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Preface 
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of the E. mitchellii wood oil were performed by Associate Professor Robert 

Spooner-Hart and Dr Albert Basta of the University of Western Sydney, (Centre 

for Plant and Food Sciences) Hawkesbury. 

• Efficacy of the E. mitchellii wood oil fractions against termites as well as 

investigation of the termiticidal properties of the E. mitchellii leaf oil and its 

constituents were also performed by Associate Professor Robert Spooner-Hart 

and Dr Albert Basta. 

• Determination of the acute dermal toxicity IC50 and IC95 for the eremophilanes 

was performed collaboratively with Associate Professor Robert Spooner-Hart 

and Dr Albert Basta. 

 

Some of the bioassays described in Chapter 4 of this thesis were performed by others; 

 

• Antioxidant and anti-inflammatory assays on C. cunninghamii extracts and 

fractions were performed by Dr Denise Hunter and Ms Kelly Shepherd at the 

Centre for Phytochemistry and Pharmacology at Southern Cross University. 

 

Some of the spectroscopic analyses described in this thesis were performed by others; 
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Molecular Biology at the University of Queensland. 

• High Resolution Mass Spectroscopy was performed by Chemical Analysis 

Laboratories, Bulleen, Victoria. 

• X-ray crystallography studies were performed by Dr Donald Craig at the 

Department of Chemistry, University of New South Wales. 

• NMR spectroscopy of compounds from C. cunninghamii was performed by Dr 

Myrna Deseo at the Centre for Phytochemistry, Southern Cross University. 

 

Some photographs in this thesis were provided by others, as credited in the text. 
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Abstract 

 

The aim of this study was to isolate and characterise biologically active compounds 

from endemic Australian plants. A total of 6 novel, and 26 known compounds have 

been isolated throughout the course of this work. 

 

A comprehensive investigation of the GC-MS chemical profile of C. cunninghamii leaf 

essential oil found that thymol (1) cis-chrysanthenyl acetate (4), myrtenyl acetate (2), 

myrtenol (3) and cis-chrsanthenol (5) were the major constituents. The essential oil and 

crude solvent extracts of C. cunninghamii possessed significant antioxidant and anti-

inflammatory activity. A 50% aqueous ethanol extract was demonstrated to possess 

multiple modes of anti-inflammatory action. The crude extract was found to 

significantly inhibit both COX-1 and COX-2 cyclooxygenases and was comparable to 

the positive controls; Ibuprofen and Celebrex respectively. The crude extract also 

exhibited anti-inflammatory activity in the nitric oxide (NO) and tumor necrosis factor-

alpha (TNF-α) assays, but did not show inhibition in the lipoxygenase (LO) assay. 

  

A total of seventeen compounds, of which 10, 6, 7, 8 and 9 are novel, have been 

identified from the aqueous-ethanolic extract of C. cunninghamii. Five flavonoids; 

axillarin (16), isokaempferide (17), 4’,5,7-trihydroxy-3,6-dimethoxyflavone (18), 

jaceidin (19), and 2’,4’,5,7-tetrahydroxy-6-methoxyflavone-3-O-β-glucopyranoside 

(10) were isolated from the flowers of C. cunninghamii. A series of caffeic acids were 

isolated as the major component of the stems, these included; chlorogenic acid (12) and 

its methyl ester (13), caffeic acid ethyl ester (11), isochlorogenic acid A (14) 
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macroantoin G (15) and the novel 4ξ,5ξ-di-O-caffeoyl-2,6ξ-dihydroxyhept-2-ene-1,7-

dioic acid (6) and its 1-methyl ester (7), 7-methyl ester (8) and 1,7-dimethylester (9) 

derivatives. Lastly, arnicolide C (20) a sesquiterpene lactone, 3-hydroxykaura-9(11),16-

diene-18-oic acid (21) and 8-hydroxy-9,10-diisobutyryloxythymol (23) were 

characterised by spectroscopic methods.  

  

All of the compounds were evaluated for anti-inflammatory activity, as determined by 

the inhibition of prostaglandin E2 in 3T3 fibroblast cells. All compounds, inhibited 

PGE2 production to some extent, at a concentration of 31.25 µg/mL. The flavonoids 10 

and 16-19 were the most active compounds. The caffeic acids 6-9, 12-14 and the 

thymol derivative 23 also significantly inhibited PGE2 production. The IC50 values were 

determined for the novel compounds; 10, 6, 7, 8 and 9, as 1.47, 2.48, 4.73, 5.54 and 

1.26 µM, respectively. These novel compounds were more potent than the positive 

control, aspirin, which was found to inhibit PGE2 production by 42% at a concentration 

of 18 µM. 

 

Antioxidant activity, as determined by oxygen radical absorbance capacity (ORAC) has 

also been attributed to both the flavonoids; 10, 16-19 and caffeic acid compounds; 6-9 

and 12-14. The antioxidant capacity of these compounds was found to be comparable to 

epicatechin, a major antioxidant constituent of green tea.  

 

A detailed analysis of the wood, leaf, branch and root oil of E. mitchellii was carried 

out by a combination of GC-FID, GC-MS, LC/MS and NMR spectroscopy. The wood, 

root, leaf and branch oils were found to be predominantly composed of sesquiterpenes. 

The three major compounds identified in the leaf oil, which accounted for 44% of the 
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oil, were α-pinene (40), (+) spathulenol (15) and an unidentified sesquiterpene alcohol. 

The composition of the leaf oil was complex and chemically distinct from the wood and 

root oils, whereas the branch oil was found to exhibit a chemical composition that was 

intermediate between the leaf and the wood oil. 

 

After fractionation by preparative HPLC six components of the wood oil were 

characterized and accounted for 80% of the oil. The major constituents of the wood oil 

were; eremophilone (30), 9-hydroxy-7(11),9-eremophiladien-8-one (36), santalcamphor 

(35) and the novel 9-hydroxy-1,7(11),9-eremophilatrien-8-one (42). Two minor 

constituents, 8-hydroxy-10,11-eremophiladien-9-one (32) and 8-hydroxy-1,11-

eremophiladien-9-one (33) were also isolated in this study.  

 

The two major constituents of the root oil of E. mitchellii were found to be 

eremophilone (30) and the zizaene, sesquithuriferone (43). These, together with the 

minor constituents 32, 33, 42, 35 and 36 accounted for 92% of the root oil.  

 

The insecticidal properties of E. mitchellii were evaluated against several species of 

termites Nasutitermes walkeri (Hill), Nasutitermes exitiosus (Hill) and Coptotermes 

acinaciformis (Froggatt). Bioassay-guided fractionation of E. mitchellii wood oil was 

undertaken to investigate the termiticidal metabolites. Of the major components, it has 

been determined that eremophilone (30) was the most active constituent of the wood oil 

followed by 8-hydroxy-1,11-eremophiladien-9-one (33), 9-hydroxy-7(11),9-

eremophiladien-8-one (36) and santalcamphor (35). 
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The methanolic extracts from a total of 36 species have been evaluated for cytotoxicity 

against P388D1 mouse lymphoblast cells. A collection of fifteen species of Eremophila 

from Western Australia and a further twenty from the Northern Territory were 

surveyed.  Cytotoxicity was found to be largely non-selective across a range of human 

cancer cell lines, including MCF7 (mammary adenocarcinoma), Hep G2 (hepatocellular 

carcinoma), A2780 (ovarian carcinoma), A-375 (malignant melanoma) and PC-3 

(prostate cancer). 

 

Fractionation of the leaf material of E. racemosa afforded the six major metabolites. 

Isolation and structural elucidation of these polar compounds revealed the cyanogenetic 

glycoside prunasin (65), the flavonoid luteolin (74), the furofuran lignans, phillygenin 

(75), its 4-O-β-D-glucoside phillyrin (76), pinoresinol-4-O-β-D-glucoside (77) and 

epipinoresinol-4-O-β-D-glucoside (78). Fractionation of the leaf material of E. 

maculata var. brevifolia afforded piceine (81) and epipinoresinol-4-O-β-D-glucoside 

(78). Quercetin (79) and nepetin (80) were isolated from the methanolic extracts of E. 

bignoniflora. 
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1.1  Overview 

 

This introduction covers a brief overview of the field of phytochemistry. An in-depth background to the 

three phytochemical investigations covered in this thesis is presented at the beginning of the relevant 

section. 

 

1.1.1  Phytochemistry 

Phytochemistry or plant chemistry; 

“is concerned with the enormous variety of organic substances that are 

elaborated and accumulated by plants and deals with the chemical 

structures of these substances, their biosynthesis, turnover and 

metabolism, their natural distribution and their biological function 

(Harborne, 1998)."  
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It is estimated that worldwide there are over 328 640 species of plants (Raven et al., 

2005). Their sessile nature and lack of a sophisticated immune system has necessitated 

the development of complex chemical systems. Historically, the compounds produced 

by plants have been categorized into primary and secondary metabolites (Raven et al., 

2005). Compounds contributing to fundamental metabolism are termed primary 

metabolites. In contrast secondary metabolites are limited in their distribution; both 

throughout the plant and between different species (Raven et al., 2005). 

 

 Secondary metabolites were once thought to be waste compounds (Raven et al., 2005). 

Our understanding of the important in-planta function of many secondary metabolites is 

gradually expanding. It is being revealed that many of these secondary metabolites are 

potent bactericidal, repellent, or even toxic agents to pests and herbivores (Dewick, 

1997). Semiochemicals are relied on as a means of defense against pathogens and 

predators, as attractants to lure mobile creatures for fertilization and dissemination and 

also for aerial allelopathy (interplant communication). Volatile organic compounds and 

pigments are revealed to be attractive to insects that help with fertilization, or warning 

colors to defend against predators (Dewick, 1997), whilst other plant pigments can 

provide protection against environmental damage such as free radicals and UV 

radiation (Raven et al., 2005). Some secondary products perform signaling functions as 

plant hormones and pheromones. 

 

Plants produce an incredible array of secondary metabolites and many of these have 

been developed into economically important products including; oils, gums, resins, 

tannins, rubber, waxes, pigments, flavors, fragrances, surfactants, preservatives, 
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pesticides and pharmaceuticals (Raven et al., 2005). Plant secondary metabolites 

represent a tremendous resource for commerce. 

 

Phytochemists play a fundamental role in the chemical investigation of these plants. 

Phytochemical studies may be directed towards characterizing the chemical 

composition of complex essential oils or plant extracts. Phytochemical screening can 

assist taxonomic classification whilst bioassay guided studies can target and identify 

biologically active compounds in complex plant extracts (Harborne, 1998).  

 

1.1.2  Aims of the Project 

The overall objective of this study was to isolate and identify biologically active 

compounds from endemic Australian plants. The work presented in this thesis has been 

directed by commercial interest and is divided in to three sections. The first deals with 

the bioassay guided isolation and identification of antioxidant and anti-inflammatory 

compounds from Centipeda cunninghamii. The second section deals with the 

exploration and characterization of the termiticidal properties of Eremophila mitchellii. 

The final section of this thesis details the phytochemical and cytotoxicity investigation 

of extracts from the genus Eremophila. 
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2.1  General Experimental Procedures 
 
 
2.1.1  Extraction Techniques  

Unless specified the dried plant material was ground in a Waring blender and then 

extracted in the specified solvents by steeping overnight at room temperature. The 

resulting extracts were then filtered through a glass frit (Pore 3) and evaporated to 

dryness on a rotary evaporator. The preliminary screening of each plant was performed 

by LC-MS. MilliQ (MQ) water and HPLC grade solvents were employed throughout 

the course of this research. 

 

2.1.2  Chromatographic Techniques 

Detailed information for the HPLC, GC-MS and LC-MS parameters are included in 

Appendix I.  
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2.1.2.1  Liquid Chromatography – Mass Spectrometry (LC-MS)  

Samples were suspended in a suitable solvent and analysed at a concentration of 5-10 

mg/mL for crude extracts and 1 mg/mL for pure compounds with an injection volume 

of 10 μL. The LC-MS system used was an Agilent 1100 Series with binary pump and 

auto sampler/auto injector. The operation of the LC-MS system was controlled by HP 

Chemstation software. The column used was a Phenomenex Aqua C18 (125 A, 5 μ, 150 

x 4.6 mm I.D) operating at 40°C. Gradient elution was carried out using MQ Water and 

acetonitrile with 0.005% trifluoroacetic acid (TFA) and a flow rate of 1.0 mL/min. An 

Agilent photodiode array detector (#G1315B) was used for monitoring absorbance (210 

nm, 238 nm, 254 nm, 280 nm and 360 nm). Unless specified an Agilent SL1100 series 

mass spectrometer detector (#G1946D) was used in atmospheric pressure chemical 

ionisation (APCI) mode with an ionisation voltage of 150 eV and a scanning range of 

100-1200 a.m.u.   

 
2.1.2.2  Gas Chromatography - Mass Spectrometry (GC-MS)  

The GC-MS system used was an Agilent GC-MSD system (Agilent Technologies 

6890/5973) with helium as the carrier gas at a constant linear velocity of 33 cm/s. The 

transfer, source and quadrupole temperatures were 280°C, 230°C and 150°C 

respectively, operating at 70 eV ionisation energy. Unless specified, the column used 

was an SGE Ltd. BPX5 capillary column (50.0 m x 0.22 mm ID x 1μm film thickness) 

programmed from 50˚C to 300˚C at 8˚/min. Composition values were recorded as 

percentage area based on the total ion current chromatogram. Additional information 

for the GC-MS methods and their operating parameters are included in the appendix.  

   
 
2.1.2.3  Preparative High Performance Liquid Chromatography  

Fractionation of extracts was performed on a Gilson Preparative HPLC system 
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 employing a Gilson 322 binary pump system, a Gilson 156 UV-Vis dual wavelength 

detector set at 210 nm and 280 nm, and Gilson fraction collector (FC204). A C18 

column (Phenomenex Luna C18, 5 μm, 50 mm x 21.2 mm) was used for reverse phase 

(RP) separations and as specified, acetonitrile/water or methanol/water with or without 

TFA (0.05%) were used as the mobile phase. Normal phase (NP) separations were 

achieved using a silica column (Phenomenex Luna 5 μm Silica (2), 50 mm x 21.20 mm) 

utilizing a hexane/ethyl acetate gradient. Unless specified, the sample loading was 

between 50-100 mg/injection (RP) or 300-500 mg/injection (NP), the flow rate 

employed was 15 mL/min operating at ambient temperatures. The prep HPLC was 

interfaced with Gilson Unipoint v.3.0 software. Unless specified the fractions were 

dried using a rotation vacuum centrifuge (RVC) (Martin Christ, Germany) and 

combined as appropriate after verification by LC-MS. Detailed information for the 

HPLC methods and their mobile phase parameters are included in the relevant sections.  

 

2.1.3  Spectroscopic Techniques  

2.1.3.1  Nuclear Magnetic Resonance Spectroscopy 

NMR spectra were obtained on a Bruker Avance DRX-500. XWin NMR software was 

used to analyze the spectral data. The 1H NMR spectra were recorded at 500.13 MHz 

and the 13C NMR spectra at 125.77 MHz. The chemical shifts (δ) are expressed in parts 

per million (ppm) as δ values and the coupling constants (J) in Hertz (Hz). COSY, 

NOESY, HSQC HMBC and nOe diff experiments were acquired using the standard 

Bruker pulse programs. The experiments were performed in deuterated solvents, 

chemical shifts were calibrated relative to; the methanol solvent peak (1H δ 3.31 and 

13C δ 49.15 ppm), the DMSO solvent peak (1H δ 2.50 and 13C δ 39.51 ppm), the 

pyridine solvent peak (1H δ 8.74 and 13C δ 150.35 ppm), the acetone solvent peak (1H δ 
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2.05 and 13C δ 29.92 ppm), the chloroform solvent peak (1H δ 7.27 and 13C δ 77.23 

ppm).  

 

2.1.3.2  UV-Visible Spectroscopy  

The UV-Visible spectrum of selected compounds were obtained from a Unicam UV 4-

100 UV/Visible spectrophotometer. The light sources were deuterium and tungsten 

lamps. All samples were dissolved in HPLC grade solvents as specified in the text. 

 

2.1.3.3  IR Spectroscopy  

The IR spectrum of each compound was obtained from a Vector 33 IR-spectrometer 

(Bruker). The samples were prepared in KBr disc forms or liquid film on sodium 

chloride. The IR-spectrometer was operated at spectral range 4000-500 cm-1. 

 

2.1.3.4  Melting Points  

Melting points were determined by a Gallenkamp melting point apparatus and are 

uncorrected. 

 

2.1.3.5  Optical Rotations  

[α]D were performed by Kim Dastlick (IMB, University of Queensland) and 

determined using a Jasco P-1010 polarimeter fitted with a sodium lamp (589nm). 

Solvents, concentrations and temperatures are as specified in the text. Concentration c 

is in g/l00 mL; the units of the specific rotation are ° · mL · g−1 · dm−1. 

 
2.1.3.6  High Resolution Mass Spectrometry  

HR-MS analyses were performed by Chemical Analysis Laboratories (Bulleen, 

Victoria) using an LC-MS (Agilent G1313A) interfaced to a TOF MS (Agilent 
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G1969A) fitted with an APCI source (Agilent G1978A) scanning at a mass range of 50-

1100 a.m.u. The mobile phase consisted of 50% water (0.1% formic) and 50% 

methanol (0.1% formic) at a flow rate of 0.3 mL/min operating at ambient temperature. 

Nitrogen was used as the nebulising gas at a pressure of 10 psi and vaporiser 

temperature, drying gas flow and capillary voltage were set to 350°C, 4 mL/min, 3000 

V respectively. 

 
 
2.2   Experimental on Chemistry of C. cunninghamii  

2.2.1  Plant Material.  

Two collections of Centipeda cunninghamii were provided by Bioactives Ltd., on 

28/11/05 (5 Kg, CPR#050285) and on the 10/04/06 (5.0 Kg, CPR#060023). The dried 

milled aerial parts of Centipeda cunninghamii (CPR#050285) was used for all of the 

studies described in this thesis. 

 

2.2.2  Steam Distillation of C. cunninghammii Oil  

Whole, dried C. cunninghamii plant material (1.0 kg) was steam distilled for 24 hours 

in a 20 litre distillation flask fitted with an oil estimator.  An amber coloured oil (2.25 

mL, 0.21% yield, w/dry weight) was obtained. 

 

2.2.3  Characterisation of the Oil by Gas Chromatography 

The analytical GC-MS system used was an Agilent GC-MSD system (Agilent 

Technologies 6890/5973) with helium as the carrier gas at a constant linear velocity of 

28 cm/s. The transfer, source and quadrupole temperatures were 280°C, 230°C and 

150°C respectively, operating at 70 eV ionisation energy. The column used was an 

SGE Ltd. BPX5 capillary column (50.0 m x 0.22 mm ID x 1μm film thickness) 
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programmed from 50˚C to 300˚C at 4˚/min and a BP-20 column (50.0 m x 0.22 mm ID 

x 1μm film thickness) programmed from 50˚C to 260˚C at 4˚/min. Oil samples (20 µL) 

were diluted with acetone (1000 µL). The injection volume was 0.2 µL, the split ratio 

was 1:40 and the injector temperature was 280˚C. 

 

The analytical GC system used was a Hewlett Packard GC system (HP6890) fitted with 

an Agilent 7683 injector using the same instrument parameters as above and an FID 

detector temperature of 300˚C. The column used was an SGE Ltd. BPX5 capillary 

column (50.0 m x 0.22 mm ID x 1μm film thickness). Composition values were 

calculated as percentage area based on the FID chromatogram.  

 

Identification of the individual components was based on; (i) comparison with the mass 

spectra of authentic reference compounds where possible and by reference to 

WILEY275, NBS75K, and Adams terpene library (Adams, 2007): (ii) comparison of 

their retention indices (RI) on a BPX-5 (polar, 5% phenyl polysilphenylene-siloxane) 

and a BP-20 (polar, polyethylene glycol) column, calculated relative to the retention 

times of a series of C-8 to C-22 n-alkanes, with linear interpolation, with those of 

authentic compounds or literature data: (iii) by comparison of the MS, NMR and 

retention time data of the pure compounds isolated in this study.  

 

α-Pinene, β-pinene, p-cymene, 1,8-cineole and α-terpineol were obtained from Aldrich 

chemical Co. Inc. (Castle Hill, NSW). Terpinen-4-ol was identified by comparison of 

this compound in authentic tea tree oil (Melaleuca alternifolia, FPI Oils, Melbourne).  

Trans-β-caryophyllene was identified by comparison with this compound from betel 

leaf oil (Piper betle, FPI Oils, Melbourne). Myrtenyl acetate, myrtenal and myrtenol 
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were identified by comparison of these compounds from myrtle oil (Myrtus communis, 

FPI Oils, Melbourne). Thymol was identified by comparison with this compound from 

thyme oil (Thymus vulgaris, FPI Oils, Melbourne). Camphene and p-cymenene were 

identified by comparison of these compounds in angelica root oil (Angelica 

archangelica, FPI oils Melbourne). 

 

2.2.4  Preparative HPLC Fractionation 

The dried, ground C. cunninghamii (32.8 g) was extracted overnight at room 

temperature in 50% aqueous ethanol. The extract was filtered and evaporated under 

reduced pressure to yield a resinous, amber coloured extract (5.5 g, 16.8% yield). The 

crude extract was resuspended in MQ water (36 mL), methanol (4 mL) was added to 

improve solubility. The extract was then fractionated using reverse phase preparative 

HPLC (Figure 2.1). A mobile phase system of solvent A (MQ water with 0.05% TFA) 

and solvent B (acetonitrile with 0.05% TFA) was utilized for all of the isolation work. 

The eluent was a gradient of 10-95% B over 25 minutes at a flow rate of 15 mL/min. 

Fractions were collected in 1 minute intervals and fractions and/or compounds were 

recovered from the eluent by rotary evaporation. Preparative HPLC steps were repeated 

until adequate quantities (ca. ≥ 20 mg) of pure compounds were obtained for bioassay 

and structure elucidation. Fractions; 2, 11, 14, 16 and 17 were sub-fractionated to 

obtain pure compounds (Figure 2.1).  

 

Fraction 2 was sub-fractionated by RP prep-HPLC utilizing a gradient of 10-25% B 

over 15 min at a flow rate of 15 mL/min to afford pure compounds 12 and 13. 

Compounds 10 and 11 were further purified from fraction 11 by RP prep-HPLC 

utilizing a gradient of 20-40% B over 15 min at a flow rate of 15 mL/min. Compounds 
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14 and 15 were purified from fraction 14 utilizing the same HPLC parameters as 

fraction 11. Fractions 16 and 17 were combined and sub-fractionated by RP prep-HPLC 

to obtain pure compounds 6, 7, 8 and 9. The eluent composition was 40-75% B over 

16.4 min, followed by an isocratic gradient of 75% B for 3.6 min, at a flow rate of 15 

mL/min. 

 

An ethanolic extract of the floral parts was partitioned with hexane to afford an 

enriched fraction of the non-polar, PGE2 active compounds (Figure 2.2). The hexane 

and the ethanol partitions were then evaporated to dryness and subjected to RP-prep 

HPLC. Compounds 16, 17, 18 and 19 were obtained from RP prep-HPLC fractionation 

of the polar components, a gradient of 20-60% B over 20 min, followed by and 

isocratic gradient of 60% B for 3 min, at a flow rate of 15 mL/min was employed. 

Compounds 20, 21, and 23 were obtained from RP prep-HPLC fractionation of the non-

polar components, a gradient of 40-75% B over 16.4 min, followed by an isocratic 

gradient of 75% B for 3.6 min, then a gradient 75-90% B over 1 min, and finally an 

isocratic gradient of 90% B for 7 minutes, at a flow rate of 15 mL/min was utilized. 
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Centipetin-3-glucoside [(10), 2′,4′,5,7-Tetrahydroxy-6-methoxyflavone-3-O-β-

glucopyranoside]: Yellow powder (32.7 mg, 0.59%, not optimised); [α]D
21 -12.5° (c 

0.06, MeOH); 1H NMR (500 MHz, CD3OD) see Table 3.4; 13C NMR (126 MHz, 

CD3OD) see Table 3.4; (+)-LRAPCIMS m/z (rel. int.): 495 [M+H+, 100%], 333 (98), 

318 (24); (+)-HRAPCIMS m/z (rel. int.): 495.1142 calcd for C22H23O13, 495.1138 

[M+H]+ (100%), 333 (30). 

 

Myriogenic acid [(6), 4ξ,5ξ-Di-O-caffeoyl-2,6ξ-dihydroxyhept-2-ene-1,7-dioic 

acid): Colourless needles (33.5 mg, 0.61%, not optimised); [α]D
22 +46.2° (c 0.375, 

MeOH); 1H NMR (500 MHz, CD3OD) see Table 3.2; 13C NMR (126 MHz, CD3OD) 

see Table 3.2; (+)-LRAPCIMS m/z (rel. int.): 547 [M+H+, 13%], 546 (47), 350 (40), 

349 (92), 170 (8), 169 (91), 164 (14), 163 (100), 141 (20), 135 (34), 123 (35), 117 (12); 

(+)-HRAPCIMS m/z (rel. int.): 546.1248 calcd for C25H23O14, 547.1087 (Δ0.9839 

a.m.u.) [M+H+], (48%)  384 (25), 349 (100); 

 

Caffeic acid ethyl ester [(11), 3-(3,4-Dihydroxyphenyl)-2-propenoic ethyl ester]: 

Colourless powder (15.6 mg, 3.7%); 1H NMR (500 MHz, CD3OD): 7.53 (1H, d, J = 

15.9 Hz, H-3′), 7.03 (1H, d, J = 2.1 Hz, H-2), 6.95 (1H, dd, J = 2.1, 8.2 Hz, H-6), 6.78 

(1H, d, J = 8.2 Hz, H-5), 6.20 (1H, d, J = 15.9 Hz, H-2′), 4.22 (2H, q, J = 7.1 Hz, H-

1′′), 1.30 (3H, t, J = 7.1 Hz, H-2′′), Lit. (Gabriel, 2005); 13C NMR (126 MHz, CD3OD): 

169.5 (C, C-1′), 149.7 (C, C-4), 147 (C, C-3), 146.9 (CH, C-3′), 127.9 (C, C-1), 123 

(CH, C-6), 116.7 (CH, C-5), 115.5 (CH, C-2′), 115.3 (CH, C-2), 61.5 (CH2, C-1′′), 14.8 

(CH3, C-2′′), Lit. (Gabriel, 2005); (+)-LRAPCIMS m/z (rel. int.): 209 [M+H+, 66%, 

calcd for C11H13O4, 209.0814], 181 (29), 163 (100), 145 (5), 135 (32), 117 (11). 
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 Chlorogenic acid [(12), 3-O-Caffeoylquinic acid]: Transparent brown oil (24.2 mg, 

0.44%, not optimised); 1H NMR (500 MHz, CD3OD): 7.56 (1H, d, J = 16.0 Hz, H-3′), 

7.05 (1H, d, J = 2.0 Hz, H-5′), 6.95 (1H, dd, J = 2.0, 8.2 Hz, H-9′), 6.78 (1H, d, J = 8.2 

Hz, H-8′), 6.26 (1H, d, J = 16.0 Hz, H-2′), 5.33 (1H, ddd, J = 4.4, 8.6, 9.2 Hz, H-3), 

4.17 (1H, ddd, J = 3.3, 8.6, 5.3 Hz, H-5), 3.72 (1H, dd, J = 3.2, 8.6 Hz, H-4), 2.23 (1H, 

dd, J = 4.4, 13.3 Hz, H-2a), 2.18 (1H, dd, J = 3.3, 14.1 Hz, H-6a), 2.08 (1H, dd, J = 5.3, 

14.1 Hz, H-6b), 2.05 (1H, dd, J=13.3, 9.2 Hz, H-2b), Lit. (Cheminat et al., 1988); 13C 

NMR (126 MHz, CD3OD): 177.1 (C, C-7), 168.8 (C, C-1′), 149.7 (C, C-7′), 147.2 (CH, 

C-3′), 147.0 (C, C-6′), 128.0 (C, C-4′), 123.1 (CH, C-9′), 116.6 (CH, C-8′), 115.5 (CH, 

C-2′), 115.4 (CH, C-5′), 76.3 (C, C-1), 73.7 (CH, C-4), 72.1 (CH, C-3), 71.5 (CH, C-5), 

38.9 (CH2, C-2), 38.4 (CH2, C-6), Lit. (Lin et al., 1999); (+)-LRAPCIMS m/z (rel. int.): 

355 [M+H+, 24%, calcd for C16H19O9, 355.1029], 164 (9), 163 (100), 135 (18), 117 (8).  

 

Chlorogenic acid methyl ester [(13), 3-O-Caffeoylquinic acid methyl ester]: 

Transparent brown oil (15.2 mg, 0.28%, not optimised); 1H NMR (500 MHz, CD3OD): 

7.52 (1H, d, J = 15.9 Hz, H-3′), 7.04 (1H, d, J = 2.1 Hz, H-5′), 6.95 (1H, dd, J = 2.1, 8.2 

Hz, H-9′) 6.78 (1H, d, J = 8.2 Hz, H-8′), 6.21 (1H, d, J = 15.9 Hz, H-2′), 5.28 (1H, ddd, 

J = 4.4, 8.6, 9.2 Hz, H-3), 4.13 (1H, ddd, J = 3.2, 6.3, 8.1 Hz, H-5), 3.72 (1H, dd, J = 

3.2, 8.6 Hz, H-4), 3.70 (3H, s, 7-COOMe), 2.21 (1H, dd, J = 14.1, 4.4 Hz, H-2a), 2.14 

(1H, dd, J = 8.1, 13.5 Hz, H-6a), 2.05 (1H, dd, J = 14.1, 9.2 Hz, H-2b), 2.01 (1H, dd, J 

= 6.3, 13.5 Hz, H-6b), Lit. (Zhu et al., 2005a); 13C NMR (126 MHz, CD3OD): 175.6 

(C, C-7), 168.4 (C, C-1′), 149.8 (C, C-7′), 147.3 (CH, C-3′), 147.0 (C, C-6′), 127.8 (C, 

C-4′), 123.1 (CH, C-9′), 116.7 (CH, C-8′), 115.3 d (CH, C-5′), 115.2 d (CH, C-2′), 75.6 

(C, C-1), 72.7 (CH, C-4), 72.3 (CH, C-3), 70.5 (CH, C-5), 53.1 (C, 7-COOMe), 38.2 

(CH2, C-6), 38.0 (CH2, C-2), Lit. (Zhu et al., 2005a); (+)-LRAPCIMS m/z (rel. int.): 
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369 [M+H+, 42%, calcd for C17H21O9, 369.1185], 164 (12), 163 (100), 135 (17), 117 

(9). 

 

Isochlorogenic acid A [(14), 3,5-Di-O-caffeoylquinic acid]: Colourless powder (25.7 

mg, 0.47%, not optimised); 1H NMR (500 MHz, CD3OD) 7.62 (1H, d, J = 15.9 Hz, H-

3′), 7.57 (1H, d, J = 15.9 Hz, H-3′′), 7.07 (1H, d, J = 1.70 Hz, H-5′′), 7.07 (1H, d, J = 

1.7 Hz, H-5′), 6.98 (1H, dd, J = 1.7, 8.2 Hz, H-9′), 6.96 (1H, dd, J = 1.7, 8.2 Hz, H-9′′), 

6.78 (1H, d, J = 8.2 Hz, H-8′′), 6.78 (1H, d, J = 8.2 Hz, H-8′), 6.35 (1H, d, 15.9 Hz, H-

2′), 6.26 (1H, d, J = 15.9 Hz, H-2′′), 5.43 (1H, ddd J = 3.2, 3.9, 7.1 Hz, H-5), 5.38 (1H, 

m, H-3), 3.97 (1H, dd, J = 3.2, 7.4 Hz, H-4), 2.32 (1H, dd, J = 3.9, 13.8 Hz, H-6a), 2.25 

(2H, m, H-2), 2.17 (1H, dd, J = 7.1, 13.8 Hz, H-6b), Lit. (Kodoma et al., 1998); 13C 

NMR (126 MHz, CD3OD): 177.5 (C, C-7), 169.0 (C, C-1′′), 168.5 (C, C-1′), 149.8 (C, 

C-7′′), 149.7 (C, C-7′), 147.4 (CH, C-3′′), 147.2 (CH, C-3′), 147.0 (C, C-6′′), 147.0 (C, 

C-6′), 128.1 (C, C-4′′), 128.0 (C, C-4′), 123.2 (CH, C-9′′), 123.1 (CH, C-9′), 116.6 (CH, 

C-8′′), 116.6 (CH, C-8′), 115.8 (CH, C-2′′), 115.4 (CH, C-5′′), 115.3 (CH, C-5′), 115.3 

(CH, C-2′), 74.8 (C, C-1), 72.7 (CH, C-5), 72.3 (CH, C-3), 70.8 (CH, C-4), 38.0 (CH2, 

C-2), 36.1 (CH2, C-6), Lit. (Kodoma et al., 1998); (+)-LRAPCIMS m/z (rel. int.): 517 

[M+H+, 8%, calcd for C25H25O12, 517.1346], 500 (29), 499 (100), 163 (36), 135 (7). 

 

Macroantoin G [(15), 1,4-Dihydroxy-3R,5R-di-O-caffeoylquinic acid methyl ester]: 

Colourless powder (16.8 mg, 0.31%, not optimised); [α]D
22 -100.9° (c 0.25, MeOH); 

Lit. [α]D
25 -81° (c 1, MeOH), Zhang et al., 2000; 1H NMR (500 MHz, CD3OD) see 

Table 3.5. Lit. (Zhang et al., 2000); 13C NMR (126 MHz, CD3OD) see Table 3.5. Lit. 

(Zhang et al., 2000); (+)-LRAPCIMS m/z (rel. int.): 531 [M+H+, 8%], 513(100), 163 
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(24), 135 (5); (+)-HRAPCIMS m/z 531.1497 [M+H+, 100%] (calcd for C26H27O12, 

531.1502, ∆ 0.0005 a.m.u.), 513 (26), 391 (55). Lit. (Zhang et al., 2000).  

 

Myriogenic acid-7-methyl ester [(7), 4ξ,5ξ-Di-O-caffeoyl-2,6ξ-dihydroxyhept-2-

ene-1,7-dioic acid-7-methyl ester]: Transparent brown oil (40.6 mg, 0.74%, not 

optimised); [α]D
22 +20.6° (c 0.24, MeOH); 1H NMR (500 MHz, CD3OD) see Table 3.3; 

13C NMR (126 MHz, CD3OD) see Table 3.3; (+)-LRAPCIMS m/z (rel. int.): 561 

[M+H+, 22%], 560 (73), 364 (23), 363 (100), 183 (42), 163 (51), 155 (25), 135 (12), 

117 (5); (+)-HRAPCIMS m/z (rel. int.): 560.1399 calcd for C26H25O14, 561.1244, 

(Δ0.9845 a.m.u.), [M+H+] (100%), 391 (23), 363 (75), 349 (34). 

 

Myriogenic acid-1-methyl ester [(8), 4ξ,5ξ-Di-O-caffeoyl-2,6ξ-dihydroxyhept-2-

ene-1,7-dioic acid-1-methyl ester]: Tan spheres (19.7 mg, 0.36%, not optimised); 

[α]D
22 +22.6° (c 0.11, MeOH); 1H NMR (500 MHz, CD3OD) see Table 3.3; 13C NMR 

(126 MHz, CD3OD) see Table 3.3; (+)-LRAPCIMS m/z (rel. int.): 561 [M+H+, 30%], 

560 (100), 364 (31), 363 (60), 184, (12), 183 (100), 164 (10), 163 (90), 155 (18), 135 

(20), 123 (43), 117 (7); (+)-HRAPCIMS m/z (rel. int.): 560.1400 calcd for C26H25O14, 

561.1244, Δ0.9844 a.m.u.), [M+H+] (70%), 391 (100), 363 (64). 

 

Myriogenic acid dimethyl ester [(9), 4ξ,5ξ-Di-O-caffeoyl-2,6ξ-dihydroxyhept-2-

ene-1,7-dioic acid-dimethyl ester]: tan oil (39.1 mg, 0.71%, not optimised); [α]D
22 

+29.1° (c 0.395, MeOH); 1H NMR (500 MHz, CD3OD) see Table 3.3; 13C NMR (126 

MHz, CD3OD) see Table 3.3; (+)-LRAPCIMS m/z (rel. int.): 575 [M+H+, 31%], 574 

(96), 378 (27), 377 (100), 198 (12), 197 (99), 169 (42), 164 (6), 163 (49), 137 (7), 135 
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(12), 123 (10), 117 (6); (+)-HRAPCIMS m/z (rel. int.): 574.1559 calcd for C22H23O13, 

575.1400 (Δ0.9841 a.m.u.), [M+H+] (100%), 560 (12), 391 (19), 377 (66). 

 

Axillarin [(16), 3′,4′,5,7-Tetrahydroxy-3,6-dimethoxyflavone]: Yellow needles 

(ACN/H2O) (21.0 mg, 1.5%, not optimised); 1H NMR (500 MHz, CD3OD): δ 7.62 (1H, 

d, J = 2.2 Hz, H-2′), 7.53 (1H, dd, J = 2.2, 8.5 Hz, H-6′), 6.89 (1H, d, J = 8.5 Hz, H-5′), 

6.50 (1H, s, H-8), 3.88 (3H, s, 6-OCH3), 3.79 (3H, s, 3-OCH3), Lit. (Jefferies et al., 

1974);  13C NMR (126 MHz, CD3OD): δ 180.5 (C, C-4), 158.9 (C, C-7),158.3 (C, C-2), 

154.0 (C, C-5), 153.9 (C, C-9), 150.1 (C, C-4′), 146.6 (C, C-3′), 139.4 (C, C-3), 132.7 

(C, C-6), 123.1 (C, C-1′), 122.5 (CH, C-6′), 116.7 (C, C-5′), 116.6 (CH, C-2′), 106.5 (C, 

C-10), 95.1 (CH, C-8), 61.1 (CH3, C6-OMe), 60.5 (CH3, C3-OMe); (+)-LRAPCIMS 

m/z (rel. int.): 347 calcd for C17H15O8, 347.0767 [M+H+] (100%), 332 (9), 317 (5), 289 

(10).  

 

Isokaempferide [(17), 4′,5,7-Trihydroxy-3-methoxyflavone]: Yellow needles 

(ACN/H2O) (40.1 mg, as a 1:1 mixture of compound 12 and 13, 2.9%, not optimised); 

1H NMR (500 MHz, CD3OD): δ 7.98 (1H, d, J = 8.9 Hz, H-2′), 7.98 (1H, d, J = 8.9 Hz, 

H-6′), 6.92 (1H, d, J = 8.9 Hz, H-3′), 6.92 (1H, d, J = 8.9 Hz, H-5′), 6.40 (1H, d, J = 2.1 

Hz, H-6), 6.20 (1H, d, J = 2.1 Hz, H-8), 3.78 (3H, s, 3-OCH3), Lit. (Grouiller et al., 

1967); 13C NMR (126 MHz, CD3OD): δ 180.2 (C, C-4), 166.2 (C, C-7), 163.3 (C, C-5), 

161.9 (C, C-4′), 158.6 (C, C-9), 158.2 (C, C-2), 139.5 (C, C-3), 131.6 (CH, C-6′), 131.6 

(CH, C-2′), 122.8 (C, C-1′), 116.6 (CH, C-5′), 116.6 (CH, C-3′), 106.1 (C, C-10), 100.0 

(CH, C-6), 94.9 (CH, C-8), 60.7 (CH3, C3-OMe); (+)-LRAPCIMS m/z (rel. int.): 301, 

calcd for C16H13O6, 301.0712 [MH+] (100%).  
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4′,5,7-Trihydroxy-3,6-dimethoxyflavone (18): Yellow needles (ACN/H2O); 1H NMR 

(500 MHz, CD3OD): δ 7.98 (1H, d, J = 8.9 Hz, H-6′), 7.98 (1H, d, J = 8.9 Hz, H-2′), 

6.92 (1H, d, J = 8.9 Hz, H-5′), 6.92 (1H, d, J = 8.9 Hz, H-3′), 6.51 (1H, s, H-8), 3.88 

(3H, s, 6-OCH3), 3.78 (3H, s, 3-OCH3), Lit. (Herz et al., 1975);  13C NMR (126 MHz, 

CD3OD): δ 180.5 (C, C-4), 161.9 (C, C-4′), 159.1 (C, C-9), 158.3 (C, C-5), 158.2 (C, 

C-2), 154.0 (C, C-7), 139.5 (C, C-3), 132.6 (C, C-6), 131.6 (CH, C-6′), 131.6 (CH, C-

2′), 122.8 (C, C-1′), 116.6 (CH, C-5′), 116.6 (CH, C-3′), 106.5 (C, C-10), 95.2 (CH, C-

8), 61.1 (CH3, C6-OMe), 60.7 (CH3, C3-OMe); (+)-LRAPCIMS m/z (rel. int): 331, 

calcd for C17H15O7, 331.0818 [MH+] (100%). 

 

Jaceidin [(19), 4′,5,7-Trihydroxy-3,3′,6-trimethoxyflavone]: Yellow needles 

(ACN/H2O) (23.8 mg, 1.7%, not optimised); 1H NMR (500 MHz, CD3OD): δ 7.71 (1H, 

d, J = 2.0 Hz, H-2′), 7.63 (1H, dd, J = 2.0, 8.4 Hz, H-6′), 6.94 (1H, d, J = 8.4 Hz, H-5′), 

6.53 (1H, s, H-8), 3.94 (3H, s, 3′-OCH3), 3.88 (3H, s, 6-OCH3), 3.80 (3H, s, 3-OCH3), 

Lit. (Roitman and James, 1985);  13C NMR (126 MHz, CD3OD): δ 180.5 (C, C-4), 

158.9 (C, C-7), 158.1 (C, C-2), 153.9 (C, C-5), 153.7 (C, C-9), 151.3 (C, C-4′), 149.1 

(C, C-3′),139.5 (C, C-3), 132.8 (C, C-6), 123.9 (CH, C-6′), 123.1 (C, C-1′), 116.0 (CH, 

C-5′), 113.1 (CH, C-2′), 106.5 (C, C-10), 95.2 (CH, C-8), 61.1 (CH3, C6-OMe),  60.8 

(CH3, C3-OMe), 56.7 (CH3, C3′-OMe); (+)-LRAPCIMS m/z (rel. int.): 361 [M+H+, 

100%, calcd for C18H17O8, 361.0923], 346 (7), 303 (7). 

 

Arnicolide C [(20), 6-O-(2-Methylpropanoyl)-4-oxo-2-pseudoguaien-12,8-olide]: 

Colourless crystals (ACN/H2O) (68.2 mg, 2.4%, not optimised); [α]D
22 -81.7° (c 0.42, 

MeOH); [α]D
20

 -91.1 (c 0.25, MeOH), Lit.(Poplawski et al., 1971); 1H NMR (500 MHz, 

CD3OD): δ 7.89 (1H, dd, J = 1.8, 6.1 Hz, H-2), 6.05 (1H, dd, J = 3.1, 6.1 Hz, H-3), 5.40 
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(1H, s, H-6), 4.86 (1H, dt, J = 6.1, 1.9 Hz, H-8), 3.26 (1H, dq, J = 7.5, 7.5 Hz, H-11), 

3.12 (1H, ddd, J = 2.5, 10.8 Hz, H-1), 2.88 (1H, dd, J = 7.5, 10.1 Hz, H-7), 2.46 (1H, 

ddd, J = 2.3, 5.9, 15.5 Hz, H-9a), 2.42 (1H, septet, J = 7.1 Hz, H-2′), 2.17 (1H, m, H-

10), 1.72 (1H, ddd, J = 1.9, 11.5, 15.5 Hz, H-9b), 1.44 (3H, d, J = 7.5 Hz, H-13), 1.26 

(3H, d, J = 6.7 Hz, H-14), 1.06 (3H, d, J = 7.1 Hz, 2′-CH3), 1.02 (3H, d, J = 7.1 Hz, H-

3′), 1.00 (3H, s, H-15), Lit. (Poplawski et al., 1971);  13C NMR (126 MHz, CD3OD): δ 

212.5 (C, C-4), 181.7 (C, C-12), 177.1 (C, C-1′), 165.4 (CH, C-2), 130.1 (CH, C-3), 

81.6 (CH, C-8), 73.1 (CH, C-6), 55.9 (C, C-5), 55.7 (CH, C-1), 50.4 (CH, C-7), 42.0 

(CH2, C-9), 41.6 (CH, C-11), 35.3 (CH, C-2′), 27.3 (CH, C-10), 20.1 (CH3, C-14), 19.4 

(CH3, C-3′), 19.0 (CH3, 2′-CH3), 18.3 (CH3, C-15), 11.3 (CH3, C-13); (+)-LRAPCIMS 

m/z (rel. int.): 335 calcd for C19H27O5, 335.1859, [M+H+] (18%), 247 (100), 203 (37), 

201 (37), 199 (18), 173 (18), 150 (7), 145 (9), 128 (5), 115 (6), 105 (7). 

 

(3R,4S,5S,8S,10R,13R)-3-Hydroxykaura-9(11),16-dien-18-oic acid (21): Colourless 

needles (ACN/H2O) (26.5 mg, 1.0%, not optimised); [α]D
22 +30.8° (c 0.12, MeOH); 1H 

NMR (500 MHz, CD3OD): δ 5.26 (1H, t, J = 3.3 Hz, H-11), 4.89 (1H, d, J = 1.1 Hz, H-

17a), 4.77 (1H, br s, H-17b), 3.17 (1H, dd, J = 4.4, 12.1 Hz, H-3), 2.74 (1H, br s, H-13), 

2.61 (1H, br d, J = 14.8 Hz, H-15a), 2.44 - 2.40 (1H, m, H-12a), 2.41 - 2.35 (1H, m, H-

6a), 2.29 - 2.16 (1H, m, H-2a), 2.20 - 2.16 (1H, m, H-15b), 2.04 (1H, m, H-1a), 1.99 - 

1.95 (1H, m. H-7a), 1.99 - 1.95 (1H, m, H-12b), 1.93 – 1.85 (1H, m, H-6b), 1.68 - 1.74 

(1H, m, H-2b), 1.65 – 1.62 (1H, m, H-5), 1.63 - 1.60 (1H, m, H-14a), 1.51 - 1.47 (1H, 

m, H-7b), 1.51 - 1.47 (1H, m, H-14b), 1.38 - 1.32 (1H, m, H-1b), 1.36 (3H, s, H-18), 

1.10 (3H, s, H-20), Lit. (methyl ester derivative, Bohlmann et al., 1982);  13C NMR 

(126 MHz, CD3OD): δ 180.1 (C, C-19), 159.6 (C, C-16), 157.3 (C, C-9), 116.3 (CH, C-

11), 106.2 (CH2, C-17), 79.4 (CH, C-3), 51.5 (CH2, C-15), 51.3 (C, C-4), 47.0 (CH, C-
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5), 46.2 (CH2, C-14), 43.6 (C, C-8), 42.8 (CH, C-13), 40.4 (CH2, C-1), 39.7 (C, C-10), 

39.1 (CH2, C-12), 31.0 (CH2, C-7), 29.9 (CH2, C-2), 24.6 (CH3, C-18), 24.4 (CH3, C-

20), 19.8 (CH2, C-6); (+)-LRAPCIMS m/z (rel. int.): 316 [M+H+, 0%], 299 (100), 271 

(59), 253 (93), 225 (6); (+)-HRAPCIMS m/z (rel. int): 317.2109 calcd for C20H29O3, 

317.2118 (Δ0.0009 a.m.u.). 

 

8-Hydroxy-9,10-diisobutyryloxythymol (23): Colourless needles (ACN/H2O) (18.2 

mg, 0.7%, not optimised); 1H NMR (500 MHz, CD3OD): δ 7.21 (1H, d, J = 8.0 Hz, H-

5), 6.65 (1H, br d, J = 8.0 Hz, H-6), 6.60 (1H,br s, H-2), 4.54 (1H, d, J = 11.3 Hz, H-

9b), 4.54 (1H, d, J = 11.3 Hz, H-10b), 4.44 (1H, d, J = 11.3 Hz, H-9a), 4.44 (1H, d, J = 

11.3 Hz, H-10a), 2.51 (2H, septet, J = 7.0 Hz, H-2′, H-2′′), 2.24 (3H, s, H-7), 1.09 (3H, 

s, H-3′′), 1.07 (3H, s, H-3′), 1.06 (3H, s, 3′′-CH3), 1.05 (3H, s, 3′-CH3), Lit. (Mossa et 

al., 1997);  13C NMR (126 MHz, CD3OD): δ 178.4 (C, C-1′′), 178.4 (C, C-1′), 156.3 (C, 

C-3), 140.5 (C, C-1), 128.8 (CH, C-5), 123.5 (C, C-4), 121.3 (CH, C-6), 118.0 (CH, C-

2), 77.3 (C, C-8), 68.3 (CH2, C-9), 68.3 (CH2, C-10), 35.3 (CH, C-2′′), 35.3 (CH, C-2′), 

21.1 (CH3, C-7), 19.4 (CH3, 3′-CH3), 19.4 (CH3, 3′′-CH3), 19.3 (CH3, C-3′′), 19.3 

(CH3, C-3′); (+)-LRAPCIMS m/z (rel. int.): 321 calcd for C18H25O5, 321.17025, [M-

H2O+] (44%), 145 (100). 

 

2.3   Experimental on Bioactivity of C. cunninghamii 

2.3.1  Preparation of C. cunninghamii Extracts  

Four different solvent extracts of C. cunninghamii (CPR# 050285) were prepared. The 

dried plant material was ground in a Waring blender and then extracted by steeping 

overnight at room temperature. A boiled extract was prepared by boiling the sample in 

water for 1 hour. The resulting extracts were then filtered through a glass frit and 
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evaporated to dryness on a rotary evaporator. A description of the extracts and yields is 

listed in Table 2.1. 

 
Table 2.1. C. cunninghamii solvent extracts and yields. 
 

Extract Solvent 
Mass 

sample 
Volume 
solvent 

Yield of 
extract 

1 100% aqueous 25.2 g 250 mL 4.1 g 
2 50% aqueous-ethanol 25.2 g 250 mL 3.8 g 
3 100% ethanol 27.1 g 250 mL 1.2 g 
4 100% aqueous (100°C) 25.8 g 250 mL 4.6 g 

 
 
2.3.2  Solid Phase Extraction (SPE)  

The crude 50% aqueous ethanol extract was partitioned into four fractions using reverse 

phase SPE columns (Supelco, 60 mL, 10g Supelclean LC-18). SPE columns were first 

preconditioned with 6-10 bed volumes (BV) of methanol and then equilibrated using 6-

10 BV of water. The sample (500 mg) was first dissolved in 1 BV of the starting mobile 

phase and loaded onto the SPE column. The sample was then eluted with 

water/acetonitrile (ACN) using a stepwise gradient (Table 2.2).  

 
Table 2.2. Solid phase extraction fractionation parameters. 
 

Fraction Solvent Volume 
1 100% Water 60 mL 
2 20% ACN/Water 60 mL 
3 40% ACN/Water 60 mL 
4 100% ACN 60 mL 

 
 
2.3.3  Preparative HPLC Fractionation  

The crude 50% aqueous ethanol extract of C. cunninghamii was fractionated by RP 

prep-HPLC. The eluent was a gradient of 10-90% B over 25 minutes, followed by an 

isocratic gradient of 90% B for 3 min, at a flow rate of 15 mL/min. Fractions were 

collected in 1 minute intervals and fractions and/or compounds were recovered from 

the eluent by rotary evaporation. All of the SPE fractions were further fractionated by 
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RP prep HPLC. A mobile phase gradient of 10-36% B over 12 min at a flow rate of 20 

mL/min was utilized to fractionate SPE fraction 2. A mobile phase gradient of 10-60% 

B over 20 min at a flow rate of 20 mL/min was utilized to fractionate SPE fraction 3. A 

mobile phase gradient of 40-80% B over 16 min at a flow rate of 20 mL/min was 

utilized to fractionate SPE fraction 4. Consecutive fractions which produced low yields 

were combined for the purpose of bioassay evaluation. 

 

2.3.4  Oxygen Radical Absorbance Capacity (ORAC)  

The antioxidant assays on C. cunninghamii extracts and compounds (Chapter 4) were 

performed by the staff at the Centre for Phytochemistry and Pharmacology (Southern 

Cross University). The ORAC assay employed in this study measured the antioxidant 

scavenging activity of the test samples, against peroxyl radicals induced by 2,2′-

azobis(2-methylpropionamidine) dihydrochloride (AAPH, Wako: 01711062) at 37 ºC, 

fluorescein (Aldrich: 166308) was used as the fluorescent probe. The method used is 

based on that of Huang et al. (2002a); Huang et al. (2002b) and Prior et al. (2003).  

 

All samples were assayed using the hydrophilic ORAC procedure in four-fold serial 

dilution with AWA (acetone: water: acetic acid; 70: 29.5: 0.5), and in quadruplicate, 

starting with a concentration relevant to the sample. Initial sample concentration was 

selected based on the approximated antioxidant capacity observed from a preliminary 

screen. 

 

Trolox, a water soluble analogue of vitamin E, was used as a reference standard. A 

trolox standard curve was established from trolox (Aldrich: 23881-3) standards 

prepared at 100, 50, 25, and 12.5 μM in AWA. Butylated hydroxytoluene (BHT, 
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Sigma-Aldrich: B-1378) was used as a positive control, and was assayed at 500, 250, 

125, and 62.5 μM. 

 

Ten μL fluorescein (6.0 × 10-7 M), 20 μL samples/standards/control/blank (A:W:A) and 

170 μL AAPH (20 mM) were introduced into each well. Immediately after loading, the 

plate was transferred to the plate reader preset to 37 ºC, and the fluorescence was 

measured 35 times at one minute intervals. The fluorescence readings were referenced 

to solvent blank wells. The final ORAC values were calculated using a regression 

equation between the trolox concentration and the net area under the fluorescein decay 

curve, and where possible were expressed as trolox equivalents (TE) in μmol/g of 

sample. 

 

2.3.5  Inhibition of Prostaglandin E2 Production (PGE2)  

The anti-inflammatory activity of the test sample is measured by its ability to inhibit 

the ionophore-induced production of PGE2 by cells. In this assay a suspension of 

murine swiss albino fibroblast cell (NIH 3T3, Sigma-Aldrich, Castle Hill, NSW: 

93061524)consisting of phenol-red free DMEM with 10% FBS and 2mM L-glutamine 

was plated out into 96-well tissue culture plates (1 × 105 cells/mL, 100 μL/well). The 

cells were cultured overnight at 37 ºC in 5% CO2. The extracts and fractions were 

solubilised in DMSO, and diluted appropriately with media so that the extracts were 

tested at a final concentration of 1000, 100, and 10 μg/mL. Five μL of sample was 

added to each well and tests were performed in triplicate. The cells and samples were 

incubated (37 ºC, 3 hours) before the addition of calcium ionophore A23187 (Sigma-

Aldrich: C-7522). Following 20 min incubation, the plate was centrifuged (1000 RCF, 

3 min) and the supernatants were removed. A positive control aspirin (100 μM, Sigma: 
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A-5376), and DMSO control, both with and without calcium ionophore A23187 were 

included on the plate. 

 

The supernatants were diluted by serial dilution (1:500) in enzyme immunoassay (EIA) 

buffer, and assayed for PGE2 using the Prostaglandin E2 EIA Monoclonal Kit (Cayman 

Chemical: 514010), according to manufacturer's instructions. 

 

2.3.6  Inhibition of Cyclooxygenase (COX) Gene Expression  

The method employed in this experiment detects the intracellular cyclooxygenases 

(COX-1 & COX-2) in human whole blood monocytes and is adapted from published 

methods (Ruitenberg and Waters, 2003). A dried 50% aqueous ethanol extract was 

reconstituted in DMSO, to provide concentrations of 100, 10 and 1 mg/mL. Aliquots of 

fresh whole human blood were pre-incubated with each extract dilution (final 

concentrations of 1000, 100 and 10 μg/mL) for two hours at 37 °C. Lipopolysaccharide 

(LPS, Sigma-Aldrich: L-3880) was then added to each aliquot (except unstimulated 

controls) for a final LPS concentration of 0.01 μg/mL and then incubated for a further 

two hours at 37°C. Unstimulated, untreated, dexamethasone (Sigma-Aldrich: D-4902) 

(positive inhibitor), and solvent (DMSO) controls were also included. 

 

Samples from each aliquot were then stained with CD14 (monocyte marker) 

monoclonal antibody (mAb) then subsequently stained intracellularly with COX-2 

mAb. The percentage of monocytes expressing COX-1 and COX-2 was then 

determined using a FACSCalibur flow cytometry instrument (BD Biosciences). Testing 

was performed in duplicate. 
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2.3.7  Inhibition of Cyclooxygenase (COX) Enzyme Activity  

The influence of a 50% aqueous ethanol extract on cyclooxygenase (COX) activity was 

 measured using a commercial COX inhibitor screening assay (Cayman Chemical:  

560131). The COX inhibitor screening assay directly measures PGF2α produced by 

SnCl2 reduction of COX-derived PGH2. The prostanoid product is quantified using an 

enzyme immunoassay with a broadly specific antibody that binds to all the major 

prostaglandin compounds. 

 

Separate reactions were performed to measure the influence of the extract on COX-1 

and COX-2. Both reactions were carried out on the sample, in duplicate. The extract 

was solubilised in DMSO to obtain test concentrations of 60  and 6.0 mg/mL. A 20 μL 

aliquot of each dilution was included with the COX reactions, providing a final 

concentration of 1000 and 100 μg/mL. These COX reactions and the EIA were carried 

out according to the manufacturer’s instructions. 

 

Ibuprofen (Cayman Chemical: 70280) (85 μM; 18 μg/mL) was included as a positive 

control for COX-1 inhibition, and Celebrex (Cayman Chemical: 10008005) (40 μM; 

15.3 μg/mL) was included as a positive control for COX-2 inhibition. 

 

2.3.8  Inhibition of Lipoxygenase (LO) Activity  

The influence of the 50% aqueous ethanol extract on lipoxygenase (LO) activity was 

measured using a commercial LO inhibitor screening assay (Cayman Chemical: 

760700). Lipoxygenases catalyze the addition of molecular oxygen to fatty acids. 

Lipoxygenase inhibition was determined by measuring the hydroperoxides produced in 

the lipoxygenation reaction, using purified 5-lipoxygenase (potato) enzyme. Linoleic 
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acid (Sigma: L-1268) was used as the substrate for 5-LO, as per the manufacturer’s 

recommendation. 

Serial dilutions were performed using the extract solubilised at 21 μg/mL in DMSO, 

which provided the final concentrations of; 1000, 100, and 10 μg/mL in the well. Each 

concentration was tested in triplicate. Nordihydroguaiaretic acid (Cayman Chemical: 

70300) (NDGA) was included as a positive control for lipoxygenase inhibition at a final 

concentration of 50 μM (14 μg/mL). The lipoxygenase inhibitor screening assay was 

carried out according to the manufacturer’s instructions. 

 

2.3.9  Inhibition of Nitric Oxide (NO) Production  

NO was measured using a nitrate/nitrite fluorometric assay kit (Cayman Chemical: No. 

780051). The final products of NO are nitrite (NO2
-) and nitrate (NO3

-), and the 

proportion of each is variable and relatively unpredictable. Therefore, this assay 

measures the total NO production as the sum of nitrates and nitrites. The assay was 

carried out according to manufacturer’s instructions. 

 

RAW 264 cells (ECACC: 85062803) were routinely cultured in Dulbecco’s modified 

eagle medium (DMEM) with 10% foetal bovine serum (FBS) and 2 mM L-glutamine, 

at 37ºC and 5% CO2. Cell culturing media was purchased from Invitrogen, Mt 

Waverley, VIC. RAW 264 cells were plated out at a concentration of 1 × 106 cells/mL 

(100 μL/well), in the above media but without phenol red indicator. Cells were allowed 

to attach overnight before sample addition. The 50% aqueous ethanol extract was tested 

in triplicate in the presence and absence of lipopolysaccharide (LPS; from E. coli 

serotype 0127:B8). The presence of LPS stimulates NO production. After 1 h pre-

incubation with the samples (15 μL; final concentration of 130, 13, and 1.3 μg/mL and 
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solvent controls), LPS (0.05 μg/mL) was added to the appropriate wells, and the cells 

were incubated for a further 20 h (37ºC, 5% CO2). Supernatants were collected 

following centrifugation (1500 RCF, 3 min), and the concentration of NO was 

determined by fluorometry using a Victor2 plate reader. 

 

2.3.10  Inhibition of Tumor Necrosis Factor-α (TNF-α) Production  

Raw 264 cells were prepared as described above. Once plated, cells were allowed to 

attach overnight before sample addition. The 50% aqueous ethanol extract was tested in 

triplicate in the presence and absence of lipopolysaccharide (LPS; from E. coli serotype 

0127:B8). The presence of LPS stimulates TNF-α production. Solvent control wells 

were also included. After 1 h pre-incubation with the samples (15 μL; final 

concentrations of 130, 13, and 1.3 μg/mL), LPS (0.05 μg/mL) was added to the 

appropriate wells, and cells were further incubated for 20 h (37ºC, 5% CO2). 

Supernatants were collected following centrifugation (1500 RCF, 3 min), and used to 

measure the concentration of TNF-α. The supernatants were frozen (-80ºC) to measure 

TNF-α concentration at a later time. 

 

The levels of TNF-α were determined using an Quantikine Mouse TNF-α immunoassay 

(R&D Systems: MTA00). The assay was carried out according to the manufacturer’s 

instructions. 

 

2.3.11  Inhibitory Concentration at 50% (IC50) Determination  

Linear regression between % INH and log concentration of each compound was 

calculated using SPSS software. Percentage inhibition (% INH) was calculated by 

formula; 
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 % INH = 1   -     LS-LI      x  100 

                LC-LI 

 

 LS = Luminescence count from well contains tested sample 

 LI = Luminescence count from well with maximum inhibition 

 LC = Luminescence count from DMSO control (average)  

 

2.4   Experimental on Chemistry of E. mitchellii 

2.4.1  Plant Materials  

Wood and root materials (Refer to Section 2.5.2 for collection details) were ground 

using a Retsch cutting mill (Retsch GmbH, Haan, Germany: SM 100).  

 

2.4.2  Steam Distillation of E. mitchellii Oils  
 
Steam distillation of E. mitchellii plant parts was carried out using approximately 500 g 

of the dried plant material. Whole leaf material and ground wood, root and bark 

material was steam distilled for 48 h in a 5 L distillation flask that was fitted with a 

modified Cocking and Middleton trap. A description of the oils and yields are presented 

in Table 2.3.  

 
 
Table 2.3. Details of the steam distillation of E. mitchellii - different plant parts.  
   
 

Plant part† 
Mass plant
 material Yield Description 

leaf 500 g 7.1 mL black-green oil 
twigs 500 g 0.2 mL dark amber oil, d ≥ 1.0 
roots 766 g 2.0 mL dark amber oil, d ≥ 1.0 
bark 392 g yielded no oil - 
red heart wood 647 g 14.3 mL dark amber oil, d ≥ 1.0  
white outer wood 472 g yielded no oil - 

d = density; † E. mitchellii Specimen # PIF 30486. 
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2.4.3 Characterisation of the Oil by Gas Chromatography  

GC-MS analysis of the oil was undertaken using the same methodology described in 

section 2.2.3. 

 

α-Pinene, β-pinene, p-cymene, limonene, linalool, α-terpineol and eugenol were 

obtained from Aldrich chemical Co. Inc. (Milwaukee, WI); α-phellandrene, α-

terpinolene, viridiflorene (ledene), globulol and α-bisabolol were obtained from Fluka 

Chemie (Buchs, Switzerland); aromadendrene was obtained from Sigma-Aldrich 

(Castle Hill, NSW). Epiglobulol, viridiflorol and δ-cadinene were identified by 

comparison with these componds in authentic tea tree oil (Melaleuca alternifolia. FPI 

Oils, Melbourne). Elemol, α- and β-eudesmol and α- and β-selinene were identified by 

comparison with these compounds from celery seed oil (Apium graveolens, Auroma, 

Melbourne). Cadina-1,4-diene, β-phellandrene and trans-β-caryophyllene were 

identified by comparison with these compounds from betel leaf oil (Piper betle, FPI 

Oils, Melbourne). β-Elemene was identified by comparison with this compound from 

myrrh oil (Commiphora myrrha, FPI Oils, Melbourne). Spathulenol was identified by 

comparison with this compound from angelica root oil (Angelica archangelica, FPI 

Oils, Melbourne).  

 

2.4.4  Normal Phase Fractionation of E. mitchellii Wood Oil  

Fractionation of the oil was achieved using normal phase preparative HPLC employing 

a hexane/ethyl acetate gradient (EREMO4 method) (Figure 2.3). The wood oil 

(CP020173) was fractionated in this way on three occasions to generate fractions for 

testing against two spotted mites, termites and to generate pure compounds for LD50 

and LD95 determination on termites. The eluent gradient was 5-40% EtOAc over 20 
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min, at a flow rate of 20 mL/min. A more efficient, silica column chromatographic 

method was developed for large scale fractionation of the oil (Figure 2.4).  

 

Normal phase prep HPLC fraction 3 was sub-fractionated by PR prep-HPLC utilizing a 

gradient of 40-70% B over 15 min, followed by an isocratic gradient of 70% B for 5 

min, then a gradient of 70-90% B over 5 min, at a flow rate of 15 mL/min to afford 

pure compound 36. Compound 35 was further purified from NP prep-HPLC fraction 5 

by recrystallising from MeOH. Compounds 30 and 42 were purified from NP prep-

HPLC fraction 4 by RP prep-HPLC utilizing two preparative columns in tandem and an 

isocratic gradient of 70% MeOH/H2O over 55 min at a flow rate of 15 mL/min. 

Compounds 42 and 32 were purified from NP prep-HPLC fraction 6, utilizing a 

gradient of 10-90% B over 25 min, and a flow rate of 15 mL/min. NP prep fractions 8 

and 9 were combined and sub-fractionated by RP prep-HPLC to obtain pure compound 

33. The eluent composition used was 40-70% B over 15 min, followed by an isocratic 

gradient of 70% B for 5 min, then a gradient of 70-90% B, at a flow rate of 15 mL/min. 

 

2.4.5  Reverse Phase Fractionation of E. mitchellii Wood Oil  

Fractionation of the oil was achieved using reverse phase preparative HPLC employing 

a water/acetonitrile gradient (Figure 2.5). Compounds were recovered from the eluent 

by rotary evaporation. A mobile phase system of solvent A (MQ water with 0.05% 

TFA) and solvent B (acetonitrile with 0.05% TFA) was utilized for the isolation work. 

The eluent was a gradient of 40-70% B over 15 min, followed by an isocratic gradient 

of 70% B for 5 min, then a gradient of 70-90% B over 5 min, at a flow rate of 15 

mL/min. Fractions were collected in 1 min intervals and fractions and/or compounds 

were recovered from the eluent by rotary evaporation.  
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2.4.6  Fractionation of E. mitchellii Root Oil  

The isolation scheme for fractionation of the root oil is summarized in Figure 2.6. The 

root oil (6.1 grams) was first fractionated by column chromatography on silica gel 

(0.063-0.200 mm, 3.5 cm diam., 300 mL bed volume (BV)). The column was first 

equilibrated with 3 BV of 100% pentane prior to sample loading. The column was first 

eluted with 600 mL of pentane to remove unwanted hydrocarbons. The column was 

then eluted with 2 x 400 mL of 9:1 pentane: diethyl ether (root oil fractions 1 and 2) 

followed by 2 x 400 mL of 100% diethyl ether (root oil fractions 3 and 4).  

 

The root oil fraction 1 (300 mg) was dissolved in ACN (ca. 2.0 mL) and subjected to 

C18 preparative HPLC using a gradient of 40-95% B over 15 min, followed by an 

isocratic gradient of 70% B for 5 min, then a gradient of 70-90% B over 5 min, at a 

flow rate of 15 mL/min (Figure 2.6). The three major peaks in the HPLC profile were 

selectively cut from the root fraction 1.  

 

To recover the volatile compounds from the aqueous solutions, each of the RP prep 

fractions (ca. 30 mL) was diluted up to 150 mL with MQ water, (a cloudy ppt. formed). 

The solutions were then passed through C18 SPE cartridges and then eluted with ACN 

(ca. 3 mL). The compounds were then dried under nitrogen and evaluated by GC-MS 

and LC-MS.  
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Normal phase Silica Gel 60 
column 270 mL BV 

Column diam. 3.5 cm x 28 cm 

E. mitchellii root 
steam distilled essential oil 

(6.1 g) 

3 step gradient: 0%→100%  
pentane in diethylether 
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KB40-95 method  
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F 3 
(0.070 g) 

F 1 
(0.008 g) 

F 2 
(0.012 g) 

 

 m/z 220 30 43  
 
 
 
Figure 2.6. Isolation scheme for sesquithuriferone (43) from the root oil of E. mitchellii. 
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Eremophilone [(30), 1(10),11-eremophiladien-9-one]: Colourless oil (90.9 mg, 

15.2%); [α]D
20 -78° (c 0.49, MeOH); [α]Hg -207 (MeOH) Lit.(Bradfield et al., 1932a); 

1H NMR (500 MHz, CDCl3) see Table 5.2; 13C NMR (126 MHz, CDCl3) see Table 5.2; 

EIMS (70eV) m/z (rel. int.): 218 (M·, 67), 203 (30), 185 (7), 176 (100), 161 (57), 147 

(39), 133 (73), 119 (58), 107 (82), 91 (89), 79 (88), 67 (38), 53 (33), 41 (69).  

 

Santalcamphor [(35), 8-hydroxy-11-eremophilen-9-one]: Colourless needless (95.9 

mg, 16.0%); mp 99-100°C; Lit. 102-103°C (Bradfield et al., 1932a); [α]D
20 +112° (c 

0.26, CHCl3); [α]D +90.6° (CHCl3) Lit. (Bradfield et al., 1932a); 1H NMR (500 MHz, 

CDCl3) see Table 5.2; 13C NMR (126 MHz, CDCl3) see Table 5.2; EIMS (70eV) m/z 

(rel. int.): 236 (M·, 29%), 221 (3), 207 (100), 189 (15), 179 (5), 167 (7), 149 (8), 135 

(10), 123 (40), 109 (56), 95 (39), 81 (35), 69 (74), 55 (44), 41 (50). 

 

9-Hydroxy-7(11),9-eremophiladien-8-one [(36), 2-Hydroxyeremophilone]: Yellow 

oil (267.6 mg, 44.6%); [α]D
20 +63° (c 2.13, MeOH); [α]D

25 +138° (c 2.59, MeOH); Lit. 

(Pinder and Torrence, 1971); 1H NMR (500 MHz, CDCl3) see Table 5.2; 13C NMR 

(126 MHz, CDCl3) see Table 5.2; EIMS (70eV) m/z (rel. int.): 234 (M·,73%), 219 (48), 

201 (25), 191 (57), 177 (43), 163 (100), 153 (91), 137 (42), 124 (12), 115 (19), 105 

(24), 91 (55), 77 (38), 67 (37), 55 (39), 41 (81). 

  

9-Hydroxy-1,7(11),9-eremophilatrien-8-one (42): Unstable yellow gum (2.2 mg, 

0.4% not optimised); [α]D
20 +31° (c 0.32, CHCl3); 1H NMR (500 MHz, CDCl3) see 

Table 5.3; 13C NMR (126 MHz, CDCl3) see Table 5.3; EIMS (70eV) m/z (rel. int.): 232 

(M·, 100%), 219 (45), 208 (3), 199 (53), 189 (36), 171 (18), 161 (19), 152 (4), 143 (12), 
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128 (14), 115 (19), 105 (16), 91 (39), 77 (27), 65 (15), 53 (15), 41 (36); HRAPCIMS 

m/z 233.1545 (calcd for [C15H21O2]+, 233.1542). 

 

8-Hydroxy-1,11-eremophiladien-9-one (33): Yellow oil (5.7 mg, 0.95%); [α]D
20 

+167° (c 0.14, CHCl3); [α]D
19 +59.3 (c 1.1) Lit. (Massy-Westropp and Reynolds, 1966); 

1H NMR (500 MHz, CDCl3) see Table 5.3; 13C NMR (126 MHz, CDCl3) see Table 5.3; 

EIMS (70eV) m/z (rel. int.): 234 (M·, 9%), 216 (5), 207 (15), 191 (10), 173 (14), 159 

(6), 150 (16), 137 (14), 121 (24), 107 (93), 93 (100), 77 (52), 67 (40), 55 (38).  

 

Sesquithuriferone [(43), 2,6,6,8-Tetramethyltricyclo[6.2.1.01,5]undecan-7-one]: 

White powder (70 mg, 8.2%, not optimised); [α]D
20 +5.9° (c 1, CHCl3); [α]D

 +5.7° (c 1, 

CHCl3) Lit. Barrero et al., 2000.; 1H NMR (500 MHz, CDCl3) see Table 5.4; 13C NMR 

(126 MHz, CDCl3) see Table 5.4; EIMS (70eV) m/z (rel. int.): 220 (M·, 35%), 205 (7), 

192 (30), 177 (12), 159 (2), 147 (25), 136 (16), 121 (100), 108 (46), 93 (26), 81 (67), 67 

(16), 55 (17), 41 (29). 

  

8-Hydroxy-10,11-eremophiladien-9-one (32): Yellow oil (47 mg, 0.7%, not 

optimised); [α]D
20-36° (c 0.22, MeOH); [α]D

20 -33.6° (c 0.84, MeOH) Lit. (Massy-

Westropp and Reynolds, 1966); 1H NMR (500 MHz, CDCl3) see Table 5.3; 13C NMR 

(126 MHz, CDCl3) see Table 5.3; EIMS (70eV) m/z (rel. int.): 234 (M·, 16%), 219 (10), 

205 (91), 191 (28), 177 (16), 163 (31), 149 (20), 137 (67), 121 (34), 109 (86), 91 (69), 

79 (62), 67 (55), 55(56), 41 (100). 

 

2.5  Experimental  on Bioactivity of E. mitchellii 

2.5.1 E. mitchellii Wood Oil Samples 
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The termiticidal, repellency and fumigant properties and barrier studies of the E. 

mitchellii wood oil were performed by Associate Professor Robert Spooner-Hart and Dr 

Albert Basta of the University of Western Sydney (Centre for Plant and Food Sciences) 

Hawkesbury. Assessment of the acute dermal toxicity IC50 and IC95 values was 

determined by the author in collaboration with staff at CPAFS, UWS. 

 

E. mitchellii wood oil and its fractions were tested in mode of action studies against the 

termite species. Two separate batches of steam distilled E. mitchellii wood oil, with 

similar chemical profiles, CP030102 and AP-778 were utilized. Fractions for testing 

were prepared from the wood oil by normal-phase preparative HPLC. The fractions and 

their compositions are presented in Table 2.4.  

 

Table 2.4. Fractions and isolated constituents of E. mitchellii used for the termiticidal 
assays. 
 
Fraction Major Component Purity %† 

   
BIF F1 Hydrocarbon fraction 46.2 
BIF F3  9-hydroxy-7(11),9-eremophiladien-8-one 80.8 
BIF F4  eremophilone 86.5 
BIF F5/6  santalcamphor 91.8 
BIF F8-10 8-hydroxy-1,11-eremophiladienone 86.2 
BIF F11-25 Non-volatile residue  
   

† Purity has been assessed on the basis of GC-MS quantitative analysis. 
 
 
2.5.2  Plant Materials  

Plant material was dried in a drying room (30°C) upone receipt and stored at room 

temperature prior to extraction or in-house steam distillation. Wood and root materials 

(Table 2.5) were ground using a Retsch cutting mill (Retsch GmbH, Haan, Germany: 

SM 100). The essential oils were stored at 4 °C. Commercially available vetiver oil was 

kindly provided by Australian Botanical Products. 
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2.5.3  Termites  

Termites for bioassay were field collected from several locations within the Sydney 

Basin. The two major species used in this study were Coptotermes acinaciformis 

(Froggatt), Nasutitermes walkeri (Hill) and Nasutitermes exitiosus (Hill). When 

required, termites were field collected and maintained in large plastic tubs (50 cm x 35 

cm x 30 cm high). The tubs were filled with their host timber food source, soil debris as 

well as stakes of Pinus radiata and kept at room temperature 25 ± 2°C and 60 ± 5% 

RH. The colony was covered in moistened paper towel and moistened soil from the 

collection site and the culture was maintained in the dark under laboratory conditions. 

The required number of fully developed and healthy, worker and soldier termites, were 

removed from the colony immediately prior to the assay. Termites were only retained 

for a maximum of three weeks before being used in bioassays. 

 

2.5.4  Acute Toxicity of E. mitchellii Wood Oil and Fractions Against  
  Termites Via Topical Application  
 
Preliminary range-finding investigations were conducted, followed by more detailed 

bioassays, to determine LC values. To assess the acute dermal toxicity; test samples, 

essential oils, crude fractions and pure compounds were prepared as follows: replicate 

stock solutions of 10000 ppm were made by initially dissolving the test sample in 10 

mL absolute alcohol, sonicating for 10 min, then diluting with distilled water 

containing 200 ppm Triton X-100™ (octylphenolethylene oxide condensate; Union 

Carbide, Sigma Chemicals, St. Louis, Missouri, USA). The stock solutions were 

sonicated for 20 min, then serial dilutions were prepared using the Triton-X /distilled 

water stock solution as diluent. A homogeneous and uniform emulsion was achieved by 

thorough agitation. All products dissolved well in absolute ethanol and gave uniform 

emulsions when shaken vigorously prior to application. 
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In the assay twenty uniform termite workers and one soldier were transferred to a Petri 

dish (90 mm diam.) lined with filter paper (90 mm diam., Advantec No 2, Toyo Roshi 

Kaisha, Japan) that had been moistened with distilled water (1.0 mL) to maintain 

humidity. Test solutions (2.5 mL or 5.0 mL aliquots) were applied to the Petri dish 

containing termites using a Potter precision spray tower (Burkard, Rickmansworth, 

Herts, UK) as described by Herron et al. (1995). The spray tower simulates field 

applications by applying the test solution as a very fine mist with even application. 

Each spray application was delivered at a pressure of 18.5 psi (ca. 5 s) and the average 

weight of the test solution sprayed on each dish was determined. Three to five true 

replicates were normally used, and ethanol (10000 ppm) in 200 ppm Triton X-

100/distilled water was applied as a control. 

 

Substances were routinely tested at concentrations between 0.5 - 0.05%. The test was 

routinely performed in triplicate for each test sample at each concentration. After 

treatment all of the Petri dishes were covered with their lids and left undisturbed in 

darkness under a black plastic sheet under laboratory conditions of 25±2°C and 60±5% 

relative humidity (RH). Behaviour was observed post treatment and mortality was 

recorded at 24 and 48 hrs after treatment. End point (death) was recognised by the 

absence of movement of all appendages (legs and antennae) when an individual was 

turned on its back or side. In some cases additional repeat doses were employed to 

more accurately determine the key statistics such as LD50. In these cases, both data sets 

were incorporated into the analyses.  

 

2.5.5  Acute Toxicity of Residues of E. mitchellii Wood Oil and Fractions - 
  Fresh Residues  
 
The wood oil of E. mitchellii and its fractions F4 and F5/6 were dissolved in pure 
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 acetone (Univar UN No 1090) in 50 mL volumetric flasks to prepare a series of test 

solutions, with separate test solutions being prepared for each replicate. A filter paper 

(90 mm diam., Whatman No 1) was dipped for 10 s in a 400 mL beaker containing the 

required concentration, and acetone-only was used as the untreated control. Treated 

filter papers were air dried in a fume cabinet for 2 h. The treated filter papers were then 

transferred to line the lids of the Petri dishes. One mL of distilled water was uniformly 

distributed to moisten each filter paper and to maintain high ambient humidity. 

Subsequently, 1 mL of water was added to each Petri dish daily. 

 

Twenty termite workers were then released onto the treated filter paper. The Petri 

dishes were covered with their lids, and maintained in darkness under black plastic 

sheeting under laboratory conditions of 25±2°C and 60±5% RH. Termite behaviour 

was observed post treatment, and mortality was recorded after 24 h.  

 

2.5.6  Fumigant Studies of E. mitchellii Wood Oil  

Filter papers (Whatman No 1) were immersed into 20000 ppm E. mitchellii wood oil in 

acetone for 10 sec, transferred to aluminium foil and left to air dry in a fume cabinet for 

1 h. The assessment container was a 600 mL round glass Kilner jar with dimensions 70 

mm diam. (top), 90 mm diam. (bottom) and 95 mm high. Fifteen workers of C. 

acinaciformis were placed onto filter paper (90 mm diam., Whatman No 1) that had 

been previously laid on the bottom of the glass jar and moistened with 0.5 mL distilled 

water. The treated filter paper was placed in the lid of a 90 mm diam. plastic Petri dish. 

The dish lid with filter paper was then used to cover the jar containing termites and 

sealed with Parafilm (Pechiney Plastic Packaging, Chicago, IL) and afterwards, with 

plastic sheet wrapping (Glad® wrap The Glad Products Company, Oakland, CA), to 
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secure a seal. Nine replicates were made for the 20000 ppm E. mitchellii wood oil 

treatment and for the acetone-only control. The containers were maintained under 

laboratory conditions of 25±2°C and 60±5% RH, under black plastic sheeting. Termite 

mortality was recorded 1 h, 6 h, 12 h, 24 h and 96 h after sealing the container. 

 

2.5.7 Choice Test Using E. mitchellii Wood Oil Using Filter Paper Choice 
and No Choice Bioassays  

 
Round plastic containers (4 L: 27cm diam. x 7cm height) were used as arenas for these 

investigations. Concentrations of E. mitchellii wood oil and its fractions were made up 

as previously described for the filter paper fresh residues test (2.1). Filter papers (90 

mm diam., Whatman No 1) were immersed in the required concentration of the test 

liquid or in pure acetone for 10 sec. then left to air dry on a sheet of aluminium foil in a 

fume cabinet for 2 h. In no-choice tests, two filter papers treated with the same 

concentration were placed inside each plastic container. In the choice test, a pair of 

filter papers was placed inside each container, one of which was an acetone-only 

control and the other was treated in E. mitchellii wood oil or its fractions, either with 

2000 ppm in the case of N. exitiosus or 5000 ppm in the case of C. acinaciformis. The 

two papers were arranged so that they faced each other and were tangential to the 

container wall. One mL of distilled water was applied uniformly to each filter paper to 

moisten it before transferring it to the arena. Additional water was applied twice a day 

throughout the duration (3 days) of the experiment. The arenas were kept covered with 

their lids, then covered with black plastic sheet to prevent light penetration, and under 

laboratory conditions of 25±2°C and 60±5% RH. Observations were made 3 days after 

termites were released. Each container was uncovered and immediately photographed 

with a digital camera. All images were downloaded onto a computer, enlarged, and the 

number of termites on each filter paper was counted.  
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In the no-choice assessment, the numbers of termites on the two treated filter papers in 

a container were summed, and compared with the summed numbers on two untreated 

filter papers in a comparative control container. In the choice assessment, the number of 

termites on the treated filter paper was compared with the number on the untreated 

filter paper in the same container. The repellency index (RI) was calculated, based on 

the formula RI = [(Nc–Nt)/Nc ]* 100, where Nc is the percentage on the control 

paper(s), and Nt is the percentage on the treated paper(s). The mean RI values were 

analyzed by ANOVA. Where significant differences were detected, the means were 

separated using Duncan’s Multiple Range test. 

 

2.5.8  Barrier Studies of E. mitchellii Wood Oil  

Tests were conducted to determine the efficacy of E. mitchellii oil as a barrier treatment 

to prevent termite incursions. The method used for assessing the barrier efficacy was 

based on that described by Su et al. (1995) with minor modifications (Figure 6.2). 

Pyrex medium walled tubes (24 x 200 mm Bibby Sterilin Ltd, Staffordshire ST15OSA, 

England) were used as bioassay chambers. To make the required barrier material, 90 g 

samples of autoclaved washed medium river sand were placed into 200 mL beakers and 

10 mL aliquots of each serial dilution in acetone were titrated onto the sand while 

continuously mixing with a spatula. Concentrations of E. mitchellii wood oil tested 

were 0 ppm (acetone/water only), 5000 ppm, 10000 ppm and 20000 ppm. The mixture 

was then thinly spread on aluminium foil sheet overnight in a fume cabinet to dry.  

Wooden sticks (3 x 5cm wooden applicator sticks) and termites (C. acinaciformis, 80 

workers and 4 soldiers) were paced at the bottom of the test tube. A 3 cm core of 7.0% 

agar gel (Avocado Research Chemicals Ltd, Heysham, Lancashire) was inserted into 

the tube until it rested on the wooden sticks (layer 1). Moistened sand (10% water) was 
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spooned in to the tubes to a height of 3 cm (layer 2). The tube was gently shaken and 

the sand surface was then lightly tamped and levelled. A 2 cm barrier of freshly treated 

sand was then transferred from the beakers to the test tube with a small spatula (layer 3) 

and lightly tamped before inserting a 1 cm core of 7.0% agar over this barrier layer 

(layer 4). A 1 x 5 cm paper towel food source was placed in the top of each tube. The 

top of each tube was then covered with aluminium foil (Glad Foil, Padstow NSW 2211, 

Australia). Eight replicate tubes were made of each treatment concentration. Tubes 

were held vertically in a cardboard packing box and maintained at 24 ± 2°C and 60 ± 5 

% RH.  

 

Vertical length of tunnelling was monitored on days; 1, 4 and 7 post treatment in both 

treated and untreated sand layers. Seven days after treatment, the majority of termites in 

the E. mitchellii wood oil treatments had died, presumably due to its toxic effect, so the 

investigations were terminated at this point. 

 

To determine the residual efficacy of E. mitchellii wood oil, the remaining treated sand 

was retained in the laboratory in a 1 L glass beaker covered with Glad® wrap under 

conditions of 25 ± 2°C and 60 ± 5% RH and normal laboratory illumination. Its 

efficacy was tested, using the above methodology, up to 14 days old. At this time, 

termite mortality was observed to be lower in the E. mitchellii wood oil treatments, so 

the period for termites being challenged in the bioassays was increased to 16 d for 38-

day old treated sand and to 21 d for 240 day old treated sand. In all cases, except the 

240 day old sand the termite species used was N. exitiosus; the last bioassay was 

conducted with C. acinaciformis. 
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2.5.9  Data Analysis  

Data was analysed using SPSS® for Windows® Version 14 (SPSS Inc. 2007). Probit 

analysis was carried out for dose mortality data and heterogeneity of regression was 

determined by the Pearson chi-squared characteristic with Abbott’s (1925) formula 

used to correct for control mortality prior to analysis. Pearson’s test for goodness of fit 

was performed, and if the result was significant at p ≤ 0.150 level, a heterogeneity 

factor was used for calculation of confidence limits. Corresponding lethal concentration 

(LC50 and LC95) and values were calculated with their lower and upper confidence 

limits (CL, 95%).  

 

2.5.10  Solvent Partitioning of E. mitchellii Leaf Oil  

The steam distilled leaf oil (1.53 g) was partitioned between hexane (20 mL hexane/5 

mL pentane) and aqueous methanol (25 mL of methanol/4 mL water). The hexane layer 

was evaporated to dryness under nitrogen obtaining a yield of 39% (w/w). Water (800 

mL) was added to the aqueous methanol layer until a cloudy precipitate formed. The 

leaf oil methanol fraction was then recovered by back extracting with diethyl ether. The 

methanol fraction was dried under nitrogen to obtain a yield of 35% (w/w). The 

fractions were analysed by GC-MS prior to shipment to CPAFS for termiticidal 

screening. 

 

2.5.11  Fractionation of V. zizanioides Oil by Column Chromatography  

Vetiver oil (6.0 g) was first fractionated by column chromatography on silica gel 

(0.063-0.200 mm, 3.5 cm diam., 29 cm height, 300 mL bed volume). The column was 

equilibrated with 3 BV of 100% pentane prior to sample loading. The column was then 

eluted with 2 x 400 mL of pentane. The column was then eluted with 2 x 400 mL of 9:1 
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pentane: diethyl ether followed by 2 x 400 mL of 100% diethyl ether and lastly 400 mL 

of acetone. The fractions were evaporated using a rotary evaporator and then analysed 

by GC-MS. Fraction 4 which contained an enriched mixture of α- and β-vetivone was 

sent to CPAFS for termiticidal screening. 

 

2.6   Experimental  on Chemistry and Cytotoxicity of Eremophila sp.  

2.6.1  Plant Material  
 
The shipment of Western Australian Eremophila specimens were collected by botanists 

Robert Davis and Matt Kealley of BioProspect Ltd. A second shipment of Northern 

Territory Eremophila specimens was provided by The Alice Springs Desert Park 

(ASDP). A specimen of E. bignoniflora was collected from Wilbertree homestead near 

Brewarrina NSW a specimen has been deposited in the Southern Cross University 

Herbarium. A specimen of E. mitchellii was collected by Paul Forster from Northern 

Queensland. Lastly, specimens of E. macdonaldii and E. obovata collected from NT 

were kindly provided by Greg Leach. A summary of species and collection data of the 

plants analysed in this study is summarized in Table 2.6 and 2.7. 

 

2.6.2  Sample Preparation  

 Fresh plant materials (Table 2.6 and 2.7) were dried in a drying room (40˚C) upon 

receipt and prior to grinding. Wood and root materials were ground using a Retsch  
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cutting mill (Retsch GmbH, Haan, Germany: SM 100). The extracts were stored at 4 ºC 

prior to analysis. The extracts were re-solubilised in the specified solvent by sonicating 

for 20 minutes.  

 

2.6.3  Cytotoxicity Screening  

All cell lines, except A2780, were purchased from American Type Culture Collection 

(ATCC), Manassas, VA, USA. Cell culturing media was purchased from Invitrogen, 

Mt Waverley, VIC. In vitro cytotoxicity was measured against mouse lymphoblast cells 

(P388D1, ATCC: CCL-46) using the commercially available ATPLite-M assay 

(Packard BioScience B. V.). ATP is a marker for cell viability because it is present in 

all metabolically active cells and the concentration declines very rapidly when the cells 

undergo necrosis or apoptosis. The cytotoxicity of selected samples was further 

assessed against human liver carcinoma (Hep G2, ATCC: HB-8065), human mammary 

adenocarcinoma (MCF7, ATCC: HTB-22), human prostate cancer (PC-3, ATCC: CRL-

1435), human ovarian carcinoma (A2780, ECACC, Sigma-Aldrich, Castle Hill, NSW: 

93112519) and human malignant melanoma (A-375, ATCC: CRL-1619), cell lines.   

 
The crude extracts, fractions or pure compounds were diluted in DMSO and screened at 

3-4 concentrations (ideally 0.1, 0.01, 0.001, mg/mL) and in triplicate using DMSO, 

media (without additives) and chlorambucil as solvent control, control, and positive 

control, respectively. Samples were prepared in a 96 well microplate by the addition of 

cell media (99 μL) and the desired extract (1 μL). The plates were incubated in the dark 

for a period of 24 h (37 °C, 5% CO2). The cells were then lysed using mammalian cell 

lysis solution (50 μL, 0.1 M NaOH) and agitated on a plate shaker for 5 min, and 

luciferin/luciferase substrate solution (50 μL, lyophilized) was then added. The 

microplate was again agitated for 5 min and then allowed to equilibrate in the dark for 
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10 min. ATP luminescence, as an indicator of cell proliferation, was then measured 

using the Wallac Victor 2 Luminescence counter (Perkin Elmer: Model 1420). Results 

were then evaluated based on percentage inhibition of P388D1 cell growth versus 

concentration of crude extract or fraction.  

 

2.6.4   Size Exclusion Chromatography  

Sephadex LH-20 (Sigma-Aldrich: LH20100) was used for either improving the purity 

of fractions or for separation of compounds on the basis of their molecular weight. The 

Sephadex was activated with methanol for 16-24 h prior to use.  

 
 
2.6.5  Extraction and Isolation of Compounds from Eremophila racemosa 

The air-dried leaves (10 g) were ground and subsequently extracted with MeOH (3 x 

100 mL) overnight at room temperature, these extracts were then combined and 

evaporated under reduced pressure. A portion (1.25 g) of the resulting dark green 

residue (3.3 g) was subjected to RP prep-HPLC using a mobile phase system of solvent 

A (water with 0.05% TFA) and solvent B (acetonitrile with 0.05% TFA). The eluent 

composition used was 95% A for 5 minutes followed by a gradient of 5-95% B over 20 

min and 95% B for a further 20 min at a flow rate of 21.6 mL/min. Fractions were 

collected at 4 minute intervals to evaluate the cytotoxic activity. Prep-HPLC 

fractionation was repeated for purification of compounds, fractions were collected at 1 

min intervals to yield 44 fractions.  

 

Prunasin (65): C14H17O6N, MW 295.2947; Peak 1 (RT 11.23 min, Figure 7.3) was 

further purified using sephadex LH-20 and methanol as eluent to yield a white powder 
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(62.8 mg, 1.7%), IR, MS, 1H NMR and 13C NMR spectra were consistent with 

previously published data (Nakajima, et al., 1998).  

 

Pinoresinol-4-O-β-D-glucoside (77): C23H32O11, MW 484.5049; Peak 2 (RT 13.24 min, 

Figure 7.3) was resolved from epipinoresinol-4-O-β-D-glucoside (78) using RP semi-

preparative HPLC eluting with a mobile phase system of solvent C (water) and solvent 

D (MeOH). The eluent composition used was 50% C for 5 minutes followed by a 

gradient of 50-75% D over 20 min and 75% D for a further 10 min at a flow rate of 1 

mL/min. Fractions were collected at ½ minute intervals to yield 77 as a pale yellow 

gum (7.2 mg, 0.2%). 1H NMR and 2D COSY spectra were consistent with previously 

published data (Rahman, et al., 1990) and (Ayres and Loike, 1990).  

 

Epipinoresinol-4-O-β-D-glucoside (78): C23H32O11, MW 484.5049; Peak 2 (RT 13.24 

min, Figure 7.3) was obtained as a pale yellow gum (6.3 mg, 0.2%). The 1H NMR and 

13C NMR data are in agreement with previously published data (Rahman, et al., 1990) 

and is further supported by 2D COSY, NOESY, HMBC and HSQC data. 

 

Luteolin (74): C10H15O6, MW 286.2434; Peak 4 (RT 15.39 min, Figure 7.3) was further 

purified using Sephadex LH-20 and methanol as eluent to yield a yellow powder (3.3 

mg, 0.1%). Its mass spectral, 1H NMR and 13C NMR data are in agreement with 

previously published data (Youssef and Frahm, 1995). 

 

Phillygenin (75): C21H24O6, MW 372.4218; Peak 5 (RT 17.23 min, Figure 7.3) was 

further purified using Sephadex LH-20 and methanol as eluent to yield a white gum 

(52.3 mg, 1.4%). The 1H NMR and 13C NMR data are in agreement with previously 
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published data (Rahman, et al., 1990) and the assignment is further supported by 2D 

COSY, NOESY, HMBC and HSQC data. 

 

Phillyrin [(76), Phillygenin-4-O-β-D-glucoside]: C24H34O11, MW 498.5320; Peak 3 

(RT 14.61 min, Figure 7.3) was recrystallised from MeOH to yield colourless needles 

(38.5 mg, 1.0%). Its melting point, mass spectral, 1H NMR and 13C NMR data are in 

agreement with previously published data (Rahman, et al., 1990) and the assigned 

structure is further supported by 2D COSY, NOESY, HMBC and HSQC data. 
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CChhaapptteerr      33  
  
  
TThhee  CChheemmiissttrryy  ooff    
CCeennttiippeeddaa  ccuunnnniinngghhaammiiii..  
 

 

 

 

3.1  Introduction 

 

3.1.1  Background of This Study. 

 Centipeda cunninghamii (DC.) A. Braun & Asch. (Asteraceae) is a native Australian 

herb that is reputed to possess therapeutic properties. Preparations of C. cunninghamii 

or ‘Phytoplenolin’ are available commercially in the form of topical preparations to 

‘heal and rejuvenate’ the skin (D’Amelio and Mirhom, 1998). Research conducted by 

D’Amelio and Mirhom (1998) for the Phytoplenolin patent reported that the steam 

distilled essential oil possesses an anti-inflammatory action. The Phytoplenolin® 

preparation was found to reduce inflammation comparable to hyaluronic acid in a 

chemically induced erythemal response (D’Amelio and Mirhom, 1998). Research 

conducted at SCU/CPP has found significant antioxidant and anti-inflammatory activity 
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in the solvent extracts of C. cunninghamii (Gabriel, 2005). A scientific approach was 

used to investigate the pharmacological basis for these claims. The aim of this project 

was to determine the chemical components that are responsible for the bioactivity. This 

chapter deals with the isolation and structural elucidation of the bioactive compounds 

from C. cunninghamii. Chapter 4 details the anti-inflammatory and antioxidant 

properties of the extracts, fractions and purified compounds of the herb. 

 

3.1.2  Ethnobotanical Uses of Centipeda Species 

C. cunninghamii usually occurs near wet places along banks of dams and creeks and 

rivers and ditches (Harden, 1993) and it is widespread throughout the temperate regions 

of Australia. Centipeda cunninghamii is commonly referred to as sneeze weed, old man 

weed or gukwonderuk (Lassak and McCarthy, 1983). The common name 

“sneezeweed” refers to the powdered leaves which are believed to act like snuff 

(Lassak and Mc Carthy, 1983).  

 

Aboriginals have reportedly used the herb to make teas or other preparations which 

have been used for various ailments. The tea could be taken orally to treat illnesses 

including, tuberculosis (Campbell, 1973). Other known uses of the tea solution or 

decoction include the treatment of purulent ophthalmia (Maiden, 1975) and sandy 

blight and for alleviating eye inflammation by bathing the eyes with a cooled solution 

(Webb, 1948). Additional uses included placing the plant around a person’s head to 

provide relief from colds or when placed around campsites it could repel ants (Cribb, 

1988). It has also been administered as an antiprotozoal (D’Amelio and Mirhom, 1998). 
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In Ayurvedic medicine C. minima (synonymous with C. orbicularis) is reported to be 

useful for worms, skin diseases, white patches on the skin, dyspnoea, cough and 

toxicosis (Sudarshan, 2005). Centipeda minima is distributed throughout China and 

Japan (Quattrocchi, 2000), India (Sudarshan, 2005), Australia, New Zealand and 

Afghanistan to Asia (Harden, 1993). In contrast, C. cunninghamii is indigenous to 

Australia and New Zealand (Harden, 1993). For this reason it is thought that the C. 

cunninghamii would not have been utilized in Indian or Chinese medicines.   

 

3.1.3  Therapeutic Uses of Centipeda Species 

More than 30 patents exist for the therapeutic use of plants from the Centipeda genus. 

This may be attributed for the most part to the medicinal properties ascribed to 

Centipeda minima by Ayurvedic (Nepalese Indian) and Traditional Chinese medicine. 

Patented claims include treatments for; rhinitis (Huang, 1995), cancer (Wu, 1997), bone 

fractures (Wu, 2004), herpes (Tang, 2003) and topical treatments for anti-aging (Inoue 

and Yamaguchi, 2000) and pruritis (Takano et al., 2007).  

 

Several therapeutic uses of C. cunninghamii have been patented. In 1985 Robert Egan 

(1985) patented preparations of C. cunninghamii for promoting hair growth. Next, 

D′Amelio and Mirhom (1998) reported on the therapeutic properties of extracts of the 

herb and patented preparations of the herb for treatment of various skin disorders 

including; “the relief of itching and dry skin from psoriasis” and also “the anti-

inflammatory, antiallergenic, sunscreen and cell renewal properties”. Later, Close 

(2002) patented the preparation of an alcoholic tincture of the herb. Whilst D’Amelio 

and Mirhom (2005) patented “preparations containing extracts of C. cunninghamii for 

the treatment of periodontal infections and gingivitis.” The patent of Gupta and Hoyt 
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(2006) relates to a cosmetic or pharmaceutical preparation of a plant from the 

Centipeda genus “to reduce skin damage caused by aging and/or the environment”. Hill 

(1997) reports that extracts of C. cunninghamii possessed antifungal activity. Yu et al. 

(1994) report on the antiprotozoal activity of C. minima. 

 

3.1.4  Phytochemistry of Centipeda Species 

The active components of C. cunninghamii responsible for the medicinal properties are 

unknown. D’Amelio and Mirhom (1998) reported that the extract is known to contain 

‘a volatile oil having a bitter principle myriogenin and cis-chrysanthenyl acetate’. 

Myriogenin is derived from the former scientific name of C. cunninghamii; Myriogyne 

cunninghamii. It was not possible to identify the compound ascribed as myriogenin in 

the scientific literature. Pinney and Southwell (1971) reported that the steam distilled 

volatile oil contained cis-chrysanthenyl acetate as the major component. D′Amelio and 

Mirhom (1998) reported the identification (by GC-MS and HPLC) of the chemical 

constituents of C. cunninghamii. Forty two compounds were identified in the GC-MS 

profile of the oil (Section 3.2.1) and 25 compounds in the HPLC chromatogram of the 

extract. These were; 

 

“brevilin A, arnicolide, arnicolide B, arnicolide C, caryophyllane-2,6-β-

oxide, florilenalin-angelate, florilenalin-isobutyrate, florilenalin-

isovalerate, helenalin, microhelenalin B, 6-0-angeloyl plenolin, 6-0-

senecoyl plenolin, isobutyroyl plenolin, aurantiamide acetate, apigenin, 

cis-chrysanthenyl acetate, kaempferol-7-glucosyl-rhamnoside, lupeol 

acetate, quercetin, scoparol, β-sitosterol, taraxasterol, thymol, 10-

isobutyryl-oxy-8,9-epoxy- isobutyrate, 9-epihardwickiic acid”.  
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The nomenclature in the patent is in some cases ambiguous and emphasis is placed on 

the importance of the sesquiterpene lactones. It is not clear whether the extract of C. 

cunninghamii has been characterized using HPLC with association to compounds 

identified from C. minima. Certainly there are no subsequent reports of the chemical 

constituents of C. cunninghamii in the scientific literature. The LC-MS analysis of the 

herb extract produced at CPP/SCU was not consistent with the reported chemical 

profile. 

 

Apart from a study on the essential oil (Pinhey and Southwell, 1971), and an evaluation 

of the antibacterial (Palombo and Semple, 2001) and antifungal (Wiesner, 1986; Hill, 

1997) activity, the chemistry and bioactivity of C. cunninghamii is largely unreported. 

 

The chemistry of C. minima has been studied in more detail. Murakami and Chen 

(1970) extracted phytosterols and arnidol. Bohlmann and Mahanta (1979) isolated 

centapedaoic acid and flavones. Bohlmann and Chen (1984) isolated lupeol acetate, 10-

isobutyryloxy-8,9-epoxythymol, arnicolide C, brevifolin, helenanin, florilenanin 

isobutyrate, florilenanin isovalerate and florilenalin angelate.  

 

3.2  Results and Discussion 

The compounds of both the essential oil and the solvent extract of C. cunninghamii 

were examined in this study. A detailed analysis of the composition of the steam 

distilled essential oil of C. cunninghamii by GC-MS is discussed in Section 3.3.2 

Isolation and structural elucidation of compounds from the aqueous ethanolic extract of 

C. cunninghamii is discussed in Section 3.2.2. 
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3.2.1  Composition of C. cunninghamii Essential Oil. 

A large scale steam distillation of the commercially prepared, cut and dried herb 

material was carried out. 1.0 kilogram of the dried C. cunninghamii material was steam 

distilled for 24 hours. A light yellow oil having a characteristic odour was obtained in a 

yield of 0.21% oil (w/dry weight) based on the dry weight of the herb. 

 

The GC-MS profile of the oil produced is presented in Figure 3.1. The major chemical 

constituents were identified by GC-MS. The components of the essential oil are 

presented in Table 3.1 and are compared against the chemical composition published by 

D′Amelio and Mirhom (1998). 
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Figure 3.1. The GC-MS profile of the essential oil of C. cunninghamii. 

 

The five major constituents identified in the oil were thymol (1), myrtenyl acetate (2), 

myrtenol (3), cis-chrysanthenyl acetate (4) and cis-chrysanthenol (5). The composition 

of this oil varies somewhat to the Bio-botanica oil. It was found to be higher in cis-

chrysanthenyl acetate relative to the Bio-botanica oil whilst sabinyl acetate and cis-

dihydrocarveol were not evident in the SCU oil. Myrtenyl acetate and cis-chrysanthenol 
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have not previously been reported as constituents of C. cunninghamii oil. Myrtenyl 

acetate is difficult to distinguish from sabinyl acetate by MS and may have been 

erroneously identified. In this instance the presence of myrtenyl acetate has been 

confirmed by comparison against this constituent in commercially available myrtle oil 

(Lawrence, 1990). The absence of sabinyl acetate has been confirmed by comparison 

against this constituent in commercially available valerian root oil (Lawrence, 1999). 

The nomenclature used to describe several constituents of the Bio-botanica oil is not 

comprehensive, to remove ambiguity, presumably and the authors were referring to 2-

methylpropyl 3-methylbutanoate (syn: isobutyl isopentanoic acid ester); 1-

phenylpropanol (benzylethyl carbinol); caranol (possibly as cis-caran-trans-3-ol) and 4-

acetanisole (acetanisole).  
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3.2.2  Isolation of Compounds from Extracts of C. cunninghamii.  

The extract was fractionated by reverse phase preparative HPLC. Ten compounds were 

isolated from the 50% aqueous-ethanol extract as shown in Chapter 2, Figure 2.1. This 

approach afforded purification of the major metabolites (6-15) however; minor 
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constituents were also of interest. Significant anti-inflammatory activity (which is 

discussed in Chapter 4) was attributed to metabolites occurring in the region 7-15 

minutes in the chromatogram (Figures 4.10 and 4.11). Consequently, a more efficient 

isolation scheme (Chapter 2, Figure 2.2) was proposed to pursue these constituents. An 

ethanolic extract of the floral parts was partitioned with hexane to afford an enriched 

fraction of the non-polar, PGE2 active compounds. The hexane and the ethanol 

partitions were then evaporated to dryness and subjected to RP prep-HPLC. The pure 

compounds isolated from the floral parts are summarized in Chapter 2, Figure 2.2. 

 

The recoveries of these compounds, does not reflect their abundance in the crude 

extract. The aim of this work was to obtain > 20 mg of each compound to undertake 

PGE2 and ORAC bioassays. Traces of one compound were often discarded during the 

isolation of another, or derived from a specific fraction of the crude extract. 

 

3.2.2.1  4ξ,5ξ-Di(3,4-dihydroxy-(E)-cinnamoyl)-2,6ξ-dihydroxyhept-2-ene-
  1,7-dioic acid (6) and its Derivatives (7, 8 and 9). 

 
Five novel compounds were isolated from the 50% aqueous ethanol extract of the 

whole plant (Chapter 2, Figure 2.1). Sub-fractionation of preparative fractions 16 and 

17 yielded four compounds. The major compound crystallised as white needles from 

ACN/H2O. The (+)-LRAPCIMS molecular ion [M+H]+ m/z 547 suggested that 

compound 6 had the molecular formula C25H22O14. Twinning of some of the 1H NMR 

signals indicated that the compound was composed of a subunit bearing two identical 

caffeoyl groups. The remaining 1H and 13C signals showed a vinylic group (δH 6.02 

ppm, δC 109.3 ppm), three quaternary carbons (δ 65.4, 66.3, 76.3) and three tertiary 

carbons (δ 164.8, 146.1, 170.1 ppm). Quaternary signals at δ 170.1 and 164.8 ppm 

could readily be identified as carboxylic acid moieties. From their resonances at δ 65.4, 
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66.3 and 76.3 ppm, it could be established that three of the tertiary carbons were 

connected to oxygen. On the basis of the 1H NMR and 13C JMOD spectra the data 

alluded to a heptenedioic acid subunit. Only partial connectivity between the tertiary 

carbons in the subunit could be established by 1H-1H COSY. HMBC long range 

coupling established the order of connectivity between H-3 - H-4 - H-5 and H-6. The 

magnitude of the coupling between H-3, H-4 and H-5 indicated that the three 

hydrogens were oriented in a syn relationship to each other. 

 

The structure proposed for 6 was 4ξ,5ξ-di-O-caffeoyl-2,6ξ-dihydroxyhept-2-ene-1,7-

dioic acid, to which we have assigned the trivial name myriogenic acid. Isomerism of 

compound 6 was observed during fractionation and subsequent LC-MS analysis. It was 

not possible to determine whether the additional peak was that of the keto-tautomer 

(6a) or of the ring-closed pyranose (hemiacetal) form (6b). The ring-opened isomeric 

form of 6 was further supported on the basis of the theoretical 1H NMR shifts. The 

observed and predicted 1HNMR resonances for the proposed structure (6) and the 

ketomer (6a) and hemiacetal (6b) are presented in Table 3.2. Theoretical chemical 

shifts are derived from theoretical calculations determined by ChemBioDraw Software 

(version 11, 2007). 
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The 1H NMR spectra of the three other compounds; 7, 8 and 9 suggested that they were 

derivatives of compound 6. The 1H NMR spectra were almost identical. The exception 

being that 3 additional proton singlets were observed in each of the spectra of 7, 8 and 9 

(Table 3.3). This, together with mass spectroscopic data strongly suggested that 7, 8 

and 9 were methyl esters of compound 6. HMBC data confirmed that 7 was methylated 

at the 7-COOH position, 8 was methylated at the 1-COOH position and 9 was 

methylated at both the 1- and 7-COOH positions. The structural assignments are further 

supported by 2D, COSY, HMBC and HSQC data. These compounds (6, 7, 8 and 9) are 

novel, and to each we have assigned trivial names; myriogenic acid-1-methyl ester (8), 

myriogenic acid-7-methyl ester (7) and myriogenic acid dimethyl ester (9). It is 

possible that these compounds arise as artefacts from methanol during the isolation 

process. 

 

Discrepancies were observed for the (+)-HRAPCIMS for myriogenic acid (6). The m/z 

value of 546.1248 was observed instead of the expected 547.1087 for the protonated 

parent ion [M+H]+ thus resulting in a discrepancy of Δ0.9839 a.m.u. Equivalent 

discrepancies of Δ0.984 a.m.u. were also observed for the parent ions for the methyl 

esters 7 and 8 and dimethyl ester 9. A molecular ion for these compounds could not be 

obtained using ES or MALDI TOF techniques. Fourier transform mass spectroscopy 

will be undertaken prior to the publication of this work. 

 

Elemental analysis confirmed that there was no nitrogen in compound 6. Hypothetically 

an alternative structure that could satisfy both the NMR data and mass spectral data and 

give rise to the apparent odd molecular weight would be a dimer possessing a plane of 

symmetry across a peroxide bridge. However this was not evident.  
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Compound 6 reliably crystallised from solution as filamentous crystals that were 

deemed unsuitable for X-ray crystallography. Powdered X-ray diffraction studies 

revealed only part of the unit cell. Multiple attempts were made at crystallising the 

compound from different solvents in order to obtain crystals of dimensions suitable for 

crystallography. To date, this structural validation route has not been successful. 

 

The discrepancies observed in the (+)-HRAPCIMS may possibly be due to mis-

identification of the molecular ion. Distinction between [M-H]+, the molecular ion[M]+, 

and the isotopes [M+1] and [M+2] is usually determined from the intensities of these 

ions in the mass spectrum. The theoretical isotopic ratios are derived from natural 

isotopic abundances and it is expected that; M (100%), M+1 (27%), M+2 (6.58%). 

However the intensities of the isotopes is not applicable to chemical ionisation 

techniques due to ion-molecule reactions (Silverstein et al., 1991). 

   

It has been reasoned that the prominent ion observed in the (+)-HRAPCIMS is that of 

[M-H]+. Support for the proposed structure (6) was obtained from the mass spectrum 

fragmentation pattern. (+)-LRAPCIMS gave rise to ions m/z 163 [caffeoyl-OH]+, 164 

[caffeoyl -O]+, 349 [M- caffeoyl-OH]+, 350 [M-caffeoyl -O]+, 546 [M-H]•+, 547 

[M+H]+. (+)-HRAPCIMS gave rise to ions m/z 546.1248 (48%), 384.0930 (25), 

349.0557 (100). The strongest evidence in support of the heptenedioic acid subunit is 

derived from an ion occurring at m/z 384.0930 corresponding to loss of one of the 

caffeoyl groups [M-caffeoyl]+. 

 

Further support is garnered from the derivatives of compound 6. It was observed that 

myriogenic acid (6) readily undergoes esterification in the presence of methanol at 
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room temperature in the expected ratio of 2:2:1 and progresses to the dimethyl ester 

over time.  

 

It is anticipated that the dimethyl ester (9) will produce more suitable crystals for 

spectroscopic work. Structural verification of compound 6 may be confirmed by X-ray 

crystallographic data of the dimethyl ester (9). Approximately 1 gram of myriogenic 

acid has been isolated and esterified. Re-isolation of the dimethyl ester is currently 

underway, it is intended that the structure of the dimethyl ester will be confirmed prior 

to publication of this work. 

 

3.2.2.2            2′,4′,5,7-Tetrahydroxy-6-methoxyflavone-3-O-β-glucopyranoside 
(10). 
 
The molecular ion [M+H]+ m/z 495 suggested that compound 10 had a molecular 

formula C22H22O13 with twelve double bond equivalents. The UV spectrum showed UV 

maxima at λmax 210, 258, 270 sh, and 354 nm which are characteristic of flavonols (Dey 

and Harborne, 1989).  

 

The 1H NMR spectrum (Table 3.4) showed three protons in the aromatic region 

resonating at δ 7.71 (d, J = 2.2 Hz), 6.87 (d, J = 8.5Hz) and 7.59 (dd, J = 2.2, 8.5 Hz) 

ppm, exhibiting ortho and meta coupling. A fourth aromatic proton resonated as a 

singlet (6.52 ppm) indicating it was a substituent of a highly substituted aromatic ring. 

 

The 13C JMOD NMR spectrum (Table 3.4) revealed the presence of a carbonyl signal at 

δ 179.9 ppm and a methoxy signal present at δH 3.88 ppm. The location of the methoxy 

group could be assigned to C-6 based on the 3JCH correlations in the HMBC spectrum. 

There were also was also oxygen bearing quaternary carbons present as indicated by the 
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signals at δ 143.1, 153.9, 154.0, 159.4 and 150.0 ppm. From the HMBC and HSQC 

data the substitution patterns of the aromatic rings, and consequently the partial 

structure 2′,4′,5,7-tetrahydroxy-6-methoxyflavone, could be deduced. 

 

Table 3.4. 1H and 13C NMR spectral data for compound 10 in CD3OD. 
 

Compound  10 
C/H 13C δ ppm 1H δ ppm (i, m, J Hz) 

   
1 -  
2 146.1  
3 135.5  
4 179.9  
5 153.9  
6 132.9  

6-OCH3 62.7 3.88 (3H, s) 
7 154.0  
8 95.1 6.52 (1H, s) 
9 159.0  
10 106.3  
1′ 123.3  
2′ 159.4  
3′ 117.7 7.71 (1H, d, 2.2) 
4′ 150.0  
5′ 123.4 7.59 (1H, dd, 2.2, 8.5) 
6′ 116.2 6.87 (1H, d, 8.5) 
1′′ 104.4 5.26 (1H, d, 7.6) 
2′′ 75.9 3.49 (1H, dd, 7.6, 9.1) 
3′′ 78.3 3.43 (1H, dd, 8.7, 9.1) 
4′′ 71.4 3.35 (1H, dd, 8.7, 9.6) 
5′′ 78.5 3.22 (1H, ddd, 2.4, 5.4, 9.6) 
6a′′ 62.7 3.77 (1H, dd, 2.4, 11.9) 
6b′′ - 3.57 (1H, dd, 5.4, 11.9) 

   
 

 

On the basis of the resonance at δH 5.26 ppm, which was suggestive of an anomeric 

proton, and the characteristic loss of [M-162] observed in the mass spectrum, the 

remaining 1H and 13C NMR signals alluded to a sugar moiety. On the basis of 1H-1H 

COSY and coupling constants all of the hydrogen groups in the sugar moiety were 
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deduced to be axial. Since both the anomeric and adjacent hydrogen were axial, the 

sugar moiety could be assigned as β-D-glucopyranose. Compound 10 was elucidated as 

5,7,2′,4′-tetrahydroxy-6-methoxyflavone-3-O-β-glucopyranoside to which we have 

assigned the trivial name centipetin-3-glucoside. The structure (10) was partially 

verified by Gabriel (2005), and the 1H and 13C NMR data were consistent with the 

reported values. 
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3.2.2.3  Caffeic acid ethyl ester (11). 

In addition to compounds 6-10, seven known compounds were isolated from C. 

cunninghamii. Fractionation of the aerial parts of the plant yielded five known caffeic 

acids, whilst a methanolic extract from the floral parts yielded four flavonoids and three 

sesquiterpenes. 

 

Compound 11 was isolated from preparative F11 (Figure 2.1). The structure of 

compound 11 was verified on the basis of 1H, 13C, HMBC and HSQC NMR 

spectroscopy and was in agreement with the reported data (Gabriel, 2005.). The 

compound appears to be the esterified product of caffeic acid. Throughout the 

extraction and isolation process concentrations of compound 11 were observed to 
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increase over time, indicating that it arises as a breakdown product derived from the 

caffeic acid constituents. 
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3.2.2.4  Chlorogenic acid (12) and its methyl ester (13). 

Two compounds were isolated from prep-HPLC F2 (Figure 2.1). The first was 

elucidated to be chlorogenic acid (12). The 1H and 13C NMR, and stereochemical 

assignments are in agreement with published data for chlorogenic acid (Cheminat et al., 

1988; Lin et al., 1999). The immuno-modulatory properties of 12 have recently been 

investigated by Lin and co-workers (1999). Chlorogenic acid was shown to potently 

enhance human mononuclear cell proliferation and interferon-γ production to an extent 

comparable to the positive control, interleukin-2.  
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The 1H NMR spectrum for the second compound was almost identical with chlorogenic 

acid (12) with the exception being an additional resonance δH 3.70 ppm readily 

identified as a methoxy substituent. The location of the methoxy signal could be 

determined from the 3JCH correlation to C-7 in the HMBC spectrum. Compound 13 was 

elucidated as caffeic acid methyl ester, 1H and 13C NMR data and stereochemical 

assignments are in agreement with the reported values (Zhu et al., 2005a), the structure 

is further supported by 2D COSY, HMBC and HSQC data. 

 

3.2.2.5  Isochlorogenic acid A (14). 

Analysis of the 1H and 13C NMR data of two compounds (14 and 15) isolated from F14 

(Figure 2.1) showed similarities betweeen the two by the presence of two caffeic acid 

moieties in their structures. The first compound (14) was elucidated as isochlorogenic 

acid A. The 1H and 13C NMR data are in agreement with the reported values (Kodoma 

et al. 1998) and is further supported by 2D COSY, HMBC and HSQC data. The 

stereochemical assignments have been derived from the affinity of 14 to compound 15. 
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3.2.2.6   Revised assignments for macroantoin G (15). 
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      15 
 
 
The second compound (15) isolated from F14 (Figure 2.1) was elucidated as the methyl 

ester of 14. Two caffeic acid moieties were observed in the NMR spectra of 15 and in 

contrast to 14, an additional methoxy singlet was apparent (δH 3.70 ppm). The methoxy 

protons showed a 3JCH correlation to the carboxylic group at C-7 which indicated the 

location of the methoxy substituent. The optical rotation and stereochemical 

assignments are consistent with reported values for macroantoin G (Zhang et al., 2000). 

1H and 13C NMR assignments are in agreement with the published values (Table 3.5) 

with the exception of the assignments for H-2a/H-2b and H-6a/H-6b which have been 

revised as shown in Table 3.5.  
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3.2.2.7   Axillarin (16). 

O
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       16 
 
Three compounds were obtained from the SPE3 fractions (Figure 2.2), all of which 

were elucidated as known flavonoids. The first pure isolate, SPE3-F1 was elucidated as 

the flavone axillarin (16). 1H NMR data is in agreement with reported the values 

(Jefferies et al., 1974). 

 
3.2.2.8  Isokaempferide (17) and 3,6-dimethoxy apigenin (18). 
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   17      18 
 
The second compound SPE3-F2 (Figure 2.2) was composed of a mixture of two co-

eluting compounds (17 and 18). Compound 17 was elucidated as isokaempferide and 

compound 18 as 3,6-dimethoxyapigenin. Spectroscopic data was in agreement with 

published values for compound 17 (Grouiller et al., 1967) and 18 (Herz et al., 1975). 

Due to the common occurrence and published biological activity of these flavones it 

was considered unnecessary to proceed with further purification. 

 
 
3.2.2.9   Jaceidin (19). 
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The third isolate from fraction SPE3 was elucidated as jaceidin (19). 1H NMR 

assignments were consistent with published values (Roitman and James, 1985). 

Structure 19 is further supported by 13C and 2D HMBC, HSQC and COSY data. 
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3.2.2.10  Arnicolide C (20). 
 
The fractions from the hexane partition of the ethanol extract (SPE4 fractions, Figure 

2.2) were mostly terpenoids, plant sterols and fatty acids based on their 1H NMR 

spectra. Three of the SPE4 fractions were sufficiently pure for structural elucidation 

work. These were identified as known terpenoid compounds. SPE4-F1 was elucidated 

to be the known sesquiterpene lactone, arnicolide C (20). The structure and 

stereochemical assignments have been confirmed by X-ray crystallography and optical 

rotation studies (Poplawski et al., 1971) who reported the isolation of arnicolide C and 

related sesquiterpene lactones from Arnica species.  
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3.2.2.11 3-Hydroxykaura-9(11),16-dien-19-oic acid (21). 
 
The second isolate SPE4-F7 was elucidated as the known kaurane diterpene; 3-

hydroxykaura-9(11),16-dien-19-oic acid (21). 3-Hydroxy-9(11),16-kauradien-19-oic 

acid was first reported by Bohlmann and co-workers (1982) as a metabolite from 

Ichthyothere terminalis. The compound was characterised as the methyl ester derivative 

22 and stereochemistry was assigned on the basis of 1H NMR studies.  

 

 

AcO

H3C CH2

OMe
O H

HO

H3C CH2

OH
O H

 
 
 
 
 
 
 
 
    21      22 
 
 

 
Figure 3.2. X-ray crystal structure of 3-hydroxy-9(11),16-kauradien-19-oic acid (21). 
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X-ray crystallography studies (Figure 3.2) have confirmed the structure (21) and 

relative stereochemical assignments. In contrast to the published structure (Bohlmann et 

al., 1982) 3-hydroxy-9(11),16-kauradien-19-oic acid was elucidated to possess an R 

configuration at C-3. Compound 21 was elucidated as (rel)-(3R,4S,5S,8S,10R,13R)-3-

hydroxy-kaura-9(11),16-dien-19-oic acid.  

 
 
3.2.2.1 2 8-Hydroxy-9,10-diisobutyryloxythymol (23). 
 
SPE4-F8 (Figure 2.2) was elucidated as 8-hydroxy-9,10-diisobutyryloxythymol (23). 

1H NMR data is in agreement with published values (Mossa et al., 1997). The 

occurrence in, and antibacterial activity of this compound has previously been reported 

from Centipeda minima (Liang et al., 2007). 

 
 

 

 

 

 

OO
OH
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OO
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3.3  Conclusion 

 

Characterisation of the essential oil of C. cunninghamii identified cis-chrysanthenol (5), 

myrtenol (3), chrysanthenyl acetate (4), thymol (1) and myrtenyl acetate (2) as the 

major constituents. Myrtenyl acetate and cis-chrysanthenol have not previously been 

reported from C. cunninghamii. The oil was not found to contain sabinyl acetate as 

previously reported by D’Amelio and Mirhom (1998). 
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The chemical composition of solvent extract of C. cunninghamii was different from the 

essential oil and also different from the reported constituents (D’Amelio and Mirhom, 

1998). In common with D’Amelio and Mirhom (1998), arnicolide C was isolated in this 

instance. Of the 25 compounds identified by D’Amelio and Mirhom (1998), from the 

HPLC chromatogram of the extract, twelve were sesquiterpene lactones. Additional 

sesquiterpene lactones were isolated but were not sufficiently pure for characterisation. 

D’Amelio and Mirhom (1998) also reported on the identification of kaempferol-7-

glucosyl-rhamnoside, apigenin and quercetin which are different to the flavonoids 

purified in the course of this work. 

 

Very few parallels were observed between compounds reported from C. minima and C. 

cunninghamii. The principal constituents identified from solvent extracts of C. 

cunninghamii were phenolic compounds; caffeic acids and flavonoids. Lipophilic 

isolates constituted a thymol derivative, a diterpene and a sesquiterpene lactone. 

Previous chemical investigations of C. minima and have been directed more towards 

the lipophilic components and consequently multiple triterpenoids and sesquiterpene 

lactones have been characterised from this species. 

 

The bioassay directed fractionation and anti-inflammatory and antioxidant activity of 

the compounds isolated from C. cunninghamii is reported is Chapter 4. 
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This investigation encompasses both the anti-inflammatory and antioxidant activity of 

C. cunninghamii extracts, fractions and pure compounds.  

 

4.1 Introduction 

 

4.1.1 Mechanisms of Inflammation and Anti-inflammatory Drugs 

Inflammation is an immune response to the invasion of pathogens, chemical irritants, 

burns, toxins or mechanical injury. The processes of oxidation and inflammation are 

closely linked, as during the inflammatory response free radicals are produced at the 
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inflamed site. The mechanism and biological importance of antioxidants is discussed in 

Section 4.1.2. 

 

Inflammation is initiated at the cellular level by mast cells which release histamine and 

commence the generation of eicosanoids at the site of injury, inducing localized 

vasodilation. This serves to increase the number of platelets, leukocytes and crucial 

plasma proteins at the wound. The increased cellular permeability incidentally gives 

rise to the physical characteristic of inflammation; redness, swelling, pain, heat and loss 

of function (Calixto et al., 2003; Vane et al., 1994). It is known that endothelial cells, 

macrophages, basophils and platelets can respond independently as well as play a 

concerted role in the inflammatory cascade (Rang et al., 1995). Endothelial cells are 

capable of generating nitric oxide whilst macrophages can produce nitric oxide and also 

cytokines. 

 

Inflammation is normally a tightly regulated process. A progression of biochemical 

events consisting of both cellular and plasma derived mediators which serve to confine 

the location, remove the insult, and repair the tissue. In cases where the inflammatory 

response is not effective in removing the insult or where inflammation runs unchecked 

chronic inflammation can result. This is observed to occur in a cohort of diseases such 

as hay fever, atherosclerosis, rheumatoid arthritis, asthma, cancer, Alzheimer’s and 

inflammatory bowel disease (Bochsler and Slauson, 2002).  

 

Most anti-inflammatory drugs in clinical use act on the biosynthesis of eicosanoids 

(Rang et al., 1995).  Eicosanoids are implicated in the control of many physiological 

processes and are among the most important mediators and modulators of the 
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inflammatory reaction. Eicosanoids arise from arachidonate. Multiple enzymatic 

pathways exist for the biosynthesis of various eicosanoids and vary by cell type. A 

summary of the eicosanoid biosynthetic pathways and the drugs that act on them is 

depicted in Figure 4.1.  

 

Prostaglandin E2 (PGE2) is the predominant product released during an inflammatory 

response and is metabolised via the cyclooxygenase (COX) enzyme via a multi-step 

process from arachidonic acid. COX has been found to exist in three forms; COX-1, 

COX-2 and COX-3. COX-1 is found as a constituent of most cells and is thought to 

synthesize prostanoids that are involved in normal homeostasis such as regulating 

vascular responses, coordinating the actions of circulating hormones and also 

inflammation. The COX-2 is an enzyme that is expressed in response to an 

inflammatory stimulus. COX-3 has been proposed to be a variant of COX-1 and has 

been reported to exist in the cerebral cortex and heart (Chandrasekharan et al., 2002). 

Its’ expression and function remain uncertain (Warner and Mitchell, 2002; Schwab et 

al., 2003). 

 

It is thought that the efficacy of traditional NSAIDs such as aspirin and ibuprofen is due 

to their inhibition of the COX-2 enzyme whilst the unwanted side effects such as 

gastric and duodenal ulcers, is due to the inhibition of COX-1 (Fritsche et al., 2001; 

Zhang et al., 1997; Hinz and Brune, 2002). Selective COX-2 inhibitors such as 

celecoxib (24), and rofecoxib (Vioxx) have been developed. However rofecoxib (25) 

has been implicated in cardiovascular health complications such as heart attacks, 

thrombosis and strokes and has been withdrawn from the market. At this time it is not  
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clear whether all COX-2 selective drugs pose an increased cardiovascular risk or just 

rofecoxib. 
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The lipoxygenase (LO) enzymes (Figure 4.1) are found in the lung, platelets, mast cells 

and white blood cells with 5-LO being the principal enzyme (Rang et al., 1995). The 

leukotrienes they metabolise have been found to be involved in inflammatory diseases 

such as asthma, psoriasis, rheumatoid arthritis and inflammatory bowel disease (Zhang 

and Li, 1999; Henderson, 1994). Since the COX and LO enzymes use the same 

substrate, arachidonic acid, inhibition of one enzyme may cause the arachidonic acid 

cascade to shift to the alternative pathway. Drugs that act on both LO and COX 

pathways have recently attracted interest (Celotti and Laufer, 2001; Claria and Romano, 

2005; Araico et al., 2006). Some dual active COX/5-LO inhibitors have been 

discovered and several have entered clinical trials (Julemont et al., 2004) and are 

proving to be favourable in the treatment of rheumatic diseases with few 

gastrointestinal side effects (Bertolini et al., 2002).  

 

Additional inflammatory processes can occur via the actions of macrophages and 

lymphocytes which can produce cytokines such as the interleukins (IL) and tumor 
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necrosis factors (TNF). These peptides are produced mainly upon inflammatory 

activation and possess a wide range of physiological roles. They are responsible for 

facilitating the immune response, the release of acute phase proteins and can effect 

fever (Rang, et al., 1995).  Drugs that are active against the metabolism of cytokines 

have also been developed such as the TNF-α inhibitors adalimumab, etanercept, and 

infliximab. Further to this, nitric oxide (NO) can be stimulated by the production of 

cytokines, such as TNF-α.  Nitric oxide is implicated in many biological processes, but 

in general increased NO can contribute to disease processes (Rang, et al., 1995).  

 

4.1.2 Free Radicals, Antioxidants and Bioassays 

A wide range of reactive oxygen species (ROS) are constantly generated in vivo as an 

integral product of metabolism, by exposure to environmental factors and as a 

consequence of inflammatory processes. It is recognized that over one hundred 

diseases, including cancer, cardiovascular disease, diabetes mellitis, male infertility, 

renal disease, cataracts, liver, lung, neurological and inflammatory diseases give rise to 

a pathological increase of free radicals. These free radicals circulate freely in the body 

with access to all organs and tissues. ROS are capable of killing cells and may cause 

oxidative damage to DNA, lipids, proteins and enzymes. Organisms have developed 

complex antioxidant systems to counteract ROS. Endogenous antioxidants include 

glutathione (26) and melatonin and enzymes such as catalase, superoxide dismutase and 

peroxidases. Nutritional antioxidants include vitamin C and α-tocopherol (27), 

carotenoids and polyphenolics. In addition to their biological and medical applications, 

antioxidants have important industrial uses such as preservatives in food and cosmetics, 

and in preventing the degradation of gasoline and rubber. 
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The antioxidant strength of an extract or compound can be determined by measuring 

the oxygen radical absorbance capacity (ORAC). The ORAC assay measures the 

oxygen scavenging ability of a test sample by monitoring the free radical dependant 

decrease in florescence intensity of the β-pycoerythrin marker protein (Huang et al., 

2005). In the ORAC assay 2,2′-azobis(2-methyl)propionamidine dihydrochloride 

(AAPH) is added to generate free radicals. The decrease in fluorescence is monitored 

over time (Figure 4.2) in the presence of the test sample, in comparison to trolox, a 

water soluble vitamin E analogue and for a blank sample. From a plot of the decrease in 

fluorescence over time the area under the curves can be calculated and the data 

extrapolated to determine a trolox equivalent value, an indication of the ORAC capacity 

of the test sample relative to trolox. 
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Figure 4.2.  ORAC assay fluorescence curves. 
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4.2 Results and Discussion 

 

4.2.1 The Biological Activity of C. cunninghamii Extracts 

In this study commercially available COX-1, COX-2, 5-LO, TNF-α, and NO assay kits 

were selected as the target enzymes to assess the anti-inflammatory properties of C. 

cunninghamii extracts whilst the ORAC hydrophillic assay was selected to assess the 

antioxidant constituents of the herb. 

 

Three solvent extracts; 100% aqueous (ambient temperature), 50% aqueous ethanol and 

100% ethanol were prepared by steeping overnight at room temperature. A 100% 

aqueous (100°C) extract was prepared by boiling the herb for one hour. The four 

extracts and oil were analysed by LC-MS to determine their chemical compositions. 

One kilogram of the dried herb was steam distilled to produce the essential oil.  

 

The chemical profile of the aqueous extract was almost identical to that of the boiled 

aqueous and 50% ethanolic extract. It was observed that the compounds found in the 

steam distilled oil may also be extracted at room temperature by the inclusion of 

ethanol (50-100%). It was considered that the 50% aqueous ethanol extract gave the 

broadest representation of the chemical profile of C. cunninghamii compared to the oil 

or the aqueous extracts. The 50% aqueous ethanol extract also gave a much greater 

yield, 15.0% compared to only a 4.4% yield for the 100% ethanol extract. The four 

solvent extracts and the essential oil were tested against the ORAC and PGE2 

bioassays. The inhibition of PGE2 and antioxidant activity of the 5 extracts is presented 

in Table 4.1.  
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Table 4.1.  Anti-inflammatory and antioxidant capacity of C. cunninghamii extracts. 
 
 

 % inhibition  of PGE2 Antioxidant Capacity 

Extract 
Sample 

Concentration 
(μg/mL) 

Average 
Inhibition ± 

SEM 

μmol TE / g 
extract ± SEM 

μmol TE / g 
sample ± SEM 

100 % 
Ethanol 

10 
100 
1000 

22.91 ± 4.30 
59.40 ± 5.88 
58.41 ± 3.63 

1440 ± 96 63.8 ± 4.3 

50 % 
Ethanol 

10 
100 
1000 

52.36 ± 13.91 
60.65 ± 9.23 
68.71 ± 2.44 

2030 ± 201 306.1 ± 30.3 

100 % 
Aqueous 

10 
100 
1000 

6.37 ± 7.97 
-20.82 ± 8.06 
84.52 ± 1.49 

1277 ± 20 199.6 ± 3.254 

Boiled 
Water 

10 
100 
1000 

45.54 ± 1.57 
12.74 ± 8.35 
63.76 ± 0.69 

1455 ± 170 259.4 ± 30.3 

Oil 
10 
100 
1000 

69.65 ± 3.22 
76.55 ± 2.73 
69.71 ± 5.31 

1086 ± 276 2.3 ± 0.6 

     
 

Aspirin 
 

18 45.47 ± 5.56 - - 

 
Green Tea 

Extract 
 

1 μM - 7108 ± 434 592 ± 36 

 

 

All extracts inhibited PGE2 to some extent, between 6 to 84% (Table 4.1). The 50% 

aqueous ethanol extract and oil inhibited PGE2 production to the greatest extent, with 

the exception of the highest concentration of boiled water extract.  Dose responses were 

poor with many extracts, particularly the oil, and it is likely that this is due to mixed 

modes of action. Better dose responses were observed for pure compounds. Aspirin was 
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found to inhibit PGE2 production by approximately 45% at 18 μg/mL, and it was found 

that both of the ethanolic extracts and the essential oil exhibited greater inhibition than 

aspirin 100 μg/mL. 

 

The antioxidant activity was tested using the ORAC (oxygen radical absorbance 

capacity) method.  All extracts displayed antioxidant activity, with the 50% ethanol 

extract being the most active (Table 4.1).  This extract is considered to have the 

broadest representation of the chemical profile. The antioxidant capacity was also 

highest for the 50% ethanol extract, when expressed as antioxidant activity per gram of 

plant tissue (sample), indicating that this solvent extracted the greatest proportion of 

antioxidants, per gram of plant tissue. 
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4.2.2 Mode of Anti-inflammatory Action  

 

4.2.2.1  Inhibition of Cyclooxygenase Gene Expression 

A 50% aqueous ethanol Centipeda cunninghamii extract did not considerably influence 

COX-2 gene expression (Figure 4.3).  The positive control, dexamethasone was found 

to inhibit COX-2 expression by approximately 60%, compared to stimulated control 

cells (untreated cells). The scatter plots of the highest concentration of the extract tested 

(1000 μg/mL) were rendered uninterpretable due to interference of the flow cytometry 

scatter plots.  
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Figure 4.3.  Influence of 50% aqueous ethanol Centipeda cunninghamii extract 
on COX-2 expression.  Values are mean ± SEM, n=2. 

C
en

tip
ed

a 
10

0 
µg

/m
L)

 

C
en

tip
ed

a 
(1

0 
µg

/m
L)

 

%
 o

f c
el

ls
 e

xp
re

ss
in

g 
C

O
X-

2 

D
ex

am
et

h
0.

78
4 

as
on

e 
   

µg
/m

L 
  

U
nt

re
at

ed
 

D
M

SO
  

94



4.2.2.2  Inhibition of Cyclooxygenase Enzyme Activity 

At the highest concentration (1000 μg/mL) the 50% aqueous ethanol Centipeda 

cunninghamii extract inhibited both COX-1 and COX-2 activity, to values comparable 

to ibuprofen (COX-1) and celebrex (COX-2) (Figure 4.4). The biological relevance of 

such a high concentration requires further investigation.  At a low concentration (100 

μg/mL) the extract exhibited some selectivity towards COX-2 inhibition.  
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Figure 4.4.  Inhibition of COX-1 and COX-2 activity by a 50% aqueous ethanol 

Centipeda cunninghamii extract.  Values are mean ± SEM, n=3. 
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4.2.2.3  Inhibition of Lipoxygenase Enzyme Activity 

The 50% aqueous ethanol Centipeda cunninghamii extract did not inhibit lipoxygenase 

(5-LO) activity and at the higher concentrations (100 and 1000 μg/mL) the extract 

appeared to slightly promote 5-LO activity (Figure 4.5).  Nordihydroguaiaretic acid 

(NGDA) was included as a positive control, at a low concentration NGDA inhibited LO 

activity by approximately 100%.  This result suggests that the anti-inflammatory 

activity associated with Centipeda cunninghamii is due to its influence on the 

cyclooxygenase inflammatory pathway, not the lipoxygenase inflammatory pathway.   pathway.  
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Figure 4.5.Figure 4.5.  Inhibition of 5-lipoxygenase activity by a 50% aqueous ethanol 
Centipeda cunninghamii extract.  Values are mean ± SEM, n=3. 
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4.2.2.4  Inhibition of Tumor Necrosis Factor-α Production 

RAW 264 cells were stimulated with LPS to induce the production of tumor necrosis 

factor-α (TNF-α).  The addition of 50% aqueous ethanol Centipeda cunninghamii 

extract (130 μg/mL) to the culture medium considerably inhibited the production of 

TNF-α, reducing production by approximately 33% (Figure 4.6).  At lower 

concentrations (13 and 1.3 μg/mL) the extract was not as efficacious. At 16 μg/mL 

aspirin inhibited TNF-α production by approximately 7%.  
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Figure 4.6.  The effect of a 50% aqueous ethanol Centipeda cunninghamii extract on 

the production of tumor necrosis factor-α by stimulated RAW 264 cells.  
Values are mean ± SEM, n=3. 
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Figure 4.7.  The effect of a 50% aqueous ethanol Centipeda cunninghamii extract on 

the production of tumor necrosis factor-α by unstimulated RAW 264 cells.  
Values are mean ± SEM, n=3. 

  

 

The influence of the 50% aqueous ethanol extract of C. cunninghamii on RAW 264 

cells not stimulated with LPS was also tested (Figure 4.7).  At all concentrations tested 

the C. cunninghamii extract stimulated TNF-α production compared to the solvent 

control (DMSO), and aspirin. This indicated that extracts of C. cunninghamii have a 

stimulatory action in the case of unstimulated cells whereas, in the case of stimulated 

cells, an inhibitory action was observed.  It is noted that the stimulatory action of C. 

cunninghamii (400 pg/mL) is considerably less than that of LPS (2000 pg/mL).  

Making inferences from the stimulatory action observed from the crude extract is 

premature given the inherent complexity of the crude extract. Evaluation of the TNF-α 

activity of the purified compounds would give a clearer understanding of the mode/s of 

anti-inflammatory action.  
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4.2.2.5  Inhibition of Nitric Oxide Production 

The stimulation of RAW 264 cells with LPS also induces the production of nitric oxide 

(NO).  The addition of a 50% aqueous ethanol extracts of C. cunninghamii to 

stimulated cells inhibited the production of NO, at all concentrations tested (Figure 

4.8).  At 130 μg/mL, the C. cunninghamii extract inhibited NO production by 

approximately 100%.  Whilst increased NO can contribute to disease states, NO has 

other biological functions; including its’ action as a signalling molecule.  Therefore, 

complete inhibition of NO may not be desirable and a more moderate response, such as 

that achieved with C. cunninghamii at 13 and 1.3 μg/mL may be of greater clinical 

relevance. 
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Figure 4.8.  The effect of a 50% aqueous ethanol Centipeda cunninghamii extract on 

the production of nitric oxide by stimulated RAW 264 cells.  Values are 
mean ± SEM, n=3.  

 

The influence of the C. cunninghamii extract on unstimulated RAW 264 cells was also 

tested, and it did not stimulate NO production as compared to the DMSO control or 

aspirin (Figure 4.9). 
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Figure 4.9.  The effect of a 50% aqueous ethanol Centipeda cunninghamii extract on 

the production of nitric oxide by unstimulated RAW 264 cells.  Values are 
mean ± SEM, n=3. 

 

 

 4.2.3      Anti-inflammatory & Antioxidant activity of C. cunninghamii Fractions 

For the purpose of bioassay work the most active extract, derived from 50% aqueous 

ethanol was fractionated into four fractions using a solid phase extraction technique. 

Four C18-SPE fractions were generated by eluting with a water/acetonitrile gradient. 

The mobile phase, volume of eluting solvent and the yield for each fraction is listed in 

Table 4.2. A sample of the whole extract, together with the four SPE fractions was 

submitted for bioassay. The fractions were analysed by LC-MS prior to bioassay work.  

 

The four SPE fractions were tested against the ORAC and PGE2 bioassays. The 

inhibition of PGE2, and antioxidant activity of the 4 fractions is presented in Table 4.3. 
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Table 4.2. Solid phase extraction of C. cunninghamii extract; eluent, volumes used 
and yields for each fraction. 

 

Fraction Solvent Volume Yield (g) 
1 100% MQ Water 60 mL 0.306 

2 20% ACN/Water 60 mL 0.113 

3 40% ACN/Water 60 mL 0.030 

4 100% ACN 60 mL 0.071 

 
 
 
Table 4.3.   Anti-inflammatory and antioxidant capacity of Centipeda cunninghamii 

samples and SPE fractions. 
 

 
 

% inhibition  of PGE2 
 

Antioxidant Capacity 

Extract/Fraction 
Sample 

Concentration 
(μg/mL) 

Average 
Inhibition ± 

SEM 

μmol TE / g 
extract ± 

SEM 

μmol TE / g 
sample ± 

SEM 

Aspirin 
 18 26.42 ± 5.32 - - 

Green Tea 
Extract 

 
  7108 ± 434 592 ± 36 

SPE F1 
10 
100 
1000 

-31.82 ± 5.00 
-33.33 ± 11.50 
-51.70 ± 3.22 

676 ± 39 413.7 ± 23.9

SPE F2 
10 
100 
1000 

-38.24 ± 2.31 
-38.11 ± 6.85 
0.63 ± 3.67 

6411 ± 351 1455.3 ± 
79.7 

SPE F3 
10 
100 
1000 

-42.39 ± 5.52 
18.74 ± 0.33 
34.59 ± 4.70 

3382 ± 678 202.9 ± 40.7

 
SPE F4 

 

10 
100 
1000 

-31.19 ± 0.50 
38.11 ± 0.87 
29.31 ± 6.17 

694 ± 159 99.2 ± 22.7 
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The results suggest that SPE fractions 3 and 4 contain constituents that act to inhibit 

PGE2 production (Table 4.3). Fractions 1 and 2 exhibit little or no influence on PGE2 

production.  Fractions 2 and 3 exhibit the greatest antioxidant capacity, and represent 

~23% and 6% of the crude extract, respectively. Fraction SPE F1 did not inhibit PGE2 

production or exhibit significant antioxidant capacity, even though its mass accounted 

for 61% of the extract.  SPE fractions 2, 3, and 4 exhibited antioxidant activity, and 

SPE fractions 3 and 4 inhibited PGE2 production. It was therefore decided that sub-

fractionation of these fractions and re-testing in the bioassays would be of most value. 

 

4.2.4 Anti-inflammatory and Antioxidant Activity of C. cunninghamii  
Sub-fractions 

Approximately 3.0 grams of the crude dried extract of C. cunninghamii was 

fractionated by RP SPE in the usual way (Section 2.3.2). The resulting SPE fractions 

were sub-fractionated by RP prep-HPLC.  SPE fraction 2 was divided into ten fractions, 

SPE fraction 3 was divided into seven fractions and SPE fraction 4 was divided into ten 

fractions. The prep-HPLC runs were repeated between 10-14 times each to obtain 

sufficient material for the antioxidant and anti-inflammatory assays. The relevant prep-

HPLC fractions were pooled and then dried using a rotary-evaporator and subsequently 

freeze dried to remove all traces of solvent prior to bioassay. 

 

The 27 sub-fractions were tested against the ORAC and PGE2 bioassays. The inhibition 

of PGE2, and antioxidant activity of these fractions is presented in Tables 4.4–4.6. Sub-

fractions F18-F20 were not submitted for bioassay because they were identical in 

composition, by LC-MS, to sub-fractions F21-F23. 
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Table 4.4.  Anti-inflammatory and antioxidant capacity of Centipeda cunninghamii  
 sub-fractions generated from SPE fraction 2 

 

 
 

% inhibition  of PGE2 
 

Antioxidant Capacity 

Sub-fraction Concentration 
(μg/mL) 

Average 
Inhibition ± 

SEM 

 
μmol TE / g fraction ± SEM 

 

SPE F2 - F1 100 
1000 

-0.00 ± 4.76 
-12.08 ± 5.02 279 ± 47 

SPE F2 - F2 100 
1000 

-2.97 ± 5.32 
10.89 ± 0.34 4215 ± 371 

SPE F2 - F3 100 
1000 

1.58 ± 3.37 
5.74 ± 6.49 3295 ± 8 

SPE F2 - F4 100 
1000 

-18.42 ± 2.92 
51.88 ± 2.93 1922 ± 300 

SPE F2 - F5 100 
1000 

-15.05 ± 1.05 
35.05 ± 3.57 2334 ± 111 

SPE F2 - F6 100 
1000 

6.34 ± 2.23 
44.16 ± 2.09 3692 ± 241 

SPE F2 - F7 100 
1000 

7.13 ± 3.50 
-17.62 ± 3.56 6510 ± 809 

SPE F2 - F8 100 
1000 

9.11 ± 2.47 
2.18 ± 1.76 10151 ± 699 

SPE F2 - F9 100 
1000 

-2.18 ± 3.14 
21.19 ± 2.77 7699 ± 561 

SPE F2 - F10 100 
1000 

-16.44 ± 6.79 
15.45 ± 2.53 4608 ± 767 

 
Aspirin 

 
18 μg/mL 44.16 ± 3.27 - 

 
Green Tea 

Extract 
 

 - 6406 ± 498 
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Table 4.5.  Anti-inflammatory and antioxidant capacity of Centipeda cunninghamii  
sub-fractions generated from SPE fraction 3.   

 

 

 
 

% inhibition  of PGE2 
 

Antioxidant Capacity 

Fraction Concentration 
(μg/mL) 

Average 
Inhibition ± 

SEM 

 
μmol TE / g fraction ± SEM 

 

SPE F3 - F11 100 
1000 

-77.19 ± 11.05 
69.39 ± 8.80 4186 ± 287 

SPE F3 - F12 100 
1000 

9.28 ± 14.82 
71.47 ± 5.57 8520 ± 587 

SPE F3 - F13 100 
1000 

7.02 ± 4.02 
61.32 ± 1.50 5588 ± 694 

SPE F3 - F14 100 
1000 

3.85 ± 10.15 
61.55 ± 1.69 3139 ± 502 

SPE F3 - F15 100 
1000 

29.74 ± 12.60 
72.19 ± 3.85 2177 ± 328 

SPE F3 - F16 100 
1000 

57.62 ± 2.47 
78.97 ± 1.41 4172 ± 499 

SPE F3 - F17 100 
1000 

70.56 ± 1.71 
66.64 ± 5.85 1430 ± 282 

 
Aspirin 

 
18 μg/mL 63.99 ± 8.55 - 

 
Green Tea 

Extract 
 

 - 3892 ± 580 
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Table 4.6.  Anti-inflammatory and antioxidant capacity of Centipeda cunninghamii  
sub-fractions generated from SPE fraction 4. 

 

 

 
 

% inhibition  of PGE2 
 

Antioxidant Capacity 

Fraction Concentration 
(μg/mL) 

Average 
Inhibition ± 

SEM 

 
μmol TE / g fraction ± SEM 

 

SPE F4 - F21 100 
1000 

81.00 ± 4.60 
81.26 ± 3.24 4936 ± 481 

SPE F4 - F22 100 
1000 

85.23 ± 6.17 
83.84 ± 2.49 931 ± 26 

SPE F4 - F23 100 
1000 

61.42 ± 3.00 
76.13 ± 2.62 145 ± 17 

SPE F4 - F24 100 
1000 

76.53 ± 2.88 
78.61 ± 0.68 226 ± 20 

SPE F4 - F25 100 
1000 

76.28 ± 2.86 
76.73 ± 0.70 277 ± 14 

SPE F4 - F26 100 
1000 

57.51 ± 5.96 
78.77 ± 0.74 211 ± 12 

SPE F4 - F27 100 
1000 

73.45 ± 3.24 
75.12 ± 3.77 2186 ± 507 

SPE F4 - F28 100 
1000 

74.74 ± 1.44 
80.16 ± 2.65 1509 ± 545 

SPE F4 - F29 100 
1000 

73.95 ± 2.29 
82.80 ± 2.59 600 ± 80 

SPE F4 - F30 100 
1000 

63.24 ± 1.81 
71.38 ± 3.88 133 ± 11 

 
Aspirin 

 
18 μg/mL 66.95 ± 7.14 - 

 
Green Tea 

Extract 
 

 - 5282 ± 426 
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Most sub-fractions demonstrated biological activity. Several fractions exhibited both 

anti-inflammatory and antioxidant activity. 

 

Sub-fractions F4, F6, F11-F17 and F21-F30 demonstrated reasonable anti-

inflammatory activity at the highest concentration tested (1000 μg/mL), inhibiting PGE2 

production comparable to, or better than, aspirin (Tables 4.4-4.6). It should be noted 

however, that these sub-fractions produced cloudy suspensions at high concentrations 

when dispensed in the aqueous medium required by the 3T3 cells in the PGE2 assay. 

This suggests that the inhibition may have been greater if the samples were able to be 

completely dissolved at this concentration. The biological relevance of this high 

concentration is uncertain. More insight was obtained at the lower concentration tested 

(100 µg/mL). At this concentration, only sub-fractions F21-F30 and sub-fractions F15-

F17 demonstrated considerable anti-inflammatory activity. 

  

Sub-fractions F7, F8, F9, F11-F13, F16 and F21 demonstrated considerable antioxidant 

activity, with ORAC values ranging from 4172 to 10151 μmol TE/g of fraction. 

 

From these results and considering solubility issues, cost and time constraints, it was 

difficult to prioritize which sub-fractions warranted further investigation since most 

demonstrated anti-inflammatory and/or antioxidant activity (Figures 4.10 and 4.11).   
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Figure 4.10. The UV-Vis 210 nm chromatogram of the fresh 50 % aqueous ethanol 
extract of C. cunninghamii showing SPE fractionation (blue lines) and 
location of anti-inflammatory activity (yellow zones derived from sub-
fractions F1-F30). 

 

 

 

 

 

 

 

 

 

Figure 4.11. The UV-Vis 210 nm chromatogram of the fresh 50 % aqueous ethanol extract 
of C. cunninghamii showing SPE fractionation (blue lines) and location of 
antioxidant activity (pink zones derived from sub-fractions F1-F30). 

 

 

The chemical components of the stems and floral parts, and the anti-inflammatory 

activity contributed by the stems and floral parts were compared against the whole plant 

extract.  

107



 

Figure 4.12. The UV-Vis 210 nm chromatogram of the fresh 50 % aqueous ethanol 
extracts of C. cunninghamii whole plant, flowers and stems. 

 

 

Table 4.7. Inhibition of PGE2 production by Centipeda cunninghamii extracts  

Extract Concentration 
(μg/mL) 

 
% Inhibition of PGE2 

average inhibition ± SEM 
 

Flowers 
10 
100 
1000 

-7.96 ± 8.51 
72.71 ± 2.26 
73.93 ± 5.64 

Stems 
10 
100 
1000 

-5.90 ± 10.46 
85.72 ± 1.00 
63.88 ± 1.38 

Aspirin 
 

18 
 

45.47 ± 5.56 
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It was anticipated that the biological activity of these extracts would be different, given 

their different chemical profiles (Figure 4.12), but this outcome was not evident as both 

samples inhibited PGE2 production to a reasonable degree (Table 4.7). To pursue the 

bioactive compounds in an effective manner, it was rationalised that as many 

compounds as possible would be isolated from SPE fractions 2, 3 and 4 and submitted 

for bioassay.  

 

4.2.5 Anti-inflammatory Compounds from C. cunninghamii 

Each of the pure compounds isolated in this study were tested on the PGE2 bioassay at 

1000 μg/mL, however many of the compounds were insoluble, producing cloudy 

suspensions at this concentration, consequently invalidating the results. All of these 

compounds and fractions were retested at a much lower, soluble concentration (31.25 

μg/mL), (Table 4.8).  

 

A series of flavonoids were found to posses high anti-inflammatory activities. A series 

of fractions SPE4 F6 through to SPE4 F13 also exhibited strong activity. NMR studies 

have shown that these fractions contained sesquiterpenes, sterols and fatty acids. 

 
Overall the results for the two concentrations were similar. The flavonoids have potent 

anti-inflammatory activity and significant activity was observed for the caffeic acids 

compounds , 6, 7, 8, 14 and 15. 
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Table 4.8.  PGE2 anti-inflammatory activity of Centipeda cunninghamii compounds and 
fractions. 

* impure 

Compound/Fraction 
31.25 µg/mL 

Average (± SD) 
  
Centipetin-3-glucoside (10) 14.0  (± 13.2) 
Myriogenic acid (6) 19.5  (±   4.6) 
Chlorogenic acid (12) 9.7  (± 19.2) 
Chlorogenic acid methyl ester (13) 4.2  (± 22.4) 
3,5-Di-O-caffeoylquinic acid (14) 9.6  (± 10.5) 
 Macroantoin G (15) 16.9  (±   1.4) 
Myriogenic acid-7-methyl ester (7) 25.5  (± 13.0) 
Myriogenic acid-1-methyl ester (8) 15.7  (± 13.4) 
Myriogenic acid dimethyl ester (9) -3.7  (±   9.0) 
Axillarin (16) 49.2  (±   6.5) 
Isokaempferide (17) and  
4’,5,7-Trihydroxy-3,6-dimethoxyflavone (18) 72.8  (±   2.0) 

Jaceidin (19) 79.9  (±   3.3) 
Arnicolide C (20) 2.1  (±   4.1) 
SPE4 peak 2 (sesquiterpene lactone*) -13.0  (±   1.0) 
SPE4 peak 3  (sesquiterpene lactone*) -7.7  (±   1.6) 
SPE4 peak 4 -12.3  (±   5.2) 
SPE4 peak 5 -37.2  (± 21.2) 
SPE4 peak 6 (sesquiterpene lactone*) -24.6  (± 43.6) 
3-Hydroxykaura-9(11),16-diene-18-oic acid (21) -43.5  (± 26.2) 
8-Hydroxy-9,10-diisobutyryloxythymol (23) 40.2  (±   1.9) 
SPE4 peak 9 -8.7  (±   1.5) 
SPE4 peak 10 (sterol*) 9.2  (±   0.3) 
SPE4 peak 11 -6.1  (±   2.7) 
SPE4 peak 12 (fatty acid*) 25.4  (±   2.8) 
SPE4 peak 13 36.7  (±   0.7) 
Aspirin (100 µM) 43.0  (± 11.0) 
100% Aq extract 37.8  (±   5.3) 
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Five of the compounds were examined in more detail to determine IC50 values (Table 

4.9 and Figure 4.13).  Compounds 6-10 were tested at concentrations of 0.2, 1.0, 5.0, 

25.0 and 125 µg/ml. In most cases the compounds were found to inhibit PGE2 

production in a dose dependent manner (Figure 4.13).   

 

Table 4.9.  IC50 values for PGE2 anti-inflammatory activity of selected compounds. 

 

Compound 
IC50 (µM) 

(±SD) 
% inhibition at  
5 µg/mL (±SD) 

   

6 2.48  ±  0.83 67.38  ±  4.73 

7 4.73  ±  0.93 73.50  ±  4.08 

8 5.54  ±  3.78 45.00  ±  8.94 

9 1.26  ±  3.25 73.95  ±  2.52 

10 1.47  ±  0.75 52.20  ±  0.91 
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Figure 4.13. IC50 dose-response curves for selected compounds.  
 % Inhibition PGE2 vs. Log concentration (µg/mL). 
 

112



 

 

4.2.6 Antioxidant Compounds from C. cunninghamii 

All of the pure compounds isolated in this study were evaluated for ORAC antioxidant 

capacity (Table 4.10). 

 

Table 4.10.  Antioxidant capacity of Centipeda cunninghamii compounds and fractions. 

* impure 

Compound/Fraction 
TE/g compound 

(± SD  ) 
  

Centipetin-3-glucoside (10) 12178  (±   942) 
Myriogenic acid (6) 13781  (±   828) 
Chlorogenic acid (12) 12077  (± 1698) 
Chlorogenic acid methyl ester (13) 5558  (±   457) 
3,5-Di-O-caffeoylquinic acid (14) 12290  (±     29) 
Macroantoin G (15) 6337  (±   718) 
Myriogenic acid-7-methyl ester (7) 8122  (±   272) 
Myriogenic acid-1-methyl ester (8) 6822  (±   361) 
Myriogenic acid dimethyl ester (9) 3957  (±     69) 
Axillarin (16) 11512  (±   802) 
Isokaempferide (17) and  
4’,5,7-Trihydroxy-3,6-dimethoxyflavone (18) 15163  (±   925) 
Jaceidin (19) 7349  (±   306) 
Arnicolide C (20) 22  (±       2) 
SPE4 peak 2  (sesquiterpene lactone*) 211  (±       1) 
SPE4 peak 3  (sesquiterpene lactone*) 198  (±     14) 
SPE4 peak 4 2772  (±   904) 
SPE4 peak 5 1186  (±   347) 
SPE4 peak 6  (sesquiterpene lactone*) 566  (±   134) 
3-Hydroxykaura-9(11),16-diene-18-oic acid (21) 706  (±   227) 
8-Hydroxy-9,10-diisobutyryloxythymol (23) 4682  (±   277) 
SPE4 peak 9 213  (±     48) 
SPE4 peak 10  (sterols*) 2492  (±   346) 
SPE4 peak 11 898  (±   215) 
SPE4 peak 12  (fatty acid*) 107  (±     39) 
SPE4 peak 13 53  (±       7) 
Green Tea Extract 7108 
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4.2.7 Discussion 

The results from the PGE2 assay on the pure compounds indicate that the most active 

compounds appear to be a series of flavonoids and a range of, as yet unidentified, 

sesquiterpenes, fatty acids and sterols. The flavonoids, compounds 10, 16-19 and the 

caffeic acids compounds; 6-9 and 12-15 all exhibited very high antioxidant capacity. 

For comparison the antioxidant capacity of green tea extract was found to be 7108 

TE/gram. 

 

Phenolic compounds are reported to react with proteins and thus can interact with 

enzymes and the biological processes of cells (Harborne, 1998). Consequently, 

phenolic compounds are toxic to certain microorganism or animals, can inhibit their 

growth, or give unpleasant taste sensations to the taste buds of animals (Dey and 

Harborne, 1989). Phenolic compounds also constitute part of a plants chemical defence 

mechanism against pathogens and are located in almost every plant part including the 

roots, leaves, bark, wood and fruit (Cowan, 1999).  

 

Antioxidant activity has been shown to correlate with the phenolic content of traditional 

Chinese medicinal herb extracts (Cai et al., 2004). The antioxidant capacity of phenolic 

compounds is essentially due to the ease with which a hydrogen atom from an aromatic 

hydroxyl group can be donated to a free radical (Duthie and Crozier, 2000). It is not 

unexpected that the caffeic acids have exhibited antioxidant activity in vitro. The anti-

inflammatory activity of 3-O-caffeoylquinic acid (12) has been reported by Lin and co-

workers (1999) and has been shown to potently enhance human mononuclear cell 

proliferation and interferon-γ production. 
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It was observed that the suite of flavonoids possesses both anti-inflammatory and 

antioxidant activity. Flavonoids are the major category of compounds reported from 

plant origin as COX inhibitors (Jachak, 2006). The anti-inflammatory activity of 

axillarin, (Moscatelli et al., 2006; Williams et al., 1999; Pelzer et al., 1998) 4’,5,7-

trihydroxy-3,6-dimethoxyflavone (Williams et al., 1999) and jaceidin (Williams et al., 

1999) has been published previously.  

 

Flavonoids intrinsically exhibit antioxidant capacity. However; owing to their poor 

bioavailability the direct antioxidant value of dietary flavonoids has been questioned. 

Lotito and Frei (2007) have determined that the increase in serum antioxidant capacity 

is most likely is due to an endogenous response to these compounds. The antioxidant 

activity of axillarin (Kim et al., 2002) isokaempferide (Yoo et al., 2002; Jiang and Sun, 

2004; El-Shamy et al., 2001; Cos et al., 2001) and jaceidin (Gil et al., 1999) has 

previously been reported in the literature.  

 

It is likely both the phytosterols and the flavonoids impart anti-inflammatory properties 

to the extract (Lagarda et al., 2006). The thymol derivative 8-hydroxy-9,10-

diisobutyryloxythymol (23), isolated from the ethanolic extract of the herb, also 

exhibited moderate PGE2 inhibition. 

 

The essential oil of C. cunninghamii which constituted 0.21% of the dried herb also 

demonstrated notable anti-inflammatory activity and moderate antioxidant activity. The 

chemical components of the oil were not isolated in this study. It is implied that several 

chemical constituents of the oil; chrysanthenyl acetate, cis-chrysanthenol, myrtenol, 
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myrtenyl acetate or thymol contribute antioxidant or anti-inflammatory activity, albeit 

at low levels, in the plant.    

 

The arnicolides belong to the pseudoguiaiene class of sesquiterpene lactones and have 

been isolated from Arnica (Poplawski et al., 1971; Willuhn et al., 1983) and Centipeda 

species (Wu et al., 1991; Wu et al., 1985; Taylor and Towers, 1998; D’Amelio and 

Mirhom, 1998).  D’Amelio and Mirhom (1998) suggest that the anti-inflammatory 

properties of Phytoplenolin®, an extract of C. cunninghamii, may be due in part to the 

sesquiterpene lactones and flavonoids. However, this assumption was not concluded in 

our investigation. Arnicolide and several fractions rich in sesquiterpene lactones 

(indicated by a characteristic fragment ion m/z 247+) produced little or no PGE2 

inhibition. The sesquiterpene lactone helenalin (28) is closely related to arnicolide C 

(20) and is noted for its antineoplastic activity (Hertz et al., 1962), but has not been 

considered for clinical evaluation due to the prevailing toxicity of this class of 

compounds (Fischer, 1991). Plenolin (29), a sesquiterpene lactone constituent of 

Centipeda minima has also been noted for its toxicity (Buckingham et al., 2008). The 

potential toxicity of these compounds, enriched in non-polar extracts of the floral parts, 

requires consideration.  
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4.3 Conclusion 

The novel caffeic acids are significant antioxidant constituents that also contribute to 

the anti-inflammatory activity of Centipeda cunninghamii extracts.  

 

Significant, additional activity was also observed in both assays for the suite of 

flavonoids that are concentrated in the floral parts of C. cunninghamii. A novel 

flavonoid glycoside from the herb possessed significant antioxidant activity. Whilst a 

strong patent position was obtained based on the efficacy of the novel compounds, 

known compounds in the extract also contribute significantly to the anti-inflammatory 

activity. The anti-inflammatory and/or antioxidant activity of these flavonoids has been 

reported in the literature. 

 

Of particular interest in regards to the biological activity of C. cunninghamii was the 

finding that the 50% aqueous ethanol extracts posses an ability to influence several 

anti-inflammatory processes. This indicates the potential for C. cunninghamii to 

possess diverse modes of anti-inflammatory action.  

 

The phytochemistry of the plant parts; namely the leaf, stem, flower and essential oil 

varies significantly with all parts conferring some biological activity to the extract. It is 

the current commercial practice to harvest the plant in flower. It was also noted that 

steeping the herb for several days at room temperature produced higher recoveries of 

compound 6 than sonication for 1 hour. The stability and storage of the extract is also a 

manufacturing concern, whereby degradation via hydrolysis of the caffeic acid 

compounds was observed to give rise to the caffeic acid ethyl ester (11). Fortuitously, 

the antioxidant capacity is retained. The stability, time of harvest and other agronomic 
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and post-harvest aspects will require careful appraisal to ensure good quality control in 

finished products. 

 

4.3.1 Further Studies 

Further work is required to understand the extent of biological activity associated with 

this extract. The anti-inflammatory activity of the non-polar metabolites, sterols, fatty 

acids and sesquiterpene lactones warrant further investigation. Triterpenoid saponins 

have also been reported from this genus (Gupta and Singh, 1989; 1990) and it is 

anticipated that these compounds would exhibit biological activity. The antioxidant and 

anti-inflammatory activity associated with the compounds present in the oil is also of 

interest. 

 

The polar fractions from the stems of C. cunninghamii were found to be rich in 

phenolic compounds which are likely to impart microbicidal properties to the plant. The 

author is aware that the anti-fungal activity of extracts of the plant have been 

investigated by Hill (1997) and the antibacterial activity reported by Palombo and 

Semple (2001). The biological activities exhibited by extracts of C. cunninghamii are 

consistent with the ethnobotanical applications of the plant. Commercial applications, 

utilizing the antimicrobial properties of the herb, are worth pursuing.  
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5.1 Introduction 

 

Eremophila mitchellii Benth. (Myoporaceae) is a shrub or small tree that occurs in arid 

inland areas of New South Wales and Queensland. It is known colloquially as bastard 

sandalwood, buddah, budtha, or native sandalwood and bears a profusion of white 

flowers in spring (Cunningham, 1992). Its timber is widely described as possessing a 

very strong scent that is reminiscent of sandalwood and historically its essential oil has 

been exploited commercially by the perfume industry (Bradfield 1932a; Low, 1990). 

“E. mitchellii is drought resistant, and capable of regenerating from the roots and 

recovers well after burning, ringbarking, or cutting, and is very difficult to eradicate” 

(Cunningham, 1992). Eremophila mitchellii is an invasive species and in some parts of 
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Australia it is considered a pest. It is not permitted to be cultivated in Western 

Australia. 

 

Commercial interest in E. mitchellii arose due to reports that the timber, employed 

mainly for fence posts, was especially durable and resistant to termites (Cribb and 

Cribb, 1981). Preliminary work by Australian Phytochemicals Ltd. (APL) and the 

Centre for Plant and Food Sciences (CPAFS) at the University of Western Sydney had 

determined that the steam distilled oil and solvent extracts of the wood were toxic to 

termites (Leach et al., 2004). Based on these findings it was anticipated that the 

essential oil and its active ingredients may be utilized as termite control products.  

 

The aims of this project were to undertake bio-assay guided fractionation to determine 

the chemical constituents of the timber that are responsible for the termite activity, to 

determine the toxicity of the oil and its components against a range of organisms and 

lastly to determine the yield, distribution, and chemical variation of the oil to assist with 

commercialisation of a wood oil product. This chapter encompasses the chemical 

investigation of E. mitchellii whilst the insecticidal aspects of E mitchellii are discussed 

in Chapter 6.  

 

5.1.1 Literature Review 

There are several reports on the biological activity and ethnopharmacology of E. 

mitchellii in the literature. The plant has been used by the aboriginal people for the 

treatment of rheumatism (Low, 1990). Kerr (1951) demonstrated that the wood oil was 

virtually non-toxic as a fly spray but when incorporated with the pyrethrins it had an 

adjuvant action. Kerr observed that the wood oil produced a marked increase in fly 
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mortality in comparison to the pyrethrins alone. More recently Wilkinson and 

Cavanagh (2005) have reported on the antimicrobial activity of the wood oil against C. 

albicans and five different bacteria.  The undiluted oil showed inhibition against 

Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Alcaligenes faecalis 

and Candida albicans, no inhibition was observed against Pseudomonas aeruginosa.  

 

There are no published reports on the chemical composition of extracts of the leaf, root 

or branchlets from this plant. The eremophilones were first reported from the wood oil 

of E. mitchellii in 1932 by Bradfield and co-workers (1932a; 1932b). In 1955 Robinson 

suggested that the eremophilones were in fact the first of a new class of sesquiterpenes, 

the eremophilanes, and were not based on a eudesmane skeleton as first thought 

(Robinson 1955).  

 

The elucidation of eremophilone (30) predated NMR spectroscopy and took almost 30 

years to confirm the structure by chemical methods (Zalkow et al., 1959 and Zalkow et 

al., 1960). This was controversial at the time because it challenged Ruzicka’s famous 

isoprene rule (Ruzicka, 1959) and demonstrated that methyl migrations were naturally 

possible in the biosynthesis of terpenoids. The first synthesis of eremophilone (30) was 

achieved by McMurry and co-workers (1975), whilst the stereoselective synthesis was 

reported by Ficini and Touzin (1977). 

 

 

 

    
H

H

              eudesmane skeleton      eremophilane skeleton 

123



5.1.2 Eremophilane Biosynthesis 

Farnesyl diphosphate gives rise to many mono, bi, and tricyclic sesquiterpene 

structures. Some 200 skeletal types of sesquiterpenes have been recorded (Harborne, 

1998). Eremophila species are known to elaborate sesquiterpenes belonging to the 

bisabolane, eudesmane, eremophilane, spathulane, cadinane, zizaene and elemane 

classes (Ghisalberti, 1994b).  The eremophilanes are a very rare class of bicyclic 

sesquiterpenes. The eremophilane sesquiterpenes have been demonstrated in 

Aspergillus terrus to arise biosynthetically from cyclization of 2E,6E-farnesyl 

pyrophosphate (Figure 5.1 and 5.2) (Dewick, 1997; Cane et al., 1990). Further 

cyclization via a germacratriene intermediate, followed by ring closure, proton shift and 

subsequent methyl migration gives rise to the eremophilanes. Unusual sesquiterpenes 

such as vetispiradiene are biosynthetically closely related to the eremophilanes. 
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Figure 5.1. Biosynthesis of sesquiterpenes  

(reproduced from Dewick, 1997). 
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Since the discovery of eremophilone (30) and its oxygenated derivatives (31, 33, 35 and 

36) only three additional eremophilanes, the keto aldehyde 32 and the dimers 38 and 39 

have been reported from Eremophila despite intensive chemical investigation of the 

genus by Emilio Ghisalberti and co-workers (1994b). The significance of this finding is 

unclear considering that most of these investigations have focused on leaf extracts and 

not on the constituents of the wood or roots. 
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      37  R = H        39 R=OH 
 

This chapter reports the investigation of the distribution, yield, and variation in the 

chemical composition of the oil in the whole plant and also describes the purification of 

the major constituents of the steam distilled wood and root oil of E. mitchellii. At 

present, the published NMR data for the eremophilanes is only of low resolution (50 

MHz) and incomplete. Consequently, a comprehensive discussion of the NMR data has 

been reported here. 
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5.2 Results and Discussion 

 

5.2.1 Distribution of the Oil, Yields and Chemical Composition  

To assist with commercialisation of the oil, studies were undertaken to investigate the 

distribution and chemical variation of the oil in the plant. A whole tree was collected 

and each of the plant parts were steam distilled separately. The plant parts examined 

and the relevant yields of these oils are summarised in Figure 5.3. A cross section of the 

tree trunk revealed a pale yellow timber with a distinctive red-brown heartwood and 

coarse bark (Figure 5.3). No oil was obtained from distillations of the bark or outer 

light wood. The essential oils of the leaves, branchlets, wood and roots were analysed 

by GC-MS (Figure 5.4) More than thirty components have been identified in the 

essential oils and these are summarised in Table 5.1.  

 

Compound identification was based on comparison with mass spectra and retention 

indices of authentic reference compounds, and the Adams, Wiley 275 and NIST 98 

mass spectral libraries.  

 

It is apparent from this series of chemical profiles that the yield and chemical 

composition varies greatly depending on the location in the plant. The leaf and 

branchlet oil are very complex. The leaf oil is chemically distinct from the wood and 

root oils whereas the branchlet oil exhibits a chemical composition that is intermediate 

between the leaf and the wood oil. 
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GC-MS profile E. mitchellii leaf oil. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.4. GC-MS profiles of steam distilled oil from different E. mitchellii plant parts.
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Thirty two compounds have been identified by CGMS from the leaf oil of E. mitchellii. 

The three major compounds identified in the leaf oil were α-pinene (40), spathulenol 

(41) and an unidentified sesquiterpene alcohol which accounted for 45% of the oil.  

 

HHO

H

 

H 

  40      41 

                                 

With the support of spectral data and the corresponding reference compounds it was 

possible to confirm the presence of the monoterpenes; α- and β-pinene, α- and β-

phellandrene,  p-cymene, limonene, α-terpinolene, linalool, α-terpineol and eugenol on 

the basis of their prevalence in essential oils. Harborne (1998) reports that α- and β-

pinene, limonene, Δ3-carene, α-phellandrene and myrcene are ubiquitous in leaf oils.  

This aside, it was observed that the remainder of the chemical profile of the leaf and 

branchlet oils was predominantly sesquiterpenes.   

 

A rudimentary structural assignment on the basis of the mass spectra and retention 

indices inevitably indicates the presence of selinenes, humulenes, bisabolols, 

gurjunenes, maalienes and patchoulenes in the oils. Only a handful of the eremophilane 

sesquiterpenes are represented in commercial mass spectral libraries. Given the 

tendency for Eremophila species to exhibit unusual stereochemistry (Ghisalberti; 

1994b) and the structural similarity between the eremophilanes and other bicyclic 

sesquiterpenes the identity of many of the minor components can only be assigned with 

the support of NMR data. 
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Ghisalberti (1994b) reports that bisabolene, eudesmane, eremophilane, aromadendrane, 

cadinane, zizaene, spathulenol and elemol classes of sesquiterpenes have all been 

isolated from the leaf material of Eremophila species. With the support of spectral data, 

reference compounds and inference from metabolites reported from Eremophila species 

it was possible to confirm the presence of aromadendrene, trans-β-caryophyllene, δ-

cadinene, α- and β-selinene, elemene, epiglubulol, globulol, α- and β-eudesmol, α-

bisabolol, viridiflorene and viridiflorol. 

 

A single ion chromatogram of the sesquiterpene-diene ion, C15H24, m/z 204 (retention 

time; 40 - 47 minutes) further supports that there is likely to be multiple classes of 

sesquiterpenes represented in the leaf oil (Figure 5.5). 
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Figure 5.5. Single ion chromatograms of E. mitchellii leaf oil. 

 

The wood oil was also predominantly composed of sesquiterpenes. Three of the major 

constituents identified in the wood oil were eremophilone, santalcamphor, and 9-

hydroxy-7(11),9-eremophiladien-8-one and their occurrence in E. mitchellii has been 

well documented. A fourth major constituent, the novel 9-hydroxy-1,7(11),9-
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eremophilatrien-9-one proved to be very unstable (t1/2  < 12 hours in solution). These 

four major constituents account for 80% of the wood oil. These components are also 

observed in the root oil. The minor constituents; the sesquiterpenes and sesquiterpene 

ketones and alcohols were present at very low concentrations (most <1%). The 

assignment of α- and β-selinene (synonymous with eudesmenes) in E. mitchellii oil was 

based on comparison with authentic α- and β-selinene from commercial celery seed oil 

(Apium graveolens). This finding is also in accord with the observation that the 

eudesmenes are the biosynthetic precursors of the eremophilanes. 

 

Several attempts to isolate the minor constituents of the wood oil met with limited 

success. Their isolation and characterisation is complicated because they share similar 

molecular weights and many were found to co-elute with the major compounds 

throughout; HPLC (both normal phase and reverse phase) and GC-MS (both BP20 and 

BPX-5 columns). Several structural analogues of the eremophilones have been reported 

in the literature including the aldehyde (31) (Abel and Massy-Westropp, 1985), 

isoeremophilone (34) (Chetty and Zalkow, 1969), alloeremophilone (37) (Bates and 

Paknikar, 1966) and the dimers 38 and 39 (Lewis et al., 1979; Lewis et al., 1982). The 

analogues, if present, appear to be very minor constituents. 

 

It is evident that all of the sesquiterpene ketones have the capacity to tautomerise. The 

four major constituents can give rise to 11 different tautomers (Figure 5.6). Evidently 

the major keto-tautomers are thermodynamically favoured. Interestingly, eremophilone 

(30) does not readily convert to its Δ1 isomer, isoeremophilone (34) under mild 

conditions. The interconversion of the eremophilanes via isomerisation, dehydration 
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and hydrogenation has been reported by chemical methods (Zalkow and Chetty, 1975; 

Djerassi et al., 1959). 
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Figure 5.6.  Possible tautomers of the major eremophilones.  
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It is apparent that different biosynthetic pathways are operating in the leaf compared to 

the wood. Inspection of the single ion chromatogram of the sesquiterpene-diene ion, 

C15H24, m/z 204 (retention time; 40 - 47 minutes) for the wood oil indicates that fewer 

sesquiterpene classes are represented in the wood oil compared to the leaf oil (Figure 

5.7). Only six significant peaks are apparent and conceivably, these could all be 

assigned to eremophilene or selinene analogues.  To date, aside from the selinenes, the 

eleven sesquiterpenes isolated from E. mitchellii have been of the eremophilene type, a 

large number of unknown minor compounds are apparent from the GC-MS 

chromatogram. 
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Figure 5.7. Single ion chromatograms of E. mitchellii leaf and wood oils. 
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Structural assignment on the basis of mass spectra is also difficult since many 

components share the same molecular weight, retention times and similar fragmentation 

patterns. The mass spectra for all of the compounds isolated in this study are presented 

in Figure 5.8. Notably santalcamphor (35) and 8-hydroxyeremophila-1,11-dien-9-one 

(33) co-elute but may be differentiated by inspection of their molecular ions [M+] at m/z 

236 and 234 respectively. Similarly, 9-hydroxy-7(11),9-eremophiladien-8-one (36) co-

elutes with 8-hydroxy-10,11-eremophiladien-9-one (32, synonymous with 8-

hydroxyeremophilone). Qualification of the minor constituent 32 is evident by the 

major fragment ion m/z 205 eluting slightly later than the major molecular ion [M+] at 

m/z 234. Adams (2007) has erroneously ascribed the mass spectrum of 36 as being that 

of compound 32. In most cases for compounds bearing an α-hydroxyl group, inspection 

of the fragmentation pattern reveal a pronounced fragment ion [M-29]+ corresponding 

to loss of CHO.  
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Figure 5.8.  Mass spectra of the major eremophilones.  
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Figure 5.8 continued.  Mass spectra of the major eremophilones.  
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Figure 5.8 continued.  Mass spectra of the major eremophilones.  
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Of interest is the chemical profile of the steam distilled root oil (Figure 5.3), because it 

only possessed two major constituents. One can readily be identified as eremophilone 

(30) but the second major compound, sesquithuriferone (43), is very unusual in that it is 

a zizaene sesquiterpene. The isolation and structural elucidation of this compound is 

discussed in section 5.2.4.1. 

 
5.2.2  Fractionation of E. mitchellii Wood Oil 
 
Fractionation of the steam distilled wood oil was achieved using normal phase 

preparative HPLC employing a hexane/ethyl acetate gradient (refer to Chapter 2, Figure 

2.3). The wood oil was fractionated in this way on four occasions to generate fractions 

for testing against two spotted mites and termites and pure compounds for LD50 and 

LD95 determination (termites) and structural elucidation work. 

 

5.2.3  Isolation of Compounds from the Wood Oil of E. mitchellii 
 
Large quantities (>1 g) of the purified compounds were required to evaluate the 

termiticidal activity of each of the pure compounds and to determine LD50 and LD95 

values. Fractionation of more than 5 grams of the oil was achieved using normal phase 

preparative HPLC, with a hexane/ethyl acetate gradient (95-60% hexane) as eluent, as 

outlined in the isolation scheme in Figure 2.3. Each fraction was then further 

fractionated using RP prep-HPLC or purified by means of recrystallisation. A rapid 

silica column chromatographic method was derived from this method for subsequent 

large scale fractionations (Figure 2.5). On several occasions a reverse phase preparative 

HPLC method was utilized to isolate several pure compounds directly from the crude 

oil (Figure 2.4).   
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5.2.3.1  Eremophilone 

Compound 30 was isolated by normal phase preparative HPLC fractionation as a 

viscous yellow oil in a yield of approximately 19% (w/w) of the steam distilled wood 

oil. Further purification of 30 was achieved using RP preparative HPLC employing a 

40-95% ACN/H2O gradient (Figure 2.3). The EI mass spectrum for this compound 

showed a molecular ion [M+] at m/z 218 which corresponds to the molecular formula 

C15H22O having 5 double bond equivalents (DBE). The UV spectrum exhibited a λmax 

at 243 nm consistent with the presence of an α,β-unsaturated ketone. The 1H NMR 

spectrum of compound 30 revealed the presence of a highly deshielded proton (δ 6.6 

ppm), two vinylic protons (δ 4.73 and δ 4.77 ppm), two methyl groups situated on 

quaternary carbons (δ 0.97 and δ 1.75 ppm) and a third methyl group (δ 0.96 ppm) 

situated on a tertiary carbon. 1H NMR and 13C JMOD data is presented in Table 5.2. 

 

13C JMOD, HSQC, HMBC and COSY data is in accord with the bicyclic eremophilone 

structure 30 below. The eremophilane skeleton, with methyls at the C-4 and C-5 

positions and not at the C-4 and C-10 positions corresponding to eudesmane, can be 

established from the HMBC data.  

4

9

65

15
14

2
3

O

11

12

13

8
7

1

 

30 

From the multiplicity of the C-15 protons (singlet) it can be established that the methyl 

group resides on a quaternary carbon. The proximity of the C-14 and C-15 methyls to 

each other is evidenced by the cluster of HMBC signals that are located to one side of 

the molecule only. The assignments are presented in Table 5.2 and are consistent with 
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the low resolution NMR data published by Ziegler et al. (1977) and McMurry et al. 

(1975) and support the same absolute stereochemical assignments published by Zalkow 

et al. (1960). 

 

Eremophilone was found to be laevorotatory in agreement with Bradfield et al. (1932b). 

Discrepancies in the magnitude of rotation may be attributed to the different 

wavelength and concentrations used for the analysis (sodium at 589 nm and mercury at 

365 nm). 

[α]20 -78° (c 0.49, MeOH);D 

 [α] -207 (c 2.46 MeOH);  (Bradfield et al., 1932b) Hg 

Lit; 

 

5.2.3.2  Santalcamphor 

Compound 35 readily crystallised from normal phase preparative HPLC fractions 5 and 

6 as colourless needles mp 102-103°C in a yield of approximately 20% (w/w) of the oil 

(Figure 2.3). The compound was purified by recrystallisation in MeOH.  The EI mass 

spectrum for this compound gave a molecular ion [M+] at m/z 236 which suggested a 

molecular formula C15H24O2 and 4 DBE. The 1H NMR shifts (Table 5.2) bears some 

resemblance to eremophilone (30) with the exceptions being the absence of any highly 

deshielded protons, a new signal at δ 4.00 ppm and the presence of two methine protons 

(δ 4.90 and δ 4.93 ppm). In parallel with eremophilone (30), compound 35 also 

possesses two C-quaternary methyls (δ 1.83 and δ 1.06 ppm) and a C-tertiary methyl (δ 

0.79 ppm).  

 

The 13C JMOD, HSQC, HMBC and COSY data is in agreement with the structure of 

santalcamphor (35). The doublet at δ 4.00 ppm is indicative of a secondary alcohol. The
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relative stereochemistry of the C-7 isoprenyl and the C-8 hydroxyl is defined as anti by 

the strong coupling constant (J 11.3 Hz) between the resident protons (δ 2.43 and δ 

4.00 ppm respectively). The aliphatic region of the 1H NMR is quite complex with 

several overlapping multiplets. NOe difference experiments were utilized to confirm 

the assignments of the chemical shifts for all of the alkyl protons (Table 5.2). 

Irradiation of the methyl groups and examination of the resulting nOe difference 

spectrum indicated the proximity of the respective alkyl groups. The optical rotation 

was found to be consistent with previously published data (Bradfield et al., 1932a) and 

assumes the same absolute stereochemical assignments published by Zalkow et al., 

(1960). 

[α]20 +112° (c 0.26, CHCl3);D  
  [α] +90.6° (CHCl3); (Bradfield et al., 1932a.)D 

Lit; 
 

 

 

 

O
OH

H

35 

5.2.3.3  9-hydroxy-7(11),9-eremophiladien-8-one 

Fraction 3 from the normal phase preparative HPLC yielded a yellow oil composed of a 

mixture of several compounds. The major compound (36) represented approximately 

14% of the crude oil (w/w) and was purified further using RP preparative HPLC 

employing a 40-95% ACN/H2O gradient (Figure 2.3). The compound (36) showed an 

EI molecular ion [M+] at m/z 234 which suggested a molecular formula of C15H22O2 

and 5 DBE. The 1H NMR spectrum (Table 5.2) did not feature any chemical shifts 

further downfield than a multiplet at δ 2.98 ppm. Four methyl groups were evident. One 

methyl group (δ 0.94 ppm) was positioned on a tertiary carbon and three were situated 
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at quaternary positions; one at δ 0.96 ppm and two more deshielded vinylic methyls at δ 

1.90 and δ 2.18 ppm.  

 

Inspection of the 13C JMOD spectrum (Table 5.2) revealed the presence of a carbonyl 

group (δ 185.7 ppm) that was highly shielded. The chemical shift of a carbonyl group 

can vary depending on the degree and type of conjugation. Unconjugated carbonyls 

such as that in santalcamphor (35) resonate at approximately 212 ppm. In the case of 

carbonyls that are in conjugation with a double bond, as in eremophilone (30), the 

carbonyl resonance is shielded by approximately 12 ppm, and a resonance at 

approximately δ 200 ppm can be expected. If the carbonyl is part of a dienone system 

the second double bond has the effect of either reducing or increasing the magnitude of 

the deshielding. If the conjugation is in an α,β,γ,δ configuration the second double bond 

reduces the shielding effect caused by the first (Δδ < 12 ppm). In the case of cross 

conjugated α,β,α',β'-dieneones the shielding effects of both of the double bonds are 

cumulative and carbonyl chemical shifts of 185-190 ppm can be expected (Ziegler et 

al., 1977). For compound 3 the carbonyl resonance (δ 185.7 ppm) was indicative of a 

component in an α,β,α',β' cross conjugated system. The 13C JMOD (Table 5.2), HSQC, 

HMBC and COSY data was in agreement with the structure of 9-hydroxy-7(11),9-

eremophiladien-8-one (36). The 1H chemical shifts are in agreement with the low 

resolution methyl group assignments published by Pinder and Torrence (1971). A 

discrepancy was observed for the optical rotation; 

 
[α]20 +63° (c 2.13, MeOH)D  
[α]25 +138° (c 2.59, MeOH); Lit. Pinder and Torrence (1971). D 

Lit; 
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OH
O

 

36 

 

5.2.3.4     9-Hydroxy-1,7(11),9-eremophilatrien-8-one 

Compound 42 co-eluted as the minor constituent with 30 from normal phase 

preparative HPLC fraction 4. It was apparent that 42 was not present in some 

commercial oils, and was highly unstable since only trace levels were present after 24 

hours in solution. The chemical stability of 42 was monitored in multiple solvents. It 

was observed that the stability of 42 could be optimised depending on the solvents 

selected for isolation work. It was found that the ideal solvents were, in order of 

increasing stability; ACN, acetone, ACN/0.5% TFA, EtOAc, CHCl3, DMSO, EtOH, 

MeOH, and hexane. No discernible breakdown products or increases in relative peak 

intensities were observed by GC-MS. 

 

Purification of 42 was achieved by subjecting a fresh enriched silica fraction to RP 

preparative HPLC using a 70% MeOH/H2O isocratic gradient and 2 x tandem 

preparative columns (Figure 2.3). Compound 42 was purified as a yellow gum in a 

yield of approximately 0.4% (w/w) of the crude oil. The EI mass spectrum for this 

compound gave a molecular ion [M+] at m/z 232. HRAPCIMS established the 

molecular weight [M+H]+ 233.1514 that was consistent with the molecular formula 

C15H20O2 and 6 DBE. 
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Compound 36 and 42 showed similar 13C JMOD spectra (Table 5.3) with the main 

difference being the absence of two methylenes (δC 23.8 and 25.8 ppm) and the 

presence of two additional methines (δC 122.0 and 134.3 ppm).    Like 36, 42 possessed 

a highly deshielded carbonyl group (δC 185.5 ppm) situated in an α,β,α',β' dieneone 

system. Compared to 36 the 1H NMR spectrum of 42 showed two additional, highly 

deshielded, peaks at δ 6.63 and at δ 6.10 ppm as part of an ABX2 system consisting of 

two vinylic protons (δH 6.63, dd, J = ~2.7, ~9.9 Hz; 6.10 (ddd, J = 2.6, 5.7, 9.8 Hz) 

adjacent to a methylene group (δH 2.20, m; 2.03, m). HSQC and HMBC correlations 

confirmed the presence of a C-1 - C-2 double bond and was in agreement with the 

novel compound 9-hydroxy-1,7(11),9-eremophilatrien-8-one (42). Owing to the 

instability of the compound in solution a crystal structure could not be obtained, 

consequently the stereochemistry of C-4 and C-5 has been assumed on the basis of its 

affinity to the preceding eremophilanes 30, 33, 35 and 36. 

 

Optical rotation found; 

[α]20 +31° (c 0.32, CHCl3) D 

 

OH
O

 

42 

 

5.2.3.5  8-Hydroxy-1,11-eremophiladien-9-one 

Compound 33 was isolated from normal phase preparative HPLC fractions 8 and 9 in a 

yield of 4.3% (w/w) of the oil. Compound 33 was purified further by RP preparative 

HPLC using a 40-95% ACN/H2O gradient (Figure 2.3). Compound 33 showed an EI 
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molecular ion at [M+] at m/z 234 which suggested a molecular formula of C15H22O2 and 

5 DBE. Inspection of the 1H NMR and 13C JMOD spectra suggested that this compound 

was very similar to santalcamphor (35). Compared to 35 the 1H NMR spectrum of 

compound 33 has gained two additional  protons; a 1-H multiplet δ 5.88 ppm, and also 

a 1-H multiplet (δ 5.67 ppm) that from the COSY spectrum, are coupled to each other. 

Relative to 35 the 3-(2H) and 10-(1H) protons are more deshielded indicating a C-1 - 

C-2 double bond and that compound 33 is 8-hydroxy-1,11-eremophiladien-9-one (33). 

This structure was also confirmed by the resonance of the carbonyl (δ 212 ppm) which 

is unconjugated. The NMR assignments are presented in Table 5.3 and are consistent 

with the limited data (low resolution NMR) published by Massy-Westropp and 

Reynolds (1966). The reasons for the discrepancies between the published (Massy-

Westropp and Reynolds., 1966) and the observed optical rotation of this compound are 

unclear. 

 

[α]20 +167° (c 0.14, CHCl3);D 

 
[α]19  +59.3 (c 1.1,  CHCl3); Massy-Westropp and Reynolds, (1966) D 
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H
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5.2.3.6    8-Hydroxy-1(10),11-eremophiladien-9-one 

Compound 32, a minor constituent of the oil, co-eluted with santalcamphor (35) from 

normal phase preparative HPLC fractions 6. Isolation of 32 was effected utilizing RP 

153



preparative HPLC using a 10-95% ACN/H2O gradient, yielding 32 as a colourless oil in 

a yield of approximately 1% (w/w) of the oil. The EI mass spectrum for this compound 

gave a molecular ion [M+] at m/z 234 which suggested a molecular formula C15H22O2 

and 5 DBE. The 13C JMOD spectrum (Table 5.3) bears some resemblance to 

eremophilone (30), featuring a conjugated carbonyl (δ 200.9 ppm) and four sp2 

hybridized carbons (δ 113.2, 139.8, 145.1 and 140.4 ppm). with the exceptions being 

the loss of the methylene signal at δ 2.41, and a new signal at δ 4.38 ppm indicative of a 

secondary alcohol. In parallel with eremophilone (30), compound 32 also possesses two 

C-quaternary methyls (δ 1.08 and δ 1.85 ppm) and a C-tertiary methyl (δ 0.94 ppm).  

 

13C JMOD (Table 5.3), HSQC, HMBC and COSY data is in agreement with the 

structure of 8-hydroxy-1(10),11-eremophiladien-9-one (32). The relative 

stereochemistry of the C-7 isoprenyl and the C-8 hydroxyl is defined as anti by the 

strong coupling constant (J 12.8 Hz) between the resident protons (δ 2.35 and δ 4.38 

ppm respectively). The 1H chemical shifts are in agreement with the low resolution 

assignments published by Massy-Westropp and Reynolds (1966). 

 
Optical rotation found 
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5.2.4  Isolation of Compounds from the Root Oil of E. mitchellii 

The roots of E. mitchellii were steam distilled for 48 hours yielding 2.0 mL of dark 

amber oil (0.26% yield). The GC-MS analysis of the root oil revealed that it contained 

two major components; one was readily identified as eremophilone (30), whilst the 

second peak showed an EI molecular ion [M+] at m/z 220 corresponding to an 

unidentified compound with a molecular formula C15H24O. This compound was of 

interest because there have been no reports of a compound of MW 220 being 

characterized from E. mitchellii. To isolate this unknown compound (43), the root oil 

was first fractionated on a silica gel column using a pentane/ether stepwise gradient. 

Compound 43 was enriched in fraction 1 (Refer to isolation scheme Figure 2.6). 

Fraction 1 was found to contain predominantly eremophilone and the as yet 

unidentified compound (MW 220). 

 

The root oil fraction 1 was further fractionated using C18 prep-HPLC. Three peaks 

were selectively cut from the chemical profile of root fraction 1.  

 

5.2.4.1  Sesquithuriferone 

Analysis by LC-MS indicated that compound 43, the major constituent fraction 1, 

showed an APCI molecular ion [M+H] at m/z 203, Δ18 a.m.u. less than expected 

resulting from loss of water. Compound 43 was further purified by C18 RP preparative 

HPLC using an ACN/H2O/TFA gradient (Figure 2.6). Pure 43 was obtained as a white 

powder in a yield of 23% (w/w) of root oil fraction 1. 

 

The 1H NMR spectrum of 43 (Table 5.4) revealed the presence of three quaternary 

methyl groups (δ 1.08, δ 1.08 and δ 1.12 ppm) and a tertiary methyl group (δ 0.88 
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ppm). The remainder of the proton signals were all in the aliphatic region, with many 

signals overlapped. The 13C JMOD (Table 5.4) revealed the presence of a carbonyl 

group and indicated that all of the other carbons were sp3 hybridised. Compound 43 

must be tricyclic on the basis that it has four DBE.  

 

Table 5.4. Experimental and published 1H and 13C NMR data for sesquithuriferone 43. 

C/H Compound 43 (CDCl3)  Compound 6 (CDCl3)† 
13C ppm 1H δ ppm (i, m, J Hz)   1H (δ ppm) (i, m, J Hz)  

1 54.1 -    
2 40.7 1.86 (1H, m )  }  
3 31.8 1.16-1.23 (1H, m)  }1.12 (6H, s)‡  
  2.0-2.1 (1H, m)  }  
4 23.1 1.56-1.64 (2H, m)    
5 54.4 1.78-1.82 (1H, m)    
6 45.8 -    
7 220.1 -    
8 53.6 -    
9 35.4 1.56-1.64 (1H, m)    
  1.68-1.74 (1H, m)    

10 33.6 1.44-1.50 (1H, m)    
  2.0-2.1 (1H, m)    

11 45.5 1.48-1.51 (1H, m)    
  1.68 (1H, d, 11.6)    

12 20.0 0.88 (3H, d, 7.2)  0.92 (3H, d, 7.0)  
13 29.6 1.08 (3H, s)  }  
14 24.9 1.08 (3H, s)  }1.16 (9H, s)  
15 21.9 1.12 (3H, s)  }  
      

 

† Source; Carrol et al. (1976 ) 1H NMR (90MHz). 
‡ Assignments have not been designated to specific protons. 
 
 

Compound 43 was elucidated as the known zizaene compound, sesquithuriferone on 

the basis of HSQC, HMBC, TOCSY, COSY and nOe experiments. One dimensional 

TOCSY experiments were utilized to establish 1H-1H connectivities within discrete spin 

systems. In 1D TOCSY a peak in the spectrum is irradiated and the signal is transferred 

from it to all of the J coupled protons in a stepwise process. Thus over short intervals 
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(20 ms mixing time) only 1-2 step transfers will be observed whilst longer mixing times 

(200 ms) allow more transfers (5-7 steps) and can progressively reveal the extent of the 

spin system. The relative stereochemistry was determined on the basis of nOe 

difference experiments. 

 
Optical rotation found; 
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This is the first detailed confirmation of a tricyclic sesquiterpene from E. mitchellii. 

Sesquithuriferone (43) has previously been isolated from E. georgei (Ghisalberti et al., 

1976), E. metallicorum, (Ghisalberti et al., 1994b) and E. subteritifolia (Carrol et al., 

1976). NMR data is limited (Refer to Table 5.4.), and due to lack of material 6 was 

characterised as its p-bromobenzoate derivative (Carrol et al; 1976). The structure was 

confirmed by X-ray diffraction studies (Ghisalberti et al., 1976). At the time of 

compiling this thesis Adams (2007) reports, on the basis of mass spectral data, that 43 

is a component of E. mitchellii wood oil. Throughout the course of this research we 

have observed that sesquithuriferone is prevalent in the root heartwood and that no 

traces of sesquithuriferone were observed in carefully prepared wood oil. 
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6.1 Introduction 

Commercial interest in E. mitchellii arose due to reports that the timber was especially 

durable and resistant to termites (Cribb and Cribb, 1981). One of the main uses of the 

timber has been for fencing posts (Cribb and Cribb, 1981). Preliminary work by 

Australian Phytochemicals Ltd. (APL) and the Centre for Plant and Food Sciences 

(CPAFS) at the University of Western Sydney had determined that the steam distilled 

oil and solvent extracts of the wood were toxic to termites (Leach et al., 2004). This 

chapter describes the assessment of the  wood oil, fractions and compounds for activity 

against selected termite species.  

 

An ethanolic and a hexane extract as well as the steam distilled essential oil, have been 

evaluated by CPAFS for termiticidal, antifeedant and repellency against two species of 
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termites, Nasutitermes walkeri (Hill) and Coptotermes acinaciformis (Froggatt) (Leach 

et al., 2004). In direct contact assays it was found that the steam distilled oil was more 

efficacious than the solvent extracts on a weight per weight basis. Ninety five percent 

mortality was achieved at concentrations of 0.18% (w/v) against C. acinaciformis and 

0.11% (w/v) against N. walkeri (Leach et al., 2004). This chapter reports on the 

fumigation, barrier and choice studies performed on the oil to assess the mode of action 

and the direct dermal toxicity of the compounds from E. mitchellii.  

 

6.1.1 Review of Termites and Termiticides 

Ecologically termites serve an important role in the ecosystem, they breakdown 

cellulose and help to recycle soil nutrients. Termites also invade many man-made 

structures such as buildings, boats, pipelines, underground cables and telegraph poles. 

Economically, termites are the most destructive timber pests in the world, and have the 

greatest economic impact in south eastern USA followed by Japan, Australia and South 

East Asia. In the USA the cost of termite damage is estimated to exceed (US) 2 billion 

dollars annually (U.S. National Institute of Building Services, 1993). It is reported that 

the Japanese spend in excess of (US) 800 million dollars annually on termite control 

(Tsunoda, 2003). In Australia, it is estimated that termites cause damage to one in five 

buildings and structures, with the cost of this damage and subsequent control measures 

estimated to exceed 780 million dollars annually (Archicentre, 2003).  

 

Termites may be classified depending on the type of timber they invade, and fall into 

three categories; dry wood species, damp wood species or subterranean species. It is the 

subterranean species of termite that are responsible for the destruction of woodwork in 

Australian buildings. Of these species Coptotermes is responsible for the majority of 
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the damage. Softwoods are their preferred food source but they will ingest many of the 

hardwood species (Creffield, 1998). 

 

6.1.2. History of Termiticides 

In the past, protection of buildings and timber structures from termites has chiefly 

relied on soil chemical barriers. Traditionally, organochlorine pesticides have been 

employed for this purpose. Dichlorodiphenyltrichloroethane (DDT) (44), developed in 

1874, was the first synthetic pesticide. Due to its chemical stability (it has a soil half-

life between 2-15 years (U.S. DHHHS., 1994)), it proved to be a highly effective 

chemical soil barrier for protection against termites. Dieldrin (45) and chlordane (46) 

were developed in the 1940s as alternatives to DDT (44) and were later followed by 

heptachlor (47).  
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Use of these organochlorine pesticides (OCP) was widespread during the 1950s to early 

1970s. They were inexpensive and renowned as broad spectrum insecticides that were 

used for the control of insect pests in crops and forests as well as in termiticidal 
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applications. Throughout the 1960’s declines in bird populations and other detrimental 

effects on humans and animals were being correlated to the indiscriminate use of 

organochlorine pesticides (Carson, 1962). OCP’s are persistent pesticides that are toxic 

to humans and many animals, and are very toxic to aquatic life. They are bio-

accumulative, bio-magnified and are transported through the atmosphere and 

watercourses for long distances. DDT is neuroactive and interferes with cell membrane 

ion movement, disrupts endocrine function as well as being a suspected carcinogen 

(Klassen et al., 1996). The organochlorines 45, 46, and 47 are also neurotoxic gamma-

aminobutyric acid (GABA) inhibitors (Coats, 1990).  

 

Although deregistration of the most toxic OCP’s such as DDT, dieldrin, chlordane and 

heptachlor commenced during 1970’s, chlordane remained the most successful termite 

treatment available and was heavily depended upon. Despite its environmental impact 

and its potential to cause cancer, its use was still permitted for termite applications in 

the U.S until 1988 (ATSDR., 1997) and in Australia as late as 1995 (CSIRO 

Entomology, 1995) until effective substitutes could be found. Despite these 

environmental impacts some countries such as Mexico still permit the regulated use of 

chlordane for termite control. The effectiveness of the organochlorine chemical soil 

barriers applied throughout the 1970-80’s would have begun to decline throughout the 

1990’s and their withdrawal has forced an urgent need for safe and effective termite 

control strategies.  

 

The organochlorines employed as preventative soil chemical barriers, have been 

superseded by the organophosphate chlorpyrifos (48), a cholinesterase inhibitor, and 

the synthetic pyrethroid bifenthrin (49). Chlorpyrifos is the most widely used 

chemical barrier termiticide in Australia. It is relatively stable, having a half-life of 13 
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months, a low water solubility and is readily absorbed by organic matter (Murray et 

al., 2001). Other chemical soil barriers include imidacloprid (50), a derivative of 

nicotine, and insect growth regulators such as hexaflumuron (51). These new 

generation soil termiticides have a shorter service life, usually a minimum of 3-8 

years depending on the climate where they are applied. They are also more expensive, 

less persistent and are widely perceived as being less reliable than the OCP’s. 

Achieving a continuous and uniform chemical soil barrier can be difficult. The 

frequent rate of re-treatments that are necessary throughout the life of a building have 

raised public concern and increased scrutiny by regulatory bodies (Ahmed, 2000). 
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6.1.3 Current Methods for Termite Control 

 Current methods for the control of termites encompass an integrated pest management 

(IPM) strategy that uses an array of ecologically sound complementary methods to 

significantly reduce or eliminate the use of pesticides. Knowledge of termite biology, 
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nutritional physiology, foraging behaviour and population dynamics is becoming 

increasingly fundamental to the design and implementation of highly targeted 

termiticides or biological controls. IPM draws on; preventative measures, cultivation, 

pest monitoring, mechanical controls, biological controls and as a last resort chemical 

controls.  

 

6.1.3.1 Modern Chemical Controls  

Chemical controls may be classified into three categories based on their repellency or 

killing style (Su et al. 1982). Type I termiticides encompass all of the repellent 

chemicals which may be used as preventative agents and include chemicals that are 

used for timber preservation. Type II termiticides are those that kill on contact and type 

III termiticides are those that are slow acting and are non-repellent. Remedial measures 

for active infestations employ both type II and type III termiticides, whilst baiting and 

dusting techniques are strictly dependent upon type III termiticides.  

 

6.1.3.2 Preventative Chemical Treatments 

Timber may be pressure treated with termiticides to aid in the prevention of termite 

incursions (USDA, 1960; Tamashiro et al., 1988). The main timber preservatives 

currently in use are heavy metal formulations such as copper chromated arsenate 

(CCA) and acid copper chromate (ACC). The use of arsenic not only protects against 

termites but also inhibit wood rot, moulds and other timber pests. One disadvantage for 

CCA and ACC is that arsenic and chromium have the capacity to leach from treated 

timbers and pose a health risk. Consequently, the use of ACC and CCA for timber 

preservation has been banned since 2004 by the U.S. Environmental Protection 

Agency. The Australia Pesticides and Veterinary Medicines Authority (APVMA) still 
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endorses the use of CCA and ACC for the protection of structures. Newer alternatives 

to CCA pressure treated timber include formulations based on boron such as boric acid 

and disodium octaborate tetrahydrate, ammoniacal copper chromate (ACC) and 

ammoniacal copper quaternary (ACQ), copper sulphate, copper azole, chromated 

copper borate (CCB) and pentachlorophenol (U.S. Environmental Protection Agency, 

2006; Lebow, 2004). Borate pressure treatments are inexpensive alternatives that have 

low mammalian toxicity (refer to Figure 6.1). Borate compounds readily penetrate 

timber but their use is limited to dry applications. Borates are water-soluble and readily 

leach into the soil thereby compromising the barrier (Lebow, 2004). 

 

 6.1.3.3 Remedial Chemical Treatments 

Pest control operators may utilize chemical soil termiticides, baiting systems or dust 

toxicants to control an active termite infestation. Non repellent liquid termiticides may 

be injected or trenched into the soil around the perimeter of an infected structure with 

spot treatment of the infected areas. Chemical soil treatments are time consuming, 

costly and use large quantities of chemicals to ensure every possible invasion site is 

treated.  

 

The last decade has seen the intensive development of baiting technology. Baiting 

systems employ a series of canisters that contain a palatable food source. They serve 

to aggregate large numbers of termites which, when detected, can then be dusted with 

or fed a slow acting, non-repellent termiticide. Bait or dust toxicants may be 

termiticides that are stomach or contact poisons such as the arsenates or 

perchloropentacyclodecane (Mirex) respectively, insect growth regulators, chitin 

synthesis inhibitors such as hexaflumuron and potentially, biological controls.  
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Traditionally organochlorine termiticides have been formulated into dry powders and 

used as dust toxicants. These have been superseded by arsenates such as arsenic 

trioxide, which is a slow acting stomach poisons that is topically applied and is 

effective at reducing termite populations. Grace and Abdallay (1990) have reported 

on the potential for boron compounds to be used as dust toxicants. Compared to the 

hundreds of litres of toxic liquids used in soil treatments, baiting or dust systems only 

require a few grams of the toxin. The environmental hazards associated with 

termiticidal treatments are greatly reduced by the use of baiting, after treatment the 

infested structures are pesticide free except for the minute levels of the toxin in the 

dead termites (Ahmed, 2000).  

 

Of the selection of modern termiticides, most have undesirable consequences due to 

their toxicity to non-target organisms and their persistence. A comparison is made in 

Figure 6.1 of the toxicity of termiticides, indicating that there is a trend towards the 

development of less toxic chemicals. However, data on the negative impact of the 

modern termiticides is also mounting, resulting in increasing limitations and 

regulations on their use and progressively many are being banned. Fipronil, a GABA 

inhibitor (Cole et al. 1993) has recently been banned in France due to its toxicity to 

bees. It is also highly toxic to aquatic organisms and bird species (Hamon. 1996). The 
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The APVMA is currently reviewing the registration status of fipronil. Chlorpyrifos 

(48) is also extremely toxic to birds and other wildlife and aquatic organisms (U.S. 

EPA., 1984). The APVMA has reported that rain induced run-off from termiticidal 

applications employing chlorpyrifos are a common cause of fish kills in Australia.  

 

6.1.4 Phytochemicals for Termite Controls 

With the withdrawal of OCP’s and the progressive banning of the modern termiticides 

researchers are striving to develop highly targeted, organism specific means of 

control. The use of baiting systems offer a means for the responsible use of 

termiticides however there have been mixed reports on the efficacy of these systems 

(Pawson and Gold, 1996). It is unclear whether the inadequacies of this technique are 

due to the delivery system or the active ingredients. Historically, chemical soil barriers 

have outperformed all other modes of treatment. At present, there is a surge of research 

into new chemical alternatives. 

 

Chemical controls will remain an important tool in termite control programs, whether 

as repellents or as remedial controls. Natural products are a promising resource for the 

search for ‘softer’ chemicals. They have the potential to be less toxic and more specific 

and to provide novel templates for the development of synthetic termiticides. Plants are 

being surveyed for termite-active secondary metabolites. Several researchers have 

investigated the innate termite resistance of timbers. Bultman et al. (1979) evaluated 42 

tropical African woods for their termite resistance and suggested that the volatile oils 

may be a factor in their durability. Studies conducted by the CSIRO in Australia 

(Thornton et al., 1997) and the University of Hawaii in collaboration with the Forest 

Research Institute of Malaysia (Grace et al., 1989; Grace et al., 1996; Grace et al., 
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1998; Wong et al., 1998; Wong et al., 2001; Grace and Tome, 2005) have identified 

timber species that are inherently resistant to termites. A comprehensive list of durable 

timber species is included in Appendix 1. These studies have been directed towards 

selecting timber for plantation that can be utilized in construction and termite resistant 

wood products. This list may be a useful starting point for further phytochemical 

investigations of termite resistant timber species. 

 

Studies addressing the termite-active chemical constituents of the timber are limited. 

The whole essential oil of cedarwood (Adams, 1991), Litsea cubeba (Lin and Yin, 

1995a) and Cinnamomum spp. (Lin and Yin, 1995b) were demonstrated to be repellent 

to termites. Vetiver, cassia leaf, clove bud, cedarwood, Eucalyptus globulus, 

Eucalyptus citriodora, lemongrass and geranium oils were evaluated by Zhu et al., 

(2001a), with notable activity observed for vetiver and clove bud oil. Several essential 

oil components have also been reported to be toxic to termites including chamaecynone 

(52) from Chamaecyparis pisidera D. Don (Saeki et al., 1973), the naphthoquinones; 7-

methyljuglone (53) and its dimer isodiospyrin (55) isolated from the wood of Diospyros 

virginiana L. (Carter et al., 1978) and torreyal (54) from Torreya nucifera Sieb. et 

Zucc., (Ikeda et al., 1978). Recent work by Ganapatay et al., (2004) on Diospyros 

species has described the termiticidal activity of plumbagin (56), microphyllone (57) 

and isodiospyrin (55) from the roots of Diospyros sylvatica.  
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A number of terpenoids from essential oils such as citronellal, citral, geraniol, and 

eugenol have exhibited repellent properties against the Formosan termite (Cornelius, et 

al., 1997; Sharma et al., 1994). Scheffrahn and co-workers (1988) isolated ferruginol 

(58), manool (59), and nezukol (60) from bald cypress, Taxodium distichum L. wood 

that possessed antifeedant properties towards C. formosanus. Geranyllinalool caused 

direct mortality to termites as reported by Nangan and Clement (1990). The 

azadirachtins, which are the systemic insecticides from Neem (Azadirachta indica), 
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have also shown promise as a natural termiticide (Grace and Yates, 1992; Delate and 

Grace, 1995b).  

 

Osbrink and co-workers (2005) have evaluated five natural and seventeen conventional 

termiticides against C. formosanus Shiraki. They found that the natural 

naphthoquinones; menadione, plumbagin, and juglone and the natural benzoquinones; 

thymoquinone and co-enzyme Q1 were capable of producing 100% mortality at the 

highest concentrations tested (5% w/w as a dried powdered extract). The natural 

products possessed minimal toxicity at concentrations less than 0.5% (w/w). With the 

exception of boric acid, all of the synthetic termiticides evaluated were ten-fold more 

potent. “The synthetic termiticides; permethrin, cis-permethrin, trans-permethrin, 

cypermethrin, α-cypermethrin, β-cypermethrin, bifenthrin, fenvalerate, cyfluthrin, β-

cyfluthrin, deltamethrin, tralomethrin, chlorpyrifos, propoxur, imidacloprid, caused 

100% mortality at concentrations less than 0.05% (w/w)” (Osbrink et al., 2005.) To 

date, apart from the synthetic derivatives of the pyrethrins and nicotine no natural 

products are presently commercially registered for the control of termites. 

 

Towards the completion of our research, we became aware of the discoveries made by a 

research group at the Louisiana State University Agricultural Centre (LSU Ag. Centre). 

The group were investigating the termiticidal activity of vetiver oil. Vetiver oil is 

distinguished by the presence of α- and β-vetivone, structures 62 and 63 respectively, 

which are remarkably similar to eremophilone but arise from different biosynthetic 

pathways. It has been identified that nootkatone (61) is the most active constituent of 

the vetiver root oil (Zhu et al., 2001a; Zhu et al., 2001b; Ibrahim et al., 2004a). 

Nootkatone (61) is used commercially as a flavouring agent (grapefruit) and is a major 
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component of the termite resistant Alaskan Yellow Cedar (Chamaecyparis nootkatensis 

(Erdtman and Hirose, 1962; Zhu et al., 2001b). It is minor component of vetiver oil 

(Fergeus, 2007). 

 

O
 

O O

  

  

 61        62      63 

 

6.2 Background of These Studies  

Extracts of E. mitchellii wood were found to be toxic to termites (Leach et al., 2004), a 

series of investigations were conducted to elucidate the mode(s) of action of the crude 

wood oil against termites. These included a series of bioassays to determine if the oil 

could act as a toxicant via fumigation, had a repellent effect or could cause mortality by 

direct contact with either the fresh oil or dried residues (Spooner-Hart and Basta, 2006). 

Lastly, studies were conducted to assess whether the oil might be utilized as a chemical 

soil barrier (Spooner-Hart and Basta, 2006). 

 

6.2.1 Efficacy of E. mitchellii Wood Oil against Termites - Topical Application 

The whole wood oil was evaluated for acute dermal toxicity via topical application. 

Test solutions containing between 0 - 5000 ppm of E. mitchellii wood oil were used for 

the initial screening. The relative efficacies of E. mitchellii wood oil against N. 

exitiosus and C. acinaciformis are given in Table 6.1.  
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It was apparent that the whole oil possessed significant activity against termites. There 

was a strong dose-mortality response for both termite species. For N. exitiosus, the LC50 

and LC90 values for 2.5 mL aliquots were approximately twice those for 5.0 mL 

aliquots, confirming the dose-related response. The estimated LC50 and LC90 values for 

C. acinaciformis for 5.0 mL aliquots were higher than those for N. exitiosus, indicating 

that the latter termite species was more susceptible.  

 

Table 6.1. Relative efficacy of E. mitchellii oil against N. exitiosus and  
C. acinaciformis 

 

 
wood oil 

(vol) Termite species N 
LC50 ppm 
(95%CL) 

LC90 ppm 
(95%CL) 

Slope# 
±SE χ2 df 

2.5 mL N. exitiosus 800 621 
(572-686) 

1014 
(877-1280) 

6.017 
±0.434 92.3 30 

5.0 mL N. exitiosus 480 359 
(339-378) 

465 
(440-500) 

10.051 
±0.794 41.8 18 

5.0 mL C. acinaciformis 400 1357 
(1002-1636) 

3342 
(2787-4456) 

3.273 
±0.416 20.7 14 

# Pearson goodness of fit test 
 
 
 
6.2.2 Efficacy of E. mitchellii Wood Oil Residues against Termites 

The whole wood oil was evaluated for acute dermal toxicity against termites via contact 

with dried residues of E. mitchellii wood oil. Test solutions containing between 0 - 

5000 ppm of E. mitchellii wood oil were used to test the efficacy of the dried residue. 

The relative efficacies of the wood oil against N. exitiosus and C. acinaciformis are 

given in Table 6.2. A strong dose-mortality response was observed for both termite 

species. The estimated LC50 and LC90 values for C. acinaciformis were higher than for 

N. exitiosus, indicating that the latter termite species was more susceptible. 
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Table 6.2. Relative efficacy of dry fresh residues of E. mitchellii oil against N. exitiosus 
and C. acinaciformis. 

 
Termite species N LC50 ppm 

(95% CL) 
LC90 ppm 
(95% CL) 

χ2# Slope 
±SE 

df 

N. exitiosus 700 634 
(557-721) 

1107 
(940-1412) 

56.993 5.292 
±0.408 

22 

C. acinaciformis 500 1357 
(1002-1636) 

3342 
(2787-4457) 

20.689 3.273 
±0.416 

14 

# Pearson goodness of fit test 
 
 
 
6.2.3 Fumigant Properties of E. mitchellii Wood Oil 

To assess the fumigant properties of the oil, termites were contained in a Kilner jar and 

exposed to filter papers treated with E. mitchellii wood oil (20000 ppm). The filter 

papers were fitted to the lid of the jar and consequently the termites had no direct 

contact with the test solution. Results for fumigant activity of the wood oil are 

presented in Table 6.3. No termite mortality occurred in either; the oil treatment or in 

the control 24 h after sealing the jar, but at 96 h 100% mortality had occurred in the E. 

mitchellii wood oil-treated jars, whereas no mortality had occurred in the controls. 

 

Table 6.3. Mortality (%) of workers of C. acinaciformis exposed to vapours of  
E. mitchellii wood oil in a Kilner jar.  

 

Conc. 
ppm 

Time 
hours R1 R2 R3 R4 R5 R6 R7 R8 R9 

Total % 
Mortality 
(n=9) 

0.00 
24 0 0 0 0 0 0 0 0 0 0.0 
96 0 0 0 0 0 0 0 0 0 0.0 

20000  
24 0 0 0 0 0 0 0 0 0 0.0 
96 100 100 100 100 100 100 100 100 100 100.0 
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6.2.4 Termite Repellent Activity of E. mitchellii Wood Oil - Choice Tests 

In the choice test, one filter paper impregnated with a control solution and another with 

a solution of E. mitchellii wood oil was placed in a termite enclosure. In the no choice 

assay two filter papers impregnated with the test solution were placed in the termite 

enclosure and termite behaviour was recorded after 3 days. The results on the 

repellency studies are given in Table 6.4. In both no-choice and choice investigations, 

E. mitchellii wood oil showed high repellent effect against both N. exitiosus (at 2000 

ppm) and C. acinaciformis (at 5000 ppm), with mean RI values >83%. There were no 

significant differences between any of the treatments in either choice or no-choice 

investigations. There were no significant differences between any of the means (P ≤ 

0.05).  

 

Table 6.4. Repellency indices of E. mitchellii wood oil against N. exitiosus and  
C. acinaciformis workers in choice and no-choice experiments. 

 
 

Termite species Test 
RI (%) 
Rep 1 

RI (%) 
Rep 2 

RI (%)  
Rep3 

Mean RI (%) 
± S.D. 

N. exitiosus 
No choice 83.40 88.47 86.37 86.08 ± 2.55 

Choice 96.55 100.00 100.00 98.85 ± 2.00 

C. acinaciformis 
No choice 84.00 88.90 86.36 86.42 ± 2.45 

Choice 96.55 100.00 100.00 98.85 ± 2.00 

 
 

6.2.5 Barrier Studies of E. mitchellii Wood Oil 

Tests were conducted to determine the efficacy of E. mitchellii oil as a barrier treatment 

to prevent termite intrusions using modified bioassay tubes containing sand (Figure 

6.2), (Su et al., 1995). It was found that termites tunnelled further in the control than in 
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any of the experiments containing sand barriers treated with E. mitchellii wood oil. The 

results for the effects of a fresh 2 cm sand barrier treated with different concentrations 

of the wood oil (layer 3: L3, refer to Chapter 2 for a detailed description) on termite 

tunnelling over a 7 d challenge period are presented in Figure 6.2. L3 was only 

breached in the control, and there was a strong trend towards reduction in mean vertical 

length tunnelled with increasing concentration of wood oil in the barrier. 

 

Figure 6.2. Barrier studies for E. mitchellii wood oil showing the difference in 
tunnelling of N. exitiosus workers in water treated sand control (bottom 8 
replicates) and E. mitchellii wood oil (top 8 replicates). (Photograph 
courtesy of Robert Spooner-Hart and Albert Basta.) 

 
 
The results for efficacy of aged E. mitchellii oil-treated sand barriers are presented in 

Tables 6.5 and 6.6. L3 was only breached in the control, and even in the 38-day old 

sand barrier with 20000 ppm wood oil, there was minimal termite incursion into L2, the 

untreated sand below the barrier, even after challenging for 16 d. With the 240 day old 

sand barrier, there was tunnelling into L2 after challenging with C. acinaciformis for 21 

d, but the termites did not reach L3. 
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6.2.6  Discussion 

The wood oil was shown to act as a contact toxicant to all termite species tested, 

including the economically important subterranean species, C. acinaciformis and N. 

exitiosus. However, the susceptibility of termite species differed, as evidenced by their 

different LC50 and LC90 values. C. acinaciformis was the least susceptible of the species 

tested. Observations confirmed that when termites and filter papers on which they were 

located were sprayed with 5 mL aliquots of wood oil at concentrations ≥ 250 ppm for 

N. exitiosus and ≥ 625 ppm for C. acinaciformis, the termites began to show signs of 

intoxication, and at higher concentrations, frequently died within 3-8 h.  

 

The wood oil did not have rapid fumigant activity against termites, with no mortality 

recorded 24 h after their introduction into the container, although 100% mortality (with 

no corresponding control mortality) was recorded at 96 h. It was, therefore, not possible 

to calculate a KT50 value. 

 

E. mitchellii oil residues were highly repellent to termites in both choice and no choice 

investigations, with RI values > 83% being recorded in filter paper tests. The wood oil 

demonstrated repellent activity against both N. exitiosus and C. acinaciformis, when 

added to sand and used as 2 cm barriers in test-tube investigations. In fact, in no case 

did termites tunnel into any oil-treated barrier, and, commonly, they did not tunnel far 

into the untreated sand layer directly below the treated layer. Mean vertical termite 

tunnelling was related to initial wood oil concentration in the barrier. The “barrier 

repellency” was maintained for sand initially treated with 20000 ppm for ≥ 240 d, under 

our experimental conditions. Many termites in the test tube bioassays commonly died: 

in investigations with higher concentrations of fresh E. mitchellii oil-treated barriers, 
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this was probably associated with the toxic activity of the wood oil (such as fumigant 

effect), but with older age barriers, it was probably a function of starvation/dehydration. 

 

 

6.3  Results and Discussion 

 

Studies were conducted in collaboration with CPAFS to determine the chemical 

constituents of the wood oil that were responsible for the activity against termites. 

Fractionation of the oil was achieved using normal phase preparative HPLC, with a 

hexane/ethyl acetate gradient as eluent (Figure 2.3). The fractions and subsequent pure 

compounds were evaluated in a range of termite assays. 

 
6.3.1 Efficacy of E. mitchellii Fractions against Termites - Topical Application 

The prep HPLC fractions were subjected to a termiticidal assay using N. exitiosus as the 

test organism. Fractions were tested at concentrations ranging from between 0-5000 

ppm, which corresponded to application rates of 0-25 mg/5 mL aliquot/64 cm2 

treatment area. The relative efficacies of the wood oil fractions against N. exitiosus are 

given in Table 6.7.  Fraction F1 exhibited moderate activity at the highest concentration 

tested. Analysis of the GC-MS data indicated that fraction F1 was composed of 

sesquiterpene hydrocarbons, whilst fractions F4-F10 were composed of oxygenated 

sesquiterpenes. These later fractions possessed mixed efficacy with fractions F4 and F5 

exhibiting moderate activity at concentrations less than 3 mg/application. Fraction F11-

28 contained higher MW non-volatile compounds that had negligible activity against 

the termites. 
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6.3.2 Efficacy of E. mitchellii Fractions against Termites - Dried Residues 

 

The two most efficacious fractions were F4 and F5/6. The relative efficacies of E. 

mitchellii wood oil and its fractions F4 and F5/6 against C. acinaciformis are given in 

Table 6.8, 24 and 48 h after treatment (HAT). The termite mortality increased with 

concentration of the tested products, and with exposure time to their residues. Fractions 

F4 and F5/6 produced similar comparative mortality to the crude wood oil.  

 
 
Table 6.8. Mortality of workers of C. acinaciformis when exposed to filter papers 

containing fresh dry residues after treatment with 2000 ppm and 5000 ppm 
E. mitchellii whole oil and fractions F4 and F5/6. 

 

Product 
Conc. 
ppm

24 hours 
(HAT) 

48 hours 
 (HAT) 

Total % 
Mortality 

±SD* 

Total % 
Mortality 

±SD* 

Acetone only control  0 0.00 0.00 

Crude oil 
2000 20.63±7.29 98.75±2.32 

5000 100.00 100.00 

F4 
2000 22.50±7.07 86.88±10.33 

5000 97.50±4.63 100.0 

F5/6 
2000 19.00±8.91 93.13±8.82 

5000 96.25±3.54 100.00 

* Means of 8 replicates, 20 termites per replicate 
 
 
6.3.4 Barrier Studies of E. mitchellii Fractions 

Barrier studies were also performed on these two fractions. The results for the effects of 

a fresh 2 cm sand barrier treated with E. mitchellii oil and fractions F4 and F5/6 (L3) on  
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termite, N. exitiosus, tunnelling over a 21 d challenge period are presented in Table 6.9. 

L3 was only breached in the control, indicating that these fractions contain compounds 

associated with repellent activity of the barriers. 

 

6.3.5 Discussion 

The investigations confirmed that E. mitchellii oil fractions F4 and F5/6 were highly 

active against termites, causing similar acute toxicity to the whole oil, via topical 

application and fresh residues, and repellent activity in both filter paper and barrier 

trials. The results suggest that these two fractions are important contributors to the 

modes of termite activity reported here for E. mitchellii oil. 

 

6.3.6 LD50 and LD95 of the Eremophilanes from E. mitchellii Wood Oil by Direct 
Contact Mortality 

 
The purification of the four major components of the oil is described in Chapter 5. Each 

of the pure compounds (30, 33, 35 and 36) and the whole oil were evaluated for 

termiticidal activity against N. walkeri (the raw data is included in the appendices). The 

LD50 and the LD95 was then determined for each compound (Table 6.10). There was 

only a sufficient quantity of compound 33 to perform 2 replicates and insufficient 

quantities of compounds 42 and 32 (minor components of the oil) to include these in 

the termiticidal assays. 
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It appears from these results (Table 6.10) that eremophilone (30) and the 8-

hydroxyeremophilone (33) possessed the most potent toxicity towards the termites, 

which is consistent with the activity associated with fraction F4 and F5/6. It was also 

noted that eremophilone (30) possessed similar activity to the crude oil. This may 

possibly be due to some of the minor constituents contributing to the potency of the 

whole oil. It was also apparent that activity was not enriched upon isolation suggesting 

the loss of active components, possibly via irreversible adsorption or degradation 

during silica chromatography.  

    
                

6.3.7 Discussion 

The sesquiterpene ketone, compound 30 possesses the greatest activity followed closely 

by its 8-hydroxylated compound 33. Compound 36 is less active whilst activity of 

compound 35 is greatly diminished. Activity appeared to be related to the presence of 

an α,β-unsaturated ketone group and having a relatively un-hindered as well as 

activated oxygen in the carbonyl group at C-8.  

 

It is possible that some compounds, like 35, may have solubility problem, thus giving 

inaccurate reults. Compound 35 readily precipitated out of solution during application, 

this is reflected in the statistically poor correlation between dose and response. 

Consequently, an accurate determination of LD50 and LD95 was not possible. The % 

mortality associated with compound 35 did increase over time and indicates that 35 

possesses important activity.  It is not unexpected that chemical reactivity correlates 

with biological activity. 
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It is emphasized that the termite active oil that we have characterised is only present in 

the heartwood of the tree and absent in the bark and outer white wood. The tree 

develops the darker heartwood as it ages implying that younger trees will produce very 

low oil yields and are not suitable for oil harvesting. The root oil is composed of almost 

50% eremophilone, the most active component of the wood oil, suggesting that the root 

oil will possess activity similar to or greater than the wood oil. Samples of the leaf and 

root oil were sent to CPAFS together with key components of the leaf oil that were 

commercially available; α-pinene and limonene. To elaborate on the nature of the 

activity of the leaf oil, a sample of the oil was separated into polar and non-polar 

metabolites by partitioning between hexane and methanol. 

 
 
6.3.8 Other Termite-active Sesquiterpenes 

Nootkatone and its derivatives, like eremophilone, have shown insecticidal activity 

against a broad range of insects and several patents claim the incorporation of 

nootkatone into an aerosol to repel mosquitoes (Masahiro and Kazumasa, 1999), 

against termites, midges and mosquitoes (Zhu et al., 2005), and ants, ticks and 

cockroaches (Henderson et al., 2005). Maistrello et al. (2003) reported that nootkatone 

possessed a novel mode of action. Lower termites (Thorne, 1998; Pearce, 1997) depend 

mostly (Doolittle et al., 2007) on their gut microbiota to metabolise cellulose. 

Nootkatone (61) was found to be toxic to the gut protozoa of the termites consequently 

starving the termites to death. 

 

O  
O O

  

 
nootkatone (61)             α-vetivone (62)   β-vetivone (63) 
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Of greater interest to this project was to compare the activity of α-vetivone and 

nootkatone that possess structural similarities to that of eremophilone. It was decided to 

include nootkatone, vetiver oil and an enriched fraction of α-vetivone in an assay 

together with eremophilone, the most active component of the wood oil. A commercial 

sample of vetiver oil was obtained from Australian Botanical Products. GC-MS 

analysis indicated that the oil contained approximately 10% vetivones (% FID). An 

enriched fraction of the oil containing approx. 40% vetivones was prepared by column 

chromatography of the oil. The fraction (F4) containing an enriched mixture of α- and 

β-vetivone was sent to CPAFS for termiticidal screening. 

 

The products were evaluated using Potter Spray Tower topical applications to 

determine their acute dermal toxicity against adult workers of N. exitiosus. The 

products were initially investigated in range-finding assays, and then appropriate 

concentrations were applied to ensure the range of mortalities required for analysis. 

Because of the limited amount of product, each was tested with two or three treatment 

replicates. The raw data and observations are given in the appendices.  
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6.3.9 Discussion 

The bioassay results and the estimates obtained from the statistical analysis indicate 

that amongst the products tested the highest efficacy was observed for (+)-nootkatone 

(LD50 and LD95 were the lowest; also its regression line slope is high). This is also 

represented graphically (Figures 6.3 and 6.4), with the most efficacious products 

appearing on the left hand side of the graphs, with the slope of the dose-response being 

represented graphically. Considering the LD50 values (the best value for comparisons of 

efficacy) as shown in Table 6.11, it appears that the activity of vetiver oil fraction 4 is 

very close to that of nootkatone.  
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Log of Dose in ppm (w/v)

-2

-1

0

1

2

Pr
ob

it 
- 5

Legend
Nootkatone
Eremophilone
E.mitchelli Root Oil
E.mitchelli Leaf Oil
Vetiver

Probit Transformed Responses

R Sq Linear = 0.773

R Sq Linear = 0.869

R Sq Linear = 0.85

R Sq Linear = 0.831

R Sq Linear = 0.844

 
Figure 6.3. Probit analysis plots of termiticidal activity for selected products at 24 

hours. 
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Figure 6.4. Probit analysis plots for termiticidal activity of selected products at 24 

hours. 
 

The non-polar (hexane) and polar (methanol) fractions of E. mitchellii leaf oil had an 

efficacy approximately one half of that of (+)-nootkatone. The methanol fraction 

showed similar efficacy to the hexane fraction, but the speed of action was faster (i.e. 

symptoms of intoxication were quicker) for the polar metabolites. Referring to Table 

6.11, E mitchellii root oil, leaf oil and eremophilone appeared to have similar efficacy 

but all were less than that of (+)-nootkatone and the E. mitchellii leaf oil fractions. α-

Pinene showed good efficacy at concentration levels greater than 5000 ppm (w/v). It 

appeared that limonene had no efficacy even at 10000 ppm (w/v) against workers of N. 

Legend 
Leaf oil methanol
 
Leaf oil hexane 
 
Vetiver oil F4 
 
Alpha pinene 

Pr
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5 
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exitiosus. Additionally there is a trend towards steeper slopes on the probit regression 

lines for pure compounds over mixtures. This is also a feature of synthetic (i.e. single 

active constituent) products and reflects a single and consistent mode of action.  

 

Note that in a number of treatments, the mortality counts conducted 24 h after 

treatment, by themselves, may not fully reflect the activity of the product. For example, 

most moribund insects, while not technically dead, did not recover. That is why these 

data observations are included in the data. Thus, the results partly reflect the speed of 

action of the products. It was not possible to extend the time period for the mortality 

measurements to 48 h, as at this time, there was  >10% mortality in the controls, which 

would have lead to rejection of the data sets. The observed continued high levels of 

moribund insects were one reason for repeating experiments, although as indicated 

above, both sets of data were included in the analyses, for accuracy of reporting.  

 

It was noted in the last set of termiticidal experiments that the eremophilone (30) was 

not as potent in the assays against N. exitiosus as it was against N. walkeri. The potency 

of termiticides is species dependent. 

 

6.4 Conclusion 
 

Our results indicate that E. mitchellii leaf, wood and root oils possess significant 

termiticidal activity. Preliminary investigations of the leaf oil have demonstrated that 

both the polar and non-polar metabolites in the oil are active in direct contact mortality 

assays. The major constituent of the leaf oil, α-pinene (25%) did not contribute 

significantly to the activity whilst limonene was not found to be active in this assay. 

The discovery of termiticidal activity in the leaf oil is interesting and unexpected, and 
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thus warrants further investigation. It is thought that the leaf oil is unlikely to be 

utilized in termite products due to the volatility of these compounds, however the 

fumigant capacity of the leaf oil may be worthy of investigation. 

 

Eremophilone (30) and the wood oil are less volatile and possessed significant 

termiticidal activity in the direct contact mortality assays. The repellency, toxicity and 

speed of kill observed for E. mitchellii wood oil and eremophilone indicate that these 

products are not suitable for use in baiting systems or as remedial termiticides. It is 

possible that the heartwood timber may be utilized in termite durable wood products or 

the oil may be used to impregnate susceptible timbers. Sesquiterpenes are less volatile, 

a characteristic that is important for chemical soil barriers and timber treatments. The 

oils possess low water partitions, an important property for their employment in 

chemical soil barriers and as a timber treatment.  

 

In regards to harvesting the oil for commercial production, the age of the tree is 

important since the oil is only present in the mature heartwood. The roots could also be 

harvested to obtain a valuable oil with a high proportion of eremophilone. Methods 

have been developed to obtain pure compounds from oil. However, this is not justified 

from a cost benefit perspective, as the purified compounds did not have a marked 

increase in potency over the whole oil. 

 

Recent investigations of the structure-activity of analogues of the vetivones have 

arrived at 2-acetonaphthone (64) as the critical termiticidal structure (Ibrahim, 2004b; 

2004c.). The presence of an α,β-unsaturated ketone is a common feature of all of the 

natural termiticides discovered to date. 
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64 

 

The simplicity of this structure suggests that the α,β-unsaturated carbonyl group is 

essential for activity and renders the eudesmane/eremophilane/vetivone skeleton 

argument moot. However, the structural features and functional groups may still impart 

significant properties such as; the organism-specificity of the compound, the volatility 

and the chemical stability and other physical properties. 

 

Whilst nootkatone was found to be more potent than eremophilone in our assay, 

laboratory assays cannot predict how a product will perform in situ. Repellency, mode 

of action, or slower kill rates may be critical to the effectiveness of a termiticide. Many 

other factors are vitally important to the commercial success of a product such as 

environmental toxicity, production cost, product half-life, mammalian safety data and 

organism specificity. Eremophila mitchellii oil has the advantage of low production 

costs and is considered a renewable resource due to its wide distribution, ability to 

regenerate and weed status. In comparison, vetiver oil is widely available commercially 

AU$ 192/kg (Australian Botanical Products, 2009) whilst synthetically derived 

nootkatone costs AU$ 175/g (Sigma-Aldrich, 2009).  

 

Field trials are currently underway to determine the effectiveness of E. mitchellii wood 

oil in field trials. Further studies on the environmental toxicity and safety of the wood 

oil are planned.  
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7.1 Introduction 

This project arose from commercial interest in the biologically active metabolites from 

Eremophila species. Eremophila species are endemic to Australia and have exhibited 

considerably novel secondary metabolites. The extracts from several Eremophila 

species have demonstrated antibacterial, anti-viral, anti-inflammatory and cardioactive 

actions and several bio-active compounds have been documented from this genus.  The 

aim of this project was to screen Eremophila extracts for cytotoxic activity, pursue 

interesting bioactivity, and investigate the chemical constituents.  

 

7.1.1 The Genus Eremophila 

The genus Eremophila is one of seven genera, together with Myoporum, Bonita, 

Diocirea, Pentacoelium, Calamphoreus and Glycocystis which constitute the small 
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family Myoporaceae. The family is largely restricted to Australia with only Myoporum 

and Pentacoelium occurring in areas including New Zealand, the Pacific Islands, Asia 

and Japan (Chinnock, 2007). The taxonomy of Eremophila has only recently been 

reviewed by Chinnock (2007), comprising over 350 species, is by far the largest genus 

in the family. Eremophila species are usually small to medium shrubs and are 

distributed throughout the semi-arid and arid regions with the largest number of species 

located in Western Australia.  

 

Eremophila species are commonly called fuchsia or emu bushes, dogwood, buddah or 

eurah. The common name "emu bush" is derived from the erroneous belief that the 

fruits are commonly eaten by emus and that digestion enhances the rate of seed 

germination after excretion (Chinnock, 2007). Traditionally the plants have been valued 

by Aboriginals for ceremonial purposes and feature prominently in their medicinal 

folklore. More recently, many Eremophila have been valued as the main edible shrub 

species throughout arid regions of Australia (Ghisalberti, 1994b). They have been 

proven useful in revegetation programs because of their invasive nature and resistance 

to drought, fire, and grazing. Currently, the genus is being explored for its horticultural 

potential. Most species of Eremophila exhibit ornamental flowers and are valued for 

their hardiness and drought resistance. 

 

7.1.2 Ethnopharmacology and Ethnobotany 

Eremophila species are common and widespread throughout the drier regions of 

Australia. These plants have been used by Aboriginals to treat colds and influenza, to 

relieve headaches and pain, as antiseptic washes for cuts and sores, as skin washes to 

treat scabies, and to promote general well being (Barr, 1988; Low, 1990). To date, the 
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therapeutic uses of only 17 species of Eremophila have been documented, (Richmond 

and Ghisalberti, 1994) and the medicinal uses of these species has been summarized in 

Table 7.1. 

 

There have been some attempts to substantiate the traditional uses of Eremophila 

species with scientific evidence. Ghisalberti (1994a) has compiled an extensive review 

of the ethnopharmacology and phytochemistry of Eremophila species and drawn 

inferences between the phytochemistry and the known biological activity of these 

compounds. 

 

7.1.3 Chemistry of Eremophila  

Interest in the chemistry of Eremophila arose over 100 years ago, when it was observed 

that certain species were toxic to livestock. Finnemore and Cox (1930) characterized 

prunasin (65), the cyanogenic glycoside from E. maculata. Later Hegarty and co-

workers (1970) identified the hepatotoxic furanoid sesquiterpene, (-)-ngainone (66) 

from E. latrobei.  

 

 

O
O

H

O

 

 

  

CNO

H

O

HO
HO

HO
HOH2C

H

65          66 

196



Ta
bl

e 
7.

1.
 E

th
no

ph
ar

m
ac

ol
og

y 
of

 E
re

m
op

hi
la

 s
pe

ci
es

. (
A

da
pt

ed
 f

ro
m

 R
ic

hm
on

d 
an

d 
G

hi
sa

lb
er

ti,
 1

99
4)

. 

Sp
ec

ie
s 

Pl
an

t 
Pa

rt
 

Pr
ep

ar
at

io
n 

T
re

at
m

en
t 

R
ef

er
en

ce
   

  
 

 
 

 
 

E
. a

lte
rn

ifo
lia

 
L

ea
ve

s 
In

fu
si

on
 / 

in
ge

st
ed

 
E

nc
ou

ra
ge

 d
ee

p 
sl

ee
p 

T
in

da
le

, 1
93

7 
 

L
ea

ve
s 

D
ec

oc
tio

n 
C

ol
ds

, I
nf

lu
en

za
, c

ou
gh

s,
 h

ea
da

ch
es

 
Sm

ith
. 1

99
1 

 
L

ea
ve

s 
E

xt
er

na
l 

In
te

rn
al

 p
ai

n 
B

ar
r,

 1
98

8 
 

L
ea

ve
s 

E
xt

er
na

l 
Se

pt
ic

 w
ou

nd
s 

B
ow

en
, 1

97
5 

 
L

ea
ve

s 
D

ec
oc

tio
n 

B
od

y 
w

as
h 

fo
r 

fe
ve

r 
Sm

ith
, 1

99
1 

E
. b

ig
no

ni
flo

ra
 

L
ea

ve
s 

D
ec

oc
tio

n 
L

ax
at

iv
e 

B
ow

en
, 1

97
5 

 
Fr

ui
ts

 
In

ge
st

ed
 

Pu
rg

at
iv

e 
B

ow
en

, 1
97

5 
E

. c
un

ei
fo

lia
 

L
ea

ve
s  

D
ec

oc
tio

n 
C

ol
ds

 
L

as
sa

k 
an

d 
M

c 
C

ar
th

y,
 1

98
3 

E
. d

al
ya

na
 

L
ea

ve
s 

B
od

y 
ru

b 
R

el
ie

ve
 c

he
st

 p
ai

n 
L

at
z,

 1
98

2 
 

L
ea

ve
s 

D
ec

oc
tio

n 
B

od
y 

w
as

h 
fo

r 
sc

ab
ie

s 
O

’C
on

ne
ll 

et
 a

l.,
 1

98
3 

E
. d

ut
to

ni
i 

L
ea

ve
s 

A
nt

is
ep

tic
 w

as
h 

So
re

s,
 c

ut
s,

 c
ol

ds
, i

nf
lu

en
za

, e
ye

/e
ar

 
Sm

ith
, 1

99
1 

 
L

ea
ve

s 
D

ec
oc

tio
n 

So
re

 th
ro

at
 

B
ar

r,
 1

98
8 

 
L

ea
ve

s 
D

ec
oc

tio
n 

In
fl

am
ed

 a
nd

 s
or

e 
ey

es
, s

ca
bi

es
 

K
ni

gh
t e

t a
l.,

 1
98

8 
 

L
ea

ve
s 

E
xt

er
na

l 
In

se
ct

 r
ep

el
la

nt
. 

K
ni

gh
t e

t a
l.,

 1
98

8 
E

. e
ld

er
i 

L
ea

ve
s 

E
xt

er
na

l 
B

ed
di

ng
, h

ea
d 

re
st

, c
ol

ds
 

O
’C

on
ne

ll 
et

 a
l.,

 1
98

3 
E

. f
ra

se
ri

 
L

ea
ve

s 
D

ec
oc

tio
n 

C
ol

ds
 

L
as

sa
k 

an
d 

M
c 

C
ar

th
y,

 1
98

3 
 

Pl
an

t 
U

nk
no

w
n 

T
oo

th
ac

he
, r

he
um

at
is

m
 

L
as

sa
k 

an
d 

M
c 

C
ar

th
y,

 1
98

3 
E

. f
re

el
in

gi
i 

L
ea

ve
s 

D
ec

oc
tio

n 
H

ea
da

ch
es

, c
he

st
 p

ai
n 

C
le

la
nd

 a
nd

 T
in

da
le

, 1
95

9 
 

L
ea

ve
s  

D
ec

oc
tio

n 
A

nt
is

ep
tic

 w
as

h 
fo

r 
so

re
s 

Sm
ith

, 1
99

1 
 

L
ea

ve
s 

In
fu

si
on

 
C

ol
ds

 
M

ac
on

oc
hi

e,
 1

97
0 

 
L

ea
ve

s 
D

ec
oc

tio
n 

A
ch

es
 a

nd
 p

ai
ns

 
L

ow
, 1

99
0 

 
 

 
 

 

  

197



Ta
bl

e 
7.

1.
co

nt
. E

th
no

ph
ar

m
ac

ol
og

y 
of

 E
re

m
op

hi
la

 s
pe

ci
es

. (
A

da
pt

ed
 f

ro
m

 R
ic

hm
on

d 
an

d 
G

hi
sa

lb
er

ti,
 1

99
4)

. 

Sp
ec

ie
s 

Pl
an

t 
Pa

rt
 

Pr
ep

ar
at

io
n 

A
ilm

en
t 

R
ef

er
en

ce
 

 
 

 
 

 
E

. f
re

el
in

gi
i  

co
nt

. 
L

ea
ve

s 
D

ec
oc

tio
n 

A
nt

id
ia

rr
ho

ea
 

B
ar

r,
 1

98
8 

 
L

ea
ve

s 
In

fu
si

on
 

H
ea

da
ch

e 
an

d 
re

st
 

L
as

sa
k 

an
d 

M
c 

C
ar

th
y,

 1
98

3 
 

L
ea

ve
s 

E
xt

er
na

l 
Pi

llo
w

 to
 p

ro
m

ot
e 

re
st

 
M

eg
gi

tt,
 1

96
2 

 
L

ea
ve

s 
In

fu
si

on
 

G
en

er
al

 w
el

l b
ei

ng
 

L
at

z,
 1

98
2 

 
L

ea
ve

s 
E

xt
er

na
l 

V
ap

ou
r 

ba
th

 f
or

 f
ev

er
 a

nd
 d

ec
on

ge
st

io
n 

K
ni

gh
t e

t a
l.,

 1
98

8 
E

. g
ile

si
i 

L
ea

ve
s 

D
ec

oc
tio

n 
H

ea
da

ch
es

 a
nd

 c
he

st
 p

ai
n 

C
le

la
nd

 a
nd

 T
in

da
le

, 1
95

9 
 

L
ea

ve
s  

B
od

y 
w

as
h 

So
re

s 
T

yn
an

, 1
97

9 
 

L
ea

ve
s 

In
fu

si
on

 
C

ol
ds

, s
ca

bi
es

, g
en

er
al

 w
el

l b
ei

ng
 

L
at

z,
 1

98
2 

 
L

ea
ve

s 
Pi

llo
w

 
Pr

om
ot

e 
re

st
 

L
at

z,
 1

98
2 

E
. g

oo
dw

in
ii 

L
ea

ve
s 

D
ec

oc
tio

n 
Pu

rg
at

iv
e 

L
at

z,
 1

98
2 

E
. l

at
ro

be
i 

L
ea

ve
s 

D
ec

oc
tio

n 
B

od
y 

w
as

h 
fo

r 
sc

ab
ie

s 
C

le
la

nd
 a

nd
 T

in
da

le
, 1

95
9 

 
L

ea
ve

s  
In

fu
si

on
 

Sm
ok

e 
tr

ea
tm

en
t f

or
 n

ew
bo

rn
s 

M
eg

gi
tt,

 1
96

2 
 

L
ea

ve
s 

D
ec

oc
tio

n 
C

ol
ds

 
Sm

ith
, 1

99
1 

 
L

ea
ve

s 
E

xt
er

na
l 

C
ol

ds
 a

nd
 in

fl
ue

nz
a 

Sm
ith

, 1
99

1 
E

. l
on

gi
fo

lia
 

L
ea

ve
s 

D
ec

oc
tio

n 
Sk

in
/b

od
yw

as
h 

Si
lb

er
ba

ue
r,

 1
97

1 
 

L
ea

ve
s 

In
fu

si
on

 
Sm

ok
e 

tr
ea

tm
en

t f
or

 m
ot

he
rs

, n
ew

bo
rn

s 
C

le
la

nd
 a

nd
 J

oh
ns

to
n,

 1
93

3,
 1

93
7 

 
L

ea
ve

s 
D

ec
oc

tio
n 

E
ye

w
as

h 
O

’C
on

ne
ll 

et
 a

l.,
 1

98
3 

 
L

ea
ve

s 
In

fu
si

on
 

C
ol

ds
 

Sp
en

ce
r 

an
d 

G
ill

en
, 1

96
9 

 
L

ea
ve

s 
D

ec
oc

tio
n 

C
ou

nt
er

-i
rr

ita
nt

 
T

yn
an

, 1
97

9 
 

L
ea

ve
s/

tw
ig

s/
ba

rk
 

In
fu

si
on

 
H

ea
da

ch
e 

Sp
en

ce
r 

an
d 

G
ill

en
, 1

96
9 

 
L

ea
ve

s 
In

fu
si

on
 

Sc
ab

ie
s,

 s
or

es
, c

ut
s 

an
d 

bo
ils

 
K

ni
gh

t e
t a

l.,
 1

98
8 

E
. m

ac
ul

at
a 

L
ea

ve
s  

Po
ul

tic
e 

C
ol

ds
 

C
un

ni
ng

ha
m

 e
t a

l.,
 1

98
1 

 
 

 
 

 
 

  

198



  Ta
bl

e 
7.

1.
co

nt
. E

th
no

ph
ar

m
ac

ol
og

y 
of

 E
re

m
op

hi
la

 s
pe

ci
es

. (
A

da
pt

ed
 f

ro
m

 R
ic

hm
on

d 
an

d 
G

hi
sa

lb
er

ti,
 1

99
4)

. 

Sp
ec

ie
s 

Pl
an

t 
Pa

rt
 

Pr
ep

ar
at

io
n 

A
ilm

en
t 

R
ef

er
en

ce
 

 
 

 
 

 
E

. m
itc

he
lli

i 
T

w
ig

s 
Sm

ok
e 

G
en

er
al

 m
ed

ic
in

al
 p

ur
po

se
s 

L
ow

, 1
99

0 
E

. n
eg

le
ct

a 
L

ea
ve

s 
In

fu
si

on
 

G
en

er
al

 w
el

l-
be

in
g 

L
at

z,
 1

98
2 

E
. p

ai
sl

ey
i 

L
ea

ve
s/

tw
ig

s
D

ec
oc

tio
n 

W
as

h 
fo

r 
sc

ab
ie

s 
L

at
z,

 1
98

2 
E

. s
tu

rt
ii 

B
ra

nc
he

s 
In

fu
si

on
 

B
ac

ka
ch

es
 

Si
lb

er
ba

ue
r,

 1
97

1 
 

Sh
ru

b 
B

ur
nt

 a
sh

es
 

B
ac

ka
ch

es
 

B
ow

en
, 1

97
5 

 
L

ea
ve

s 
D

ec
oc

tio
n 

So
re

s 
an

d 
cu

ts
 

Sm
ith

, 1
99

1 
 

L
ea

ve
s 

In
fu

si
on

 
H

ea
d 

co
ld

s,
  s

or
e 

ey
es

 
B

ar
r,

 1
98

8 
 

L
ea

ve
s 

D
ec

oc
tio

n 
A

nt
id

ia
rr

ho
ea

 
B

ar
r,

 1
98

8 
 

 
 

 
 

199



Systematic studies on the chemical constituents of Eremophila species have occurred 

since the 1960’s (Ghisalberti, 1994b). Consequently many novel sesquiterpenes and 

diterpenes have been characterized. Much of this work has focused on the leaf 

constituents. The resins secreted by many Eremophila species were found to be 

composed of a mixture of lipids, flavones and terpenes (Ghisalberti, 1994b). The 

dominant classes of sesquiterpenes identified in Eremophila species are presented in 

Figure 7.1 and the diterpenes in Figure 7.2.  
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Figure 7.1. Important sesquiterpenes classes from Eremophila species. 
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Figure 7.2. Important diterpene classes from Eremophila species. 

 

7.1.4 Biologically Active Compounds from Eremophila Species 

Recently Palombo and Semple (2001;2002), Ndi et al. (2007a), Semple et al., (1998), 

Penacchio et al., (1996), Rogers et al., (2000) and Sweeney et al. (2001) have described 

the respective; in vitro antibacterial, antimicrobial, anti-viral, anti-inflammatory, 

neurological and cardioactive properties of extracts of Eremophila species. Several 

bioactive compounds have been described. The furanoid sesquiterpenes prevalent in the 

essential oils of several species of Eremophila have been shown to be hepatotoxic to 

laboratory animals and stock (Seawright, et al., 1982). Whilst the innocuous prunasin 

(65) is metabolized to cyanide in vivo by enzymes that are released when the plant 

tissues are damaged (ie. livestock grazing). More recently, Shah and co-workers (2004) 
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have suspected a carotenoid from E. duttonii as possessing antibacterial activity. 

Verbascoside (73) and geniposidic acid (72) from the leaf extract of E. alternifolia is 

reported to possess significant cardioactive properties (Pennacchio et al. 1996; Rogers 

et al., 2000). Antibacterial and anti-inflammatory serrulatanes, 3,8-dihydroxyserrulatic 

acid (67) and serrulatic acid (68), have been characterised from E. sturtii (Liu et al., 

2006). Additional serrulatanes 69 and 70, and biflorin (71) from E. serrulata (Ndi et al., 

2007b) have also demonstrated antimicrobial activity. Smith et al. (2007), reported on 

the antibacterial activity of serrulat-14-ene-7,8,20-triol and serrulat-14-ene-3,7,8,20-

tetraol against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus 

pneumoniae.  
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7.2 Results and Discussion 

 

7.2.1 Cytotoxic Activity of Extracts of Western Australian Eremophila 
 Species 
 
Fifteen species of Eremophila have been evaluated for cytotoxicity against murine 

leukemia cells (P388D1). In some cases (where available) comparisons have been made 

between the distributions of the cytotoxic metabolites in the plant, i.e. roots versus 

aerial parts. The results for the cytotoxic activity from the methanolic extracts are 

presented in Table 7.2. 

 

Table 7.2. Cytotoxicity of Eremophila crude methanolic extracts against P388D1 cells. 
Estimates of IC50 values (mg/mL). 
 

 

BP # Species 
IC50 

(mg/mL) 
   
BP 575 E. deserti 0.03 
BP 876 E. gibbosa 0.04 
BP 202 E. racemosa 0.05 
BP 897 E. scoparia 0.05 
BP 950 E. subfloccosa ssp. subfloccosa 0.05 
BP 911 E. ionantha 0.06 
BP 927 E. dempsteri 0.06 
KB 001 E. bignoniflora 0.07 
BP 407 E. clarkei - root 0.08 
BP 875 E. decipens ssp. decipens 0.08 
BP 915 E. subfloccosa ssp. lantana 0.08 
BP 887 E. oblonga 0.11 
BP 368 E. miniata - aerial > 0.1 
BP 369 E. miniata - root > 0.1 
BP 392 E. oppositifolia ssp. angustifolia- aerial > 0.1 
BP 393 E. oppositifolia ssp. angustifolia- root > 0.1 
BP 395 E. latrobei ssp. latrobei  > 0.1 
BP 406 E. clarkei - aerial > 0.1 
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On the basis of cytotoxicity (Table 7.2), E. deserti (syn. Myoporum deserti), E. 

gibbosa, E. racemosa, E. scoparia, E. subfloccosa ssp. subfloccosa, E. ionantha and E. 

dempsteri warrant further investigation. It was observed that extracts from the aerial 

parts and root material of E. miniata exhibited potent cytotoxicity at low concentrations 

(not evident in IC50 values). 

 

It is noted that toxic furanosesquiterpenes have been identified in (among others) the 

extracts of E. deserti, E. scoparia, E. miniata and E. latrobei (Ghisalberti, 1994b).  

 

Extracts from E. clarkei, and E. latrobei exhibited relatively low IC50 values (Table 7.2) 

and the chemistry of these two species has been investigated (Coates, et al., 1977; 

Forster, et al., 1986; Hegarty, et al., 1970; Blackburne, et al., 1972). E. oppositifolia 

ssp. oppositifolia also exhibited a relatively low IC50 value but may warrant further 

chemical (but not cytotoxic) investigation on the grounds that only fatty acids have 

been reported from the closely related E. oppositifolia (Ghisalberti, et al., 1979; 

Jefferies and Knox, 1961). 

 

On the basis of cytotoxicity, published phytochemistry and availability of plant 

materials E. maculata var. brevifolia, E. miniata and E. racemosa from the Bioprospect 

collection were prioritised for further chemical and/or cytotoxic investigations. 

  

 
7.2.2 Cytotoxic Activity of Extracts of Central Australian Eremophila 
 Species 
 
A total of 20 methanolic extracts representing 20 Northern Australian Eremophila 

species was subjected to cytotoxicity assays against a suite of cell lines. Cytotoxicity 
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was determined against MCF7 (mammary adenocarcinoma), Hep G2 (hepatoblastoma), 

A2780 (ovarian carcinoma), A-375 (malignant melanoma) P388D1 (mouse 

lymphoblasts) and PC-3 (prostate cancer) cell lines. The extracts were tested at two 

concentrations and the results are presented in Tables 7.3. Previous assays have shown 

that the two most discernible concentrations for bioassay were 0.1 and 0.01 mg/mL. 

 
Among the extracts tested, five species; E. duttonii, E. gilesii, E. willsii ssp. willsii, E. 

latrobei var. latrobei and E. bignoniflora exhibited cytotoxicity across all of the cell 

lines tested, indicating that these species possess constituents that have non-selective 

toxicity. Four species; E. A48866, E. longifolia, E. macdonellii and E. maculata var. 

maculata exhibited low to no cytotoxicity across the cell lines tested. Intermediate 

cytotoxicities were observed for the 11 remaining Eremophila species.  

 

For more than half of the extracts, moderate selectivity (Δ ≥ 50% inhibition at the same 

concentration) towards specific cell lines was observed. In general higher inhibitions 

were discernible against ovarian, prostate and melanoma cell lines, whilst lower 

inhibitions were determined for breast, liver, and mouse lymphoblast cells. 

 

The toxicity of several classes of compounds metabolized by Eremophila species has 

been documented (Ghisalberti, 1994b). The occurrence of furanosesquiterpenes in E. 

deserti (syn. M. deserti), E. latrobei, E. maculata, E. miniata, E. inflata, E. rotundifolia, 

E. alternifolia, E. latrobei var. glabra and E. scoparia has been published (Ghisalberti, 

1994b). However correlation between the cytotoxicity and published compounds was 

not possible on the basis of the limited data available. To date; terpenes are the 

predominant class of compounds characterised from this species. The HPLC 

chromatograms of the species evaluated in this study (Appendix V) indicate that the  
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Table 7.3 Cytotoxicity of ASDP Eremophila species. Percentage inhibition of cell 
growth for methanolic extracts (0.1/0.01 mg/mL). 

 
 Cell Line 
 
 
 
Species  M

C
F7

 

 H
ep

 G
2 

 A
27

80
 

 A
-3

75
 

 P
C

-3
 

 P
38

8D
1 

       

E. duttonii 99/0 80/0 100/17 99/11 99/5 99/0 

E. gilesii 70/0 50/1 73/30 55/45 71/45 100/39 

E. willsii ssp. willsii 98/0 36/7 99/12 83/1 94/27 63/0 

E. latrobei var. latrobei 69/0 46/0 86/15 75/17 69/7 58/8 

E. bignoniflora 92/0 14/18 99/16 42/3 74/7 66/10 

       

E. alternifolia 35/0 34/6 77/4 72/0 67/17 53/6 

E. A94704 (hybrid)  56/0 25/0 73/16 48/0 63/3 39/1 

E. maculata var. brevifolia 26/0 19/30 49/23 28/29 28/28 0/0 

E. latrobei var. glabra 20/0 14/0 65/9 31/11 52/5 53/0 

E. A09760 17/0 37/21 39/8 18/0 44/22 7/2 

E. freelingii 0/0 0/0 60/0 16/0 41/0 64/0 

E. obovata 5/0 0/5 50/16 39/0 31/0 13/0 

E. obovata var. obovata 18/0 3/0 43/10 22/0 28/5 5/0 

E. dalyana 0/0 13/8 47/0 19/0 26/0 13/0 

E. christophori 13/0 11/14 38/0 17/1 11/19 0/0 

E. batti 0/0 24/6 36/2 16/0 21/5 1/0 

       

E. A48866 0/0 0/0 28/11 4/0 23/0 0/0 

E. longifolia 7/0 7/0 20/5 0/0 7/0 2/0 

E. macdonellii 0/0 1/0 16/0 0/0 23/0 0/0 

E. maculata var. maculata 0/0 0/0 13/0 0/0 0/0 0/0 
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chemistry of Eremophila species is very complex and chemically diverse. It was 

beyond the scope of this thesis to explore the chemical composition of all 35 species in 

more detail. 

 

A trend could also not be established between the ethnopharmacological uses of 

Eremophila species and the toxicity. Cytotoxic species such as E. duttonii and E. 

gilesii, were prepared as decoctions and taken internally (Ghisalberti, 1994a). Likewise, 

the non-toxic species such as E. dalyana and E. longifolia determined in this study were 

utilized to treat infections (colds and boils respectively) (Ghisalberti, 1994a). 

 

Plants were selected for further study on the basis of their availability, chemical profile 

degree of cytotoxicity and whether any chemical studies had been undertaken 

previously. Five of these species have been selected for further chemical investigation. 

E. racemosa, E. maculata var. brevifolia, E. miniata and E. subfloccosa for cytotoxicity 

based bioassay guided fractionation. E. bignoniflora was selected for chemical 

investigation because little is known about the chemistry of this species.  

 

7.2.3 Isolation of Compounds from Eremophila racemosa 

The chromatographic profiles of the methanolic extracts from the leaves, fruit and twigs 

of E. racemosa were initially evaluated using a C18 RP LC-MS system with a 

water/acetonitrile gradient. The resulting chromatograms (Figures 7.3-7.5) indicated 

there was little difference between the occurrence and distribution of the plant 

metabolites. This finding was also paralleled in the cytotoxicity profile of the plant 

parts (Table 7.4). 
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Figure 7.3. Chromatographic profile of E. racemosa - leaves  

(RP HPLC profile of methanolic extract, λ=280 nm). 
 

 
Figure 7.4. Chromatographic profile of E. racemosa - fruit  

(RP HPLC profile of methanolic extract, λ = 280 nm). 
 

 
Figure 7.5.  Chromatographic profile of E. racemosa - stems   

(RP HPLC profile of methanolic extract, λ = 280 nm). 
 

 
 
Table 7.4. Cytotoxicity of E. racemosa methanolic extracts  

(% inhibition of P388D1 cell growth, IC50 estimates). 
 

Plant Part 
IC50 

(mg/mL) 
  
Stem 0.05 
Leaf 0.05 
Fruit 0.05 
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For reasons of the high yield and ease of extraction, the investigation focused on the 

leaf material. The methanolic extract was divided into 10 fractions using preparative 

HPLC, with the bulk of the components eluting between fractions 3 and 5. The prep-

HPLC fractions were evaluated for cytotoxicity against the P388D1 cell line (Table 

7.5).   

 
 
Table 7.5. Cytotoxicity of E. racemosa leaf extract prep-HPLC fractions  

(% inhibition of P388D1 cell growth, IC50 estimates). 
 

Leaf Extract 
Fraction # 

IC50 
(mg/mL) 

  
F1 >0.1 
F2 0.02 
F3 0.06 
F4 0.05 
F5 0.01 
F6 0.03 
F7 0.01 
F8 0.01 
F9 0.02 
F10 0.03 

  

  

 

For the purpose of isolating compounds the methanolic extract was divided into 44 

fractions using preparative HPLC, with the bulk of the components eluting between 

fractions 9 and 21. The six major polar metabolites were isolated and characterised 

from the methanolic extract of E. racemosa.  

                                                                                                                                                                    

7.2.3.1  Prunasin 

Further purification by means of semi-preparative HPLC, size exclusion 

chromatography and recrystallisation yielded prunasin (65). IR, MS, 1H NMR and 13C 

NMR spectra were consistent with previously published data (Nakajima, et al., 1998). 
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To date, this cyanogenic glycoside has only been reported from one other species of 

Eremophila. The occurrence of prunasin in this species indicates that, similarly to E. 

maculata (Finnemore and Cox, 1930), E. racemosa would be toxic to livestock. 
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7.2.3.2  Luteolin 

Luteolin was isolated from the cytotoxic fraction 5 (Table 7.5). MS, 1H NMR and 13C 

NMR data are in agreement with previously published data (Youssef and Frahm, 1995). 

In this study luteolin was found to exhibit 50% inhibition (IC50) against P388D1 cell 

growth at 160 µM. Luteolin (74), occurs commonly in plants (Harborne et al., 1975), 

and its cytotoxic (Matsuo et al., 2005) antioxidant (Benavente-Garcia et al.; 2000), anti-

inflammatory (Ueda et al., 2002) and antimicrobial (Yamamoto and Ogawa, 2002) 

properties have been reported. 
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7.2.3.3  Phillygenin 

The lignan, phillygenin (75) (syn. phillygenol) was also isolated from cytotoxic fraction 

5 (Table 7.5). The 1H NMR and 13C NMR data are in agreement with data published 
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previously (Rahman, et al., 1990) and is further supported by 2D COSY, NOESY, 

HMBC and HSQC data. In this study, phillygenin was found to exhibit 50% inhibition 

(IC50) against P388D1 cell growth at 430 µM. The cytotoxic effects of phillygenin and 

several lignans isolated from Lancea tibetica have been studied. Phillygenin showed 

strong cytotoxicity against human hepatoma cells (SMMC-7721), human uterine cervix 

carcinoma cells (HeLa), hamster lung fibroblast cells (V79) and mouse melanoma cells 

(B16), (Zhao et al., 2000). The results of this study also demonstrated that the toxicity 

of phillygenin was lost when the phenolic hydroxyl groups are glucosylated as is the 

case for its 4-O-β-D-glucoside phillyrin (76). 
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7.2.3.4  Phillyrin 

The third major peak (Figure 7.5) was elucidated as phillygenin-4-O-β-D-glucoside (6) 

(syn, phillyrin). This compound is the only compound that has been published as a 

constituent of E. racemosa (Forster et al., 1986).                                            
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7.2.3.5  Pinoresinol-4-O-β-D-glucoside 

The second major peak (Figure 7.5) was found to be a mixture of two compounds 77 

and 78. Resolution and further purification of these two compounds was achieved using 

semi-preparative HPLC. 

                                                                                                                                                                     
 
The 1H NMR spectrum for the early eluting compound 77 showed distinct similarities 

to that of the lignan glycoside phillyrin (76), with two methoxy singlets (δ 3.81 & 3.78 

ppm), six aromatic proton signals resonating between δ 6.75 - 7.15 ppm and a 

characteristic anomeric hemiacetal proton doublet (δ 4.8 ppm). The chemical shift and 

multiplicities of the six glycosidic protons of this molecule were identical to those of 

phillyrin (76), confirming the sugar residue as a 4-O-β-D-glucoside. Several differences 

are noted in the 1H NMR signals for the eight protons attached to the furofuran ring 

system, most significantly; only four signals are observed, with each signal integrating 

for two protons.  

 
O

O

HH

Ar

Ar

7

8
97'

8'
9' 

 

 

Figure 7.6. Numbering convention for the lignan furofuran ring system.  

 

 

The furofuran ring system (Figure 7.6.) possesses four stereogenic centers that give rise 

to several possible isomers. Useful information regarding the stereochemistry at the C-7 

and C-7′ centres came from the observation that, in the 1H NMR the 7-H and 7′-H, 8-H 

and 8′-H, and 9α-H and 9′α-H were chemically equivalent which indicated a high 

degree of symmetry for this molecule. It can be established that the aromatic residues at 
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C-7 and C-7′ are both equatorial from inspection of the chemical shifts of the adjacent 

C-9 substituents where the chemical shifts of these protons lie within the range δ 3.8 - 

4.4 ppm. Whereas in the diaxial model the C-9 β protons are shifted further up field due 

to shielding by the C-7 aryl substituent, typically δ 3.3 – 4.0 ppm are observed (Ayres 

and Loike, 1990). 

   

 

Figure 7.7.  Detail of 2D COSY spectrum of compound 77. (500 MHz, CD3OD). 

 

The 9β-H and 9′β-H protons of this molecule are overlapped by the strong methoxy 

peaks at δ 3.9 ppm. Inspection of the 2D COSY spectrum (Figure 7.7.) for this 

molecule reveals off-diagonal coupling of signals close to δ 3.9 ppm with those of the 

9α-H, 9′α-H protons at δ 4.25 ppm, which in turn couple to the 8-H, 8′-H protons at 

3.15 ppm. The structure 77, pinoresinol-4-O-β-D-glucoside, is proposed for this 

compound and is further supported by HMBC, HSQC, NOESY and COSY 

8-H

9α-H 

7-H

-OMe 9β-H 
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spectroscopic data. The  1H and 13C NMR as well as the 2D COSY spectra were 

consistent with previously published data (Rahman, et al., 1990) and (Ayres and Loike, 

1990).  
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7.2.3.6  Epipinoresinol-4-O-β-D-glucoside 

The 1H NMR of the second lignan glycoside indicated that the sugar residue was also 

identical to the 4-O-β-D-glucoside of phillyrin (76). The remainder of the spectrum 

revealed the presence of six aromatic protons resonating between δ 6.78 - 7.15 ppm and 

two methoxy groups (δ 3.75, 3.87 ppm) consistent with the presence of vanillyl and a 

glucosylated guacyl group. The asymmetry of the two H-7 protons (δ 4.48, 4.89-4.88 

ppm), four nonequivalent H-9 protons (δ 4.13, 3.86, 3.80 and 3.30 ppm) and two non-

equivalent H-8 bridgehead protons (δ 3.70 and 2.93 ppm) established the furofuran 

lignan as the epi isomer. Comparison of the 13C NMR data for this compound with that 

reported in the literature (Rahman, et al., 1990) suggests that this molecule is the 4-O-

β-D-glucoside of epipinoresinol (78). This structure is further supported by 2D COSY, 

HMBC, HSQC and nOe spectroscopic data. 
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7.2.4 Discussion 

Bioassay guided fractionation of the methanolic extracts of E. racemosa indicated that 

both polar and non-polar metabolites were cytotoxic. Purification of fraction 5 (Table 

7.5) afforded the cytotoxic flavonoid (74) and lignan (75). The IC50 values were 

determined for luteolin (74) and phillygenin (75) against mouse lymphoblast cells 

(P388D1) were 160 and 430 µM, respectively. It is noted that cytotoxicity was not 

enriched upon sub-fractionation of fraction 5. This may possibly be due to minor 

constituents contributing to the cytotoxicity or loss of the active components via 

irreversible adsorption or degradation during purification steps. Investigation of the 

cytotoxic lipophillic components was undertaken but is incomplete due to time 

constraints.    

 

7.2.5 Preliminary Investigations of Several Eremophila Species 

Bioassay guided fractionation of E. maculata var. brevifolia, E. miniata and E. 

subfloccosa ssp. subfloccosa were undertaken. Identification of the cytotoxic 

metabolites from these species was not completed due to a combination of low yields or 

purity of the active fractions and time constraints as other aspects of this project were 

prioritized.  
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A specimen of E. bignoniflora was selected for further chemical investigation because 

there are only two metabolites reported from this species. Ghisalberti (1994a) indicates 

that mannitol and verbascoside have been characterised. The ethyl acetate soluble 

fraction of E. bignoniflora was subjected to RP prep-HPLC. Semi-prep of two of these 

fractions afforded quercetin (79) and nepetin (80).  

 

 
 

 
 
 
 
 
 
 
79       80 

 
 

 

A phenolic glycoside piceine (81) and a lignan epipinoresinol-4-O-β-D-glucoside (78) 

have been isolated from E. maculata var. brevifolia.  
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7.3 Conclusion 

Many of the species evaluated in this study exhibited some degree of cytotoxicity, 

indicating that Eremophila species produce biologically active metabolites. The 
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chemistry of Eremophila species was observed to be very complex and chemically 

diverse (see Appendix V). To date, phytochemical investigations of the genus have 

characterised predominantly unusual sesquiterpenes and diterpenes from Eremophila 

species. The pharmacological actions of many of these compounds have not been 

studied. In addition the chemistry of many Eremophila species has not yet been 

investigated. Correlation between the ethnopharmacological uses and phytochemistry 

of the Eremophila species investigated in this study could not be established owing to 

limited published data and time constraints. An investigation of this type would need to 

be undertaken on a case by case basis. 

 

This study characterised six of the major metabolites, predominantly lignans, from E. 

racemosa. Lignans are reported to exhibit a variety of biological activities including; 

anti-cancer, anti-inflammatory, antioxidant, antimicrobial and immunosuppressive 

actions (Saleem et al., 2005). The occurrence of lignans at such high concentrations in 

this species is of interest and worthy of further pharmacological investigation. To date, 

prunasin (65) has only been reported from one other species of Eremophila. The 

occurrence of prunasin in this species indicates that, similarly to E. maculata 

(Finnemore and Cox, 1930), E. racemosa would be toxic to livestock. A phytochemical 

survey for the presence of prunasin in other Eremophila species is warranted. 
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Appendix I Experimental Methods    
 
LC/MS 
High Performance Liquid Chromatography 
 Column: Phenomenex Aqua C18 125A, 5μ, 150 x 4.6 mm I.D. 
 Column Temperature: 40 °C 

 Mobile Phases: A - MQ Water with 0.005% TFA. 
     B - Acetonitrile with 0.005%TFA. 

  Flow Rate: 1.0 mL/min 
  Injection volume: 10.0μL 
  Detectors: A. Photodiode array detector (PDA).    

    B. Mass Spectrometer Detector (MSD).  
 

Agilent SL1100 Series Mass Spectrometer Detector (MSD) 
 Scan mode: 100 – 1200amu 
 Ionisation Mode: Atmospheric Pressure Chemical ionisation (APCI) 
 Ionisation Voltage:150 V 
 Capillary Voltage:2000 V 
 Corona Current: 8uA (both modes) 
 Drying Gas Flow: 5.0L/min 
 Drying Gas Temperature: 345oC 
 Vaporiser Temperature: 395oC 
 Nebuliser Pressure:60psig 
 
Diode Array Detector (DAD) 
 Detection: 210nm, 238nm, 254nm, 280nm and 360nm 
 Scan: 190-600nm (store every 2nd spectrum) 

 Peak width: 0.11min 
 
CI 10-95M Method - Mobile Phase Gradient Timetable: 

 
Time (min) %A %B Flow Rate (mL/min) 

0 90 10 1.0 
15 5 95 1.0 
18 5 95 1.0 
20 90 10 1.0 
25 90 10 1.0 

 
 
CI 10-95 Method - Mobile Phase Gradient Timetable: 

 
Time (min) %A %B Flow Rate (mL/min) 

0 90 10 1.0 
30 5 95 1.0 
35 5 95 1.0 
40 90 10 1.0 
45 90 10 1.0 
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KB5-95 Method - Mobile Phase Gradient Timetable: 
 

Time (min) %A %B Flow Rate (mL/min) 
0 95 5 1.0 
5 95 5 1.0 

35 5 95 1.0 
37 5 95 1.0 
40 95 5 1.0 
45 95 5 1.0 

 
 
 
KB95 Method - Mobile Phase Gradient Timetable: 

 
Time (min) %A %B Flow Rate (mL/min) 

0 5 95 1.0 
30 5 95 1.0 

32.5 95 5 1.0 
37.5 95 5 1.0 
40 5 95 1.0 
45 5 95 1.0 

 
 
KBE5-95 Method - Mobile Phase Gradient Timetable: 

 
Time (min) %A %B Flow Rate (mL/min) 

0 95 5 1.0 
5 95 5 1.0 

25 5 95 1.0 
30 5 95 1.0 
32 95 5 1.0 
35 95 5 1.0 
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GC/MS methods 
 
ISO-EXT method 
 

Injector Parameters:     Column Parameters: 
Injection volume: 1.0μL    Gas: He 
Gas: He      Pressure: 39 psi 
Inlet Temperature: 250°C    Flow: 1.9 mL/min 
Inlet Pressure: 39.1 psi    Average velocity: 35 cm/sec 
Total flow: 24.1 ml/min  
Split Ratio: 10:1 
Split Flow:  18.9 mL/min 

 
 
 

ISO-EXT Oven Temperature Program 
Time (min) Temp Ramp (°C/min) Flow (cm/sec) 

0.0 50 0.0 35 
1.0 50 0.0 35 
73.5 300 4.0 35 

 
 
 
 
 
ISO-EXNT method 
 

Injector Parameters:     Column Parameters: 
Injection volume: 0.1μL    Gas: He 
Gas: He      Pressure: 29.1 psi 
Inlet Temperature: 280°C    Flow: 1.3 mL/min 
Inlet Pressure: 29.1 psi    Average velocity: 33 cm/sec 
Total flow: 408 ml/min  
Split Ratio: 300:1 
Split Flow:  403 mL/min 
 
 

 
ISO_EXNT Oven Temperature Program 

Time (min) Temp Ramp (°C/min) Flow (cm/sec) 
0.0 50 0.0 35 
1.0 50 0.0 35 
73.5 300 4.0 35 
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MSQCIDE method 
 

Injector Parameters:     Column Parameters: 
Injection volume: 0.1μL    Gas: He 
Gas: He      Pressure: 29.1 psi 
Inlet Temperature: 280°C    Flow: 1.3 mL/min 
Inlet Pressure: 29.1 psi    Average velocity: 33 cm/sec 
Total flow: 71.8 ml/min  
Split Ratio: 50:1 
Split Flow:  67.1 mL/min 

 
MSQCIDE Oven Temperature Program 

Time (min) Temp Ramp (°C/min) Flow (cm/sec) 
0.0 50 0.0 33 
2.0 50 0.0 33 

33.25 300 8.0 33 
43.25 300 0.0 33 

 
 
 
 
EREOM method 
 
 Column: SGE BPX5 Capillary column  
                50.0m x 0.22mm ID x 1μm film thickness 
 

Injector Parameters:    Column Parameters: 
Injection volume: 0.2μL   Gas: He 
Gas: He      Pressure: 25.9 psi 
Inlet Temperature: 280°C   Flow: 1.2 mL/min 
Inlet Pressure: 25.9 psi    Average velocity: 30 cm/sec 
Total flow: 33.4 ml/min  
Split Ratio: 25:1 
Split Flow:  28.9 mL/min 
 

 
EREOM Oven Temperature Program 
Time (min) Temp Ramp (°C/min) Flow (cm/sec) 
0.0 50 0.0 30 
1.0 50 8.0 30 
32.5 300 0.0 30 
42.5 300 0.0 30 
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COSOL70 method 
  
 Column: SGE BPX5 Capillary column  
                50.0m x 0.22mm ID x 1μm film thickness 
 

Injector Parameters:    Column Parameters: 
Injection volume: 0.1μL   Gas: He 

 
Gas: He      Pressure: 49.89 psi 
Inlet Temperature: 300°C   Flow: 1.3 mL/min 
Inlet Pressure: 49.9 psi    Average velocity: 35 cm/sec 
Total flow: 68.7 ml/min  
Split Ratio: splitless 
 

 
COSOL70 Oven Temperature Program 
Time (min) Temp Ramp (°C/min) Flow (cm/sec) 
0.0 250 0.0 35 
3.0 250 15 35 
9.0 340 0 35 
41 340 0 35 
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Preparative HPLC Methods 
 
Initial fractionation of C. cunninghamii crude extract. 
Mobile Phase Gradient Timetable KB10-95 and BI10-95. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 15.0 
25 10 90 15.0 
28 10 90 15.0 
30 90 10 15.0 
35 90 10 15.0 

 
 
Fractionation of C. cunninghamii SPE Fraction 2. 
Mobile Phase Gradient Timetable KB10-36. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 20.0 
12 64 36 20.0 
15 90 10 20.0 
18 90 10 20.0 

 
Fractionation of C. cunninghamii SPE Fraction 3. 
Mobile Phase Gradient Timetable KB10-60. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 20 
20 40 60 20 
22 90 10 20 
25 90 10 20 
27 90 10 0.1 

 
 
Fractionation of C. cunninghamii SPE Fraction 4. 
Mobile Phase Gradient Timetable KB40-80. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 60 40 20 
16 20 80 20 
18 10 90 20 
21 10 90 20 
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Sub-fractionation of C. cunninghamii Fraction 2. 
Mobile Phase Gradient Timetable BI10-25. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 15 
15 75 25 15 
18 90 10 15 
20 90 10 15 

 
 
Sub-fractionation of C. cunninghamii Fraction 11 and 14. 
Mobile Phase Gradient Timetable BI20-40. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 80 20 15 
15 60 40 15 
18 80 20 15 
20 80 20 15 

 
 
 
Sub-fractionation of C. cunninghamii Fraction 16 and 17. 
Mobile Phase Gradient Timetable KB20-50. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 80 20 15 
15 50 50 15 
16 5 95 15 
20 5 95 15 
21 20 20 15 
23 20 20 15 

 
 
Fractionation of C. cunninghamii flowers - ethanol partition. 
Mobile Phase Gradient Timetable KB20-60. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 80 20 15 
20 40 60 15 
23 40 60 15 
25 80 20 15 
28 80 20 15 
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Fractionation of C. cunninghamii flowers - hexane partition. 
Mobile Phase Gradient Timetable KB50-80. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 60 40 15 
16.4 25 75 15 
20 25 75 15 
21 10 90 15 
28 10 90 15 
30 60 40 15 
33 60 40 15 

 
 
EREMO4 Method - Mobile Phase Gradient Timetable: 

 
Time (min) %Hexane %EtOAc Flow Rate (mL/min) 

0 95 5 20 
20 60 40 20 

23 80 20 20 

25 80 20 20 

27 95 5 20 
 
Mobile Phase Gradient Timetable KB05-60. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 95 5 20.0 
20 40 60 20.0 
23 95 5 20.0 
28 95 5 20.0 
28.5 95 5 1.0 

 
Mobile Phase Gradient Timetable KB10-90. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 15.0 
25 10 90 15.0 
28 10 90 15.0 
30 90 10 15.0 
35 90 10 15.0 
35.5 90 10 1.0 
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Mobile Phase Gradient Timetable KB30-60. Method: 
 

Time (min) %Water %ACN Flow Rate (mL/min) 
0 70 30 20.0 
20 40 60 20.0 
25 10 90 20.0 
30 10 90 20.0 
32 70 30 20.0 
37 70 30 1.0 

 
 
Mobile Phase Gradient Timetable KBISO20. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 80 20 20.0 
12 80 20 20.0 
14 25 75 20.0 
16 25 75 20.0 
18 80 20 20.0 
20 80 20 20.0 
20.5 80 20 1.0 

 
Mobile Phase Gradient Timetable KB30-80. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 70 30 20.0 
20 20 80 20.0 
25 10 90 20.0 
30 10 90 20.0 
32 70 30 20.0 
37 70 30 1.0 

 
Mobile Phase Gradient Timetable KB10-60. Method: 

 
Time (min) %Water %ACN Flow Rate (mL/min) 

0 90 10 20.0 
20 40 60 20.0 
22 90 10 20.0 
25 90 10 20.0 
27 90 10 0.1 
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Mobile Phase Gradient Timetable KB40-80. Method: 
 

Time (min) %Water %ACN Flow Rate (mL/min) 
0 60 40 20.0 
16 20 80 20.0 
18 10 90 20.0 
21 10 90 20.0 

 
 
Mobile Phase Gradient Timetable SPISO70. Method: 

 
Time (min) %Water %MeOH Flow Rate (mL/min) 

0 30 70 15 
55 30 70 15 
56 30 70 0.1 
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Appendix II

Karren
Text Box
Centipetin-3-glucoside
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Karren
Text Box
Myriogenic acid
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Karren
Text Box
Myriogenic acid-7-methyl ester
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Karren
Text Box
Myriogenic acid-1-methyl ester
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Karren
Text Box
Myriogenic acid-1,7-dimethyl ester
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Karren
Text Box

Karren
Text Box
3-Hydroxykaura-9(11),16-dien-18-oic acid
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Karren
Text Box
9-Hydroxy-1,7(11),9-eremophilatrien-8-one



  

Appendix III 
 
 
Termite Resistant Tree Species 
 
Durability figures are based on; the Revised CSIRO natural durability classification in 
ground durability ratings for mature outer heartwood list compiled by CSIRO Australia 
(Thornton et al.,1997). Other information sources include The University of Hawaii – 
Department of Plant and Environmental Protection Sciencesa and review of the 
literature. This is not intended as an exhaustive list. Information on commercial 
availability sourced from The Rainforest Information Centre (NSW)/System pest 
managementb.  
 
(P) Plantation grown in Australia.   
(OS) Overseas grown in plantations.  
(C) Limited certified sources available.   
(X) Not commercially available unless salvaged, recycled, or localised plantation. 
 
Durability is adapted from Thornton et al. (1997) who have surveyed the durability of 
the timber in the presence of decay plus termites,  
durability is scored on a scale of 1-4 where; 

(1) = non durable, (2) = moderately durable, (3) = durable, (4) = highly durable. 

 

AUSTRALIAN NON-EUCALYPTS 
 

Black Bean [heartwood]   Castanospermum australe b     OS 

Brigalow   Acacia harpophylla b,c  (3)  X 

Brown Penda   Xanthostemen chrysanthus b      X 

Bull Oak   Allocasuarina luehmannii b, c (3)  X 

Raspberry Jam   Acacia acuminata b, c (4)  X 

Red Penda   Xanthostemen whitei b        X 

Satinay   Syncarpia hillii b, c (2.5)  OS 

Swamp Box   Lophostemon suaveolens b, c (3)  X 

Turpentine   Syncarpia glomulifera b, c (3)  OS 
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AUSTRALIAN EUCALYPT HARDWOODS 
 

Blackbutt   E. pilularis b, c (2)  P,OS 

Blackdown Stringybark   E. sphaerocarpa b    X 

Bloodwood   E. corymbosa b    X 

Broad-leaved Red Ironbark   E. fibrosa b    X 

Broad-leaved Peppermint   E. dives c  (2) 

Brown Mallett   E. astringens b, c (3)  P 

Coast Grey Box   E. bosistoana b, c (3)  X 

Forest Red Gum   E. blakeleyi/ / E. tereticornis b, c (3.5) X 

Grey Box   E. moluccana b, c (3)  X 

Grey Gum   E. canaliculata b   X 

Grey Ironbark   E. paniculata b, c (4)  X 

Gympie Messmate   E. cloeziana b, c (4)  P 

Jarrah   E. marginata b, c (2.5)  P 

Long-leaved Box   E. goniocalyx b, c (2)  X 

Narrow-leaved Red Ironbark   E. crebra b    X 

New England Blackbutt   E. andrewsii b    X 

Red Bloodwood   E. gummifera b    X 

Red Box   E. polyanthemos b, c (4)  X 

Red Ironbark   E. sideroxylon b, c (4)  X 

Red Mahogany   E. resinifera b, c (3)  X 

Red Stringybark   E. macrorhyncha b, c (3)  X 

River Red Gum   E. camaldulensis b, c (3)  P,OS 

Rose Gum   E. grandis c (2) 
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AUSTRALIAN EUCALYPT HARDWOODS Continued: 
 

Salmon Gum   E. salmonophloia b, c (2) X 

Scribbly Gum   E. Haemastoma b, c (2) X 

Southern Mahogany   E. botryoides b, c (2.5)  X 

Spotted Gum   E. maculata b, c (3)  P 

Sugar Gum   E. cladocalyx b, c (4)  X 

Sydney Blue Gum   E. saligna c (2) 

Tallowwood   E. microcorys a, b, c, f (4)  P 

Tuart   E. gomphocephala b, c (2)  X 

Wandoo   E. wandoo b, c (4) X 

White Mahogany   E. acmenoides b, c (4)  X 

White Stringybark   E. eugenoiides b, c (2)  X 

Woolybutt   E. Longifolia b, c (3)  X 

Yate   E. cornuta c (2) 

Yellow Box   E. melliodora b, c (4)  X 

Yellow Gum   E. leucoxylon b, c (2.5)  X 

Yellow Tingle   E. guilfoylei c (2) 

Yertchuk   E. consideniana b, c (2)  X 

 

AUSTRALIAN SOFTWOODS 
 

Black Cypress Pine   Callitris endlicheri b     X 

Huon Pine   Lagarostrobus franklinii b, c (1)  OS 

King William Pine   Athrotaxis selaginoides b c (2)  X 

White Cypress Pine   Callitris columellaris b, c (3)  OS 
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IMPORTED SPECIES
 

Burmese Teak or Laotian Teak   Tectona grandis a, b, c, d, e, j (3)  OS 

Coast Redwood   Sequoia sempervirens a, b, c, j (2)  X 

Casuarina pine   Casuarina equisetifolia a, d 

Kamani   Calophyllum inophyllum a, f 

Kempas   Koompassia malaccensis a, d 

Kuo   Cordia subcordata a, f 

Kwila Intsia bijuga b, c (2.5)  C 

Milo   Thespesia populnea a, f  

New Guinea Rosewood   Pterocarpus indicus b, c (2)  C 

Pacific Coast Yellow or Alaska Cedar   Chamaecyparis nootkatensis a, j 

Sentang   Azadirachta excelsa a, d 

Sugi   Cryptomeria japonica a, f 

Tualang   Koompassia excelsa a, d 

Western Red Cedar   Thuja plicata b, c (2) C 

Hala Pandanus tectorius f 

Mempening  Lithocarpus spp.g 

Bangkirai Shorea laevis Ridl.h 

Merbau  Intsia palembanica Miq.h  

Ponderosa Pine  Pinus ponderosa i 

Lysiloma seemanii i 

Gold Trumpet Tree  Tabebuia ochracea i 

Macassar Ebony Diospyros celebica k 

Persimon, American Diospyros virginiana l  

Diospyros sylvatica m 
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IMPORTED SPECIES Continued:  
 

 
May Chang  Litsea cubeba n 

 
Cinnamon sp.  Cinnamomum spp.o 

 
Sawara, Japanese False Cypress  Chamaecyparis pisidera p 

 
Kaya Wood  Torreya nucifera  q 

 
Bald Cypress  Taxodium distichum r 
 
 
 

                                                 
 
 
aUniversity of Hawaii: Termite Project. 
http://www2.hawaii.edu/~entomol/research/r_durable.htm (accessed Oct 26, 2006). 
 
b The RIC Good Wood Guide. Pesticides in the Home: Natural Household Treatments. 
http://www.rainforestinfo.org.au/good_wood/nat_htrs.htm (accessed Oct 26, 2006) 
 
c Thornton, J. D.; Johnson, G. C.; Nguyen, N.  Revised CSIRO natural durability 
classification in ground durability ratings for mature outer heartwood; CSIRO: 
Clayton, Victoria, Australia. A3 leaflet. June 1997 
 
d Grace, J. K.; Wong, A. A. H.;Tome, C. H. M.Termite resistance of Malaysian and 
exotic woods with plantation potential: laboratory evaluation. International Research 
Group on Wood Preservation, Stockholm. Sweden. IRG Document No. IRG/WP 98-
10280. 1998.  
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Table A2. Mortality of N. exitiosus associated with different products 24h after 

treatment (direct contact mortality). 

 

Product Concentratio
n 

in ppm 
 (w/v) 

R 1 R 2 R 3 Remarks 

O D O D O D 

(+)-nootkatone 

0.0 20 1 20 0 20 1 Normal 
600 20 2 20 0 20 2 A few unhealthy 
700 20 3 20 2 20 2  Majority unhealthy 
800 20 4 20 7 20 4 Majority unhealthy 

1000 20 17 20 15 20 18 Moribund 
2300 20 19 20 18 20 19 Moribund 

Eremophilone 

0.0 20 0 20 0 20 0 Normal 
2000 20 1 20 1 20 0 Normal 
2500 20 5 20 5 - - Normal 
3000 20 3 20 4 - - Less than normal feeding and 

excretion 
3500 20 9 20 6 - - Unhealthy 
4000 20 10 20 14 20 14 Unhealthy 
5000 20 16 20 17 - - Moribund 
7300 20 20 20 16 - - Moribund 

10000 20 20 20 19 - - Moribund 

E. mitchellii 
root oil 

0.0 20 0 20 0 20 0 Normal 
2000 20 3 20 3 20 5 Majority unhealthy 
3000 20 8 20 7 20 7 Majority unhealthy 
4000 20 7 20 8 20 7 Moribund 
4000 20 13 20 14 20 14 Moribund 
6000 20 17 20 16 20 17 Moribund 
8000 20 20 20 20 20 17 Moribund 

10000 20 20 20 20 20 18 Moribund 

E.mitchellii 
leaf oil 

0.0 20 0 20 0 20 0 Normal 
1000 20 1 20 1 20 2 Normal 
2000 20 3 20 3 20 1 Majority unhealthy 
3000 20 10 20 6 20 12 Moribund 
4000 20 15 20 13 - - Moribund 
4000 20 16 20 17 20 14 Moribund 
5000 20 18 20 12 20 18 Moribund 
6000 20 19 20 20 20 17 Moribund 
8000 20 20 20 18 20 15 Moribund 

10000 20 19 20 18 20 20 Moribund 

Vetiver oil 

0.0 20 0 20 0 20 0 Normal 
4000 20 12 20 7 20 7 Majority unhealthy 
5000 20 12 20 10 20 11 Majority unhealthy 
8000 20 15 20 17 20 14 Moribund 

10000 20 19 20 18 20 20 Moribund 
 
R= Replicate, O= Observed, D=Dead 
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Table A2 Cont. Mortality of N. exitiosus associated with different products 24h after 

treatment (direct contact mortality). 

 

Product 
Concentration 

in ppm 
(w/v) 

R 1 R 2 R 3 
Remarks O D O D O D 

E. mitchellii 
leaf oil - 
methanol 
fraction 

0.00 20 0 20 0 20 0 Normal 
1000 20 5 20 3 - - A few unhealthy 
1500 20 10 20 9 20 14 Majority unhealthy 
2000 20 7 20 11 20 12 Moribund 
2500 20 20 20 20 20 20 All dead 
3000 20 19 20 19 20 19 Moribund 

E. mitchellii 
leaf oil - 
hexane 
fraction 

0.00 20 0 20 0 20 0 Normal 
1000 20 2 20 0 20 1 A few unhealthy 
2000 20 17 20 15 20 11 Majority moribund 
2200 20 15 20 14 20 18 Majority moribund 
2500 20 17 20 18 20 19 Majority moribund 
3000 20 17 20 16 20 16 Majority moribund 
3500 20 20 20 20 20 20 Majority moribund 
4000 20 19 20 18 20 18 Majority moribund 

α-pinene 

0.00 20 0 20 0 20 0 Normal 
4000 20 0 20 0 20 2 A few unhealthy 
4500 20 7 20 7 20 2 A few unhealthy 
5000 20 4 20 7 17 8 A few unhealthy 
5500 20 11 20 13 20 11 Majority moribund 
6000 20 6 20 6 20 8 Majority moribund 
8000 20 19 20 18 20 18 Moribund 

10000 20 20 20 20 20 19 Moribund 

vetiver 
fraction 4 

0.00 20 0 20 1 20 0 Normal 
750 20 2 20 3 20 2 A few unhealthy 

1000 20 5 20 11 20 7 Moribund 
1250 20 16 20 15 20 16 Moribund 
1500 20 15 20 14 20 16 Moribund 
2000 20 17 20 19 20 19 Moribund 
2500 20 20 20 20 20 20 All dead 

limonene 

0.00 20 0 20 0 20 0 Normal 
2000 20 0 20 0 20 0 Normal 
3000 20 1 20 0 20 0 Normal 
4000 20 0 20 0 20 0 Normal 
6000 20 0 20 0 20 0 Normal 
8000 20 0 20 0 20 0 Normal 

10000 20 1 20 0 20 0 Normal 

 R= Replicate, O= Observed, D=Dead 
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Abstract

Introduction

The timber from Eremophila mitchellii, an endemic Australian tree, 
1

was noted for its resistance to attack by termites . The steam distilled oil 
obtained from the wood was subjected to bioassay guided fractionation 
to identify the active metabolites. The eremophilane sesquiterpenes; 
eremophilone 1 and 8-hydroxyeremophila-1,11-dienone, 5 were 
demonstrated to exhibit potent toxicity towards the subterranean 
termite Nasutitermes walkeri. 1,7 (11), 9-Eremophilatrien-8-one 4, a 
new natural product has also been isolated from the wood oil. 

It is estimated that termites cause damage to one in five buildings and 
2

structures throughout NSW , with the cost of this damage exceeding 
3

many millions of dollars anually . Traditionally, organochloride 
pesticides have been employed for the purpose of termite control. These 
hazardous pesticides have been deregistered in Australia, creating a 
need for the development of less toxic methods of termite control.

Materials and Methods
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Results and Discussion

The oil of E. mitchellii was obtained by steam distillation of the wood (Yield
1.7%). Fractionation of the oil was achieved using normal-phase preparative 
HPLC, with a hexane/ethyl acetate gradient (95-60% hexane) as eluent. The 
fractions obtained in this way were then subjected to a termiticidal assay using 
N. walkeri  as the test  organism.

For the termiticidal assay, 17 termites were placed on a petri dish containing a 
disc of filter paper moistened with distilled water. Fractions were then diluted 
to the desired concentration with water, triton-X and ethanol. 5 mL of the 
extract was atomised with the aid of a Potter spray tower and applied to the test 
organisms. Tests were performed in triplicate across a range of concentrations. 
Mortality and behaviour is observed at 12, 24 and 48 hours. A LD  was then 50

determined for each fraction.

Each fraction was then further purified by means of size-exclusion 
chromatography or recrystallisation. A LD  was then determined for each 50

compound. (Refer to Table 1.) The structure of these compounds was then 
determined using NMR spectroscopy.

1

� Ethnobotanical field trip Brewarrina NSW 2002.

� Termiticidal assay.

� Termite infestation.

� E. mitchelli  in flower.

� Winged reproductive termites.
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Biologically Active Eremophilanes from Eremophila mitchellii.

Compound LD95 @ 24 hrsLD50 @ 24 hrs

290 (ug/mL)*

1340

700

340

330

160 ( ug/mL)*

680

450

210

170

eremophilone

santalcamphor

2-hydroxyeremophilone

8-hydroxyeremophiladienone

E. mitchelli wood oil

Compound LD95 @ 24 hrsLD50 @ 24 hrs

290 (ug/mL)*

1340

700

340

330

160 ( ug/mL)*

680

450

210

170

eremophilone

santalcamphor

2-hydroxyeremophilone

8-hydroxyeremophiladienone

E. mitchelli wood oili wood oil

* 0.5 mL delivery per petri dish.

Table 1. LD  and LD values for compounds from 50 95

E. mitchellii wood oil.
It was evident from these results (Table 1) that eremophilone 1 and the 8-
hydroxyeremophiladienone 5 possessed the strongest toxicity towards the 
termites. It was also noted that the whole oil posseses significant activity.

The eremophilanes 1-5 isolated from E. mitchellii are quite rare and unique 
sesquiterpenes. They were the first terpenes that were discovered to disobey the 
‘head to tail linkage’ isoprene rule. To date Eremophilanes have only been 

4
reported in one other species of Eremophila.

O
H

OH

5 8-Hyroxyeremophila-1,11-dienone

OH

O

2 2-Hydroxyeremophilone

O

1 Eremophilone

O

OH
H

3 Santalcamphor

O

4 1,7(11),9-Eremophilatrien-8-one

� HSQC of 8-Hydroxyeremophiladienone 5.
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