
An adaptive representation of spectral data for

reflectance computations

Gilles Rougeron and Bernard Péroche
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Abstract

This paper deals with the representation of spectral data so as to control
the colorimetric error committed during rendering computations. These data
are projected on a set of hierarchical basis functions called scaling functions
leading to a representation by means of binary trees. An adaptive algorithm
is proposed in which refinement and merge steps managed by an estimation of
the error made in the XY Z color space allows to control the representation of
spectra
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1 Introduction

The main aim of realistic image synthesis is to capture the visual appearance of
modeled scenes. To reach such a goal, physically-based rendering methods are
used which make possible to simulate the propagation of light energy in scenes.
These methods must account for the full spectral character of the lights and
surfaces within a scene. But in computer graphics, image generation uses the
RGB colorimetric system for output for some display device such as a CRT
monitor.

Thus the problem we are faced with is the following: At the time of a spectral
rendering computation, how do we obtain RGB values at a lower cost, in such a
way that psycho-visual errors committed during calculations are controlled? The
purpose of our algorithm is to keep the error under some threshold, and to avoid
as far as possible unnecessary computations. In fact, we shall solve this problem
for XY Z tristimulus values because the XY Z color space is standardized and
independent of any display device, and because XY Z tristimulus values can
easily be related to RGB values.

Our research is made in the framework of a ray tracing environment [?]. A
spectral ray tracer was developed in our laboratory [?], the visible wavelength
domain being evenly sampled every 10 nm. This gives a very expensive rendering
process and one of our goals is to achieve an adaptive sampling allowing to deal
with less samples than in the previous work.



Our work will be limited to reflections, but transmissions could be handled
in a similar way. Formally, if S(λ) is the spectral power distribution of a light
source, the spectrum reflected from a material with reflectance R(λ) under nor-
mal incidence is Sr(λ) = S(λ)R(λ). As reflectance values range between 0 and
1, a reflection corresponds to a filtering operation.

The sensation of the color perceived by the eye is modeled by tristimulus
values found by evaluating the following definite integrals:

A = K

∫ λsup

λinf

Sr(λ)ā(λ) dλ withA ∈ {X,Y, Z} anda ∈ {x, y, z} (1)

where K is a normalization coefficient, λinf and λsup are the bounds of the visible
wavelength domain and x̄(λ), ȳ(λ) and z̄(λ) are the color matching functions of
the XY Z colorimetric system defined by the “Commission Internationale de
l’Eclairage” in 1931 [?].

In this paper, we shall use only one light source which will be assigned the
value 1. Thus, XY Z tristimulus values are given by formula (1) with:

K =
1

∫ λsup

λinf
S(λ)ȳ(λ) dλ

The remainder of this paper is organized as follows. Section 2 presents known
solutions dealing with full spectral information. Our method is introduced in sec-
tion 3, some tests about this method are discussed in section 4 and a conclusion
and some further developments are given in section 5.

2 Known solutions

Several techniques have been proposed that use spectral power distributions.
They can be divided into two classes: Sampling methods and methods using a
projection on a set of basis functions.

2.1 Sampling methods

2.1.1 Direct method (weighted ordinate). This method, the most common
one, samples the visible spectrum every one, five or ten nanometers, and then
uses a Riemann type integration. For our implementation, spectra on interval
[λinf , λsup] = [380nm, 700nm] were sampled every 5 nm, which gives 64 sample
points. In the case of a spectrum with emission peaks (such as a fluorescent
light), the power of each peak is spread on the 5 nm widthband which surrounds
it.

Therefore the formulas used are:

A = K

i=64
∑

i=1

Sr(λi)ā(λi) withA ∈ {X,Y, Z} and a ∈ {x, y, z}

.
This method gives good results but is very time and memory consuming.

In the sequel, we shall consider this type of method as supplying the reference
tristimulus values for our tests.



2.1.2 Gaussian quadrature method. The mathematical principle of the
method is as follows: Let f be a function defined on interval [a,b] and w a

weighting function positive on [a,b]. Then:
∫ b

a
f(x)w(x) dx ≈

∑n

i=0 Hif(xi). For
a definition of values Hi and xi, 1 ≤ i ≤ n, the reader may refer to [?] or [?].

In relation to our problem, this mathematical method has been used in the
XY Z color space [?] or in the AC1C2 color space [?].

2.1.3 Segmentation of the visible wavelength domain. The main objec-
tive of this method [?] is to take all the types of spectra into account, whether
they are continuous or not. Similarly to the Gaussian quadrature, this method
may be used in the XY Z space or in the AC1C2 one.

In this method, the visible field of each light source in the scene is partitioned
into a set of intervals by extracting first the non-zero portions of the spectrum
and by isolating peaks from the continuum through a gradient calculation.

2.2 Projection on a set of basis functions

2.2.1 Use of polynomial functions. Raso and Fournier [?] suggest to use
piecewise cubic polynomials to represent spectral power distributions. Inter-
reflection computations are thus reduced to polynomial multiplications. To avoid
obtaining very high degree for the final polynomial, the degree of the polynomi-
als is kept constant by using a degree reduction technique based on Chebyshev
polynomials. Finally color matching functions x̄(λ), ȳ(λ) and z̄(λ) are also rep-
resented by cubic piecewise polynomials to obtain XY Z tristimulus values.

2.2.2 Functions obtained by a characteristic vector analysis. The main
advantage of the method presented in [?] is to take the scene to be rendered into
account, which should allow to adapt correctly to the future data to be treated.

The principle on which the method works is the following: From a family of
spectral power distributions known to be representative of the scene, a charac-
teristic vector analysis is performed providing m vectors Ei(λ). These vectors
Ei(λ) are the eigenvectors associated to the m greatest eigenvalues of the co-
variance matrix for the inital vectors. The choice of a representative family may
be solved in the following way: If the scene is made up of a light source S and n
materials with reflectance R1,. . . , Rn, then spectra S, SRi, 1 ≤ i ≤ n, SRiRj ,
1 ≤ i, j ≤ n,. . . may be taken into account.

After this pre-processing step, each spectral power distribution is represented
by its m coordinates in the basis: (E1(λ),. . . ,Em(λ)), and reflectance R(λ) takes
the form of an m×m matrix (Rij), with:

Rij =

∫ λsup

λinf

R(λ)Ei(λ)Ej (λ) dλ

Finally, for the integration step, a three lines and m columns matrix T has

to be precomputed, with: T (k, i) =
∫ λsup

λinf
Ei(λ)āk(λ) dλ, with ā1 = x̄, ā2 = ȳ

and ā3 = z̄ and hence this method is entirely linear.



3 The adaptive solution

All the methods described in the previous section are efficient from a global
time-saving point of view. But none of them ensures to give a permissible level
of accuracy in every case. For example, we cannot answer the following question:
How many sample points or basis functions are required to always obtain non
perceptible errors?

We now suggest an adaptive algorithm for full spectral rendering. Currently,
the error is computed in the XY Z color space, even if this space is known
not to be uniform. The user first specifies an error interval [εmin, εmax]. A pre-
processing step allows to create a data base where the light source spectrum,
the reflectances of materials and the color matching functions are represented by
binary trees. Then, during the processing step, the error produced is controlled:
If the error is outside the given error interval, the representation of the spectral
information is modified to better fit the user specifications. Finally, when the
XY Z tristimulus values are required, they may be computed very quickly and
without inaccuracy errors.

Let us specify the framework in which this algorithm is presented. It is mainly
devoted to reflectance computations. Hence, the integration step is shortly tack-
led since it only appears as a consequence of previous computations. This study
will be restricted to the case of a scene with only one type of light source. Finally,
the problem of gathering the spectral information for each pixel of the image
will not be discussed in this paper.

Actually, this method will take its whole significance when it is integrated
in a progressive rendering algorithm such as a progressive ray tracer [?] or a
hierarchical radiosity [?].

3.1 Pre-processing step

In order to obtain a progressive running of the algorithm, we suggest to project
the spectral information on a set of basis functions, the main property of which
being to allow a refinement of the representation as soon as an increasing number
of terms is taken into account.

3.1.1 Choice of the set of basis functions. The spectral power distribution
of light sources and reflectance surfaces are known every 5 nm, so these functions
are piecewise constant. We chose to use scaling functions φj

i which are usually

associated to adaptive Haar wavelets ψj
i . These scaling functions are defined by:

φj
i (x) = 1 ∀x ∈ [λinf + i

λsup−λinf

2j , λinf +(i+1)
λsup−λinf

2j ], φj
i (x) = 0 on the rest

of interval [λinf , λsup].
Actually, any linear combination of scaling functions such that:

– the bounds of the visible wavelength domain are reached;

– no two functions overlap;

– to every φj
i is associated a coefficient f j

avi which represents the average value

of f on the interval inside which φj
i is non null ;



Fig. 1. Scaling functions

may be regarded as an approximation of function f defined on [λinf , λsup].
Let us notice that this set of functions is stable under multiplication, which

will be very significant for the computation of a spectrum-reflectance product.
For every couple (f, g) of functions and for every triple (i, j, k) of indices:

(f j
aviφ

j
i )(g

j
aviφ

j
i ) = (f j

avig
j
avi)φ

j
i and (f j

aviφ
j
i )(g

j
avkφ

j
k) = 0 if i 6= k.

3.1.2 Creation of the data base. Let us notice that, in this paragraph,
function f may refer either to the light source spectrum or to any reflectance
function.

In this stage, we compute for 0 ≤ j ≤ 6 and 0 ≤ i ≤ 2j − 1 average value
f

av[λj

i
,λ

j

i+1
] on interval [λj

i , λ
j
i+1] ( where λj

i = λinf +i
λsup−λinf

2j ) which minimizes
∑

ā=x̄,ȳ,z̄(ε
j
fāi)

2, where

εjfāi = K

∫ λ
j

i+1

λ
j

i

(f(λ) − f
av[λj

i
,λ

j

i+1
])ā(λ) dλ (2)

If we denote f j
avi = f

av[λj

i
,λ

j

i+1
], average value f j

avi is given by formula:

f j
avi =

∑

ā=x̄,ȳ,z̄(
∫ λ

j

i+1

λ
j

i

ā(λ) dλ
∫ λ

j

i+1

λ
j

i

f(λ)ā(λ) dλ)

∑

ā=x̄,ȳ,z̄(
∫ λ

j

i+1

λ
j

i

ā(λ) dλ)2
(3)

Of course, for j = 6 and 0 ≤ i ≤ 63, we find exact values of piecewise constant
functions S and R.

At the end of this stage, the light source spectrum and the reflectances of
materials are represented by binary trees, the nodes of which store four fields:



– the average value f j
avi of the function on interval [λj

i , λ
j
i+1];

– the three errors εfx̄, εfȳ and εfz̄ associated to this average value.

We also compute binary trees for the color matching functions x̄, ȳ and z̄.
For each node, we must compute the following definite integrals:

āj
avi = K

∫ λ
j

i+1

λ
j

i

ā(λ) dλ

These binary trees will be used for the integration stage.

3.1.3 Representation of the light source spectrum. The purpose of this
step is to obtain for the light source spectrum a representation as simple as
possible, such that the error related to the reference tristimulus is less than εmax

in the XY Z color space. To do this, we carry out a traversal of the binary tree
associated to the light source spectrum.

For the root of the tree, the error in the XY Z color space between the full
spectrum and its representation by a single average value S0

av0 on the visible

domain is: εt =
√

(ε0Sx̄0)
2 + (ε0Sȳ0)

2 + (ε0Sz̄0)
2.

Remark : Actually, square roots are not used in our current implementation.
If εt is greater than εmax, this representation is not accurate enough. We must

move one level down in the tree. The light source spectrum is thus approximated
by two average values: S1

av0 on interval [λinf , (λinf +λsup)/2[ and S1
av1 on interval

[(λinf + λsup)/2, λsup]. The new error made is:

εt =
√

(ε1Sx̄0 + ε1Sx̄1)
2 + (ε1Sȳ0 + ε1Sȳ1)

2 + (ε1Sz̄0 + ε1Sz̄1)
2.

If εt is again greater than εmax, the representation of the spectrum must be
refined. But this time, we look for the half-interval for which the error made

is the greater, that is the half-interval for which
√

(εjSx̄i)
2 + (εjSȳi)

2 + (εjSz̄i)
2 is

maximal. Let us suppose we have found the first half-interval. The light source
spectrum is then approximated by S2

av0 and S2
av1 on the first two intervals with

length a quarter of the visible domain, and by S1
av1 on the rest. The new value

of the error is:
εt =

√

(ε2Sx̄0 + ε2Sx̄1 + ε1Sx̄1)
2 + (ε2Sȳ0 + ε2Sȳ1 + ε1Sȳ1)

2 + (ε2Sz̄0 + ε2Sz̄1 + ε1Sz̄1)
2.

This process is repeated until the error becomes less than εmax. At the end
of this stage, the visible domain is cut in a series of intervals.

3.2 Computation of a spectrum-reflectance product

We now manage the interaction of light with surface materials. Let us consider an
incident spectrum, called Sr, which is not necessarily the light source spectrum.
It is defined as a series of intervals partitioning the visible wavelength domain.
An average value Sj

ravi and three errors εjSrx̄i, ε
j
Srȳi and εjSr z̄i are associated with

each interval.



Now, let us call R the reflectance of a given material and let us consider
the same partition for R than that for the incident spectrum. By looking at the
binary tree associated to R, we can find corresponding values Rj

avi and errors

εjRx̄i, ε
j
Rȳi and εjRz̄i.

For each interval of the current partition, the value of the reflected spectrum
SrR is (SrR)j

avi = Sj
ravi ∗R

j
avi.

We now have to estimate the new errors. By definition:

εj(SrR)āi
= K

∫ λ
j

i+1

λ
j

i

(Sr(λ)R(λ) − Sj
raviR

j
avi)ā(λ) dλ

but

εj(SrR)āi
= K

∫ λ
j

i+1

λ
j

i

(Sr(λ)R(λ) − Sj
raviR(λ) + Sj

raviR(λ) − Sj
raviR

j
avi)ā(λ) dλ

= K

∫ λ
j

i+1

λ
j

i

(Sr(λ) − Sj
ravi)R(λ)ā(λ) dλ +K

∫ λ
j

i+1

λ
j

i

Sj
ravi(R(λ) −Rj

avi)ā(λ) dλ

= Rj
aviK

∫ λ
j

i+1

λ
j

i

(Sr(λ) − Sj
ravi)ā(λ) dλ + Sj

raviK

∫ λ
j

i+1

λ
j

i

(R(λ) −Rj
avi)ā(λ) dλ

+K

∫ λ
j

i+1

λ
j

i

(Sr(λ) − Sj
ravi)(R(λ) −Rj

avi)ā(λ) dλ

If we assume residual termK
∫ λ

j

i+1

λ
j

i

(Sr(λ)−S
j
ravi)(R(λ)−Rj

avi)ā(λ) dλ negligible,

then εj(SrR)āi
≈ Rj

aviε
j
Srāi + Sj

raviε
j
Rāi.

As a result of the assumption made, we only obtain an estimation of the
error. We shall see later, in section (4), if this estimation is enough accurate to
take the right decision for the treatment of the data.

After the computation of this spectrum-reflectance product, we must esti-
mate the total error made for spectrum SrR, in relation to the reference calcu-
lation. We have :

εt =

√

(
∑

intervals

εjSrRx̄i)
2 + (

∑

intervals

εjSrRȳi)
2 + (

∑

intervals

εjSrRz̄i)
2

Three cases may occur:

– εt belongs to interval [εmin, εmax]. The representation of the reflected spec-
trum is satisfactory. We may either carry out a new spectrum-reflectance
product, or a transformation to XY Z tristimulus values by integration;

– εt > εmax. We must refine the representation of the spectrum. For that, we

must detect the interval for which
√

(εjSrx̄i)
2 + (εjSrȳi)

2 + (εjSr z̄i)
2 is maximal.

We must find the list of successive reflections leading to the current result.
Then, in the binary tree of the light source spectrum and in the binary trees
linked to the reflectances appearing in the list, we must consider the two



children of nodej
i corresponding to the designated interval. For these two

sub-intervals, we must perform spectrum-reflectance products as described
above. We thus obtain two new average values, and two error triples εSrx̄,
εSrȳ and εSr z̄ associated with these approximations. After this refinement
test, the total error is estimated in order to determine in which case we are;

– εt < εmin. The representation of the spectrum is too sharp for our needs.
The idea is to avoid unnecessary rendering calculations in relation to psycho-
visual appraisement of the result. We are going to merge two intervals in
only one. In the current list of intervals [λj

i , λ
j
i+1], let us look for those

having the most important depth (j maximum). As a result of our algo-
rithm, these intervals always go in pairs. We choose the pair such that
(SrR

jmax

avi − SrR
jmax

avi+1) is minimum. Let us call imin the coordinate i of the
first interval. We replace this pair of intervals by a new interval, the co-
ordinates of which are inew = imin/2 and jnew = jmax − 1 and we take:

SrR
jnew

avinew
=

SrR
jmax
avimin

+SrR
jmax
avimin+1

2 . Finally, the new errors associated with
each color matching function ā(λ) will be:

εjnew

SrRāinew
= εjmax

SrRāimin
+ εjmax

SrRāimin+1 +

(

∫ λ
jmax
imin+1

λ
jmax
imin

ā(λ) dλ)(SrR
jmax

avimin
− SrR

jnew

avinew
) +

(

∫ λ
jmax
imin+2

λ
jmax
imin+1

ā(λ) dλ)(SrR
jmax

avimin+1 − SrR
jnew

avinew
)

At the end of this merge step, the total error is re-estimated in order to
determine in which case we are.

3.3 Change to XY Z tristimulus values

At the end of the spectral rendering stage, a spectrum Sr(λ) computed at each
pixel appears in the form of a list of intervals. An average value Sj

ravi is linked to
each interval. The change to XY Z tristimulus values comes down to an integra-
tion of the spectrum weighted by the color matching functions. As the spectrum
is a piecewise constant function, this integration is easily performed by multi-
plying Sj

ravi by the value of the color matching function on the corresponding
interval, which has been computed during the pre-processing step.

The XY Z tristimulus values are thus obtained as: A =
∑

intervals S
j
raviā

j
avi

3.4 Outline of the algorithm

To sum up, the adaptive representation algorithm of spectral data may be writ-
ten as follows:
/* We suppose the data base built as binary trees related to the light source spectrum,

the reflectances and the color matching functions */



Initialization (Spectrum Binary Tree, S);

/* S is a list of intervals containing the following information: Sav, εx, εy, εz */

Create Empty (List of Successive Reflection);

/* This list is needed for Refinement computation */

Sr = S;

While ( radiance < threshold)

/* this test could be replaced by a psycho-visual test focused on luminous radiance */

{

Spectrum Reflectance Product (Sr, Reflectance Binary Tree,SrR);

Add(Reflectance Binary Tree, List of Successive Reflection);

Computation Total Error (SrR,εt);

While ((εt > εmax) or (εt < εmin))

{

If (εt > εmax) Then Refinement (SrR,List of Successive Reflection);

Else Merge (SrR);

Updating Total Error (SrR,εt);

}

Sr = SrR;

}

Computation XY Z Coordinates (Sr,XY Z Color);

4 Tests

4.1 Test procedure

For our tests, we used three types of light sources: CIE Standard Illuminants
C and D 6500 with continuous spectra, and CIE representative fluorescent illu-
minant F2 with four emission lines (405 nm, 435 nm, 545 nm and 580 nm)
([?]), twenty-four reflectances taken from the Macbeth Color Checker chart
([?]) and the CIE Luv color space to estimate the perceptibility of the errors
made. The tests were made on the light source spectra, primary reflections (SRi,
1 ≤ i ≤ 24), secondary reflections (SRiRj , 1 ≤ i, j ≤ 24) and tertiary reflections
(SRiRjRk, 1 ≤ i, j, k ≤ 24).

In each case, we computed the average number of required intervals and we
detailed the different operations used. We also counted the number of measure
errors, ie the number of cases where it was wrongly estimated that the error was
greater than εmax (this case may result from the approximation made for the
calculation of the error after a spectrum-reflectance product, see section 3.2).

All the results are contained in Table 1, with εmax = 2.10−3 and εmin =
5.10−4.



Source C D6500 F2
Refinement of S : Number of intervals 8 7 11
XY Z error 0.0014 0.0013 0.0015
Luv error 0.26 0.33 0.27
Primary reflections
Average number of intervals 8.42 7.83 10.17
Standard deviation of the number of intervals 1.63 1.79 1.91
Average Luv error 0.91 0.88 0.84
Maximum Luv error 2.34 1.69 1.87
Standard deviation of the Luv error 0.53 0.41 0.49
OPERATIONS
None 41.70 % 25.00 % 50.00 %
Refinement 45.80 % 58.33 % 12.50 %
Merge 12.50 % 16.67 % 37.50 %
Fluctuation 0.00 % 0.00 % 0.00 %
Measure error 29.17 % 29.17 % 41.67 %
Secondary reflections
Average number of intervals 7.15 6.91 7.33
Standard deviation of the number of intervals 2.03 2.00 2.66
Average Luv error 1.31 1.33 1.22
Maximum Luv error 5.95 6.62 6.27
Standard deviation of the Luv error 0.84 0.93 0.95
OPERATIONS
None 46.35 % 47.22 % 27.78 %
Refinement 4.51 % 9.72 % 0.87 %
Merge 46.70 % 39.76 % 67.71 %
Fluctuation 2.43 % 3.30 % 3.65 %
Measure errors 11.63 % 10.76 % 13.54 %
Tertiary reflections
Average number of intervals 5.25 5.16 4.96
Standard deviation of the number of intervals 1.94 1.88 1.99
Average Luv error 1.53 1.57 1.51
Maximum Luv error 8.07 8.12 10.79
Standard deviation of the Luv error 1.07 1.15 1.28
OPERATIONS
None 26.92 % 29.72 % 22.08 %
Refinement 0.52 % 1.08 % 0.05 %
Merge 68.81 % 65.14 % 73.21 %
Fluctuation 3.75 % 4.06 % 4.67 %
Measure error 6.27 % 6.00 % 7.21 %

Table 1

Remark: “None” means that εt was directly found inside the right interval.
“Fluctuation” shows a case where after εt > εmax, we obtain εt < εmin or
conversely.

4.2 Analysis of the results

The cases where no correction (merge or refinement) is needed are not the most
numerous. However, when the number of interreflections increases, the average
number of intervals decreases. In fact, more and more merges and less and less
refinements are made when the number of interreflections raises. This may be
explained by the fact that the initial light source spectrum is filtered at each



reflection, and therefore has a weaker average level of energy, and especially a
flattter and flatter profile.

It may also be seen that perceptual errors are increasing with the number
of reflections. To check that the error belongs to some interval [εmin, εmax] of
the XYZ color space is not sufficient. Let us notice that the bounds of the
interval taken for out tests were chosen empirically. They seemed to be a good
compromise to keep an average perceptual error in the Luv space around 1,
which is the threshold for non perceptible errors.

Measure errors are rather good. In spite of the simplifying assumption made,
the estimation mode used allows to take, in general, the right decision. Only few
fluctuations appear. This is ensured by a ratio between εmax and εmin around 4.
Finally, the average number of intervals used allows to make a change to XY Z
tristimulus values around 10 times faster.

To take this last remark into account, a final test was performed. Running
times for the reference computation and for the progressive algorithm were cal-
culated. The whole set of tertiary interreflections (13 824 cases) was computed
without taking fluctuations into account and changed to XY Z tristimulus val-
ues. The results are as follows:

Reference computation Adaptive computation
Pre-processing no yes: 30 ms
Spectrum-reflectance product 580 ms 590 ms
Change to XY Z coordinates 240 ms 30 ms
Total time 820 ms 620 ms

Table 2

5 Conclusion and further developments

We think the algorithm described in this paper is interesting in more than one
account. To try to control colorimetric errors during a rendering calculation
seems to be a research theme as important as those which consist in saving time
or improving the realism of the pictures.

However, our method must be improved. First, the controlled error is not of
a perceptual type. Secondly, we would like to be able to handle several types of
light sources in a given scene. Finally, we are trying to obtain an upper bound
for the residual term neglected during the computation of the error εj(SrR)āi

.It’s

a work in progress.
We are also currently including this algorithm in a spectral ray tracer. The

purpose of this integration is to use around 10 times less rays than with an even
sampling of the visible wavelength domain. This should allow to obtain a very
efficient spectral ray tracer.

References

[CMD76] C.S. Mc Camy, H. Marcus, and J.G. Davidson, A color rendition

chart, Journal of Applied Photographics Engineering 2 (1976), no. 3,
95–99.



[DMCP94] P. Deville, S. Merzouk, D. Cazier, and J.C. Paul, Spectral data mod-

eling for a lighting application, Eurographics 94 13 (1994), no. 3,
97–106.

[HSA91] P. Hanrahan, D. Salzman, and L. Aupperle, A rapid hierarchical ra-

diosity algorithm, Computer Graphics 25 (1991), no. 4, 197–206.

[Hun95] R.W.G. Hunt, Measuring colour, Ellis Horwood, 1995.
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