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The Born-Oppenheimer (BO) approximation (1, 2) leads
to the separation of the electronic motion from the motion of
the nuclear framework. The motion of the nuclear framework
can further be separated into rotational and vibrational mo-
tions. The basis of the separations is still in debate (3, 4), but
we shall not delve into this. The fact is that, in most cases, the
energy levels of molecules can be interpreted as rotational,
vibrational, or electronic in origin.

The BO approximation is already very well known and
widely used (5, 6) in the study of the properties of molecules
in the ground electronic state. Associated with the BO ap-
proximation is a plethora of terms and concepts—potential
energy surfaces, Herzberg-Teller (HT) coupling, BO coupling,
adiabatic approximation, nonadiabatic approximation,
Jahn-Teller effect, Renner-Teller effect, etc.—which can be
quite confusing, not to mention complicated. There is a need
to present a unified treatment on this subject. However, no
short article can do justice to the enormous literature that has
accumulated. Ballhausen and Hansen (7) have pointed out
some of the confusion in the BO approximation. This present
article will only touch briefly on one aspect of the BO ap-
proximation—the potential energy surfaces—and can be
viewed as complementary to ref. (7).

Recently, in electronic (8, 9), ordinary and resonance
Raman (9-15), and multiphoton spectroscopies (16) involving
the excited states of molecules, the BO approximation has
been used as a starting point to interpret the results. Such
processes involve not only the ground, but also the excited
electronic states. It is fair to say that a lot is known about the
ground electronic state already, and we are just beginning to
probe the richer excited electronic states. In the BO approx-
imation, a vibronic process consists of an initial instantaneous
Franck-Condon transition from an initial to a final electronic
state, followed by a relaxation of the nuclear framework on
the final potential energy surface. The theoretical descriptions
of these processes require, first, the nuclear coordinate de-
pendence in the electronic wavefunctions. This is necessary
in order to determine the nuclear coordinate dependence of
the electronic transition dipole moments. However, this
problem is commonly swept under the rug by assuming the
Condon approximation of constant transition dipole moment.
We shall not address this problem here. Secondly, there is a
need to know the form and orientation of the excited state
potential energy surface relative to the initial potential energy
surface. This provides information on how the nuclear
framework will relax when it is placed in the excited electronic
state. The potential energy surface is central to the study of
molecular dynamics—one of the most interesting areas of
molecular spectroscopy today. We shall focus on the potential
energy surfaces, and derive some simple results that have
important consequences.

We begin with a discussion of the Born-Oppenheimer ap-
proximation, and accompanying results. We then look at the
simplest case of isolated, nondegenerate electronic states, and
see how the potential energy surfaces are oriented relative to
each other. Finally, we discuss some implications of the results
for electronic and Raman spectroscopies.

Born-Oppenheimer Results

In the description of polyatomics, it is common to treat the
rotational motion separately, and consider the interaction of
the electronic and vibrational motions. To do this it is neces-
sary to introduce a set of axes, known as molecule fixed axes,
attached to the nuclear framework and rotating with it (17).
This set of axes has origin at the nuclear center of mass. It is
assumed that the positions of the N nuclei deviate only by
small amounts from some reference configuration. The mol-
ecule has a nuclear inertia tensor in the reference configura-
tion, and the molecule fixed axes are oriented along the
principal axes of the reference inertia tensor. This leads to a
total of six constraints on the nuclear motion—three condi-
tions corresponding to the absence of translations and three
more for the absence of rotations. This leaves 3N — 6 inde-
pendent generalized coordinates, which we denote collectively
by q, to describe the small nuclear vibrations. This is true for
a nonlinear molecule. For a linear molecule, there are only two
constraints for the absence of rotations, thus leaving 3N — 5
independent generalized coordinates for the vibrations.
Henceforth, to avoid repetition, we shall assume a nonlinear
molecule with 3N — 6 vibrational modes.

The moleculear vibronic Hamiltonian is given by,

H(r,q) = T(r) + Ulr,q) + T(q) (1)
where, in atomic units,
T(r)=— 2 Za_z (2)
2 Tor;2
and ’
13N—6 §
T(q) = —5 2 EE (3)

This consists of the electronic kinetic energy operator T(r);
the kinetic energy operator for the nuclear vibrations T(q);
and the total Coulomb potential energies U(r,q) of the elec-
trons with internal coordinates r and the nuclei with gener-
alized coordinates gq. In one view of the Born-Oppenheimer
approximation, it is assumed that the faster moving, light
electrons can adjust their motions instantaneously to the slow
movements of the heavy nuclei. This allows us to solve first
for the electronic motion using fixed nuclear coordinates. The
electronic states ¢, (r,q) are thus assumed to satisfy the
equation,

(T(r) + U(r,@))dm (r,a@) = Vi (@)m(r,q) (4)

for fixed nuclear configuration gq. The solution of eqn. (4) is
a formidable problem even for one nuclear configuration go,
much less for the whole continuous range of g. Suppose,
however, that it has been possible to solve eqn. (4) for one
reference configuration qo:

[T(r) + U(r,go)] 4% (r,a0) = Vi(go)dh(r,q0) (5)

The reference configuration gq is usually taken to be the
equilibrium nuclear configuration in the ground electronic
state. The complete set {¢% (r,q0)} of electronic wavefunctions
is commonly known as the crude Born-Oppenheimer (CBO)
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electronic basis set. This CBO basis set can be used to obtain
the solutions to eqn. (4) for nuclear coordinates g in the
neighborhood of gy, by the application of perturbation theory.
For small nuclear displacements about g, the Coulomb po-
tential energy U(r,q) can be expanded in a Taylor series,

AN-6 (AU
U(r,g) = U(r,qo) + Y (—] (ga — ga0)
a athz q0
13N-6f 92U
s o — Qao)gy — +... (6
2 ap (aQaaQb)qo(q qutligs— o) o

It is common (for analytical reasons) to retain only up to
quadratic terms in q, and discuss the final potential energy
surfaces for the nuclear motion in the harmonic approxima-
tion, because the wavefunctions and eigenenergies for the
multidimensional harmonic oscillator are well known. This
can sometimes lead to closed-form expressions, which eases
the computations. Without loss of generality, qq can be set
equal to zero, and the electronic states, for q in the neigh-
borhood of gy = 0, are approximately given by the solutions
to

[T(r) + U(r,q))é(r,q) = V(@)$(r,q) (7

where
. 3N-6(3U a2u )
U(r,q) = U(r,q¢) + — + - —_— (8)
(r,q) = U(r,q0) g aqa)oq“ s = (Bqa p (dadt
The electronic wavefunctions ¢(r,q) can be expanded in the
CBO basis set,

1 3N-8

bir,g) = il ¢ (@30(r) ©)

Substituting this into eqn. (7), left multiplying with ¢*(r) and
integrating over the electronic coordinates r, we obtain a set
of equations for the unknown coefficients c;(q). These can be
written compactly in matrix notation as,

interaction (18). It leads to nuclear coordinate g dependence
in the electronic wavefunctions. The nontrivial solution of eqn.
(10) is obtained by setting the secular determinant to zero.
The solutions are a set of electronic energies {V,,(q)} and a
corresponding complete set of electronic wavefunctions
{¢m(r,q@)}. Since we have included the Coulomb potential of
the nuclei in U(r,q), the electronic energies {V,,(q)} in this
case are the potential energy surfaces for the nuclear mo-
tion.

The complete set of electronic wavefunctions can be used
as a basis set to determine the solutions to the approximate
vibronic Hamiltonian,

[T(q) + T(r) + Ulr,@)|¥(r,q) = E¥(r,q) (12)

This is done by expanding the vibronic wavefunction as,
V(r,q) = lem(q)&m(r,a) (13)
R

The coefficients {x» (g)} in the expansion which are funetions
of the nuclear coordinate q are the vibrational wavefunctions.
It is straightforward to obtain the coupled equations for the
vibrational wavefunctions. The coupling arises from the nu-
clear kinetic energy operator. It is common to omit these so-
called BO coupling terms. The vibrational wavefunctions then
satisfy the following simple Schrodinger equation,

[T(Q') + vm(q)]Xmu(Q) = Evamv(q) (14)

with V,,(q) as the potential energy term. The vibrational
wavefunctions are labelled by an electronic quantum number
m, and a vibrational quantum number v. In this approxima-
tion, the vibronic wavefunction takes the BO form,

Vo (1,@) = b (1,q) Xmo (@) (15)

as simply a product of electronic and vibrational wavefunc-
tions.

Vo +

5 g 1 ab a 1 ab

2 ufiga + -2 uiiqaqs Y ufage + - X ullqaqs
a 2a.b a 2a,b

- Vig)

. 1 1 N
Y uiga + = Tuslqags VE+ Yulbga + - Lutbgags — Vig)
a 2 a,b a 2 a,b

- 1 1
2 Umige + = u?r?lQqu T UfaGa+ 7 2 U#ZQHQ-‘J
a 20.5 a 2 a,b

Sutuda + %g uShgads |
¥ ufada + 3 Cuthdats M st
’ % : =00
V&+§u;maa+§§bu:”mqaqbw V@ .|l ena@
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where

au
ug = fdref"(r) (aqﬂ)oqﬁ?(r)

32U
wl = fdrel(r) (——aqaaqb]ocb?(r) (11)
The off-diagonal terms in the square matrix of eqn. (IQ) are
called Herzberg-Teller (HT) coupling terms, and they mix the
CBO basis functions, with nuclear-Coordinate-dep?nder}t
coefficients. This is identical to Herzberg's type (a) vibronic

Special Case: Nondegenerate Electronic States

In this section, we shall look at the detailed solution of eqn.
(10) for the simplest, special case where an electronic state
m s nondegenerate, and is well separated in energy from all
other electronic states.

Electronic Motion

In this case, it is justified to retain only the HT coupling
terms that involve the electronic state m in eqn. (10),

[V + i
Y ufiga + =¥ uliqags 0
a 2a,b
- V(g
1. B
0 Vi+ ¥ ubsga + =X ubgaqs — dlq)
a 2a,b

. 1 1
Y ubigat - ¥ ulbhiqaqe  Yubeqa + = X uhqaqs
a 2a.b a 2a,b
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The solution of eqn. (16) is equivalent to the application of
first-order perturbation theory to eqn. (7), and we obtain the
m electronic state wavefunction and energy correct to qua-
dratic terms in q to be,

&’m(fsq} = ‘f’?n(r)

3N-6 1 3N—6

w | T uluga+= ¥ ulhgags
+ 3 {_s 2 ab #)(r) (17)
i=m Vo —v?
and
- o L ANT6 -6
Vml@) = Vo + ¥ ufmGa t+ ):b &mmaqs (18)
a a,
respectively, where
1 = ubub,
f':-?m =y _ugnbm + ¥ Ymitjm (19)

J=m ng . V;O
Potential Energy Surfaces

Since most processes occur from the ground potential en-
ergy surface, it is of interest to know how an isolated, nonde-
generate excited m electronic state potential energy surface
is oriented relative to it. The ground potential energy surface
is in most cases nondegenerate and well separated from the
other excited electronic states, and is given by eqn. (18) as,

- 3N-6 AN—6

Vl(q] = V(ll *+ Z u%lQu =& }:b g??Quqh (20)

a a,

We are free to define the zero of energy, and so we can set V9
= (). We can also choose g = 0 to be the equilibrium configu-
ration for the nuclei on the ground electronic state, in which
case uf; =0,a =1, 2,...3N — 6. Thus eqn. (20) reduces
to

- 3N-86 b
Vilg) = Zb £119a40 (21)
a,

By an orthogonal transformation—a rotation—the ground
potential energy surface takes the diagonal form,

p 3N-6
Vil@) = ¥ haga (22)

where g now denotes the mass-weighted normal coordinates.
This is a 3N — 6 dimensional harmonic surface.

Any other isolated, nondegenerate electronic state m has
a potential energy surface given by eqn. (18), where g now
denotes the mass-weighted normal coordinates of the ground
potential energy surface. Consider the coefficient u,,, for the
linear term in q. If ¢, is a nontotally symmetric mode, then,
since m is a nondegenerate electronic state, the direct product
['(p2) % T'(ge) X T'(#%) does not contain the totally symmetric
representation. Thus uf,, = 0 for a nontotally symmetric
mode g,. On the other hand, if g, is a totally symmetric mode,
the same direct product will be totally symmetric, and thus
u%,, may not vanish. Next, for the coefficients |g%%,} of the
quadratic terms in ¢, we find by the same argument that g2,
may not vanish if g, and g, belong to the same irreducible
representation, I'(g,) = I'(gp). Thus the excited m potential
energy surface takes the simple form,

Vnl@)=Voi+ Y  ub.qa+ Eb g%ngagy  (23)

a a,
totally I'ga)=T"(gs)

symmetric
Comparing this with the ground potential energy surface eqn.
(22), we can draw several conclusions about the isolated, ex-
cited, nondegenerate potential energy surfaces. For concise-
ness, we shall present them as theorems.

Theorem I: The equilibrium configuration of the excited m po-
tential energy surface can be displaced along the totally symmetric

mod_es relative to the equilibrium configuration on the ground po-
tential energy surface.

Proof: In eqn. (23), the potential energy can have a linear depen-
dence on the totally symmetric coordinates gq.

Theorem 2: If the harmonic approximation holds, the equilibrium
configuration of the excited m potential energy surface is undisplaced
along the nontotally symmetric modes relative to the equilibrium
configuration on the ground potential energy surface.

Proof: In eqn. (23), the potential energy has no linear dependence
on the nontotally symmetric coordinates gq.

The harmonic approximation is not a necessary condition
for the validity of Theorem 1. The potential energy surface
along the totally symmetric mode could very well be a Morse
potential, and Theorem 1 would still hold. Theorems 1 and
2 taken together physically state that the geometry of the
molecule in an excited electronic state is of the same point
group as in the ground electronic state if both these states are
isolated and nondegenerate.

There can be cases where the harmonic approximation may
not be a good description for the nontotally symmetric mode,
and Theorem 2 becomes invalid. An example is a double-well
potential with a local maximum, U4, = 0 and g4’ <0,at g,
0. The equilibrium position will then be located away from g,
= (). If this happens for the excited state, say, then the geom-
etry of the molecule in the excited electronic state will be
different from the geometry in the ground electronic state
which is located at g, = 0. Such double-well potentials are well
known for the totally symmetric bending vibrations, as in the
ground state of NHj and the excited states of HCN and CS,
(19). It is important to note that, in the case of an isolated,
nondegenerate electronic state, symmetry allows double-well
potentials for both nontotally symmetric stretching and
bending vibrations. The case of the double-well potential for
the nontotally symmetric stretch has so far been discussed
only from the point of view of the pseudo Jahn-Teller effect
(20), which involves two vibronically (HT) coupled nearby
electronic states with harmonic potential energy surfaces.

Some possible forms and orientations of the potential en-
ergy surfaces along totally symmetric and nontotally sym-
metric modes are illustrated in Figure 1 for one dimension, and
Figure 2 for two dimensions.

Theorem 3: The normal modes in the excited electronic state are
simply displacements and rotations of the normal modes in the ground
electronic state. The displacements occur along the totally symmetric
modes; and the rotations are for normal modes belonging to the same
irreducible representation.

Proof: The displacements along the totally symmetric modes are
given by Theorem 1. We only need to show the rotations of the normal
modes. Now, the matrix [g2%,],a,b =1,2,...,3N — 6 in eqn. (23) is
block diagonal, each block belongs to a single irreducible represen-
tation. Within each block, there may be quadratic cross terms between
normal modes, and an orthogonal transformation—a rotation—will
get it into the diagonal form, similar to eqn. (22) for the ground elec-
tronic state. This is known as the Duschinky rotation (21-24).

Theorem 4: If the equilibrium geometries of the molecule in the
excited and the ground electronic states belong to different point
groups, then Theorems 1, 2, and 3 will apply to those modes that
transform in the same way under common symmetry elements of the
two groups.

Proof: Such common normal modes can be given the same labels,
and the theorems compare normal modes with the same labels in the
nondegenerate ground and excited electronic states.

lllustrative Examples

The results obtained above have important implications
for molecular spectroscopy. The potential energy surfaces
contain information about the dynamics of the molecular
framework. The dynamics have a direct bearing on the spec-
tra. We shall confine ourselves to only electronic and Raman
spectroscopies.
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Figure 1. Contour plots of one-dimensional potential energy surfaces. (a) Displaced harmonic oscillators for the totally symmetric mode. (b) Undisplaced harmonic
oscillators for the nontotally symmetric mode, and rarely for the totally symmetric mode. (c) Double well for the excited state potential energy surface of a nontotally

symmetric mode.

(a)TOTALLY SYMMETRIC

(b) NONTOTALLY SYMMETRIC

(c) NONTOTALLY SYMMETRIC

Figure 2. Contour plots of two-dimensional potential energy surfaces. (a) Displaced and rotated harmonic oscillators for the totally symmetric modes. (b) Undisplaced,
but rotated, harmonic oscillators for the nontotally symmetric modes, and rarely for the totally symmetric modes. (c) Double well alone one mode in the excited state
potential energy surface for nontotally symmetric modes. The modes in the excited state can be rotated relative to the modes on the ground state surface.

Electronic Spectroscopy

The intensity of an electronic transition is proportional to
the square of the transition dipole moment R.r,e7,», where
single prime labels the upper state, and double prime is for the
lower state. The Born-Oppenheimer approximation enables
us to factor the vibronic wavefunction into electronic and vi-
brational wavefunctions,

Vo, (r,q) = ¢e(r,q)Xen(q) (24)
The transition dipole moment is then given by,
Reyreryr = fd ax ;’U’Xe”u”‘ fdrd);’Msz"l (25)

where M = 3 er; is the electric dipole moment.

13

In the Condon approximation, CBO electronic wavefunc-
tions are used in eqn. (25). The electronic part of the transition
dipole moment,

Rg’e“ = Idr¢;’M¢e” (26)
is then a constant, and we have
Re’u’e”u" = Rg’e".rd dX e Xerv” (27)

We define allowed electronic transitions as those for which
RY.. # 0. For simplicity, we shall restrict ourselves to such
transitions. The intensity is then given by the overlap of vi-
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brational wavefunctions in the excited and initial electronic
states.

In the case of the totally symmetric mode, the potential
energy surfaces in the excited and initial electronic states are
displaced, as shown in Figure 1a. Thus, the overlap of the vi-
brational wavefunctions is clearly nonzero for all values of v’
and v”, that is,

Av =0, +1,+2, ... (28)

This can be observed as vibrational progressions, with in-
tensities determined by the relative displacement of the two
potential energy surfaces. In general, the observation of vi-
brational progressions implies that there is a change in the
equilibrium geometry of the molecule in the transition. The
converse, however, is not necessarily true, e.g., thermal aver-
aging can remove the vibrational structures.

Water is bent (Cgy) in the ground X electronic state, but
linear (D) in the excited B electronic state. The B-X tran-
sition is symmetry allowed, under the (lower symmetry) Ca,
point group. The transition results in a large change in the
bending angle. The totally symmetric bending mode is
therefore excited in the B state, because of the change in
equilibrium geometry. This explains the long progressions in
the bending vibrations with frequency 5 = 800 cm™! in the
1400-1200 A absorption region (25, 26).



Another example is the A-X transition of NH; (27), where
the large changes in the bending angle and N-H bond length
give rise to vibrational progressions in the totally symmetric
(¥; = 3325 cm™1) stretch and (v, = 633 cm™1) bend.

In the case of the nontotally symmetric mode, the potential
energy surfaces of the initial and excited electronic states are
both of even parity in this coordinate, as shown in Figure 1b
and c. Clearly, in such a case, the vibrational overlap in eqn.
(27) is nonzero only if the vibrational quantum number v
changes by an even number, that is,

Av=0,42 +4,... (29)

The transitions with v = 0 should be the most intense, because
the vibrational wavefunctions involved are very similar. If, by
chance, the frequency of the nontotally symmetric mode is the
same in the two states, then orthogonality of the vibrational
wavefunctions would restrict the vibrational selection rule to
just Av = 0. o

The allowed A-X transition of SO, spans the region
3400-2600 A. In addition to the fairly long progressions in the
totally symmetric stretch (v; = 764 em™1) bend (v, = 317
cm™'), there are some weak bands which can be assigned to
the asymmetric stretch (v3 = 813 cm™1) (28,29). In the X state,
vy = 1362 cm~!. The strong progressions correspond to the
change of S-O bond length and bending angle in the transition.
The weak bands involve a change (Avg = £2, +4) in vs.

Raman Spectroscopy

Raman scattering can be viewed either in the energy frame
(30, 31) or the time frame (10, 11). The two viewpoints are
equivalent. We shall use the less conventional, but physically
picturesque, time-dependent viewpoint. In view of the im-
portance of molecular dynamics, this is perhaps the most
natural viewpoint. For simplicity, we shall assume that the
Condon approximation applies, and confine ourselves to one
dimension.

The Raman intensity is proportional to the square of the
polarizability «, and is a nine-component tensor. In the
time-frame viewpoint (10, 11), the vibrational matrix element
of the polarizability for fundamental Raman scattering is
given by,

ap =% RB»Q-RS«JUG dteiEerthiih (x| xoro(t))
o
+ nonresonant term] (30)

This involves a sum over all excited e’ states; and for each state
there is a resonant term, which is given explicitly, and a gen-
erally much smaller nonresonant term. The difference in the
two terms lies principally in the Fourier transform energy
which, for the resonant term, is the sum of the initial vibronic
energy E .~ and the energy of the incident light with frequency
v = w/2w. The heart of the Raman effect is the vibrational
overlap (Xe~1|Xero(t)), and the focus will be on how this
overlap determines the Raman selection rules. The overlap
depends on the form of the excited e’ potential energy surfaces
relative to the initial e” potential energy surface. The wave-
function x.~o(q,t) arises from the propagation of the initial
ground vibrational wavefunctions X.-o(q) on the excited e’
potential energy surface. At each instant in time, we take the
overlap of the propagated wavefunction with the (final) first
excited vibrational state x.~1(g) of the fundamental Raman
transition. For now, all we need to know is that the overlap
must not be zero over the whole time interval in order to ob-
tain some intensity in the Raman spectrum.

At time t = 0, X.»0(g,0) is orthogonal to x.»1(q), and the
overlap is zero. Now, the excited e’ potential energy surface
is displaced along the totally symmetric coordinate g relative
to the initial e” potential energy surface, as shown in Figure
1. The wavepacket x.~o(q,0) will immediately begin to move
on the excited e’ potential energy surface, because of a resul-

tant force, given by the gradient of the e’ potential, acting on
the wavepacket. This leads to a nonzero overlap {x.~1|Xxeo(t)}
for t > 0, and hence nonzero Raman intensity for the totally
symmetric mode.

On the other hand, the even parity of the excited e’ and
initial e” potential energy surfaces along the non-totally
symmetric coordinate g, as shown in Figure 1b and ¢, implies
that the initial even-parity wavefunction x.o(q,0) will remain
even-parity in ¢ for all times ¢, when propagated on the e’
potential energy surface. Hence, the overlap (x¢~1|Xxer0(t))
is identically zero for all times ¢, because the product
Xer1Xero(t) is odd-parity in g. The Raman intensity is there-
fore zero for the nontotally symmetric mode.

We have just shown that the basis of the selection rules for
Raman transition lies in the relative form of the excited e’ and
initial e” potential energy surfaces. The almost universal
phenomenological presentation of the Raman selection rules
(32-34) in terms of the polarizability ellipsoids masks this
important fact.

Recently, resonance Raman scattering (35) has generated
a great deal of interest. Here again, the time-frame viewpoint
coupled with a knowledge of the potential energy surfaces
involved can account for most of the results. The beauty about
the resonance Raman effect is that the theoretical description
is very much simplified. The resonant excited e’ state in eqn.
(30) overwhelms all the other states. Only one, single resonant
term corresponding to this resonant state determines the
Raman intensity. This makes it possible to carry out the re-
verse process of deducing the excited e’ potential energy
surface from the Raman spectra (36).

As the incident light frequency is tuned closer to resonance
with the excited e’ state, the energy-time uncertainty principle
implies that the wavepacket propagation (or relaxation of the
nuclei) on the excited e’ potential energy surface can proceed
for a longer time interval. This increases the probability of a
component in ¥.-1(g), thus giving an enhanced resonance
Raman intensity. A good example is the totally symmetric 940
cm~! umbrella mode of ammonia, where a tenfold resonance
Raman enhancement has been observed (37) upon changing
the incident light frequency from 5145 Ato3511 A. Ammonia
is pyramidal in the ground X state but is planar in the excited
A electronic state. In the A electronic state, the initial wave-
function 0* (38) will move in the direction corresponding to
the opening of the umbrella mode. The propagated wave-
packet has nonzero overlap with the final 1* vibrational state,
and hence it is an allowed “fundamental” Raman transition
which can be resonance enhanced. It is useful to note that,
because of the high barrier against inversion for ammaonia in
the ground X electronic state, it is a very good approximation
to consider just one half of the double well. The situation is
then similar to Figure 1la. The 0% and 1% vibrational states
resemble the ground and first excited vibrational states, re-
spectively, on half the double well; and for this reason we label
it as a “fundamental” Raman transition.

Conclusion

A systematic presentation of the Born-Oppenheimer ap-
proximation has been attempted. Some concepts—CBO basis
set, HT coupling—in the BO lexicon were discussed. I stopped
short of deriving the equations for the vibrational wavefunc-
tions. The focus was on the potential energy surfaces for the
special case of isolated, nondegenerate electronic states. There
is scope for extension to degenerate or nearby electronic states.
Some simple results for the form and orientation of the po-
tential energy surfaces along the totally symmetric and non-
totally symmetric modes were derived. Throughout the
treatment, simple, but powerful, arguments from group
theory, and matrix notation for conciseness have been used.
Finally, the implications of the potential energy surfaces for
electronic and Raman spectroscopies have been discussed.
Numerous examples were quoted to illustrate the theory.
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