UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

EXTRACTION AND ISOLATION OF ALKALOIDS FROM THE LEAVES OF Alseodaphne corneri (LAURACEAE)

JENNIE KHOO HUI CHEN

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE (MASTER BY RESEARCH)

FACULTY OF SCIENCE AND MATHEMATICS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2015

iv UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

ABSTRACT

This phytochemical study is aimed to extract, isolate and identify alkaloids from Alseodaphne corneri leaves. The crude alkaloid was extracted by cold percolation followed by acid-base extraction until Mayer test showed negative result. Then, it was separated by conventional chromatographic methods using column chromatography and preparative thin layer chromatography. The structural elucidation of isolated alkaloids was then carried out by spectroscopic techniques; UV, IR, NMR and HRESIMS. The structures of the compounds were also determined by comparison with previous study. Isolation of alkaloids yielded one new benzylisoquinoline; (6,7dimethoxyisoquinolinyl)-(2',5'-dihydroxy-4'-methoxyphenyl)-methanone 68. one bisbenylisoquinoline; obamegine 49, one oxoaporphines; atheroline 71, and five aporphine; isocorydine 48, N-methyllaurotetanine 51, laurotetanine 53, lirioferine 69 and norlirioferine 70. The benzylisoquinoline type alkaloid, lirioferine 69 and atheroline 71 were first reported in Alseodaphne genus while norlirioferine 70 was first isolated from Alseodaphne corneri species. These findings are very important as the elucidated alkaloids can be referred in future especially in identification of new alkaloid compound.

UNIVERSITI PENDIDIKAN SULTAN IDRIS

INIVERSITI PENDIDIKAN SUI TAN IDRIS

UNIVERSITI PENDID

N IDRIS

PENGEKSTRAKAN DAN PEMENCILAN ALKALOID DARIDAPA DAUN Alseodaphne corneri (LAURACEAE)

ABSTRAK

Kajian fitokimia ini bertujuan mengekstrak, memencil dan mengenal pasti alkaloid daripada daun Alseodaphne corneri. Alkaloid mentah diekstrak dengan menggunakan perkolasi sejuk diikuti pengekstrakan asid-bes sehingga ujian Mayer menunjukkan keputusan negatif. Seterusnya, alkaloid mentah dipencilkan melalui kaedah kromatografi konvensional dengan menggunakan kromatografi kolom dan kromatografi lapis tipis preparatif. Pengenalpastian struktur alkaloid yang dipencil dilakukan dengan teknik-teknik spektroskopi seperti UV, IR, NMR dan HRESIMS. Struktur sebatian yang dikenalpasti turut dibandingkan dengan kajian-kajian lepas. Pengasingan alkaloid telah menghasilkan satu benzilisokuinolina; (6,7-dimetoksiisokuinolinil)-(2',5'-dihidroksi-4'-metoksifenil)-metanon 68. satu bisbenzilisokuinolina; obamegina 49, satu oxoaporphina; aterolina 71, serta lima aporphina; isocoridina 48, N-metillaurotetanina 51, laurotetanina 53, lirioferina 69 dan norlirioferina 70. Alkaloid jenis benzilisokuinolina, lirioferina 69 dan aterolina 71 adalah kali pertama dilaporkan dalam genus Alseodaphne manakala norlirioferina 70 adalah kali pertama diekstrak daripada spesis Alseodaphne corneri. Penemuan ini amat penting kerana data alkaloid yang dikenal pasti boleh dijadikan rujukan untuk masa depan terutamanya dalam pengenalpastian sebatian alkaloid baru.

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	V
CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS AND ABBREVIATIONS	xiv

CONTENTS

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Lauraceae	3
1.5	The Genus: Alseodaphne	5
	1.5.1 Alseodaphne corneri	7

CHAPTER 2 LITERATURE REVIEW

	2.1	Introd	uction	9
	2.2	Nitrog	en Containing Compounds	12
	2.3	Classi	fication of Alkaloids	13
		2.3.1	Isoquinoline Alkaloids	15
endidikan su	ILTAN IDRIS	2.3.2	Benzylisoquinoline INIVERSI I PENDIDIKAN SULTAN IDRIS	17 UNIVERSITI PENDID
FRSITI PENDID	IKAN SULTA	N IDRI	S UNIVERSITI PENDIDIKAN SULTAN I	DRIS UNIVERSITI I

UNIVERSITI PENDIDIKAN SULTAN IDRIS

FRSITI PENDIDIKAN SUI TAN IDRI

vii UNIVERSITI PENDID

N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS

2.4

UNIVERSITI PENDIDIKAN SULTAN ID

UNIVERSITIE

2.3.3Bisbenzylisoquinoline alkaloids172.3.4Aporphinoid alkaloids21Alseodaphne corneri23

CHAPTER 3 EXPERIMENTAL

3.1	Introduction	29
3.2	Chemical Reagents	30
3.3	Plant Materials	32
3.4	Extraction of Plants Material	32
3.5	Separation and Purification of Alkaloids	33
3.6	Physical and Spectral Data of the Isolated Compounds	35

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introd	uction	41
4.2	Alkalo	oids from the Leaves of Alseodaphne corneri	44
	4.2.1	Isocorydine 48	44
	4.2.2	Obamegine 49	53
	4.2.3	<i>N</i> -Methyllaurotetanine 51	63
	4.2.4	Laurotetanine 53	72
	4.2.5	(6,7-dimethoxyisoquinolinyl)-(2',5'-dihydroxy-4'-	
		methoxyphenyl)-methanone 68	79
	4.2.6	Lirioferine 69	88
I SULTAN IDRIS		Norlirioferine 70 JNIVERSITI PENDIDIKAN SULTAN IDRIS UNIV	97 ERSITI
DIDIKAN SULTA	AN IDRI	S UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIV

ρενιδισικάνι ςι 11 ταν 1	IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	VIII LINIVERSITI PENDID
	SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN 4.2.8 Atheroline 71	
CHAPTER 5	CONCLUSION AND RECOMMENDATION	114
DEFEDENCES		116
REFERENCES APPENDICES		116 119

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

LIST OF TABLES

TABL	JE	PAGE
2.1	Alkaloids from A. corneri	24
3.1	Mayer's Test on Alkaloid	31
4.1	¹ H NMR and ¹³ C NMR spectral data of 48 and isocorydine (Nafiah, 2009)	52
4.2	¹³ C NMR spectral data of 49 and obamegine (Nafiah, 2009)	61
4.3	1D (¹ H and ¹³ C) and 2D (HMBC, HMQC and COSY) NMR spectral data of 49	62
4.4	1D (¹ H and ¹³ C) and 2D (HMBC and HMQC) NMR spectral data of 51	71
4.5	¹ H NMR and ¹³ C NMR spectral data of 53 and ¹³ C NMR data of laurotetanine (Zahari, 2010)	78
4.6	1D (¹ H and ¹³ C) and 2D (HMBC and HMQC) NMR spectral data of 68	87
4.7	¹ H NMR and ¹³ C NMR spectral data of 69 and lirioferine (Saidi et al., 2009)	96
4.8	1D (¹ H and ¹³ C) and 2D (HMBC and HMQC) NMR spectral data of 70	105
4.9	¹ H NMR and ¹³ C NMR spectral data of 71 and ¹ H NMR data of atheroline (Saidi, 2011)	113

LIST OF FIGURES

FIGURE

1.1	Alseodaphne corneri Kosterm	8
1.2	The leaves and fruit of Alseodaphne corneri Kosterm	8
2.1	The numbering system of isoquinoline alkaloid	15
2.2	The biosynthesis of isoquinoline alkaloids	16
2.3	The numbering system of the benzylisoquinoline alkaloid	17
2.4	The numbering system of the half dimer of bisbenzylisoquinoline alkaloid	18
2.5	The numbering system of bisbenzylisoquinoline alkaloid	19
2.6	The oxoaporphine alkaloid	22
2.7	The numbering system of aporphine alkaloid	22
3.1	Isolation of alkaloids from A. corneri	34
4.1	UV Spectrum of 48	46
4.2	IR Spectrum of 48	47
4.3	HRESIMS Spectrum of 48	47
4.4	¹ H NMR Spectrum of 48	48
4.5	¹³ C NMR Spectrum of 48	49
4.6	DEPT NMR Spectrum of 48	49
4.7	COSY NMR Spectrum of 48	50
4.8	HMQC NMR Spectrum of 48	50
4.9	HMBC NMR Spectrum of 48	51
4.10	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 48	51
4.11	IR Spectrum of 49	55

VERSITI PENDIDIKAN SULTAN IDRIS

/ERSITI PENDIDIKAN SUI TAN IDI

xi UNIVERSITI PENDID

ORIS UNIVERSI	I PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI
4.1	2 UV Spectrum of 49	55
4.1	3 HRESIMS Spectrum of 49	56
4.1	¹ H NMR Spectrum of 49	57
4.1	¹³ C NMR Spectrum of 49	58
4.1	6 DEPT NMR Spectrum of 49	58
4.1	7 COSY NMR Spectrum of 49	59
4.1	8 HMQC NMR Spectrum of 49	59
4.1	9 HMBC NMR Spectrum of 49	60
4.2	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 49	60
4.2	1 IR Spectrum of 51	65
4.2	2 UV Spectrum of 51	65
4.2	3 HRESIMS Spectrum of 51	66
4.2	4 ¹ H NMR Spectrum of 51	67
4.2	5 ¹³ C NMR Spectrum of 51	68
4.2	6 DEPT NMR Spectrum of 51	68
4.2	7 COSY NMR Spectrum of 51	69
4.2	8 HMQC NMR Spectrum of 51	69
4.2	9 HMBC NMR Spectrum of 51	70
4.3	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 51	70
4.3	1 IR Spectrum of 53	73
4.3	2 UV Spectrum of 53	74
4.3	3 HRESIMS Spectrum of 53	74
4.3	¹ H NMR Spectrum of 53	75
4.3	5 13 C NMR Spectrum of 53	76
4.3 IVERSITI PENDIDIK	1	76 RSITI PENDIDIK.

xii UNIVERSITI PENDID

ORIS	UNIVERSITI P	ENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI F
	4.37	HMQC NMR Spectrum of 53	77
	4.38	HMBC NMR Spectrum of 53	77
	4.39	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 53	78
	4.40	IR Spectrum of 68	81
	4.41	UV Spectrum of 68	81
	4.42	HRESIMS Spectrum of 68	82
	4.43	¹ H NMR Spectrum of 68	83
	4.44	¹³ C NMR Spectrum of 68	84
	4.45	DEPT NMR Spectrum of 68	84
	4.46	COSY NMR Spectrum of 68	85
	4.47	NOESY NMR Spectrum of 68	85
	4.48	HMQC NMR Spectrum of 68	86
	4.49	HMBC NMR Spectrum of 68	86
	4.50	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 68	87
	4.51	IR Spectrum of 69	90
	4.52	UV Spectrum of 69	90
	4.53	HRESIMS Spectrum of 69	91
	4.54	¹ H NMR Spectrum of 69	92
	4.55	¹³ C NMR Spectrum of 69	93
	4.56	DEPT NMR Spectrum of 69	93
	4.57	COSY NMR Spectrum of 69	94
	4.58	HMQC NMR Spectrum of 69	94
	4.59	HMBC NMR Spectrum of 69	95
	4.60	¹ H- ¹³ C Correlations observed in HMBC NMR spectrum of 69	95
	4.61	IR Spectrum of 70	99
VERSI	TI PENDIDIKAN	SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	ERSITI PENDIDIKA
i l	INIVERSITI PENI	DIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI PEN

UNIVERSITI P	ENDIDIKAN SULTAN IDRIS	UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIV
4.62	UV Spectrum of 70		99
4.63	HRESIMS Spectrum of 70		100
4.64	¹ H NMR Spectrum of 70		101
4.65	¹³ C NMR Spectrum of 70		102
4.66	DEPT NMR Spectrum of 70		102
4.67	COSY NMR Spectrum of 70		103
4.68	HMQC NMR Spectrum of 70		103
4.69	HMBC NMR Spectrum of 70		104
4.70	¹ H- ¹³ C Correlations observed in	HMBC spectrum of 70	104
4.71	IR Spectrum of 71		108
4.72	UV Spectrum of 71		108
4.73	HRESIMS Spectrum of 71		109
4.74	¹ H NMR Spectrum of 71		110
4.75	¹³ C NMR Spectrum of 71		111
4.76	COSY NMR Spectrum of 71		111
4.77	HMQC NMR Spectrum of 71		112
4.78	HMBC NMR Spectrum of 71		112
4.79	¹ H- ¹³ C Correlations observed in	HMBC NMR spectrum of 71	113

LIST OF SYMBOLS AND ABBREVIATIONS

	α	Alpha	
	β	Beta	
	λ	Maximum wave length	
	δ	Chemical shift	
	g	Gram	
	kg	Kilogram	
	М	Molar	
	mM	Milimolar	
	ml	Mililitre	
	m	Meter	
	MHz	Mega Hertz	
	Hz	Hertz	
	UV	Ultraviolet	
	IR	Infrared	
	ppm	Part per million	
	eV	Electron Volt	
	МеОН	Methanol	
	CHCl ₃	Chloroform	
	CH ₂ Cl ₂	Dichloromethane	
	CH ₃	Methyl group	
	OCH ₃	Methoxyl group	
	Me	Methyl group	
JD	OMe IDIKAN SULTAN IDRIS	Methoxyl group UNIVERSITI PENDIDIKAN SULTAN IDRIS	UNIVERSITI PENDIDIK

	ОН	Hydroxyl group	
	NH ₃	Ammonia	
	рН	Power of Hydrogen	
	HC1	Hydrogen chloride	
	TLC	Thin Layer Chromatography	
	PTLC	Preparative Thin Layer Chromatography	
	CC	Column Chromatography	
	NMR	Nuclear Magnetic Resonance	
	cm ⁻¹	Per centimeter	
	J	Coupling constant	
	d	Doublet	
	dd	Doublet of doublet	
	t	Triplet	
	dt	Doublet of triplet	
	S	Singlet	
	т	Multiplet	
	°C	Degree Celsius	
	1D-NMR	One Dimension Nuclear Magnetic Resonance	
	2D-NMR	Two Dimension Nuclear Magnetic Resonance	
	¹ H	Proton NMR	
	¹³ C	13-Carbon NMR	
	COSY	¹ H- ¹ H Correlation Spectroscopy	
	DEPT	Distortioness Enhancement by Polarization Transfer	
	HMQC	Heteronuclear Multiple Quantum Correlation	
DI	HMBC DIKAN SULTAN IDRIS	Heteronuclear Multiple Bond Correlation UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA	

NOESY	Nuclear Overhauser Effect Spectroscopy
LC-MS	Liquid Chromatography Mass Spectrometry
HRESIMS	High Resolution Electrospray Ionization Mass Spectrometry
m/z	Mass per charge
CDCl ₃	Deuterated chloroform

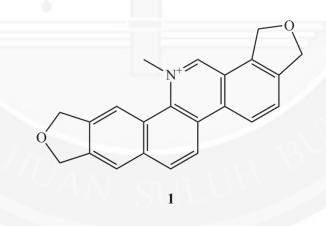
UNIVERSITI PENDIDIKAN SULTAN IDRIS NIDRIS UNIVERSITI PENDIDIKAN SULTAN I

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDI

CHAPTER 1

INTRODUCTION

1.1 Introduction


Malaysia is located near the Equator confers on it a typically tropical climate which contributes to the tropical rainforests. This country is rich in flora and estimated to have 17,631 species of plants; including 61 gymnosperm, 337 of algea, 1,387 bryophyte, 1,600 species ferns and its families, 4,180 monocotyledons and 10,026 dicotyledons, thus, the 2001 Global Diversity Outlook recognized Malaysia as one of 12 mega diversity countries in the world (Department of Statistics, Malaysia, 2012).

Plants are usually used as traditional medicines or herbs for treatment, recovery and health maintenance of many diseases since ancient times. During Ming Dynasty, S.Z, Li had been compiled and written traditional Chinese medicine book

titled 'Compendium of Materia Medica'. This compendium recorded the plants, UNIVERSITI PENDIDIKAN SULTAN IDRIS VI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDI

animals, minerals and other objects which believed to have medicinal properties ("Ben Cao Gang Mu (Compendium of Materia Medica)," 2011). In Malaysia, there are some common traditional medicinal plants used to cure many diseases such as diabetes treatment using *misai kucing (Orthosiphon stamineus)* (Ching, Zakaria, Paimin, & Jalalian, 2013). Besides traditional medicines, many plants have been proven the presence of biologically active compounds; for example, Sanguinarine 1 from Papaveracea family exhibit anticancer properties (Lu, Bao, Chen, Huang, & Wang, 2012).

The natural resources (especially from plants) provide rich source of new pharmaceuticals, agrochemicals, industrial raw material and other economically important products. Recently, "Back to Nature" becomes a trend for the public. Therefore, natural products are one of the most promising sources for discovery of future drugs in various therapeutic areas.

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

1.2 Problem Statement

The phytochemical studies on *Alseodaphne corneri* have been published since 2008. Twenty-two compounds, mainly isoquinoline type alkaloids were reported on this species and nine known compounds were isolated from the leaves of *A. corneri*. From the preliminary screening, the leaves of this species have high content of alkaloids. Therefore, it is a potential plant for extraction and isolation followed by structural elucidation of alkaloids especially the new compound as reference in future.

1.3 Objectives

The objectives of this study are as follows:

- i. To extract alkaloid from the leaves of *Alseodaphne corneri*.
- ii. To isolate alkaloids from the crude samples using chromatographic techniques.
- iii. To carry out structural elucidation of isolated alkaloids.

1.4 Lauraceae

Lauraceae, named from the famous laural cultivated from centuries in Europe, usually appear as tropical evergreen shrubs or trees except in temperate zones which is deciduous. In past, its foliage was used by the ancient Greeks to crown victors in athlete events (Dharmananda, 2004). Later on, it was used in the conferring of

academic honors. Nowadays, Lauraceae becomes important sources of traditional UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN medicines (e.g. *Lindera aggregata*), timber, spices (e.g. *Cinnamomum* trees), nutritious fruits (e.g. *Persea americana*) and perfumes (Xiwen et al., 2000).


The laurel order of flowering plants contains 7 families, 91 genera and about 2900 species. They are found in tropical or warm temperate climates, abundant in regions with moist equable climates. The members of Laurales are trees, shrubs or woody vines and they are characterized by woodiness, aromatic parts and a single strand of conducting tissues continuing from the stem into the leaf. Among seven families, both Lauraceae and Monimiaceae constitute most of the genera in this order. Lauraceae consists of 67 genera distributed throughout tropical and subtropical regions, principally Southeast Asia and tropical America, particularly Brazil. In 1970, Keng (as cited in Perumal, Petol, Mat-Salleh, & Latiff, 1998) reported that Lauraceae belongs to ten most extensive genera in Malaysia.

Leaves of Lauraceae family usually alternate, occasionally opposite or subopposite or verticillate, simple, usually entire, rarely lobed. The flowers are perigynous and cup-like structure around the base of ovary or around ovary. In addition, they usually exist as axillary. Drupe or berry like fruit usually surrounded at base by enlarge and often persistant perianth tube seated on a large receptacle or pedicel (Xiwen et al., 2000). UNIVERSITI PENDIDIKAN SULTAN IDRIS IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRI IVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

1.5 The Genus: *Alseodaphne*

Alseodaphne is a member of family Lauraceae and distributed in tropical belt of India, Cambodia, China, Indonesia, Laos, Malaysia, Myanmar and Philipines. Most of these species are locally known as "Medang" or "Tejur" in Malaysia. There are 23 out of 56 species are found in Malaysia (Nafiah, 2009).

The plants are source of wood (contributes in house and boat building) and furniture such as plywood tea-chest. Many researchers have been explored this species. However, very less species have been reported their chemical composition. Recently, chemical constituents were reported from the isolation of some species such as *A*. *archboldina*, *A*. *andersonii*, *A*. *corneri*, *A*. *hainensis*, *A*. *pendulifolia*, *A*. *penduncularis*, *A*. *perenkensis* and *A*. *semicarpifolia*. This genus were reported rich to contain aporphines **2**, bisbenzylisoquinolines **3**, phenanthrenes **4**, lactones **5** and morphinandienones **6**; which could be of great biological importance. Although the fruits of *A*. *corneri* were known to be poisonous, there are still no report on biological study and medicinal value of this species (Thakur et al., 2012).

Alseodaphne is small to medium sized tree of wet evergreen tropical forests which distributed from Yunnan to West Malaysia. It normally 5-35 meters height (Nafiah et al., 2011). The leaves are broad and alternate which mostly clustered near apex of branchlets. Terminal buds are scaly whereas inflorescences are axillary, paniculate or racemose. Flowers are bisexual, trimerous and short perianth tube with

three whorls with filaments of first and second whorls are glandless. Anthers are four celled. The ovary is partly immersed into shallow perianth tube. The style is as long as ovary. The stigma is small and inconspicuous. The fruits are green when unripe and purplish black when mature with ovoid, oblong or sub-globose in shape (Nafiah, 2009; Thakur et al., 2012; Zahari, 2010).

1.5.1 Alseodaphne corneri

Alseodaphne corneri (Figure 1.1) is a small tree up to 6 m tall which is found in Malaysia, Singapore and Indonesia. Terminal bud covered with many 1 cm long glabrous scales. The twigs are stout and grey colour with prominent leaf scars. The leaves (Figure 1.2) are closely, spirally arranged at end of twigs, stalk is about 3-4 cm long and blade thickly leathery with obovade to elliptic shape and about 28-52 x 12-16 cm. The apex is pointed but the base is tapered and glaucous below. The midrib rose on the upper surface consists of about 22 pairs of secondary nerves which rise on both surfaces. Tertiary nerves reticulate, visible on both surfaces (Thakur et al., 2012).

The flowers of this species are glaucous up to 14 mm long. Perianth lobes equal, oblong with 5 mm long. The fruits (Figure 1.2) of this species are ellipsoid which up to 3 x 2 cm, seated on very thick, rough, warted and pedicel with persistent perianth lobes. *Alseodaphne corneri* is very rare and the plant specimens are from lowland in East Malaysia especially in east Johor (Nafiah, 2009; Zahari, 2010).

Figure 1.1. Alseodaphne corneri Kosterm.

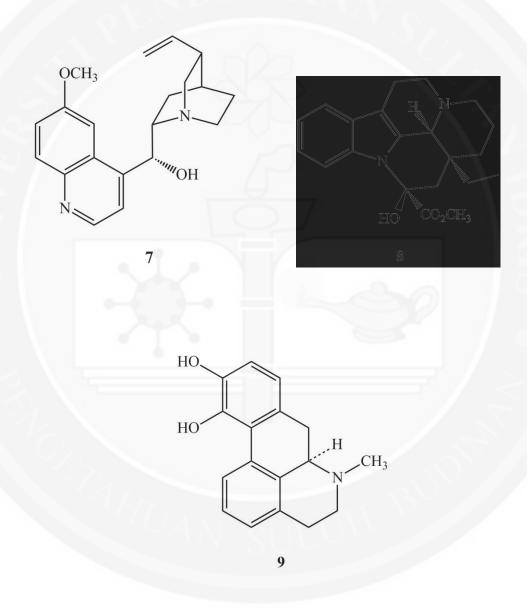
Figure 1.2. The leaves and fruit of *Alseodaphne corneri* Kosterm. UNIVERSITI PENDIDIKAN SULTAN IDRIS VI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SUL UNIVERSITI PENDIDIKAN SULTAN IDRIS N IDRIS UNIVERSITI PENDIDIKAN SULTAN ID

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIL

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction


Since ancient times, plants are always consumed for health purposes. After the plants have been extracted and studied, scientists found compounds and related them to the medicinal treatment. These compounds are clinically useful drug such as antimalarian agents (e.g. quinine 7), agents promoting blood circulation in the brain (e.g. vincamine 8), in Parkinson's disease treatment (e.g. apomorphine 9) and anticancer agents (e.g. taxol 10) (Aniszewski, 2007; Bently, 1998). The drug discovery from natural product experienced an evolution in the last decade and now it is widely accepted due to its potential in many therapeutic areas (Genilloud & Vicente, 2012).

alkaloid that isolated and crystallized from plant. Then, the medicinal properties of IIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN

In 1804, morphine 11 had been isolated from opium poppy. It is the first

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDID N IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI F

morphine were studied and researcher found that morphine **11** is a powerful narcotic used to relief pain. Later on, many alkaloids were reported and their medicinal properties were identified such as quinine **7** from genus *Cinchona* is used to treat arrhythmias or irregular rhythms of the heartbeat, ephedrine **12** from *Ephedra* species act as blood-vessel constrictors and so on ("Alkaloid," 2013; Nafiah, 2009).

UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKA DRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PENDIDIKAN SULTAN IDRIS UNIVERSITI PEN