1 3.0 51.0

5 + – + + – + 1.0 110 2.0 0.1 3.0 23.2

6 + + – – + + 3.0 90 1.0 0.3 3.0 41.0

7 + – + – + + 1.0 110 1.0 0.3 3.0 38.0

8 + + + + + – 3.0 110 2.0 0.3 1.0 17.6
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& Problem 2.16
Four factors have been varied in testing extraction of hafnium with
tributyl phosphate. The experiment has been done by FUFE 2

4

1/2-replica design. The design matrix with experimental outcomes
is shown in the table 2.126. Determine linear regression coeffi-
cients.

Table 2.126 Fractional factorial experiment 2
4�1

Trials X1 X2 X3 X4 yu

1 – – – – 0.001675

2 + – + – 0.003465

3 – – + + 0.001540

4 – + – + 0.039750

5 + + – – 0.03800

6 + – – + 0.00470

7 – + + – 0.51000

8 + + + + 0.03975

& Problem 2.17
The surface smoothness of the machines in the machine building
industry is of the order of a tenth part of a millimeter. Welded parts
on such a machine must be processed as the welding may be 2 mm
or more thick. To reduce this thickness to the lowest possible mea-
sure and to save electrodes and avoid additional machine processing
of the welding, an experiment has been designed to model the influ-
ence of welding parameters on welding thickness. Factors and varia-
tion intervals with design matrix 25-1 are given in Tables 2.127 and
2.128.

Table 2.127 Factors and variation intervals

Factors Variation levels Dx

– 0 +

x1 electrode wear-out rate, m/h 48 56 64 8

x2 welding rate, m/h 28 34 40 6

x3 welding step, mm/OB 5 6 7 1

x4 operational voltage, V 20 21 22 1

x5 relative position of electrodes 0.250 0.333 0.416 0.083
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Table 2.128 Fractional factorial design 2
5�1

N0 X0 X1 X2 X3 X4 X5 X1X2 X1X3 X1X4 X1X5 X2X3 X2X4 X2X5 X3X4 X3X5 X4X5 ya yb

1 + – – – – + + + + – + + – + – – 2.20 0.28

2 + + – – – – – – – – + + + + + + 2.97 0.45

3 + – + – – – – + + + – – – + + + 1.60 0.55

4 + + + – – + + – – + – – + + – – 1.98 0.33

5 + – – + – – + – + + – + + – – + 1.90 0.65

6 + + – + – + – + – + – + – – + – 2.20 0.35

7 + – + + – + – – + – + – + – + – 1.04 0.63

8 + + + + – – + + – – + – – – – + 0.82 1.79

9 + – – – + – + + – + + – + – + – 2.31 0.42

10 + + – – + + – – + + + – – – – + 2.73 0.28

11 + – + – + + – + – – – + + – – + 1.90 0.36

12 + + + – + – + – + – – + – – + – 2.38 0.35

13 + – – + + + + – – – – – – + + + 2.03 0.26

14 + + – + + – – + + – – – + + – – 2.27 0.72

15 + – + + + – – – – + + + – + – – 1.17 0.83

16 + + + + + + + + + + + + + + + + 1.55 0.41

Determine regression models for both measured responses.

& Problem 2.18
Refinement of waste nitric gases (NO+NO2), is particularly signifi-
cant from both the point of view of environmental protection and
the use of components they contain. A lab plant has been built for
this purpose where effects of these factors have been tested:

x1 consumption of ammonium in the form of liquor ammonia,
x2 consumption of lye,
x3 concentration of nitric oxide in gas,
x4 pH,
x5 volume of gas flow,
x6 concentration of salts in circulating lye.

The percentage of absorbed nitric oxides has been measured as a
response.

To obtain the mathematical model of the process, 1/4-replica of a
full factorial experiment of type 26 has been realized. Design points-
trials have been done in a completely random order. The Table 2.129
shows conditions and outcomes of doing a 26-2 fractional factorial
experiment.
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Table 2.129 Fractional factorial design 2
6�2

Name x1 x2 x3 x4 x5 x6 yu

Basic level 1.25:1 15.4 0.4 8.0 3.0 20

Variation interval 0.22 1.0 0.1 0.65 1.0 10

Lower level 1.03:1 14.4 0.3 7.35 2.0 10

Upper level 1.48:1 16.4 0.5 8.65 4.0 30

1 – – – – – – 45.1

2 + + + + + + 50.7

3 – – + + + + 42.85

4 + + – – – – 43.5

5 + + – + – + 33.65

6 – – + – + – 45.5

7 + + + – + – 56.5

8 – – – + – + 37.55

9 – + – – + + 35.5

10 + – + + – – 58.85

11 – + + + – – 50.47

12 + – – – + + 40.5

13 + – – + + – 56.7

14 – + + – – + 38.1

15 + – + – – + 59.0

16 – + – + + – 58.75

& Problem 2.19
Describe adequately the process of producing seals by means of a
polynomial function. Tensile strength at break kp/cm

2
is the

response. Factors of the process are: x1 contents of parahinom-
dioxine in mixture; x2 contents of solvent (all in grams per
100 grams of butylcaoutchouc). Fractional factorial design 2

4-1
has

been used in the experiment. To assert reproducibility of the experi-
ment, trials have been replicated four times. The design matrix with
experimental outcomes is shown in the Table 2.130. Determine the
linear and aliiased/confounded effects of even interactions.
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Table 2.130 Fractional factorial design 2
4�1

Name x1 x2 x3 x4

Basic level 1.5 4.25 54 95

Variation interval 1.0 0.5 12 5

Upper level 2.5 4.75 66 100

Lower level 0.5 3.75 42 90

Trials X0 Design matrix Operational matrix Response

X1 X2 X3 X4 x1 x2 x3 x4 yu1 yu2 yu3 yu4 �yyu

1 + – – – – 0.5 3.75 42 90 4.2 3.4 4.0 4.3 3.975

2 + + – + – 2.5 3.75 66 90 4.7 5.1 5.6 5.3 5.175

3 + – – + + 0.5 3.75 66 100 4.3 5.2 4.7 5.7 4.975

4 + – + – + 0.5 4.75 42 100 3.6 3.7 3.9 3.7 3.725

5 + + + – – 2.5 4.75 42 90 4.5 4.2 4.4 4.6 4.425

6 + + – – + 2.5 3.75 42 100 4.0 3.6 4.5 4.0 4.050

7 + – + + – 0.5 4.75 66 90 4.9 4.7 5.1 4.9 4.900

8 + + + + + 2.5 4.75 66 100 5.0 4.9 5.1 4.9 4.975

& Problem 2.20
To control the complex process of cooking by the sulfate process cel-
lulose, by means of a computer, it is necessary to have a mathemati-
cal model of the process. To obtain this model for the process of
cooking by the sulfate process cellulose from a mixture of soft and
hardwood and deciduous trees, we have used a fractional factorial
experiment. It included these seven factors: x1 consumption of active
lye,% Na2O on completely dry wood; x2 cooking temperature, �C;
x3 hydromodule; x4 cooking time, min; x5 percentage of soft and
hardwood chips,%; x6 percentage of normal chips fraction,%; x7 sul-
fidity of the lye,%.

The percentage of coarse chips fraction has in all trials been con-
stantly 5%. The contents of normal chips fraction has been changed
depending on the design of the experiment. The percentage of fine
fraction has been a result of the difference between the coarse and
normal fractions and the total chips.

Eleven parameters are analyzed to get the system response: y1 cel-
lulose yield, calculated for completely dry wood,%; y2 final contents
of lignin in cellulose,%; y3 degree of delignification of cellulose per
permanganate number; y5 contents of noncooked part in cellu-
lose,%; y6 pressure decrease by blowdown, kp/cm

2; y7 resistance to
tearing, g; y8 length of cutting, m; y9 number of double bonds;
y10 lagging activity of black lye, g/l; y11 density of black lye, g/cm3.
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To perform the experiment, a 1/8 replica of type 27-3 (16 trials)
has been chosen with these defining contrasts:

1=X1X2X3X4=X1X2X5X6=X1X3X5X7=X1X4X6X7=X2X3X6X7

=X2X4X5X7=X3X4X5X6

All linear effects and the effects of even interactions are being
estimated through such a design of experiment:

X1X2=X3X4=X5X6;
X1X3=X2X4=X5X4;
X1X4=X2X3=X6X4;
X1X5=X2X6=X3X4;
X1X6=X2X3=X4X7;
X1X7=X3X5=X4X6;
X2X7=X4X5=X3X6;

The associated regression is:

y
_ ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b6X6 þ b7X7+
b12X1X2 þ b13X1X3 þ b14X1X4 þ b15X1X5 þ b16X1X6 þ b17X1X7

þb27X2X7 þ b127X1X2X7

Conditions of varying all factors with the design matrix are
shown in Table 2.131. Determine the values of the regression coeffi-
cients.
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Table 2.131 Fractional factorial design 2
7�3

No. Design matrix Responses

X1 X2 X3 X4 X5 X6 X7 X1

X2

X1

X3

X1

X4

X1

X5

X1

X6

X1

X7

X2

X7

X1

X2

X7

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

1 – – – – – – – + + + + + + + – 64.5 12.05 63.5 134.1 81.0 7.5 100 8.92 0.61 12.4 1.104

2 + + + + – – – + + + – – – – – 42.7 2.54 24.8 73.3 0.0 5.3 107 8.07 1.17 13.4 1.078

3 + + – – + + – + – – + + – – – 56.5 2.64 25.2 119.2 8.2 6.1 78 8.50 0.42 22.8 1.152

4 + – + – + – + – + – + – + – – 67.8 16.98 80.0 135.3 70.0 6.9 121 9.60 0.40 20.0 1.073

5 + – – + – + + – – + – + + – – 59.2 3.50 28.6 116.0 0.0 8.1 124 10.31 0.69 24.3 1.146

6 – + + – – + + – – + + – – + – 57.5 2.39 24.0 94.3 34.5 9.5 124 9.93 1.01 3.1 1.058

7 – + – + + – + – + – – + – + – 53.3 7.87 47.0 145.0 4.9 10.4 110 9.63 3.40 7.8 1.117

8 – – + + + + – + – – – – + + – 75.0 19.61 85.0 96.6 70.0 7.9 110 8.39 0.64 18.6 1.051

9 + + – – – – + + – – – – + + + 53.2 2.07 23.0 77.8 2.9 6.6 116 9.90 0.83 26.0 1.151

10 + – + – – + – – + – – + – + + 69.6 10.33 56.4 126.5 58.0 6.8 122 9.54 0.82 19.6 1.072

11 + – – + + – – – – + + – – + + 51.5 6.58 42.0 144.0 0.0 8.2 105 10.18 1.56 35.6 1.154

12 – + + – + – – – – + – + + – + 54.0 11.78 62.4 141.5 15.8 8.0 114 9.01 1.28 9.3 1.058

13 – + – + – + – – + – + – + – + 51.1 2.72 25.4 99.5 3.1 7.9 96 11.41 1.17 6.2 1.088

14 – – + + – – + + – – + + – – + 61.0 7.04 43.8 116.1 70.0 9.3 104 11.84 1.00 8.3 1.054

15 – – – – + + + + + + – – – – + 83.5 18.95 84.0 140.6 80.0 8.3 100 9.55 1.01 18.6 1.109

16 + + + + + + + + + + + + + + + 45.0 2.75 25.5 80.6 0.0 9.1 117 10.79 1.50 17.3 1.076

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56.0 4.73 33.6 122.0 2.4 8.6 112 11.39 0.73 14.0 1.092

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53.1 5.00 34.8 138.0 2.7 9.8 108 10.57 0.97 14.0 1.096

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56.8 5.14 35.2 92.0 8.5 9.5 103 11.28 1.05 18.6 1.084

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51.1 5.60 37.2 131.6 0.0 8.2 114 10.97 1.85 14.4 1.092

2.3.1.2 Optimality Criterion for Experimental Design
When designing an experiment, a researcher often does not know in advance where
in the response surface the optimum is situated and what the shape of that surface
is. He therefore tends to choose, first of all, such a design of experiment that which
will guarantee him maximum information in the hardest possible situation with a
relatively small number of design points. It is natural that in such situations there
appears a need to estimate optimality designs by using special criteria. It has, first of
all, been necessary to determine: what is an optimal design? George E. P. Box and
his school are characterized by an empirical intuitive approach of choosing criteria
for design optimization. First an orthogonal and later a rotatable have been suggested
as optimal designs. The sense of these criteria could easily be understood intuitively
by those researchers who tended to logically think out the experimental methodolo-
gy. Interesting theoretical results have been obtained from Box’s works, especially
important for linear designs, and originating from properties of orthogonality and
rotatability.
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Full factorial experiment and regular fractional replicas as designs, are most effi-
cient for obtaining linear models. Good properties of these designs consist exactly of
orthogonality, rotatability, symmetry with reference to experimental center and concor-
dance with conditions of norming. These properties of designs of experiments may
be expressed mathematically thus in this way:PN

u¼1

XiuXju ¼ 0 for i,j=0,1,...,k; (2.71)

PN
u¼1

Xiu ¼ 0 for i=1,2,...,k; (2.72)

PN
u¼1

X
2
iu ¼ N for i=1,2,...,k (2.73)

where:
k is number of factors (number of the last design column);
N is number of design points-trials (number of design rows);
u is current number of design points-trials.

Mathematical expression (2.71) corresponds to the condition of orthogonality if
the sum of multiplied design signs of any two columns equals zero. Orthogonality
of the design facilitates the calculation of independent estimations of regression
coefficients. This means dropping all those factors of a design of experiments for
which we have regression coefficients and that are statistically insignificant. The
expression (2.72) corresponds to the condition of symmetry of design with reference
to the experimental center. Norming of a design of experiment has been defined by
relation (2.73). Regression coefficients from designs of experiments that satisfy con-
ditions (2.71)–(2.73), are estimated with a minimal variance (each regression coeffi-
cient is estimated based on all N trials with a variance that is N times smaller than
the variance or error of the replicated trials).

A design of experiment is called rotatable if it is insensitive to the rotation of coor-
dinate axes with reference to the experimental center, or if movement of the experi-
mental center in any direction is equivalent. Designs of experiments that satisfy
both orthogonality and rotatability do not have minimal variances in determining
regression coefficients only, but they are identical too. Orthogonal and rotatable may
only be designs of first order; the optimality problem for second-order designs
becomes much more complicated. Therefore the first design for second-order mod-
els were orthogonal, and later rotatable. In recent years, the concept of D-optimality,
developed by D. Kiefer, has appeared. He thinks that efficiency of estimates is not
determined only by optimal way of processing experimental results but is also con-
ditioned by the optimal distribution of a design point-trials in factor [34]. It has been
suggested to include these properties into an optimality design:

. maximal variance value in estimating a response or optimization criterion
value;

. volume of elliptical dispersion of parameter estimates.
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The designs are called D-optimal if the volume of elliptical dispersion of para-
meter estimates is minimal. D-optimal designs correspond to designs that minimize
the variance of response estimate ( y

_

u ) in the associated space. In practice, it is diffi-
cult to find a design that simultaneously satisfies several optimality criteria. It is
therefore recommended in each individual case to:

. choose an optimality criterion;

. choose the most suitable design for the actual case.

A basic requirement in constructing designs of experiments is reduction of the
number of experimental trials. Table 2.132 shows the total number of trials (N) for
various second-order designs at a different number of factors.

Table 2.132 Number of trials in second-order designs

Number of
factors

Number of N design points-trials Number of
regression
coefficientsOrthogonal

design
Rotatable
design

Hartley
design

Kiefer design Kono design

2 9 13 7 9 9 6

3 15 20 11 26 21 10

4 25 31 17 72 49 15

5 27* 32* 27* 192 113 (88) 21

6 45 53 29 – 257 28

7 79 92 47 – 577 36

* with halfreplica

It is evident from Table 2.132 that as far as the number of trials is concerned the
most economical are Hartley’s designs. However, attention should also be paid to or-
thogonal and rotatable ones.

Hartley’s design with only seven trials is convenient for k=2. A Konos design may
also be good sometimes, and if the number of design points is not limited, we may
use Box’s rotatable design (N=13). Good results are also achieved by simplex-sum-
mary designs.

Rotatable design is recommended for k=3. The properties of Hartley’s and orthog-
onal designs are worse, but they may be used when it is necessary to keep a minimal
number of design points.

Design B4, which requires only 24 trials, is recommended for k=4. The design is
symmetrical and has certain advantages to the D-optimal design. There is sense in
using Hartley’s design too.

Hartley’s design with only 27 trials should first of all be used for k=5. Box’s rotata-
ble design also deserves attention. A comparison of rotatable designs of second
order with D-optimal and other designs shows that a rotatable design may be
applied where limits of an experimental region are given by a sphere, i.e. in cases
when a researcher is only interested in the response surface in the vicinity of the
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experimental center. Deficiency of rotatable designs is in experimental design
points, not falling into cube crowns but onto the surface of the sphere drawn in the
cube. This means that the cube crowns are not used, which greatly influences the
accuracy of the obtained model. With an increase in the number of factors, the vol-
umes of unused cube crowns increase, so that for k>5 it is not recommended to use
rotatable designs.

Rotatable designs are most efficient for k=3. Rotatable designs of second order are
not orthogonal and they do not minimize the variance of estimates of regression
coefficients. They are efficient in solving research problems when trying to find an
optimum.

Rotatable and orthogonal designs are convenient for application in composite
designing when designs of second order are constructed after doing the experiment
by design of full factorial experiment or fractional replica. Hartley’s designs offer a
possibility to reduce the number of trials but they are not orthogonal or rotatable.
Designs of third order are rarely met in practice as they require a large number of
design points.

Summary
The first series of design points-trials of a basic design is preceded by numerous
activities meant to select the local domain of factor space. Thereby, limits of factors
space that in principle determine the limitations, technoeconomic possibilities and
concrete conditions for doing the process, are being estimated. The factor space
requires careful analysis of preliminary information on the scope of response
change and on curvature of the response surface.

The local domain of doing an experiment is determined in two stages: determin-
ing the basic level and the variation interval. The basic (null) level is a multidimen-
sional point in factor space, given by a combination of factor levels. Construction of
a design of experiments is brought down to selection of experimental or design
points, symmetrical with reference to a basic level. When defining the basic level it
is obligatory to take into account the information on the “best known” point for per-
forming the process, if such information exists.

In the next stage, two variation levels for varying factors in the experiment are
determined for each factor. One variation level is called the lower and the other one
the upper level. The number that, when added to the basic level gives the upper and
when subtracted the lower level, is called the variation interval of the associated fac-
tor. To simplify the way of recording conditions of doing an experiment and process-
ing experimental results, axes ratios are such that the value +1 corresponds to the
upper, -1 to the lower and zero to the basic level.

Two limitations are imposed on the selection of the factor-variation interval: lower
(it may not be smaller than the error of fixing a factor) and upper (upper and lower
levels cannot be outside the factor space). In trying to find the optimum in an
experimental region, a subregion should be such as to permit the procedure of mov-
ing towards the optimum step by step. When determining a model or interpolation,
variation intervals include the complete factor space.
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When determining the variation interval, we should take into account the accu-
racy of fixing a factor, curvature of response surface and the range of the response
changing. A researcher is greatly helped by twenty seven situations in determining
a factor-variation interval. A low accuracy in fixing a factor, by rule, requires a wide
variation interval. An average variation interval corresponds to an average accuracy
of fixing a factor. A high accuracy of fixing a factor leads to a narrow and average
variation interval.

An experiment where all possible combinations of factor or design-point levels
are realized is called a full factorial experiment. When the number of variation levels
of all factors is two, we have a full factorial experiment of 2k. Conditions for perform-
ing an experiment are presented in tables-design matrices where the rows corre-
spond to different design points-trials and the columns to factors. The design of full
factorial 22 has a geometric interpretation shaped as a square where crowns corre-
spond to conditions for doing a trial. FUFE 23 has the shape of a cube and for k>3
we have a hypercube. A type 2k full factorial experiment has the properties of sym-
metry, norming, orthogonality and rotatability. Regression coefficients calculated
from the outcomes of experiments indicate by their values the degree to which the
factors affect the system response. The effect of factors equals double the value of a
regression coefficient. We can speak about existence of interaction between two fac-
tors in cases when the effect of one factor depends on the level of the other factor. To
determine numerical values of interactions, a column of products of associated fac-
tors is constructed, which is then manipulated as any other column. The informa-
tion on the square members may not be drawn out of a full factorial experiment.
Columns-vectors for square members coincide both among themselves and with
column X0. The value of free member b0 includes the effects of square members so
that it is basically an aliased/confounded estimate. Estimates of other coefficients
are not aliased/confounded. The difference between the number of design points-
trials and the number of regression coefficients is great in a full factorial experi-
ment. Therefore a need appeared to construct designs with a smaller number of
trials while keeping their optimal properties. Designs where effects of interactions
are considered negligible, or designs where they were replaced by new factors, are
called fractional replicas. The calculated regression coefficients are, as a rule, esti-
mates of aliiased/confounded effects.

2.3.1.3 Conclusion after Obtaining Linear Model
By processing outcomes of a full factorial experiment, we often obtain an adequate
linear model that looks like a polynomial of first order. Regression coefficients are
the associated partial derivation of a response function by associated factors. As is
known, geometrically those are tangents of slope angles of the hypersurface to the
corresponding axis. Higher values of regression coefficients by their absolute values
correspond to a higher slope angle or to a greater response change at the change of
the associated factor. This kind of analysis of a regression model corresponds to the
abstract language of mathematics. Its translation into the language of a researcher
is called model interpretation.
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Interpretation of a regression model is complex and it is solved in several stages.
The first stage is as follows. A degree of effect of each factor on response is deter-
mined. The value of regression coefficient is exactly the quantitative measure of
such an effect. The higher this value is, the stronger the effect of the observed factor
is. The regression-coefficient sign gives the property of factor effect. A positive sign
indicates that with an increase in factor value there is an increase in response value,
and a negative sign means a decrease in response value. An interpretation of the
regression coefficient signs for research problems of finding the optimum depends
on whether we are looking for the maximum or minimum of the response function.
When searching for this maximum, an increase of values of all factors having posi-
tive regression coefficients is the thing looked for, while an increase in factor values
of negative regression coefficients will not contribute to finding the response maxi-
mum. When the minimum of a response function is searched for, the situation is
completely contrary. One can only say that for the given variation intervals and error
reproducibility of an experiment they have no important effect on response.

A change in variation intervals causes changes in regression coefficients. Abso-
lute values of regression coefficients increase with an increase in variation intervals
of associated factors. An increase in a factor-variation interval does not change the
signs of linear regression coefficients. They may, however, be changed if when mov-
ing along the response function gradient they “jump over” the extreme.

In some cases a regression model with real-natural factor dimensions is sought.
In that case, we switch from a coded regression model to a real one using transfor-
mational expression (2.59). Values of regression coefficients also change with such
transformations. Now the possibility of interpreting factor effects on the basis of
size and the coefficient sign is lost. Columns or vectors of real factor values in the
design of experiment matrix are no longer orthogonal, so that the calculation of
regression coefficients is not independent either. A regression model with real fac-
tors is acceptable only if the research problem of obtaining the interpolation model
with real factors is defined.

This knowledge offered a basis for a switch to the next stage of interpolation of
the regression model. Former conclusions give an idea on the character of factor
influence on response. Sources of such conclusions can be: a theory of the studied
phenomenon, experiments with similar phenomena or previous design points, etc.
If with an increase in temperature we expect an increase in response value, and the
regression coefficient has a negative sign, a contradiction is present and it must be
solved. Two causes of this contradiction are possible: an error in the experiment or
incorrect previous information, i.e. knowledge about the observed phenomenon.
One should remember that the experiment is done in the local domain of factor
space so that the obtained regression coefficients express factor effects exactly in
that part of factor space. Extrapolation of those effects on the rest of factor space is
problematic. Theoretical knowledge usually has a more general character so that it
may contradict the outcomes from the local domain of factor space. Prior knowledge
is often based on single-factor dependencies so that the situation may change when
transferring into a multifactor space. This contradiction may be solved by establish-
ing various hypotheses and their experimental checks.
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In rare situations when we dispose with sufficient prior theoretical knowledge on
the observed phenomenon, one may establish hypotheses on mechanisms of the ob-
served phenomenon, which is the next stage in interpretation of the model. It con-
sists of checking the set hypotheses on the mechanism of the phenomenon and set-
ting up new hypotheses. In this case special attention is paid to the effects of factor
interactions and their interpretations.

Assume that in research we have obtained a statistically significant interaction of
two factors with a positive sign. This means that simultaneous increase or decrease
of both factors brings about a response increase (excluding linear effects). If the dou-
ble interaction has a negative sign, then any combination of simultaneous increase
or decrease of a factor causes an increase in response value. One should remember
the rule: if a double interaction has a positive sign, then an increase in response is
obtained by simultaneously increasing or decreasing the factor value. To reduce a
response it is necessary to change simultaneously both factors in opposite direc-
tions. When a double interaction has a negative sign, an increase in response value
is obtained by simultaneous changes of both factors in opposite directions. To
reduce a response, it is sufficient to increase or decrease both factors.

It is evident that an interpretation of the interaction effect is not so singular as is
the case with linear effects. In any case, both variants are at our disposal, and the
question is which variant should get an advantage. One should primarily take into
account linear effects of the associated factors. If the effect of a double interaction
has a plus sign and the associated linear factor effects a minus sign, then negative
factor values are chosen (X1 = -1; X2 = -1). A case of different linear effect sign is also
possible; then regression coefficient values are compared and the lower value factor
is sacrificed. Sometimes in such a situation, the factor whose changes are more dif-
ficult to be done in an experiment or which cause higher expense, is sacrificed. An
interpretation is more complex in the case of statistical significance of the triple
X1X2X3. Such an interaction may have a plus sign if the signs of an even number of
factors are negative. A triple interaction effect will have a minus sign if an uneven
number of factors has the same sign. Such an interpretation may be generalized for
interactions of any order. An approach is often used to consider the yield of two fac-
tors, conditionally, a single factor, so that a triple interaction is brought down to an
even-double one.

It has been mentioned that an interpretation of outcomes means a transfer from
one language into another one. Such a transfer facilitates an understanding between
statisticians and researchers who jointly work in the study of system optimization. A
regression model interpretation is not significant only for an understanding of the
mechanism of the process but also for drawing conclusions about solving the prob-
lem of optimization.

Conclusions After Obtaining a Mathematical Model
Drawing conclusions after processing experimental outcomes may be very complex
depending on the number of factors, on the type of experiment or level of research
objective (screening of factors by significance of their effect on response, mathema-
tical modeling and optimization of the process). Complexity of obtained models and
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the number of conclusions that may be drawn from them are extremely high and
we will therefore limit our analysis to typical cases. It will differ in the lack of fit or
nonlack of fit of the model, in significance and insignificance of regression coeffi-
cients and in information on position of the optimum.

Adequate linear model
Three cases are possible in this situation:

. all regression coefficients are statistically significant;

. some regression coefficients are statistically significant;

. all regression coefficients are statistically insignificant.

In any of these cases an optimum may be close by, far away or there is no infor-
mation on its position, i.e. the position of the optimum is not defined.

When the optimum region is close by, three solutions are possible:

. end of research;

. transfer to designs for second-order models;

. movement along the gradient of response function towards optimum.

Transfer to design of experiments for second-order models enables a mathemati-
cal description of the optimum and discovery of the extreme. Design of experiments
from the second-order models are the subject of the next chapter. Movement along
the gradient is applied in the case of a small error in the trial, as it is hard to estab-
lish the response yield for a large error. When an optimum is undefined or too far,
the solution lies in moving along the gradient.

The second case some regression coefficients are statistically significant. Since
movement to an optimum along the gradient is most efficient when all regression
coefficients are important, one must choose the solution that makes all regression
coefficients statistically significant. One must therefore set up the hypothesis that
explains the insignificance of individual coefficients. Insignificance of regression
coefficients may be a consequence of wrong choice of variation intervals, inclusion
of factors that do not affect the response, (being cautious), large error of trials, etc.
The first doubt is removed by an increase of variation intervals for insignificant fac-
tors and performance of a new sequence of design points. An increase in variation
intervals is usually combined with a shift of the experimental center to the point
with the best response value. Insignificant factors are fixed and excluded from the
next experiment. The solutions for obtaining significant regression coefficients are:

. increase in number of replicated trials;

. upgrade the design of experiment.

An increase in the number of replicated trials causes a decrease in reproducibility
variance or experimental error as well as in the associated variances of regression
coefficients. Design points-trials can be replicated in all points of the experiment or
in some of them. An upgrade of the design of experiment may be realized by a shift
from fractional to full factorial experiment, a switch to bigger replica (from 1/6 to
1/2 replica), a switch to second-order design (when the optimumregion is close by), etc.
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II Design and Analysis of Experiments

Realization of these solutions requires additional experiments, so that it is some-
times unnecessary to follow blindly the rules of movement to optimum by all the
factors but to do it by only those factors that are statistically significant.

Finally, if an optimum is close by, one should proceed as in the case when all
regression coefficients are statistically significant. Let us analyze the last case: ade-
quate linear model, all regression coefficients statistically insignificant (except b0).
This case mostly occurs as a result of either a larger experimental error or small fac-
tor-variation intervals. Possible solutions refer to both an increase in accuracy of the
experiment and factor-variation intervals. An increase in accuracy of the experiment
may be achieved in two ways: by an improvement in methodology of carrying out
and by an increase in the number of replicated trials. The conclusion of this analysis
is shown by the block diagram for the case of an adequate linear Fig. 2.37.

Example 2.39 [35]
When determining optimal conditions for the technological process of obtaining
man-made fibers from polypropylene, these factors have been chosen: X1-tempera-
ture of melt, �C; X2-pressure of melt, kp/cm2; X3-speed of winding up on roll,
m/min; X4-heating temperature, �C; X5-speed of drawing-out, m/min and X6-brevity
of drawing-out. Optimization parameter has been the fiber tensile strength. Experi-
mental conditions, design matrix and outcomes of trials are given in Table 2.133. In
this example, 1/8 replica of full factorial experiment 26 has been used with these
generating ratios:

X4=X1X2X3, X5=-X1X3 and X6=-X2X3

Table 2.133 Fractional factorial design 2
6�3

Name x1 x2 x3 x4 x5 x6

Basic level 300 50 2.40 150 0.35 7.2

Variation level 10 7 0.47 5 0.12 0.3

Upper level 310 57 2.87 155 0.47 7.5

Lower level 290 43 1.93 145 0.23 6.9

Trials Design matrix Response

X1 X2 X3 X4 X5 X6 y

1 – – – – – – 53.4

2 + – + – – + 65.3

3 + – – + + – 54.2

4 – + + – + – 56.2

5 – + – + – + 52.8

6 + + + + – – 52.2

7 + + – – + + 65.1

8 – – + + + + 52.8
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2.3 Basic Experiment-Mathematical Modeling

These regression coefficients were obtained after processing the outcomes:

b0=56.500 b3=0.125 b6=2.500
b1=2.700 b4=-3.500 Sb=1.060
b2=0.0749 b5=0.575

The obtained linear regression equation is adequate. Three out of six regression
coefficients are statistically significant (b1, b4 and b6). There is no information on
the position of the optimum. Two variants are feasible in this situation:

. to move along the gradient towards optimum;

. to increase variation intervals of insignificant factors.

Analyze the first variant. The movement to optimum when we have only three
out of six significant regression coefficients may be inefficient. Besides, in a 1/8-rep-
lica of a full factorial experiment, effects are greatly aliased/confounded up and this
mixture is not excluded, so that significant regression coefficients may be estimates
of aliasing effects of more significant factors. On the other hand, an increase in fac-
tor-variation intervals requires new design points that are very expensive. Moving
along the gradient we risk performance of two to three trials only. Therefore, accept-
ing the variant of movement to optimum along the gradient seems reasonable.

The second variant, an increase in variation intervals of insignificant factors with
additional design points, is acceptable if movement to optimum appears to be ineffi-
cient. A change in variation intervals will require at least eight expensive design
points.

Example 2.40 [36]
In a process of separating elements of rare earths on the principle of ionic exchange
in solution of amino di carboxylic acid, percentile contents of neodymium in the
outlet solution has been used as response. Only two factors have been analyzed dur-
ing the research: X1-concentration of inlet solution,% and X2-pH of inlet solution.
The domain of factors was: X1 ˛ 0.5; 3.0 and X2 ˛ 3; 8. Previous knowledge indicates
that the accuracy of fixing the factor is average, the response surface linear, and the
range of response change narrow enough. Therefore, to do the experiment accord-
ing to block Fig. 2.12 a wide factor variation interval Dx1=0.5 and Dx2=1.0, has been
chosen, which is 20% of the factor space. Values x10=1.5 and x20=7.0 have been cho-
sen for the basic level. The experiment has been a full factorial one, and the out-
comes are shown in Table 2.134.

These regression coefficients are obtained by the processing of results:

b0=88.0; b1=-2.0; b2=-4.5; b12=0.5

The regression equation is adequate and has this form:

y
_ ¼ 88:0� 2:0X1 � 4:5X2 ; Sb ¼ 0:30

All regression coefficients are statistically significant and the optimum region is
close by, so that the best obtained response value is y=95%. The research objective is
to obtain 99 to 100% of neodymium with a minimal number of trials.
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Table 2.134 Full factorial experiment 2
2

Number
of trials

Yates Factors Response

X0 X1 X2 X1X2 y

1 (1) + – – + 95

2 a + + – – 90

3 b + – + – 85

4 ab + + + + 82

The solution to this problem may be one of the variants:

. movement along the gradient to optimum;

. end of further research;

. upgrading to a design for second-order model.

The first variant of movement along the gradient is most acceptable, as an
increase in outlet for several per cent with two to three additional design points is
very important for the mentioned procedure of ionic change. This solution is even
more acceptable when we know that an upgrading to the existing design towards
the second-order model would require at least five trials. The second variant that
entails ending of any further research, is unacceptable because the increase in out-
lets for several per cent is eventually economically advantageous. The third variant is
also unacceptable as it requires more trials than the first one.

To finalize the analysis on drawing a conclusion after obtaining an adequate
model, it should be pointed out that the research problem of obtaining a model or
an interpolation formula has been fulfilled by obtaining an adequate model.

Inadequate linear model
If a linear model is inadequate it means that the response surface is not approxi-
mated to the plane. Apart from Fisher’s criterion, which is there to judge the lack of
fit of a regression model, inadequacy may also be recognized in this way:

. at least one interaction is statistically significant;

. sum of regression coefficients next to square members
P

b
ii
is statistically

significant. The estimate of that sum is given by the difference between b0
and the response in design center-y0. When this difference is greater than the
experimental error, the hypothesis on statistical insignificance of regression
coefficients next to square members cannot be accepted. One should remem-
ber that a sum of regression coefficients next to square members may be sta-
tistically insignificant although the square effects are significant, because
they may have different signs.

Differentiation of significant and insignificant regression coefficients is not
important for inadequate models. To obtain an adequate model, we should:

. change the factor variation intervals;

. transfer the design of the experiment center into another point;

. upgrade the design of experiments.
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2.3 Basic Experiment-Mathematical Modeling

A change in factor-variation interval is the most usual approach, and it requires
additional trials. One may sometimes give up obtaining an adequate model, and the
possibility of movement along the gradient to optimum is then checked at the
expense of additional design points. To move to an optimum along the gradient of
an inadequate model, is not a correct approach. Movement along the gradient is pre-
ceded by an estimate of curvature of the response surface (based on the sum of
regression coefficients next to square members) and a comparison of values of line-
ar regression coefficients with interactions of regression coefficients. When the
share of square members and interaction effects is not great, movement to optimum
along the gradient is possible.

There is another solution to movement to optimum, i.e. when interaction effects
are included in an inadequate regression model and this movement is done by an
incomplete second-order model. In that case, the second-order model is analyzed
and the gradient direction changed from point to point.

If the optimum region is close by, the research by this model ends and we switch
to constructing the design of experiments for the second-order model. Fig. 2.38
shows the block diagram of searching for an optimum for an inadequate linear
model.

Linear model-inadequate

Location of optim.
far away

Location of optimum
unknown

Location of optim.
close

Include
interaction

effects

Movement
along the
gradient

Estimation of
second-order

effects

Continue

Change
interval of
variation

Shifting
center of
design

Upgrade
design

End

Block diagram 2.37

Second-
order

design

Continue

Figure 2.38 Block diagram of search for optimum for an inade-
quate linear model

Example 2.41 [12]
An optimization of the process of obtaining a pharmaceutical product (carbo-
methoxysulphonylguanadine) has been done.

The system factors are: X1-ratio of solvent to basic material, g/l; X2-temperature of
reaction mixture, �C and X3-reaction time, min. Product yield in per cent is the sys-
tem response. Experimental conditions and outcomes of trials are given in
Table 2.135.
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Table 2.135 Full factorial experiment 2
3

Name x1 x2 x3 Regression coefficients

Basic level 0.7 135 30 b0=23.8; b1=1.78; b2=10.23

Variation interval 0.2 5 15 b3=9.36; b12=0.17; b13=-0.79

Upper level 0.9 140 45 b23=3.77; b123=1.00; Sbi=0.12

Lower level 0.5 130 15

Trials Factors Response

X1 X2 X3

1 + + + 46.80

2 + – + 20.47

3 – – + 16.80

4 – – – 5.08

5 + + – 24.15

6 + – – 8.89

7 – + – 16.63

8 – + + 46.45

By analyzing the values of regression coefficients, one can state that the following are
statistically significant: b0; b1; b2; b3; b13; b23 and b123. A check of lack of fit shows that a
linearmodel is not adequate. In the actual situation, a change in factor-variation interval
and a replication of the experiment is acceptable. By a decrease in factor variation X2 and
X3, the values of the associated regression coefficients b2 and b3 will be reduced, as well
as coefficients for interactions: b13; b23 and b123, to the level when theywill become statis-
tically insignificant. There is a reason to transfer the experimental center to the condi-
tions of design points No.1 and No.8. The suggested change in variation interval
requires replication of the design of experiment or 8 trials.

Movement to optimum by an inadequate linear model is also possible in cases
when doing the mentioned eight trials is not acceptable. The values of linear regres-
sion coefficients are considerably above the values of those for interactions, the
more so since linear effects are not aliased/confounded with interaction effects. Al-
though the movement to optimum by an inadequate linear model is mathematically
incorrect, it may be accepted in practice with an adequate risk. Note that when try-
ing to optimize a process one should aspire towards both the smallest possible inter-
action effects and approximate or symmetrical linear coefficients. In problems of
interpolation models, the situation is exactly the opposite since it insists on interac-
tion effects, which may be significant.

Interpolation models-inadequate linear model
The first thing one must do when searching for an interpolation model is to include
interactions in the model. This is possible when an unsaturated design of experi-
ments is used. By introducing interactions there may appear a case where the
degrees of freedom are insufficient for a check of lack of fit of the model, and it is
therefore necessary to do two to three trials within the experimental region. All
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Linear model inadequate

Include interaction effects Change interval of variations

Upgrade design Transform responses

Second-order design Fractional fact. design Full factorial design

Continue

Figure 2.39 Block diagram for obtaining interpolation model,
linear model inadequate

other approaches to obtain an interpolation model have to do with realization of
new trials, by an upgrading to the basic design of experiment. The same approaches
are used as with removal of insignificance of regression coefficients: upgrading to
the replica where aliased/confounded effects become clean, upgrading to the full
factorial experiment, and to the second-order design. Another unusual approach is
factor and response transformation. If by these approaches, an adequate model is
not obtained, what remains is to split the experimental region into a number of sub-
regions that will be described by adequate models. This, of course, requires a reduc-
tion of factor variation intervals. Fig. 2.39 shows the block diagram for obtaining
interpolation model when a linear model is inadequate. When the linear model is
adequate, then the research problem is solved.

Example 2.42 [36]
An experiment with these factors was done for mathematical modeling of an extrac-
tion process:

x1-diameter of turbine mixer, mm;
x2-number of rotations of mixer, min-1;
x3-temperature, �C;
x4-free acid concentration in water solution, gE/l;
x5-height of liquid layer, mm and
x6-ratio of phases in emulsion.

The optimization parameter is the time of complete decomposition in minutes.
Experimental conditions, and the matrix of design of experiments with outcomes of
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trials are shown in Table 2.136. A 1/4-replica of the full factorial experiment 26 was
used. The obtained linear model proved to be inadequate. Therefore, three even in-
teractions, which by their absolute values are the biggest and are not interaliased/
confounded, have been included in the model.

y
_ ¼ 12:16þ 0:53X1 þ 0:53X2 � 1:38X3 � 3:22X4 þ 1:44X5

�0:62X6 � 0:84X1X4 � 0:50X1X6 � 0:78X2X4

This kind of a regression model is adequate and has been used for designing the
industrial extractor.

Table 2.136 Fractional factorial experiment 2
6�2

Name x1 x2 x3 x4 x5 x6

Basic level 90 600 26 0.40 195 0.8115

Variation

interval

10 100 4 0.29 25 0.0975

Upper level 100 700 30 0.69 220 0.909

Lower level 80 500 22 0.11 170 0.714

Trials Factors Response

X1 X2 X3 X4 X5 X6 Y

1 – + + + – – 7.00

2 – – – – + – 16.50

3 – – – + – – 9.50

4 – – + + + + 9.00

5 + + + + + + 7.75

6 + – – + + + 10.75

7 – + – + + + 11.50

8 + – – – – + 13.25

9 + + – + – – 8.50

10 – + + – + – 14.00

11 – – + – – + 9.25

12 + – + – + – 17.25

13 + + + – – + 14.50

14 + + – – + – 22.0

15 – + – – – + 16.25

16 + – + + – – 7.50

Summary
Translation of a model from the abstract mathematical into a researcher’s language
is called model interpretation. Interpretation is a complex process with several
phases. It includes the estimates of the sizes and signs of the linear factor regression
coefficients and their interactions, comparison of factor effects, check of previous-
preliminary information, and in some cases a check of the hypothesis on the mecha-
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nism of the process. An assembly of actions and experimental situations is reduced
to typical cases, which differ by lack of fit and inadequacy of the model, by signifi-
cance and insignificance of regression coefficients, by position of the optimum, etc.

For an adequate linear model with statistically significant regression coefficients,
these decisions are possible: movement to optimum, second-order design, end of
research. If part of a regression coefficients is insignificant, then there exist several
activities for transforming them into statistically significant ones: change of varia-
tion interval, shift of design center, rejection of insignificant factors, increasing
number of parallel trials, upgrading of design. Besides, a possibility exists to move
to the optimum along the gradient, and if the optimum region is close by, then an
upgrading to design towards a second-order design or termination of research are
the other options.

Finally, when all regression coefficients are insignificant: second-order design or
termination of research (optimum region close by) is realized, procedures are
applied for obtaining significant regression coefficients (optimum region far off or
its position is undefined). Research is terminated for an inadequate linear model if
the optimum region is close by or a second-order design is realized. Change of varia-
tion interval, shift of design center, upgrading design, movement along the gradient
are all activities for any other position of the optimum. Another possibility is to
include interaction effects in the model and then move towards the optimum by
means of an incomplete second-order model.

If the experimental objective is to obtain an interpolation model, an adequate lin-
ear model is the solution. In the case of an inadequate linear model, one of the fol-
lowing activities is undertaken: inclusion of interaction effects into the model,
upgrading the design, transformation of variables, change of variation intervals.

2.3.2
Second-order Rotatable Design (Box-Wilson Design)

Second-order designs are used in practice in situations when the linear model is
insufficient for a mathematical description of a research subject with an adequate
precision. Then a mathematical model in the form of a second-order polynomial is
formed. When describing a response surface by a second-order equation, varying a
factor on only two levels does not offer the necessary information. Hence, an experi-
ment is designed so that factors are varied on three or more levels. One of such
designs is the second-order rotatable design (Box-Wilson design). These designs are
particularly interesting for k=3 and k=5 in conditions of composite designing (upgrad-
ing of designs of lower order).

With second-order rotatable designs, we upgrade a FUFE design or its fractional
replica (usually half-replica) to get a second-order design by adding a certain number
of “ starlike/axial/star” and “ null/centerpoints”points to the “ core”. Use of a FUFE
matrix as “core” of a second-order rotatable design for k<5, and half-replica for k>5 is
recommended. Starlike points are located on coordinate axes at distance from the
experimental center, with taking into account of the rotatability condition (for FUFE
as “core”) [30].
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a=2k/4 (2.74)

If a fractional replica of type 2k-p has been chosen as the “core” of rotatable design,
another expression is used :

a=2(k-p)/4 (2.75)

The rotatability condition is defined by these relations:

PN
1

X
2
iu ¼ N � k2 for i=1.2,...,k (2.76)

PN
1

X
4
iu ¼ 3

PN
1

X
2
iuX

2
ju ¼ 3Nk4 for i, j=1.2,...,k (2.77)

where k2 and k4 are constants. For k=2 or k=4 these constants are linked by ratio:

k
�
4 ¼ k4

k22
¼ kC

kþ2
(2.78)

where C is determined by formula (2.84).
Conditions (2.76) and (2.77) define independence of the design from rotation of

coordinates. When selecting the “null/centerpoints “ points (points in experimental
center) take into consideration a check of lack of fit of the model, an estimate of
experimental error and conditions of uniformity [37]. Centerpoints are created by
setting all factors at their midpoints. In coded form, centerpoints fall at the all-zero
level. The centerpoints act as a barometer of the variability in the system. All the
necessary data for constructing the rotatable design matrix for k£7 are in
Table 2.137. This kind of designing is called central, because all experimental points
are symmetrical with reference to the experimental center. This is shown graphically
for k=2 and k=3 in Fig. 2.40.
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Figure 2.40 Distribution of rotatable design points

324



2.3 Basic Experiment-Mathematical Modeling

Table 2.137 Construction of rotatable design

Number of
factors- k

Number of
“core”
points nj

Number of
“starlike”
points na

Number
of “null”
points n0

Coded
values a

Total number
of trials- N

Notes on
design “core”

2 4 4 5 1.414 13 –

3 8 6 6 1.682 20 –

4 16 8 7 2.000 31 –

5 32 10 10 2.378 52 –

5 16 10 6 2.000 32 Half-replica

6 64 12 15 2.828 91 –

6 32 12 9 2.378 53 Half-replica

7 128 14 21 3.333 163 –

7 64 14 14 2.828 92 Half-replica

Total number of design points N of a rotatable design is determined from:

N ¼ 2
k þ 2kþ n0 ¼ nj þ na þ n0 (2.79)

Designmatrices of central composite rotatable designs (CCRD) for k=2, k=3 and k=5 are
shown in Tables 2.138 – 2.140. By using relation (2.59), which connects coded and
real factor values, we switch from design matrix to operational matrix, Table 2.138.

Table 2.138 Central composite rotatable design 2
2 þ 2x2þ 5

Number
of trials

Design matrix Operational
matrix

Response Predicted values

X1 X2 x1 % x2 % yu y
_

u yu � y
_

u

� �2

1 + + 2.4 100 50 49.9 0.01

2 – + 1.4 100 67 65.2 3.24

3 + – 2.4 40 60 62.4 5.76

4 – – 1.4 40 70 70.6 0.36

5 -1.414 0 1.2 70 70 68.1 3.61

6 +1.414 0 2.6 70 50 51.5 2.25

7 0 -1.414 1.9 28 72 70.6 1.96

8 0 +1.414 1.9 112 56 57.5 2.25

9 0 0 1.9 70 62 64.0 4.00

10 0 0 1.9 70 64 64.0 0.00

11 0 0 1.9 70 68 64.0 16.00

12 0 0 1.9 70 64 64.0 0.00

13 0 0 1.9 70 62 64.0 4.00

P13
1

yu ¼ 815
P13
1

yu � y
_

u

� �2
¼ 43; 44
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Table 2.139 Central composite rotatable design 2
3 þ 2x3þ 6

Number of trials X1 X2 X3 �yyu

1 + + + 20.67

2 + + – 17.32

3 + – + 16.90

4 + – – 16.72

5 – + + 15.54

6 – + – 15.39

7 – – + 15.22

8 – – – 15.13

9 -1.68 0 0 15.19

10 1.68 0 0 17.01

11 0 -1.68 0 13.96

12 0 1.68 0 15.76

13 0 0 -1.68 15.48

14 0 0 1.68 15.96

15 0 0 0 15.97

16 0 0 0 16.00

17 0 0 0 15.10

18 0 0 0 14.90

19 0 0 0 14.78

20 0 0 0 16.07

Regression coefficients are calculated after constructing the operational matrix by
these equations:

b0 ¼ 2A

N k�4ð Þ2 kþ2ð Þ
PN
1

yu�C�k�4
PN
1

Pk
1

X2
iu�yu

" # (2.80)

bi ¼

PN
1

Xiu�yu

N�n0
(2.81)

bij ¼
C2

Nk�4

Pnj
1

XiuXjuyu (2.82)

bii ¼
AC2

N
kþ 2ð Þk�4 � k

� �PN
1

X
2
iu yu þ AC2

N
1� k

�
4

� �PN
1

PN
1

X
2
iu yu �

2AC
N

k
�
4
PN
1

yu
(2.83)

where:

C ¼ N
N�n0

;A ¼ 1
2k�4 kþ2ð Þk�4�k½ � (2.84)
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Table 2.140 Central composite rotatable design 2
5�1 þ 2x5þ 6

No. of trials X1 X2 X3 X4 X5 yu

1 + + + + + 31.1

2 – + + + – 30.8

3 + – + + – 27.1

4 – – + + + 29.1

5 + + – + – 21.6

6 – + – + + 20.8

7 + – – + + 24.8

8 – – – + – 17.8

9 + + + – – 27.2

10 – + + – + 29.4

11 + – + – + 31.1

12 – – + – – 30.8

13 + + – – + 23.4

14 – + – – – 22.2

15 + – – – – 23.4

16 – – – – + 22.3

17 -2 0 0 0 0 23.0

18 2 0 0 0 0 31.7

19 0 -2 0 0 0 28.3

20 0 2 0 0 0 26.8

21 0 0 -2 0 0 18.8

22 0 0 2 0 0 35.8

23 0 0 0 -2 0 25.2

24 0 0 0 2 0 27.0

25 0 0 0 0 -2 23.2

26 0 0 0 0 2 28.5

27 0 0 0 0 0 28.3

28 0 0 0 0 0 32.1

29 0 0 0 0 0 28.0

30 0 0 0 0 0 29.4

31 0 0 0 0 0 34.5

32 0 0 0 0 0 35.1

When estimating the significance of regression coefficients, these equations are
used:

S
2
b0

¼ 2Ak�4 kþ2ð Þ
N

S
2
�yy (2.85)

S
2
bi
¼ S2�yy

N�n0
(2.86)
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S
2
bij

¼ C2

N
S
2
�yy (2.87)

S
2
bii

¼ AC2 kþ1ð Þk�4� k�1ð Þ½ �
N

S
2
�yy (2.88)

The hypothesis on lack of fit of second-order model is checked by means of Eqs.
(2.172); (2.173); (2.133) and (2.135).

Calculation of regression coefficients may be transformed into a simpler form:

b0 ¼ a1
PN
1

yu � a2
Pk
1

PN
1

X
2
iu � yu (2.89)

bi ¼ a3
PN
1

Xiu � yu (2.90)

bij ¼ a4
Pnj
1

XiuXjuyu (2.91)

bii ¼ a5
PN
1

X
2
iu � yu þ a6

Pk
1

PN
1

X
2
iu � yu � a7

PN
1

yu (2.92)

where: a1, ..., a7 are coefficients as determined from Table 2.141.

Table 2.141 Coefficients values a1 � a7

Number
of factors

k

Number
of trials

N

Coefficients

a1 a2 a3 a4 a5 a6 a7

2 13 0.2000 0.1000 0.1250 0.2500 0.1250 0.0187 0.1000

3 20 0.1663 0.0568 0.0732 0.1250 0.0625 0.0069 0.0568

4 31 0.1428 0.0357 0.0417 0.0625 0.0312 0.0037 0.0357

5* 32 0.1591 0.0341 0.0417 0.0625 0.0312 0.0028 0.0341

5 52 0.0988 0.0191 0.0231 0.0312 0.0156 0.0015 0.0191

6* 53 0.1108 0.0187 0.0231 0.0312 0.0156 0.0012 0.0187

6 91 0.0625 0.0098 0.0125 0.0156 0.0078 0.0005 0.0098

7* 92 0.0730 0.0098 0.0125 0.0156 0.0078 0.0005 0.0098

7 163 0.0398 0.0052 0.0066 0.0078 0.0039 0.0002 0.0052

* With half-replica

Equations. (2.89) to (2.92) have these forms for k=3:

b0 ¼ 0:1663
P20
1

yu � 0:0568
P3
1

P20
1

X
2
iu yu

bi ¼ 0:0732
P20
1

Xiuyu
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bij ¼ 0:1250
P8
1

XiuXjuyu

bii ¼ 0:0625
P20
1

X
2
iu yu þ 0:0069

P3
1

P20
1

X
2
iu yu � 0:0568

P20
1

yu

Example 2.43 [30]
The outcome of research in the field of textile tissues is shown in Table 2.138. The
research included two factors: X1-reagent concentration,%; X2-temperature, �C. Vari-
ation intervals are shown in Table 2.142.

Table 2.142 Factor variation intervals

Factors Variation levels Variation intervals
Dx

-1.414 -1 0 +1 +1.414

x

x1, % 1.2 1.4 1.9 2.4 2.6 0.5

x2, �C 28 40 70 100 112 30

Factor values in “starlike” points have been determined by relation (2.59):

X1 ¼ x1�1:9
0:5

; X2 ¼ x2�70
30

; �1:414 ¼ x1�1:9
0:5

) x1 ¼ 1:2;

�1:414 ¼ x2�70
30

) x2 ¼ 28

By processing outcomes, we obtain estimates of regression coefficients for the
second-order regression model:

y
_

u ¼ b0 þ b1X1 þ b2X2 þ b12X1X2 þ b11X
2
1 þ b22X

2
2 (2.93)

Regression coefficients are calculated by relations (2.89) and (2.92) and by using
Table 2.141.

b0 ¼ 0:2
P13
1

yu � 0:1
P2
1

P6
1

X
2
iu yu ¼ 0:2� 815� 0:1 487þ 503ð Þ ¼ þ64:0

b1 ¼ 0:125
P6
1

X1uyu ¼ 0:125 50� 67þ 60� 70� 1:414� 70þ 1:414� 50ð Þ

¼ �5:875

b2 ¼
P6
1

X2uyu ¼ 0:125 50þ 67� 70� 1:414� 72� 60þ 1:414� 56ð Þ ¼ �4:500

b12 ¼ 0:25
P4
1

X1uX2uyu ¼ 0:25 50� 67� 60þ 70ð Þ ¼ �1:750

b11 ¼ 0:125
P6
1

X
2
1uyu þ 0:0187

P2
1

P6
1

X
2
iu yu � 0:100

P13
1

yu

¼ 0:125ð50þ 67þ 60þ 70þ 2� 70þ 2� 50Þ þ 0:0187ð487þ 503Þ � 0:100� 815 ¼ �2:112
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b22 ¼ 0:125
P6
1

X
2
2uyu þ 0:0187

P2
1

P6
1

X
2
iu yu � 0:100

P13
1

yu

¼ 0:125ð50þ 67þ 60þ 70þ 2� 72þ 2� 56Þ þ 0:0187� 990� 0:100� 815 ¼ 0:112

Hence Eq. (2.93) becomes:

y
_ ¼ 64:00� 5:88X1 � 4:50X2 � 1:75X1X2 � 2:11X

2
1 þ 0:11X

2
2 (2.94)

Lack of fit of the obtained regression model, for the case of rotatable designing
with trials replicated only in design center, is checked by the relation (2.173):

S
2
AD ¼ SR�SE

fAD
¼

P13
1

yu� y
_

u

� �2
�
P5
1

y0j��yy0
� �2

13�6�4
¼ 43:44�24:00

3
¼ 6:28

S
2
�yy ¼

P5
1

y0j��yy0
� �2

n0�1
¼ 6:00 ; FR ¼ S2AD

S2
�yy

¼ 1:05

If degrees of freedom are fAD=13-6-4=3; fE=n0-1=5-1=4 and 1-a=95%, FT=6.59 is
obtained from Table E. Since FT>FR, we may consider the regression equation (2.94)
adequate. The significance of regression coefficients is checked by the expressions
(2.85) to (2.88).

S
2
b0

¼ 0:20� S
2
�yy ¼ 0:20� 6:0 ¼ 1:20 ) Sb0 ¼ 1:10

S
2
bi
¼ 0:125� S

2
�yy ¼ 0:125� 6:0 ¼ 0:75 ) Sbi ¼ 0:87

S
2
bii

¼ 0:1438� S
2
�yy ¼ 0:1438� 6:0 ¼ 0:86 ) Sbii

¼ 0:93

S
2
bij

¼ 0:25� S
2
�yy ¼ 0:25� 6:0 ¼ 1:50 ) Sbij

¼ 1:23

Db0 ¼ �2� Sb0 ¼ �2:20; Dbi ¼ �2� Sbi ¼ �1:74;

Dbii ¼ �2� Sbii
¼ �1:86; Dbij ¼ �2� Sbij ¼ �2:46:

By comparing absolute values of regression coefficients with calculated intervals,
we may assert with 95% confidence level that all regression coefficients except b12
and b22 are statistically significant. The regression equation becomes:

y
_ ¼ 64:00� 5:88X1 � 4:50X2 � 2:11X

2
1 (2.95)

Example 2.44
This example shows a second-order rotatable design for three factors (k=3). The
design matrix, in accord with Table 2.139 and Table 2.137 contains 20 design points
in total, eight design points in the design core (nj=8) and six replicate design points
in the design center (n0=6). Intervals and levels of variation of the three factors are
shown in Table 2.143.
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Table 2.143 Factor variation intervals

Factors Variation levels Variation intervals

-1.682 -1 0 +1 +1.682 Dx

x1-temperature, �C 130 140 155 170 180 15

x2-pressure, kp/cm
2 3.2 10 20 30 36.8 10

x3-time, h 10 30 60 90 110 30

The objective of the research has been the optimization of adhesion process of
thermoplastic polymer on pressing at a higher temperature. Tensile strength (yu)
has been analyzed as the optimization criterion. The linear model obtained after the
first eight design points was inadequate. FUFE design has therefore been upgraded
to a second-order rotatable design. Regression coefficients were determined from
experimental data for the next regression equation:

y
_

u ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ b11X
2
1

þb22X
2
2 þ b33X

2
3

Regression coefficients are determined from relations (2.89) to (2.92):

b0=0.1663 � 319.01-0.0568(221.02+217.00+221.86)=+15.47;

b1 ¼ 0:0732
X10
1

X1uyu ¼ 0:0732ð20:67þ 17:32þ 16:90þ 16:72� 15:54� 15:39

� 15:22� 15:13� 1:683� 15:19þ 1:683� 17:01Þ ¼ þ0:980;

b2 ¼ 0:0732
P10
1

X2uyu ¼ þ0:584

b3 ¼ 0:0732
P10
1

X3uyu ¼ þ0:326

b12 ¼ 0:125
P8
1

X1uX2uyu ¼ 0:125ð20:67þ 17:32� 16:90� 16:72� 15:54� 15:39

þ15:22þ 15:13Þ ¼ þ0:474;

b13 ¼ 0:125
P8
1

X1uX3uyu ¼ þ0:411;

b23 ¼ 0:125
P8
1

X2uX3uyu ¼ þ0:404;

b11 ¼ 0:0625
P10
1

X
2
1uyu þ 0:0069

P3
1

P10
1

X
2
1uyu � 0:0568

P20
1

yu

¼ 0:0625ð132:89þ 2:83� 15:19þ 2:83� 17:01Þ þ 0:0069ð221:01þ 217:00

þ221:86Þ � 0:0568� 319:01 ¼ þ0:248;
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b22 ¼ 0:0625
P10
1

X
2
2uyu � 13:566 ¼ 0:0625� 217:00� 13:566 ¼ �0:003;

b33 ¼ 0:0625
P10
1

X
2
3uyu � 13:566 ¼ 0:0625� 221:86� 13:566 ¼ þ0:300

Regression equation is as follows:

y
_

u ¼ 15:470þ 0:980X1 þ 0:584X2 þ 0:326X3 þ 0:474X1X2 þ 0:411X1X3

þ 0:404X2X3 þ 0:248X
2
1 � 0:003X

2
2 þ 0:3X

2
3

(2.96)

The statistical significance of regression coefficients in Eq. (2.96) is checked by
reproducibility variance (S

2
�yy ¼ 0:32). By using expressions (2.155) to (2.158) we get:

Db0 ¼ �0:816; S�yy ¼ �0:462;
Dbi ¼ �0:542; S�yy ¼ �0:307;
Dbij ¼ �0:708; S�yy ¼ �0:401;
Dbii ¼ �0:526; S�yy ¼ �0:298:

By comparing absolute values of regression coefficients with errors in their esti-
mates, it becomes evident that all regression coefficients are statistically significant
with 0.95% confidence, except for b11 and b22. A check of lack of fit of the obtained
regression model proved that it is adequate with 95% confidence (FR<FT).

Example 2.45
The experiment consisted of 32 design points, six design points replicated in the
design center and 16 half-replica design points of type 25-1. The design of experi-
ments matrix with the outcomes of experiments is shown in Table 2.140. The sec-
ond-order regression model has this form:

y
_

u ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b12X1X2 þ b13X1X3 þ b23X2X3

þb14X1X4 þ b24X2X4 þ b34X3X4 þ b15X1X5 þ b25X2X5 þ b35X3X5

þb45X4X5 þ b11X
2
1 þ b22X

2
2 þ b33X

2
3 þ b44X

2
4 þ b55X

2
5

Regression coefficients are calculated thus:

b0 ¼ 0:1591
P32
1

yu � 0:0341
P5
1

P18
1

X
2
iu yu ¼ þ31:219;

b1 ¼ 0:0417
P18
1

X1uyu ¼ þ0:996;

b2 ¼ �0:121; b3 ¼ þ3:929;

b4 ¼ �0:129; b5 ¼ þ0:904;

b12 ¼ 0:0625
P16
1

X1uX2uyu ¼ �0:394;
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b13 ¼ �0:856; b14 ¼ þ0:356; b15 ¼ þ0:694;

b23 ¼ þ0:044; b24 ¼ þ0:001; b25 ¼ �0:331;

b34 ¼ þ0:370; b35 ¼ �0:094; b45 ¼ þ0:369;

b11 ¼ 0:0312
P18
1

X
2
1uyu þ 0:0028

P5
1

P18
1

X
2
iu yu � 0:0341

P32
1

yu ¼ �0:957;

b22 ¼ �0:907; b33 ¼ �0:969; b44 ¼ �1:269; b55 ¼ �1:332:

Thus, this regression equation has been obtained:

y
_

u ¼ 31:22þ 1:00X1 � 0:12X2 þ 3:93X3 � 0:13X4 � 0:90X5 � 0:96X
2
1

� 0:91X
2
2 � 0:97X

2
3 � 1:27X

2
4 � 1:33X

2
5 � 0:39X1X2 � 0:86X1X3

þ 0:36X1X4 þ 0:69X1X5 þ 0:04X2X3 þ 0:001X2X4 � 0:33X2X5

þ 0:37X3X4 � 0:09X3X5 þ 0:37X4X5

(2.97)

A check of statistical significance of regression coefficients for reproducibility var-
iance S

2
�yy=9.76 has given these values:

S
2
b0

¼ 0:1591� S
2
�yy ¼ 0:1591� 9:76 ¼ 1:553;

S
2
bi
¼ 0:0417� 9:76 ¼ 0:409; S

2
bij

¼ 0:0625� 9:76 ¼ 0:610; S
2
bii

¼ 0:0341� 9:76 ¼ 0:323

so that:

Db0 ¼ �2Sb0
¼ �2:50; Dbi ¼ �2Sbi ¼ �1:28;

Dbij ¼ �2Sbij ¼ �1:56; Dbii ¼ �2Sbii ¼ �1:14:

By comparing absolute values of regression coefficients with their interval esti-
mates, with 95% confidence, these regression coefficients are statistically signifi-
cant: b0, b3, b44 and b55. Following this the regression model (2.97) becomes:

y
_

u ¼ 31:22þ 3:93X3 � 1:27X
2
4 � 1:33X

2
5 (2.98)

A check of lack of fit of this model shows that it is adequate with 95% confidence.

Example 2.46 [38]
We should experimentally establish the effect of ingredients in extracted phosphor-
ous acid to the degree of decomposition of flotational concentration of phosphorite
(y) and the maximized decomposition rate (ymax). Significant factors for decomposi-
tion are: x1-temperature of process C; X2 – X5 percentage content of ingredients in
phosphorous acid MgO, SO3, Al2O3 and F%, respectively. Basic levels, variation
intervals and limits of factor space are given in Table 2.144. Factor space corresponds
to the scope of changes in concentration of ingredients in industrially extracted
phosphorous acid. Extrapolation outside limits given in Table 2.144 when determin-
ing ymax, has therefore no sense.
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Table 2.144 Factor variation intervals

Factors Variation levels Variation intervals
Dx

-2 0 +2

x1-temperature, �C 10 50 90 20

x2-MgO, % 0.3 2.1 3.9 0.9

x3-SO3, % 0.0 2.0 4.0 1.0

x4-Al2O3,% 0.59 1.33 2.07 0.37

x5-F, % 0.25 0.75 1.25 0.25

To obtain the second-order regression model, second-order CCRD has been used.
The number of design points (trials) for k=5 was 32. The design core has corre-
sponded to half-replica 25-1 with this generating ratio X5=X1X2X3X4. The value and
number of design points in the experimental center n0=6 are determined from
Table 2.137. The design of experiments with outcomes is shown in Table 2.145.

Table 2.145 CCRD 2
5�1 þ 2� 5þ 6

No. X1 X2 X3 X4 X5 yu No. X1 X2 X3 X4 X5 yu

1 + + + + + 34.7 17 -2 0 0 0 0 25.0

2 – + + + – 40.0 18 +2 0 0 0 0 33.3

3 + – + + – 39.0 19 0 -2 0 0 0 49.2

4 – – + + + 39.2 20 0 +2 0 0 0 42.0

5 + + – + – 26.6 21 0 0 -2 0 0 17.5

6 – + – + + 29.5 22 0 0 +2 0 0 41.0

7 + – – + + 30.0 23 0 0 0 -2 0 35.6

8 – – – + – 34.5 24 0 0 0 +2 0 27.2

9 + + + – – 32.2 25 0 0 0 0 -2 39.0

10 – + + – + 41.4 26 0 0 0 0 +2 30.0

11 + – + – + 33.7 27 0 0 0 0 0 35.4

12 – – + – – 40.9 28 0 0 0 0 0 36.4

13 + + – – + 23.9 29 0 0 0 0 0 33.2

14 – + – – – 33.3 30 0 0 0 0 0 32.4

15 + – – – – 27.7 31 0 0 0 0 0 37.7

16 – – – – + 35.9 32 0 0 0 0 0 36.9

Based on the outcomes in the experimental center, these reproducibility variances
have been determined: S

2
�yy=4.466 with this degree of freedom f =n0-1=5. Regression

coefficients have these values:

b0=34.41; b1=1.08; b2=-0.15; b3=4.51; b4=-0.54;
b5=-1.30; b12=0.15; b13=0.26; b14=1.61; b15=0.05
b23=0.74; b24=-0.20; b25=0.40; b34=0.40; b35=0.26;
b45=0.93; b11=-1.5; b22=2.66; b33=-1.47; b44=-0.93; b55=-0.15.
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By rejecting statistically insignificant regression coefficients, we get this regres-
sion model:

y
_

u ¼ 34:4þ 4:51X3 � 1:3X5 � 1:5X
2
1 þ 2:66X

2
2 � 1:47X

2
3 þ 1:61X1X4

A check of lack of fit shows that the obtained model is adequate with 95% confi-
dence. This regression model facilitates determining the degree of decomposition of
the observed raw material at different temperatures depending on changes in con-
tents of ingredients in the acid. To obtain the maximal degree of decomposition
ymax, it is necessary to set factors X2 and X5 to these values: X2=+2 and X5=-2, which
is evident from the regression model. The effect of SO3 (X3) content in phosphorous
acid is defined in the regression model by positive linear and negative square regres-
sion coefficients. Optimal contents of this ingredient are determined from the max-
imal value of y by X3 and it is 1.533%. The regression model for X2, X3 and X5 has
the form:

y
_

u ¼ 52:12� 1:5X
2
1 þ 1:61X1X4 (2.99)

To determine optimal values of temperature and contents of ingredient Al2O3

(X4), it is necessary to transfer regression (2.99) into canonical form.

Example 2.47 [18]
In Example 2.26, we have obtained the linear regression model for dynamic viscosity
y, P, as a function of mixing speed X1, min-1 and mixing time X2, min of composite
rocket propellant. To determine the conditions of minimal viscosity, a method of
steepest ascent has been applied. This method has defined the local optimum region
that has to be described by a second-order model. Conditions of the factor variations
are shown in Table 2.146.

Table 2.146 Factor variation intervals

Factors Variation intervals Dx

-1.414 -1.0 0 +1.0 +1.414

x1-mixing speed, min-1 37.72 40.00 60.00 80.00 88.28 20

x2-mixing time, min 11.02 40.00 110.00 180.00 208.98 70

The central composite rotatable design of experiment with outcomes is shown in
Table 2.147.

The reproducibility variance from five replicated design points has the value:
S
2
�yy=60.93 or S�yy=7.81.
The regression coefficients are determined from these relations:

b0 ¼ 0:2
P13
1

yu � 0:1
P2
1

P6
1

X
2
iu yu ¼ 529:12;

b1 ¼ 0:125
P6
1

X1uyu ¼ �66:40;
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Table 2.147 CCRD 2
2 þ 2x2þ 5

No. Design matrix Working matrix Response Predicted values

X1 X2 x1 x2 �yyu y
_

u
�yyu � y

_

u
�yyu � y

_

u

� �2

1 + + 80 180 499.2 484.7 14.50 210.26

2 – + 40 180 640.0 637.5 2.50 6.25

3 + – 80 40 635.2 643.5 -8.30 68.89

4 – – 40 40 736.0 756.3 -20.30 412.09

5 -1.414 0 31.72 110 688.0 674.4 13.60 184.96

6 +1.414 0 88.28 110 483.2 486.6 -3.40 11.56

7 0 -1.414 60 11.02 800.0 778.0 21.40 457.96

8 0 +1.414 60 208.98 571.2 582.0 -11.00 121.00

9 0 0 60 110 528.0 529.12 -1.12 1.23

10 0 0 60 110 540.8 529.12 11.68 136.66

11 0 0 60 110 520.0 529.12 -9.12 82.99

12 0 0 60 110 531.2 529.12 2.08 4.37

13 0 0 60 110 524.8 529.12 -4.32 18.58

1716.80

b2 ¼ 0:125
P6
1

X2uyu ¼ �69:44;

b12 ¼ 0:25
P6
1

X1uX2uyu ¼ �10:00;

b11 ¼ 0:125
P6
1

X
2
1uyu þ 0:0187

P2
1

P6
1

X
2
iu yu � 0:1

P13
1

yu ¼ 25:70;

b22 ¼ 0:125
P6
1

X
2
2uyu þ 0:0187

P2
1

P6
1

X
2
iu yu � 0:1

P13
1

yu ¼ 75:67;

The significance check of regression coefficients:

S
2
b0

¼ 0:2S
2
�yy ¼ 12:19;Sb0 ¼ 3:49;Db0 ¼ �2Sb0

¼ �6:98;

S
2
bi
¼ 0:125S

2
�yy ¼ 7:62;Sbi ¼ 2:76;Dbi ¼ �2Sbi ¼ �5:52;

S
2
bii

¼ 0:1438S
2
�yy ¼ 8:76;Sbii

¼ 2:96;Dbii ¼ �2Sbii
¼ �5:92;

S
2
bij

¼ 0:250S
2
�yy ¼ 15:24;Sbij

¼ 3:90;Dbij ¼ �2Sbij ¼ �7:80:

All regression coefficients are significant with 95% confidence. The second-order
regression model has the form:

y
_

u ¼ 529:12� 66:40X1 � 69:44X2 � 10:00X1X2 þ 25:70X
2
1 þ 75:67X

2
2 (2.100)
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Example 2.48 [39]
To optimize the process of isomerization of sulphanylamide from Problem 2.6, a
screening experiment has been done by the random balance method. Factors X1, X2

and X3 have been selected for this experiment. Optimization of the process is done
by the given three factors at fixed values of other factors. To obtain the second-order
model, a central composite rotatable design has been set up. Factor-variation levels
are shown in Table 2.148. The design of the experiment and the outcomes of design
points are in Table 2.149.

Table 2.148 Factor variation intervals

Factors Variation levels

-1.682 -1 0 1 1.682

x1 0.2 0.3 0.5 0.7 0.8

x2 150 154 160 166 170

x3 30 40 55 70 80

Table 2.149 CCRD 2
3 þ 2� 3þ 6

No. Design matrix Response No. Design matrix Response

X1 X2 X3 yu X1 X2 X3 yu

1 + + + 76.00 11 0 -1.682 0 71.87

2 + – + 74.05 12 0 +1.682 0 77.82

3 – – + 80.90 13 0 0 -1.682 72.26

4 – – – 73.00 14 0 0 +1.682 79.07

5 + + – 76.81 15 0 0 0 77.30

6 + – – 62.65 16 0 0 0 72.80

7 – + – 81.40 17 0 0 0 77.90

8 – + + 82.40 18 0 0 0 78.40

9 -1.682 0 0 84.75 19 0 0 0 77.30

10 +1.682 0 0 72.42 20 0 0 0 77.70

An adequate regression model has been obtained by statistical processing of out-
comes:

y
_

u ¼ 76:89� 2:58X1 þ 2:64X2 þ 2:26X3 þ 0:78X1X2

þ0:21X1X3 � 2:39X2X3 þ 0:52X
2
1 � 0:81X

2
2 � 0:51X

2
3

(2.101)

Example 2.49 [16]
A second step optimization of synthesis of methacrylic acid has been done in lab
conditions. Optimization has been performed by these factors: x1-temperature, �C;
x2-concentration of outlet a-oxy iso fatty acid in water solution,% and x3-volume
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flow of solution, l/h. Two optimization parameters have been analyzed: y1-
methacrylic acid yield from inserted a-oxy iso fatty acid and y2-methacrylic yield as
compared with dissolved a-oxy iso fatty acid (both responses are in per cent from
theoretical yield). The basic experiment has been done according to FUFE design, as
shown in Table 2.150.

Table 2.150 FUFE 23

Factors x1 x2 x3 y1 y2

+ 270 30 0.6 – –

0 255 20 0.5 82.1 85.4

– 240 10 0.4 – –

No. X1 X2 X3

1 – – – 53.0 61.5

2 + – – 65.3 69.0

3 – + – 76.1 87.6

4 + + – 77.0 84.5

5 – – + 72.7 72.7

6 + – + 56.1 70.5

7 – + + 81.0 82.7

8 + + + 74.0 87.0

Table 2.151 Additional design points for CCRD 23 + 2 � 3 + 6

No. X1 X2 X3 y1 y2

1 -1.682 0 0 70.0 78.1

2 +1.682 0 0 72.1 79.3

3 0 -1.682 0 49.1 49.2

4 0 +1.682 0 74.8 81.4

5 0 0 -1.682 79.7 81.2

6 0 0 +1.682 83.5 90.6

7 0 0 0 82.0 86.8

8 0 0 0 82.9 86.2

9 0 0 0 83.6 84.9

10 0 0 0 82.6 85.9

11 0 0 0 83.1 86.6

Statistical data analysis has offered these regression coefficient values:

for y1: for y2:
b0=69.41 b1=-1.26; b2=7.62; b3=1.56; b0=76.92; b1=0.81; b2=8.50; b3=1.28;
b12=-0.21; b13=-4.70; b23=-0.94; b123=2.60. b12=-0.51; b13=-0.28; b23=-1.88; b123=2.13.
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To calculate the variance of reproducibility, all design points have been replicated
once. The sequence of doing the design points by FUFE design has been completely
random. A check of significance of regression coefficients has shown that, apart
from linear, interaction regression coefficients are also significant. The difference
between associated free members (b0) and response in the design center: Dy1=82.1-
69.4=12.7; Dy2=85.4-76.9=8.5, indicates that FUFE has been set in factor space with
a high curvature of the response surface. FUFE has therefore been upgraded to a
second-order rotatable design, with additional design points, as shown in Table
2.151.

One design point (6-th) in the design center is missing from the additional design
points. This design point is in the FUFE design matrix.

These regression models were obtained by statistical analysis:

y
_

1 ¼ 83:70� 0:49X1 þ 7:63X2 þ 1:38X3 � 0:21X1X2

�4:71X1X3 � 0:94X2X3 � 4:41X
2
1 � 7:60X

2
2 � 0:50X

2
3

(2.102)

y
_

2 ¼ 87:20þ 0:64X1 þ 8:25X2 þ 1:89X3 � 0:51X1X2

�0:28X1X3 � 1:88X2X3 � 2:40X
2
1 � 7:42X

2
2 � 0:24X

2
3

(2.103)

Example 2.50 [16]
A process having properties dependent on four factors has been tested. A full factor-
ial experiment and optimization by the method of steepest ascent have brought
about the experiment in factor space where only two factors are significant and
where an inadequate linear model has been obtained. To analyze the given factor
space in detail, a central composite rotatable design has been set up, as shown in
Table 2.152.
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Table 2.152 CCRD 22 + 2 � 2 + 5

Variation levels Factors Regression coefficients

x1 x2 b0=85.14; b1=3.43; b2=-1.32;

Null level 9.20 4.89 b12=3.00; b11=2.60; b22=-1.19;

Upper level 10.00 6.89

Lower level 8.40 2.89 y
_

u ¼ 85; 14þ 3; 43X1 � 1; 32X2 þ 3; 00X1X2 þ 2; 60X
2
1 � 1; 19X

2
2

+1.41 10.33 7.71

-1.41 8.07 2.07

Design matrix Response

No. X0 X1 X2 X
2
1 X

2
2 X1X2 yu y

_

u yu � y
_

u

� �2

1 + – – + + + 87.1 87.44 0.1156

2 + – + + + – 79.0 78.80 0.0400

3 + + – + + – 88.9 88.30 0.3600

4 + + + + + + 92.8 91.66 1.2986

5 + -1.41 0 2.0 0 + 85.6 85.50 0.0100

6 + +1.41 0 2.0 0 0 94.0 95.18 1.3924

7 + 0 -1.41 0 2.0 0 84.5 84.62 0.0144

8 + 0 +1.41 0 2.0 0 80.0 80.90 0.8100

9 + 0 0 0 0 0 83.7 85.14 2.0736

10 + 0 0 0 0 0 86.0 85.14 0.7386

11 + 0 0 0 0 0 85.8 85.14 0.4356

12 + 0 0 0 0 0 83.9 85.14 1.5376

13 + 0 0 0 0 0 86.3 85.14 1.3456

& Problem 2.21 [40]
When researching the process of zirconium extraction by tributyl-
phosphate from nitric acid solution, two factors, X1 and X2 have
been analyzed. The observed factors and response are shown by
these relations:

X1 ¼ log
2
XH � 1:5;X2 ¼ 2ðlog

2
T þ 2:5Þ; y ¼ log

2
D;

where:

XH is balancing concentration of hydrogen ion;
T is concentration of free tributylphosphate;
D is coefficient of separation.

Previous research has indicated that for mathematical modeling
of the process it is necessary to use second-order rotatable design.
The design matrix with experimental outcomes are given in Table
2.153.
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Table 2.153 CCRD 22 + 2 � 2 + 4

No. X0 X1 X2 X
2
1 X

2
2 X1X2 yu1 yu2 yu3

1 + – – + + + -7.94520 -7.95220 -7.94870

2 + – + + + – -6.25480 -6.56050 -6.40770

3 + + – + + – -0.29170 -0.21430 -0.25300

4 + + + + + + +1.36740 +1.21430 +1.29085

5 + -1.41 0 +2 0 0 -7.18830 -7.76480 -7.47665

6 + +1.41 0 +2 0 0 +2.05320 +2.05680 +2.05500

7 + 0 -1.41 0 +2 0 -5.28840 -5.23290 -5.26065

8 + 0 +1.41 0 +2 0 -3.05910 -3.03520 -3.07715

9 + 0 0 0 0 0 -4.33690 -4.19000 -4.26345

10 + 0 0 0 0 0 -4.18740 -4.28800 -4.23770

11 + 0 0 0 0 0 -4.19530 -4.19270 -4.19400

12 + 0 0 0 0 0 -4.19530 -4.19270 -4.19400

& Problem 2.22 [41]
The research subject in the given problem is the process of cementa-
tion based on squeezing out mercury from salt-acidic solution by
means of a less useful metal, such as aluminum. A study of kinetics
of the given chemical reaction shows that this process may be effec-
tively conducted in a continuous chemical reactor. Process efficiency
is measured by mercury concentration in the solution after refine-
ment. This is simultaneously the system response as it may be mea-
sured quite accurately and quantitatively. These three factors influ-
ence the cementation process significantly: X1-temperature of solu-
tion, �C; X2-solution flow rate in reactor, ml/l and X3-quantity of
aluminum g. The factor space is defined by these intervals:
50<X1<100; 300<X2<3000; 6<X3<16.

These values have been chosen for the design center and varia-
tion intervals:

x10=80; Dx1=10; x20=750; Dx2=300; x30=12.66; Dx3=2.

Values for all variation levels are shown in Table 2.154. Select
FUFE 23 as a basic design of experiment. Determine the linear
regression model from experimental outcomes, Table 2.155.
Assume that the obtained linear model is inadequate and that there
is curvature of the response surface. To check these assumptions,
additional design points were done in the experimental center so
that their average is �yy0=0.1097 (�yy0�estimate of free member in lin-
ear regression, i.e. �yy0 ! b

0
). Since b0 � �yy0 ¼

P
b
ii
is the measure

of the response surface curvature, check the value of the mentioned
difference. To model the curved response surface, upgrade FUFE to
CCRD and determine regression coefficients of the second-order
model. The design point outcomes are in Table 2.155.
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Table 2.154 Factor-variation intervals

Factors Variation levels Dx

-1.682 – 0 + +1.682

x1-temperature of solution 69.18 70 80 90 96.82 10

x2-flow of solution 145.4 450 750 1050 1254.6 300

x3-quantity of aluminum 9.3 10.66 12.66 14.66 16.02 2

Table 2.155 CCRD 23 + 2 � 3 + 6

No. X0 Design matrix Response

X1 X2 X3 yu

1 + + + + 0.1082

2 + – + + 0.2940

3 + + – + 0.0956

4 + – – + 0.1034

5 + + + – 0.3855

6 + – + – 0.7045

7 + + – – 0.2761

8 + – – – 0.4271

9 + +1.682 0 0 0.0783

10 + -1.682 0 0 0.3464

11 + 0 +1.682 0 0.3321

12 + 0 -1.682 0 0.0714

13 + 0 0 +1.682 0.2094

14 + 0 0 -1.682 0.7048

15 + 0 0 0 0.1224

16 + 0 0 0 0.1382

17 + 0 0 0 0.1204

18 + 0 0 0 0.0943

19 + 0 0 0 0.0698

20 + 0 0 0 0.1135
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& Problem 2.23 [42]
In the study of a sort of textile fabric, its permeability to air has been
tested. The research objective was to obtain a mathematical model
for air permeability:

y= f(X1, X2, X3)

where:

y l/m2s is air permeability through textile fabric;
X1g/m

2 is textile fabric homogeneity;
X2g/cm

3 is volume weight of material;
X3 mm W.C. is air pressure drop.

The experiment has been done by CCRD design. Conditions of
factors variations are given in Table 2.156, and experimental out-
comes in Table 2.157. Determine regression coefficients in the sec-
ond-order model.

Table 2.156 Factor variation intervals

Factors Variation levels Dx

-1.68 -1.00 0 +1.00 +1.68

x1-permeability 92 120 160 200 227 40

x2-homogeneity 0.10 0.18 0.30 0.42 0.50 0.12

x3-pressure drop 2 4 7 10 12 3

Table 2.157 CCRD 23 + 2 � 3 + 6

No. Design matrix y No. Design matrix y

X1 X2 X3 X1 X2 X3

1 + + + 151 11 0 -1.68 0 844

2 + + – 70 12 0 +1.68 0 180

3 + – + 626 13 0 0 -1.68 140

4 + – – 330 14 0 0 +1.68 576

5 – + + 507 15 0 0 0 369

6 – + – 250 16 0 0 0 352

7 – – + 1000 17 0 0 0 354

8 – – – 540 18 0 0 0 335

9 -1.68 0 0 740 19 0 0 0 357

10 +1.68 0 0 227 20 0 0 0 345
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& Problem 2.24 [43]
The problem in this study consisted of obtaining experimental
results on the kinetics of the drying process of granulated silicon
dioxide in a mathematical process modeling. The drying process of
solid capillary porous materials is theoretically the most studied
one. Of course, by keeping in mind the condition that coefficients of
heat transfer are constant. Data from literature on granule drying
with 80% to 5% moisture, however, indicate considerable changes
in transfer coefficients.

By taking into consideration the changes in heat transfer coeffi-
cients, we get nonlinear models whose solutions are either complex
or impossible. Due to the mentioned difficulties in analysis of
simultaneous processes of heat and mass transfers, mathematical
modeling of the process was done by application of experimental
and statistical methods. Testing the drying process in a fluidized
bed of moist granules SiO2, was done on lab equipment. These sys-
tem factors were analyzed: X1-diameter of granules, mm; X2-length
of granules, mm; X3-air flow velocity, m/s; X4-moisture of gran-
ules,% and X5-air temperature, �C. The design matrix with out-
comes of design points is shown in Table 2.158. Experimental
results have been obtained in this way: SiO2 granules of correspond-
ing moisture were fed into a fluidized column, and then hot air was
passed through the formed granule bed at a certain velocity. Granule
samples were taken periodically during the drying process to deter-
mine moisture. From results of such measurements moisture-time
diagrams were constructed. Current moisture and drying speed in
the analyzed point have been determined from the diagram for each
designed point. Drying speed has been exactly the response of the
experiment. Determine regression coefficients in the second-order
mathematical model.

Table 2.158 CCRD 2
5 þ 25þ 10

No.
trials

Design matrix Operational matrix Drying
speed
yuX1 X2 X3 X4 X5 x1 x2 x3 x4 x5

1 + + + + + 5 8 3 55 289 0.390

2 – + + + + 3 8 3 55 289 0.400

3 + – + + + 5 4 3 55 289 0.358

4 – – + + + 3 4 3 55 289 0.503

5 + + – + + 5 8 2.5 55 289 0.075

6 – + – + + 3 8 2.5 55 289 0.258

7 + – – + + 5 4 2.5 55 289 0.308

8 – – – + + 3 4 2.5 55 289 0.260

9 + + + – + 5 8 3 35 289 0.508

10 – + + – + 3 8 3 35 289 0.840
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Table 2.158 (continued)

No.
trials

Design matrix Operational matrix Drying
speed
yuX1 X2 X3 X4 X5 x1 x2 x3 x4 x5

11 + – + – + 5 4 3 35 289 0.580

12 – – + – + 3 4 3 35 289 0.790

13 + + – – + 5 8 2.5 35 289 0.458

14 – + – – + 3 8 2.5 35 289 0.600

15 + – – – + 5 4 2.5 35 289 0.450

16 – – – – + 3 4 2.5 35 289 0.500

17 + + + + – 5 8 3 55 189 0.240

18 – + + + – 3 8 3 55 189 0.266

19 + – + + – 5 4 3 55 189 0.233

20 – – + + – 3 4 3 55 189 0.265

21 + + – + – 5 8 2.5 55 189 0.540

22 – + – + – 3 8 2.5 55 189 0.208

23 + – – + – 5 4 2.5 55 189 0.158

24 – – – + – 3 4 2.5 55 189 0.202

25 + + + – – 5 8 3 35 189 0.402

26 – + + – – 3 8 3 35 189 0.400

27 + – + – – 5 4 3 35 189 0.325

28 – – + – – 3 4 3 35 189 0.475

29 + + – – – 5 8 2.5 35 189 0.500

30 – + – – – 3 8 2.5 35 189 0.458

31 + – – – – 5 4 2.5 35 189 0.533

32 – – – – – 3 4 2.5 35 189 0.400

33 +2.3 0 0 0 0 6.378 6 2.75 45 239 0.400
34 -2.3 0 0 0 0 1.622 6 2.75 45 239 0.600
35 0 +2.3 0 0 0 4 10.76 2.75 45 239 0.386
36 0 -2.3 0 0 0 4 1.24 2.75 45 239 0.475
37 0 0 +2.3 0 0 4 6 3.345 45 239 0.466
38 0 0 -2.3 0 0 4 6 2.155 45 239 0.333
39 0 0 0 +2.3 0 4 6 2.75 68.78 239 0.116
40 0 0 0 -2.3 0 4 6 2.75 21.22 239 0.710
41 0 0 0 0 +2.3 4 6 2.75 45 358 0.358
42 0 0 0 0 -2.3 4 6 2.75 45 120 0.375
43 0 0 0 0 0 4 6 2.75 45 239 0.316
44 0 0 0 0 0 4 6 2.75 45 239 0.183
45 0 0 0 0 0 4 6 2.75 45 239 0.235
46 0 0 0 0 0 4 6 2.75 45 239 0.291
47 0 0 0 0 0 4 6 2.75 45 239 0.325
48 0 0 0 0 0 4 6 2.75 45 239 0.361
49 0 0 0 0 0 4 6 2.75 45 239 0.359
50 0 0 0 0 0 4 6 2.75 45 239 0.230
51 0 0 0 0 0 4 6 2.75 45 239 0.361
52 0 0 0 0 0 4 6 2.75 45 239 0.350
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& Problem 2.25 [43]
To calculate the height of a SiO2 drying apparatus or fluidized col-
umn and to estimate the intensity of mass and heat exchange, it is
necessary to know the volume of the fluidized granule bed in opera-
tional state, i.e. fluidized state. Based on literature data about fluidi-
zation with gases at increased velocity of gas flow, a bed of fluidized
granules passes from calm homogeneous into inhomogeneous flui-
dization. There is no quantitative dependence, of satisfactory accu-
racy, about spreading of the fluidized bed. Therefore the objective of
this research is a study of spreading a SiO2 fluidized granule bed
with an elaboration of a mathematical model of the process. Prior
studies have shown that the process may be mathematically
described only in this temperature interval: 250 – 400 �C. Process
factors are: X1-air temperature, �C; X2-air velocity (taken at 20 �C),
m/s; X3-diameter of moist granules, mm and X4-moisture of gran-
ules, %. The design of the experiment with outcomes is shown in
Table 2.160.

Table 2.160 CCRD 24 + 2 � 4 + 7

No.
trials

Sequence
of trials

Design matrix Operational matrix y=H/H0

X1 X2 X3 X4 x1 x2 x3 x4

1 16 – – – – 250 2.5 3 40 5.6

2 11 + – – – 350 2.5 3 40 8.8

3 8 – + – – 250 3 3 40 7.8

4 24 + + – – 350 3 3 40 11.0

5 28 – – + – 250 2.5 5 40 3.2

6 7 + – + – 350 2.5 5 40 6.12

7 25 – + + – 250 3 5 40 6.0

8 12 + + + – 350 3 5 40 7.8

9 2 – – – + 250 2.5 3 60 3.3

10 4 + – – + 350 2.5 3 60 3.7

11 6 – + – + 250 3 3 60 6.7

12 15 + + – + 350 3 3 60 4.9

13 18 – – + + 250 2.5 5 60 2.4

14 23 + – + + 350 2.5 5 60 3.0

15 20 – + + + 250 3 5 60 3.9

16 24 + + + + 350 3 5 60 3.5

17 3 -2 0 0 0 200 2.75 4 50 3.27

18 1 +2 0 0 0 400 2.75 4 50 5.1

19 17 0 -2 0 0 300 2.25 4 50 3.4

20 10 0 +2 0 0 300 3.25 4 50 7.75

21 14 0 0 -2 0 300 2.75 2 50 9.37

22 21 0 0 +2 0 300 2.75 6 50 4.5

23 31 0 0 0 -2 300 2.75 4 30 9.18

24 26 0 0 0 +2 300 2.75 4 70 2.8
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Table 2.160 (continued)

No.
trials

Sequence
of trials

Design matrix Operational matrix y=H/H0

X1 X2 X3 X4 x1 x2 x3 x4

25 9 0 0 0 0 300 2.75 4 50 4.4

26 22 0 0 0 0 300 2.75 4 50 3.8

27 19 0 0 0 0 300 2.75 4 50 3.7

28 30 0 0 0 0 300 2.75 4 50 4.0

29 5 0 0 0 0 300 2.75 4 50 4.4

30 13 0 0 0 0 300 2.75 4 50 4.0

31 29 0 0 0 0 300 2.75 4 50 4.5

& Problem 2.26 [44]
Mathematical designing of an experiment has been applied to math-
ematical modeling of solidification and hardness of concrete as a
function of three basic factors: X1-cement consumption, kg/m

3
;

X2-percentage of sand in filler mixture, % and X3-water consump-
tion, l/min. This parameter was measured as response: y1-concrete
solidification, s. The cement of the same brand and the sand from
the same supplier have been used in all design points. A mixture
10 l in volume was mixed manually for 3 min and a 7 l volume for
2.5 min. Samples of 10 � 10 � 10 cm were prepared on a vibration
table with amplitude of 0.45–0.50 mm, frequency of 2800 min

-1
and

under pressure of 80-100 kp/cm
2
. Concrete solidification was mea-

sured 10–15 min after formation of samples by GOST 10181-62.
Basic experiment was done by FUFE 2

3
, as shown in Table 2.161.

Table 2.161 FUFE 23

Variation levels Design matrix Response

x1 x2 x3

Basic level 525 0.31 189

Variation interval 75 0.09 21

Upper level 600 0.4 210

Lower level 450 0.22 168

Number of design points X1 X2 X3 Y

1 – – – 160

2 – – + 66

3 – + – 58

4 – + + 8

5 + – – 225

6 + – + 42

7 + + – 160

8 + + + 23
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According to the preliminary information, concrete solidification
is the nonlinear function of the composition. Prove it by processing
FUFE outcomes. To check the estimates of the sum of coefficients
next to square members, six design points in the experimental cen-
ter were done and these outcomes obtained: 45; 49; 44; 40; 42 and
44. Assert the hypothesis that regression coefficients next to square
members differ from zero by comparing the difference b0��yyu with
the experimental error. This means that, to obtain a second-order
model by CCRD, it was necessary to do another six design points in
starlike points. The outcomes of all 20 design-points are given in
Table 2.162. Determine the second-order model.

Table 2.162 CCRD 23 + 2 � 3 + 6

X1 X2 X3 X
2
1 X

2
2 X

2
3 X1X2 X1X3 X2X3 y

- – – + + + + + + 160
- – + + + + + – – 66
- + – + + + – + – 58
- + + + + + – – + 8
+ – – + + + – – + 225
+ – + + + + – + – 42
+ + – + + + + – – 160
+ + + + + + + + + 23

-1.682 0 0 2.828 0 0 0 0 0 35
+1.682 0 0 2.828 0 0 0 0 0 72

0 -1.682 0 0 2.828 0 0 0 0 137
0 +1.682 0 0 2.828 0 0 0 0 34
0 0 -1.682 0 0 2.828 0 0 0 261
0 0 +1.682 0 0 2.828 0 0 0 14

0 0 0 0 0 0 0 0 0 45
0 0 0 0 0 0 0 0 0 49
0 0 0 0 0 0 0 0 0 44
0 0 0 0 0 0 0 0 0 40
0 0 0 0 0 0 0 0 0 42
0 0 0 0 0 0 0 0 0 44

& Problem 2.27 [45]
In car tire development, an optimal combination of three-compo-
nent composition has been researched: X1-hydrated silicate, PHR;
X2-silan, PHR and X3-sulfur, PHR. These parameters were mea-
sured as system responses: y1-PICO abrasion index; y2-200% mod-
ule; y3-strain at brake and y4-hardness. The experiment has been
done in accord with CCRD. Experimental outcomes are shown in
Table 2.163. Determine regression coefficients values for all four
responses.
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Table 2.163 CCRD 23 + 2 � 3 + 6

ariation
levels

Design matrix Responses

x1 x2 x3

0 1.2 50 2.3

Dx 0.5 10 0.5

+ 1.7 60 2.8

- 1.0 40 1.8

No. trials X1 X2 X3 y1 y2 y3 y4

1 – – – 102 900 470 67.5

2 + – – 120 860 410 65

3 – + – 117 800 570 77.5

4 + + – 198 2294 240 74.5

5 – – + 103 490 640 62.5

6 + – + 132 1289 270 67

7 – + + 132 1270 410 78

8 + + + 139 1090 380 70

9 -1.68 0 0 102 770 590 76

10 +1.68 0 0 154 1690 260 70

11 0 -1.68 0 96 700 520 63

12 0 +1.68 0 163 1540 380 75

13 0 0 -1.68 116 2184 520 65

14 0 0 +1.68 153 1784 290 71

15 0 0 0 133 1300 380 70

16 0 0 0 133 1300 380 68.5

17 0 0 0 140 1145 430 68

18 0 0 0 142 1090 430 68

19 0 0 0 145 1260 390 69

20 0 0 0 142 1344 390 70

2.3.3
Orthogonal Second-order Design (Box-Benken Design)

Orthogonal designs have been used in the first few studies having to do with the ap-
plication of designed experiments in obtaining regression models of the second-
order. Although much more optimized designs for obtaining second-order models
were presented in the previous chapter, second-order orthogonal design is still used
in practice.

The expression (2.74), which defines the condition for design orthogonality in a
general case, indicates in the matrix for central composite second-order design that
all vector columns are not orthogonal. To provide design orthogonality and alleviate
calculation of regression-equation coefficients, square variables are transformed and
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suitable distances of “starlike” points chosen. Transformation is shown by the expres-
sion:

�
X

0
iu

�2

¼ X
2
iu �

PN
1

X2
iu

N
¼ X

2
iu � �XX

2
iu (2.104)

Thus the following condition is fulfilled:

PN
1

X0X
0
iu ¼ 0 (2.105)

It has already been said that orthogonality of other vectors-columns provides a
selection of distances of “starlike” points. The design matrix of central composite or-
thogonal designs (CCOD) is obtained at different number of factors (k), by upgrading
the associated FUFE designs or half-replicas (for k‡5) with additional points in the
experimental center and a corresponding number of “starlike” points. The number
of CCOD design points with values of “starlike” distances is given in Table 2.164.
Design matrices for k=2–4 are given in Tables 2.165–2.167.

Table 2.164 Construction of orthogonal designs

No. of factors
k

No. of core
points
nj

No. of starlike
points
na

No. of null
points
n0

Coded values
a

Total no. of
design points

N

2 4 4 1 1.000 9
3 8 6 1 1.215 15
4 16 8 1 1.414 25
5* 16 10 1 1.414 27
6* 32 12 1 – 45

* Core of half-replica design
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Table 2.165 Central composite orthogonal design 22 + 2 � 2 + 1

No.
trials

Design matrix Square factors Operational matrix Response

X0 X1 X2 X1X2 X
0
1

� �2
¼ X

2
1 � 2

3 X
0
2

� �2
¼ X

2
2 � 2

3 x1 x2 �yyu

1 + + + + 0.33 0.33 2.5 120 50

2 + – + – 0.33 0.33 1.3 120 67

3 + + – – 0.33 0.33 2.5 20 70

4 + – – + 0.33 0.33 1.3 20 60

5 + – 0 0 0.33 -0.67 1.3 70 70

6 + + 0 0 0.33 -0.67 2.5 70 56

7 + 0 – 0 -0.67 0.33 1.9 20 73

8 + 0 + 0 -0.67 0.33 1.9 120 60

9 + 0 0 0 -0.67 -0.67 1.9 70 62

Sum of
squares

9 6 6 4 2 2

In accord with the performed transformation, regression coefficient b0 is deter-
mined from the expression:

b0 ¼ b
0
0 � b11 �XX

2
1 � b22 �XX

2
2 � :::� bkk �XX

2
k (2.106)

and a check of its significance is estimated by variance:

S
2
b0

¼ S
2
b0

þ �XX
2
1 S

2
bii

þ �XX
2
2 S

2
bii

þ :::þ �XX
2
k S

2
bii

(2.107)

Other regression coefficients are determined in accord with formulas for orthogo-
nal designing. A check of significance of regression coefficients is given in Sect.
2.4.1, and the check of lack of fit of regression model is in Sect. 2.4.3.

Example 2.51
This example refers to response dependence on two factors (k=2). Orthogonal sec-
ond-order design in this case, according to Table 2.164, has nine design points
(N=9). The design matrix with outcomes of design points is shown in Table 2.165.
The same case has been elaborated in the previous section, in Example 2.43, by ap-
plication of rotatable second-order design. However, the connection between coded
and real values of factors for the same null point is now different:

X1 ¼ x1�1:9
0:6

; X2 ¼ x2�70
50

(2.108)
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Table 2.166 Central composite orthogonal design 23 + 2 � 3 + 1

No. of
design points

Design matrix Response
�yyu

X0 X1 X2 X3 X
0
1

� �2
X
0
2

� �2
X
0
3

� �2
X1X2 X1X3 X2X3

1 + + + + 0.270 0.270 0.270 + + + 82

2 + – + + 0.270 0.270 0.270 – – + 82

3 + + – + 0.270 0.270 0.270 – + – 42

4 + – – + 0.270 0.270 0.270 + – – 70

5 + + + – 0.270 0.270 0.270 + – – 60

6 + – + – 0.270 0.270 0.270 – + – 80

7 + + – – 0.270 0.270 0.270 – – + 48

8 + – – – 0.270 0.270 0.270 + + + 70

9 + -1.215 0 0 0.747 -0.730 -0.730 0 0 0 80

10 + +1.215 0 0 0.747 -0.730 -0.730 0 0 0 60

11 + 0 -1.215 0 -0.730 0.747 -0.730 0 0 0 54

12 + 0 +1.215 0 -0.730 0.747 -0.730 0 0 0 88

13 + 0 0 -1.215 -0.730 -0.730 0.747 0 0 0 85

14 + 0 0 +1.215 -0.730 -0.730 0.747 0 0 0 74

15 + 0 0 0 -0.730 -0.730 -0.730 0 0 0 70

Sum of squares 15 10.94 10.94 10.94 4.34 4.34 4.34 8 8 8

This may be explained by the necessity of changing factor-variation intervals. Lin-
ear regression coefficients are calculated by the formula (2.62), which is:

bi ¼

P6
1

Xiu
�yyu

6
(2.109)

so that:

b1 ¼

P6
1

Xiu
�yyu

6
¼ 1

6
50� 67þ 70� 60� 70þ 56ð Þ ¼ �3:50

b2 ¼

P6
1

X2u
�yyu

6
¼ �4:33

Coefficient b12, which characterizes the effect of even interaction is determined in
accord with the formula

b12 ¼

P4
1

X1X2
�yyu

4
¼ 1

4
50� 67� 70þ 60ð Þ ¼ �6:75:
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To determine coefficients b11 and b12, we use:

bii ¼

PN
1

ðX 0
iuÞ

2�yyuP
ðX 0

iuÞ
2 ; (2.110)

or:

bii ¼

P9
1

ðX 0
iuÞ

2�yyu

2
(2.111)

So that:

b11=0.5[0.33(50+67+70+60+70+56)-0.67(73+60+62)]=-3.78;
b22=0.5[0.33(50+67+70+60+73+60)-0.67(70+56+62)]=-0.30.

To calculate b0 we have to determine b
0
0 :

b
0
0 ¼

PN
1

�yyu

PN
1

X2
iu

¼

PN
1

�yyu

N
(2.112)

b
0
0 ¼

P9
1

�yyu

9
¼ 568

9
¼ 63:11

From Eq. (2.106) we get:

b0 ¼ b
0
0 � b11 �XX

2
1 � b22 �XX

2
2 (2.113)

where:

�XX
2
1 ¼

PN
1

X2
1

N
¼

P9
1

X2
1

9
¼ 2

3

so that: b0=b
0
0 -0.67b11-0.67b22=65.84

A check of statistical significance of regression coefficients (Sect. 2.4.2), indicates
that regression coefficients b11 and b22 are statistically insignificant. The final form
of the second-order regression model with 95% confidence may be given in the
form:

y
_

u=65.84-3.50 X1-4.33 X2-6.75 X1X2 (2.114)

Lack of fit of the obtained regression model is checked by formulas from Sect.
2.4.3 for the variant of an identical number of replications of all the design points
(n=25). The obtained outcomes are given in Example 2.63 and Example 2.65.

Example 2.52
The second-order orthogonal design for k=3, is shown in Table 2.166. Based on
design-point outcomes, we can calculate regression coefficients:
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bi ¼

P10
1

Xiu
�yyu

10:94
; bij ¼

P8
1

XiuXju
�yyu

8
;

bii ¼

P15
1

�XX2
iu�yyu

4:34
; b

0
0 ¼

P15
1

�yyu

15
;

b0 ¼ b
0
0 � 0:73b11 � 0:73b22 � 0:73b33 :

After processing the outcomes, we obtain the regression model:

y
_

u=75.6-8.6X1+10.5X2+0.4X3-5.1X
2
1 -4.4X

2
2 +1.3X

2
3 +3.7X1X2+1.7X1X3+3.7X2X3

The obtained regression model is adequate with 95% confidence. A check of sig-
nificance of regression coefficients, in accord with Sect. 2.4.2, is completed thus:

S
2
b0

¼ S2
�yy

15
; S

2
bi
¼ S2�yy

10:94
; S

2
bij

¼ S2�yy
8
; S

2
bii

¼ S2�yy
4:34

;

If S
2
�yy ¼ 15, then:

S
2
b0

¼ 1:00; S
2
bi
¼ 1:36; S

2
bij

¼ 1:87; S
2
bii

¼ 3:45:

Then:
Db0=–2.0; Dbi=–2.34; Dbij=–2.74; Dbii=–3.70.
With 95% confidence then:

y
_

u ¼ 75:6� 8:61X1 þ 10:5X2 � 5:1X
2
1 � 4:4X

2
2 þ 3:7X1X2 þ 3:7X2X3 (2.115)

Example 2.53
The orthogonal design for four factors (k=4) is given in Table 2.167 with outcomes of
design points. The regression coefficients are determined thus:

bi ¼

P18
1

Xiu
�yyu

20
; bij ¼

P16
1

XiuXju
�yyu

16
; bii ¼

P25
1

X2
iu�yyu

8
; b

0
0 ¼

P25
1

�yyu

25
;

b0 ¼ b
0
0 � 0:80b11 � 0:80b22 � 0:80b33 � 0:80b44

The second-order regression model has the following form:

y
_

u=82.8+18.4X1+17.3X2-22.6X3+30.7X4-6.9X
2
1 +1.4X

2
2 +2.4X

2
3

-0.5X
2
4 +1.5X1X2-5.6X1X3+6.1X1X4-1.4X2X3+5.3X2X4-7.0X3X4 (2.116)
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Table 2.167 Central composite orthogonal design 24 + 2 � 4 + 1

No.
trials

Design matrix Response Predicted
response

X0 X1 X2 X3 X4 X
0
1

� �2
X
0
2

� �2
X
0
3

� �2
X
0
4

� �2
X1X2 �yyu y

_

u

1 + + + + + 0.2 0.2 0.2 0.2 + 118 122

2 + – + + + 0.2 0.2 0.2 0.2 – 80 81

3 + + – + + 0.2 0.2 0.2 0.2 – 78 76

4 + – – + + 0.2 0.2 0.2 0.2 + 42 42

5 + + + – + 0.2 0.2 0.2 0.2 + 200 195

6 + – + – + 0.2 0.2 0.2 0.2 – 128 132

7 + + – – + 0.2 0.2 0.2 0.2 – 145 144

8 + – – – + 0.2 0.2 0.2 0.2 + 88 87

9 + + + + – 0.2 0.2 0.2 0.2 + 52 52

10 + – + + – 0.2 0.2 0.2 0.2 – 33 35

11 + + – + – 0.2 0.2 0.2 0.2 – 30 28

12 + – – + – 0.2 0.2 0.2 0.2 + 14 17

13 + + + – – 0.2 0.2 0.2 0.2 + 95 97

14 + – + – – 0.2 0.2 0.2 0.2 – 58 58

15 + + – – – 0.2 0.2 0.2 0.2 – 70 67

16 + – – – – 0.2 0.2 0.2 0.2 + 37 34

17 + -1.414 0 0 0 1.2 -0.8 -0.8 -0.8 0 48 43

18 + +1.414 0 0 0 1.2 -0.8 -0.8 -0.8 0 90 95

19 + 0 -1.414 0 0 -0.8 1.2 -0.8 -0.8 0 55 61

20 + 0 +1.414 0 0 -0.8 1.2 -0.8 -0.8 0 116 110

21 + 0 0 -1.414 0 -0.8 -0.8 1.2 -0.8 0 115 120

22 + 0 0 +1.414 0 -0.8 -0.8 1.2 -0.8 0 60 56

23 + 0 0 0 -1.414 -0.8 -0.8 -0.8 1.2 0 38 38

24 + 0 0 0 +1.414 -0.8 -0.8 -0.8 1.2 0 125 125

25 + 0 0 0 0 -0.8 -0.8 -0.8 -0.8 0 84 83

Sum of
squares

25 20 20 20 20 8 8 8 8 16

A check of lack of fit of the regression model (2.116), is done in accordance with
the formulas from Sect. 2.4.3, where all design points are replicated the same num-
ber of times (n=25). The obtained predicted response values of the regression model
are also given in Table 2.167. Variance of lack of fit is calculated thus:

S
2
AD ¼

P25
1

n �yyu� y
_

u

� �2

N� kþ2ð Þ kþ1ð Þ

2

¼ 25�267
25�15

¼ 667:5

The arithmetic value of Fisher’s criterion is determined for S
2
y=375.0.
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FR ¼ 667:5
375:0

¼ 1:78

A tabular value FT.=1.85 is obtained for fAD=10 and fE=25(25-1)=600 from Table E.
The regression model is with 95% confidence adequate because FR<FT.. To estimate
the statistical significance of regression coefficients, use formulas from Sect. 2.4.2.

S
2
b0

¼ S2
�yy

25
; S

2
bi
¼ S2

�yy

20
; S

2
bij

¼ S2�yy
16

; S
2
bii

¼ S2�yy
8
; S

2
�yy ¼ S2y

n
¼ 15

So that:

S
2
b0

¼ 0:60; S
2
bi
¼ 0:75; S

2
bij

¼ 0:94; S
2
bii

¼ 1:87:

Db0=–2�0.77=–1.54; Dbi=–2�0.87=–1.74; Dbij=–2�0.97=–1.94; Dbii=–2�1.37=–2.74.

Having taken the given values into consideration, the regression model becomes:

y
_

u=82.8+18.4X1+17.3X2-22.6X3+30.7X4–6.9X
2
1 +6.1X1X4-5.6X1X3+5.3X2X4-7.0X3X4

(2.117)

Table 2.168 Sums of squares of columns

Number
of factors

k

Value of sum
PN
1
X
2
iu

b0 bi bij bii

2 9 6 4 2
3 15 10.94 8 4.34
4 25 20 16 8
5 27 20 16 8

To calculate regression coefficients more efficiently, sums of squares of elements
in design matrix columns are shown in Table 2.168.

Example 2.54 [12]
The oxidation process of sodium hypophosphite with iron has been studied. To
establish conditions of quantitative oxidation of NaH2PO2 with iron and the possible
reaction surface, an experiment has been defined for obtaining a mathematical
model of the process. The experimental objective deals with the conditions for
obtaining 100% oxidation of NaH2PO2.

In accordance with the data from the literature, the reaction in a constant volume
of 100 ml and at the boiling point temperature is defined by these three factors:

X1 iron concentration;
X2 acidity and
X3 oxidation time.
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All design points are done in 100 ml volume with 20.14 mg of NaH2PO2H2O.
The reaction has been interrupted by a sudden cooling of the solution, after which
the quantity of oxidized hypophosphite was determined. The system response is the
rate of sodium hypophosphite oxidation. The suggestion is to apply CCOD to obtain
a second-order mathematical model. The experiment has been designed according
to orthogonal design, after optimization by the steepest ascent method and with the
design center in the design point, which had the greatest oxidation rate of NaH2PO2.
The design of experiment with outcomes of design points is given in Table 2.169.

Table 2.169 CCOD 23 + 2 � 3 + 1

Variation levels Factors

X1 X2 X3

Basic level 0.032 1.0 15

Variation interval 0.005 0.5 5

No.
trials

Design matrix Response

X0 X1 X2 X3 yu y
_

u

1 + – – – 96.18 94.19

2 + + – – 97.88 97.65

3 + – + – 92.96 93.61

4 + + + – 98.34 97.55

5 + – – + 97.36 98.47

6 + + – + 98.18 98.93

7 + – + + 95.24 94.89

8 + + + + 99.32 98.83

9 + -1.215 0 0 98.30 97.02

10 + +1.215 0 0 98.40 99.69

11 + 0 -1.215 0 99.78 97.68

12 + 0 +1.215 0 94.53 95.45

13 + 0 0 -1.215 97.34 97.57

14 + 0 0 +1.215 99.24 99.13

15 + 0 0 0 99.08 98.55
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b
0
0 ¼

PN
1

�yyu

N
¼ 1462:13

15
¼ 97:48

b1 ¼

P10
1

X1u
�yyu

10:94

¼ 1
10:94

ð�96:18þ 97:88� 92:96þ 98:34� 97:36þ 98:18� 95:24þ 99:32� 1:215

�98:30� 1:215� 98:40Þ ¼ 1:11

b2 ¼

P10
1

X2u
�yyu

10:94
¼ 1

10:94
(-96.18-97.88+92.96+98.34-97.36-98.18

+95.24+99.32-1.21599.78+1.21594.53)=-0.92

b3 ¼

P10
1

X3u
�yyu

10:94
¼ 1

10:94
(-96.18-97.88-92.96-98.34+97.36+98.18

+95.24+99.32-1.21597.34+1.21599.24)=0.64

b12 ¼

P8
1

X1uX2u
�yyu

8
¼ 1

8
(96.18-97.88-92.96+98.34+97.36-98.18-95.24+99.32)=0.87

b13 ¼

P8
1

X1uX3u
�yyu

8
¼ 1

8
(96.18-97.88+92.96-98.34-97.36+98.18-95.24+99.32)=-0.27

b23 ¼

P8
1

X2uX3u
�yyu

8
¼ 1

8
(96.18+97.88-92.96-98.34-97.36-98.18+95.24+99.32)=0.22

b11 ¼

P15
1

X 0
1u�yyu

4:34
¼ 1

4:34
(0.27096.18+0.27097.88+0.27092.96+0.27098.34

+0.27097.36+0.27098.18+0.27095.24+0.27099.32+0.74798.30+0.74798.40
-0.73099.78-0.73094.53-0.73097.34-0.73099.24-0.73099.08)=-0.32

b22 ¼

P15
1

X 0
2u�yyu

4:34
¼ 1

4:34
(0.27096.18+0.27097.88+0.27092.96+0.27098.34

+0.27097.36+0.27098.18+0.27095.24+0.27099.32-0.73098.30-0.73098.40
+0.74799.78+0.74794.53-0.73097.34-0.73099.24-0.73099.08)=-1.12
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b33 ¼

P15
1

X 0
3u�yyu

4:34
¼ 1

4:34
(0.27096.18+0.27097.88+...+0.27099.32-0.73098.30

-0.73098.40-0.73099.78-0.73094.53+0.74797.34+0.74799.24-0.73099.08)
=-0.36.

b0 ¼ b
0
0 � b11 �XX

2
1 � b22 �XX

2
2 � b33 �XX

2
3 =97.48-0.73(-0.32)-0.73(-1.12)-0.73(-0.36)=98.79

A check of significance of regression coefficients shows that with 95% confidence
the following regression coefficients are statistically significant: b0; b1; b2; b3; b12 and
b22. The second-order regression model has this form:

y
_

u=98.79+1.11X1-0.92X2+0.64X3+0.87X1X2-1.12XX
2
2 (2.118)

Example 2.55 [38]
The conditions for maximal dissolving of borate in a mixture of sulfurous and phos-
phorous acids are investigated. The rate of dissolving borate (y) is controlled by vary-
ing these factors: X1-temperature of reaction, �C; X2-reaction time, min; X3-stoichio-
metric ratio of phosphorous acid in per cent,% and X4-concentration of phosphor-
ous acid as, % P2O5.

The basic levels and variation intervals are given in Table 2.170. It is known from
previous design points that the optimum is within the studied factor space. Orthog-
onal design has therefore been done to obtain the regression model, Table 2.171.
Reproducibility variance of the experiment is determined from four additional
design points in the experimental center (y01=61.8; y02=59.3; y03=58.7 and y04=69.0).

Table 2.170 Factor-variation intervals

Factors Variation levels Variation inter-
vals
Dx-1.414 -1.0 0 +1.0 +1.414

x1-temperature 19.75 30 55 80 90.25 25

x2-time 5.78 15 37.5 60 69.23 22.5

x3-stechiometric ratio 51.80 60 80 100 108.20 20

x4-concentration of H3PO4 6.29 14 32.8 51.60 59.31 18.8

�yy0 ¼

P4
1

y0i

4
¼ 60:95; S

2
�yy ¼

Pn0
1

y0i��yy0
� �2
n0�1

¼ 5:95; f ¼ 4� 1 ¼ 3:

Regression coefficients have the values:
b0¢=61.54 b1=17.37 b2=6.4 b3=4.7 b4=-4.37 b44=-5.34
b12=2.18 b13=0.2 b14=1.2 b23=0.56 b24=0.79 b11=4.5
b22=1.3 b33=4.09.
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After rejecting statistically insignificant regression coefficients, the regression
model becomes:

y
_
=61.54+17.37X1+6.4X2+4.7X3-4.37X4+2.18X1X2+1.9X3X4+4.5(X

2
1 -0.8)

+4.09(X
2
3 -0.8)-5.34(X

2
4 -0.8)=58.9+17.37X1+6.4X2+4.7X3-4.37X4 (2.119)

+2.18X1X2+1.9X3X4+4.5X
2
1 +4.09X

2
3 -5.34X

2
4

Table 2.171 CCOD 24 + 2 � 4 + 1

No.
trials

X0 X1 X2 X3 X4 X
0
1

� �2
X
0
2

� �2
X
0
3

� �2
X
0
4

� �2
X1X2 X1X3 X1X4 X2X3 X2X4 X3X4 y

1 + + + + + 0.2 0.2 0.2 0.2 + + + + + + 86.9

2 + – + + + 0.2 0.2 0.2 0.2 + – – – – + 40.0

3 + + + – + 0.2 0.2 0.2 0.2 – – + + – – 66.0

4 + – + – + 0.2 0.2 0.2 0.2 – + – – + – 34.4

5 + + + + – 0.2 0.2 0.2 0.2 – + – – + – 76.8

6 + – + + – 0.2 0.2 0.2 0.2 – – + + – – 55.7

7 + + + – – 0.2 0.2 0.2 0.2 + – – – – + 91.0

8 + – + – – 0.2 0.2 0.2 0.2 + + + + + + 47.6

9 + + – + + 0.2 0.2 0.2 0.2 – + + – – + 74.1

10 + – – + + 0.2 0.2 0.2 0.2 – – – + + + 52.0

11 + + – – + 0.2 0.2 0.2 0.2 + – + – + – 74.5

12 + – – – + 0.2 0.2 0.2 0.2 + + – + – – 29.6

13 + + – + – 0.2 0.2 0.2 0.2 + + – + – – 94.8

14 + – – + – 0.2 0.2 0.2 0.2 + – + – + – 49.6

15 + + – – – 0.2 0.2 0.2 0.2 – – – + + + 68.6

16 + – – – – 0.2 0.2 0.2 0.2 – + + – – + 51.8

17 + 0 0 0 0 -0.8 -0.8 -0.8 -0.8 0 0 0 0 0 0 61.8

18 + +1.414 0 0 0 1.2 -0.8 -0.8 -0.8 0 0 0 0 0 0 95.4

19 + -1.414 0 0 0 1.2 -0.8 -0.8 -0.8 0 0 0 0 0 0 41.7

20 + 0 +1.414 0 0 -0.8 1.2 -0.8 -0.8 0 0 0 0 0 0 79.0

21 + 0 -1.414 0 0 -0.8 1.2 -0.8 -0.8 0 0 0 0 0 0 42.4

22 + 0 0 +1.414 0 -0.8 -0.8 1.2 -0.8 0 0 0 0 0 0 77.6

23 + 0 0 -1.414 0 -0.8 -0.8 1.2 -0.8 0 0 0 0 0 0 58.0

24 + 0 0 0 +1.414 -0.8 -0.8 -0.8 1.2 0 0 0 0 0 0 45.6

25 + 0 0 0 -1.414 -0.8 -0.8 -0.8 1.2 0 0 0 0 0 0 52.3
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Example 2.56 [21]
This example refers to the research of this chemical reaction:

A+B fi C+D

where two reactants, A and B, give the mixture of product C and D. The final prod-
uct of the chemical reaction gives mixture C and D and unchanged components A
and B. The experimental objective is to get maximal yield of components C, under
the condition that D’s content does not exceed 20% (more than 20% of the compo-
nent D causes difficulties in refining). The research included variations of these fac-
tors: X1-temperature, �C; X2-initial concentration of reactant A,%; X3-reaction time,
h. The contents of component B have been maintained constant. Prior research of
this chemical reaction indicates the existence of interactions between the analyzed
factors. Therefore, FUFE 23 with the following factor-variation levels was selected as
the basic design of experiment:

Table 2.172 Factor variation intervals

Factors Variation levels Variation intervals
Dx

– 0 +

x1-temperature 142 147 152 5

x2-concentration C 35 37.5 40 2.5

x3-reaction time 7 8.5 10 1.5

The FUFE design with outcomes is given in Table 2.173.

Table 2.173 FUFE 23

No. Design matrix Response yield C %
yu

X1 X2 X3

1 – – – 55.9

2 – – + 63.3

3 – + – 67.5

4 – + + 68.8

5 + – – 70.6

6 + – + 68.0

7 + + – 68.6

8 + + + 62.4

By applying formulas (2.62) to (2.64) we get:

b0=65.64; b1=1.76; b2=1.19; b3=-0.01;
b12=-3.09; b13=-2.19 b23=-1.21 and b123=0.31.
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II Design and Analysis of Experiments

It is evident that the obtained effects of three even interactions are large when
compared to linear effects. This means that the response surface is curved and that
the optimum is near. To describe the optimum by a second-order model it is neces-
sary, in accord with CCOD, to upgrade the basic FUFE 23 to CCOD. Seven addi-
tional design points are needed for this: Six in starlike points and one in the design
center. Variation levels for additional design points are given in Table 2.174.

Table 2.174 Factor-variation intervals

Factors Variation levels

-2 0 +2

x1-temperature 137 147 157

x2-concentration C 32.5 37.5 42.5

x3-reaction time 5.5 8.5 11.5

The design matrix for additional design points with experimental outcomes is giv-
en in Table 2.175.

Table 2.175 Additional design points for CCOD

No. Design matrix Response yield C %
yu

X1 X2 X3

9 0 0 0 66.9

10 2 0 0 65.4

11 -2 0 0 56.9

12 0 2 0 67.5

13 0 -2 0 65.0

14 0 0 2 68.9

15 0 0 -2 60.3

Six design points in the experimental center had to be done due to Table 2.164.
For the sake of economy only one design point in the experimental center was set in
this example, since the reproducibility variance was obtained in the basic experi-
ment. By processing all 15 design points, the following regression coefficients for
second-order model were obtained:

b0=67.711; b1=1.944; b2=0.906; b3=1.069; B11=-1.539;
b22=-0.264; b33=-0.676; b12=-3.088; b13=-2.188; B23=-1.212.

The second-order regression model has this form:

y
_ ¼ 67:711þ 1:944X1 þ 0:906X2 þ 1:069X3 � 1:539X

2
1

� 0:264X
2
2 � 0:676X

2
3 � 3:088X1X2 � 2:188X1X3 � 1:212X2X3

(2.120)
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2.3 Basic Experiment-Mathematical Modeling

2.3.4
D-optimality, Bk-designs and Hartley’s Second-order Designs

D-optimality designs are very attractive for researchers, as their application provides
maximal accuracy in estimating regression coefficients. The price for higher accu-
racy is paid by an increased number of design points, which explains why such
designs are less frequently used in practice. The continuous D-optimality design [34],
constructed on a k-dimension cube, has this formula for the number of design
points [34]:

N ¼ 2
k þ k� 2

k�1 þ k k�1ð Þ
2

� 2
k�2

(2.121)

where:
k-is the number of factors.

In the given case, experimental points are in hypercube crowns, in the middle of
the edges and in the center of two-dimensional planes.

Kono’s designs [46] are attempts to reduce the number of design points in contin-
uous D-optimality designs (constructed on a hypercube), by replacing all points in
centers of two-dimensional planes with one point in the hypercube center. The
number of design points by Kono’s designs is defined by this expression:

N ¼ 2
k þ k� 2

k�1 þ 1 (2.122)

Tables with practical formulas for calculating regression coefficients in Kono’s
designs are known [46]. The design matrix and coefficients for calculating regres-
sion coefficients for Kono’s k=2 and k=3 designs are given in Tables 2.176 and 2.177.
Analogous data for k=4 are given in reference [46]. This reference contains a disper-
sionmatrix that may serve to check the statistical significance of regression coefficients
for Kono’s designs with different numbers of factors. Let us analyze an actual applica-
tion ofKono’s design for obtaining a second-order regressionmodel for k=2. This experi-
ment includes nine design points, with the design shown inTable 2.176.

Table 2.176 Kono’s design 2
2 þ 2x2

2�1 þ 1

No.
trials

Coefficients

X1 X2 b0 b11 b22 b1 b2 b12 �yyu y
_

u �yyu � y
_

u

� �2

1 0 0 0.5772 -0.3234 -0.3234 0 0 0 62 62.4 5.76

2 + + -0.1057 0.1691 0.1691 0.1961 0.1961 0.25 50 48.5 2.25

3 – + -0.1057 0.1691 0.1691 -0.1961 0.1961 -0.25 67 67.86 0.64

4 – – -0.1057 0.1691 0.1691 -0.1961 -0.1961 0.25 60 62.2 4.84

5 + – -0.1057 0.1691 0.1691 0.1961 -0.1961 -0.25 70 70.0 0

6 + 0 0.2114 0.1617 -0.3383 0.1078 0 0 56 58.6 6.76

7 0 + 0.2114 -0.3383 0.1617 0 0.1078 0 60 61.1 1.21

8 – 0 0.2114 0.1617 -0.3383 -0.1078 0 0 70 64.4 31.36

9 0 – 0.2114 -0.3383 0.1617 0 -0.1078 0 73 71.8 1.44

Sum 54.26
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II Design and Analysis of Experiments

Kono’s design matrix corresponds to second-order orthogonal design matrices so
that in this case experimental outcomes from Example 2.51, Table 2.165, were used.
The value of regression coefficient b0 is determined by adding coefficient yields of
the associated column to the response column:

b0=0.5772�62-0.1057�50-0.1057�67-0.1057�60-0.1057�70+0.2114�56
+0.2114�60+0.2114�70+0.2114�73=64.43

Values of other regression coefficients are determined in the same way, so that
the regression model becomes:

y
_
=64.43-2.88X1-3.95X2-6.80X1X2-2:90X

2
1 þ 0:60X

2
2 (2.123)

To check lack of fit of the regression model, its variance is determined:

S
2
AD ¼

P9
1

25 �yyu� y
_

u

� �2

9�6
¼ 25�54:26

3
¼ 452:17

Where the reproducibility variance is S
2
y=375.0, the arithmetic value of Fisher’s cri-

terion is: FR=1.21.

Table 2.177 Kono¢s design 2
3 þ 3x2

3�1 þ 1

No.
trials

Coefficients

X1 X2 X3 b0 b11 b22 b33 b1 b2 b3 b12 b13 b23

1 0 0 0 0.6554 -0.2479 -0.2479 -0.2479 0 0 0 0 0 0

2 + + + -0.0861 0.0630 0.0630 0.0630 0.0804 0.0804 0.0804 0.0979 0.0979 0.0979

3 + – + -0.0861 0.0630 0.0630 0.0630 0.0804 -0.0804 0.0804 -0.0979 0.0979 -0.0979

4 – – + -0.0861 0.0630 0.0630 0.0630 -0.0804 -0.0804 0.0804 0.0979 -0.0979 -0.0979

5 – + + -0.0861 0.0630 0.0630 0.0630 -0.0804 0.0804 0.0804 -0.0979 -0.0979 0.0979

6 + + – -0.0861 0.0630 0.0630 0.0630 0.0804 0.0804 -0.0804 0.0979 -0.0979 -0.0979

7 + – – -0.0861 0.0630 0.0630 0.0630 0.0804 -0.0804 -0.0804 -0.0979 -0.0979 0.0979

8 – – – -0.0861 0.0630 0.0630 0.0630 -0.0804 -0.0804 -0.0804 0.0979 0.0979 0.0979

9 – + – -0.0861 0.0630 0.0630 0.0630 -0.0804 0.0804 -0.0804 -0.0979 0.0979 -0.0979

10 + 0 + 0.0861 0.0620 -0.1880 0.0620 0.0446 0 0.0446 0 0.0542 0

11 0 – + 0.0861 -0.1880 0.0620 0.0620 0 -0.0446 0.0446 0 0 -0.0542

12 – 0 + 0.0861 0.0620 -01880 0.0620 -0.0446 0 0.0446 0 -0.0542 0

13 + – 0 0.0861 0.0620 0.0620 -0.1880 0.0446 -0.0446 0 0.0542 0 0

14 – – 0 0.0861 0.0620 0.0620 -0.1880 -0.0446 -0.0446 0 0.0542 0 0

15 – + 0 0.0861 0.0620 0.0620 -0.1880 -0.0446 0.0446 0 -0.0542 0 0

16 + + 0 0.0861 0.0620 0.0620 -0.1880 0.0446 0.0446 0 0.0542 0 0

17 0 + + 0.0861 -0.1880 0.0620 0.0620 0 0.0446 0.0446 0 0 0.0542

18 + 0 – 0.0961 0.0620 -0.1880 0.0620 0.0446 0 -0.0446 0 -0.0542 0

19 0 – – 0.0861 -0.1880 0.0620 0.0620 0 -0.0446 -0.0446 0 0 0.0542

20 – 0 – 0.0861 0.0620 -0.1880 0.0620 -0.0446 0 -0.0446 0 0.0542 0

21 0 + – 0.0861 -0.1880 0.0620 0.0620 0 0.0446 -0.0446 0 0 -0.0542
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2.3 Basic Experiment-Mathematical Modeling 365

In practice, we often use designs that are very similar to D-optimality designs in
their properties, but that contain a smaller number of design points. Such designs
are known as Bk andHartley’s designs.

Bk-designs are constructed on a k-dimension cube with an equal number of
design points in cube crowns and in the center (k+1) of edges [34].

From the practical point of view, design B4 is also interesting as it includes only 24
design points, i.e. 24 FUFE design points (points in hypercube crowns) and additional
8 designpoints in starlike points. Thematrix of such a design is shown inTable 2.178.

This regression model is obtained by processing experimental outcomes [47]:

y
_ ¼ 4:724þ 0:177X1 þ 0:327X2 � 0:155X3 þ 0:151X4

�0:577X
2
1 � 0:114X

2
2 þ 0:033X

2
3 � 0:244X

2
4 þ 0:211X1X2

�0:119X1X3 þ 0:133X1X4 þ 0:142X2X3 þ 0:261X2X4 þ 0:223X3X4

(2.124)

Table 2.178 B4 design

No.
trials

X1 X2 X3 X4 �yyu

1 – – – – 12.4

2 – – – + 20.7

3 – – + – 13.1

4 – – + + 27.5

5 – + – – 45.1

6 – + – + 60.6

7 – + + – 44.8

8 – + + + 58.9

9 + – – – 15.0

10 + – – + 19.5

11 + – + – 10.8

12 + – + + 20.2

13 + + – – 39.2

14 + + – + 56.7

15 + + – – 41.4

16 + + + + 63.5

17 + 0 0 0 31.3

18 – 0 0 0 34.9

19 0 + 0 0 49.9

20 0 – 0 0 26.3

21 0 0 + 0 37.9

22 0 0 – 0 41.3

23 0 0 0 + 44.6

24 0 0 0 – 30.8

Table 2.179 HA5-design

No.
trials

X1 X2 X3 X4 X5

1 + + + + +

2 – + + + –

3 + – + + –

4 – – + + +

5 + + – + –

6 – + – + +

7 + – – + +

8 – – – + –

9 + + + – –

10 – + + – +

11 + – + – +

12 – – + – –

13 + + – – +

14 – + – – –

15 + – – – –

16 – – – – +

17 + 0 0 0 0

18 – 0 0 0 0

19 0 + 0 0 0

20 0 – 0 0 0

21 0 0 + 0 0

22 0 0 – 0 0

23 0 0 0 + 0

24 0 0 0 – 0

25 0 0 0 0 +

26 0 0 0 0 –

27 0 0 0 0 0
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Hartley’s designs include design points in cube crowns (regular fractional replica),
as well as “starlike” and null design points. Design HA5 (k=5) is of particular impor-
tance for being especially efficient. The total number of design points for such a
design is not great and it is N=27. Its matrix is given in Table 2.179.

2.3.5
Conclusion after Obtaining Second-order Model

After obtaining an optimal mathematical model of a research subject, a conclusion
is brought down to a statement on lack of fit or inadequacy of the obtained second-
order regression model. The significance of regression coefficients in second-order
models is marginal in comparison with their significance in linear models, since
purposes of obtaining linear and nonlinear models differ.

As said before, linear models are used to reach (move towards) optimum, so that
the significance of regression coefficients is an assumption for successful applica-
tion of the steepest ascent method. Linear models, therefore, include as many fac-
tors as possible, and full factorial experiments are even replicated with increased fac-
tor variation intervals.

With nonlinear models, which are aimed at mathematical modeling or adequate
description of the optimum region and that as a rule have numerous regression
coefficients, rejection of insignificant regression coefficients is not so important as
in the phase of linear modeling. For second-order models, an estimate of lack of fit
or inadequacy of the model is of particular importance.

Inadequate second-order model
As with an inadequate linear model, it is possible to switch to a higher order or a
third-order model. Realization, processing of experimental results and analysis and
interpretation are very complicated for third-order designs, which makes such a sug-
gestion not efficient enough [16].

Removing the model inadequacy by introducing rejected factors (in the phase of
screening experiments and linear model analysis) and by an increased number of
trial replications, is much more acceptable.

Adequate second-oder model
When processing of experimental outcomes shows an adequate regression model,
the problem of mathematical modeling of response optimum is terminated, since
an interpolation model of the research subject has been obtained.

In the case of an extreme experiment, we are faced with determining optimum
coordinates from the obtained mathematical model. In that case, canonical analysis
or methods of nonlinear programming are mostly used. The obtained optimum
coordinates on a research, lab level are the starting point for a switch from lab to
pilot-plant or full-scale levels

3)

. The procedure is in principle repeated in a larger sys-
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2.4 Statistical Analysis

tem within the defined experimental center /48, 18/. The obtained mathematical
model and coordinates of the optimum are particularly useful for problems of pro-
cess control in a full-scale plant.

2.4
Statistical Analysis

2.4.1
Determination of Experimental Error

A researcher who manages an experimental study by application of design of experi-
ments, must have a clear idea on methods of processing experimental results in the
actual case and before starting it, so as to facilitate defining the research objective
and the drawing of conclusions. A mathematical theory of experiments differenti-
ates several types of errors in processing experimental results, each of which is char-
acteristic of a definite phase of data analysis. Each experiment consists of a certain
number of design points-trials, each design point-trial of one or more replicated trials,
and a single design point of one or more replicated measurements (determinations). In
accordance with this we distinguish experiment error (reproducibility variance), trial
error-variance of replicated trials and measurement error (determination error). Measure-
ment error is local to a trial, and may come either from an instrument or from spec-
imen differences (sampling error) or both. It can be reduced by taking repeated
measurements and averaging. Whether or not such averaging is worthwhile,
depends on its magnitude with respect to the trial error. The standard deviation of
measurement error may be estimated from repeated measurements within the
same trial. The measurement variance is the square of the standard deviation of the
measurement error. Recognition of the design point-trial and experimental errors is
necessary for a verification of the significance of regression coefficients and lack of
fit of a regression model.

Measurement-determination error has been discussed in Sect. 2.1.4.
Trial error and experimental error also belong to the group of random errors so

that in estimating their values we use the same approach as for random measure-
ment errors. In determining a measurement error we take into account the number
of replicate measurements (u); in a trial error the number of replicate trials (n), and
in an experimental error the number of different trials (N). Replication of a trial
must not be mixed up with replication of measurements in one trial. When deter-
mining a trial error, we estimate the standard deviation of replicated trials. This may
be estimated by calculating the standard deviation of several trials whose control fac-
tor settings are the same. Ideally one would set up and run the same trial repeatedly.
The small differences in a setup are an important component of the replicate error.
The replicate error is made up of two parts: trial error and measurement error. The
replicate variance is just the square of the replicate standard deviation. In the case of
experimental error we estimate the variance of reproducibility. Prior to calculating
experimental error it is necessary to check variance homogeneity of different trials
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465

3.1
Screening Design “Composition-Property”

To begin any kind of experimental study one should review the reference literature
and discuss problems with researchers from the field. A result of the mentioned
preliminary study of a research subject is mostly a long list of potential factors of a
system. Modern strategy of experimental research, as has been described in previous
chapters, begins with screening experiments, their task being to find the most sig-
nificant factors for the observed system. Screening experiments most frequently
solve the lowest level of a research objective i.e. screening out factors by the signifi-
cance of their effects on a response system. More complex research objectives
require a mathematical model of the researched phenomenon, which is brought
down to constructing a regression model and to an analysis of the obtained response
surface. Screening experiments offer sufficient data for obtaining a linear regression
model.

E(y)=b0+b1X1+b2X2+...+bpXp (3.1)

Relative values of factor effects are proportional to the values of regression coeffi-
cients bI, of the associated coded factors Xi. A factor may be statistically insignificant
if the value of the associated regression coefficient is small enough. Part of the phi-
losophy of screening experiments from sect. 2.2 is transferred to selecting compo-
nents of a mixture or composition. The main difference lies both in the concept of
screening and in construction of a design of experiments matrix. The difference
exists in specific constraints on the component ratio in the mixture. In mixture
experiments, response (y) is a function of the q-components ratio only (Xi) and not
of its total quantity. Constraints refer to the ratios of each q-component and to the
sum of ratios of all components. It is mathematically expressed in this way:

0 � Xi � 1:0;
Pq
i¼1

Xi ¼ 1:0 (3.2)

It is evident that components levels-ratios are not independent and that the level
of one component depends on levels of q-1 components. Screening experiments are
recommended in situations when the number of components is q>6. For five or
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Copyright � 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31142-4
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fewer components, fitting it with a second-order model is acceptable [1]. A design
matrix for a five-component system and a second-order model usually contains 20 to
25 trials-design points, which is acceptable. For a second-order model for six or
more mixture components, the number of design points-trials of a design matrix is
large, especially if one accounts for the fact that it is uncertain whether all mixture
components are significant and whether all the selected variation levels of compo-
nent ratios are important. Due to the complexity, a screening experiment with a
small number of trials is necessary. Screening out of components in the mixture is
brought down to an analysis of the response surface or to response in all directions
of the factor space. A response-surface analysis or response-value analysis means
determining directions, or axes of the factor space where response values are con-
stant, close to being constant or change only a little. It is an evident assumption that
significant mixture components have great linear effects. This is correct in principle,
but there are exceptions. It is therefore suggested [2] to include into the screening
design of experiments at least one trial in its center in order to catch nonlinearity,
which may be present. Linear regression models by Scheffe [3] have the form:

E(y)=b1X1+b2X2(+...+bpXp (3.3)

Constant b0 is omitted due to the limitation that the sum of ratios of all compo-
nents is equal to one. Screening out of components is brought down to finding com-
ponents Xi that have no effects and/or have the same effects on the property-response
of the mixture:

. If the value of coefficient bi is equal to the mean of coefficients in the model,
then Ei=0;

Ei ¼ b
i
� q� 1ð Þ�1P

i 6¼j

b
j

(3.4)

. or y values do not vary in any direction normal to Xi=0 (simplex basis). In
other words, there is no change of y in the direction of the normal passing
through the simplex centroid. Geometrically, this is a one-dimensional local
space where Xj=(1-Xi)/(q-1) for each j„i. Value Ei is all over the simplex called
linear factor effect Xi. Constant responses in a direction parallel to the Xi-axis
(in the direction of Xi ) indicate the insignificance of the factor-component Xi.

. When two or more coefficients are equal (e.g. b1=b2=b6) then the effects of
associated components are equal in the experimental region. The associated
sum may be considered as one component, which means a reduction in the
number of basic components. This also means that there is no variation of y
in the q-dimensional local space of simplex, where “e” is the number of com-
ponents with equal effects.

Example 3.1
Examples of response surfaces for the two mentioned cases are shown in Figs. 3.1
and 3.2.
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Figure 3.1 Response surface of a three-component
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Figure 3.2 Response surface of a three-component

The response surface in Fig, 3.1 is defined by the regression mod-
el y

_ ¼ 80X1 þ 90X2 þ 100X3 , where we can see that there is no variation of y in
direction X2:

b2-(b1+b3)/2=90-(80+100)/2=0

Contour or isoresponse lines are parallel to the X2-axis. The response surface in
Fig. 3.2 is defined by the regression model y

_ ¼ 90X1 þ 80X2 þ 80X3 . It is evident
that the regression coefficients for components X2 and X3 are equal (b2=b3) and that
there are no response changes in the directions of response isolines for
X2+X3=const.

Example 3.2
Regression coefficients in the regression model y

_ ¼ 80X1 þ 90X2 þ 90X3 þ 100X4

are:

b2=b3; b2=(b1+b3+b4)/3; b3=(b1+b2+b4)/3
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Preliminary analysis shows that in this case the mixture has components that
have the same but statistically insignificant effects. Effects of components X1 and
X4, are significant, while effects of components X2 and X3 are equal and insignifi-
cant. In Example 3.5, where a mixture of eight components is analyzed, there exist
separately components with no effects and components with equal effects. The
effect of component Xi may be analyzed more generally than the definition given by
Eq. (3.4). Let us observe a matrix with components that have limitations in variation:
0£ai£Xi£bi£1 Variation effects of components in such situations are defined by this
expression:

Ei ¼ Ri b
i
� q� 1ð Þ�1P

i 6¼j

b
j

" #
(3.5)

where:
Ri=bi-ai.

Cox [3] has in his work developed a different expression for the effect of compo-
nent Xi in a linear model:

Ei ¼ Ri
1

1�si

 !
b
i
�
Pq
i¼j

b
j
sj

 !
(3.6)

It should be noted that Cox¢s approach explicitly defines the standard-referential
mixture or standard referential composition.

Hence, in expression (3.6): s=(s1, s2 ,...,sq ) is the referential composition. If refer-
ential composition is in the simplex centroid, then s1=...=sq=1/q, so that expression
(3.6) is transformed into expression (3.5). Actually, all referential compositions lying
on an axis of the i-th component (except those in the vertex where si=1) will have Ei

effects as defined by expression (3.5) and will be measured in the direction parallel
to the axis of the i-th component, or normal to the simplex basis opposite of the i-th
vertex. That is, the effect of component Xi is measured normally to the local space of
the remaining components. It should be pointed out that in the case of variations of
component ratios with no limitations, the effect of component Xi is determined par-
allel to the Xi-axis, orthogonally for the local factor space of the remaining compo-
nents. The simplex centroid has a unique meaning as it is the point that lies on all
the axes or components. It should also be noted that directions in which effects are
determined do not depend on component transformations into pseudo-components,
or vice versa. Referential compositions outside the simplex centroid have Ei effects
that are determined in the direction of the line passing through the vertex of pure Xi

but not parallel to the i-th component or axis. Such a direction, for example, suits
the determining of the effect for component Xi that has been physically added to the
existing referential composition, which has fixed quantities of other components. In
Figs. 3.1 and 3.2 coefficient contrasts are absolutely equal to zero, so that there is no
doubt that the response is constant in the associated directions. This is not the case
in practice, so that a statistical procedure is defined to establish which of the con-
trasts is statistically significantly different from zero. Contrasts in the matrix form
may be marked in this way Cb, so that the variance of linear contrast of regression
coefficients is:
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VðCbÞ ¼ r
2
CðX 0

XÞ�1
C
0

(3.7)

where:
r

2
-is error variance;

C-is coefficient vector that defines the contrast;
X-is matrix (n�q) of component ratios;
r

2
XXð Þ

�1

-is the variance of the covariance matrix of regression coefficients.

Example 3.3 [4]
Vector C for contrast b2-(b1+b3)/2 has this form: C=(-0.5; 1; -0.5). Null hypothesis
H0: Cb=0 is tested by Students t-test:

t ¼ Cb=
�
r
2
CðX 0

XÞ�1
C

0�0:5
(3.8)

where degree of freedom corresponds to variance r2.
For each interesting contrast, one can do the given test, and regressionmodel can be

reduced in accord with its results. F-test for a difference between residual mean sum of
squares of a full and reduced regression model is also possible. Error variance or repro-
ducibility variance may also be determined as before, from replicate design points or
from previous experiments. It should be stressed that the analyzed statistical testing is
secondary in screening experiments of the “mixture” type, and that the primary thing is
the ranking of effects or component regression coefficients.

3.1.1
Simplex Lattice Screening Designs

The efficiency of screening experiment designs depends on the form of experi-
mental domain. If this domain suits a total simplex (0£X£1; i=1, 2,..., q), then
a design of experiments with (2q+1) design points-trials is recommended. In that
case design of experiments includes q-pure components (Xi=1.0), of centroid sim-
plex (Xi ¼ q

�1
for all i=1, 2,..., q) and q-internal points with coordinates:

2qð Þ�1
; 2qð Þ�1

; :::; qþ 1ð Þ=2q; :::; 2qð Þ�1
h i

.

It should be said that q-responses of pure components makes determination of
regression coefficients of linear model possible, while q-internal and central points
serve to estimate the nonlinearity of the response surface. It is useful to include in
the mentioned designs of experiments q-points of "null effects" in this form:

q� 1ð Þ�1
; q� 1ð Þ�1

; :::; 0; :::; q� 1ð Þ�1
h i
Null effects are included in situations when it is expected that absence of a com-

ponent may have a strong effect on the response level. Designs of experiments,
which include null effects have (3q+1) design points-trials. Such designs belong to
simplex lattice screening designs and should not be mixed up with scheffe simplex lattice
designs [5] and simplex centroid designs [6], which have considerably more trials (for
q>5) and facilitate the fitting of more complicated models. As is known, simplex
screening designs contain four groups of trials, here given in Table 3.1.
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Mark Name Number Composition
A Vertex q Xi ¼ 1;Xj ¼ 0; each j 6¼ i
B Internal q Xi ¼ qþ 1ð Þ=2q;Xj ¼ 2qð Þ�1

; each j 6¼ i
C Centroid 1 Xi ¼ q

�1
; each i

D null effects q Xi ¼ 0;Xj ¼ q� 1ð Þ�1
; each j 6¼ i

Table 3.1 Simplex screening designs

Name Design matrix

Code Group No. trials X1 X2 . . . Xq

A Vertex 1 1 0 . . . 0

2 0 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
Q 0 0 . . . 1

B Internal 1 (q+1)/2q 1/2q . . . 1/2q
2 1/2q (q+1)/2q . . . 1/2q
. . . . . . .
. . . . . . .
. . . . . . .
Q 1/2q 1/2q . . . (q+1)/2q

C Centroid 1 q-1 q-1 . . . q-1

D Null effects 1 0 (q-1)-1 . . . (q-1)-1

2 (q-1)-1 0 . . . (q-1)-1

. . . . . . .

. . . . . . .

. . . . . . .
Q (q-1)-1 (q-1)-1 . . . 0

Graphic analysis of simplex screening experiments
Graphic analysis of simplex screening designs is brought down to the graphic pre-
sentation of response in the direction of each axis or component. When a design of
experiments has all four groups of trials, then on each axis there are four composi-
tions-mixtures. An example of graphic analysis of a three-component composition
of a rocket propellant is given in the work of Kurotori [7] in Fig. 3.3.

The elasticity of a rocket propellant was measured as the system response. An
analysis of Fig. 3.3 indicates that all three components of the composition have large
effects and that the response surface is greatly curved or nonlinear. Besides, the
greatest response values were obtained close to the centroid. Large response values
also occurred for lower X1 levels and for X3 values between 0.33 and 0.67. Graphic
interpretation of the simplex screening experiment may be compared to the
response surface contour plots of the same example, Fig. 3.4.
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Figure 3.4 Response for a three-component composition of
rocket propellant

It is evident that graphic interpretation of the simplex screening experiment
offers a robust idea about the form of the response surface. It is therefore not recom-
mended to replace the response surface contour plot with a graphic interpretation of
the simplex screening experiment.

Example 3.4
A simplex screening experiment was done for selection of a ten-component compo-
sition of petrol. The outcomes of the experiment are given in Table 3.2. All four
groups of design points have been included in this ten-component design of experi-
ments. The design included 3�10+1 trials or 31 mixtures. Values of linear regression
coefficients and of effects are given in Table 3.2. Graphic interpretation of this ten-
component simplex screening experiment is shown in Fig. 3.5.
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Table 3.2 Simplex screening experiment q=10

Components Composition Regression coefficients

No. Code Null effects Internal Vertex bi Ei (Eq. 3.4)

1 LSR 80.9 74.3 66.6 67.5 -13.1

2 REFA 79.4 81.4 81.8 82.5 3.6

3 REFB 79.0 82.2 84.5 85.0 6.4

4 LLCC 79.3 80.8 80.9 81.5 2.5

5 LHCCA 79.7 78.3 76.2 76.8 -2.7

6 LHCCB 79.7 78.5 76.2 76.9 -2.6

7 HLCC 79.3 80.9 81.3 81.9 2.9

8 HHCCA 79.6 78.6 78.1 78.4 -0.9

9 HHCCB 79.6 78.8 78.3 78.7 -0.7

10 POLY 78.7 82.0 82.5 83.3 4.5

95% Confidence interval –1.1 –1.2

Response or property of mixture in centroid is 79.4

Analysis of Fig. 3.5 may bring us to several conclusions:

. Component No. 1, has a great negative effect. Components No. 5, 6, 8, 9 also
have negative effects, while components 2, 3, 4, 7 and 10 have positive effects.

. Components 5 and 6, 8 and 9, 4 and 7 and 2 and 10 behave similarly in mix-
tures. This behavior corresponds to the physical essence of components.
There are only minor differences in production of the mentioned compo-
nents.
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. Components 2, 4, 7, 8 and 9 have the lowest effects on the octane number of
petrol.

. The response surface of the petrol octane number has small nonlinearity.

. With an increase in number of components q, the centroid is shifted towards
the null-effect points Xi ¼ 0;Xj ¼ q� 1ð Þ

�1
; j 6¼ i

h i
, and internal points

move away from the vertex.

It should be pointed out that to obtain a second-order model we have to do 66
trials, or 10 with pure components, 45 of binary composition, 10 internal points and
one centroid point. However, the 21 compositions out of 31 mixtures from a screen-
ing experiment are simultaneously a part of the design of 66 design points for a sec-
ond-order model. This shows that even in mixture experiments we may deal with
the principle of upgrading/augmenting a design of experiments.

3.1.2
Extreme Vertices Screening Designs

A large number of “mixture” problems has limitations on component ratios:

0£ai£Xi£bi£1; i=1.2,...,q (3.9)

Apart from the mentioned limitations, one may even meet a multiple limitation
of this form:

Cj � A1jX1 þ A2jX2 þ :::þ AqjXq � dj (3.10)

Limitations (3.2); (3.9) and (3.10), geometrically form a hyperpolyhedron in factor
space. The design of experiments for a linear model, according to Elfving [8] actually
contains a definite number of hyperpolyhedron vertices. Due to the complicated pro-
cedure and criteria, which are used to define vertices-design points, XVERT algo-
rithms [9] are nowadays used as software packages for computers. Similar to previous
chapter, in order to check nonlinearity of the response surface, a point in the center of
experiment or a centroid is included in a design of experiments. The XVERTalgorithm
defines extreme vertices of a design of experiments matrix in this way:

a) Rank the components according to the growth of rank (bi-ai ):X1 has the low-
est and Xq the highest rank;

b) Define a two-level design of experiments with upper and lower limits of q-1
components with the lowest rank;

c) Calculate the level-ratio of the q-th component:

Xq ¼ 1:0�
Pq�1

i¼1

Xi

d) A level is extreme if aq£Xq£bq. For vertices outside limitations for Xq take the
value of upper or lower limits or the value, which is closer to the calculated
value.

e) For each vertex the outside limitations define additional vertices (max.=q-1)
with an adjustment of levels of associated components Xq-1 by adding up calcu-
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lated differences of the value Xq and the adopted upper or lower limitation,
respectively. Additional vertices are defined only for the components whose
adjusted levels remain inside component limitations.

This kind of algorithm defines 2q-1 vertices-trials, whereby each vertex generates
at most q-1 additional vertices, so that, total possible number of design points is
2q-1+(q-1)2q-1. A vertex is not generated when levels of just one component are out-
side limitations. Repeated vertices are dropped in calculations. A repeated vertex
may appear only when the last component Xq takes the highest (bq) or lowest (aq)
level. Vertices of a two-level design of experiments are a subgroup of extreme ver-
tices, obtained from the design 2q-1 thus:

a) Calculate Xq levels for all vertices.
b) All vertices for which aq £Xq £bq , form the design core.
c) Each vertex for which the Xq level is adjusted generates additional vertices

that form the candidate subgroup.
d) Design of experiment consists of the core and one vertex from each candidate

subgroup. In a given subgroup, the vertex that enters the best design of
experiments is defined in the way that it represents all the possible combina-
tions of the core vertex and one vertex from each subgroup. If ni is the num-
ber of vertices in the i-th subgroup, then the number of possible designs of

experiments is equal to
Qk
i¼1

ni where k-is number of subgroups.

Example 3.5 [9]
To begin with, we can analyze a three-component composition with these limitations
on components:

0.1£C1£0.7;b1-a1=0.6;0.0£C2£0.7;b2-a2=0.7; 0.1£C3£0.6; b3-a3=0.5.

Ranking or sequence of components due to growth of rank is shown in Table 3.3.

Table 3.3 Components with limitations

Components Minimum
ai

Maximum
bi

Rank
bi-ai

X1=C3 0.1 0.6 0.5

X2=C1 0.1 0.7 0.6

X3=C2 0.0 0.7 0.7

Vertices of design core correspond to 2
q�1 ¼ 2

3�1 ¼ 2
2
full factorial design where

upper and lower levels correspond to limitations of q-1 factors. Component levels
Xq=X3 are determined thus:

X3 ¼ 1:0�
Pq�1

i¼1

Xi ¼ 1:0� X1 � X2 Vertices are defined by these ratios of compo-

nents in Table 3.4.
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Vertices B and C have X3 =0.3 and 0.2, respectively. These values are within limita-
tions 0.0:0.7, for component of X3. However, X3 component levels in vertices A and
D (X3=0.8 and -0.3) are outside the limiting interval. Vertices A and D have to be
adjusted to satisfy limitations of X3. The component level of X3 for vertex A should
be reduced by 0.1 to obtain a value of 0.7, which is the upper limit of the value. The
component level of X3 for vertex D has to be increased by 0.3 to obtain the value of
0.0. Components X1 and X2 for both vertices have to be corrected to compensate for
the changes of X3. Results of corrections are given in Table 3.5. According to the
XVERT algorithm we obtained two additional vertices for A and D, which total six
extreme vertices, as shown in Fig. 3.6.

Table 3.4 Design of experiments matrix

Vertex X1 X2 X3

A 0.1 0.1 0.8

B 0.6 0.1 0.3

C 0.1 0.7 0.2

D 0.6 0.7 -0.3

Table 3.5 Corrected levels

Vertices X1 X2 X3 Correction

A 0.1 0.1 0.8

A1 0.1 0.2 0.7 +0.1

A2 0.2 0.1 0.7 +0.1

D 0.6 0.7 -0.3

D1 0.6 0.4 0 -0.3

D2 0.3 0.7 0 -0.3

Table 3.6 Ratios of components

Vertices Vertex mark X1 X2 X3

B 1 0.6 0.1 0.3

C 2 0.1 0.7 0.2

A1 3 0.1 0.2 0.7

A2 4 0.2 0.1 0.7

D1 5 0.6 0.4 0.0

D2 6 0.3 0.7 0.0
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Figure 3.6 Three-component extreme vertices screening experi-
ment

To obtain a design of experiment with four trials-vertices, two candidate sub-
groups with two vertices each have been generated for A and D vertices, Table 3.6.
The design of experiment consists of these vertices 1, 2, (3 or 4) and (5 or 6). Out of
four possible vertex combinations, statistically the most efficient is the design of
experiment with these vertices-trials 1; 2; 3 and 5.

Example 3.6 [10]
A four-component example is the subject of analysis due to a small number of
extreme vertices and the possibility to present all the possible designs of experi-
ments. Limitations for the four mentioned components are as follows:

0.00£X1 £0.04; b1-a1=0.04; 0.00£X2£0.10; b2-a2=0.10;
0.40£X3£0.55; b3-a3=0.15; 0.40£X4£0.60; b4-a4=0.20.

The ratios of components both for 10 extreme vertices and for designs of experi-
ments n=4 and 8 are given in Tables 3.7 and 3.8. Levels or ratios of components X1,
X2 and X3 in the design of experiment n=4 are generated from a fractional design
23-1 with generating ratio X3=X1X2, Table 3.9.

The calculated level values for X4 are within limitations for the first three design
points. Design point D may be adjusted in two ways (by reducing X3 for 0.09 and
increasing X4 for 0.09 or by reducing X2 for 0.09 and increasing X4 for 0.09), so that
two designs of experiments are possible: design with vertices 2, 3, 5 and 8 or design
with vertices 2, 3, 5 and 10. Levels or ratios of components X1, X2 and X3 in a design
of experiments with 8 trials are generated from FUFE 23. In this approach two
design points have X4 outside limitations. Each design point may be adjusted in two
ways so that 2 � 2=4 designs of experiments may be formed.

Table 3.8 shows that designs of experiments generated by XVERT software are sta-
tistically more efficient than CADEX designs.
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Table 3.7 Extreme vertices

Vertices X1 X2 X3 X4

1 0.00 0.00 0.40 0.60

2 0.00 0.10 0.40 0.50

3 0.04 0.00 0.40 0.56

4 0.04 0.10 0.40 0.46

5 0.00 0.00 0.55 0.45

6 0.04 0.00 0.55 0.41

7 0.00 0.10 0.50 0.40

8 0.04 0.10 0.46 0.40

9 0.00 0.05 0.55 0.40

10 0.04 0.01 0.55 0.40

Table 3.8 Designs of experiment

n Algorithm Vertices G-efficiency

4 All combinations 1,4,6,7 81

XVERT 2,3,5,8 62
CADEX 1,2,8,9 28

8 All combinations 1,2,3,4,5,6,7,8 88
XVERT 1,2,3,4,5,6,7,8 88
CADEX 1,2,3,5,6,7,8,9 72

CADEX-software for generating designs [10]

Example 3.7
To do a selection of components in a petrol composition, define the matrix of the
extreme vertices screening design. The composition of petrol is made of five compo-
nents with these:

0.00£X1£0.10; b1-a1=0.10; 0.00£X2£0.10; b2-a2=0.10 0.05£X3£0.15;
b3-a3=0.10; 0.20£X4£0.40; b4-a4=0.20 0.40£X5£0.60; b5-a5=0.20

Table 3.9 Design of experiment n=4

Trials Vertex X1 X2 X3 X4

A 5 0.0 0.0 0.55 0.45

B 3 0.04 0.0 0.40 0.56

C 2 0.0 0.10 0.40 0.50

D 0.04 0.10 0.55 –

D1 8 0.04 0.10 0.46 0.40

D2 10 0.04 0.01 0.55 0.40
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Earlier research proved that the linear regression model adequately describes the
octane number as a function of component ratio. According to XVERT algorithm,
design core and candidate subgroups are shown in Table 3.10.

It is interesting to note that the XVERT algorithm includes in a design of experi-
ment the first two points from candidate groups. The linear regression model has
this form:

y
_ ¼ 102:4X1 þ 100:7X2 þ 85:2X3 þ 84:7X4 þ 97:6X5

To use designs that generate the XVERT algorithm in practice, consult Table 3.11.

Table 3.10 Design of experiment q=5

Vertices groups Vertices X1 X2 X3 X4 X5 y

Design core 1 0.10 0.10 0.05 0.20 0.55 95.1

2 0.10 0.00 0.15 0.20 0.55 93.4
3 0.00 0.10 0.15 0.20 0.55 93.3
4 0.10 0.10 0.15 0.20 0.45 94.1
5 0.00 0.00 0.05 0.40 0.55 91.8
6 0.10 0.00 0.05 0.40 0.45 91.8

7 0.00 0.10 0.05 0.40 0.45 92.5
8 0.00 0.00 0.15 0.40 0.45 90.5
9 0.00 0.00 0.05 0.35 0.60 92.7
10 0.10 0.10 0.15 0.25 0.40 93.5

Candidate subgroups

1 11 0.10 0.00 0.05 0.25 0.60 94.8

12 0.10 0.00 0.10 0.20 0.60 –
13 0.10 0.05 0.05 0.20 0.60 –

2 14 0.00 0.10 0.05 0.25 0.60 93.7
15 0.00 0.10 0.10 0.20 0.60 –
16 0.05 0.10 0.05 0.20 0.60 –

3 17 0.00 0.00 0.15 0.25 0.60 92.5
18 0.00 0.05 0.15 0.20 0.60 –
19 0.05 0.00 0.15 0.20 0.60 –

4 20 0.10 0.10 0.05 0.35 0.40 93.1
21 0.10 0.05 0.05 0.40 0.40 –
22 0.05 0.10 0.05 0.40 0.40 –

5 23 0.10 0.00 0.15 0.35 0.40 91.8
24 0.10 0.00 0.10 0.40 0.40 –
25 0.05 0.00 0.15 0.40 0.40 –

6 26 0.00 0.10 0.15 0.35 0.40 91.6
27 0.00 0.10 0.10 0.40 0.40 –
28 0.00 0.05 0.15 0.40 0.40 –
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Table 3.11 Design of experiments by XVERTalgorithm

Mark q N n G-efficiency

A 4 10 4 62

8 84

B 5 20 8 84

11 77
16 88

C 5 28 8 83

12 71
12 63
16 95

D 6 49 8 78

12 79
16 82
16 79
20 77

E 6 60 7 84

7 84
11 79
19 78
19 78

F 6 36 9 59

9 60
11 51
11 52
14 77
14 64

G 7 109 8 76

12 70
12 77
16 69
16 71

Example 3.8
In developing a new eight-component, product criteria of the economy demand that
the composition should include these four components: X1, X2, X5 and X6. The
effects of the other four components are unknown. Limitations of components are
these:

0.10<X1<0.45; 0.05<X2<0.50; 0.00<X3<0.10; 0<X4<0.10;
0.10<X5<0.60; 0.05<X6<0.20; 0.00<X7<0.05; 0<X8<0.05.

The design of the experiment with outcomes is given in Table 3.12.
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Table 3.12 Extreme vertices screening design

Trials X1 X2 X3 X4 X5 X6 X7 X8 y

1 0.100 0.50 0.00 0.00 0.10 0.20 0.05 0.05 30

2 0.100 0.05 0.00 0.00 0.55 0.20 0.05 0.05 113

3 0.100 0.50 0.00 0.10 0.10 0.20 0.00 0.00 17

4 0.150 0.05 0.00 0.10 0.60 0.05 0.05 0.00 94

5 0.100 0.05 0.10 0.00 0.55 0.20 0.00 0.00 89

6 0.100 0.50 0.10 0.10 0.10 0.05 0.00 0.05 18

7 0.100 0.05 0.10 0.10 0.55 0.05 0.00 0.05 90

8 0.400 0.05 0.10 0.10 0.10 0.20 0.05 0.00 20

9 0.350 0.05 0.10 0.10 0.10 0.20 0.05 0.05 21

10 0.300 0.50 0.00 0.00 0.10 0.05 0.00 0.05 15

11 0.100 0.50 0.10 0.00 0.20 0.05 0.05 0.00 28

12 0.450 0.05 0.00 0.00 0.45 0.05 0.00 0.00 48

13 0.450 0.20 0.00 0.10 0.10 0.05 0.05 0.05 18

14 0.450 0.15 0.00 0.10 0.10 0.20 0.00 0.00 7

15 0.450 0.25 0.10 0.00 0.10 0.05 0.05 0.00 16

16 0.450 0.10 0.10 0.00 0.10 0.20 0.00 0.05 19

17 0.259 0.222 0.05 0.05 0.244 0.125 0.025 0.025 38

18 0.259 0.222 0.05 0.05 0.244 0.125 0.025 0.025 30

19 0.259 0.222 0.05 0.05 0.244 0.125 0.025 0.025 35

20 0.259 0.222 0.05 0.05 0.244 0.125 0.025 0.025 40

* chosen conditions for central points 17–20 are average levels of the
previous 16 design points

Regression coefficients of linear model have these values:

b1=-33.3; b2=-10.3; b3=-2.7; b4=-19.7; b5=150.4; b6=-46.6; b7=165.5; b8=188.6.

It is evident that the effects of components X1, X2, X3, X4 and X6 are negative, and
those of components X5, X7 and X8 positive. By their size, the effects of components
have this sequence: X5, X1, X2, X4, X8. Components X3, X6 and X7 have small effects.
It has been said that for reasons of economy, the composition of the product should
include components X1, X2, X5 and X6. Since by the definition of a research objec-
tive, one should increase response y, it is necessary to exclude components X3 and
X4 from the composition and keep components X1, X2 on lower levels. An analysis
of regression coefficients shows that one can establish these approximate relations:

b1=b4; b2=b3; b5=b7=b8

Such approximate relations suggest modeling the system as a three-component
mixture.

Z1=(X1+X4)/(1-X6);
Z2=(X2+X3)/(1-X6);
Z3=(X5+X7+X8)/(1-X6).
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3.2
Simplex Lattice Design

When studying the properties of a q-component mixture, which are dependent on
the component ratio only, the factor space is a regular, (q-1) simplex, and for the
mixture the relationship holds

Pq
i¼1

Xi ¼ 1; 0 � Xi � 1 (3.10a)

where
Xi-is the component concentration-ratio-productions, and
q-is the number of components in the mixture.

For binary systems, (q=2) the simplex of dimension 1 is a straight line-segment. For
q=3, the regular 2-simplex is an equilateral triangle with its interior. Each point in the
triangle corresponds to a certain composition of the ternary system, and conversely each
composition is presented by one distinct point. The composition may be expressed as a
molar, weight, or volume fraction or a percentage. Vertices of the triangle represent pure
substances, and the sides represent binary mixtures. If we draw an altitude from each
vertex, then dissect each altitude into ten equal segments and draw through the division
points straight lines parallel to the triangle sides, we shall have a triangular network-sim-
plex lattice. Approaching from a side to the opposite vertex corresponds to the propor-
tional increasing in content of the “vertex” component, therefore the sequential transfer
from one parallel line of two components to another signifies the growth of a third com-
ponent by 10 per cent, Fig. 3.7. In actual practice though, no altitudes are drawn, instead
the component contents are marked off directly on the triangle sides. Such amethod of
counting is adopted inGibbs’s triangle. InRozebum’s triangle, the composition of a tern-
ary system is read from three segments of one, Fig. 3.8.
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Figure 3.7 Gibbs’s concentration triangle
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Figure 3.8 Rozebum’s concentration triangle

In the concentration triangle, points lying on a straight line originating from a
vertex correspond to mixtures with a constant ratio of components represented by
the other two vertices. The property (y) is normally thought of as projections of lines
of constant value on the plane of the concentration triangle.

At q=4, the regular simplex is a tetrahedron where each vertex represents a
straight component, an edge represents a binary system, and a face a ternary one.
Points inside the tetrahedron correspond to quaternary systems.

It is known that to construct multicomponent mixture diagrams we have, as a
rule, to do a large number of experiments. Scheffe [5] suggested in 1958 that to solve
such problems we should use some properties of geometric figures that are gener-
ally used, as demonstrated, to illustrate mixture compositions. Kurnakov [11] has
also demonstrated that a composition of a q-dimensional mixture may be given by a
q-1 dimensional simplex. It is also known [11] that to each phase or a complex of
phases, which are in balance in such a system, corresponds a definite geometric
interpretation or function (principle of coincidence) whereby the function is contin-
uous (principle of continuity). It is also clear that any continuous function may be
approximated or developed into Taylor’s order. Hence, a change in property of a mix-
ture may be expressed by a polynomial of definite degree, by way of independent
variables X1, X2,...,Xq where Xi is the ratio of the i-th component in the mixture. A
polynomial of n-th degree with q variables has

n
qþn
� �

coefficients:

y
_ ¼ b0 þ

P
1�i�q

biXi þ
P

1�i�j�q

bijXiXj þ
P

1�i�j�k�q

bijkXiXjXk þ :::

þ
P

bi1;i2;:::;inXi1Xi2 :::Xin

(3.11)

482



3.2 Simplex Lattice Design

Scheffe [5] suggested to describe mixture properties by reduced polynomials obtain-
able from Eq. (3.11), which is subject to the normalization condition of Eq. (3.2) for
a sum of independent variables. We shall demonstrate below how, for instance, such
a reduced second-degree polynomial is derived for a ternary system. The polynomial
has the general form:

y
_ ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ b11X

2
1 þ b22X

2
2

þb33X
2
3 (3.12)

Since:

X1+X2+X3=1 (3.13)

We have:

b0X1+b0X2+b0X3=b0 (3.14)

Multiplying Eq. (3.13) by X1, X2 and X3 in succession gives:

X
2
1 ¼ X1 � X1X2 � X1X3

X
2
2 ¼ X2 � X1X2 � X2X3

X
2
3 ¼ X3 � X1X3 � X2X3

(3.15)

Substituting Eqs. (3.14) and (3.15) into (3.12), we obtain after necessary transfor-
mations:

y
_ ¼ ðb0 þ b1 þ b11ÞX1 þ ðb0 þ b2 þ b22ÞX2 þ ðb0 þ b3 þ b33ÞX3

þðb12 � b11 � b22ÞX1X2 þþðb13 � b11 � b33ÞX1X3 þ ðb23 � b22 � b33ÞX2X3

(3.16)

We denote

b
i
¼ b0 þ bi þ bii ; bij ¼ bij � bii � bjj (3.17)

Then we arrive at the reduced second-degree polynomial in three variables:

y
_ ¼ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 (3.18)

Thus the number of coefficients has decreased from ten to six. In a general case
for a q-component system different degrees of regression models have these forms:

a) Linear regression model:

y
_ ¼

P
1�i�q

b
i
Xi (3.19)

b) Square regression model:

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj (3.20)

c) Incomplete cube regression model:

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j��q

b
ij
XiXj þ

P
1�i�j�k�q

b
ijk
XiXjXk (3.21)

483



III Mixture Design “Composition-Property”

d) Complete cube regression model:

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�q

c
ij
XiXjðXi � XjÞ

þ
P

1�i�j�k�q

b
ijk
XiXjXk (3.22)

e) Four-degree regression model:

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�q

c
ij
XiXjðXi � XjÞ

þ
P

1�i�j�q

dijXiXjðXi � XjÞ
2 þ

P
1�i�j�k�q

b
iijk
X

2
i XjXk þ

P
1�i�j�k�q

b
ijjk
XiX

2
j Xk

þ
P

�i�j�k�q

b
ijkk

XiXjX
2
k þ

P
1�i�j�k�‘�q

b
ijk‘

XiXjXkX‘ (3.23)

3.3
Scheffe Simplex Lattice Design

The most frequently used mixture-"composition-property” designs of experiments
belong to simplex-lattice designs suggested by Scheffe [5]. The basis of this kind of
designing experiments is a uniform scatter of experimental points on the so-called
simplex lattice. Points, or design points form a [q,n] lattice in a (q-1) simplex, where
q is the number of components in a composition and n is the degree of a polyno-
mial. For each component there exist (n+1) similar levels Xi=0,1/n,2/n,...,1 and all
possible combinations are derived with such values of component concentrations.
So, for instance, for the quadratic lattice [q,2] approximating the response surface
with second-degree polynomials (n=2) the following levels of every factor must be
used: 0, 1/2 and 1; for the cubic (n=3): 0, 1/3, 2/3 and 1, etc. Number of design
points to be performed for obtaining a definite order for a definite number of com-
ponents is shown in Table 3.13. Some of [3,n] and [4,n] lattices are depicted in Figs.
3.9 and 3.10.

Table 3.13 Number of design points of simplex lattice designs

Number of
components

Polynome degree

2 Incomplete
3

3 4

3 6 7 10 15

4 10 14 20 35

5 15 25 35 70

6 21 41 56 126

8 36 92 120 330

10 55 175 220 715
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Figure 3.9 f3,ng-lattices: a) for a second-degree polynomial, b)
for an incomplete-third-degree polynomial, c) for a third-degree
polynomial, d) for a fourth-degree polynomial

When using simplex lattice designs, we apply the principle of upgrading/aug-
menting, which was analyzed in previous chapters. An increase in polynomial
degree is achieved in a standard way after checking lack of fit of the obtained regres-
sion model. The rule is known: the higher the polynomial degree, the greater the
number of design points in a design of experiments matrix. The required number
of design points is calculated from this expression:

N ¼ Nþq�1ð Þ!
n! q�1ð Þ (3.24)

where:
n-is polynomial degree,
q-is number of components.
Results of such calculations are given in Table 3.13. To obtain a linear regression

model, one has to do three design points in simplex vertices. To check lack of fit of
the model, one has to do an additional design point in the simplex center. The
design of the experiment is given in Table 3.14.
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Figure 3.10 f4,ng-lattices: a) for a second-degree polynomial, b) for an
incomplete-third-degree polynomial, c) for a third-degree polynomial,
d) for a fourth-degree polynomial

Table 3.14 Simplex lattice design {3,1}

N X1 X2 X3 y

1 1 0 0 y1

2 0 1 0 y2

3 0 0 1 y3

4* 1/3 1/3 1/3 y123

*-Control point

As one may conclude from the above table, subscripts of the mixture property-
response symbols indicate the relative proportion of each of the components in the
mixture. For example, the mixture 1 (Table 3.14) contains the component X1 alone,
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3.3 Scheffe Simplex Lattice Design

the property-response of this mixture is denoted by y1, mixture 4 includes (1/3)X1,
(1/3)X2 and (1/3)X3, the property being designated as y123. The design matrix for the
simplex lattice f3.3g is shown in the tables below.

Table 3.15 Simplex lattice design {3;2}

No. of trials-N X1 X2 X3 y

1 1 0 0 y1

2 0 1 0 y2

3 0 0 1 y3

4 0.5 0.5 0 y12

5 0.5 0 0.5 y13

6 0 0.5 0.5 y23
7* 1/3 1/3 1/3 y123

Table 3.16 Simplex lattice design {3;3}

No. of trials-N X1 X2 X3 y

1 1 0 0 y1

2 0 1 0 y2

3 0 0 1 y3

4 2/3 1/3 0 y112

5 1/3 2/3 0 y122

6 0 2/3 1/3 y223

7 0 1/3 2/3 y233

8 2/3 0 1/3 y113

9 1/3 0 2/3 y133

10 1/3 1/3 1/3 y123

The number of trials of simplex lattice designs, which depend on the number of
components and the degree of regression model, is given Table 3.18.
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III Mixture Design “Composition-Property”

Table 3.17 Simplex lattice design {3;4}

No. trials X1 X2 X3 y

1 1 0 0 y1

2 0 1 0 y2

3 0 0 1 y3

4 1/2 1/2 0 y12

5 1/2 0 1/2 y13

6 0 1/2 1/2 y23

7 3/4 1/4 0 y1112

8 1/4 3/4 0 y1222

9 3/4 0 1/4 y1113

10 1/4 0 3/4 y1333

11 0 3/4 1/4 y2223

12 0 1/4 3/4 y2333

13 1/2 1/4 1/4 y1123

14 1/4 1/2 1/4 y1223

15 1/4 1/4 1/2 y1233

16* 1/3 1/3 1/3 y123

Table 3.18 Number of design points of simplex lattice designs

Regression model Response
subscripts

Number of components in mixture

3 4 5 6 7

Second degree i 3 4 5 6 7

ij 3 6 10 15 21

Incomplete third degree i 3 4 5 6 7
ij 3 6 10 15 21
ijk 1 4 10 20 35

Third degree i 3 4 5 6 7
iij 6 12 20 30 42

ijk 1 4 10 20 35

Fourth i 3 4 5 6 7
ij 3 6 10 15 21
iiij 6 12 20 30 42
ijkl - 1 5 15 35

iijk 3 12 30 60 105

Coefficients of regression equations are determined from experimental outcomes
in very simple relations. For example, a second degree regression model (3.18) for
the case X1=1; X2=0 and X3=0 is brought down to y1=b1. We get y2=b2 and y3=b3 in
the same way. For X1=1/2; X2=1/2 and X3=0 we get:
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3.3 Scheffe Simplex Lattice Design

y12 ¼ 1=2b1 þ 1=2b2 þ 1=4b12 ) b12 ¼ 4y12 � 2y1 � 2y2 ; b13 ¼ 4y13 � 2y1 � 2y3 ;

b23 ¼ 4y23 � 2y2 � 2y3

In a general case for a q-component system, second-order regression coefficients
(3.20) are calculated by these relations:

bi=yi ; bij=4yij-2yi-2yj

Regression coefficients in other regression models are determined in a similar
way:

a) Linear regression model

y
_ ¼

P
1�i�q

b
i
Xi

b
i
¼ yi (3.25)

b) Second-degree regression model

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj

b
i
¼ yi

b
ij
¼ 4yij � 2yi � 2yj

(3.26)

c) Incomplete third-degree regression model

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�k�q

b
ijk
XiXjXk

b
i
¼ yi

b
ij
¼ 4yij � 2yi � 2yj

b
ijk

¼ 27yijk � 12ðyij þ yik þ yjkÞ þ 3ðyi þ yj þ ykÞ
(3.27)

d) Complete third-degree regression model

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�q

c
ij
XiXjðXi � XjÞ þ

P
1�i�j�q

b
ijk
XiXjXk

b
i
¼ yi

b
ij
¼ 9=4 yiij þ yijj � yi � yj

� �
c
ij
¼ 9=4 3yiij � 3yijj � yi þ yj

� �
b
ijk

¼ 27yijk � 27=4 yiij þ yijj þ yiik þ yikk þ yjjk þ yjkk

� �
þ 9=2 yi þ yj þ yk

� �
(3.28)

489



III Mixture Design “Composition-Property”

e) Fourth-degree regression model

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XjXi þ

P
1�i�j�q

c
ij
XiXj Xi � Xj

� �

þ
P

1�i�j�q

dijXiXj Xi � Xj

� �2
þ

P
1�i�j�k�q

b
iijk
X

2
i XjXk þ

P
1�i�j�k�q

b
ijjk
XiX

2
j Xk

þ
P

1�i�j�k�q

b
ijkk

XiXjX
2
k þ

P
1�i�j�k�‘�q

b
ijk‘

XiXjXkX‘ (3.29)

b
i
¼ yi

b
ij
¼ 4yij � 2yi � 2yj

c
ij
¼ 8=3ð Þ �yi þ 2yiiij � 2yijjj þ yj

� �
dij ¼ 8=3ð Þ �yi þ 4yiiij � 6yij þ 4yijjj � yj

� �
b
iijk

¼ 32 3yiijk � yijjk � yijkk

� �
þ 8=3ð Þ 6yi � yj � yk

� �
� 16 yij þ yik

� �
� 16=3ð Þ 5yiiij þ 5yiiik � 3yijjj � 3yikkk � yjjjk � yjkkk

� �
b
ijjk

¼ 32 3yijjk � yiijk � yijkk

� �
þ 8=3ð Þ 6yj � yi � yk

� �
� 16 yij þ yjk

� �
� 16=3ð Þ 5yijjj þ 5yjjjk � 3yiiij � 3yjkkk � yiiik � yikkk

� �
b
ijjk

¼ 32 3yijkk � yiijk � yijjk

� �
þ 8=3ð Þ 6yk � yi � yj

� �
� 16 yik þ yjk

� �
� 16=3ð Þ 5yikkk þ 5yjkkk � 3yiiik � 3yjjjk � yiiij � yijjj

� �
b
ijk‘

¼ 256yijk‘ � 32 yiijk þ yiij‘ þ yiik‘ þ yijjk þ yijj‘ þ yjjk‘ þ yijkk þ yikk‘ þ yjkk‘ þ yij‘‘

�
þyjkk‘ þ yik‘‘Þ þ 32=3ð Þ yiiij þ yiiik þ yiii‘ þ yijjj þ yjjjk þ yjjj‘ þ yikkk þ yjkkk

�
þykkk‘ þ yi‘‘‘ þ yj‘‘‘ þ yk‘‘‘Þ (3.30)

After obtaining a suitable regression model, a check of lack of fit follows accord-
ing to the mathematical theory of experiments. Since simplex-lattice designs are sat-
urated, we need degrees of freedom to check lack of fit. To overcome the given prob-
lem, we add up additional design points, so-called control points, to simplex lattice
design, where lack of fit of the model is checked. The number of control points and
domain of factor space where those are placed depend on experimental situation,
complexity of trials, price, etc. The recommendation is to do control points in:

. the domain of the studied mixture diagram that is interesting for the
researcher;

. the existing points;

. the points that are used for obtaining a higher-order model.
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3.3 Scheffe Simplex Lattice Design

The confidence of the response estimate by a regression model differs in different
simplex points. Let the variance of response estimate be S

2
ŷy , and let the variance of

replicated design points be Sy
2. An example of determining a variance of response

estimate is demonstrated on a second-order regression model for a three-component
mixture.

In our reasoning we assume that (1) Xi can be observed without errors, (2) the
replication variance is similar at all the design points, and (3) response values are
the averages of ni and nij replicate observations at appropriate points of the simplex.
Then the variances of yi and yij will be:

S
2

y
_

i

¼ S
2
y =ni

S
2
�yy ¼ S

2
y =nij (3.31)

In the reduced second-order polynomial

y
_
=b1X1+b2X2+b3X3+b12X1X2+b13X1X3+b23X2X3

we replace coefficients by their expressions in terms of responses:

b
i
¼ �yyi ; bij ¼ 4�yyij � 2�yyi � 2�yyj

We then obtain

y
_ ¼ �yy1X1 þ �yy2X2 þ �yy3X3 þ 4�yy12 � 2�yy1 � 2�yy2ð ÞX1X2 þ 4�yy13 � 2�yy1 � 2�yy3ð ÞX1X3

þ 4�yy23 � 2�yy2 � 2�yy3ð ÞX2X3 ¼ �yy1 X1 � 2X1X2 � 2X1X3ð Þ þ �yy2 X2 � 2X1X2 � 2X2X3ð Þ

þ�yy3 X3 � 2X1X3 � 2X2X3ð Þ þ 4�yy12X1X2 þ 4�yy13X1X3 þ 4�yy23X2X3 (3.32)

Using the condition: X1+X2+X3=1 we transform the coefficients at �yyi :

X1 � 2X1X2 � 2X1X3 ¼ X1 � 2X1 X2 þ X3ð Þ ¼ X1 � 2X1 1� X1ð Þ ¼ X1 2X1 � 1ð Þ,
etc. (3.33)

so that:

y
_ ¼ X1 2X1 � 1ð Þ�yy1 þ X2 2X2 � 1ð Þ�yy2 þ X3 2X3 � 1ð Þ�yy3 þ 4X1X2�yy12 þ 4X1X3�yy13

þ4X2X3�yy23 (3.34)

Introducing the designation

ai ¼ Xi 2Xi � 1ð Þ; aij ¼ 4XiXj (3.35)

and using Eqs. (3.30) and (3.31), gives the expression for the varianceS
2

y
_ :

S
2

y
_ ¼ S

2
y

P
1�i�q

a2i
ni

P
1�i�j�q

a2ij
nij

 !
(3.36)

For incomplete-third, third- and fourth-degree polynomials the relationships are
derived in much the same way. So, for the incomplete-third-degree polynomial:

S
2

y
_ ¼ S

2
y

P
1�i�q

b2i
ni

P
1�i�j�q

b2ij
nij

þ
P

1�i�j�k�q

b2ijk
nijk

 !
(3.37)
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where:

bi ¼
1
2
Xi 6X

2
i � 2Xi þ 1

� �
� 3

Pq
j¼1

X
2
j (3.38)

bij ¼ 4XiXj 3Xi þ 3Xj � 2
� �

(3.39)

bijk ¼ 27XiXjXk (3.40)

For the third-degree polynomial:

S
2

y
_ ¼ S

2
y

P
1�i�q

c2i
ni

þ
P

1�i�j�q

c2iij
niij

þ
P

1�i�j�q

c2ijj
nijj

þ
P

1�i�j�k�q

c2ijk
n
ijk

 !
(3.41)

where:

ci ¼
1
2
Xi 3Xi � 1ð Þ 3Xi � 2ð Þ (3.42)

ciij ¼
9
2
XiXj 3Xi � 1ð Þ (3.43)

cijj ¼
9
2
XiXj 3Xj � 1

� �
(3.44)

cijk ¼ 27XiXjXk (3.45)

For the fourth-degree polynomial:

S
2

y
_ ¼ S

2
y

P
1�i�q

d2i
ni

 
þ

P
1�i�j�q

d2ij
nij

þ
P

1�i�j�q

d2iiij
niiij

þ
P

1�i�j�q

d2ijjj
nijjj

þ
P

1�i�j�k�q

d2iijk
n
iijk

þ
P

1�i�j�k�q

d2ijjk
n
ijjk

þ
P

1�i�j�k�q

d2ijkk
n
ijkk

þ
P

1�i�j�k�‘�q

d2ijk‘
n
ijk‘

!
(3.46)

where:

di ¼ 1=6Xi 4Xi � 1ð Þ 4Xi � 2ð Þ 4Xi � 3ð Þ

dij ¼ 4XiXj 4Xi � 1ð Þ 4Xj � 1
� �

dijjj ¼ 8=3XiXj 4Xj � 1
� �

4Xj � 2
� �

diiij ¼ 8=3XiXj 4Xi � 1ð Þ 4Xi � 2ð Þ (3.47)– (3.53)

diijk ¼ 32XiXjXk 4Xi � 1ð Þ

dijjk ¼ 32XiXjXk 4Xj � 1
� �

dijkk ¼ 32XiXjXk 4Xk � 1
� �

If the number of replications at all the points of the design is equal, i.e. ni=nij=n,
then all the relations for S

2

y
_ will take the form:

S
2

y
_ ¼ S

2
y �

n
n

(3.54)

where for the second-degree polynomial:
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n ¼
P

1�i�q

a
2
i þ

P
1�i�j�q

a
2
ij (3.55)

for the incomplete-third-degree polynomial:

n ¼
P

1�i�q

b
2
i þ

P
1�i�j�q

b
2
ij þ

P
1�i�j�k�q

b
2
ijk (3.56)

for the third-degree polynomial:

n ¼
P

1�i�q

c
2
i þ

P
1�i�j�q

c
2
iij þ

P
1�i�j�q

c
2
ijj þ

P
1�i�j�k�q

c
2
ijk þ

P
1�i�j�q

c
2
ij (3.57)

and for the fourth-degree polynomial:

n ¼
P

1�i�q

d
2
i þ

P
1�i�j�q

d
2
ij þ

P
1�i�j�q

d
2
iiij þ

P
1�i�j�q

d
2
ijjj þ

P
1�i�j�k�q

d
2
iijk þþ

P
1�i�j�k�q

d
2
ijjk

þ
P

1�i�j�k�q

d
2
ijkk þ

P
1�i�j�k�‘�q

d
2
ijk‘ (3.58)

As can be seen from Eqs. (3.55) to (3.58), n depends only on composition, and
geometric interpretation for different order models are to be found in the reference
literature [12]. Lack of fit of models is checked in each control point by means of
Students-test:

tR ¼ Dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2�yyþS2

y
_

q ¼ Dy
ffiffiffi
n

p

Sy
ffiffiffiffiffiffiffiffiffi
1þn

p (3.59)

where:

Dy ¼ yeksp: � ycal:

��� ���;
n-is number of replications;
Sy

2 -is error mean square of trial;
n-is the coefficient that depends on mixture composition.

The tR statistic has the Student distribution and is compared with the tabulated
value of ta=‘;f ,at a level of significance a, where ‘- is the number of control points
and f-is the number of degrees of freedom for the replication variance. The null
hypothesis that the equation is adequate is accepted if tR<tT for all the control points.
It should also be noted that Eq. (3.59) is valid for the same number of replications in
each simplex point. The confidence interval for the response value is:

y
_ � D y

_ � y � y
_ þ D y

_
(3.60)

D y
_ ¼ ta=k;f � S

y
_ (3.61)

where k-is the number of polynomial coefficients determined.

D y
_ ¼ ta=k;f �

Syffiffiffi
n

p � n
0:5

(3.62)
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Example 3.9 [13]
The research objective is to define the composition of a three-component mixture:
X1-ozocerite; X2-paraffin and X3-Vaseline, so that the melting point is 66–68 [�C] and
penetration 16–18. The mixture is obtained by melting and mixing up.

The experiment has been realized by a simplex lattice design matrix for the
fourth-degree model. This model has been chosen, for in case a lower model order
is adequate, the excessive points become control points.

Table 3.19 Simplex lattice design {3,4}

No. Factors Response
Mark

Responses

X1 X2 X3 y1 y2 �yy y1' y2' �yy'

1 1.0 0.0 0.0 y1 72.5 73.0 72.75 23 22 22.5

2 0.0 1.0 0.0 y2 54.0 54.5 54.25 8 8 8

3 0.0 0.0 1.0 y3 57.5 57.0 57.25 156 156 156

4 0.5 0.5 0.0 y12 65.5 66.0 65.75 12 12 12

5 0.5 0.0 0.5 y13 68.5 68.5 68.5 292 305 298.5

6 0.0 0.5 0.5 y23 52.5 52.5 52.5 67 68 67.5

7 0.75 0.25 0.0 y1112 70.0 70.5 70.25 16 17 16.5

8 0.25 0.75 0.0 y1222 56.0 57.0 56.5 11 10 10.5

9 0.75 0.0 0.25 y1113 72.0 71.5 71.75 74 75 74.5

10 0.25 0.0 0.75 y1333 65.0 65.5 65.25 360 360 360

11 0.0 0.75 0.25 y2223 52.5 53.0 52.75 30 26 28

12 0.0 0.25 0.75 y2333 52.5 54.0 53.25 360 360 360

13 0.5 0.25 0.25 y1123 66.0 66.0 66.0 47 42 44.5

14 0.25 0.5 0.25 y1223 60.0 60.0 60.0 42 40 41.0

15 0.25 0.25 0.5 y1233 59.5 60.0 59.75 144 146 145

Testing the component and mixture melting points was done by the ASTM-D-127
method. Vaseline penetration testing was done by ASTM-D-937, and that of ozocer-
ite, paraffin and the mixture by ASTM-D-1321 method. Calculations by Eq. (3.29)
offered these values of regression coefficients:

b1 ¼ y1 ¼ 72:75; b2 ¼ y2 ¼ 54:25; b3 ¼ y3 ¼ 57:25;

b12 ¼ 4y12 � 2y1 � 2y2 ¼ 90:0; b13 ¼ 4y13 � 2y1 � 2y3 ¼ 14:0;

b23 ¼ 4y23 � 2y2 � 2y3 ¼ �13:0; c12 ¼ 8
3

�y1 þ 2y1112 � 2y1222 þ y2ð Þ ¼ 24:03;

c13 ¼ 8
3

�y1 þ 2y1113 � 2y1333 þ y3ð Þ ¼ �6:68; c23 ¼ 8
3

�y2 þ 2y2223 � 2y2333 þ y3ð Þ ¼ 5:54;

d12 ¼ 8
3

�y1 þ 4y1112 � 6y12 þ 4y1222 � y2ð Þ ¼ �38:72;

d13 ¼ 8
3

�y1 þ 4y1113 � 6y13 þ 4y1333 � y3ð Þ ¼ 18:69;
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3.3 Scheffe Simplex Lattice Design

d23 ¼ 8
3

�y2 þ 4y2223 � 6y23 þ 4y2333 � y3ð Þ ¼ �6:68;

b1123 ¼ 32 3y1123 � y1223 � y1233ð Þ þ 8
3

6y1 � y2 � y3ð Þ � 16 y12 þ y13ð Þ

� 16
3

5y1112 þ 5y1113 � 3y1222 � 3y1333 � y2223 � y2333ð Þ ¼ �49:58;

b1223 ¼ 32 3y1223 � y1123 � y1233ð Þ þ 8
3

6y2 � y1 � y3ð Þ � 16 y12 þ y23ð Þ

� 16
3

5y1222 þ 5y2223 � 3y1112 � 3y2333 � y1113 � y1333ð Þ ¼ 159:32;

b1233 ¼ 32 3y1233 � y1123 � y1223ð Þ þ 8
3

6y3 � y1 � y2ð Þ � 16 y13 þ y23ð Þ

� 16
3

5y1333 þ 5y2333 � 3y1113 � 3y2223 � y1112 � y1222ð Þ ¼ �145:94;

The fourth-order regression model for the melting point has the form:

y
_ ¼ 72:75X1 þ 54:25X2 þ 57:25X3 þ 9:0X1X2 þ 14:0X1X3

�13:0X2X3 þ 24:03X1X2 X1 � X2ð Þ � 66:8X1X3 X1 � X3ð Þ

þ5:34X2X3 X2 � X3ð Þ � 38:72X1X2 X1 � X2ð Þ2 (3.63)

þ18:69X1X3 X1 � X3ð Þ2�6:68X2X3 X2 � X3ð Þ2

�49:58X
2
1 X2X3 þ 159:32X1X

2
2 X3 � 145:94X1X2X

2
3

Since the obtained regression model adequately describes experimental out-
comes, a check was done by a second-order regression model:

y
_ ¼ 72:75X1 þ 54:25X2 þ 57:25X3 þ 9:0X1X2 þ 14:0X1X3 � 13:0X2X3 (3.64)

Check of lack of fit in control point No. 7:

r
2
�yy ¼ 1

N

PN
u¼1

r
2
u ¼ 0:0893; r

2
u ¼ 1

n�1

Pn
k¼1

yuk � �yy
� �2

;

f =N(n-1); a=0.05; ‘=1;n=2.

where:
N-is total number of points in a simplex lattice design, including the control point;
u-is current number of points in a simplex lattice design;
k£n-is current number of replicated design points in one point of a simplex lattice
design.

For control point 7:

n ¼
X

a
2
i þ

X
a
2
ij ; ai ¼ Xi 2Xi � 1ð Þ; aij ¼ 4XiXj:

a1 ¼ 0:38; a2 ¼ 0:125; a3 ¼ 0:0:

a12 ¼ 0:75; a13 ¼ 0:0; a23 ¼ 0:0 ) n ¼ 0:7187:

Based on the obtained values it follows:

S
2
�yy ¼ S2

y

n
� n ¼ 0:0893

2
� 0:7187 ¼ 0:0321:
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The calculated value of melting point from Eq. (3.64) is:

y
_

7
¼ 69:8125

The experimental value in point 7 is:

�yy ¼ 70:25

It follows that:

Dy7 ¼ y
_

7
� �yy7

��� ��� ¼ 0:44; tR ¼ Dy7
ffiffiffi
n

p

S�yy
ffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ¼ 0:44
ffiffiffi
2

p

0:2988
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:7187

p ¼ 1:5885;

f ¼ Nðn� 1Þ ¼ 7ð2� 1Þ ¼ 7

From the table for Students distribution we get:

t0:05;7 ¼ 2:36 ; tR ¼ 1:5885 � tT ¼ 2:36

Hence, the regression model (3.64) is adequate. By analogy, an adequate regres-
sion model for penetration has also been obtained:

y
_; ¼ 22:5X1 þ 8:0X2 þ 156:0X3 � 13:00X1X2 þ 837:00X1X3 � 58:0X2X3 (3.65)

The desired composition is obtained by solving this simultaneous system of equa-
tions:

66:0 ¼ 72:75X1 þ 54:25X2 þ 57:25X3 þ 9:0X1X2 þ 14:0X1X3 � 13:0X2X3
18:0 ¼ 22:5X1 þ 8:0X2 þ 156:0X3 � 13:0X1X2 þ 837:0X1X3 � 58:0X2X3

1:0 ¼ X1 þ X2 þ X3

8<
:
X1 ¼ 0:6342 ; X2 ¼ 0:3604 ; X3 ¼ 0:0054

The obtained composition, or its properties, completely satisfy the requirements.

Example 3.10 [14]
To obtain maximal bulk density or maximal quality of coke, a study has been done
by five coal granulations. Coal granulations were obtained by crushing and classifi-
cation using sieves. The experiment was performed by a simplex lattice design
matrix for a third-order regression model. Design points were done by mixing initial
coal granulations in ratios as defined by the design of experiment matrix. Bulk den-
sity was measured in an Agroskina apparatus, by replicating design points five times.
Particle-size properties of the initial coal are given in Table 3.20.

Regression coefficients are calculated by expressions (3.28):

Table 3.20 Coal granulation

Size of particles [mm] 6–3 3–1 1–0.5 0.5–0.25 0.25–0

Ratios of masses X1 X2 X3 X4 X5
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3.3 Scheffe Simplex Lattice Design

y
_ ¼ 658:3X1 þ 674:4X2 þ 627:8X3 þ 616:1X4 þ 639:6X5 þ 147:7X1X2

þ431:5X1X3 þ 551:2X1X4 þ 675:9X1X5 þ 160:4X2X3 þ 350:2X2X4

þ518:3X2X5 þ 106:0X3X4 þ 374:0X3X5 þ 204:7X4X5 þ 76:3X1X2 X1 � X2ð Þ

þ129:3X1X3 X1 � X3ð Þ þ 416:5X1X4 X1 � X4ð Þ þ 538:8X1X5 X1 � X5ð Þ

þ86:2X2X3 X2 � X3ð Þ þ 235:8X2X4 X2 � X4ð Þ459:0X2X5 X2 � X5ð Þ

þ45:1X3X4 X3 � X4ð Þ þ 329:8X3X5 X3 � X5ð Þ þ 155:0X4X5 X4 � X5ð Þ

þ147:8X1X2X3 þ 448:3X1X2X4 þ 855:8X1X4X5 � 420:2X1X3X4

þ381:9X1X3X5 � 221:3X1X4X5 � 48:2X2X3X4 þ 624:2X2X3X5

�57:0X2X4X5 þ 326:2X3X4X5

Table 3.21 Simplex lattice design {5,3}

Response
Mark

Mass ratios of components �yy Sy
2

X1 X2 X3 X4 X5

y1 1 0 0 0 0 658.29 9.25

y2 0 1 0 0 0 674.36 7.84

y3 0 0 1 0 0 627.78 11.51

y4 0 0 0 1 0 616.13 4.88

y5 0 0 0 0 1 639.58 2.49

y123 0.333 0.333 0.333 0 0 741.13 46.76

y124 0.333 0.333 0 0.333 0 782.77 16.49

y125 0.333 0.333 0 0 0.333 828.21 17.43

y134 0.333 0 0.333 0.333 0 739.48 43.63

y135 0.333 0 0.333 0 0.333 820.64 12.80

y145 0.333 0 0 0.333 0.333 788.90 15.80

y234 0 0.333 0.333 0.333 0 706.15 8.97

y235 0 0.333 0.333 0 0.333 787.33 1.45

y245 0 0.333 0 0.333 0.333 760.49 5.75

y345 0 0 0.333 0.333 0.333 716.00 1.03

y112 0.666 0.333 0 0 0 702.12 3.87

y113 0.666 0 0.333 0 0 765.56 8.95

y114 0.666 0 0 0.333 0 797.59 44.10

y115 0.666 0 0 0 0.333 842.17 16.76

y223 0 0.666 0.333 0 0 700.86 3.54

y224 0 0.666 0 0.333 0 750.24 0.93

y225 0 0.666 0 0 0.333 811.95 3.15

y334 0 0 0.666 0.333 0 650.80 36.92

y335 0 0 0.666 0 0.333 739.27 7.62

y445 0 0 0 0.666 0.333 680.92 25.60

y122 0.333 0.666 0 0 0 696.18 22.69
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Table 3.21 (continued)

Response
Mark

Mass ratios of components �yy Sy
2

X1 X2 X3 X4 X5

y133 0.333 0 0.666 0 0 712.30 34.87

y144 0.333 0 0 0.666 0 721.83 5.94

y155 0.333 0 0 0 0.666 756.11 1.23

y233 0 0.333 0.666 0 0 672.56 59.38

y244 0 0.333 0 0.666 0 695.89 0.98

y255 0 0.333 0 0 0.666 732.35 11.47

y344 0 0 0.333 0.666 0 640.23 23.33

y355 0 0 0.333 0 0.666 694.34 10.04

y455 0 0 0 0.333 0.666 665.77 3.56

Sy
2=15.17; f =35(5-1)=140

Check of lack of fit of the obtained regression model is done in additional control
points, Table 3.22, since the simplex lattice design is saturated.

Table 3.22 Control design points

Response
Marks

Mass ratios of components Response Sy
2

X1 X2 X3 X4 X5 �yy y
_

y1234 0.25 0.25 0.25 0.25 0 748.40 755.30 2.34

y1235 0.25 0.25 0.25 0 0.25 825.78 825.64 2.34

y1245 0.25 0.25 0 0.25 0.25 817.31 816.12 2.34

y1345 0.25 0 0.25 0.25 0.25 782.12 782.95 2.34

y2245 0 0.25 0.25 0.25 0.25 757.09 759.77 2.34

y2345 0.20 0.20 0.20 0.20 0.20 797.65 800.33 1.77

y1111 0.15 0.25 0.15 0.20 0.25 798.80 799.44 1.74

y1112 0.10 0.20 0.20 0.25 0.25 783.33 777.08 1.78

A check of lack of fit by relation (3.59) shows that the regression model is ade-
quate with 95% confidence.

Example 3.11
Nine design points in accord with a simplex lattice design for a second-order model
was done in researching for the octane number of a three-component mixture of
petrol. The outcomes are given in Table 3.23.

498
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Table 3.23 Simplex lattice design {3,2}

Number
of trials

Ratios of components Response

X1 X2 X3 y¢ y† �yy

1 1.00 0.00 0.00 100.8 100.9 100.85

2 0.00 1.00 0.00 85.2 85.6 85.40

3 0.00 0.00 1.00 86.0 85.0 85.50

4 0.50 0.50 0.00 88.8 89.3 89.05

5 0.50 0.00 0.50 90.3 90.7 90.50

6 0.00 0.50 0.50 85.5 85.4 85.45

7* 0.333 0.333 0.333 88.3 88.8 88.55

8* 0.150 0.595 0.255 86.6 86.8 86.70

9* 0.300 0.490 0.210 87.6 88.1 87.85

* Control points

By using data from Table 3.23 and formulas (3.26) regression coefficients of a sec-
ond-order model are calculated.

b1 ¼ y1 ¼ 100:85; b2 ¼ y2 ¼ 85:40; b3 ¼ y3 ¼ 85:50;

b12 ¼ 2 2y12 � y1 � y2ð Þ ¼ 2 289:05� 100:85� 85:40ð Þ ¼ �16:30;

b13 ¼ 2 2y13 � y1 � y3ð Þ ¼ 2 2� 90:50� 100:85� 85:50ð Þ ¼ �10:70;

b23 ¼ 2 2y23 � y2 � y3ð Þ ¼ 2 2� 85:45� 85:40� 85:50ð Þ ¼ 0:00

The second-order regression model has this form:

y
_ ¼ 100:85X1 þ 85:40X2 þ 85:50X3 � 16:30X1X2 � 10:70X1X3

Check of lack of fit in control point No. 7:

y
_

7
¼ 100:85� 0:333þ 85:40� 0:333þ 85:50� 0:333� 16:30� 0:333� 0:333

�10:7� 0:333� 0:333 ¼ 87:58

Dy7 ¼ y
_

7
� �yy7

��� ��� ¼ 88:55� 87:58j j ¼ 0:97

tR ¼ 3:16 � t 0:025;9ð Þ ¼ 2:66

The regression model is inadequate. The second-order model may be built up to
an incomplete third-order model by including design point No. 7. By using the
expression (3.27) we get:

b123=27 � 88.55-12.0(89.05+90.5+85.45)+3(100.85+85.4+85.5)=26.1

The incomplete third-order model has the form:

y
_ ¼ 100:85X1 þ 85:40X2 þ 85:50X3 � 10:30X1X2 � 10:70X1X3 þ 26:10X1X2X3
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A check of lack of fit in control points No. 8 and 9 showed that the incomplete
cube model is adequate. Graphic interpretation of this model as contour lines is
shown Fig. 3.11.
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Figure 3.11 Contour plot of a three-component mixture

Example 3.12 [12]
To study the variation of reactivity and porosity of coke with different batch composi-
tion, coals of four process groups were analyzed and designated as X1, X2, X3 and X4.
Experiments were conducted on a laboratory pilot plant. The characteristic of coke
reactivity was the rate constant of the reaction C+O2=2CO, determined at 1000 �C
(y¢). The coke porosity was given by the ratio of the true and apparent densities (y†).
Assuming that the response surfaces of physical and chemical characteristics of the
mixtures at hand can be approximated by polynomials of not very high degree, we
shall seek the regression equation in the form of the second-degree polynomial.

In solving the problem, the simplex lattice design f4.2g has been utilized. The
second-order design matrix for the quaternary system and experimental results
(each trial was repeated twice) are summarized in Table 3.24. By processing these
outcomes, the following values of regression coefficients were obtained:

b1 ¼ 1:48; b2 ¼ 0:32; b3 ¼ 0:50; b4 ¼ 0:53;

b12 ¼ 4y12 � 2y1 � 2y2 ¼ 4� 0:63� 2� 1:48� 2� 0:32 ¼ �1:08;

b13 ¼ 4y13 � 2y1 � 2y3 ¼ 4� 0:92� 2� 1:48� 2� 0:50 ¼ �0:22;

b14 ¼ 4y14 � 2y1 � 2y4 ¼ 4� 1:08� 2� 1:48� 2� 0:53 ¼ 0:30;

b23 ¼ 4y23 � 2y2 � 2y3 ¼ 4� 0:39� 2� 0:32� 2� 0:50 ¼ �0:08;

b24 ¼ 4y24 � 2y2 � 2y4 ¼ 4� 0:38� 2� 0:32� 2� 0:53 ¼ �0:18;

b34 ¼ 4y34 � 2y3 � 2y4 ¼ 4� 0:54� 2� 0:50� 2� 0:53 ¼ 0:10:
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Thus the second-order polynomial for the reactivity of the quaternary mixture has
the form:

y
_0 ¼ 1:48X1 þ 0:32X2 þ 0:50X3 þ 0:53X4 � 1:08X1X2 � 0:22X1X3

þ0:3X1X4 � 0:08X2X3 � 0:18X2X4 þ 0:1X3X4

Table 3.24 Simplex lattice design {4,2}

No. Response X1 X2 X3 X4 y¢ y†

1 y1 1 0 0 0 1.48 54.0

2 y2 0 1 0 0 0.32 55.2

3 y3 0 0 1 0 0.50 43.3

4 y4 0 0 0 1 0.53 45.3

5 y12 0.5 0.5 0 0 0.63 53.1

6 y13 0.5 0 0.5 0 0.92 48.0

7 y14 0.5 0 0 0.5 1.08 49.0

8 y23 0 0.5 0.5 0 0.39 46.3

9 y24 0 0.5 0 0.5 0.38 47.1

10 y34 0 0 0.5 0.5 0.54 44.0

For the porosity:

b1 ¼ 54:0; b2 ¼ 55:2; b3 ¼ 43:3; b4 ¼ 45:3; b12 ¼ �6:4;

b13 ¼ �2:6; b14 ¼ �2:6; b23 ¼ �11:8; b24 ¼ �12:6; b34 ¼ �1:2:

and the regression equation will be:

y
_00

=54.0X1+55.2X2+43.3X3+45.3X4-6.4X1X2-2.6X1X3-2.6X1X4-11.8X2X3-12.6X2X4-1.2X3X4

To test the adequacy of equations derived, 25 test points are used-Table 3.25.
The coordinates of these are selected so that a fourth-degree polynomial can be

built, if the regression equations fail to fit adequately. The replication errors are:

Sy00 ¼ 0:075; Sy00 ¼ 1:5:

The number of degrees of freedom was f =35. The number of replicate observa-
tions at each point is n=2. At a significant level a=0.05, and f =35, tT(0.05;35)=3.6. Thus,
both equations are found to adequately fit the experiment.
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Table 3.25 Control points

No. Response y¢ y
_

Dy¢ y† y
_† Dy† n tR¢ tR†

1 y1112 0.77 0.99 0.22 53.5 53.1 0.4 0.72 3.16 0.3

2 y1113 1.15 1.19 0.04 51.0 50.8 0.2 0.72 0.575 0.15

3 y1114 1.25 1.20 0.05 50.3 51.3 1.0 0.72 0.72 0.72

4 y2223 0.31 0.34 0.03 49.0 50.1 1.1 0.72 0.43 0.80

5 y2224 0.39 0.34 0.05 52.3 50.4 1.9 0.72 0.72 1.37

6 y3334 0.55 0.52 0.03 45.0 43.6 1.4 0.72 0.43 0.5

7 y1222 0.35 0.41 0.06 57.2 53.8 2.6 0.72 0.86 0.7

8 y1333 0.75 0.7 0.05 44.0 45.5 1.5 0.72 0.72 1.2

9 y1444 0.94 0.82 0.12 48.9 47.0 1.9 0.72 1.72 0.4

10 y2333 0.51 0.44 0.07 43.4 44.0 0.7 0.72 1.0 0.75

11 y2444 0.36 0.45 0.09 46.3 45.4 0.9 0.72 0.74 0.8

12 y3444 0.57 0.50 0.07 44.5 44.6 0.1 0.72 1.34 0.6

13 y1123 0.82 0.77 0.05 52.4 49.8 2.6 0.59 0.74 1.95

14 y1124 0.90 0.81 0.09 51.5 50.1 1.4 0.59 1.3 1.2

15 y1134 1.17 1.00 0.17 47.0 48.4 1.4 0.59 2.54 0.3

16 y1223 0.49 0.51 0.02 50.6 49.5 1.1 0.59 0.3 0.5

17 y1224 0.52 0.53 0.01 48.0 49.8 1.8 0.59 0.15 0.4

18 y1334 0.76 0.75 0.01 46.7 45.8 0.9 0.59 0.15 1.3

19 y2234 0.44 0.40 0.04 48.4 46.5 1.9 0.59 0.6 0.7

20 y2334 0.48 0.46 0.02 46.8 44.4 2.4 0.59 0.3 1.0

21 y1233 0.58 0.63 0.05 45.7 46.7 1.0 0.59 0.74 1.4

22 y1244 0.59 0.68 0.09 47.0 47.6 0.6 0.59 1.34 0.8

23 y1344 0.78 0.80 0.02 49.0 46.4 2.6 0.59 0.3 1.2

24 y2344 0.42 0.44 0.02 46.0 44.8 1.2 0.59 0.3 0.8

25 y1234 0.60 0.65 0.05 48.0 47.0 1.0 0.44 0.78 0.79

3.4
Simplex Centroid Design

Scheffe’s simplex centroid designs contain 2q-1 points, q of which fall on straight
components, Cq

2 on binary mixtures, Cq
3 on ternary mixtures, and so forth, and one

observation on a q-component mixture. Simplex centroid designs, consist of the
points whose coordinates are (1,0,...,0), (1/2, 1/2,0,...,0),...,(1/q,1/q,...,1/q), and of all
the points that can be obtained from these by permutations of coordinates. Thus,
the design contains a point at the center (centroid) of the simplex and the centroids
of all the component simplexes of lesser dimension, its proper faces.

Polynomials obtained from simplex-centroid designs contain as many coefficients
as there are points in the design, and for the q-component mixture they have the
form:

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�k�q

b
ijk
XiXjXk þ b12:::qX1X2 :::Xq (3.66)
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For a given number of components q, there exists only one simplex-centroid
design. The simplex-lattice design intended to derive the polynomial of incomplete
third-degree is the simplex-centroid design for a ternary mixture (Fig. 3.10b). By way
of example, we build the simplex-centroid design for a quaternary system (q=4). The
number of observations in the design is N=2q-1=24-1=15. The arrangement of points
over the concentration tetrahedron is shown in Fig. 3.10c, and the respective sim-
plex-centroid design is shown in Table 3.26.

Table 3.26 Matrix of simplex centroid design for a quaternary system q=4

N X1 X2 X3 X4 y N X1 X2 X3 X4 y

1 1 0 0 0 y1 9 0 1/2 0 1/2 y24

2 0 1 0 0 y2 10 0 0 1/2 1/2 y34

3 0 0 1 0 y3 11 1/3 1/3 1/3 0 y123

4 0 0 0 1 y4 12 1/3 1/3 0 1/3 y124

5 1/2 1/2 0 0 y12 13 1/3 0 1/3 1/3 y134

6 1/2 0 1/2 0 y13 14 0 1/3 1/3 1/3 y234

7 1/2 0 0 1/2 y14 15 1/4 1/4 1/4 1/4 y1234

8 0 1/2 1/2 0 y23

The polynomial of Eq. (3.67) for q=4 includes 15 terms and has the form:

y
_ ¼ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b12X1X2 þ b13X1X3 þ b14X1X4 þ b23X2X3

þb24X2X4 þ b34X3X4 þ b123X1X2X3 þ b124X1X2X4 þ b134X1X3X4 þ b234X2X3X4

þb1234X1X2X3X4 (3.67)

Making recourse to the saturation property of the design and substituting in suc-
cession the coordinates of experimental points 1 through 15 into the polynomial of
Eq. (3.67), we determine the polynomial coefficients:

b1 ¼ y1 ; b2 ¼ y2 ; b3 ¼ y3 ; b4 ¼ y4 ; (3.68)

b12 ¼ 4y12 � 2y1 � 2y2;

b13 ¼ 4y13 � 2y1 � 2y3;

b14 ¼ 4y14 � 2y1 � 2y4; (3.69)

b23 ¼ 4y23 � 2y2 � 2y3;

b24 ¼ 4y24 � 2y2 � 2y4;

b34 ¼ 4y34 � 2y3 � 2y4;
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III Mixture Design “Composition-Property”

b123 ¼ 27y123 � 12 y12 þ y13 þ y23ð Þ þ 3 y1 þ y2 þ y3Þð

b124 ¼ 27y124 � 12 y12 þ y14 þ y24ð Þ þ 3 y1 þ y2 þ y4Þð

b134 ¼ 27y134 � 12 y13 þ y14 þ y34ð Þ þ 3 y1 þ y3 þ y4Þð (3.70)

b234 ¼ 27y234 � 12 y23 þ y24 þ y34ð Þ þ 3 y2 þ y3 þ y4Þð

b1234 ¼ 256y1234 � 108 y123 þ y124 þ y134 þ y234ð Þ þ 32 y12 þ y13 þ y14 þ y23ð

þy24 þ y34Þ � 4 y1 þ y2 þ y3 þ y4ð Þ (3.71)

In a similar manner, for the polynomial of Eq. (3.66), for the q-component mix-
ture, regression coefficients are calculated as follows:

b
i
¼ yi (3.72)

b
ij
¼ 4yij � 2yi � 2yj ¼ 2 2yij � yi þ yj

� �h i
(3.73)

b
ijk

¼ 27yijk � 12 yij þ yik þ yjk

� �
þ 3 yi þ yj þ yk

� �
¼ 3 9yijk � 4 y

ij
þ yik þ yjk

� �
þ yi þ yj þ yk

� �h i
(3.74)

b
ijkm

¼ 256yijkm � 108 yijk þ yijm þ yikm þ yjkm

� �
þ 32 yij þ yik þ yim þ yjk

�
þyjm þ ykm Þ � 4 yi þ yj þ yk þ ym

� �
¼ 4 64yijkm

h
� 27 yijk þ yijm þ yikm

� �
þ8 yij þ yik þ yim þ yjk þ yjm þ ykm

� �
� yi þ yj þ yk þ ym
� �

� (3.75)

In the general case, the formula for coefficients of regression equation obtained
from the simplex-centroid design, takes the form [6]:

b
ij��� ¼ r

Pr
t

�1ð Þr�t
t
r�1

St (3.76)

where:
r-is the number of indices at coefficients bij;
St-is the sum of experimental results for all the t-component mixtures taken in equal
proportions (1/t).

For example, for the bijk coefficients we have r=3(i, j, k) and three sums:

yi+yj+yk=S1 1/t=1 (3.77)

yij+yjk+yik=S2; 1/t=1/2 (3.78)

yijk=S3; 1/t=1/3 (3.79)

Thus:

b
ijk

¼ 3 �1ð Þ3�1
1
3�1

S1 þ �1ð Þ3þ �1ð Þ3�2�2
3�1

S2 þ �1ð Þ3�3
3
3�1

S3
h i

¼ 3 yi þ yj þ yk

� �
� 4 yij þ yik þ yjk

� �
þ 9yijk

h i
(3.80)
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3.4 Simplex Centroid Design

Adequacy of a regression equation derived by the simplex-centroid design is
tested and the confidence intervals of property values, predicted by the equation, are
assigned in much the same way as in the case of the simplex-lattice method.

Example 3.13 [12]
We seek to determine how the activity (y1) and durability (y2) of a platinum catalyst
supported by a nonporous metal carrier depend on the catalyst composition at
350 �C. The total mass of components was maintained constant from experiment to
experiment. Taking it to be unity, we can write:

P3
i¼1

Xi ¼ 1

where:
X1-the component of Pt/Al2O3 was a reforming catalyst;
X2 and X3-also components, were inorganic oxides of metals belonging to Groups II
and III of the periodic table.

The simplex centroid design for q=3 is applied. The design matrix and experimen-
tal results are arrayed in Table 3.27.

Table 3.27 Simplex centroid design for q=3

N X1 X2 X3 y1 y2

1 1 0 0 97.4 62

2 0 1 0 3.0 73

3 0 0 1 4.7 47

4 0.5 0.5 0 70.0 64

5 0.5 0 0.5 66.0 55

6 0 0.5 0.5 6.8 72

7 0.333 0.333 0.333 95.4 67

Using Eq. (3.27) and Table 3.27, the coefficients of regression equations are de-
rived for both the catalyst activity and durability:

y
_

1 ¼ 97:4X1 þ 3:0X2 þ 4:7X3 þ 79:3X1X2 þ 59:9X1X3 þ 11:8X2X3

þ175:35X1X2X3 (3.81)

y
_

2 ¼ 62X1 þ 73X2 þ 47X3 � 14X1X2 þ 2X1X3 þ 48X2X3 þ 63X1X2X3 (3.82)

The replication error in measuring the catalyst activity is Sy1 =3.24, and durability
Sy2 =2.37. The adequacy of the regression equations (3.81) and (3.82) is tested using
the Student t-test at the control-test points 8, 9 and 10, Table 3.28.
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Table 3.28 Check of lack of fit of regressions - Eqs. (3.81); (3.82)

N X1 X2 X3 y1 y
_

1 y2 y
_

2

8 0.333 0.667 0 46 52 72 66

9 0.667 0.333 0 96 84 63 70

10 0.580 0.320 0.097 91 98 62 65

At all the test-control points, the values of the t-test are less than the tabulated
value at the significance level a=0.05. Fig. 3.12 presents the lines of constant catalyst
activity and durability plotted from Eqs. (3.81) and (3.82). The greatest activity of the
catalyst corresponds to the area where the values of the component X1>0.4. The dur-
ability of 65 per cent appears quite satisfactory. Of greatest interest are the points
lying where the equal yield curves for y2=65[%] and y1=100[%] intersect. The trial 10
executed within the specified area gave a good agreement (within experimental
error) of experimental results with theory.

X 1

X2

y
y y

=75
=70 =65

1
1

1

90%

100%

X3

Figure 3.12 Isolinies for y1 (.......) and y2 (——)

3.5
Extreme Vertices Designs

It has been explained that when testing mixture diagrams, factor space is usually a
regular simplex with q-vertices in a q-1 dimension space. In such a case, the task of
mathematical theory of experiments consists of determining in the given simplex
the minimum possible number of points where the design points will be done and
based on which coefficients of the polynomial that adequately describes system be-
havior will be determined. This problem, for the case when there are no limitations
on ratios of individual components, as presented in the previous chapter, was solved
by Scheffe in 1958 [5]. However, a researcher may in practice often be faced with
multicomponent mixtures where definite limitations are imposed on ratios of indi-
vidual components:

0£ai£Xi£bi£1;
P

Xi=1; i =1.2,...,q
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3.5 Extreme Vertices Designs

where ai and bi correspond to upper and lower limit ratios of the i-th component.
This situation occurs when doing experiments in simplex vertices has no physical
sense, or when the researcher is only interested in a local region of a simplex space.
In this, the researched local region is usually a multiangle whose vertices and the
center represent the gathering of points of an experimental design. Depending on
the number of components, the local region may be:

1. The region studied is a simplex
The local area of interest in the diagram may be an irregular simplex with

unknown vertex coordinates:

A1 X
1ð Þ

1 ;X
1ð Þ

2 ; :::;X
1ð Þ

q

� �
; A2 X

2ð Þ
1 ;X

2ð Þ
2 ; :::;X

2ð Þ
q

� �
; :::;Aq X

qð Þ
1 ;X

qð Þ
2 ; :::;X

qð Þ
q

� �
:

In order that Scheffes simplex lattice designs may be applied to this case, a renor-
malization is performed and compositions at vertices Aj(j=1, 2,..., q) are taken to be
independent pseudocomponents so that for all the range of the local simplex the con-
dition be met:

Pq
i

Zi ¼ 1 (3.83)

The experimental design is in the pseudocomponent coordinates. All the designs
discussed earlier can be built in the new variables Z1, Z2,..., Zq that satisfy the condi-
tion of Eq. (3.83). To conduct the experiments it is required to convert the pseudo-
components Zi into the initial components with real ratios Xi. For the u-th design
point this conversion is defined by the formula:

X
uð Þ

1 ¼ X
1ð Þ

i þ Z
uð Þ
2 X

2ð Þ
i � X

1ð Þ
i

� �
þ Z

uð Þ
3 X

3ð Þ
i � X

1ð Þ
i

� �
þ:::þ Z

uð Þ
q X

qð Þ
i � X

1ð Þ
i

� �
(3.84)

where Xi is the i-th component content of the vertex Zj(Aj).
After the design has been realized the coefficients of the regression equation are

calculated in pseudocomponent coordinates:

y
_ ¼ f Z1 ;Z2 ; :::;Zq

� �
(3.85)

using earlier relationships for pertinent designs, and then adequacy of fit is tested.
For Eq. (3.85) to be applied in practice, it is written in the initial coordinate system
using an affine transformation of the form:

Z1 ¼ Z
1ð Þ
1 þ X2 Z

2ð Þ
1 � Z

1ð Þ
1

� �
þ X3 Z

3ð Þ
1 � Z

1ð Þ
1

� �
þ :::þ Xq Z

qð Þ
1 � Z

1ð Þ
1

� �
Z2 ¼ Z

1ð Þ
2 þ X2 Z

2ð Þ
2 � Z

1ð Þ
2

� �
þ X3 Z

3ð Þ
2 � Z

1ð Þ
2

� �
þ :::þ Xq Z

qð Þ
2 � Z

1ð Þ
2

� �
: : : : : : : : : : : : : :
Zq�1 ¼ Z

1ð Þ
q�1 þ X2 Z

2ð Þ
q�1 � Z

1ð Þ
q�1

� �
þ X3 Z

3ð Þ
q�1 � Z

1ð Þ
q�1

� �
þ :::þ Xq Z

qð Þ
q�1 � Z

1ð Þ
q�1

� �

9>>>>=
>>>>;

(3.86)
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Values of Zi
(j) are calculated solving (q-1) sets of equations below

X
1ð Þ

1 Z
1ð Þ
1 þ X

1ð Þ
2 Z

2ð Þ
1 þ X

1ð Þ
3 Z

3ð Þ
1 þ :::þ X

1ð Þ
q Z

qð Þ
1 ¼ 1

X
2ð Þ

1 Z
1ð Þ
1 þ X

2ð Þ
2 Z

2ð Þ
1 þ X

2ð Þ
3 Z

3ð Þ
1 þ :::þ X

2ð Þ
q Z

qð Þ
1 ¼ 0

: : : : : :
X

qð Þ
1 Z

1ð Þ
1 þ X

qð Þ
2 Z

2ð Þ
1 þ X

qð Þ
3 Z

3ð Þ
1 þ :::þ X

qð Þ
q Z

qð Þ
1 ¼ 0

9>>>=
>>>;

X
1ð Þ

1 Z
1ð Þ
2 þ X

1ð Þ
2 Z

2ð Þ
2 þ X

1ð Þ
3 Z

3ð Þ
2 þ :::þ X

1ð Þ
q Z

qð Þ
2 ¼ 0

X
2ð Þ

1 Z
1ð Þ
2 þ X

2ð Þ
2 Z

2ð Þ
2 þ X

2ð Þ
3 Z

3ð Þ
2 þ :::þ X

2ð Þ
q Z

qð Þ
2 ¼ 1

: : : : : :
X

qð Þ
1 Z

1ð Þ
2 þ X

qð Þ
2 Z

2ð Þ
2 þ X

qð Þ
3 Z

3ð Þ
2 þ :::þ X

qð Þ
q Z

qð Þ
2 ¼ 0

9>>>=
>>>; (3.87)

X
1ð Þ

1 Z
1ð Þ
q�1 þ X

1ð Þ
2 Z

2ð Þ
q�1 þ X

1ð Þ
3 Z

3ð Þ
q�1 þ :::þ X

1ð Þ
q Z

qð Þ
q�1 ¼ 0

X
2ð Þ

1 Z
1ð Þ
q�1 þ X

2ð Þ
2 Z

2ð Þ
q�1 þ X

2ð Þ
3 Z

3ð Þ
q�1 þ :::þ X

2ð Þ
q Z

qð Þ
q�1 ¼ 0

: : : : : :
X

qð Þ
1 Z

1ð Þ
q�1 þ X

qð Þ
2 Z

2ð Þ
q�1 þ X

qð Þ
3 Z

3ð Þ
q�1 þ :::þ X

qð Þ
q Z

qð Þ
q�1 ¼ 1

9>>>=
>>>;

where:
Zi

(j)-is the pseudocomponent;
Zi-content of vertices of the initial simplex;
Xi

(j)-is the i-th component content of vertices Zj (Aj)(j=1, 2,..., q).
As such a coordinate conversion is only possible for equations in independent

variables, the initial regression equation shall be transformed eliminating one vari-
able , e.g. the last one, the q-th as follows:

Zq ¼ 1�
Pq�1

i¼1

Zi (3.88)

Example 3.14 [13]
The boiling of the ternary mixture H2O-K2HPO4-K2CO3 is studied. It is required to
define the regression equation for the boiling point y �C on the mixture composition
(in per cent). Not all the concentration triangle is covered, but only a subarea of un-
saturated solutions at 20 �C, i.e. a local section of the diagram in the form of a trian-
gle with the vertices Z1(100; 0.0), Z2(40; 60.0) and Z3(50; 0.50) Fig. 3.13.

To deduce the regression equation, an extreme-vertices design is performed with
pseudocomponents Z1, Z2 and Z3; and the content of initial components is then de-
termined from Eq. (3.84). The regression equations of the second and incomplete
third order are found to be inadequate. Using the property of composition of sim-
plex lattice designs, the design matrix is augmented further to yield fourth-order
regression equations-Table 3.29. The experimental conditions are expressed in terms
of pseudocomponents Zi and in the natural scale X (per cent). The mean values of
temperature measurements are determined from two replicate observations. The
replication error is Sy=0.86. The number of degrees of freedom for the error is f =20.

The coefficients of the fourth-order regression equation are calculated by
Eq. (3.29) using the property of saturated design matrix. The regression equation in
pseudocomponent variables has the form:
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Figure 3.13 Extreme vertices simplex of a three-component mix-
ture: K2HPO4-K2CO3-H20

y
_ ¼ 99:81Z1 þ 113:51Z2 þ 115:69Z3 � 14:22Z1Z2 � 12:13Z1Z3 þ 0:91Z2Z3

þ6:18Z1Z2 Z1 � Z2ð Þ þ 10:12Z1Z3 Z1 � Z3ð Þ � 15:34Z2Z3 Z2 � Z3ð Þ

þ6:90Z1Z2 Z1 � Z2ð Þ2�17:61Z1Z3 Z1 � Z3ð Þ2þ6:32Z2Z3 Z2 � Z3ð Þ2

þ1:07Z
2
1Z2Z3 � 274:61Z1Z

2
2Z3 þ 142:21Z1Z2Z

2
3 (3.89)

Table 3.29 Extreme vertices design

No. trials Z1 Z2 Z3 X1 X2 X3 �yy

1 1 0 0 100 0 0 99.9

2 0 1 0 40 60 0 113.5

3 0 0 1 50 0 50 115.7

4 0.5 0.5 0 70 30 0 103.1

5 0.5 0 0.5 75 0 25 104.8

6 0 0.5 0.5 45 30 25 114.8

7 0.333 0.333 0.333 63.33 20 16.67 105.6

8 0.75 0.25 0 85 15 0 101.5

9 0.25 0.75 0 55 45 0 107.2

10 0.75 0 0.25 87.5 0 12.5 101.6

11 0.25 0 0.75 62.5 0 37.5 107.7

12 0 0.75 0.25 42.5 45 12.5 112.5

13 0 0.25 0.75 47.5 15 37.5 116.4

14 0.5 0.25 0.25 72.5 15 12.5 103.4

15 0.25 0.5 0.25 57.5 30 12.5 101.4

16 0.25 0.25 0.5 60 15 25 109.0

17* 0.2 0.2 0.6 58 12 30 108.3
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Table 3.29 (continued)

No. trials Z1 Z2 Z3 X1 X2 X3 �yy

18* 0.5 0.125 0.375 73.75 7.5 18.75 103.3

19* 0.4 0.15 0.45 68.5 9 22.5 104.2

20* 0.3 0.175 0.525 63.25 10.5 26.25 106.2

Table 3.30 summarizes the results of the regression equation testing for adequacy
of fit:

Table 3.30 Control points

No. of trials �yy y
_

Dy n tR

17 108.3 110.7 2.4 1.3 2.16

18 103.3 100.9 2.4 1.0 2.27

19 104.2 107.0 2.8 1.0 2.66

20 106.3 108.7 2.4 1.1 2.16

The tabulated value of Student’s t is tT(0.05/4,20)=2.8. Equation (3.89) is an adequate
fit to the experiment. In Eq. (3.89), we convert from pseudocomponents Zi to initial
variables Xi. For the problem in hand, the sets of simultaneous equations (3.87) take
the form:

1Z
ð1Þ
1 þ 0Z

ð2Þ
1 þ 0Z

ð3Þ
1 ¼ 1

0:4Z
ð1Þ
1 þ 0:6Z

ð2Þ
1 þ 0Z

ð3Þ
1 ¼ 0

0:5Z
ð1Þ
1 þ 0Z

ð2Þ
1 þ 0:5Z

ð3Þ
1 ¼ 0

1Z
ð1Þ
2 þ 0Z

ð2Þ
2 þ 0Z

ð3Þ
2 ¼ 0

0:4Z
ð1Þ
2 þ 0:6Z

ð2Þ
2 þ 0Z

ð3Þ
2 ¼ 1

0:5Z
ð1Þ
2 þ 0Z

ð2Þ
2 þ 0:5Z

ð3Þ
2 ¼ 0

9>>>>>>>>=
>>>>>>>>;

(3.90)

Solving these we obtain:

Z
1ð Þ
1 ¼ 1; Z

2ð Þ
1 ¼ 0:7; Z

3ð Þ
1 ¼ �1 ; Z

1ð Þ
2 ¼ 0; Z

2ð Þ
2 ¼ 1:7; Z

3ð Þ
2 ¼ 0;

Substituting the above solutions into Eq. (3.86) we arrive at formulas relating nat-
ural coordinates Xi to coordinates Zi:

Z1 ¼ 1� 1:7X2 � 2X3
Z2 ¼ 1:7X2
Z3 ¼ 1� Z1 � Z2 ¼ 2X3

8<
: (3.91)

And, substituting Eq. (3.91) into Eq. (3.89), we get the regression equation in ini-
tial coordinates:

y
_ ¼ 99:88X1 þ 20:82X2 � 7:63X3 þ 92:88X2X3 � 107:83X

2
2 þ 279:28X

2
3

�1373:69X
2
2 X3 � 243:59X2X

2
3 þ 2230:35X

2
2 X

2
3 þ 312:78X

3
2 � 965:12X

3
3

þ2146:05X
3
2 X3 � 179:60X2X

3
3 � 212:96X

4
2 þ 1127:1X

4
3 (3.92)
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To use the regression equation more conveniently in Fig. 3.14, the isotherms are
plotted.
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Figure 3.14 Isotherms

2. The space studied is a polyhedron
With constraints on the component concentration variation, in the general case, the
space studied forms a polyhedron. In the experimental design we should somehow
distribute the points over the polyhedron subject to the condition:

0£ai£ Xi£ bi£ 1 (3.93)

This excludes degenerate cases:Pq
i¼1

ai � 1;
Pq
i¼1

bi � 1 (3.94)

As with all previous designs of experiments, the number of design points or trials
grows very rapidly (power function) along with the number of factors-components.
A need to reduce the number of design points sets up a demand for the remaining
points of a design of experiment to cover evenly the local factor space. When the
number of components is above five (q‡5), the calculation of the combinations of
experimental conditions of possible design points would include several billion
arithmetic operations. Even the fastest IBM computers are, in such a situation
unable to do calculations before the time necessary for physical performance of the
experiment.

To reduce the scope of calculations and to formalize the approach to the choice of
design points of a design of experiment, McLean and Anderson [16] suggested this
procedure:

1. All the possible combinations of the two levels ai and bi, are put down for
each and every component, but in each combination the content of one com-
ponent is omitted. The number of these combinations for a q-component
mixture is q � 2q-1;
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III Mixture Design “Composition-Property”

2. Among all the combinations those are selected whose sum of components is
less than one and that meet the limitations of Eq. (3.93). Into the combina-
tions selected the omitted components are added in amounts defined by the
relationship RXi=1. The design points thus obtained and satisfying Eq. (3.93)
lie at vertices of the bounding polyhedron;

3. To the design points obtained are added center points (centroids) of two-,
three-, ..., and (q-1)-dimensional faces of the polyhedron and its center point.
Coordinates of a central point are determined by taking average coordinates
of previously chosen vertices;

4. Distances between vertices and center of polyhedron are calculated by:

dij ¼
Pq
r¼1

Xir�Xjr

br�ar

	 
2
" #0:5

(3.95)

5. The point with maximal distance from polyhedron center-point 1, is inserted
into the design;

6. The distance between the chosen point 1 and other polyhedron vertices is de-
termined, and the farthest-away vertex becomes part of design of the experi-
ment as point 2;

7. The normed distance dij
¢ is accepted. The size of the normed distance is

smaller if the number of points, necessary to include into the design of
experiment, increases. The distance recommended is:

d
SR
C � d

0
ij � 2d

SR
C

� �0:5
(3.96)

where:
d
SR
C is the average distance of vertex from center;

8. All previously included points are omitted from the design if their distances
from points 1 and 2 is smaller than the accepted norm;

9. From the remaining points, the remotest point from the center (3.96) is
included into the design.

This was the way to select vertices, or their coordinates of the local factor space. It
should be noted that those are pseudocomponent coordinates.

Example 3.15 [16]
Consider the building of McLean and Anderson’s design for the investigation and
optimization of luminance of luminous mixtures, whose components are: X1-mag-
nesium; X2-soda; X3-strontium nitrate and X4-binder. The mixture composition is
subjected to the following constraints:

0.40£X1£ 0.60; 0.10£X2£ 0.50; 0.10£X3£ 0.50; 0.03£X4£ 0.08

Table 3.31 summarizes all the possible combinations of mixture composition
with one of the components missing. Accordingly, eight design points, i.e. polyhe-
dron vertices Fig. 3.15 are obtained.
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Figure 3.15 Local factor space

Table 3.31 McLean-Anderson design

N Component content N Component content

X1 X2 X3 X4 X1 X2 X3 X4

1 0.40 0.10 0.10 – 17 (1) 0.40 0.10 0.47* 0.03

2 0.40 0.10 0.50 18 (2) 0.40 0.10 0.42* 0.08

3 0.40 0.50 0.10 – 19 0.40 0.50 – 0.03

4 0.40 0.50 0.50 – 20 0.40 0.50 – 0.08

5 0.60 0.10 0.10 – 21 (3) 0.60 0.10 0.27* 0.03

6 0.60 0.10 0.50 – 22 (4) 0.60 0.10 0.22* 0.08

7 0.60 0.50 0.10 – 23 0.60 0.50 – 0.03

8 0.60 0.50 0.50 – 24 0.60 0.50 – 0.08

9 (5) 0.40 0.47* 0.10 0.03 25 - 0.10 0.10 0.03

10 (6) 0.40 0.42* 0.10 0.08 26 - 0.10 0.10 0.08

11 0.40 – 0.50 0.03 27 - 0.10 0.50 0.03

12 0.40 – 0.50 0.08 28 - 0.10 0.50 0.08

13 (7) 0.60 0.27* 0.10 0.03 29 - 0.50 0.10 0.03

14 (8) 0.60 0.22* 0.10 0.08 30 - 0.50 0.10 0.08

15 0.60 – 0.50 0.03 31 - 0.50 0.50 0.03

16 0.60 – 0.50 0.08 32 - 0.50 0.50 0.08

* Amount of component added

These points are to be supplemented by the coordinates of center points of all the
polyhedron faces, Table 3.32. The coordinates of the polyhedron center point are
found by averaging appropriate coordinates of all the eight design vertices; and the
centroid coordinates of faces by averaging the coordinates of the points belonging to
the face, Table 3.32.
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Table 3.32 Selection of face center points in McLean and Anderson’s design

N Component content Points of face

X1 X2 X3 X4

(9) 0.50 0.10 0.345 0.055 (1) (2) (3) (4)

(10) 0.50 0.345 0.10 0.055 (5) (6) (7) (8)

(11) 0.40 0.2725 0.2725 0.055 (1) (2) (5) (6)

(12) 0.60 0.1725 0.1725 0.055 (3) (4) (7) (8)

(13) 0.50 0.2350 0.2350 0.030 (1) (3) (5) (7)

(14) 0.50 0.2100 0.2100 0.080 (2) (4) (6) (8)

(15) 0.50 0.2225 0.2225 0.055 Polyhedron center point

For the quaternary mixture, the design of McLean and Anderson, together with the
experimental results, is provided in Table 3.33.

Table 3.33 McLean-Anderson design for quaternary mixture

N X1 X2 X3 X4 y N X1 X2 X3 X4 y

1 0.40 0.10 0.47 0.03 75 9 0.50 0.10 0.345 0.055 220

2 0.40 0.10 0.42 0.08 180 10 0.50 0.345 0.10 0.055 200

3 0.60 0.10 0.27 0.03 195 11 0.40 0.2725 0.2725 0.055 190

4 0.60 0.10 0.22 0.08 300 12 0.60 0.1725 0.1725 0.055 310

5 0.40 0.47 0.10 0.03 145 13 0.50 0.235 0.235 0.030 200

6 0.40 0.42 0.10 0.08 230 14 0.50 0.210 0.210 0.080 410

7 0.60 0.27 0.10 0.03 220 15 0.50 0.2225 0.2225 0.055 425

8 0.60 0.22 0.10 0.08 350

The coefficients of the reduced second-degree polynomial are found by the meth-
od of least squares. Here the regression equation will be:

y
_ ¼ �1:558X1 � 2:851X2 � 2:426X3 þ 14:372X4 þ 8:300X1X2 þ 8:076X1X3

�6:625X1X4 þ 3:213X2X3 � 16:998X2X4 � 17:127X3X4 (3.97)

As the dependence of the property on components is described adequately by the
second-order regression equation, the possibility presented itself to find optimal
conditions through the use of nonlinear programming. Subject to the restrictions of
Eq. (3.94), the conditions providing the maximum luminance are found to be:

y
_

max ¼ 397:48 for X1=0.5233; X2=0.2299; X3=0.1608; X4=0.080.

As the number of mixture components increases, the number of points in the
design of McLean-Anderson grows rapidly. A reduction in the number of observa-
tions may be achieved by eliminating some of the face-center points, or by the elim-
ination of points that do not jeopardize the rest being distributed over the space
under study more or less uniformly.
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3.5 Extreme Vertices Designs

Example 3.16 [17]
In a study of ballistic properties of a three-modal composite rocket propellant, the
effect of coarse, medium and fine fractions of ammonium perchlorate on burning
rate at 70 bar and 25 �C has been mathematically modeled. Limitations were
imposed on the ratios of all three granulations of ammonium perchlorate:

x1-fine fraction AP-7 lm=0.3–0.7;
x2-coarse fraction AP-400 lm=0.0–0.40;
x3-medium fraction AP-200 lm=0.30–0.70.
Geometric interpretation of the local factor space is given in Fig. 3.16.
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Figure 3.16 Local factor space

Relations between real and coded ratios of ammonium perchlorate fractions are
given by the relations:

x1 ¼ 0:70X1 þ 0:30X2 þ 0:30X3
x2 ¼ 0:40X2
x3 ¼ 0:30X1 þ 0:30X2 þ 0:70X3

8<
: (3.98)

where:
xi (i=1, 2, 3)-are real ratios of i-th fraction;
Xi-are coded ratios of i-th fraction.

The design matrix has been defined in accord with the theory of extreme vertices
designing of experiments Table 3.34.
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Table 3.34 Extreme vertices design

No. Design matrix Response
marks

Operational matrix Response
y

X1 X2 X3 x1 x2 x3

1 1 0 0 y1 70.00 0.00 30.00 3.92

2 0 1 0 y2 30.00 40.00 30.00 4.75

3 0 0 1 y3 30.00 0.00 70.00 4.95

4 1/3 2/3 0 y122 43.33 26.66 30.00 4.25

5 1/3 0 2/3 y133 43.33 0.00 56.66 4.44

6 0 1/3 2/3 y233 30.00 13.13 56.66 4.82

7 2/3 1/3 0 y112 56.66 13.13 30.00 3.84

8 2/3 0 1/3 y113 56.66 0.00 43.33 4.24

9 0 2/3 1/3 y223 30.00 26.66 43.33 5.06

10 1/3 1/3 1/3 y123 43.33 13.33 43.33 4.27

11* 1/2 1/4 1/4 y1123 50.00 10.00 40.00 4.09

12* 1/4 1/4 1/2 y1223 40.00 10.00 50.00 3.75

13* 3/4 1/4 0 y1112 60.00 10.00 30.00 3.83

14* 3/4 0 1/4 y1113 60.00 0.00 40.00 4.04

15* 1/4 3/4 0 y1222 40.00 30.00 30.00 4.56

* Control points

The design matrix has been defined for a third-order regression model, as pre-
vious research proved that such a model may adequately describe experimental out-
comes. Regression coefficients are determined from the relations:

b
i
¼ yi ) b1 ¼ y1 ¼ 3:92; b2 ¼ y2 ¼ 4:75; b3 ¼ y3 ¼ 4:95;

b
ij
¼ 9

4
yiij þ yijj � yi � yj

� �
) b12 ¼ �1:31; b13 ¼ �0:43; b23 ¼ �0:4;

c
ij
¼ 9

4
3yiij � 3yijj � yi þ yj

� �
) c12 ¼ �0:90; c13 ¼ 0:97; c23 ¼ 2:07;

b
ijk

¼ 27yijk �
27
4

yiij þ yijj þ yijk þ yikk þ yjjk þ yjkk

� �
þ 9
2

yi þ yj þ yk

� �
;

b123 ¼ �3:31:

The regression model has the form:

y
_ ¼ 3:92X1 þ 4:75X2 þ 4:95X3 � 1:31X1X2 � 0:43X1X3 � 0:4X2X3

�0:90X1X2 X1 � X2ð Þ þ 0:97X1X3 X1 � X3ð Þ þ 2:07X2X3 X2 � X3ð Þ (3.99)

�3:31X1X2X3

It should be noted that pseudocomponents or coded factors appear in the regres-
sion model. A check of lack of fit of the regression model in control points has
shown that the regression model is adequate with 95 % confidence.
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Example 3.17 [18]
A researcher’s objective is to the establish optimal composition of a composite
rocket propellant by ballistic properties such as burning rate and specific impulse.
To achieve this, an extreme vertices design of experiment has been set up for these
three components of the composition:

x1-ammonium perchlorate 65–77 %
x2-aluminum powder 8–20 %
x3-polyurethane binder 15–27 %

The geometric interpretation of the local factor space is given in Fig. 3.17.
Relations between the coded and real ratios are given as follows:

x1 ¼ 0:77X1 þ 0:65X2 þ 0:65X3
x2 ¼ 0:08X1 þ 0:20X2 þ 0:08X3
x3 ¼ 0:15X1 þ 0:15X2 þ 0:27X3

8<
: (3.100)

The extreme vertices design for a third-order regression model is given in Table
3.35. Regression coefficients for the impulse and burning rate at pressure of 70 bar
and temperature of 25 �C are determined from experimental outcomes.
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Figure 3.17 Local factor space

Table 3.35 Extreme vertices design

No. Design matrix Response
marks

Operational matrix Measur. response Pred. Response

X1 X2 X3 x1 x2 x3 Y1 Y2 y
_

1 y
_

2

1 1 0 0 y1 77.0 8.0 15.0 2275.1 1.40 2275.10 1.400

2 0 1 0 y2 65.0 20.0 15.0 2200.0 1.11 2200.00 1.110

3 0 0 1 y3 65.0 8.0 27.0 1853.5 0.54 1853.50 0.540
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Table 3.35 (continued)

No. Design matrix Response
marks

Operational matrix Measur. response Pred. Response

X1 X2 X3 x1 x2 x3 Y1 Y2 y
_

1 y
_

2

4 1/3 2/3 0 y122 69.0 16.0 15.0 2255.5 1.15 2232.57 1.139

5 1/3 0 2/3 y133 69.0 8.0 23.0 2030.0 0.75 2009.13 0.742

6 0 1/3 2/3 y233 65.0 12.0 23.0 1961.3 0.67 1941.87 0.663

7 2/3 1/3 0 y112 73.0 12.0 15.0 2265.3 1,,24 2242.57 1.229

8 2/3 0 1/3 y113 73.0 8.0 19.0 2128.0 0.90 2148.26 0.896

9 0 2/3 1/3 y223 65.0 16.0 19.0 2098.6 0.62 2077.37 0.618

10 1/3 1/3 1/3 y123 69.0 12.0 19.0 2255.5 0.93 2230.27 0.921

11* 1/2 1/4 1/4 y1123 71.0 11.0 18.0 2118.2 1.00 2266.73 1.01

12* 1/4 1/4 1/2 y1233 68.0 11.0 21.0 1980.9 0.66 2172.36 0.87

13* 3/4 1/4 0 y1112 74.0 11.0 15.0 2196.7 1.17 2265.97 1.27

14* 3/4 0 1/4 y1113 74.0 8.0 18.0 2137.8 0.93 2155.19 0.98

15* 1/4 3/4 0 y1222 68.0 17.0 15.0 – 1.08 2247.70 1.14

* Control points

1. Third-order model for specific impulse

b1 ¼ 2275:1; b2 ¼ 2200:0; b3 ¼ 1853:5; b12 ¼ 102:83; b13 ¼ 66:15;

b23 ¼ 14:40; c12 ¼ �102:83; c13 ¼ �287:10; c23 ¼ 147:15; b123 ¼ 3390:98:

y
_ ¼ 2275:1X1 þ 2200:0X2 þ 1853:5X3 þ 102:83X1X2 þ 66:15X1X3

þ14:40X2X3 � 102:83X1X2 X1 � X2ð Þ � 287:10X1X3 X1 � X3ð Þ

þ147:15X2X3 X2 � X3ð Þ þ 3390:98X1X2X3 (3.101)

1.1 Check of lack of fit
According to preliminary information it is:

S
2
�yy ¼ 1

N

PN
u¼1

S
2
y ¼ 156:06;S

2
y ¼ 1

n�1

Pn
k¼1

yuk � �yy
� �2

;

N=2; f =N(u-1)=2(2-1)=2; a=0.05; ‘=4;n=2.

a) for control point 11 it is:

n ¼
P

a
2
i þ

P
a
2
ij ; ai ¼ Xi 2Xi � 1ð Þ; aij ¼ 4XiXj;

a1 ¼ 0:5 2� 0:5� 1ð Þ ¼ 0:0; a12 ¼ 4� 0:5� 0:25 ¼ 0:5;

a2 ¼ 0:5 2� 0:25� 1ð Þ ¼ �0:125; a13 ¼ 4� 0:5� 0:25 ¼ 0:5;

a3 ¼ 0:5 2� 0:25� 1ð Þ ¼ �0:125; a23 ¼ 4� 0:25� 0:25 ¼ 0:25;

n ¼ 0:59; Dy11 ¼ �yy11 � y
_

11

��� ��� ¼ 2118:2� 2266:7 ¼ 148:5
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ta=l;f ¼ Dy11
ffiffiffi
n

p

S�yy
ffiffiffiffiffiffiffiffiffi
1þn

p ¼ 148:5
ffiffiffi
2

p

12:49
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:59

p ¼ 13:30 � tT 0:01;2ð Þ ¼ 9:92:

The regression model (3.101) is not adequate in point number 11.

b) for control point 15 it is:

a1 ¼ 0:75 2� 0:75� 1ð Þ ¼ 0:38; a12 ¼ 4� 0:75� 0:0 ¼ 0:0;

a2 ¼ 0:05 2� 0:0� 1ð Þ ¼ 0:0; a13 ¼ 4� 0:75� 0:25 ¼ 0:75;

a3 ¼ 0:25 2� 0:25� 1ð Þ ¼ �0:125; a23 ¼ 4� 0:0� 0:25 ¼ 0:00;

n ¼ 0:72;Dy15 ¼ �yy15 � y
_

15

��� ��� ¼ 2137:8� 2155:19 ¼ 17:39:

tR ¼ 17:39
ffiffiffi
2

p

12:49
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:72

p ¼ 1:50 � tT 0:01;2ð Þ ¼ 9:92

Table 3.36 Check of lack of fit of regression – Eq. (3.101)

No. Coded ratios �yy y
_ jDyj n tR tT adequacy

X1 X2 X3

11 0.50 0.25 0.25 2118.2 2266.7 148.50 0.59 13.30 9.92 Inadequate

12 0.25 0.25 0.50 1980.9 2172.3 191.46 0.59 17.15 9.92 Inadequate

14 0.25 0.75 0.00 2196.7 2265.9 69.27 0.72 5.97 9.92 Adequate

15 0.75 0.00 0.25 2137.8 2155.2 17.39 0.72 1.50 9.92 Adequate

The regression model is adequate. A check of lack of fit of regression model
(3.101) in all control points is given in Table 3.36.

2. Third-order model for burning rate

b1 ¼ 1:40; b2 ¼ 1:11; b3 ¼ 0:54; b12 ¼ �0:27; b13 ¼ �0:65;

b23 ¼ �0:81; b123 ¼ 2:86; c12 ¼ �0:045; c13 ¼ �0:923; c23 ¼ �1:62:

y
_ ¼ 1:40X1 þ 1:11X2 þ 0:54X3 � 0:27X1X2 � 0:65X1X3 � 0:81X2X3

�0:045X1X2 X1 � X2ð Þ � 0:923X1X3 X1 � X3ð Þ � 1:62X2X3 X2 � X3ð Þ þ 2:86X1X2X3

(3.102)

A check of lack of fit of the obtained regression model is given in Table 3.37.
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Table 3.37 Check of lack of fit of regression – Eq. (3.102)

No. Coded ratios �yy y
_ jDyj n tR tT adequacy

X1 X2 X3

11 0.50 0.25 0.25 1.00 1.01 0.01 0.59 0.165 9.92 Adequate

12 0.25 0.25 0.50 0.66 0.87 0.21 0.59 3.45 9.92 Adequate

13 0.25 0.75 0.00 1.08 1.14 0.06 0.70 0.950 9.92 Adequate

14 0.75 0.25 0.00 1.17 1.27 0.10 0.72 1.580 9.92 Adequate

15 0.75 0.00 0.25 0.93 0.98 0.05 0.72 0.790 9.92 Adequate

The geometric interpretation in the form of contour graphs for both regression
models is given in Figs. 3.18 and 3.19.

By overlapping the simplex with specific impulse and burning rate contour lines,
we can determine the optimal composition of a composite rocket propellant in a
very simple way.
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3.6 D-optimal Designs

3.6
D-optimal Designs

The most important among the known criteria of design optimality is the require-
ment of D- and G-optimality. A design is said to be D-optimal when it minimizes
the volume of the scatter ellipsoid for estimates of regression equation coefficients.
The property of G-optimality provides the least maximum variance of predicted
response values in a region under investigation.

Simplex-lattice designs exhibit the properties of D- and G-optimality in the build-
ing of second- and incomplete third-degree polynomials only. Scheffe’s designs of
higher degree are not D-optimal [19]. A D-optimal simplex lattice for the third-
degree polynomial was deduced later by Kiefer [20]. If we consider a set of designs
with the coordinates of points:

Xi ¼ 1; Xj ¼ Xk ¼ 0

Xi ¼ 1� Xj ¼ b; Xk ¼ 0; b � 1=2 (3.103)

Xi ¼ Xj ¼ Xk ¼ 1=3

then to produce a third-degree polynomial a design will be D-optimal at:
b ¼ 1�

ffiffiffi
5

p� �
=2.

In the example the points in the faces of simplex are taken with coordinates:
Xi=0.2764 and Xj=0.7236 [12].

Table 3.38 tabulates the D-optimal design for the derivation of a ternary system
third-degree polynomial. Following this design the coefficients are obtained for a
third-degree polynomial having the same form as that from a conventional simplex
lattice:

Table 3.38 D-optimal design for a ternary system third-degree polynomial {3,3}

N X1 X2 X3 y N X1 X2 X3 Y

1 1 0 0 y1 6 0.7236 0 0.2764 y113

2 0 1 0 y2 7 0.2764 0 0.7236 y133

3 0 0 1 y3 8 0 0.7236 0.2764 y223

4 0.7236 0.2764 0 y112 9 0 0.2764 0.7236 y233

5 0.2764 0.7236 0 y122 10 0.333 0.333 0.333 y123

y
_ ¼

P
1�i�q

b
i
Xi þ

P
1�i�j�q

b
ij
XiXj þ

P
1�i�j�q

c
ij
XiXj Xi � Xj

� �
þ

P
1�i�j�k�q

b
ijk
XiXjXk

(3.104)

Formulas for the polynomial coefficients are derived by substituting the coordi-
nates of points into the regression equation:
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b
i
¼ yi

b
ij
¼ 5

2
yiij þ yijj þ yi � yj

� �
c
ij
¼ 5

2
5 yiij � yijj

� �
� yi þ yj

h i
b
ijk

¼ 27yijk � 15
2

yiij þ yijj þ yiik þ yjkk þ yjjk

� �
þ 6 yi þ yj þ yk

� �
(3.105)

The adequacy test and the assignment of confidence intervals using a D-optimal
design (Table 3.38) are accomplished along the same lines, as in the simplex-lattice
method. The variation of n with composition, are given in the reference literature
[12]. In constructing the fourth-order polynomial for the ternary system, the design
will be D-optimal at:

Xi ¼ 7�
ffiffiffiffiffi
21

p� �
=14;Xj ¼ 1� Xi ;Xk ¼ 0 (3.106)

or

Xi=0.1727; Xj=0.8273; Xk=0

Moreover, in the fourth-order D-optimal design there are points with coordinates:

Xi ¼ Xj ¼ 7�
ffiffiffi
5

p� �
=22;Xk ¼ 1� Xi þ Xj

� �
(3.107)

or

Xi=Xj=0.2165; Xk=0.5670

In Table 3.39 a fourth-order D-optimal design for a ternary system is presented.

Table 3.39 D-optimal design for a ternary system fourth-degree polynomial {3,4}

N X1 X2 X3 y N X1 X2 X3 Y

1 1 0 0 y1 9 0.8273 0 0.1727 y1113

2 0 1 0 y2 10 0.1727 0 0.8273 y1333

3 0 0 1 y3 11 0 0.8273 0.1727 y2223

4 0.5 0.5 0 y12 12 0 0.1727 0.8273 y2333

5 0.5 0 0.5 y13 13 0.5670 0.2165 0.2165 y1123

6 0 0.5 0.5 y23 14 0.2165 0.5670 0.2165 y1223

7 0.8273 0.1727 0 y1112 15 0.2165 0.2165 0.5670 y1233

8 0.1727 0.8273 0 y1222

According to this design the coefficients are obtained for a regression equation of
the form:

y
_ ¼ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ c12X1X2 X1 � X2ð Þ

þc13X1X3 X1 � X3ð Þ þ c23X2X3 X2 � X3ð Þ þ d12X1X2 X1 � X2ð Þ2

þd13X1X3 X1 � X3ð Þ2

þd23X2X3 X2 � X3ð Þ2þb1123X
2
1 X2X3 þ b1223X1X

2
2 X3 þ b1233X1X2X

2
3 (3.108)
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Substituting the coordinates of points into the regression equation gives the rela-
tionships for calculation of the coefficients of the fourth-degree polynomial:

bi ¼ yi (3.109)

bij ¼ 4yij � 2yi � 2yj (3.110)

c
ij
¼ 7

6
3 �yi þ yj

� �
þ

ffiffiffiffiffi
21

p
yiiij � yijjj

� �h i
(3.111)

dij ¼
7
6

�3 yi þ yj

� �
� 8yij þ 7 yiiij þ yijjj

� �h i
(3.112)

b
ijk

¼ 26:657yi � 6:167 yj þ yk

� �
� 16:96 yij þ yik

� �
þ 0:511yik

�32:18 yiiij þ yiiik

� �
þ 17:196 yijjj þ yikkk

� �
þ 5:72 yjjjk þ yjkkk

� �
þ84:11yiijk � 23:237 yijjk þ yijkk

� �
(3.113)

i„j„k; i, j, k=1, 2, 3
Figure 3.20 shows the arrangement of points in D-optimal designs for ternary sys-

tems.

X

(a)

2

XX 31

2

(b)

X 2

(c)

X 2

(d)

X

XX 31 XX 31 XX 31

Figure 3.20 Arrangement of points in the D-optimal designs of:
a) second-order; b) incomplete third-order; c) third-order; d)
fourth-order

Example 3.18 [12]
The variation of viscosity (y) of solutions in the system (NH4)2HPO4-K2CO3-H2O
with composition and temperature is studied. The experimental design is conducted
within a local region of the concentration triangle bounded by a saturation line at
0 �C (Figs. 3.21 and 3.22). The local region of the diagram was a triangle with the
vertices: Z1(42; 0; 58), Z2(0; 30; 70) and Z3(0; 0; 100).

The third-order D-optimal design is prepared relative to pseudocomponents Z1,
Z2 and Z3; and the content of initial components at the design points is determined
by Eq. (3.84). Table 3.40 presents the experimental conditions both in terms of pseu-
docomponents and on the natural scale (per cent). The sample variance here is:
Sy=0.53; and the number of degrees of freedom is f =13. From Eq. (3.105) for viscosi-
ty at 0 �C the coefficients have been calculated for the third-order regression equa-
tion:
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y
_

1 ¼ 8:33Z1 þ 4:99Z2 þ 1:79Z3 � 6:95Z1Z2 � 9:05Z1Z3 � 1:37Z2Z3

þ17:90Z1Z2 Z1 � Z2ð Þ þ 9:90Z1Z3 Z1 � Z3ð Þ þ 12:37Z2Z3 Z2 � Z3ð Þ

þ18:06Z1Z2Z3 (3.114)

and at 30 �C:

y
_

2 ¼ 3:83Z1 þ 2:54Z2 þ 0:80Z3 � 8:77Z1Z2 � 3:10Z1Z3 � 0:87Z2Z3

þ5:27Z1Z2 Z1 � Z2ð Þ þ 6:55Z1Z3 Z1 � Z3ð Þ þ 5:77Z2Z3 Z2 � Z3ð Þ

þ3:00Z1Z2Z3 (3.115)

Table 3.40 D-optimal design {3,3}

N Z1 Z2 Z3 x1 x2 x3 y1 y2

1 1 0 0 42.0 0 58.0 8.33 3.83

2 0 1 0 0 30.0 70.0 4.99 2.54

3 0 0 1 0 0 100.0 1.79 0.80

4 0.2764 0.7236 0 11.6 21.71 66.69 4.22 2.09

5 0.7236 0.2764 0 30.4 8.29 61.31 6.32 2.77

6 0.2764 0 0.7236 11.6 0 88.4 2.20 1.13

7 0.7236 0 0.2764 30.4 0 69.6 4.30 2.26

8 0 0.2764 0.7236 0 8.29 91.71 2.30 1.09

9 0 0.7236 0.2764 0 21.71 78.29 3.93 1.90

10 0.333 0.333 0.333 14.0 10.0 76.0 3.59 1.64

11* 0.22 0.22 0.56 9.1 6.5 84.4 2.00 1.23

12* 0.22 0.56 0.22 9.1 17.0 73.9 3.68 1.82

13* 0.56 0.22 0.22 23.9 6.5 69.6 4.70 2.12

* Control points

The results of testing the adequacy of Eqs. (3.114) and (3.115) are arrayed in Table
3.41.

Table 3.41 Check of lack of fit

N y1 y
_

1 jDy1 j y2 y
_

2 jDy2 j n tR1 tR2

11 2.0 1.68 0.32 1.23 0.72 0.51 0.8 0.77 1.22

12 3.68 3.68 0 1.82 1.82 0 0.8 0 0

13 4.70 5.70 1.00 2.12 2.59 0.47 0.9 2.33 1.09

The table value of Student’s t-test is t0.016;13=2.85. For all the test points the values
of the t-ratio were found to be less than the table value, hence the regression equa-
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3.6 D-optimal Designs

tions Eq. (3.114) and (3.115) adequately fit the experiment with 95% level of confi-
dence. Relations between pseudocomponents and natural variables are as follows:

1 ¼ 0:42Z
1ð Þ
1 þ 0Z

2ð Þ
1 þ 0:58Z

3ð Þ
1

0 ¼ 0Z
1ð Þ
1 þ 0:3Z

2ð Þ
1 þ 0:7Z

3ð Þ
1

0 ¼ 0Z
1ð Þ
1 þ 0Z

2ð Þ
1 þ 1Z

3ð Þ
1

(3.116)

0 ¼ 0:42Z
1ð Þ
2 þ 0Z

2ð Þ
2 þ 0:58Z

3ð Þ
2

1 ¼ 0Z
1ð Þ
2 þ 0:3Z

2ð Þ
2 þ 0:7Z

3ð Þ
2

0 ¼ 0Z
1ð Þ
2 þ 0Z

2ð Þ
2 þ 1Z

3ð Þ
2

The solutions to the sets of Eq. (3.116) are:

Z
1ð Þ
1 ¼ 2:38; Z

1ð Þ
2 ¼ 0;

Z
2ð Þ
1 ¼ 0; Z

2ð Þ
2 ¼ 3:33; (3.117)

Z
3ð Þ
1 ¼ 0; Z

3ð Þ
2 ¼ 0

Substituting Eq. (3.117) into the set of equations (3.86), we arrive at:

Z1 ¼ 2:38 1� x2 � x3ð Þ
Z2 ¼ 3:33x2
Z3 ¼ 1� Z1 � Z2 ¼ 2:38x3 � 0:95x2 � 1:38

(3.118)

The geometric interpretation of the local factor space and arrangement of the
points are given in Figs. 3.21 and 3.22.

42%

30%

1

(H O)2

2

X

XX3

(K CO )2 3

( NH HPO4 2 4)

Figure 3.21 Local factor space

525



III Mixture Design “Composition-Property”
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Figure 3.22 Arrangement of points

Example 3.19 [12]
We seek to determine an optimal composition of a multicomponent solvent utilized
to remove hydrocarbons from yeast. The major index of purification here is the
hydrocarbon content in biomass upon extraction (y). For technological and eco-
nomic reasons, the experimental design is accomplished in a local section of the
concentration, Fig. 3.23.

In the region covered, the mixture contains, in per cent: acetones, X1£ 74; hexane,
X2£ 90; and water, X3£ 10. The local portion of the diagram is a triangle with the
vertices: Z1 (9.5; 89.5; 1); Z2 (58.5; 40; 1.5); Z3 (74; 16; 10).
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Z
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Z
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Figure 3.23 Local factor space
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3.6 D-optimal Designs

A fourth-order D-optimal design is produced with reference to pseudocompo-
nents Z1;Z2 and Z3 – Table 3.42. The pseudocomponents satisfy the principal condi-
tion for Scheffe’s designs. The conversion to initial components at any point within
the local simplex studied is carried out from Eq. (3.84). According to this design, an
experiment is run with mixtures, each observation being repeated twice. Using
Eqs. (3.109)–(3.113) the coefficients of fourth-order regression equation are calcu-
lated in pseudocomponents

y
_

u ¼ 0:1Z1 þ 0:3Z2 þ 0:04Z3 � 0:48Z1Z2 � 0:04Z1Z3 � 0:44Z2Z3

þ0:914Z1Z2ðZ1 � Z2Þ � 0:312Z1Z3ðZ1 � Z3Þ � 1:39Z2Z3ðZ2 � Z3Þ

�1:003Z1Z2ðZ1 � Z2Þ
2 þ 0:747Z1Z3ðZ1 � Z3Þ

2 þ 0:782Z2Z3ðZ2 � Z3Þ
2

þ1:398Z
2
1Z2Z3 þ 8:416Z1Z

2
2Z3 � 4:703Z1Z2Z

2
3 (3.119)

Table 3.42 D-optimal design {3.4}

N Z1 Z2 Z3 x1 x2 x3 y

1 1 0 0 9.5 89.5 1 0.1

2 0 1 0 58.5 40.0 1.5 0.3

3 0 0 1 74.0 16.0 10.0 0.04

4 0.5 0.5 0 34.0 64.7 1.3 0.08

5 0.5 0 0.5 41.7 52.8 5.5 0.06

6 0 0.5 0.5 66.2 28.2 5.8 0.06

7 0.176 0.824 0 49.9 48.7 1.4 0.05

8 0.824 0.176 0 18.12 80.79 1.09 0.09

9 0.176 0 0.824 62.6 29.0 8.4 0.12

10 0.824 0 0.176 20.85 76.55 2.6 0.1

11 0 0.176 0.824 71.22 20.30 8.49 0.2

12 0 0.824 0.176 61.25 35.75 3.0 0.11

13 0.216 0.216 0.568 56.7 37.12 6.18 0.11

14 0.216 0.568 0.216 51.2 45.65 3.15 0.091

15 0.568 0.216 0.216 34.0 62.97 3.03 0.11

16 0.333 0.333 0.333 47.3 48.5 4.2 0.108

The sets of Eq. (3.87) under the constraints on the component content in the sol-
vent have the form:

9:5Z
1ð Þ
1 þ 89:5Z

2ð Þ
1 þ 1Z

3ð Þ
1 ¼ 1

58:5Z
1ð Þ
1 þ 40Z

2ð Þ
1 þ 1:5Z

3ð Þ
1 ¼ 0

74Z
1ð Þ
1 þ 16Z

2ð Þ
1 þ 10Z

3ð Þ
1 ¼ 0

9>=
>; (3.120)

9:5Z
1ð Þ
2 þ 89:5Z

2ð Þ
2 þ 1Z

3ð Þ
2 ¼ 0

58:5Z
1ð Þ
2 þ 40Z

2ð Þ
2 þ 1:5Z

3ð Þ
2 ¼ 1

74Z
1ð Þ
2 þ 16Z

2ð Þ
2 þ 10Z

3ð Þ
2 ¼ 1

9>=
>;
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The solutions are:

Z
1ð Þ
1 ¼ 0:0092; Z

1ð Þ
2 ¼ 0:0215;

Z
2ð Þ
1 ¼ 0:0116; Z

2ð Þ
2 ¼ 0:00051;

Z
3ð Þ
1 ¼ 0:0495; Z

3ð Þ
2 ¼ �0:1583:

Using the solutions found we obtain the formulas relating natural coordinates x
to Z:

Z1 ¼ �0:92þ 0:0208x2 þ 0:058x3
Z2 ¼ 2:15� 0:022x2 � 0:18x3
Z3 ¼ 1� Z1 � Z2 ¼ �0:23þ 0:001x2 þ 0:121x3

9=
; (3.121)

The adequacy of the regression equation obtained was tested by the Student’s test
at five test points, the results being given in Table 3.43.

Table 3.43 Check of lack of fit

x1 x2 x3 y y
_

tR tT

47.3 48.5 4.2 0.1022 0.108 0.365 2.83
53.0 44.0 3.0 0.079 0.072 0.392 2.83
19.0 79.0 2.0 0.1 0.07 1.778 2.83
37.9 58.7 3.4 0.13 0.12 0.547 2.83
44.5 54.0 1.5 0.04 0.05 0.57 2.83

It is seen that Eq. (3.119) adequately fits the experiment at the significance level
a=0.05%. The quality of the resultant product is considered satisfactory, if the con-
tent of residual hydrocarbons in the biomass is under 0.05%. With the aim to eluci-
date the solvent compositions meeting this requirement, the lines of constant
response are plotted to Eq. (3.119); the curves are shown in Fig. 3.24. The solvent
compositions meeting the requirement that y<0.05%, can be found within the area
of the simplex.
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Figure 3.24 Isolines of residual hydrocarbon content of biomass

3.7
Draper-Lawrence Design

Draper and Lawrence [21] have proposed designs in which, unlike the simplex lat-
tices, all the points are located within the investigation area, i.e. experiments are
conducted with the q-component mixtures only. These designs make allowance for
the absence of prior information on the response surface and that it is desirable to
approximate an unknown response surface by low-degree polynomials. Data points
are chosen to provide the best representation of a complex surface by simple polyno-
mials. In building a polynomial of degree n1, design points are to be selected so that
a minimal systematic error results, which occurs due to the higher degree of the
response function polynomial, n2 compared with the degree of estimating the poly-
nomial, n1. The principles underlying the selection of suitable designs have been
put forward earlier by Box and Draper. Draper and Lawrence built designs for ternary
and quaternary systems and polynomials of degrees n1=1; n2=2; n1=2 and n2=3. To
make the generation of design more convenient these authors introduce a new refer-
ence system. With ternary mixtures, the new coordinate system is selected in the
plane of the concentration triangle (X1, X2, X3), so that the origin coincides with the
centroid of the triangle, one of the triangle axes lies on the axis Z2 and the two others
are symmetrical about this axis, Fig. 3.25.
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0

X

Z

Z

X1

3

2

1

X2

Figure 3.25 Coordinate system for the designs of Draper and
Lawrence

The triangular coordinate system (X1, X2, X3) is related to the rectangular one (Z1,
Z2) as follows:

Z1 ¼ 1
2

�X1 þ X2ð Þ

Z2 ¼
ffiffiffi
3

p

6
�X1 � X2 þ 2X3ð Þ

9>=
>; (3.122)

X1 ¼ 1
3

�3Z1 � Z2

ffiffiffi
3

p
þm

� �
X2 ¼ 1

3
3Z1 � Z2

ffiffiffi
3

p
þm

� �
X3 ¼ 1

3
2Z2

ffiffiffi
3

p
þm

� �

9>>>>=
>>>>;

(3.123)

where:
m-is the length of a side of the concentration triangle.

When the whole of the diagram is explored, m=1; and when local areas of the dia-
gram are explored, m<1. Design points for ternary system are selected (in the coor-
dinates Z1, Z2) from the following sets:

1) Vertices of a triangle similar to a given concentration triangle and centered
on the origin, with side of length p:

0;þ 1ffiffiffi
3

p p

� �
þ 1
2
p;�

ffiffiffi
3

p

6
p

� �
� 1
2
p;�

ffiffiffi
3

p

6
p

� �

2) Vertices of a triangle similar to a given concentration triangle and centered
on the origin, with side of length q:

0;� 1ffiffiffi
3

p q

� �
þ 1
2
q;

ffiffiffi
3

p

6
q

� �
� 1
2
q;

ffiffiffi
3

p

6
q

� �

530



3.7 Draper-Lawrence Design

3) Vertices of a square centered on the origin, with sides 2a parallel to axes (–a,
–a);

4) Points on coordinate axes (–b, 0), (0, –b);
5) Vertices of a rectangle (c, d), (-c, -d), (c, -d) and (-c, d).

After one or the other design of Draper-Lawrence has been constructed for a tern-
ary system, first-degree polynomials are derived in two independent variables Z1

and Z2 (n1=1 for n2=2).

y
_ ¼ b0 þ b1Z1 þ b2Z2 (3.124)

or second-order polynomials (n1=2 for n2=3):

y
_ ¼ b0 þ b1Z1 þ b2Z2 þ b12Z1Z2 þ b11Z

2
1 þ b22Z

2
2 (3.125)

Draper and Lawrence suggested that for the first-order polynomials and ternary sys-
tems (q=3), the designs of experiments should containin from 6 to 9 point-trials. Param-
eters for some ofDraper-Lawrence designs (in fractions of m) at q=3, n1=1 and n2=2, are
given in Table 3.44. If the number of design points is more than that of a selected set,
then an appropriate number of points is added at the center of triangle (with coordinates
Z1=0, Z2=0). For example, we consider a Draper-Lawrence design (1,2) containing six
points, Table 3.45. Points of set 1 at m=1 have the coordinates (Z1, Z2):

0:0;
0:621ffiffiffi

3
p

� �
þ 0:621

2
; � 0:621

ffiffiffi
3

p

6

� �
� 0:621

2
;
0:621

ffiffiffi
3

p

6

� �
or:

(0.0; 0.366); (0.3105; -0.18); (-0.3105; -0.18)

Points of a set 2 have the coordinates:

0:0;� 0:339ffiffiffi
3

p
� �

þ 1
2
0:339;

0:339
ffiffiffi
3

p

6

� �
� 1
2
0:339;

0:339
ffiffiffi
3

p

6

� �
or:

(0.0; -0.196); (0.170; 0.098); (-0.170; 0.098)

Table 3.44 Parameters of Draper-Lawrence designs for q=3, n1 = 1,n2 = 2

Set (n1, n2) Center points Design points-total
N

Parameters

(1,2) 0 6 p=0.621 q=0.339
(1,2) 1 7 p=0.662 q=0.381
(1,2) 2 8 p=0.699 q=0.421
(1,2) 3 9 p=0.733 q=0.457
(1,3) 0 7 p=0.616 q=0.160
(1,4) 0 7 p=0.616 b=0.226
(1,5) 0 7 p=0.616 c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:051m

2 � d
2

p 	

(1,1,2) 0 9 p1=0.606; q=0.364 p2=0.500
(1,2,2) 0 9 p=0.727; q2=0.200 q1=0.425
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* Value of d2 is selected at random

Table 3.45 Draper-Lawrence design matrix (1,2); for q=3, n1 = 1,n2 = 2

N Z1 Z2 X1 X2 X3

1 0.0 0.366 0.12 0.12 0.76

2 0.311 -0.18 0.127 0.748 0.125

3 -0.311 -0.18 0.748 0.127 0.125

4 0.0 -0.196 0.447 0.447 0.106

5 0.170 0.098 0.106 0.447 0.447

6 -0.170 0.098 0.447 0.106 0.447

We make a transition from point coordinates in the system (Z1, Z2 ) to those in
the triangle X1, X2, X3 using Eqs. (3.123). Let us map, for example, the first point
with coordinates Z1=0.0 and Z2=0.366 (m=1). For this point:

X1 ¼ 1
3

�0:366
ffiffiffi
3

p
þ 1

� �
¼ 0:12

X2 ¼ 1
3

�0:366
ffiffiffi
3

p
þ 1

� �
¼ 0:12

X3 ¼ 1
3

2� 0:366
ffiffiffi
3

p
þ 1

� �
¼ 0:76

To test the calculation we sum up:

X1+X2+X3=0.12+0.12+0.76=1.0

The arrangement of the points in the concentration triangle is shown in Fig. 3.26.
Draper and Lawrence suggested for second-order polynomials of Eq. (3.125) as

applied to ternary systems, the designs containing from 8 to 15 design points. Pa-
rameters for the Draper-Lawrence designs (in fractions of m) at q=3, n1=2 and n2=3,
are summarized in Table 3.46.
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Figure 3.26 Draper-Lawrence design (1,2)



3.7 Draper-Lawrence Design

Table 3.46 Parameters of Draper-Lawrence designs at q=3, n1 = 2,n2 = 3

n1, n2, n1, n3 n0 N Parameters

(1,2) 1 7 p=0.670 q=0.385
(1,2) 2 8 p=0.698 q=0.421
(1,2) 3 9 p=0.723 q=0.450
(1,1,2) 0 9 p1=0.715 p2=0.233 q=0.430
(1,1,2) 1 10 p1=0.729 p2=0.323 q=0.445
(1,1,2) 2 11 p1=0.738 p2=0.398 q=0.462
(1,1,2) 3 12 p1=0.743 p2=0.465 q=0.450
(1,1,2) 4 13 p1=0.742 p2=0.532 q=0.485
(1,2,2) 0 9 p=0.716 q1=0.342 q2=0.342
(1,2,2) 1 10 p=0.739 q1=0.367 q2=0.367
(1,1,1,2) 0 12 p1=0.751 p2=0.422 p3=0.189 q=0.470
(1,1,2,2) 0 12 p1=0.748 p2=0.445 q1=0.468 q2=0.156
(1,2,2,2) 0 12 p=0.782 q1=0.348 q2=0.348 q3=0.348
(1,3,4) 2 13 p=0.756 a=0.183 b=0.258
(1,3,5) 2 13 p=0.756 a=0.300 c=0.547 d=0.130
(1,4,5) 2 13 p=0.756 b=0.212 c=0.130 d=0.257
(1,5,5) 2 13 p=0.756 c1=0.094 d1=0.272 c2=0.172 d2=0.125
(1,1,2,5) 0 13 p1=0.297 p2=0.756 q=0.295 c=0.111 d=0.268
(1,1,2,5) 0 13 p1=0.478 p2=0.756 q=0.477 c=0.045 d=0.109
(1,1,2,5) 1 14 p1=0.369 p2=0.766 q=0.319 c=0.112 d=0.270
(1,1,2,5) 1 14 p1=0.514 p2=0.762 q=0.481 c=0.058 d=0.140
(1,1,2,5) 2 15 p1=0.545 p2=0.766 q=0.480 c=0.071 d=0.171

n0-Center points

Consider then a design (1,3,4) containing 13 points: 11 points of the sets (1,3,4)
and 2 augmenting points at the center of the triangle, Fig. 3.27.
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32 a=0.183

Figure 3.27 Draper-Lawrence design (1,3,4)
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The points of set 1 at m=1 have the coordinates (Z1, Z2):

0;
0:756ffiffiffi

3
p

� �
þ 0:756

2
; � 0:756

ffiffiffi
3

p

6

� �
� 0:756

2
;
0:756

ffiffiffi
3

p

6

� �
or:

(0.0; 0.437); (0.378; -0.218); (-0.378; -0.218)

The points of set 3:

(0.183; 0.183); (0.183; -0.183); (-0.183; 0.183); (-0.183; -0.183)

The points of set 4:

(0.258; 0); (-0.258; 0); (0; 0.258); (0.0; -0.258)

The experimental design is tabulated in Table 3.47.
The coordinates X1, X2, X3 are related to Z1, Z2 by Eqs. (3.123). The coefficients of

the second-order regression equation y
_
=f (Z1, Z2) are derived by the method of least

squares. For the adequacy of fit, t-tests are applied to the experimental data at test
points. The equation is adequate if the tR-test values for all the test points are less
than the table value. The tR-test values are to be found from Eq. (3.59). Values of n
can be taken from appropriate contour charts. Using the designs of Draper-Lawrence,
the composition dependence of n can only be calculated with a digital computer. To
develop designs of quaternary systems, Draper-Lawrence also introduced a coordinate
system (Z1, Z2, Z3). The origin of the new system coincides with the centroid of the
concentration tetrahedron (X1, X2, X3, X4), and the coordinate axes are directed so that
the four vertices of the tetrahedron in the new coordinate system form a half-replica of
the full factorial design 23 with the defining contrast 1=Z1Z2Z3. In the new system (Z1,
Z2, Z3) the coordinates of the tetrahedron vertices are in the general case:

(m, m, -m); (m, -m, m); (-m, m, m); (-m, -m, -m)

and for the tetrahedron edge m=1:

(1, 1, -1); (1, -1, 1); (-1, 1, 1); (-1, -1, -1)
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3.7 Draper-Lawrence Design

Table 3.47 Design matrix (1,3,4); q=3; n1 = 2,n2 = 3,N = 13

N Z1 Z2 X1 X2 X3

1 0.0 0.437 0.081 0.081 0.838

2 0.378 -0.218 0.081 0.837 0.082

3 -0.378 -0.218 0.837 0.081 0.082

4 0.183 0.183 0.044 0.410 0.546

5 0.183 -0.183 0.256 0.622 0.122

6 -0.183 0.183 0.410 0.045 0.545

7 -0.183 -0.183 0.622 0.256 0.122

8 0.258 0.0 0.076 0.591 0.333

9 -0.258 0.0 0.592 0.075 0.333

10 0.0 0.258 0.184 0.184 0.632

11 0.0 -0.258 0.482 0.482 0.036

12 0.0 0.0 0.333 0.333 0.333

13 0.0 0.0 0.333 0.333 0.333

The coordinate systems (X1, X2, X3, X4) and (Z1, Z2, Z3), are related to each other
as follows:

Z1 ¼ X1 þ X2 � X3 � X4

Z2 ¼ X1 � X2 þ X3 � X4

Z3 ¼ �X1 þ X2 þ X3 � X4

(3.126)

and

X1 ¼ 1
4

Z1 þ Z2 � Z3 þmð Þ

X2 ¼ 1
4

Z1 � Z2 þ Z3 þmð Þ

X3 ¼ 1
4

�Z1 þ Z2 þ Z3 þmð Þ

X4 ¼ 1
4

�Z1 � Z2 � Z3 þmð Þ

(3.127)

Design points for quaternary systems are chosen (in coordinates Z1, Z2, Z3) from
the following sets

1) Vertices of a tetrahedron similar to the concentration one with the coordi-
nates of the vertices:

(a, a, -a); (a, -a, a); (-a, a, a); (-a, -a, -a)

2) Vertices of a tetrahedron:

(b, b, b); (b, -b, b); (b, b, -b); (-b, -b, b)

3) Points on the axes:

(–h, 0, 0); (0, –h, 0); (0, 0, –h)

4) Vertices of tetrahedrons with the coordinates:
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�r;�s;�tð Þ; �r; s; tð Þ; r;�s; tð Þ; r; s;�tð Þ
�t; r; sð Þ; t;�r; sð Þ; t; r;�sð Þ; �t;�r;�sð Þ
�s; t; rð Þ; s;�t; rð Þ; s; t;�rð Þ; �s;�t;�rð Þ

After one or other Draper-Lawrence design has been constructed for quaternary
systems, polynomials are obtained in three independent variables Z1, Z2 and Z3 of
first degree (n1=1, for n2=2):

a) First-degree polynomial (n1=1, for n2=2)

y
_
=b0+b1Z1+b2Z2+b3Z3 (3.128)

b) Second-order polynomial (n1=2, for n2=3)

y
_ ¼ b0 þ b1Z1 þ b2Z2 þ b3Z3 þ b12Z1Z2 þ b13Z1Z3 þ b23Z2Z3

þb11Z
2
1 þ b22Z

2
2 þ b33Z

2
3 (3.129)

Parameters (in fractions of m) for some designs of Draper-Lawrence containing no
more than 12 points, at q=4, n1=1, n2=2, are provided in Table 3.48.

Table 3.48 Parameters of Draper-Lawrence design for q=4, n1 = 1,n2 = 2

Set (n1, n2) Center points Design points total-N Parameters

(1.2) 0 8 a=0.548 b=0.315
(1.2) 1 9 a=0.567 b=0.344
(1.2) 2 10 a=0.602 b=0.371
(1.2) 3 11 a=0.626 b=0.397
(1.2) 4 12 a=0.650 b=0.421
(1.3) 0 10 a=0.550 h=0.628
(1.3) 1 11 a=0.568 h=0.674
(1.3) 2 12 a=0.585 h=0.718
(4) 0 12 r=0.539, t=0.500 s=0.248
(4) 6 12 r=0.616, t=0.300 s=0.360

At N‡12, the values of parameters r, s, t and N are to be found from the set of
equations:

r
2 þ s

2 þ t
2 ¼ N �m

2
=20

r � s� t ¼ N �m
3
=180

(3.130)

where:
m-is the edge of the concentration tetrahedron.

The design parameters (in fractions of m) for quaternary mixtures with n1=2,
n3=3, and 18£N£24, are presented in Table 3.49.

All the above designs are built assuming that there only exists a systematic bias.
In actual practice, however, besides the systematic error, the experimental data also
contain random errors.

When minimizing the total error [21] the basic configuration of designs [20] may
be retained with the coordinates of design points multiplied by a quantity h>1, i.e.
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3.7 Draper-Lawrence Design

for a ternary system the points (hZ1, hZ2), and for a quaternary one with (hZ1, hZ2,
hZ3) should be used. The parameter h depends of the random error and the polyno-
mial coefficients, being close to unity if the random error is predominant. As for
each particular experiment the exact value of h is rather difficult to find, it may, to a
rather rough approximation, be taken to be equal to 1.1 for ternary and 1.2 for qua-
ternary systems. As an example, to minimize the total error we transform the design
(1, 3, 4) for q=3, n1=2 and n2=3, given in Table 3.47.

The coordinates of the first point for h=1.1 are to be found as follows:

X1 ¼ 1
3

�3hZ1 � hZ2

ffiffiffi
3

p
þm

� �
¼ 1

3
�1:1� 0:437

ffiffiffi
3

p
þ 1

� �
¼ 0:056

X2 ¼ 1
3

þ3hZ1 � hZ2

ffiffiffi
3

p
þm

� �
¼ 1

3
3� 1:1� 0:0� 1:1� 0:437

ffiffiffi
3

p
þ 1

� �
¼ 0:056

X3 ¼ 1
3

2hZ2

ffiffiffi
3

p
þm

� �
¼ 1

3
2� 1:1� 0:437

ffiffiffi
3

p
þ 1

� �
¼ 0:888

The complete design of the experiment is given in Table 3.50.

Table 3.49 Parameters of Draper-Lawrence design for q=4, n1 = 2,n2 = 3

Set Center points N Parameters

a1 a2 r s t
(1,1,4) 0 20 0.673 0.0945 0.684 0.260 0.0524
(1,1,4) 1 21 0.679 0.179 0.694 0.270 0.0564
(1,1,4) 2 22 0.685 0.248 0.702 0.274 0.0532
(1,1,4) 3 23 0.690 0.315 0.708 0.268 0.0406
(1,1,4) 4 24 0.694 0.393 0.710 0.242 0.00912

a b r s t
(1,2,4) 1 21 0.676 0.165 0.696 0.274 0.0784
(1,2,4) 2 22 0.680 0.220 0.706 0.281 0.106
(1,2,4) 3 23 0.683 0.272 0.717 0.274 0.144
(1,2,4) 4 24 0.685 0.317 0.727 0.226 0.225

a h r s t
(1.3,4) 0 22 0.682 0.319 0.0807 0.291 0.702
(1,3,4) 1 23 0.686 0.390 0.0925 0.306 0.708
(1,3,4) 2 24 0.690 0.459 0.104 0.321 0.710

a1 a2 b h
(1,1,2,3) 0 18 0.292 0.667 0.279 0.765
(1,1,2,3) 1 19 0.337 0.672 0.292 0.776
(1,1,2,3) 2 20 0.380 0.674 0.305 0.786
(1,1,2,3) 3 21 0.420 0.676 0.318 0.795
(1,1,2,3) 4 22 0.460 0.674 0.332 0.805
(1,1,2,3) 5 23 0.501 0.669 0.346 0.814
(1,1,2,3) 6 24 0.548 0.656 0.359 0.822

a1 a2 a3 b h
(1,1,1,2,3) 0 22 0.679 0.442 0.132 0.326 0.805
(1,1,1,2,3) 1 23 0.683 0.455 0.191 0.332 0.814
(1,1,1,2,3) 2 24 0.691 0.441 0.288 0.340 0.822
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Table 3.49 (continued)

Set Center points N Parameters

a1 a2 b1 b2 h
(1,1,2,2,3) 0 22 0.677 0.451 0.126 0.321 0.805
(1,1,2,2,3) 1 23 0.677 0.479 0.181 0.315 0.814
(1,1,2,2,3) 2 24 0.672 0.517 0.275 0.275 0.822
(1,1,2,3,3) 0 24 0.680 0.494 0.329 0.317 0.818

Table 3.50 Design matrix {1,3,4} for q=3, n1=2, n2=3, h=1,1

N X1 X2 X3 N X1 X2 X3

1 0.056 0.056 0.888 8 0.050 0.617 0.333

2 0.056 0.888 0.056 9 0.617 0.050 0.333

3 0.888 0.056 0.056 10 0.170 0.170 0.660

4 0.016 0.418 0.566 11 0.500 0.500 0.000

5 0.248 0.651 0.101 12 0.333 0.333 0.333

6 0.418 0.016 0.566 13 0.333 0.333 0.333

7 0.651 0.248 0.101

Example 3.20 [12]
The dependence of viscosity at 30 �C on composition is studied for the liquid com-
plex fertilizer consisting of diammonium phosphate, potash and water (NH4)2HPO4,
K2CO3, H2O. For the investigation, the region of unsaturated solutions for both salts
at 30 �C is selected (Fig. 3.28), the side of the concentration triangle being m=0.5.

50% 50%

3

1X

X

2X

K CO2 3 H2O

(NH ) HPO4 42

Figure 3.28 Local factor space
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3.7 Draper-Lawrence Design

A Draper-Lawrence design containing 13 points is performed (Table 3.51). It is
convenient to treat the subregion studied as a concentration triangle in the new
coordinate system (X1¢, X2¢, X3¢):

X1
¢+X2

¢+X3
¢=0.5

The coordinates Xj
¢ and Xj are related by:

X
0
1 ¼ 2X1

X
0
2 ¼ 2X2

X
0
3 ¼ 1� X

0
1 � X

0
2 ¼ 1� 2X1 � 2X2

9=
; (3.131)

we also have, by Eq. (3.123):

Z1 ¼ 1
2

�X
0
1 þ X

0
2

� �
¼ �X1 þ X2

Z2 ¼
ffiffiffi
3

p

6
�X

0
1 þ X

0
2 þ 2X

0
3

� �
¼

ffiffiffi
3

p

3
X3 � 2X1 � 2X3ð Þ (3.132)

The design of the experiment and measurements of viscosity for two parallel
experiments are given in Table 3.51. From the table, the coefficients of the regres-
sion equation are obtained by the method of least squares,

y
_ ¼ 1:54� 0:94Z1 � 1:01Z2 � 8:93Z1Z2 þ 10:48Z

2
1 þ 0:76Z

2
2

Table 3.51 Design matrix and experimental data

N Z1 Z2 X1¢ X2¢ X3¢ X1 X2 X3 y
_

1 0 0.437 0.081 0.081 0.838 0.040 0.040 0.920 1.033

2 0.378 -0.218 0.081 0.837 0.082 0.040 0.418 0.542 4.873

3 -0.378 -0.218 0.837 0.081 0.082 0.418 0.040 0.542 4.722

4 0.183 0.183 0.044 0.410 0.546 0.022 0.205 0.772 1.481

5 0.183 -0.183 0.256 0.622 0.122 0.128 0.311 0.561 3.294

6 -0.183 0.183 0.410 0.045 0.545 0.311 0.128 0.561 2.996

7 -0.183 -0.183 0.622 0.256 0.122 0.205 0.023 0.772 2.160

8 0.258 0 0.075 0.592 0.333 0.092 0.092 0.816 1.430

9 -0.258 0 0.592 0.075 0.333 0.241 0.241 0.518 3.624

10 0 0.258 0.184 0.184 0.632 0.038 0.296 0.666 2.423

11 0 -0.258 0.482 0.482 0.036 0.296 0.038 0.666 2.165

12 0 0 0.333 0.333 0.333 0.167 0.167 0.666 2.191

13 0 0 0.333 0.333 0.333 0.167 0.167 0.666 2.207

The equation derived is found to be an adequate fit to the experiment. By
Eq. (3.132) the estimated regression equation in the natural scale takes the form.

y
_ ¼ 1:54þ 2:1X1 þ 0:22X2 � 0:58X3 þ 1:18X

2
1 þ 21:81X

2
2

�18:93X1X2 þ 4:14X1X3 � 6:17X2X3 þ 0:25X
2
3

Geometric interpretation of design points in Draper-Lawrence design is shown in
Fig. 3.29.
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Figure 3.29 Experimental design

3.8
Factorial Experiments with Mixture

In certain practical applications it is advantageous to consider variation of properties
not with absolute amounts of components, but with their ratios. If the percentage of
each component is not zero, then given upper and lower constraints for the compo-
nents, ratios of components may be utilized to build conventional factorial designs
[22]. The number of ratios in a q-component system is q-1:

X1+X2+...+Xq=1

Z1 ¼ X1

X2

Z2 ¼ X3

X2

:::::::Zi ¼
Xi

Xj

::::::::Zq�1 ¼
Xq�1

Xq
(3.133)

Thus, using the component ratios as independent factors, the dimensionallity of
the problem is reduced by one, and hence the number of experiments is also
decreased.

Figure 3.30 shows Kenworthy designs [22] 22 and 23 for handling the variation of
property with component ratios Z1=X1/X3 and Z2=X3/X2.

The points on the line originating from vertex X2 feature a constant ratio of com-
ponents X1 and X3. In a like manner, the line originating from vertex X1 is the locus
of equal ratios of X3 to X2. To meet the orthogonality condition for the design matrix
the recourse is made to the linear transformation of Eq. (2.59).
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X2

X1 X3 X1 X3

X2

Figure 3.30 Designs using component ratios

Example 3.21
We seek the functional relationship between the yield of sodium and potassium
bicarbonates and the composition of the initial sylvanite solution. The factors con-
trolling the potassium utilization, in the carbonization process are chosen to be the
per cent ratios of two of three components making up the system:

Z1=NaCl/KCl; Z2=H2O/NaCl

To derive the regression equation, we shall use a second-order orthogonal design
for k=2, N=9 and the star arm a=1, Fig. 3.31.
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Figure 3.31 Orthogonal design of experiment

The region where independent factors will be studied is given in Table 3.52, and
the design matrix in Table 3.53.
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Table 3.52 Factor variation levels

Name Z1 Z2

Null level 3.315 5.53

Variation interval 1.935 1.53

Upper level 5.25 7.06

Lower level 1.38 4.00

Table 3.53 Design matrix

N X0 X1 X2 X1X2 X1¢ X2¢ y ¢ y † �yy S
2
y y

_
�yy� y

_ ð�yy� y
_Þ2

1 + + + + +1/3 +1/3 10 14 12 8 10.74 1.26 1.59

2 + – – + +1/3 +1/3 77.5 79.5 78.5 2 77.74 0.76 0.58

3 + + – – +1/3 +1/3 27 28.6 27.8 1.28 27.84 0.04 0.001

4 + – + – +1/3 +1/3 59.5 62.5 61 4.5 60.64 0.36 0.13

5 + + 0 0 +1/3 -2/3 18.5 17.5 18 0.5 19.3 1.3 1.69

6 + – 0 0 +1/3 -2/3 68.2 67.8 68 0.08 69.19 1.19 1.42

7 + 0 + 0 -2/3 +1/3 30 34 32 8 32.59 0.59 0.35

8 + 0 – 0 -2/3 +1/3 51 49 50 2 49.69 0.31 0.09

9 + 0 0 0 -2/3 -2/3 43 40.2 41.6 3.92 41.14 0.46 0.21

Variances of replicated design points are equal, so that the reproducibility var-
iance is:

S
2
y ¼

P9
i¼1

S2i

9
¼ 30:28

9
¼ 3:37; f ¼ N n� 1ð Þ ¼ 9 2� 1ð Þ ¼ 9

The coefficients of the regression equation and their errors are computed from
Eqs. (2.102) and (2.107).

b0 ¼ 43:21; b1 ¼ �24:95; b2 ¼ �8:55; b12 ¼ 0:425; b11 ¼ 3:1; b22 ¼ 1:1

Sbi ¼ 0:75; Sbii ¼ 1:3; Sbij
¼ 0:92

All regression coefficients except b12 and b22 are statistically significant with 95%
confidence level and the regression equation takes the form:

y
_ ¼ 41:14� 24:95X1 � 8:55X2 þ 3:1X

2
1

The adequacy variance is obtained from the formula:

S
2
AD ¼

PN
i¼1

�yyi� y
_

i

� �2
N�‘

¼ 2:46

where:
‘-is the number of significant coefficients.

The regression model is adequate.
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3.9
Full Factorial Combined with Mixture Design-Crossed Design

In 1981, Cornell [23] published results of experimental studies where the quality of a
fish patty was defined by both its composition and production process. The experi-
ment included seven different mixtures prepared by mixing different species of fish
and then subjecting the resulting patty to various cooking conditions and defined in
accord with simplex-centroid design, Fig. 3.32. The preparation procedure of the
defined mixtures or a formulation included three control process factors with asso-
ciated variation levels: baking temperature from 190 �C to 218 �C; time in the oven
from 25 [min] to 40 [min]; deep fat frying time from 25 s to 40 s. Process factor levels
have been varied in accordance with the 23 full factorial experiment. Design of
experiment 7�23 with 56 trials of a simplex-centroid design � 23 full factorial design
has been sufficient for mathematical modelling of the observed phenomenon,
Fig. 3.33. A regression model with 56 regression coefficients or reduced regression
model with 18 coefficients [24] has been sufficient for an adequate description of the
problem.

(1,0,0)

(0,1,0) (0,0,1)0 1
2
1

2
,,( )

X = 11

X = 12
-- X = 13

0)1
2
1

2
, ,( -- 0 )1

2
1

2
, ,( --

Figure 3.32 Simplex-centroid design

This was the first example of application of a mixture design � process factor design
in experimental studies. Since such designs contain a relatively large number of fac-
tors, it is of interest to replace full factorial designs of process factors with fractional
factor designs. Examples of such designs with applications on an industrial level
were presented in works of Wagner and Gorman [25]; John and Gorman [26]; Ziegel
[27].
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Figure 3.33a Simplex-centroid design in each point of a 2
3
full

factorial experiment

Figure 3.33b 2
3
Factorial design in each point of a simplex-cen-

troid design

The design of experiment with its outcomes according to Cornell’s [23] researches
is given in Table 3.54. The patty composition was defined by proportions of X1, X2,
X3. Seven compositions are given in the above table, composition (1/2, 1/2, 0) means
a mixture of 50% X1, 50% X2 and 0% X3. Eight combinations of process factors Z1,
Z2 and Z3 are defined in coded values (-1,+1). Coded values of process factors are
determined in this way:

Z1 ¼ z1�204
14

; Z2 ¼ z2�32:5
7:5

; Z3 ¼ z3�32:5
7:5

(3.134)
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Table 3.54 Simplex-centroid � full factorial design

Coded values of
process factors

Proportion of components (x1, x2, x3)

Z1 Z2 Z3 (1,0,0) (0,1,0) (0,0,1) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2) (1/3,1/3,1/3)

– – – 1.84 0.67 1.51 1.29 1.42 1.16 1.59
+ – – 2.86 1.10 1.60 1.53 1.81 1.50 1.68
– + – 3.01 1.21 2.32 1.93 2.57 1.83 1.94
+ + – 4.13 1.67 2.57 2.26 3.15 2.22 2.60
– – + 1.65 0.58 1.21 1.18 1.45 1.07 1.41
+ – + 2.32 0.97 2.12 1.45 1.93 1.28 1.54
– + + 3.04 1.16 2.00 1.85 2.39 1.60 2.05
+ + + 4.13 1.30 2.75 2.06 2.82 2.10 2.32

The system response is texture measured as the pressure in milligrams required
to puncture the patty in a standardized setup. The response was obtained by replicat-
ing trials. The complete 56 coefficients regression model is obtained by multiplying
each member in a seven-coefficient model for the mixture composition.

y ¼ b1X1 þ b2X2 þ b3X3 þ b12X1X2 þ b13X1X3 þ b23X2X3 þ b123X1X2X3 (3.135)

with each of eight coefficients in the regression model of process factors.

y ¼ a0 þ a1Z1 þ a2Z2 þ a3Z3 þ a12Z1Z2 þ a13Z1Z3

þa23Z2Z3 þ a123Z1Z2Z3 þ e (3.136)

The result of multiplication is the regression model:

y
_

X ;Zð Þ ¼
P3
i¼1

b
0
i þ

P3
l¼1

b
‘
i Zl þ

P3
l�m�3

b
‘m
i ZlZm þ b

123
i Z1Z2Z3

" #
Xi

þ
P

i�j�3

b
0
ij þ

P3
l¼1

b
‘
ijZl þ

P3
l�m�3

b
‘m
ij ZlZm þ b

123
ij Z1Z2Z3

" #
XiXj (3.137)

þ b
0
123 þ

P3
l¼1

b
‘
123Zl þ

P3
l�m�3

b
‘m
123ZlZm þ b

123
123Z1Z2Z3

" #
X1X2X3

Estimates of regression coefficients based on results from Table 3.54 are given in
Table 3.55. It should be mentioned that coefficient notation b

‘
ij corresponds to Scheffe

notation, and index ‘ is conected to process factors, while index ij has to do with
mixture of components.
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Table 3.55 Estimates b
‘
sr and associated standard errors

Marks Averages Z1 Z2 Z3 Z1Z2 Z1Z3 Z2Z3 Z1Z2Z3 SE

X1 2.87* 0.49* 0.71* -0.09 0.07 -0.05 0.10 0.04 0.05

X2 1.08* 0.18* 0.25* -0.08 -0.03 -0.05 -0.03 -0.04 0.05

X3 2.01* 0.25* 0.40* 0.01 0.00 0.17* -0.05 -0.04 0.05

X1X2 -1.14* -0.81* -0.59 0.10 -0.06 0.14 -0.19 -0.09 0.23

X1X3 -1.00* -0.54 -0.01 -0.03 -0.06 -0.27 -0.43 -0.12 0.23

X2X3 0.20 -0.14 0.07 -0.19 0.23 -0.25 0.12 0.27 0.23

X1X2X3 3.18 0.07 -1.41 0.11 1.74 -0.71 1.77 -1.33 1.65

* Statistically significant regression coefficients with 99% confidence

Table 3.56 Estimates b
‘
sr for a reduced regression model

Marks Averages Z1 Z2 Z3 Z1Z2 Z1Z3 Z2Z3 Z1Z2Z3 SE

X1 2.87 0.49 0.70 -0.06* – -0.06* – – 0.04

X2 1.10 0.17 0.26 -0.06* – -0.06* – – 0.04

X3 2.03 0.24 0.39 -0.06* – 0.12* – – 0.04

X1X2 -1.17 -0.80 -0.66 – – – – – 0.20

X1X3 -1.03 -0.52 – – – – – – 0.20

X2X3 – – – – – – – – –

X1X2X3 3.67 – – – – – – – 1.32

* b1
3=b2

3=b3
3=0.06; SE=0.02 b1

13=b2
13=-0.06;

SE=0.02 b3
13=0.12; SE=0.04

Most of the regression coefficients in Table 3.55 are not statistically significant so
that the t-test suggest that a reduced regression model may adequately describe
experimental outcomes. Regresssion coefficients and regression analysis for a
reduced regression model are given in the work of Gorman and Cornell [24] and its
summarized results in Table 3.56.

All regression coefficients in Table 3.56 are statistically significant with 99% con-
fidence.

In the case of constraints on proportions of components the approach is known,
simplex-centroid designs are constructed with coded or pseudocomponents [23].
Coded factors in this case are linear functions of real component proportions, and
data analysis is not much more complicated in that case. If upper and lower con-
straints (bounds) are placed on some of the Xi resulting in a factor space whose
shape is different from the simplex, then the formulas for estimating the model
coefficients are not easily expressible. In the simplex-centroid � 23 full factorial
design or simplex-lattice � 2n design [5], the number of points increases rapidly with
increasing numbers of mixture components and/or process factors. In such situa-
tions, instead of full factorial we use fractional factorial experiments. The number of
experimental trials required for studying the combined effects of the mixture com-
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ponents and process factors depends on the form of the combined model to be fitted
in the Xi¢s and Zi¢s. As an alternative to fitting the complete model containing 2q+n-
2n terms, let us define the reduced combined model with fewer than 2q+n-2n terms.
The reduced model can be written using the following abbreviated models:

M1þ1 :
Pq
i¼1

b
0

i
Xi þ

Pn
‘¼1

Pq
i¼1

b
‘

i
XiZ‘

M1þ2 :
P

‘�m�n

Pq
i¼1

b
‘m

i
XiZ‘Zm

M1þ3 :
P

‘l�m�p�n

Pq
i¼1

b
‘mp

i
XiZ‘ZmZp

:
:
:
:

M1þn :
Pq
i¼1

b
12:::n

i
XiZ1Z2 :::Zn

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(3.138)
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i�j�q
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ij
XiXj þ
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i�j�q
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‘

ij
XiXjZ‘

M2þ2 :
P

‘�m�n

P
i�j�q

b
‘m

ij
XiXjZ‘Zm

:
:
:

M3þ1 :
P

i�j�k�q

b
0

ijk
XiXjXk þ

Pn
‘¼1

P
i�j�k�q

b
‘

ijk
XiXjXkZ‘

:
:
:
M3þn :

P
i�j�k�q

b
12:::n

ijk
XiXjXkZ1Z2 :::Zn

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(3.139)

where:
the subscript r+s in Mr+s refers to the inclusion of terms of degrees r and s in the
Xi¢s and Zi¢s, respectively.

The model Mr+1 contains the r-th degree term in the mixture components only
along with the product of this term with the first degree terms in the Zi¢s. For exam-
ple, a planar or first-degree model in the mixture components, and a main effects
only model in the process variables, is y=M1+1+e. A planar model in the Xi¢s, com-
bined with a main effect plus first-order interaction effects model in the Zi¢s, would
be y=M1+1+M1+2+e. The model containing up to quadratic blending terms by main
effects in the Zi¢s is defined as y=M1+1+M2+1+e. This continues, up to the complete
2q+n-2n term model that is defined as:

y ¼ M1þ1 þM2þ1 þ :::þMqþn þ e
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The choice of design arrangement, in terms of the number of points as well as
the coordinate settings of the points, depends on the specific form of the model to
be fitted. For the mixture components, if only the first-degree terms in the Xi are to
be fitted, then just two values of Xi are required (say, Xi=0 and Xi=1). If the quadratic
blending terms are to be fitted also, then the binary blends Xi=Xj=1/2, Xk=0, are re-
quired in addition to the settings Xi=0; 1. Similar arguments hold for the inclusion
of the terms representing the different combinations of levels of the process vari-
ables. The number of combinations depends on the types of effects (main effects,
two-factor interactions, and so on) that are to be estimated. In this section we shall
be interested primarily in measuring the main effects of the process variables, par-
ticularly as they affect the blending properties of the mixture components. To begin
investigation of the types of designs that are possible, we shall limit the discussion
for the moment to the case of two mixture components q=2, whose proportions are
denoted by X1 and X2, combined with three process factors n=3, which are represent-
ed by Z1, Z2, and Z3. Also, for simplicity of illustration, let us write the model to be
fitted as y=M1+1+M2+1+e. Although simple in form, this model provides measures of
the linear effects of the individual components, the quadratic (nonlinear) effect of
blending the two components, and the main effects of the three process factors on
the linear and nonlinear effects of the two components. To fit the model
y=M1+1+M2+1+e, data is collected for each of the three blends (X1, X2)=(1,0); (0,1); (1/
2, 1/2) for each of the selected combinations of the levels of Z1, Z2 and Z3. Let us
denote the two mixture components whose proportions were represented previously
by X1, X2 by A and B. The presence (absence) of the lower case letters a or b in the
trial symbol represents the presence (absence) of the component. The three blends
defined previously as (1,0); (0,1) and (1/2, 1/2) are now a, b and ab, respectively.

Let us denote the three process factors by D, E, F, where the presence (absence)
of the lower case letters d, e or f in the trial designation indicates that the high (low)
level of the factor is used. The eight combinations of factor levels are (1), d, e, de, f,
df, ef and def. The trial designation ad means component A is present (but compo-
nent B is not) at the high level of factor D and low levels of factors E and F. The trial
designation abd means components A and B are present in a 1:1 blend at the high
level of factor D and low levels of factors E and F.

Two possible designs that can be used for collecting data from which to estimate
the coefficients for the model y=M1+1+M2+1+e are presented in Figs. 3.34 and 3.35.

In each design the number of combinations of the levels of the factors D, E and F
is reduced to 4 from 23=8, by using a (23-1) half-fractional replica. In the design in
Fig. 3.34, the fraction consisting of the process-factor level combinations d, e, f and
def is set up at each point of composition. We denote this fraction of the full factorial
design by I+DEF because the overall mean and the three-factor interaction effect
DEF are measured jointly using the same linear combination of the observations.
The main effect of factor D and EF interaction effect are estimated by the same con-
trast among the observations; the same can be said for effects E and DF, and F and
DE. In the design in Fig. 3.35, the fraction I+DEF is set up at the pure blends [(X1,
X2)=(1,0); (0,1)], but the opposite fraction, denoted by I-DEF, consisting of the level
combinations (1), de, df and ef is set up at the (1/2, 1/2) blend of A and B.
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Figure 3.34 The same 2
3�1

fractional replicate
design (i+def) in the process factors d, e, and f
set up at the three points of composition
(a,ab,b)
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Figure 3.35 Different 2
3�1

fractional replicate
designs (i–def) in the process factors d, e and
f set up at the three points of composition
(a,ab,b)

In estimating the coefficients b
‘

1 ; b
‘

2 ; b
‘

12 in the model y=M1+1+M2+1+e, two ques-
tions of interest arise:

1) Are the calculating formulas for the estimates of the model coefficients the
same with both designs?

2) How, if at all, do the variance and bias of the coefficient estimates differ for
the two designs?

With the design in Figs. 3.34 and 3.35, the calculating formulas for the coefficient
estimates b1‘ and b2‘ (‘=0, 1, 2 and 3) involve simple linear combinations of the
average responses at the design points. Denoting the observed response value to the
trial ad by ad for example, the estimates of the linear and main effect coefficients are
calculated as:

b
0
1 ¼ 1

4
adþ aeþ af þ adefð Þ ¼ �yy forX1 ¼ 1 (3.140)

b
1
1 ¼ 1

2
adþadef

2
� aeþaf

2

� �
¼ D

þ
forX1 ¼ 1 (3.141)

b
2
1 ¼ 1

2
aeþadef

2
� adþaf

2

� �
¼ E

þ
forX1 ¼ 1 (3.142)

b
3
1 ¼ 1

2
afþadef

2
� adþae

2

� �
¼ F

þ
forX1 ¼ 1 (3.143)

b
0
2 ¼ 1

4
bdþ beþ bf þ bdefð Þ ¼ �yy for X2 ¼ 1 (3.144)

b
1
2 ¼ D

þ
for X2 ¼ 1; b

2
2 ¼ E

þ
for X2 ¼ 1; b

3
2 ¼ F

þ
for X2 ¼ 1 (3.145)

b
0
12 ¼ 4 �yy forX1 ¼ X2 ¼ 1=2½ � � 2 �yy forX1 ¼ 1½ � þ �yy for X2 ¼ 1½ �f g (3.146)

b
1
12 ¼ 4 main effect D for X1 ¼ X2 ¼ 1=2½ �

� 2 main effect D forX1 ¼ 1½ � þ main effect D for X2 ¼ 1½ �f g
(3.147)

For the design in Fig. 3.34:

b
0
12 ¼ 4

1
4

abdþ abeþ abf þ abdefð Þ
� �

�2
1
4

adþ aeþ af þ adefð Þ þ 1
4

bdþ beþ bf þ bdefð Þ
� � (3.148)
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b
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For the design in Fig. 3.35:
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151)

Let us illustrate numerically the calculation formulas for the estimates
b1‘,b2‘,b12‘, with the designs in Figs. 3.34 and 3.35 using the data in Table 3.54: The
first term in b1

0 is ad, which corresponds to the value 2.86 found in the (1, -1, -1)
row of column (1, 0, 0). This is the observed response when D is at the high level,
and E and F are at their low levels, which corresponds to (Z1, Z2 , Z3) = (1, -1, -1).
The a indicates that only component A is present, so one uses the (1, 0, 0) column.
Similarly, one obtains for either design

b
0
1 ¼ 1

4
2:86þ 3:01þ 1:65þ 4:13ð Þ ¼ 2:91;

b
1
1 ¼ 1

2
2:86þ 4:13

2
� 3:01þ 1:65

2

� �
¼ 0:58

b
2
1 ¼ 0:66; b

3
1 ¼ �0:02;

b
0
2 ¼ 1

4
1:10þ 1:21þ 0:58þ 1:30ð Þ ¼ 1:05;

b
1
2 ¼ 1

2
1:10þ 1:30

2
� 1:21þ 0:58

2

� �
¼ 0:15

b
2
2 ¼ 0:21; b

3
2 ¼ �0:11;

For design, Fig. 3.34:
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4
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h i
� 2 1

4
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2
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� 2 1

2
2:86þ 4:13

2
� 3:01þ 1:65

2

� �
þ 1
2

1:10þ 1:30
2

� 1:21þ 0:58
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� �h i
¼ 0:48� 2 0:58þ 0:15ð Þ ¼ �0:98

b
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12 ¼ �0:46; b

3
12 ¼ 0:04:



For design, Fig. 3.35:
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The regression model for design Fig. 3.34 is:

y
_

X ;Zð Þ ¼ 2:91þ 0:58Z1 þ 0:66Z2 � 0:02Z3ð ÞX1

þ 1:05þ 0:15Z1 þ 0:21Z2 � 0:11Z3ð ÞX2

þ �1:22� 0:98Z1 � 0:46Z2 þ 0:04Z3ð ÞX1X2 (3.152)

The regression model for design Fig. 3.35 is:

y
_

X ;Zð Þ ¼ 2:91þ 0:58Z1 þ 0:66Z2 � 0:02Z3ð ÞX1

þ 1:05þ 0:15Z1 þ 0:21Z2 � 0:11Z3ð ÞX2

þ �1:07� 0:89Z1 � 0:37Z2 þ 0:01Z3ð ÞX1X2 (3.153)

The closeness of the values of the estimates b
‘
1 ; b

‘
2 ; b

‘
12 , obtained with the designs

in Figs. 3.34 and 3.35, to the values of the corresponding estimates in Table 3.55
obtained from the full factorial design is evidence of the absence of interaction
effects among the process factors (particularly with respect to the effect of the two
components whose proportions are denoted by X1 and X2). The approximate equality
of the values of the estimates obtained with the fractional and full factorial designs
lends support to our decision to consider the use of fractional designs in the process
factors when interactions among these factors are negligible.

Thus far we have discussed only the two components simplex-centroid�three process
factor full factorial design. By keeping the design and model simple, the calculating
formulas for the coefficient estimates were easily written for the two fractional repli-
ca designs presented. When more than two mixture components are combined with
more than three process factors and the simplex-centroid design is joined with a full
factorial design or some fraction of the full factorial, similar formulas involving the
trials combinations can be set up for estimating the model coefficients. For example,
Table 3.57 lists several possible fractional designs (denoted by roman numerals I, II,
III, IV and V) along with the corresponding estimable coefficients in the fitted mod-
els for experiments where three components are combined with three process fac-
tors. A strategy that can be used to generate fractions of the simplex-centroid �2n

designs, and, that was in fact used to generate the fractional designs in Table 3.57, is
given in Scheffe’s work [6].
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When three components X1, X2 and X3 are combined with three process factors
Z1, Z2 and Z3, two possible designs, similar to designs in Figs. 3.34 and 3.35, are
presented in Figs. 3.36a and 3.36b.
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Figure 3.36a Fractional design in each point of a simplex-cen-
troid design
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Figure 3.36b Fractional design in each point of a simplex-cen-
troid design
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Tabel 3.57 Simplex-centroid � full factorial design (q=3, n=3)

Design N Design a Design b Regression coefficients
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The given designs are used for fitting a three-component simplex-centroid (or an
incomplete cube model) with main effects of process factors:
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Figure 3.37 Fractional simplex designs by Figs. 3.36a and 3.36b

3.10 Examples of Complex Optimizations of Mixture Problems

Example I [28]
A nine-component composition has been tested in developing a new composite
material. Three components were the binder of the composite material: polyester
EPX-279-1, polyester EPX-187-3 and styrene. These materials have been used as fill-
ers: ash, marble powder, glass microspheres, saran microspheres, wollastonite and
powder made by grinding shells. Component properties with variation range of their
proportions are given in Table 3.58.

Table 3.58 Component properties

Density Av. Diameter Price Price Variation

Component Denotation g/cm3 lm (/lb (/l Range

Ash X1 2.580 4.5 1.97 11.20 1–5
Marble X2 2.710 40.0 0.50 3.00 1–25
Glass X3 0.340 62.0 69.00 52.00 1–25
Saran X4 0.032 30.0 350.00 26.30 1–25

Wollastonite X5 2.890 30.0 1.85 11.80 1–25
Shell powder X6 1.300 125.0 2.50 7.16 5–29

Polyester epx-279-1 X7 1.148 – 26.80 67.80 58–80
Polyester epx-187-3 X8 1.335 – 18.00 56.50 5–29

Styren X9 0.900 – 11.50 22.81 5–29
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To obtain a second-order regression model, an experiment by extreme vertices
design has been done. The experiment included 45 trials including a simplex center
for a check of lack of fit of the regression model and an estimate of experimental
error, as shown in Table 3.59.

Each trial has been done by mixing components in a corresponding ratio on a
vertical mixer. The produced mass is poured into corresponding molds, from which
it is taken out after 800 s. Samples are then cured in a drying room for 20 h at 70 �C.
By testing samples, their density, tensile strength, bending strength, pressing
strength, elasticity module, bending modulus and elongation at break are deter-
mined. Besides, based on composition, the expenditure for each trial has been calcu-
lated. The outcomes of the experiment are in Table 3.60. Fitting experimental out-
comes has been done by a second-order polynomial:

y ¼ B0 þ
P8
i¼1

BiXi þ
P8
i¼1

BiiX
2
i þ

P7
i¼1

P8
j¼1þ1

BijXiXj (3.155)

It should be noted that regression coefficients have been calculated for all prop-
erty measurements except density. Calculations have been done on a computer due
to a large number of components and properties, Table 3.61. The density of the com-
posite material has been fitted with a linear regression:

r ¼ B0 þ
P8
i¼1

BiXi (3.156)

Due to the specific application of the composite material, limitations on mea-
sured properties have been imposed in one case:

r � 1:2 g=cm
3
; rz� � 3000 psi; rs � 2500 psi

rp � 5000 psi; E � 4� 10
5
psi; Es � 4� 10

5
psi; e � 15%

Apart from the mentioned limitations on properties, limitations on components
have also been imposed:

P6
i¼1

Xi � 0:55; 1�
P8
i¼1

Xi �
1
3

X7 þ X8

� �
By application of computer and associated programs for optimization with limita-

tions-compromising optimization, the composition of the composite has been deter-
mined:

X1=0.050; X2=0.025; X3=0.000; X4=0.200; X5=0.013; X6=0.235;

X7 ¼ 0:115; X8 ¼ 0:245; X9 ¼ 0:117;
P6
i¼1

Xi ¼ 0:523; X7 þ X8 ¼ 0:360:
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Table 3.59 Extreme vertices design

N X1 X2 X3 X4 X5 X6 X7 X8 X9

1 0.25 0.01 0.01 0.01 0.01 0.05 0.56 0.05 0.05

2 0.13 0.13 0.01 0.01 0.01 0.05 0.56 0.05 0.05

3 0.13 0.01 0.13 0.01 0.01 0.05 0.56 0.05 0.05

4 0.13 0.01 0.01 0.13 0.01 0.05 0.56 0.05 0.05

5 0.13 0.01 0.01 0.01 0.13 0.05 0.56 0.05 0.05

6 0.13 0.01 0.01 0.01 0.01 0.17 0.56 0.05 0.05

7 0.13 0.01 0.01 0.01 0.01 0.05 0.68 0.05 0.05

8 0.13 0.01 0.01 0.01 0.01 0.05 0.56 0.17 0.05

9 0.13 0.01 0.01 0.01 0.01 0.05 0.56 0.05 0.17

10 0.01 0.25 0.01 0.01 0.01 0.05 0.56 0.05 0.05

11 0.01 0.13 0.13 0.01 0.01 0.05 0.56 0.05 0.05

12 0.01 0.13 0.01 0.01 0.01 0.05 0.56 0.05 0.05

13 0.01 0.13 0.01 0.01 0.13 0.05 0.56 0.05 0.05

14 0.01 0.13 0.01 0.13 0.01 0.17 0.56 0.05 0.05

15 0.01 0.13 0.01 0.01 0.01 0.05 0.68 0.05 0.05

16 0.01 0.13 0.01 0.01 0.01 0.05 0.56 0.17 0.05

17 0.01 0.13 0.01 0.01 0.01 0.05 0.56 0.05 0.17

18 0.01 0.01 0.25 0.01 0.01 0.05 0.56 0.05 0.05

19 0.01 0.01 0.13 0.13 0.01 0.05 0.56 0.05 0.05

20 0.01 0.01 0.13 0.01 0.13 0.05 0.56 0.05 0.05

21 0.01 0.01 0.13 0.01 0.01 0.17 0.56 0.05 0.05

22 0.01 0.01 0.13 0.01 0.01 0.05 0.68 0.05 0.05

23 0.01 0.01 0.13 0.01 0.01 0.05 0.56 0.17 0.05

24 0.01 0.01 0.13 0.01 0.01 0.05 0.56 0.05 0.17

25 0.01 0.01 0.01 0.25 0.01 0.05 0.56 0.05 0.05

26 0.01 0.01 0.01 0.13 0.13 0.05 0.56 0.05 0.05

27 0.01 0.01 0.01 0.13 0.01 0.17 0.56 0.05 0.05

28 0.01 0.01 0.01 0.13 0.01 0.05 0.68 0.05 0.05

29 0.01 0.01 0.01 0.13 0.01 0.05 0.56 0.17 0.05

30 0.01 0.01 0.01 0.13 0.01 0.05 0.56 0.05 0.17

31 0.01 0.01 0.01 0.01 0.25 0.05 0.56 0.05 0.05

32 0.01 0.01 0.01 0.01 0.13 0.17 0.56 0.05 0.05

33 0.01 0.01 0.01 0.01 0.13 0.05 0.68 0.05 0.05

34 0.01 0.01 0.01 0.01 0.13 0.05 0.56 0.17 0.05

35 0.01 0.01 0.01 0.01 0.13 0.05 0.56 0.05 0.17

36 0.01 0.01 0.01 0.01 0.01 0.29 0.56 0.05 0.05

37 0.01 0.01 0.01 0.01 0.01 0.17 0.68 0.05 0.05

38 0.01 0.01 0.01 0.01 0.01 0.17 0.56 0.17 0.05

39 0.01 0.01 0.01 0.01 0.01 0.17 0.56 0.05 0.17

40 0.01 0.01 0.01 0.01 0.01 0.05 0.80 0.05 0.05
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Table 3.59 (continued)

N X1 X2 X3 X4 X5 X6 X7 X8 X9

41 0.01 0.01 0.01 0.01 0.01 0.05 0.68 0.17 0.05

42 0.01 0.01 0.01 0.01 0.01 0.05 0.68 0.05 0.17

43 0.01 0.01 0.01 0.01 0.01 0.05 0.56 0.29 0.05

44 0.01 0.01 0.01 0.01 0.01 0.05 0.56 0.17 0.17

45 0.01 0.01 0.01 0.01 0.01 0.05 0.56 0.05 0.29

46 0.0367 0.0367 0.0367 0.0367 0.0367 0.0767 0.5867 0.0767 0.0767

47 0.0367 0.0367 0.0367 0.0367 0.0367 0.0767 0.5867 0.0767 0.0767

48 0.0367 0.0367 0.0367 0.0367 0.0367 0.0767 0.5867 0.0767 0.0767

Table 3.60 Measured properties

r rz~ rs rp E Es e Price
N g/cm3 10-3 psi 10-3 psi 10-3 psi 10-3 psi 10-3 psi % (/l

1 1.524 1.790 5.066 6.992 96.772 75.821 6.25 46.03

2 1.540 2.174 5.746 6.995 144.436 98.033 3.50 45.05

3 1.255 1.992 5.158 6.744 150.662 200.548 3.75 50.93

4 1.218 1.810 4.812 7.759 104.285 73.772 4.75 47.84

5 1.561 2.547 6.320 6.841 192.286 238.093 2.75 46.10

6 1.370 2.619 6.527 8.425 176.678 255.389 2.83 45.56

7 1.353 1.742 5.350 9.087 76.219 119.019 13.00 52.82

8 1.375 2.740 6.457 10.320 170.477 203.992 3.16 51.47

9 1.323 2.647 7.008 11.265 158.520 196.839 4.50 47.44

10 1.556 1.756 4.930 5.053 120.088 178.962 4.75 44.06

11 1.271 1.495 4.193 5.049 105.821 144.552 5.50 49.94

12 1.234 1.326 3.922 5.826 68.542 92.949 8.83 46.86

13 1.571 2.012 5.710 5.072 149.286 106.484 3.50 45.12

14 1.360 2.093 5.640 6.273 123.925 90.966 4.25 44.58

15 1.369 1.354 4.322 7.250 57.920 84.523 13.30 51.84

16 1.391 2.676 6.291 8.583 172.846 212.616 3.50 50.48

17 1.339 2.391 5.931 9.483 155.229 84.923 4.00 46.45

18 0.986 1.055 3.020 6.851 68.198 87.952 10.00 55.82

19 0.950 0.979 3.111 7.875 49.265 39.920 12.70 52.74

20 1.293 1.529 4.401 4.697 117.360 89.910 4.25 51.00

21 1.102 1.579 4.645 6.073 101.706 76.399 5.50 50.46

22 1.085 1.178 3.822 9.195 49.636 93.970 20.25 57.72

23 1.107 2.134 5.855 8.791 140.909 171.469 5.00 56.36

24 1.055 1.951 5.627 10.742 113.217 149.987 8.16 52.33

25 0.913 0.831 2.405 7.880 28.853 39.518 16.70 49.66

26 1.255 1.551 4.641 4.123 88.557 145.391 7.10 47.92

27 1.065 1.362 3.995 6.659 60.385 47.749 9.25 47.37
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Table 3.60 (continued)

r rz~ rs rp E Es e Price
N g/cm3 10-3 psi 10-3 psi 10-3 psi 10-3 psi 10-3 psi % (/l

28 1.047 1.170 3.550 9.325 36.676 22.903 20.00 54.64

29 1.070 2.074 5.458 9.936 98.425 117.795 6.10 53.28

30 1.018 2.096 5.961 14.849 101.368 121.118 11.70 49.25

31 1.599 1.701 6.842 5.523 113.891 92.042 4.75 46.18

32 1.408 2.061 5.786 6.140 151.090 233.562 2.75 45.63

33 1.390 1.488 4.923 7.655 69.508 127.688 11.75 52.90

34 1.413 2.648 6.893 8.795 188.910 238.930 2.75 51.54

35 1.361 2.683 6.832 8.820 177.011 228.251 3.83 47.51

36 1.218 2.230 4.952 7.444 125.650 167.862 4.75 45.09

37 1.200 1.742 5.723 8.605 65.118 118.473 15.67 52.35

38 1.221 2.967 7.502 11.180 168.391 209.106 3.25 51.00

39 1.170 2.837 7.476 12.713 147.005 187.590 6.58 46.96

40 1.181 1.376 4.225 13.302 35.650 47.539 28.10 59.62

41 1.204 2.465 6.813 16.235 106.444 121.308 9.83 58.26

42 1.152 2.156 7.116 10.277 93.620 127.054 24.30 54.23

43 1.266 3.671 8.489 20.086 183.699 233.242 3.00 56.90

44 1.174 3.725 8.810 17.021 184.266 188.491 5.17 52.87

45 1.122 3.467 8.203 17.576 163.933 205.205 7.50 48.84

46 1.259 2.222 5.554 8.330 138.991 81.023 4.50 50.25

47 1.259 2.101 5.449 9.419 130.262 78.496 5.50 50.25

48 1.259 2.089 5.560 9.391 133.316 78.339 5.25 50.25

Table 3.61 Regression coefficients

Regression
coefficients

r e rp rz~ rs Es E

B0 1.13249 -114.19733 0.07269 0.01064 0.01384 0.56932 0.4745

B1 1.37649 95.98950 -0.02732 0.00078 -0.00283 0.14554 1.79251

B2 1.57042 167.01782 -0.05128 -0.00615 -0.01668 -5.75500 0.70308

B3 -1.02582 -14.61224 -0.04799 -0.00967 -0.020115 -1.22441 -0.29696

B4 -1.10084 109.44629 -0.03456 -0.00979 -0.02067 0.22113 -1.35077

B5 1.58401 160.08569 -0.06056 -0.00244 -0.01579 1.72925 1.58983

B6 0.27504 82.41577 -0.03130 -0.00383 0.00103 -0.63911 0.50197

B7 0.08755 290.07031 -0.12926 -0.01465 -0.00056 -0.33234 -0.64604

B8 0.34422 256.43359 -0.22232 -0.00569 -0.02062 -1.35132 0.43842

B11 0.0 182.80933 -0.05150 -0.02704 -0.04074 -2.97189 -3.16558

B22 0.0 39.53931 0.00961 -0.00091 0.01035 8.39853 -0.30142

B33 0.0 84.78394 0.02581 0.00139 -0.00693 0.72176 -0.41278

B44 0.0 137.30420 -0.00937 -0.00172 -0.01476 1.06233 0.57664
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Table 3.61 (continued)

Regression
coefficients

r e rp rz~ rs Es E

B55 0.0 119.84521 0.05115 -0.01412 0.03872 -4.55200 -2.13765

B66 0.0 25.01221 -0.02219 -0.00174 -0.04392 0.89334 -0.21522

B77 0.0 -113.98730 0.07174 0.00431 -0.01337 -0.23637 0.16125

B88 0.0 37.80859 0.21372 0.00680 0.01492 3.09570 -0.41095

B12 0.0 0.0 0.0 0.0 0.0 1.93091 0.0

B13 0.0 0.0 0.0 0.0 0.0 4.53545 0.0

B14 0.0 0.0 0.0 0.0 0.0 -2.24657 0.0

B15 0.0 0.0 0.0 0.0 0.0 1.72719 0.0

B16 0.0 0.0 0.0 0.0 0.0 5.74762 0.0

B17 0.0 -270.89063 0.0 0.0 0.0 -0.56160 -2.24062

B18 0.0 0.0 0.0 0.0 0.0 2.11084 0.0

B23 0.0 0.0 0.0 0.0 0.0 8.43297 0.0

B24 0.0 0.0 0.0 0.0 0.0 6.87164 0.0

B25 0.0 0.0 0.0 0.0 0.0 0.37309 0.0

B26 0.0 0.0 0.0 0.0 0.0 2.11751 0.0

B27 0.0 -342.40527 0.0 0.0 0.0 4.83197 -1.45135

B28 0.0 0.0 0.0 0.0 0.0 10.49878 0.0

B34 0.0 0.0 0.0 0.0 0.0 -1.32475 0.0

B35 0.0 0.0 0.0 0.0 0.0 -5.29202 0.0

B36 0.0 0.0 0.0 0.0 0.0 -3.41042 0.0

B37 0.0 0.0 0.0 0.0 0.0 0.98099 0.0

B38 0.0 0.0 0.0 0.0 0.0 3.12524 0.0

B45 0.0 0.0 0.0 0.0 0.0 0.58264 0.0

B46 0.0 0.0 0.0 0.0 0.0 -3.37820 0.0

B47 0.0 -196.06665 0.0 0.0 0.0 -1.92389 1.13045

B48 0.0 0.0 0.0 0.0 0.0 1.41870 0.0

B56 0.0 0.0 0.0 0.0 0.0 2.08801 0.0

B57 0.0 -372.80078 0.0 0.0 0.0 2.08035 -2.25305

B58 0.0 61.21167 0.00910 -0.01003 -0.00587 2.39307 0.276081

B67 0.0 -188.13574 0.0 0.0 0.0 0.07410 -1.06024

B68 0.0 0.0 0.0 0.0 0.0 3.12915 0.0

B78 0.0 -520.73828 0.29166 2.00905 0.02934 0.20239 -0.40131
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Example II [14]
When changing technological parameters in the process of refining of raw benzene,
composition of waste liquid is also changed. Waste liquid is often used for obtaining
expensive materials characterized by their density and viscosity. Water content in
such a liquid varies from 0 to 15%, and the contents of ashes does not exceed 10%.
The research objective is to obtain a regression model that will adequately describe
density and viscosity in the function of proportions of organic matter, water and
ashes. Since proportions of components are limited, the experiment has been done
by extreme vertices design. The local factor space is given in Table 3.62, and design
matrix with outcomes of trials in Table 3.63.

Table 3.62 Local factor space

Components Proportions of components

x1 x2 x3

X1 95 0 5

X2 80 15 5

X3 90 0 10

Table 3.63 Extreme vertices design

Response
Mark

Design matrix Density g/cm3 Viscosity p

X1 X2 X3 r1 r2 �rr m1 m2 �mm

y1 1 0 0 1.128 1.126 1.127 17.1 16.6 16.85

y2 0 1 0 1.070 1.072 1.071 4.0 5.0 4.50

y3 0 0 1 1.139 1.136 1.1375 21.0 19.1 20.05

y12 0.5 0.5 0 1.112 1.114 1.113 12.6 12.8 12.70

y13 0.5 0 0.5 1.135 1.130 1.1325 18.6 17.9 18.25

y23 0 0.5 0.5 1.118 1.120 1.119 14.6 14.8 14.70

y123* 1/3 1/3 1/3 1.122 1.123 1.1225 15.0 15.6 15.30

The geometrical interpretation of local factor space is given in Fig. 3.38.
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Figure 3.38 Local factor space

Connections between real and coded factors are given by these relations:

x1=0.95X1 + 0.8X2 + X3

x2=0.15X2

x3=0.05X1 + 0.05X2 +0.1X3 (3.157)

By calculating regression coefficients, these second-order regression models have
been obtained:

r_ ¼ 1:127X1 þ 1:071X2 þ 1:138X3 þ 0:046X1X2 � 0:002X1X3 þ 0:058X2X3

(3.158)

m
_ ¼ 16:85X1 þ 4:5X2 þ 20:05X3 þ 8:1X1X2 þ 9:7X1X3 � 0:8X2X3 (3.159)

To check lack of fit of the obtained regression models, errors of the experiment
have been calculated:

S
2
r ¼ 3:6� 10

�6
; S

2
m ¼ 0:422; f ¼ 7:

A check of lack of fit has been done in control point y123. Calculated values of den-
sity and viscosity in control points have by Eqs. (3.158) and (3.159) these values,
respectively are: r123=1.123 and m123=15.69.

Dr123 ¼ �rr123 � r_123

��� ��� ¼ 1:1225� 1:1230j j ¼ 0:0005;

Dm123 ¼ �mm123 � m
_

123

��� ��� ¼ 15:3� 15:69j j ¼ 0:39

tr ¼ 0:0005
ffiffiffi
2

p

1:276
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6�10�6

p ¼ 0:292; tm ¼ 0:39
ffiffiffi
2

p

1:276
ffiffiffiffiffiffiffiffiffiffiffi
0:422

p ¼ 0:655:

Since the tabular value is t(0.025;7)=2.3646, calculated values tR are smaller, so that
regression models are adequate. The geometric interpretation of regression models
as contour lines and in coded factors is given in Figs. 3.39 and 3.40.
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Figure 3.39 Viscosity contour lines
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Figure 3.40 Density contour lines

Example III [29]
The research objective has been to define the durability of a coating depending on
mixture composition Ni-Cr-B. Besides, one had to determine the optimal composi-
tion of the given three-component mixture. Since there is a linear correlation be-
tween resistance on wear-out and hardness of coating, Rockwell hardness (HRC)
has been chosen as the system response. Based on preliminary information, it is
known that the response surface is smooth and continuous. Hence, it may be
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approximated by a lower-order polynomial. The design of experiment matrix with
outcomes is given in Table 3.64 (trials 1 to 6).

The second-order regression model for hardness by Rockwell has this form:

y
_

1 ¼ 22X1 þ 35X2 þ 51X3 þ 38X1X2 þ 34X1X3 þ 52X2X3 (3.160)

Lack of fit of the obtained regression model has been checked in trials 7, 10, 11,
12 and 13. Control trials have been chosen under the assumption that they are in
the optimum zone and may simultaneously be used for a model augmenting to a
higher-order regression model. The analyzed regression model has not been ade-
quate in control design points. To obtain an incomplete cube model, trial No. 7 has
been used to calculate regression coefficients. The regression model of incomplete
third order has this form:

y
_

2 ¼ 22X1 þ 35X2 þ 51X3 þ 38X1X2 þ 34X1X3 þ 52X2X3 þ 222X1X2X3 (3.161)

Lack of fit of the obtained model has been checked by trials 8, 9, 10, 14 and 15.
Regression model (3.161) has not been adequate in chosen control trials. To calcu-
late regression coefficients for a third-order model, it has been necessary to include
these trials: 1, 2, 3 and 7, 8, 9, 10, 11, 12 and 13. The third-order regression model
is:

y
_

3 ¼ 22X1 þ 35X2 þ 51X3 þ 11:25X1X2 þ 38:25X1X3 þ 58:50X2X3

þ15:75X1X2ðX1 � X2Þ þ 51:75X1X3ðX1 � X3Þ þ 22:50X2X3ðX2 � X3Þ

þ270X1X2X3 (3.162)

Lack of fit of the obtained regression model has been checked in control trials 4,
5, 6 and 14, 15, 16, 17 and 18. Three trials 16, 17 and 18 lie inside concentration
triangle. The obtained third-order regression model has been adequate in all control
trials. For a three-component mixture it is easiest to determine the optimum from
geometric interpretation of the regression model. The contour lines of regression
model (3.162) are shown in Fig. 3.41.

5633.9 Full Factorial Combined with Mixture Design-Crossed Design



Table 3.64 Design matrix for a three-component mixture

N Design matrix HRC Augmenting of models

X1 X2 X3 II order model Incomplete III III order

1 1 0 0 22 + + +

2 0 1 0 35 + + +

3 0 0 1 51 + + +

4 0.5 0.5 0 33 + + check of lack

of fit5 0.5 0 0.5 45 + +

6 0 0.5 0.5 56 + +

7 0.333 0.333 0.333 58 check of lack

of fit

+ +

8 0.666 0.333 0 30 check of lack

of fit

+

9 0.333 0.666 0 32 +

10 0 0.666 0.333 55 check of lack

of fit

+

11 0 0.333 0.666 57 +

12 0.666 0 0.333 44 +

13 0.333 0 0.666 46 +

14 0.75 0.25 0 29 check of lack

of fit

check of lack

of fit15 0.25 0.75 0 32

16 0.50 0.25 0.25 54

17 0.25 0.50 0.25 58

18 0.25 0.25 0.50 56

X

X

2

1

60

35
40

45
50

55

58

X3

Figure 3.41 Contour lines of regression model Eq. (3.162)
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5653.11 Reference

The figure clearly shows that the optimum is in this factor space: Ni˛(20–30 %);
Cr˛(30–50 %); B˛(30–40 %).

It should be noted that by including trials No. 16, 17 and 18 one may calculate
regression coefficients for a fourth order regression model.
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A.1
Answers to Selected Problems

Chapter I

1.1

Sample Values Averages Variances

1 3.4; 3.9; 3.9; 9.9; 3.5 5.7 8.4
2 5.5; 8.5; 6.7; 0.7; 4.5 5.2 4.8
3 1.5; 0.6; 3.3; 4.2; 5.7 3.6 4.9
4 2.2; 8.2; 9.4; 0.4; 9.9 4.9 12.3
5 8.4; 5.0; 0.8; 6.6; 3.1 4.1 9.2
6 9.9; 9.3; 5.1; 4.8; 9.2 5.9 10.5
7 6.5; 4.0; 9.2; 4.6; 2.1 3.9 7.4
8 1.8; 3.6; 5.2; 9.4; 2.9 4.9 8.9
9 7.5; 1.7; 5.6; 3.3; 8.0 4.5 7.1
10 4.2; 5.1; 2.3; 5.8; 2.6 3.8 4.8
11 6.8; 8.2; 3.6; 2.8; 8.3 5.4 6.9
12 6.1; 6.0; 2.8; 6.9; 9.1 4.8 12.1
13 3.5; 8.2; 6.5; 3.2; 2.9 4.5 6.5
14 3.6; 9.7; 8.6; 8.8; 2.3 6.0 6.2
15 5.2; 4.7; 8.8; 2.4; 7.4 5.1 5.2
16 0.9; 0.0; 4.7; 4.4; 5.9 4.2 11.9
17 7.5; 8.0; 6.8; 3.0; 0.0 3.7 12.2
18 6.8; 2.2; 0.2; 5.9; 7.0 4.1 10.9
19 9.4; 0.3; 4.0; 9.8; 0.9 4.6 15.1
20 8.6; 9.9; 1.4; 5.7; 6.4 5.9 6.3

Averages: 4.7 8.5
Population parameters: 4.5 8.3
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1.2
a) P(Z£1.4)-P(Z<00)=0.9192-0.5000=0.4192
b) P(Z<0)-P(Z<-0.78)=P(Z<0.78)-P(Z<0)=0.7823-0.500=0.2823
c) P(Z£1.9)-P(Z£-0.24)=0.9713-½1-P(Z£0.24)�=0.9713-0.4052=0.5661
d) P(Z£1.96)-P(Z£0.75)=0.9750-0.7734=0.2016
e) P(-¥<Z£0.44)=0.6700
f) P(-¥£Z£1.2)=0.8849
g) P(Z£1)-P(Z£-1)=0.8413-½1-P(Z£1)�=0.8413-0.1587=0.6826
h) P(Z£1.96)-P(Z£-1.96)=0.975-½1-P(Z£1.96)=0.975-0.025=0.9500
i) P(Z£2.58)-P(Z£-2.58)=0.9951-0.9949=0.9902

1.3
a) By Table B, Z1 lies between 1.40 and 1.41 so that by linear interpolation we

get Z1=1.405.
b) Z1=-1.3733.

1.4

Z ¼ x�l
r

¼ 26�20ffiffiffi
9

p ¼ 2;P Z � 2ð Þ ¼ 0:97725

) P Z � 2ð Þ ¼ 1� P Z � 2ð Þ ¼ 1� 0:97725 ¼ 0:02275

Hence, 2.28% of population may be expected to have values above 26.

1.5
a) 0.88; b) 0.128; c) 0.829;

1.6
a) 0.4649; b) 0.2684; c) 0.0401; d) 0.2266;

1.7
a) 435; b) 92;

1.8
a) 90.5%; b) 0.0588;

1.9
a) n»13; b) n=4; c) n=4;

1.10

r�XX ¼ rffiffiffi
n

p ¼ 7�10�5ffiffiffi
7

p ¼ 2:646� 10
�5
;

Z1�a=2 ¼ Z0:975 ¼ 1:96; �XX ¼ 12:36� 10
�5
;

12:36� 10
�5 � 1:96� 2:646� 10

�5 � l � 12:36� 10
�5 þ 1:96� 2:646� 10

�5

7:17� 10
�5 � l � 17:55� 10

�5
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1.11

�XX ¼ 65:5 BTU=HRFT
2 �
F

h i
; SX ¼ 4:347 BTU=HRFT

2 �
F

h i
; 1� a ¼ 0:99;

a=0.01; a/2=0.005;n=10-1=9; t9;0.995=3.250
65.5-3.25 � 4.347/

ffiffiffiffiffi
10

p
<K<65.5+3.25 � 4.347/

ffiffiffiffiffi
10

p

61.03<K<69.97
Minimal value with 99% confidence is: 61.03 ½BTU/HR FT2 �

K�

1.12

�XX1=15.770; �XX2=15.597; Z1-a/2=Z0.975=1.96; r1=r2=0.016;

�XX1 � �XX2 þ Za=2 �
r21
n1

þ r22
n2

 !0:5

� l1 � l2 � �XX1 � �XX2 þ Z1�a=2 �
r21
n1

þ r22
n2

 !0:5

15.770-15.597-1.96
0:016
3

þ 0:016
3

� �0:5

<l1-l2<15.770-15.597

þ1:96
0:016
3

þ 0:016
3

� �0:5

;�0:029 < l1� l2 < 0:375

1.13
Replicated measurements will be treated as individual observations:

�XX1 ¼ 5:37; �XX2 ¼ 5:67; S
2
1 ¼ 0:08425; S

2
2 ¼ 0:07325:

Assume that r
2
1 ¼ r

2
2 .

S
2
p ¼ n1�1

� �
S21þ n2�1

� �
S22

n1þn2�2
¼ 2�0:0845þ2�0:07325

3þ3�2
¼ 0:07875 ) Sp ¼ 0:28062

Since 1-a=0.95 and n1=3; n2=3, or f =n1+n2-2=4 we get from the table for t-distri-
bution that: t4;0.975=2.776.

5.37-5.67-2.776 � 0.28062

ffiffiffiffiffiffiffiffiffiffiffi
1
3
þ 1
3

r
<l 1-l 2<5.37-5.67+2.776 � 0.28062

ffiffiffiffiffiffiffiffiffiffiffi
1
3
þ 1
3

r
�0:9361 < l1 � l2 < 0:2361

Since a 95% confidence interval has 0=l1-l2, which means that l1=l2, the cata-
lysts do not differ in efficiency.

1.14

�XX ¼5.88; S
2
X ¼0.00975; n=5; k=n-1=4; a=0.05;

v
2
4;0:025 ¼ 0:484; v

2
4;0:975 ¼ 11:1

4� 0:00975
11:1

� r
2 � 4� 0:00975

0:484

0:00351 � r
2 � 0:08057
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1.15

�XX1 ¼ 310:8423
�
C
� �

; S
2
1 ¼ 1:1867; �XX2 ¼ 310:5246

�
C
� �

; S
2
1 ¼ 1:5757;

k1=n1-1=12; k2=n2-1=12; a=0.02; F12;12;0.01=0.241;

F12;12;0.99=4.16.

1:1867
1:5757

� 0:241 � r
2
1

r
2
2

� 1:1867
1:5757

� 4:16

0:18104 � r
2
1

r
2
2

� 3:13300

The associated 98% confidence interval for r1/r 2 is:

0.42548<r 1/r 2<1.7700

Since the 98% confidence interval includes the value 1=r 1/r 2 one may not state
that there is a statistically significant difference between r1 and r2.

1.16

�XX=2.50 � 1011; S
2
=1.11 � 1020; n=10; a=0.10; t9;0.05=-1.83; t9;0.95=1.83.

�XX þ ta=2 �
SXffiffiffi
n

p � l � �XX þ t1�a=2 �
SXffiffiffi
n

p

2.50 � 1011-1.83 � 1.05 � 1010/
ffiffiffi
n

p
<l <2.50 � 1011+1.83 � 1.05 � 1010/

ffiffiffi
n

p

2.446 � 1011<l <2.556 � 1011

1.17

�XX=11.411; S
2
X =3.5551; Z0.025=-1.96; 10.24<�XX<12.58 ½mg/m3�

1.18P
X ¼ 25:15;

P
X

2 ¼ 22:0680; �XX ¼
P

X=n ¼ 0:838;

S
2
X ¼ n

P
X2�

P
Xð Þ2

n n�1ð Þ ) S
2
X ¼ 30�22:0680�25:152

30 30�1ð Þ ¼ 0:03393;

SX=0.18420; f =n-1=29; a=0.01; t29;0.005=-2.76; t29;0.995=2.76

�XX þ ta=2 �
SXffiffiffi
n

p � l � �XX þ t1�a=2 �
SXffiffiffi
n

p

0.838-2.76 � 0.18420/
ffiffiffiffiffi
30

p
<l<0.838+2.76 � 0.18420/

ffiffiffiffiffi
30

p

0.745<l<0.931 ½%Si�
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1.19
�XX1=8.57; S1=17.95; n1=7; �XX2=11.89; S

2
2=15.61; n2=9;

f =14.46; tf;1-a/2=-1.601; �XX1-�XX2=2.073.

1.20
1. Assume normal distribution
2. H0: l‡26.5; H1: l<26.5
3. Since r2 is unknown we use the next test statistic:

T ¼
�XX�l

S=
ffiffiffi
n

p

4. Let a=0.05;
5. T-has Student’s distribution with f =n-1=11-1=10 degrees of freedom.
6. �XX=26.03568; S/

ffiffiffiffiffi
11

p
=6.741 � 10-5

T ¼ 26:03568�26:5

6:741�10�5 ¼ � 0:46432
6:741

� 10
5 ¼ �6:888� 10

3

7. t10;0.95=1.81 from Table C; Hence:
T=-6.888 � 103<t10;0.95=1.81 so that H0 is rejected or we may say that l does not

exceed 26.5. A chance to make an error in this statement is 5 to 100 or a=0.05.

1.21

�XX=54.76; S2=4.216; S=2.053; a=0.01; f =n-1=49

T ¼ 54:76�55:0
2:053=

ffiffiffiffiffi
50

p ¼ �0:93; t49;0:01 ¼ �2:704

H0 with 99% confidence is not rejected.

1.22
1. Assume a normal distribution
2. H0: l1=l 2; H1: l1„ l2

3. Since we know population variance r1
2=r 2

2 =0.016 the test statistic is:

Z ¼
�XX1��XX2� l

1
�l

2

� 	
r�

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r ¼
15:770�15:597� l

1
�l

2

� 	
ffiffiffiffiffiffiffiffiffiffiffi
0:016

p ffiffiffiffiffiffiffiffi
1

3
þ1

3

r ¼ 1:675

4. a=0.05
5. Z has normal distribution.
6. Z=1.675
7. Z1-a/2=1.96; Za /2=-1.96 since: -1.96<1.675<1.96 the null hypothesis l1=l 2 is

accepted, or both bottles are with the same HCl.
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1.23
�XX1=14.280; S

2
1=0.028; n1=4; �XX2=14.374;S

2
2=0.004; n2=3

T ¼
�XX1��XX2

S
2
1

n1
þS

2
2

n2

� �0:5 ¼ 14:374�14:280
0:028

4
þ0:004

3

� 	0:5
T=1.0330;

f ¼

S21
n1

þ S2
2

n2

 !2

S21
.
n1

� 	2
n1þ1

þ
S22
.
n2

� 	2
n2þ1

� 2

f ¼ 6:944� 10
�5

9:8000� 10
�6 þ 4:4444� 10

�7 � 2 ¼ 4:77 ¼ 5

a=0.05; t5;0.05=2.01; T=1.0330<t5;0.05=2.01
The means of burning rates are not statistically different with 95% confidence.

1.24

S
2
1=0.028; n1=4; S

2
2=0.004; n2=3; k1=3; k2=2

FR ¼ S
2
1

S
2
2

¼ 0:028
0:004

¼ 7:00;

F0:05 3:2ð Þ ¼ 1
F0:95 3:2ð Þ ¼

1
19:2

¼ 0:05

0:05 � FR ¼ 7:00 � 19:2

We accept H0 with 95% confidence that there exist statistically significant differ-
ences between variances of these two samples.

1.25
�XX1=14.280; S

2
1=0.0280; n1=4; �XX2=15.681; S

2
2=0.0024;n2=4

T ¼
�XX1��XX2

S
2
1

n1
þS

2
2

n2

� �0:5 ¼ 15:681�14:280
0:028

4
þ0:0024

4

� 	0:5
T=16.0665;

f ¼

S21
n1

þ S2
2

n2

 !2

S21
.
n1

� 	2
n1þ1

þ
S22
.
n2

� 	2
n2þ1

� 2

f ¼ 5:8� 10
�5

1:0� 10
�5 � 2 ¼ 5:8� 2 ¼ 3:8 � 4;

a=0.05; t4;0.05=2.13 T=16.0665>t4;0.05=2.3
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It is asserted with 95% confidence that there are statistically significant differ-
ences in effects of the two catalyst types on burning rate.

1.26

Source of varia-
tions

f SS MS F F1;8;0.95

Factor A 1 0.146 0.146 5.84 5.32

Factor B 1 0.002 0.002 0.08 5.32

Factor C 1 0.300 0.300 12.00 5.32

Interaction AB 1 0.000 0.000 0.00 5.32

Interaction AC 1 0.104 0.104 4.16 5.32

Interaction BC 1 0.253 0.253 10.12 5.32

Interaction ABC 1 0.041 0.041 1.64 5.32

Error 8 0.200 0.025 – –

Total 15 1.046 – – –

1.27

a) S
2
X ¼ 24:596; S

2
p ¼ 1:808; F ¼ 13:6 � F3;20;0:95 ¼ 3:10

b) t20;0.95=2.086; 36.522<l III<38.812

1.28

S
2
X ¼ 5:1566; S

2
p ¼ 0:89391; F ¼ 5:77 � F3;36;0:95 ¼ 2:85

1.29

S
2
X ¼ 0:0014167;S

2
p ¼ 0:0007458;F ¼ 1:899 � F3;12;0:99 ¼ 5:95

S�pp ¼ 0:01362; t12;0:995 ¼ 3:055; l	1 ¼ 0:385
 3:055� 0:01362

1.30

SSC=5,653,437.5; SSR=170,343,939.6; SSE=7,306,879.2;

SST=310,933,275; pressure does not effect the moment but it does the actuator
model.
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1.31

Source of variation f SS MS F F1;12;0.95

Factor methods 1 0.00001 0.00001 34.61335 4.75

Factor mixing 1 0.00003 0.00003 112.23636 4.75

Interaction 1 0.00000 0.00000 0.19043 4.75

Error 12 0.00000 0.00000 – –

Total 15 0.00004 – – –

1.32

Source of variation F SS MS F F1;24;0.95

Cutting tools (T) 1 2.82 2.82 1.21 4.26

Cutting angle (B) 1 20.32 20.32 8.72 4.26

Type of cutting (C) 1 31.01 31.01 13.31 4.26

Interaction T � B 1 0.20 0.20 0.09 4.26

Interaction T � C 1 0.01 0.01 0.004 4.26

Interaction B � C 1 0.94 0.94 0.40 4.26

Interaction T � B � C 1 0.19 0.19 0.08 4.26

Error 24 53.44 2.33 – –

Total 31 108.93 – – –

1.33

Source of variation f SS MS F FTAB

Samples 11 93.486 8.499 7.691 F11;22;0.95=2.26

Kivets 2 14.527 7.263 6.573 F2;22;0.95=3.44

Bottles 1 0.347 0.347 0.314 F1;22;0.95=4.30

Samples � kivets 22 22.806 1.037 0.938 F22;22;0.95=2.05

Samples � bottles 11 27.153 2.468 2.233 F11;22;0.95=2.26

Kivets � bottles 2 1.695 0.847 0.767 F2;22;0.95=3.44

Samples � kivets �

bottles

22 24.305 1.105* – –

Total 71 184.319 – – –

* Three-factor interaction variance is used for estimation of residual variance

1.34
The experimental program has been done with no trial replication, so that residual
variance must be determined based on variance interactions. Whether one may
neglect all interactions or some of the variance interactions may be included in the
residual variance since its effect is significant and different from others, is checked
againstBartlett’s criterion.Assuming that variance interactions are negligible, we have:
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Source of variation f SS MS F F1;4;0.95

Factor A 1 3.125 3.125 1.87 7.71

Factor B 1 47.045 47.045 28.17 7.71

Factor C 1 0.720 0.720 0.43 7.71

Interaction AB 1 0.720 0.720 – –

Interaction AC 1 0.045 0.045 – –

Interaction BC 1 0.405 0.405 1.670 – –

Interaction ABC 1 0.500 0.500 – –

Total 7 52.560 – –

1.35

Source of variation f SS MS F FTAB

Between batches 8 792.88 99.11 132.15 F8;27;0.95=2.31

Between samples 2 4.21 2.11 2.81 F2;27;0.95=3.35

Interaction batches � samples 16 21.09 1.32 1.76 F16;27;0.95=2.02

Error 27 20.17 0.75 – –

Total 53 838.35 – – –

1.36

Source of variation f SS MS F FTAB

Between chalks 1 0.503040 0.503040 62880.00 F1;44;0.95=4.04

Between laboratories 10 0.005223 0.000522 65.25 F10;44;0.95=2.03

Interaction laboratory � chalks 10 0.000478 0.000048 6.00 F10;44;0.95=2.03

Error 44 0.000363 0.000008 – –

Total 65 0.509104 – – –

1.37

Source of variation f SS MS F FTAB

Factor A 4 478 463 119 615.75 373.53 F4;24;0.95=2.78

Factor B 2 52 794 26 397.00 82.41 F2;24;0.95=3.40

Factor C 3 150 239 50 079.67 156.34 F3;24;0.95=3.01

Interaction AB 8 16 807 2 100.88 6.56 F8;24;0.95=2.36

Interaction AC 12 53 890 4 490.83 14.02 F12;24;0.95=2.18

Interaction BC 6 6 416 1 069.33 3.34 F6;24;0.95=2.51

Interaction ABC 24 7 688 320.33

Total 59 766 297 – – –

Since experiments have been done with no replications, the residual variance has
been determined based on the variance interaction ABC, as it has been proved by
theoretical analysis that it may be neglected.
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1.38

Source of variation f SS MS F FTAB

Between locations 3 128.74 42.91 13.41 F3;105;0.95=2.70

Between alloys 8 128.18 16.02 5.01 F8;105;0.95=2.04

Between researchers 3 106.24 35.41 11.07 F3;105;0.95=2.70

Location � alloy 24 89.32 3.72 1.16 F24;105;0.95=1.65

Location � researcher 9 12.73 1.41 – –

Researcher � alloy 24 23.32 0.97 3.20 – –

Location � alloy � researcher 72 58.96 0.82 – –

Total 143 547.49 – – –

Since an analysis of the three-factor variance is with no replications, for an esti-
mate of residual variance one may pool variances of the three last interactions, as
they cannot be significant theoretically.

1.39

Fflow=165.707; Fconc.=7.607; MSE=1.90276 (pooled AB error).

At 95% confidence, catalyst flow and concentration have a statistically significant
effect on conversion of vinegar acid.

1.40

SSC=39,934.1875; SSR=324,082.1875; SSE=9,232.0625

MSC=13,311.3958; MSR=108,027.3958; MSE=1025.7847;

FC=12.97679>F3;9;0.99=6.99;FR=105.31196>F3;9;0.99=6.99;

Interaction AB pooled in residual variance with error variance; it is not extracted
as there have been no trials replications.

1.41
SSADH.=6274.307; SSPRA.=4.380; effect of a preliminary surface preparation is

insignificant, while the effect of adhesion systems is significant.
FADH.=150.422; FPRA.=0.315; FADH.� PRA.=19.304;
F1;40;0.95=4.08; F3;40;0.95=2.84.

1.42

SSPRA.=9.275; SSADH.=13,761.231; SSPRA.� ADH.=266.21.

All effects except surface preparation with a primer are significant with 95% con-
fidence.

FPRA.=0.83442; FADH.=412.66618; FPRA.� ADH.=7.98297;
F1;40;0.95=4.08; F3;40;0.95=2.84.
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1.43

Source of variation f SS MS F FTAB

Adhesive � (A) 3 17 721.30 5 907.10 472.20 F3;80;0.95=2.70

Preparation � (B) 1 13.20 13.20 1.06 F1;80;0.95=3.96

Thickness � (C) 1 4 256.01 4 256.01 340.22 F1;80;0.95=3.96

Interaction A � B 3 951.79 317.26 25.36 F3;80;0.95=2.70

Interaction A � C 3 2 314.24 771.41 61.67 F3;80;0.95=2.70

Interaction B � C 1 0.45 0.45 0.04 F1;80;0.95=3.96

Interaction A � B � C 3 119.64 39.88 3.19 F3;80;0.95=2.70

Error 80 1 000.78 12.51 – –

Total 95 26 377.41 – – –

1.44

Source of variation f SS MS F F1;8;0.95

Type of catalyst 1 5.752 5.752 410.857 5.32

Batch of AP 1 0.024 0.024 1.714 5.32

Interaction 1 0.023 0.023 1.643 5.32

Error 8 0.110 0.014 – –

Total 11 5.909 – – –

1.45

XEKS: ¼ 5:2; �XX ¼ 4:39; S
2
X ¼ 0:0481; SX ¼ 0:2193; N ¼ 13; f ¼ 12;

DXMAX ¼ 5:2� 4:39 ¼ 0:81; f0 ¼ 0; t
f0þf �1
a¼0:05 ¼ t

11
0 ¼ 1:80;

13C2�11

12 12�13C
2

12

� �
2
664

3
775
0:5

¼ 1:80; C � 1:59

DXMAX ¼ C � SX ¼ 1:59� 0:2193 ¼ 0:35

DXMAX ¼ 0:81 � 0:35;X ¼ 5:2 outlier

577



Appendix

1.48

XEKS: ¼ 14:531; �XX ¼ 14:196; S
2
X ¼ 9:350� 10

�6
;SX ¼ 0:003;N ¼ 4; f ¼ N � 1 ¼ 3;

DXMAX ¼ XMAX � �XX ¼ 14:531� 14:196 ¼ 0:335; f0 ¼ 0; t
f0þf �1
a¼0:05 ¼ t

2
0:05 ¼ 2:92;

NC2 fþf0�1
� �

f fþf0�
NC

2

f

� �
2
664

3
775
0:5

¼ 2:92;
4C2�2

3 3�4C
2

3

� �
2
664

3
775
0:5

¼ 2:92 ) C ¼ 1:35;

DXMAX ¼ C � SX ¼ 1:35� 0:003 ¼ 0:004

DXMAX ¼ 0:335 � 0:004; X ¼ 14:531 outlier

1.49

a) b0=9.27; b1=1.44; Y
_
=9.27+1.44X

b) Source of variation f SS MS F F1;9;0.95

Regression 1 226.95 226.95 96.17 5.12

Residual 9 21.23 2.36 – –

Corrected total 10 248.18 – – –

c) 1.11£b 1£ 1.77
d) 12.15£l£15.03 (X=3)
e) 12.15£l£15.03 (X=3) 6.61£l£23.89(X=-2)

1.50

Source of variation f SS MS F F5;6;0.95

Regression 1 3 293.77 3 293.77 – –

Residual 11 102.85 9.35 – –

Lack of fit 5 91.08 18.22 9.30* 4.39

Pure error 6 11.77 1.96 – –

Total 12 3 396.62 – – –

Y
_
=129.7872-24.0199X

1.51

�XX ¼ 6668:4; �YY ¼ 8662:6; Y
_
¼ 1360:0þ 1:0951X

1.52

�XX ¼ 751:875; �YY ¼ 316:75; Y
_
¼ 4654:9846� 0:4498X
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1.53

�XX ¼ 2165:000; �YY ¼ 2125:278; Y
_
¼ 15:352þ 0:974561X

Source of variation f SS MS F F1;16;0.95

Regression 1 4 772 451.7 4 772 451.7 1 501.01 4.49

Residual 16 50 871.9 3 179.49 – –

Total 17 4 823 323.6 – – –

1.54

Source of variation f SS MS F F4;6;0.95

Regression 1 52.50 52.50 – –

Residual 10 17.17 1.717 – –

Lack of fit 4 5.50 1.375 0.706 4.53

Pure error 6 11.67 1.945 – –

Total 11 69.67 – – –

a) Y
_
= -21.33+5.0X b) 2.984£l 1£ 7.016

1.55

b0=0.353332; b1=3.34292 � 10-4

Y
_
= 0.353332+3.34292 � 10-4 � t

1.56

Y
_
=45.1972-2.68408X1+4.20910X2; r2=0.94808

1.57
a) X

_
=14.7075-1.2042Z1-0.46288Z2; b) r2=0.82523

1.58
Y
_

1=3.09204+0.193694X+0.0362872X
2; r2=0.99956;

Y
_

2=2.41588+0.180067X+0.034122X
2; r2=0.998707;

1.59

Y
_
=3.73926+1.7717X-0.0601562X2; r2=0.991516
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1.60
a) Y

_
=2.5372000-0.0004718X b) Regression model is adequate

Source of variation f SS MS F FTAB

Regression 1 0.110395 0.110395 14.50 F1;13;0.95=4.67

Residual 13 0.098938 0.007611 – –

Lack of fit 5 0.018938 0.003788 0.38 F5;8;0.95=3.69

Pure error 8 0.080000 0.010000 – –

Total 14 0.209333 – – –

c) 95 % confidence interval of Y for:

X=0; X=�XX ; X=400; X=460.

1. X=0 l–2.160 � 0.527=l–1.138
2. X=�XX l–2.160 � 0.022=l–0.048
3. X=400 l–2.160 � 0.039=l–0.084
4. X=460 l–2.160 � 0.048=l–0.104.

Chapter II

2.1
Based on Table 2.14:X4

1

Tj ¼ 156; T ¼ 26; S ¼ 1650:

x ¼ 12� 1650
16 1728� 12ð Þ � 4� 156

¼ 0:738;

From Table D for a=0.05 and f =12-1=11 we get v
2
T=19.75. The null hypothesis in

accord of researchers¢ opinions is accepted. Histogram of rank sum is given in the
figure.
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It is evident from the diagram that we have here an even nonmonotonous curve
of ranks, so the suggestion here is to take the eight most significant factors as basis
of the next phase of experimental studies.

2.2
x = 0.526

2.3

x ¼ 12�14665

182 113�11
� 	

�18�946
¼ 0:43; v

2
R ¼ 18 11� 1ð Þ � 0:43 ¼ 77:4;

v
2

T 0:01;10ð Þ ¼ 23:2

2.4
x = 0.012; v

2
R ¼ 4:9.

2.5
Screened factors are X1;X2;X3;X4;X5 and X6.
The regression has this form:

Y
_
=67.4+10.7X1+3.9X2-7.0X3+3.45X4+1.2X5+3.8X6

Estimated response values are by regression given in Table 2.40.

2.6

EX1
¼ �3:05; EX2

¼ 64:90; first screening

EX1X2
¼ �13:30; EX7

¼ �0:97; EX8
¼ 3:12; second screening;

EX2X3
¼ �5:02; EX8

¼ 4:72; EX3
¼ 4:25; third screening;

EX3X4
¼ �2:75; EX5

¼ �1:25; fourth screening;

EX1X3
¼ 2:00; EX4

¼ 1:00; fifth screening.

Finally, we screened out factors X1;X2 and X3. Factors X4 and X8 are qualitative
with two levels.

2.7
SSC = (275625.0+240100.0+334084.0+295936.0)/(3 � 3)-4566769.0/(3 � 3 � 4))
SSC = 127305.00-126854.69=450.31
SSR = (355216.0+528529.0+662596.0)/(4 � 3)-126854.69)
SSR = 128861.75-126854.69=2007.06
SSCR = (23104+18496+25281+22201+31684+27225+37636+36100+

+ 38025+35721+50625+42025)/3-127305.0-128861.75+126854.69
SSCR = 62.27; SSE=129995.00-126854.69=3140.31
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Source of variation f SS MS F FTAB

Between blocks 3 450.31 150.10 14.46 F3;6;0.95=4.76

Between levels of

factors

2 2 007.06 1 003.53 96.68 F2;6;0.95=5.14

Experimental error 6 62.27 10.38 – –

Sampling error 24 3 140.31 130.85 – –

Total 35 5 659.95 – – –

2.8
SSC = (30625.00+26676.69+37121.73+32880.57)/3-(507414.03)/(3 � 4)
SSC = 42434.66-42284.50=150.16
SSR = (39469.77+58723.83+73619.97)/4-42284.50
SSR = 668.89
SSE = 43124.30-42284.50-150.16-668.89=20.75

Source of variation f SS MS F FTAB

Between blocks 3 150.16 50.05 14.47 F3;6;0.95=4.76

Between levels of

factors

2 668.89 334.45 96.66 F2;6;0.95=5.14

Experimental error 6 20.75 3.46 – –

Total 11 839.80 – – –

2.9

Source of variation f SS MS F FTAB

Type of mixing 6 6 317 1 053 2.33 F6;30;0.90=1.98

Active matter 6 99 157 16 526 36.64 F6;30;0.99=3.17

Dissolvent type 6 5 487 915 2.02 F6;30;0.90=1.98

Experimental error 30 13 541 451 – –

Total 48 124 502 – – –

2.10
The missing data is estimated and it is 90. Analysis of variance offered these results:

Source of variation f SS MS F FTAB

Nozzles in operation 3 379.19 126.397 2.250 –

Air flow 3 86.19 28.73 0.511 –

Water pressure 3 101.19 33.73 (32.17)** 0.573 –

Experimental error 5* 280.87 56.174 – –

Total 15* 847.44 – – –

* One degree of freedom less because of estimation one data
** Corrected because of estimation
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No factor is significant for the efficiency of scrubber, which may be explained
either that real factors have not been included in the research or that variation inter-
vals of analyzed factors are too small.

2.11

Source of variation f SS MS F F4;12;0.95

Stators 4 1 302.8 325.7 27.07 3.26

Rotors 4 36.4 9.10 0.76 3.26

Quality of insulation 4 52.4 13.10 1.09 3.26

Experimental error 12 144.4 12.03 – –

Total 24 1 536.0 – – –

2.12

SSR ¼ 22
2 þ 18

2 þ 21
2 þ 19

2
� 	

=4� 80
2
=16 ¼ 2:50

SSC ¼ 18
2 þ 17

2 þ 26
2 þ 19

2
� 	

=4� 80
2
=16 ¼ 12:50

SSL ¼ 26
2 þ 21

2 þ 17
2 þ 16

2
� 	

=4� 80
2
=16 ¼ 15:5

SSG ¼ 23
2 þ 20

2 þ 17
2 þ 20

2
� 	

=4� 80
2
=16 ¼ 4:5

SSE ¼ 446� 400� 2:50� 12:50� 15:5� 4:5 ¼ 11:00

SST ¼ 446� 400 ¼ 46:00

Source of variation f SS MS F F3;3;0.95

Between rows 3 2.50 0.83 0.23 9.28

Between columns 3 12.50 4.17 1.14 9.28

Between latin letters 3 15.50 5.17 1.41 9.28

Between numbers 3 4.50 1.50 0.41 9.28

Experimental error 3 11.00 3.67 – –

Total 15 46.00 – – –

2.13

Source of variation f SS MS F F4;8;0.95

Temperature 4 15 100.56 3 775.14 26.29 21.4

Time 4 3 195.36 798.84 5.56 21.4

Reactor 4 200.76 50.19 0.35 21.4

Operator 4 254.16 63.54 0.44 21.4

Experimental error 8 1 148.92 143.62 – –

Total 24 19 899.76 – – –
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2.14

Source of variation f SS MS F FTAB

Cycles – 288.92 – – –

Corrected-cycles 3 147.25 49.08 45.44 F3;3;0.95=9.28

Corrected-dyestuff 3 164.58 54.86 50.80 F3;3;0.95=9.28

Positions 2 8.17 4.09 3.79 F2;3;0.95=9.55

Residual 3 3.25 1.08 – –

Total 11 464.92 – – –

2.15

Source of variation f SS MS F FTAB

Corrected conditions 6 0.57 0.10 1.25 F6;12;0.95=3.0

Corrected producer 6 1.06 0.18 2.25 F6;12;0.95=3.0

Producer – 0.99 – – –

Type of saw 3 0.04 0.01 0.13 F3;12;0.95=3.49

Residual 12 0.96 0.08 – –

Total 27 2.56 – – –

SS1 ¼ 7:50
2 þ 8:14

2 þ 7:26
2 þ 6:77

2 þ 8:08
2 þ 6:84

2 þ 9:03
2

� 	
=

4� 53:62= 7� 4ð Þ ¼ 0:99

SS2 ¼ 7�1

7�42 4�1ð Þ
ð4� 7:52� 7:50� 8:14� 7:26� 8:08Þ2 þ :::
h

:::þ 4� 8:69� 7:50� 8:14� 6:77� 9:03ð Þ2
i
¼ 0:57

SS3 ¼ 7:52
2 þ 7:24

2 þ 7:99
2 þ 7:41

2 þ 6:94
2 þ 7:83

2 þ 8:69
2

� 	
=4� 102:68 ¼ 0:50

SS4 ¼ 7�1

7�42 4�1ð Þ
4� 7:50� 7:52� 7:41� 7:83� 8:69ð Þ2þ:::

h
:::þ 4� 9:03� 7:99� 6:94� 7:83� 8:69ð Þ2

i
¼ 1:06

SS5 ¼ 2:30þ 1:64þ 1:92þ 2:14þ 1:65þ 1:64þ 1:86ð Þ2þ:::
h
:::þ 1:62þ 1:93þ 2:22þ 1:58þ 1:61þ 1:74þ 2:67ð Þ2

i
=7� 102:68 ¼ 0:04

SST ¼ 1:62
2 þ 2:10

2 þ 1:50
2 þ 2:30

2 þ :::þ 1:86
2 þ 2:62

2
� 	

� 102:68 ¼ 2:56

SSE ¼ 2:56� 0:99� 0:57� 0:04 ¼ 0:96
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2.16

b0 ¼ 22:48� 10
�3
; b1 ¼ �1:01� 10

�3
; b2 ¼ 19:46� 10

�3

b3 ¼ 1:45� 10
�3
; b4 ¼ �1:05� 10

�3
; b12 ¼ 2:24� 10

�3
;

b13 ¼ �1:32� 10
�3
; b14 ¼ 1:80� 10

�3
:

2.17

ya ¼ 1:94þ 0:17X1 � 0:39X2 � 0:32X3 þ 0:10X4 � 0:08X1X3 � 0:09X2X3

þ0:09X2X4 þ 0:07X3X5

yb ¼ 0:54þ 0:12X2 þ 0:16X3 � 0:09X4 � 0:18X5 þ 0:07X1X3 � 0:06X1X4

�0:06X1X5 þ 0:095X2X3 � 0:08X2X4 � 0:06X3X4 � 0:11X3X5 þ 0:05X4X5

2.18

y
_ ¼ 47:1þ 2:78X1 � 1:29X2 þ 3:23X3 þ 1:55X4 þ 1:35X5 � 4:9X6

2.19

y
_ ¼ 4:5250þ 0:1312X1 � 0:0187X2 þ 0:4812X3 � 0:0937X4 þ 0:0625X1X2

�0:0625X1X3 � 0:05X2X3

2.20

y Regression coefficients

b0 b1 b2 b3 b4 b5 b6 b7 b12 b13 b14 b15 b16 b17 b27 b127

y1 59.1 -3.4 -7.4 0.0 -4.2 1.7 3.1 1.0 1.1 0.6 -1.9 -2.2 -1.2 -0.4 -0.4 -0.5

y2 8.11 -2.19 -3.77 1.07 -1.54 2.78 -0.25 -0.42 0.34 1.16 -0.55 -1.47 -0.87 0.82 -0.16 -0.34

y3 46.3 -8.1 -14.1 4.0 -6.0 10.1 -2.0 -1.8 0.6 4.5 -1.9 -5.1 -2.2 2.9 -0.5 -1.0

y4 115 -6 -11 -7 -6 10 -6 -2 -10 2 1 0 7 -5 -3 1

y5 31.2 -13.8 -22.5 8.6 -12.7 0 0.6 1.6 7.9 6.0 -4.7 2.2 -1.4 -0.8 0.3 -2.4

y6 7.9 -0.7 0.0 0.0 -0.4 0.2 0.1 0.7 -0.4 -0.1 0.1 0.2 0.3 -0.1 0.4 0.2

y7 109 2 -1 6 0.0 -2 0 5 -5 0 2 -4 -1 3 4 0

y8 9.73 -0.12 -0.08 -0.07 0.36 -0.27 0.07 0.48 -0.22 -0.04 -0.14 0.43 0.10 0.06 -0.07 0.56

y9 1.09 -0.17 0.25 -0.12 0.30 0.18 -0.19 0.13 -0.19 0.17 0.01 -0.14 0.12 -0.20 0.20 0.05

y10 16.4 5.9 -3.2 -2.8 0.0 2.3 -0.1 -0.8 0.7 -2.0 0.3 -0.7 -1.2 0.3 1.1 1.2

y11 1.096 0.016 0.001 -0.031 -0.001 0.002 0.002 0.002 0.001 -0.007 0.002 -0.001 0.001 0.003 0.002 -0.001

2.21

y
_ ¼ �4:2482þ 3:60625X1 þ 0:77565X2 þ 0:7814X

2
1 þ 0:0588X

2
2 þ 0:00072498X1X2
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2.22

y
_ ¼ 0:2993� 0:0829X1 þ 0:0738X2 � 0:149X3

b0 � y0=0.2993-(0.1224+0.1382+0.1204+0.0943+0.0698+0.1135)/6 =0.1896

y
_ ¼ 0:10975þ 0:0816X1 þ 0:0753X2 � 0:1483X3 � 0:6043X1X2 þ 0:0345X1X3

�0:0229X2X3 þ 0:0359X
2
1 þ 0:0321X

2
2 þ 0:1224X

2
3

2.23

y
_ ¼ 353:00� 145:07X1 � 192:77X2 þ 133:70X3 þ 6:00X1X2 � 41:13X1X3

�52:25X2X3 þ 41:76X
2
1 þ 51:35X

2
2 � 2:65X

2
3

2.24

b0 ¼ 0:22006; b1 ¼ �0:0195; b2 ¼ 0:002169; b3 ¼ 0:025928;

b4 ¼ �0:10837; b5 ¼ �0:00446; b11 ¼ 0:04943; b12 ¼ �0:00375;

b13 ¼ �0:056249; b14 ¼ 0:3387; b15 ¼ �0:04199; b22 ¼ 0:03688;

b23 ¼ 0:00399; b24 ¼ 0:008625; b25 ¼ �0:010499; b33 ¼ 0:0296;

b34 ¼ �0:0165; b35 ¼ 0:071625; b44 ¼ 0:0340; b45 ¼ 0:018249;

b55 ¼ 0:06427:

2.25

b0 ¼ 4:114; b1 ¼ 0:508; b2 ¼ 1:021; b3 ¼ �1:192; b4 ¼ �1:625;

b11 ¼ 0:043; b12 ¼ �0:212; b13 ¼ �0:025; b14 ¼ �0:719; b22 ¼ 0:249;

b23 ¼ 0:212; b24 ¼ 0:245; b33 ¼ 0:718; b34 ¼ 0:212; b44 ¼ 0:456:

y=H/H0

H0-height of non-fluidized bed;

H- height of fluidized bed.

2.26

y
_ ¼ 93þ 20X1 � 30X2 � 58X3 þ 9X1X2 þ 11X2X3 � 22X1X3

y
_ ¼ 50þ 16X1 � 30X2 � 63X3 þ 11X

2
2 þ 29X

2
3 þ 9X1X2 þ 11X2X3 � 22X1X3

2.27

y b0 b1 b2 b3 b11 b22 b33 b12 b13 b23

y1 139.12 16.49 17.88 10.91 -4.01 -3.45 -1.57 5.13 7.13 7.88

y2 1 261.11 268.15 246.50 139.48 -83.55 -124.79 199.17 69.38 94.13 104.38

y3 400.38 -99.67 -31.40 -73.92 7.93 17.31 0.43 8.75 6.25 1.25

y4 68.91 -1.41 4.32 1.63 1.56 0.06 -0.32 -1.63 0.13 -0.25
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2.28

Name Factors Response

X1 X2 X3 X4 yu1 yu2 yu3 yu4 �yy y
_

Basic level 1.5 4.25 54.0 9.5

Variation intervals 1.0 0.5 12.0 5.0

Regression coefficients bi 0.131 -0.019 0.481 -0.094

Product bi � ei 0.131 – 5.780 –

Basic step ha – – 12.0 –

Proportional calc. 0.273 – 12.0 –

Rounded up step 0.3 – 12.0 –

Abstract trials

1 2.8 3.75 78 90 5.75 6.10 5.49 5.90 5.81 5.041

2 3.1 3.75 90 90 6.10 4.50 6.60 6.40 5.90 –

3 3.4 3.75 102 90 5.62 6.30 6.25 5.62 5.95 6.073

4 3.7 3.75 114 90 6.40 7.00 6.00 5.50 6.22 6.589

5 4.0 3.75 126 90 5.60 6.90 6.35 5.75 6.15 7.105

6 4.3 3.75 138 90 6.10 6.60 6.75 6.75 6.55 7.621

7 4.6 3.75 150 90 6.65 6.35 5.90 6.75 6.41 8.130

8 4.9 3.75 162 90 5.65 5.45 5.75 6.00 5.71 –

2.29

Name x1 x2 x3 Response

Basic level 1.500 1.100 3.900

Variation interval 0.300 0.200 0.900

Regression coefficients 0.00987 -0.00275 -0.00225

Product bi � Dxi 0.002961 -0.00055 -0.002025

Step in change x1 for 0.36 +0.36 -0.067 -0.246

Rounded up step +0.36 -0.07 -0.25

Trials X1 X2 X3 yu y
_

1 1.86 1.03 3.65 0.259 0.275

2 2.22 0.96 3.40 0.249 0.261

3 2.58 0.89 3.15 0.247 0.248

4 2.94 0.82 2.90 0.245 0.235

5 3.30 0.75 2.65 0.243 0.221

6 3.66 0.68 2.40 0.242 0.208

7 4.02 0.61 2.15 0.244 0.194

8 4.38 0.54 1.90 0.246 0.181
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Basic level 3.66 0.68 2.40

Lower level 3.16 0.38 1.50

Upper level 4.16 0.98 3.30

Variation interval 0.50 0.30 0.90

No. X0 X1 X2 X3 X1
2 X2

2 X3
2 X1X2 X1X3 X2X3 yu y

_

1 + – – – + + + + + + 0.258 0.257

2 + + – – + + + – – + 0.280 0.276

3 + – + – + + + – + – 0.271 0.275

4 + + + – + + + + – – 0.272 0.276

5 + – – + + + + + – – 0.247 0.244

6 + + – + + + + – + – 0.255 0.252

7 + – + + + + + – – + 0.253 0.257

8 + + + + + + + + + + 0.246 0.248

9 + -1.682 0 0 2.828 0 0 0 0 0 0.267 0.265

10 + 1.682 0 0 2.828 0 0 0 0 0 0.271 0.279

11 + 0 -1.682 0 0 2.828 0 0 0 0 0.251 0.246

12 + 0 1.682 0 0 2.828 0 0 0 0 0.253 0.257

13 + 0 0 -1.682 0 0 2.828 0 0 0 0.278 0.276

14 + 0 0 1.682 0 0 2.828 0 0 0 0.241 0.241

15 + 0 0 0 0 0 0 0 0 0 0.242 0.242

16 + 0 0 0 0 0 0 0 0 0 0.232 0.242

17 + 0 0 0 0 0 0 0 0 0 0.235 0.242

18 + 0 0 0 0 0 0 0 0 0 0.243 0.242

19 + 0 0 0 0 0 0 0 0 0 0.251 0.242

20 + 0 0 0 0 0 0 0 0 0 0.249 0.242

Regression coefficients have the values:

b0 ¼ 0:242; b1 ¼ 0:0023; b2 ¼ 0:00347; b3 ¼ �0:01026;

b11 ¼ 0:00944; b22 ¼ 0:0033; b33 ¼ 0:00587; b12 ¼ �0:00429;

b13 ¼ �0:00261; b23 ¼ �0:001:

2.30

y� 463:53 ¼ 25:21Z
2
1 þ 76:17Z

2
2

Z1 ¼ 0:995ðX1 � 1:40Þ þ 0:099ðX2 � 0:55Þ
Z2 ¼ 0:099ðX1 � 1:40Þ � 0:995ðX2 � 0:55Þ

2.31

y� 52:12 ¼ 0:35Z
2
1 � 1:85Z

2
2

2.32

y1 � 22:5 ¼ 12:5Z
2
1 þ 6:9Z

2
2

y2 � 64:6 ¼ 1:8Z
2
1 � 11:1Z

2
2
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A.2
Tables of Statistical Functions

Table A Random numbers

83 28 78 05 18 98 49 22 54 11 92 37 45 11 63 60 19 05 91 26
84 73 82 58 01 90 55 37 85 68 98 15 99 52 99 84 51 91 73 81
00 79 20 99 42 57 55 67 93 39 99 25 65 10 91 54 84 65 16 23
94 48 02 99 71 08 50 84 66 10 10 34 92 30 89 28 30 74 24 24
54 37 52 43 87 22 21 34 20 15 07 67 64 98 36 01 33 34 04 42

47 68 59 90 98 90 27 71 89 89 98 20 24 19 85 02 34 38 26 71
76 16 58 55 51 85 44 00 28 28 38 91 70 70 16 81 13 49 46 54
37 64 90 35 64 45 47 72 82 03 01 65 05 97 13 90 90 57 51 97
92 78 39 12 48 01 83 46 39 29 98 71 39 56 97 66 97 70 05 77
24 50 29 02 71 28 53 99 75 07 13 18 76 97 72 54 85 79 71 60

01 72 71 23 86 40 70 05 35 36 15 64 11 01 11 18 90 14 95 05
43 28 52 77 22 80 49 89 79 65 91 17 80 94 34 02 17 61 00 42
29 09 19 54 67 67 88 54 62 09 07 97 35 19 31 25 06 92 25 02
27 95 74 89 62 45 75 39 06 89 58 96 64 65 81 84 85 20 01 47
52 43 54 97 75 80 00 38 20 38 57 46 57 33 87 19 66 06 40 32

78 11 60 42 09 83 28 40 93 57 61 22 27 27 47 80 44 34 47 27
03 74 36 27 13 19 14 76 35 73 66 29 95 65 12 87 61 91 34 30
82 25 35 57 16 29 21 27 51 23 06 52 40 00 28 11 47 23 63 01
09 91 87 20 33 76 61 55 79 21 74 36 21 36 05 47 28 42 92 51
19 82 00 40 15 52 45 35 13 48 74 10 97 36 22 85 44 57 91 72

69 41 17 07 11 54 36 81 57 38 55 39 85 74 48 05 06 43 10 63
48 80 36 26 28 95 03 79 54 31 41 55 48 84 78 63 09 05 69 07
80 02 51 78 94 07 88 62 85 82 80 37 56 15 59 30 46 42 84 02
19 51 95 22 72 72 95 51 57 73 04 68 00 95 04 30 66 52 60 74
50 36 31 76 75 39 04 95 69 47 95 23 01 70 95 04 04 18 68 14

60 03 34 57 41 76 35 06 75 60 21 58 86 36 02 33 00 59 63 13
59 40 60 83 61 73 45 18 08 23 54 86 64 57 76 70 00 89 43 24
29 51 12 43 14 24 35 78 76 22 82 50 68 02 13 19 07 00 19 07
57 07 34 86 57 96 99 57 44 54 90 87 33 76 71 71 23 28 88 37
81 73 29 08 96 62 34 26 52 32 23 74 17 49 45 62 17 88 50 50

40 20 21 54 17 65 99 31 09 72 67 87 16 34 00 76 26 23 42 40
81 26 86 30 79 17 93 45 74 50 50 24 65 52 06 59 04 60 73 63
13 65 31 57 36 88 98 35 04 96 41 37 45 87 57 57 21 15 34 59
23 41 47 66 24 73 31 96 72 07 09 43 88 63 33 80 54 79 84 18
79 62 53 27 85 43 5I 69 83 81 90 85 84 72 18 48 41 20 81 59

l3 40 75 73 19 92 12 01 91 95 23 99 99 30 30 58 46 22 64 41
54 87 97 55 83 91 42 61 41 02 40 18 39 20 56 19 56 35 04 32
09 29 30 63 75 86 85 29 15 34 68 92 34 06 81 60 32 16 05 37
61 99 27 99 73 18 94 29 25 74 22 20 70 46 30 38 26 91 59 16
31 84 93 27 40 23 25 86 68 30 10 11 91 59 61 07 41 97 10 39

35 86 11 25 98 38 27 14 79 68 77 60 63 34 23 80 75 43 48 79
40 42 68 85 23 40 27 56 54 56 75 65 70 49 24 08 10 44 75 59
25 14 94 00 99 80 81 44 49 08 98 93 71 74 11 14 54 69 71 69
56 18 75 63 56 68 25 36 75 98 00 18 19 15 24 28 56 80 75 97
79 61 54 67 58 38 93 69 45 95 61 19 17 35 89 90 98 70 26 20

92 91 85 49 33 32 46 67 28 20 40 99 88 73 56 33 29 13 41 89
01 79 85 45 45 36 05 67 56 17 59 77 59 34 35 01 15 21 00 35
55 84 71 36 40 39 47 25 25 73 69 14 55 73 35 86 61 17 98 69
38 36 66 66 19 40 90 83 06 31 24 67 91 74 54 14 87 24 61 80
01 69 50 70 31 02 98 86 42 01 94 98 07 85 28 38 37 30 72 76
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Table A (continued)

87 08 83 09 40 14 39 15 99 24 21 85 00 45 54 19 36 18 03 88
88 33 78 20 40 40 24 73 77 70 00 31 84 59 26 06 50 30 95 96
22 50 09 11 00 37 36 51 55 95 83 97 13 75 46 22 77 50 11 72
48 70 56 57 16 24 21 74 91 53 18 05 59 61 74 97 31 82 77 68
93 45 40 93 12 80 88 63 26 93 85 05 19 87 84 37 59 76 16 65

50 76 72 02 39 19 40 69 57 23 09 33 20 70 86 45 13 94 98 39
91 64 01 34 67 13 11 00 32 09 39 76 21 64 29 85 65 14 51 74
33 20 63 71 95 94 13 77 12 44 12 94 91 04 41 83 79 72 44 08
90 59 65 46 78 82 16 45 97 85 57 75 79 96 79 08 16 83 43 99
05 10 93 57 80 32 86 65 26 90 27 54 34 94 46 33 65 35 56 84

92 85 63 26 69 69 81 54 70 56 17 62 43 17 86 78 99 62 34 15
08 50 36 55 82 11 26 54 76 88 85 67 82 21 65 00 83 89 06 09
59 36 77 09 83 87 81 77 93 77 48 44 88 30 37 21 74 02 93 10
05 85 86 43 25 50 76 70 36 32 26 68 54 92 84 90 02 38 77 40
13 46 99 31 30 29 71 70 91 10 99 84 55 31 95 20 90 28 49 78

56 27 09 33 66 79 32 29 50 54 76 94 27 01 45 87 29 66 23 15
54 15 62 11 22 33 39 39 58 30 73 43 59 32 26 43 76 12 99 10
83 01 86 58 89 77 68 87 29 71 49 50 46 53 56 53 41 53 52 20
00 28 17 33 81 42 24 33 55 75 42 70 73 65 16 96 47 17 42 69
52 29 68 59 32 69 40 30 89 12 11 07 18 53 27 13 46 54 85 40

64 43 09 80 68 29 86 65 60 27 87 70 77 45 31 69 12 31 21 79
80 68 13 48 80 84 25 33 70 89 76 61 03 41 57 89 87 07 56 12
28 72 57 80 54 05 80 92 82 65 25 01 74 58 89 39 25 05 57 66
33 48 49 96 00 17 88 90 63 67 02 64 71 12 21 02 29 86 88 54
04 41 27 70 10 49 13 76 99 38 64 14 90 60 69 75 10 97 16 60

21 31 95 96 89 48 65 14 12 02 94 50 35 64 58 43 92 07 74 08
52 08 13 32 36 45 39 54 82 26 46 60 04 19 34 61 36 12 46 15
90 57 88 69 61 05 22 76 90 79 01 74 22 08 26 13 95 13 75 53
76 50 49 80 25 61 81 96 19 92 33 14 60 41 27 06 05 98 51 49
06 84 76 10 54 41 54 56 15 96 49 19 65 51 93 32 54 54 95 67

47 92 60 37 45 39 67 64 70 05 06 54 84 10 88 68 33 60 77 81
71 87 94 13 64 75 18 17 76 80 95 10 33 33 35 31 30 47 53 74
38 30 36 79 74 83 61 91 56 22 83 73 15 54 63 39 50 33 88 83
09 80 50 48 23 26 05 85 68 97 06 78 00 17 76 05 95 31 03 37
82 52 08 00 33 76 29 14 18 59 98 12 89 34 50 70 13 07 60 38

14 18 02 28 72 80 85 72 09 59 05 26 05 26 90 65 47 12 85 65
62 60 63 74 20 31 60 66 90 87 09 41 59 73 60 00 21 96 38 40
15 02 56 81 29 34 90 99 07 57 80 24 92 41 88 41 01 88 05 62
23 32 03 76 20 25 96 68 01 99 79 82 58 06 89 54 74 06 01 39
96 66 81 45 01 09 18 35 41 97 70 37 94 95 48 64 01 75 04 39

12 41 98 35 82 38 49 91 71 57 83 06 55 84 38 04 70 18 75 19
70 78 63 95 94 82 54 88 47 69 63 32 79 75 3l 56 38 92 54 43
30 43 70 43 70 32 73 47 49 64 23 54 59 17 80 48 61 66 45 66
36 58 96 32 60 46 60 87 52 75 53 13 39 19 41 52 24 14 88 93
17 35 36 91 90 59 48 78 99 31 64 40 84 05 79 00 53 03 64 02

73 30 27 77 44 50 07 79 27 66 42 39 97 64 84 36 18 13 59 61
92 15 47 21 82 54 76 05 54 10 40 93 71 96 66 52 83 98 17 85
05 02 28 36 50 64 47 21 36 25 80 01 43 41 36 58 97 15 29 95
5l 22 04 71 06 37 31 45 69 62 30 84 20 28 14 41 70 05 56 88
23 28 85 05 96 40 37 56 52 60 65 75 21 47 84 15 99 92 02 41
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A.2 Tables of Statistical Functions

Table B Standardized normal distribution

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.0 5000 5040 5080 5120 5160 5199 5239 5279 5319 5359
0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
0.2 5793 5832 5871 5910 5948 5987 6026 6064 6103 6141
0.3 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517
0.4 6554 6591 6628 6664 6700 6736 6772 6808 6844 6879
0.5 6915 6950 6985 7019 7054 7088 7123 7157 7190 7224
0.6 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
0.7 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
0.8 7881 7910 7939 7967 7995 8023 8051 8078 8106 8133
0.9 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389
1.0 8413 8438 8461 8485 8508 8531 8554 8577 8599 8621

1.1 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830
1.2 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015
1.3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177
1.4 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319
1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545
1.7 9554 9564 9573 9582 9591 9599 9608 9616 9616 9633
1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
2.0 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817

2.1 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857
2.2 9861 9864 9868 9871 9875 9878 9881 9884 9887 9890
2.3 9893 9896 9898 9901 9904 9906 9909 9911 9913 9916
2.4 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936
2.5 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
2.6 9953 9955 9956 9957 9959 9960 9961 9962 9963 9964
2.7 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
2.8 9974 9975 9976 9977 9977 9978 9979 9979 9980 9981
2.9 9981 9982 9982 9983 9984 9984 9985 9985 9986 9986
3.0 9987 9987 9987 9988 9988 9989 9989 9989 9990 9990

3.1 9990 9991 9991 9991 9992 9992 9992 9992 9993 9993
3.2 9993 9993 9994 9994 9994 9994 9994 9995 3995 9995
3.3 9995 9995 9995 9996 9996 9996 9996 9996 9996 9997
3.4 9997 9997 9997 9997 9997 9997 9997 9997 9997 9998
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Table C Student’s t-distribution

f a/2

0.1 0.05 0.025 0.01 0.005

1 3.08 6.31 12.70 31.80 63.70
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60

5 1.48 2.01 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.42 1.89 2.36 3.00 3.50
8 l,40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.8l 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
I2 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.34 1.76 2.14 2.62 2.98

15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86

20 1.32 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80

25 1.32 1.7l 2.06 2.48 2.79
26 1.32 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76

30 1.31 1.70 2.04 2.46 2.75
40 1.30 1.68 2.02 2.42 2.70
60 1.30 1.67 2.00 2.39 2.66
120 1.29 1.66 1.98 2.36 2.62
¥ 1.28 1.64 1.96 2.33 2.58

592



A.2 Tables of Statistical Functions

Table D Chi-square distribution

f

P

f0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.005 0.001

1 – – – – 0.016 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88 10.8 1
2 0.010 0.020 0.051 0.103 0.211 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.6 13.8 2
3 0.072 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8 16.3 3
4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9 18.5 4

5 0.412 0.554 0.831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7 20.5 5
6 0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5 22.5 6
7 0.989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3 24.3 7
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0 26.1 8
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6 27.9 9

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2 29.6 10
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8 31.3 11
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3 32.9 12
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 34.5 13
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3 36.1 14

15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8 37.7 15
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3 39.3 16
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7 40.8 17
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2 42.3 18
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6 43.8 19
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0 45.3 20
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4 46.8 21
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8 48.3 22
23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2 49.7 23
24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6 51.2 24

25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9 52.6 25
26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3 54.1 26
27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6 55.5 27
28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0 56.9 28
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3 58.3 29

30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7 59.7 30
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Table J Laplace function

z U0(z)

0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.0026 0.0064 0.0103 0.0141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.1019 0.1054 0.1088 0.1123 0.1157 0.1190 0.1224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2703 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.2023 0.2051 0.2078 0.2106 0.2133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3437 0.3461 0.3485 0.3508 0.3583 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.3015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4322 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4853 0.4857
2.2 0.4860 0.4864 0.4867 0.4871 0.4874 0.4877 0.4880 0.4883 0.4886 0.4889

0.4966 0.4474 0.4906 0.4263 0.4545 0.4755 0.4894 0.4962 0.4962 0.4893
2.3 0.4892 0.4895 0.4898 0.4900 0.4903 0.4906 0.4908 0.4911 0.4913 0.4915

0.4759 0.4559 0.4296 0.4969 0.4581 0.4123 0.4625 0.4060 0.4437 0.4758
2.4 0.4918 0.4920 0.4922 0.4924 0.4926 0.4928 0.4930 0.4932 0.4934 0.4936
2.5 0.4025 0.4237 0.4397 0.4506 0.4564 0.4572 0.4531 0.4493 0.4309 0.4128

0.4937 0.4939 0.4941 0.4942 0.4944 0.4946 0.4946 0.4949 0.4950 0.4952
0.4903 0.4634 0.4323 0.4969 0.4574 0.4139 0.4664 0.4151 0.4600 0.4012
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Table J (continued)

z U0(z)

0 1 2 3 4 5 6 7 8 9

2.6 0.4953 0.4954 0.4956 0.4957 0.4958 0.4959 0.4960 0.4962 0.4963 0.4964
0.4388 0.4729 0.4035 0.4308 0.4547 0.4754 0.4930 0.4074 0.4189 0.4274

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4971 0.4972 0.4973
0.4330 0.4358 0.4359 0.4333 0.4280 0.4202 0.4099 0.4972 0.4821 0.4646

2.8 0.4974 0.4975 0.4975 0.4976 0.4977 0.4978 0.4978 0.4980 0.4980 0.4980
0.4449 0.4229 0.4988 0.4726 0.4443 0.4140 0.4818 0.4476 0.4116 0.4738

2.9 0.4981 0.4981 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986
0.4342 0.4929 0.4498 0.4052 0.4689 0.4111 0.4618 0.4110 0.4588 0.4051

3.0 0.4986 0.4986 0.4987 0.4987 0.4988 0.4988 0.4988 0.4989 0.4989 0.4989
0.4501 0.4938 0.4361 0.4772 0.4171 0.4558 0.4933 0.4297 0.4650 0.4992

3.1 0.4990 0.4990 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992
0.4324 0.4646 0.4957 0.4260 0.4553 0.4831 0.4112 0.4378 0.4636 0.4886

3.2 0.4993 0.4993 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4994
0.4129 0.4363 0.4590 0.4810 0.4024 0.4230 0.4429 0.4623 0.4810 0.4991

3.3 0.4995 0.4995 0.4995 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996
0.4166 0.4335 0.4499 0.4658 0.4811 0.4959 0.4103 0.4242 0.4376 0.4505

3.4 0.4996 0.4996 0.4996 0.4996 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997
0.4631 0.4752 0.4689 0.4982 0.4091 0.4197 0.4299 0.4398 0.4493 0.4585

3.5 0.4997 0.4997 0.4997 0.4997 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
0.4674 0.4759 0.4842 0.4922 0.4999 0.4074 0.4146 0.4215 0.4282 0.4347

3.6 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
0.4409 0.4469 0.4527 0.4583 0.4637 0.4689 0.4739 0.4787 0.4834 0.4879

3.7 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4922 0.4964 0.4004 0.4043 0.4080 0.4116 0.4150 0.4184 0.4216 0.4247

3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4274 0.4305 0.4333 0.4359 0.4385 0.4409 0.4433 0.4456 0.4478 0.4499

3.9 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4519 0.4539 0.4557 0.4575 0.4593 0.4609 0.4625 0.4641 0.4655 0.4670

4.0 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4683 0.4696 0.4709 0.4721 0.4733 0.4744 0.4755 0.4765 0.4775 0.4784

4.1 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4793 0.4802 0.4811 0.4819 0.4826 0.4834 0.4841 0.4848 0.4854 0.4861

4.2 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4867 0.4872 0.4878 0.4883 0.4888 0.4893 0.4898 0.4902 0.4907 0.4911

4.3 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4915 0.4918 0.4922 0.4925 0.4929 0.4932 0.4935 0.4938 0.4941 0.4943

4.4 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4946 0.4948 0.4951 0.4953 0.4955 0.4957 0.4959 0.4961 0.4963 0.4964

4.5 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
0.4966 0.4968 0.4969 0.4971 0.4972 0.4973 0.4974 0.4976 0.4977 0.4978

5.0 0.4999
0.4997
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a
abstract trials 388
adequate 265
adequate linear model 314
adequate, model lackof fit 265
adequate second-order model 366
aliased/confounded effect 273
analysis of variance (ANOVA)

one-way analysis of variance 63
three-way analysis of variance 64
two-way analysis of variance 63

approximation 266
arithmetic average 4
arithmetic matrix 275
auxiliary tables with several inputs 205
axial points 323

b
balanced incomplete random blocks 234
Barttlet’s test for equality of variances 111
basic experiment 262, 265
basic level 185
bell-shaped 17
Bernoulli distribution 10
bias 32
biased variance 11
binomial distribution 11
Bk-designs 363
black-box model 167

c
calculated value 110
canonical analysis of the response surface

438
categorical/qualitative factor 189
center points 323
central composite orthogonal design 350
central composite rotatable design 325
central design 324

central limit theorem 34
chi-square distribution 52
classical design of experiments-one factor at a

time 162
Cochran’s test for equality of variances 113
coded factor 268
coefficient of determination 147
coefficient of variation 6
combined model 546
compactness 162
completely randomized block design 227
composite design 323
concordance coefficient 197
concordant domain of factor 262
conditional sum of squares 372
confidence coefficient 34
confidence intervals 31
confidence limits 34
confounded effect 273
consistency 31
constant method 236
continuous 171
continuous distributions 7
continuous D-optimality design 363
contour diagram 263
contour graph 170
contrast 80
controlcharts, upper and lower control

limits 42
controllable 168
control points 490
core 323
core points 323
correlation analysis 146
crossed-design 542

d
D- and G-optimality 520
data transformation 113
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defining contrast 272
defining research problem 166
degrees of freedom 39
dependent variable (response) 120
design of experiments (DOE) 157
design matrix 268, 275
design point 82
design point of experiment-trial 185
design saturation 272
desirability function 176
determination of experimental error

design points-trials 367
experiment error (reproducibility

variance) 367
measurement error (determination error)

367
replicated measurements

(determinations) 367
replicated trials 367
trial error-variance of replicated trials 367

direct methods 234
discrete 171
discrete distributions 7
disturbance variables 168
domain of extreme experiment 190
domain of factors 190, 262
domain of response 171
D-optimal designs 520
D-optimality designs 363
Draper-Lawrence design 528

e
effect is statistically significant 110
efficiency 32
estimation theory 30
expected value

sum of squares of the values 9
weighted average 9

experimental center 168
experimental domain 186
experimental variance-reproducibility

variance 370
experiment error 195
exponential function 121
extrapolation 265
extreme problems 169, 385
extreme vertices designs 506
extreme vertices screening designs 473

f
factor effects 169
factorial experiments with mixture 539
factor interval of variation 185

factor levels 168
factors 185
factor space 262
factor variation level 185
F-distribution 54
fictional factor 269
fractional factorial experiment 205, 267
fractional replica 268
full factorial experiment 205, 267

g
general response 173
generating ratio 172
Gibbs’s triangle 481
gradient optimization methods 386
graeco-latin square 247

h
Harington’s overall desirability function 176
Hartley’s designs 365
Hartley’s second-order designs 363
hexagonal 431
histogram 115
hypergeometrical 13
hypergeometric distribution 13

i
inadequate linear model 318
inadequate second-order model 366
incomplete random blockdesign 234
independent variables (factors) 120
interaction 82
interaction effects 271
interpolation 265
interpolation model 320
irregular replicas 268
irregular simplex 507

k
Kenworthy designs 539
Kono’s designs 363

l
lack of fit 132, 267
lack of fit of regression models, lack of fit

variance 377
reproducibility variance 377

latin squares 238
a-level of significance 23
levels 185
limited 171
linear regression 121
lower levels 189
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m
main effects 271
mathematical model 1, 262, 265

deterministic 1, 2
random 1, 2
stochastic 1, 2

McLean and Anderson’s design 512
mean average 4
mean deviation 5
mean error 372
measurement confidence 192
measurement error 191, 195
measures of variability 5
median array 4
method of least squares 123
method of random balance 203
method of steepest ascentis

efficient 396
inefficient 396

mixture design 465
mixture design x process factor design 542
mode, most probable value 4
model interpretation 311
multiple regression 136

n
nongradient methods of optimization 414
nonlinear regression 144
nonsymmetrical SSRD 435
normal distributions

bell-shaped distribution 16
Gauss’ distribution 16

normal equations 140
normality of data distribution 115
norming 308
null/centerpoints 323
null point 168, 268

o
one-sided sequential testing 47
one-sided test 27
operational matrix 275
optimality 161
optimality design 307
optimization 385
optimization with multiple responses 170
orthogonal 307
orthogonal design 349
orthogonality 308
orthogonal second-order design

(Box-Benken design) 349
outliers 118
overall desirability 181

p
partial desirability 176
partial responses 173
pentagonal 431
Pirson’s criterion 116
Plackett-Burman designs 225
polynomial coefficients 169
polynomial function 121
polynomial models 169
polynomial regression 140
pooled sample variance 40
pooled variance estimates 66
population 3
power of a test 24
power of solving a replica 272
predicted-calculated response value 169
preliminary examination of subject of

research 166
preliminary ranking of the factors 196
probability density function 14
probability model

Bernoulli distribution 8
single events 8

pseudocomponents 507
psychological experiment 196
pure random balance 204

q
qualitative factor 189
quantitative 171

r
random 191
randomization 161
random numbers 7
random variable

continuous 8
discrete random variable 8

random variations 110
range 5
rank curve 197
ranking 171
ranking of the qualitative responses 183
real factor values 268
reduced combined model 546
regression analysis 120, 160
regression coefficients 121, 169
regular replicas 268
regular simplex 415
reproducibility variance 91
research objective 166
response function 169, 262
responses 167, 170
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response surface 169, 262
robust 191
rotatability 308
rotatable 307
rotatable design 323
Rozebum’s triangle 481

s
samples

random sample 3
statistic sample 3

scatter diagram 147, 204
Scheffe simplex lattice design 484
second-order rotatable design

Box-Wilson Design 323
sequential tests 46
simple general response 173
simplex centroid design 502
simplex-centroid-full factorial design 550
simplex-centroid X three process factor full

factorial design 550
simplex circling 420
simplex figure 415
simplex lattice design 481
simplex lattice screening designs 469
simplex-self-directing method 415
simplex sum rotatable design 431
simplex swaying 420
singularity 171
standard deviation 6
standard error 192
standard normal distribution,

standardized variable 18
starlike/axial/star 323
statistic 4
statistical analysis 367
statistical design of experiments 163
statistical estimation, intervalestimate 30

point estimate 30
statistical hypotheses,

alternative hypothesis 23
primary or null hypothesis 23

type I error 23
type II error 23

statistical inference, hypothesis testing 22
statistical estimation 22

statistically effective 171
statistically significant 110
statistical methods, descriptive statistics 3

inferential statistics 3
steepest ascent (Box-Wilson’s method) 388
subject of research with several responses

172
successiveness 161
symmetry 308
systematic 191
systematic variations 110

t
tabular value 110
test statistic 24
trial error 195
two-sided sequential testing 49
two-sided test 28

u
unbalanced incomplete random blocks 234
unbiased estimate of the population variance

11
uncontrollable 168
uniform distribution 14
universality 171
unlimited 171
unsaturated design 320
upper levels 189

v
variance 5
variance of group means 67

y
Yates method 276
youdens squares 252
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