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1H NMR spectra of 28 alleged psychedelic phenylethanamines from 15 grey-market internet vendors across North America and 
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substituted 2,5-dimethoxyphenylethanamines (the 2C and 2C-T series); four para-substituted 3,5-dimethoxyphenylethanamines 

(mescaline analogues); two β-substituted phenylethanamines; and ten N-substituted phenylethanamines with a 2-methoxybenzyl 

(NBOMe), 2-hydroxybenzyl (NBOH), or 2,3-methylenedioxybenzyl (NBMD) amine moiety. 1H NMR spectra for some of these 

compounds have not been previously reported to our knowledge. Others have reported on the composition of “mystery pills,” 

single-dose formulations obtained from retail shops and websites. We believe this is the first published survey of bulk “research 

chemicals” marketed and sold as such. Only one analyte was unequivocally misrepresented. This collection of experimentally 

uniform spectra may help forensic and harm-reduction organizations identify these compounds, some of which appear only 

sporadically. The complete spectra are provided as supplementary data.[1] 
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“Once you get a serious spectrum collection,  

the tendency is to push it as far as you can.”1 

Introduction 

Psychedelic phenylethanamines2 have been known and studied 

for decades, generating much interest and enthusiasm in some 

quarters — and corresponding alarm in others.[3–6] Though 

drawing less scrutiny than better known psychedelics like LSD 

or psilocybin, strictly speaking these are not novel materials.[7,8] 

In contrast, N-benzyl phenylethanamines progressed from 

earliest published reports[9–14] and subsequent research[15,16] to 

ready grey-market availability and ultimately prohibition — in 

the UK[17,18] and the USA[19] — in less than 20 years. 

Here we report the 1H NMR spectrum of 28 grey-market phenyl

ethanamines and N-benzyl phenylethanamines. The spectra of 

ca. 30 grey-market tryptamines will be the subject of a later 

report. 

The advent and rapid expansion of electronic commerce in 

grey-market research chemicals has been startling.[20–22] 

Hundreds of formerly obscure substances, once unobtainable 

to most in any practical sense are now within reach.[23] For 

some, legal and affordable reach as well. A wide-ranging review 

of the evolving new-drug landscape is provided by Brandt et 

al.[24] 

                                                                 
1 pace Hunter S. Thompson. 
2 Systematic names follow IUPAC Recommendations and Preferred Names 2013 

except where noted. Sadly, the beloved and familiar contraction phenethyl 
has officially fallen from grace (i.e. deprecated).[2] 

Nevertheless, an inherent weakness of grey markets is the 

absence of regulatory oversight. Fleeting, unreliable, or 

fraudulent vendors are not uncommon. The reputation of a 

well-regarded source may, gradually or abruptly, decline. The 

slide from principled vendor to scam artist is well worn. For the 

customer, authenticating grey-market products is essential — 

and a considerable challenge. 

Few organizations exist to meet this need. EcstasyData.org, a 

leading drug-analysis service, has traditionally focused on 

testing single-dose formulations (e.g. a pill or capsule) held out 

as “ecstasy.” More recently, they expanded their mandate to 

include research chemicals.3 However, at $100 per analyte the 

cost seemed prohibitive for the summary level of analysis 

provided — a restriction imposed by the Drug Enforcement 

Administration (DEA).4 

Fortunately, the University of Toronto offers several forms of 

analysis for external clients including NMR and mass 

spectrometry (MS). We wondered if “walk-in” 1H NMR analysis 

combined with contemporary spectral-analysis software might 

allow even inexperienced investigators to verify the 

composition of grey-market research chemicals with a 

reasonable degree of confidence. The attraction of 1H NMR 

over MS is threefold: (1) the cost is significantly lower; less than 

25 percent, (2) it provides sufficient information to potentially 

                                                                 
3 Isomer Design is a supporting partner in EcstasyData.org. 
4 Imposed by “an unpublished administrative rule.” See EcstasyData.org. 

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.16889/isomerdesign-1
http://www.ecstasydata.org/
http://isomerdesign.com/
http://ecstasydata.org/
http://www.ecstasydata.org/about_data.php#quant
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identify an unknown in the absence of a reference spectrum,[25] 

and (3) aryl regioisomers are more readily differentiated. 

Simply, we wanted to know if the grey-market research 

chemicals being sold were in fact “as advertised.” Would the 

spectrum be consistent with the substance as alleged? Was this 

powder labelled x, actually x, or not? In November 2012, after 

an engaging discussion with Timothy Burrow, Director of the 

University of Toronto NMR Facility, we began our investigation 

to confirm the identity of grey-market research chemicals. 

Limitations and bias 

Our objective was chiefly to check the identity of our 

unknowns, not unlike how presumptive spot-colour tests are 

used.[26] It was sufficient to assign a pass/fail grade to an 

unknown; spectra consistent with published results passed.1 

We have included every phenylethanamine spectrum acquired 

— nothing has been excluded. Our analytes were purchased 

over several years from 15 vendors across North America and 

Europe. Though we consider this to be a fair representation of 

the grey market during that time it is not without potential 

selection bias. While no official regulatory oversight exists for 

this market, anecdotal reports posted at SafeOrScam.com2 

provided some guidance. Patently disreputable vendors were 

excluded. Our analytes were not selected at random and our 

findings should be interpreted accordingly. 

The “purity” values we report were provided by the verification 

module of the MestReNova software. Though we do not 

suggest these values necessarily reflect actual analyte purity, 

they are comparable in magnitude and implied precision 

(misleading or not) to vendor-supplied values.3 

A report by Hays and Cassale[28] became available to us only 

recently. We regret we were unable to include their extensive 

findings among the cited literature. 

Experimental 

Grey-market research chemicals were purchased from internet 

vendors in Europe, the United States, and Canada, 2009–2014. 

Commercially available 2-phenylethan-1-amine HCl (PEA) was 

purchased from AK Scientific, Inc., Union City, CA. Two 

N-benzylidene phenylethanamines were purchased from 

Cayman Chemical, Ann Arbor, MI. Licensed software from 

                                                                 
1 If no published spectrum could be found we used the Force of MestReNova 

software to predict one. How to use the Force without succumbing to the 
Dark Side was revealed in an e-mail from Jedi Master Santi Domínguez, 2013. 

2 SafeOrScam.com has closed, reportedly sacrificed following an attack ca. 8 
July 2015. In its place, ostensibly, ScamLogs.com has since appeared.[27] 

3 The alleged purity of our analytes routinely implies a precision of ± 0.01%. 

Mestrelab Research SL, Santiago de Compostela, Spain was 

used for spectral analysis. Preferred IUPAC names were 

constructed using licenced software from ACD/Labs, Toronto, 

Canada. 

Analytical data was supplied by Timothy Burrow from 

November 2012 through August 2014. 1H NMR spectra for 

analytes P0 and P17 were recorded on an Agilent DD2 NMR 

spectrometer operating at 699.8 MHz and equipped with an 

HFCN Cold Probe. All other analytes were recorded on an 

Agilent DD2 NMR spectrometer operating at 499.67 MHz and 

equipped with an XSens Cold Probe. 

Approximately 5 mg of each analyte was placed in a capped 

glass vial, labelled, and submitted for analysis. Except where 

noted spectra were acquired in deuterated dimethyl sulfoxide 

(DMSO-d6) from single-use ampoules to minimize the presence 

of water. DMSO-d6 was chosen to dissolve analytes in free base 

or salt form along with any impurities which might be present. 

Dissolution was reportedly facile and complete in every case, 

leaving no residual insoluble material. Dissolved analytes were 

loaded without filtering into a 3 mm NMR sample tubes. 

Spectra acquired in DMSO-d6 were referenced to the solvent 

signal at δ = 2.50 ppm. 

Results 

Analyte structures and codes are shown in Figures 1–3. Analyte 

codes, substitution patterns, and preferred IUPAC names (PIN) 

are listed in Table 1. 1H NMR spectral data is summarized in 

Table 2. Multiplets for moieties common to all scaffolds are 

grouped together in Table 3. Multiplets for moieties common 

only to the N-benzyl and N-benzylidene PEA scaffolds are 

grouped together in Table 4, ordered by shift. Multiplets for 

para-substituents, β-substituents, and atypical moieties are 

detailed in Table 5. 

 

https://www.scamlogs.com/
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Figure 1: Structures of N-unsubstituted (P series) analytes 
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Table 1: Names and scaffold substitution patterns of analytes 

   

P B IM 

Scaffold P 

Code R2 R3 R4 R5 Rβ Preferred IUPAC name 

PEA H H H H H 2-phenylethan-1-amine 

2C-H OCH3 H H OCH3 H 2-(2,5-dimethoxyphenyl)ethan-1-amine 

2C-C OCH3 H Cl OCH3 H 2-(4-chloro-2,5-dimethoxyphenyl)ethan-1-amine 

bk-2C-B OCH3 H Br OCH3 =O 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethan-1-one 

2C-I OCH3 H I OCH3 H 2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-amine 

2C-D OCH3 H CH3 OCH3 H 2-(2,5-dimethoxy-4-methylphenyl)ethan-1-amine 

BOD OCH3 H CH3 OCH3 OCH3 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine 

2C-E OCH3 H CH2CH3 OCH3 H 2-(4-ethyl-2,5-dimethoxyphenyl)ethan-1-amine 

2C-IP OCH3 H CH(CH3)2 OCH3 H 2-[2,5-dimethoxy-4-(propan-2-yl)phenyl]ethan-1-amine 

2C-P OCH3 H CH2CH2CH3 OCH3 H 2-(2,5-dimethoxy-4-propylphenyl)ethan-1-amine 

2C-T OCH3 H SCH3 OCH3 H 2-[2,5-dimethoxy-4-(methylsulfanyl)phenyl]ethan-1-amine 

2C-T-2 OCH3 H SCH2CH3 OCH3 H 2-[4-(ethylsulfanyl)-2,5-dimethoxyphenyl]ethan-1-amine 

2C-T-4 OCH3 H SCH(CH3)2 OCH3 H 2-{2,5-dimethoxy-4-[(propan-2-yl)sulfanyl]phenyl}ethan-1-amine 

2C-T-7 OCH3 H SCH2CH2CH3 OCH3 H 2-[2,5-dimethoxy-4-(propylsulfanyl)phenyl]ethan-1-amine 

Escaline H OCH3 OCH2CH3 OCH3 H 2-(4-ethoxy-3,5-dimethoxyphenyl)ethan-1-amine 

Proscaline H OCH3 OCH2CH2CH3 OCH3 H 2-(3,5-dimethoxy-4-propoxyphenyl)ethan-1-amine 

AL H OCH3 OCH2CHCH2 OCH3 H 2-{3,5-dimethoxy-4-[(prop-2-en-1-yl)oxy]phenyl}ethan-1-amine 

MAL H OCH3 OCH2C(CH3)CH2 OCH3 H 2-{3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl}ethan-1-amine 

Scaffold B 

Code R2 R3 R4 R5 R2’ R3’ Preferred IUPAC name 

25C-NBOMe OCH3 H Cl OCH3 OCH3 H 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25B-NBOMe OCH3 H Br OCH3 OCH3 H 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25I-NBOMe OCH3 H I OCH3 OCH3 H 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25I-NBOH OCH3 H I OCH3 OH H 2-({[2-(4-iodo-2,5-dimethoxyphenyl)ethyl]amino}methyl)phenol 

25I-NBMD OCH3 H I OCH3 -O-CH2-O- N-[(2H-1,3-benzodioxol-4-yl)methyl]-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-amine 

25D-NBOMe OCH3 H CH3 OCH3 OCH3 H 2-(2,5-dimethoxy-4-methylphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25G-NBOMe OCH3 CH3 CH3 OCH3 OCH3 H 2-(2,5-dimethoxy-3,4-dimethylphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25E-NBOMe OCH3 H CH2CH3 OCH3 OCH3 H 2-(4-ethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

25IP-NBOMe OCH3 H CH(CH3)2 OCH3 OCH3 H 2-[2,5-dimethoxy-4-(propan-2-yl)phenyl]-N-[(2-methoxyphenyl)methyl]ethan-1-amine 

M-NBOMe H OCH3 OCH3 OCH3 OCH3 H N-[(2-methoxyphenyl)methyl]-2-(3,4,5-trimethoxyphenyl)ethan-1-amine 

Scaffold IM 

Code R4 Preferred IUPAC name 

25H-NBOMe imine H N-[2-(2,5-dimethoxyphenyl)ethyl]-1-(2-methoxyphenyl)methanimine 

25I-NBOMe imine I N-[2-(4-iodo-2,5-dimethoxyphenyl)ethyl]-1-(2-methoxyphenyl)methanimine 
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Table 2: 1H NMR chemical shift, labelled formulation, and calculated purity of analytes 

Analytea Formb  Purityc 1H NMRd 

P0 PEA · HCl HCl  98e 700 MHz DMSO-d6 δ 8.29 (s, 3H), 7.34 – 7.21 (m, 5H), 3.02 – 2.97 (m, 2H), 2.95 – 2.89 (m, 2H) 

P1 2C-H base U  98.16 500 MHz DMSO-d6 δ 6.88 – 6.81 (m, 1H), 6.76 – 6.68 (m, 2H), 3.71 (s, 3H), 3.68 (s, 3H), 2.73 – 2.66 (m, 2H), 

2.63 – 2.55 (m, 2H), 1.32 (vb s, 2H) 

P1f 2C-H · HCl –  98.46 500 MHz DMSO-d6 δ 8.19 (br s, 3H), 6.94 – 6.87 (m, 1H), 6.82 – 6.76 (m, 2H), 3.74 (s, 3H), 3.69 (s, 3H), 2.98 – 

2.91 (m, 2H), 2.88 – 2.81 (m, 2H) 

P2 2C-D U  96.44 500 MHz DMSO-d6 δ 8.15 (br s, 3H), 6.82 (d, J = 0.8 Hz, 1H), 6.78 (s, 1H), 3.73 (s, 6H), 2.97 – 2.89 (m, 2H), 

2.87 – 2.80 (m, 2H), 2.13 (d, J = 0.7 Hz, 3H) 

P3 2C-E HCl  97.50 500 MHz DMSO-d6 δ 8.02 (br s, 3H), 6.81 (s, 1H), 6.79 (s, 1H), 3.74 (s, 3H), 3.74 (s, 3H), 3.00 – 2.91 (m, 2H), 

2.86 – 2.79 (m, 2H), 2.54 (q, J = 7.5 Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H) 

P4 2C-P U  93.05 500 MHz DMSO-d6 δ 8.04 (br s, 3H), 6.79 (s, 2H), 3.74 (s, 3H), 3.73 (s, 3H), 2.99 – 2.90 (m, 2H), 2.86 – 2.79 (m, 

2H), 2.51 – 2.45 (m, 2H), 1.60 – 1.45 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H) 

P4g 2C-P U – 500 MHz DMF-d7 δ 8.64 (br s, 3H), 6.99 (s, 1H), 6.87 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.26 – 3.19 (m, 2H), 

3.10 – 3.03 (m, 2H), 2.59 – 2.52 (m, 2H), 1.63 – 1.52 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H) 

P5 2C-IP HCl  98.12 500 MHz DMSO-d6 δ 8.00 (br s, 3H), 6.81 (s, 1H), 6.79 (s, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.21 (hept, J = 6.9 Hz, 

1H), 2.99 – 2.92 (m, 2H), 2.85 – 2.78 (m, 2H), 1.15 (d, J = 6.9 Hz, 6H) 

P6a 2C-Eh FB  96.91 500 MHz DMSO-d6 δ 8.03 (br s, 3H), 6.81 (s, 1H), 6.79 (s, 1H), 3.74 (s, 3H), 3.74 (s, 3H), 2.98 – 2.91 (m, 2H), 

2.86 – 2.79 (m, 2H), 2.54 (q, J = 7.5 Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H) 

P6b 2C-C C  94.94 500 MHz DMSO-d6 δ 8.18 (br s, 3H), 7.07 (s, 1H), 7.05 (s, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.00 – 2.93 (m, 2H), 

2.90 – 2.83 (m, 2H) 

P7 2C-I HCl  97.36 500 MHz DMSO-d6 δ 7.99 (br s, 3H), 7.33 (s, 1H), 6.90 (s, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.00 – 2.93 (m, 2H), 

2.87 – 2.80 (m, 2H) 

P8 2C-T FB  96.61 500 MHz DMSO-d6 δ 7.97 (br s, 3H), 6.83 (s, 1H), 6.76 (s, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 2.98 – 2.91 (m, 2H), 

2.86 – 2.79 (m, 2H), 2.41 (s, 3H) 

P9 2C-T-2 HCl  96.38 500 MHz DMSO-d6 δ 7.98 (br s, 3H), 6.85 (s, 1H), 6.83 (s, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.01 – 2.92 (m, 2H), 

2.92 (q, J = 7.3 Hz, 2H), 2.86 – 2.79 (m, 2H), 1.23 (t, J = 7.3 Hz, 3H) 

P10 2C-T-4 U  97.02 500 MHz DMSO-d6 δ 7.98 (br s, 3H), 6.91 (s, 1H), 6.87 (s, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.54 (hept, J = 6.6 Hz, 

1H), 3.01 – 2.93 (m, 2H), 2.87 – 2.80 (m, 2H), 1.21 (d, J = 6.6 Hz, 6H) 

P11 2C-T-7 FB  97.81 500 MHz DMSO-d6 δ 8.02 (br s, 3H), 6.85 (s, 1H), 6.82 (s, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 2.99 – 2.92 (m, 2H), 

2.88 (t, J = 7.1 Hz, 2H), 2.86 – 2.79 (m, 2H), 1.58 (h, J = 7.3 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H) 

P12 Escaline FB  96.92 500 MHz DMSO-d6 δ 8.22 (br s, 3H), 6.56 (s, 2H), 3.85 (q, J = 7.0 Hz, 2H), 3.75 (s, 6H), 3.06 – 2.99 (m, 2H), 

2.89 – 2.81 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H) 

P13a Proscaline  N/A  96.55 500 MHz DMSO-d6 δ 8.05 (br s, 3H), 6.56 (s, 2H), 3.79 – 3.72 (m, 8H), 3.07 – 3.00 (m, 2H), 2.85 – 2.78 (m, 2H), 

1.61 (h, J = 7.1 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H) 

P13b Proscaline  FB  96.72 500 MHz DMSO-d6 δ 8.20 (br s, 3H), 6.56 (s, 2H), 3.80 – 3.71 (m, 8H), 3.06 – 2.98 (m, 2H), 2.89 – 2.80 (m, 2H), 

1.66 – 1.55 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H) 

P14 AL C  95.26 500 MHz DMSO-d6 δ 8.13 (br s, 3H), 6.57 (s, 2H), 5.98 (ddt, J = 17.3, 10.4, 5.6 Hz, 1H), 5.28 (dq, J = 17.3, 1.8 

Hz, 1H), 5.17 – 5.10 (m, 1H), 4.35 (dt, J = 5.6, 1.6 Hz, 2H), 3.76 (s, 6H), 3.06 – 2.99 (m, 2H), 2.87 – 2.80 (m, 2H) 

P15 MAL C  92.08 500 MHz DMSO-d6 δ 8.03 (br s, 3H), 6.56 (s, 2H), 5.02 – 4.97 (m, 1H), 4.89 – 4.83 (m, 1H), 4.27 – 4.22 (m, 2H), 

3.76 (s, 6H), 3.06 – 3.00 (m, 2H), 2.86 – 2.78 (m, 2H), 1.81 – 1.76 (m, 3H) 

P16 BOD HCl  97.02 500 MHz DMSO-d6 δ 8.14 (s, 3H), 6.91 (d, J = 0.9 Hz, 1H), 6.82 (s, 1H), 4.78 (dd, J = 8.9, 3.9 Hz, 1H), 3.75 (s, 

3H), 3.75 (s, 3H), 3.21 (s, 3H), 2.96 – 2.82 (m, 2H), 2.16 (d, J = 0.9 Hz, 3H) 

P17 bk-2C-B HCl  89.78 700 MHz DMSO-d6 δ 8.28 (br s, 3H), 7.59 (s, 1H), 7.43 (s, 1H), 4.31 (q, J = 5.2 Hz, 2H), 3.94 (s, 3H), 3.86 (s, 3H) 
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Table 2: 1H NMR chemical shift, labelled formulation, and calculated purity of analytes 

Analytea Formb  Purityc 1H NMRd 

B1 25B-NBOMe HCl  98.32 500 MHz DMSO-d6 δ 9.18 (br s, 2H), 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.19 (s, 

1H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 7.02 (s, 1H), 7.00 (td, J = 7.4, 1.1 Hz, 1H), 4.11 (s, 2H), 3.83 (s, 3H), 3.79 (s, 

3H), 3.75 (s, 3H), 3.10 – 3.03 (m, 2H), 3.00 – 2.93 (m, 2H) 

B2 25C-NBOMe HCl  98.56 500 MHz DMSO-d6 δ 9.23 (br s, 2H), 7.50 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.14 – 

7.05 (m, 1H), 7.08 (s, 1H), 7.04 (s, 1H), 7.00 (td, J = 7.5, 1.1 Hz, 1H), 4.11 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 3.74 

(s, 3H), 3.10 – 3.01 (m, 2H), 3.03 – 2.94 (m, 2H) 

B3 25I-NBOMe HCl  97.59 500 MHz DMSO-d6 δ 9.15 (br s, 2H), 7.48 (dd, J = 7.5, 1.8 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.32 (s, 

1H), 7.08 (dd, J = 8.3, 1.0 Hz, 1H), 6.99 (td, J = 7.4, 1.1 Hz, 1H), 6.90 (s, 1H), 4.11 (s, 2H), 3.83 (s, 3H), 3.77 (s, 

3H), 3.73 (s, 2H), 3.09 – 3.00 (m, 2H), 2.99 – 2.92 (m, 2H) 

B4 25I-NBOH HCl  96.72 500 MHz DMSO-d6 δ 9.22 (vb s, 3H), 7.39 (dd, J = 7.6, 1.7 Hz, 1H), 7.32 (s, 1H), 7.23 (ddd, J = 8.1, 7.3, 1.7 Hz, 

1H), 6.97 (dd, J = 8.2, 1.1 Hz, 1H), 6.89 (s, 1H), 6.84 (td, J = 7.4, 1.1 Hz, 1H), 4.09 (s, 2H), 3.77 (s, 3H), 3.74 (s, 

3H), 3.09 – 3.02 (m, 2H), 3.00 – 2.91 (m, 2H) 

B5i 25I-NBMD FB  96.42 500 MHz DMSO-d6 δ 7.25 (s, 1H), 6.84 (s, 1H), 6.86 – 6.78 (m, 1H), 6.81 – 6.72 (m, 2H), 5.96 (s, 2H), 3.73 (s, 

3H), 3.71 (d, J = 0.3 Hz, 3H), 3.66 (d, J = 0.6 Hz, 2H), 2.69 – 2.65 (m, 4H), 1.98 (br s, 1H) 

B6 25D-NBOMe HCl  97.39 500 MHz DMSO-d6 δ 9.18 (br s, 2H), 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.08 (dd, 

J = 8.3, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.1 Hz, 1H), 6.88 – 6.79 (m, 1H), 6.77 (s, 1H), 4.11 (s, 2H), 3.83 (s, 3H), 

3.73 (s, 3H), 3.71 (s, 3H), 3.10 – 2.96 (m, 2H), 3.00 – 2.88 (m, 2H), 2.13 (d, J = 0.7 Hz, 3H) 

B7 25E-NBOMe HCl  98.67 500 MHz DMSO-d6 δ 9.20 (br s, 2H), 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.09 (dd, 

J = 8.3, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 6.80 (s, 1H), 6.78 (s, 1H), 4.12 (s, 2H), 3.83 (s, 3H), 3.73 (s, 

3H), 3.72 (s, 3H), 3.07 – 2.99 (m, 2H), 2.98 – 2.91 (m, 2H), 2.53 (q, J = 7.4 Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H) 

B8 25IP-NBOMe HCl  98.59 500 MHz DMSO-d6 δ 9.22 (br s, 2H), 7.50 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.08 (dd, 

J = 8.4, 1.0 Hz, 1H), 6.99 (td, J = 7.4, 1.0 Hz, 1H), 6.80 (s, 1H), 6.79 (s, 1H), 4.12 (s, 2H), 3.83 (s, 3H), 3.73 (s, 

3H), 3.73 (s, 3H), 3.21 (hept, J = 6.9 Hz, 1H), 3.07 – 2.99 (m, 2H), 2.98 – 2.91 (m, 2H), 1.15 (d, J = 6.9 Hz, 6H) 

B9 25G-NBOMe HCl  96.11 500 MHz DMSO-d6 δ 9.29 (br s, 2H), 7.52 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.09 (dd, 

J = 8.4, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 6.66 (s, 1H), 4.14 (s, 2H), 3.84 (s, 3H), 3.73 (s, 3H), 3.58 (s, 

3H), 3.11 – 3.02 (m, 2H), 3.05 – 2.95 (m, 2H), 2.12 (s, 3H), 2.04 (s, 3H) 

B10 M-NBOMe HCl  96.07 500 MHz DMSO-d6 9.33 (br s, 2H), 7.53 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.08 (dd, J 

= 8.4, 1.0 Hz, 1H), 6.99 (td, J = 7.5, 1.0 Hz, 1H), 6.55 (s, 2H), 4.11 (s, 2H), 3.83 (s, 3H), 3.76 (s, 6H), 3.62 (s, 3H), 

3.16 – 3.08 (m, 2H), 3.00 – 2.93 (m, 2H) 

IM1 25H-NBOMe 

imine 

soln > 95e 500 MHz DMSO-d6 δ 8.56 (s, 1H), 7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.42 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.08 (dd, J = 

8.4, 1.0 Hz, 1H), 6.98 (tt, J = 7.5, 0.8 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 6.78 (d, J = 3.1 Hz, 1H), 6.72 (dd, J = 8.8, 

3.1 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H), 3.75 – 3.68 (m, 2H), 3.65 (s, 3H), 2.84 (t, J = 7.5 Hz, 2H) 

IM2 25I-NBOMe 

imine 

soln > 95e 500 MHz DMSO-d6 δ 8.54 (s, 1H), 7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.42 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.28 (s, 1H), 

7.08 (dd, J = 8.3, 1.0 Hz, 1H), 6.97 (tt, J = 7.5, 0.8 Hz, 1H), 6.87 (s, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 3.76 – 3.69 

(m, 2H), 3.69 (s, 3H), 2.85 (t, J = 7.3 Hz, 2H) 

                                                                 
a Formulated as the aminium salt except where noted. 
b The stated formulation of the analyte, where provided: C, conflicting claims made on analyte packaging and supporting documentation; HCl, hydrochloride; FB, free 

base; soln: in methyl acetate solution; N/A, not available; U, unspecified. 
c The per cent ratio of the total analyte integral over the total spectrum integral as reported by Mestrelab’s MestReNova software except where noted. 
d br, broad; d, doublet; h, hextet; hept, heptet; obs, partially obscured; m, multiplet; q, quartet; s, singlet; t, triplet; vb, very broad; J, coupling constant; Ph, phenyl. 
e Purity as labelled by vendor. 
f Converted to the hydrochloride salt from the supplied free base oil following Shulgin and Shulgin,[3] recrystallized in oxolane (tetrahydrofuran). 
g A second spectrum acquired in DMF-d7 resolved a multiplet partially obscured in the original spectrum acquired in DMSO-d6. 
h Alleged and sold as 2C-C, a claim unsupported by the spectrum which strongly suggests 2C-E. 
i Formulated as the free base. 
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Table 3: Multiplets for phenylethanamine, N-benzyl phenylethanamine, and N-benzylidene phenylethanamine scaffold moieties 

Analyte NH2
+ | NH3

+ | 2′-OH 2-H | 3-H | 6-H 2-OCH3 | 3-OCH3 | 5-OCH3 | 2′-OCH3 α-H2 | β-H2 NH | NH2 

P0 PEA · HCl 8.29 (br s, 3H) 7.34 – 7.21 (m, 5H)  3.02 – 2.97 (m, 2H), 2.95 – 2.89 (m, 2H)  

P1 2C-H base  6.88 – 6.81 (m, 1H), 6.76 – 6.68 (m, 2H) 3.71 (s, 3H), 3.68 (s, 3H) 2.73 – 2.66 (m, 2H), 2.63 – 2.55 (m, 2H) 1.32 (vb s, 2H) 

P1 2C-H · HCl 8.19 (br s, 3H) 6.94 – 6.87 (m, 1H), 6.82 – 6.76 (m, 2H) 3.74 (s, 3H), 3.69 (s, 3H) 2.98 – 2.91 (m, 2H), 2.88 – 2.81 (m, 2H)  

P2 2C-D 8.15 (br s, 3H) 6.82 (d, J = 0.8 Hz, 1H), 6.78 (s, 1H) 3.73 (s, 6H) 2.97 – 2.89 (m, 2H), 2.87 – 2.80 (m, 2H)  

P3 2C-E 8.02 (br s, 3H) 6.81 (s, 1H), 6.79 (s, 1H) 3.74 (s, 3H), 3.74 (s, 3H) 3.00 – 2.91 (m, 2H), 2.86 – 2.79 (m, 2H)  

P4 2C-P 8.04 (br s, 3H) 6.79 (s, 2H) 3.74 (s, 3H), 3.73 (s, 3H) 2.99 – 2.90 (m, 2H), 2.86 – 2.79 (m, 2H)  

P4 2C-P in DMF-d7 8.64 (br s, 3H) 6.99 (s, 1H), 6.87 (s, 1H) 3.82 (s, 3H), 3.80 (s, 3H) 3.26 – 3.19 (m, 2H), 3.10 – 3.03 (m, 2H)  

P5 2C-IP 8.00 (br s, 3H) 6.81 (s, 1H), 6.79 (s, 1H) 3.76 (s, 3H), 3.74 (s, 3H) 2.99 – 2.92 (m, 2H), 2.85 – 2.78 (m, 2H)  

P6a 2C-E 8.03 (br s, 3H) 6.81 (s, 1H), 6.79 (s, 1H) 3.74 (s, 3H), 3.74 (s, 3H) 2.98 – 2.91 (m, 2H), 2.86 – 2.79 (m, 2H)  

P6b 2C-C 8.18 (br s, 3H) 7.07 (s, 1H), 7.05 (s, 1H) 3.80 (s, 3H), 3.76 (s, 3H) 3.00 – 2.93 (m, 2H), 2.90 – 2.83 (m, 2H)  

P7 2C-I 7.99 (br s, 3H) 7.33 (s, 1H), 6.90 (s, 1H) 3.77 (s, 3H), 3.76 (s, 3H) 3.00 – 2.93 (m, 2H), 2.87 – 2.80 (m, 2H)  

P8 2C-T 7.97 (br s, 3H) 6.83 (s, 1H), 6.76 (s, 1H) 3.80 (s, 3H), 3.76 (s, 3H) 2.98 – 2.91 (m, 2H), 2.86 – 2.79 (m, 2H)  

P9 2C-T-2 7.98 (br s, 3H) 6.85 (s, 1H), 6.83 (s, 1H) 3.78 (s, 3H), 3.76 (s, 3H) 3.01 – 2.92 (m, 2H), 2.86 – 2.79 (m, 2H)  

P10 2C-T-4 7.98 (br s, 3H) 6.91 (s, 1H), 6.87 (s, 1H) 3.77 (s, 3H), 3.76 (s, 3H) 3.01 – 2.93 (m, 2H), 2.87 – 2.80 (m, 2H)  

P11 2C-T-7 8.02 (br s, 3H) 6.85 (s, 1H), 6.82 (s, 1H) 3.77 (s, 3H), 3.76 (s, 3H) 2.99 – 2.92 (m, 2H), 2.86 – 2.79 (m, 2H)  

P12 Escaline 8.22 (br s, 3H) 6.56 (s, 2H) 3.75 (s, 6H) 3.06 – 2.99 (m, 2H), 2.89 – 2.81 (m, 2H)  

P13a Proscaline 8.05 (br s, 3H) 6.56 (s, 2H) 3.76 (s, 6H) 3.07 – 3.00 (m, 2H), 2.85 – 2.78 (m, 2H)  

P13b Proscaline 8.20 (br s, 3H) 6.56 (s, 2H) 3.75 (s, 6H) 3.06 – 2.98 (m, 2H), 2.89 – 2.80 (m, 2H)  

P14 AL 8.13 (br s, 3H) 6.57 (s, 2H)  3.76 (s, 6H) 3.06 – 2.99 (m, 2H), 2.87 – 2.80 (m, 2H)  

P15 MAL 8.03 (br s, 3H) 6.56 (s, 2H) 3.76 (s, 6H) 3.06 – 3.00 (m, 2H), 2.86 – 2.78 (m, 2H)  

P16 BOD 8.14 (br s, 3H) 6.91 (d, J = 0.9 Hz, 1H), 6.82 (s, 1H) 3.75 (s, 3H), 3.75 (s, 3H) 2.96 – 2.82 (m, 2H)  

P17 bk-2C-B 8.28 (br s, 3H) 7.59 (s, 1H), 7.43 (s, 1H) 3.94 (s, 3H), 3.86 (s, 3H)   

B1 25B-NBOMe 9.18 (br s, 2H) 7.19 (s, 1H), 7.02 (s, 1H) 3.83 (s, 3H), 3.79 (s, 3H), 3.75 (s, 3H) 3.10 – 3.03 (m, 2H), 3.00 – 2.93 (m, 2H)  

B2 25C-NBOMe 9.23 (br s, 2H) 7.08 (s, 1H), 7.04 (s, 1H) 3.83 (s, 3H), 3.80 (s, 3H), 3.74 (s, 3H) 3.10 – 3.01 (m, 2H), 3.03 – 2.94 (m, 2H)  

B3 25I-NBOMe 9.15 (br s, 2H) 7.32 (s, 1H), 6.90 (s, 1H) 3.83 (s, 3H), 3.77 (s, 3H), 3.73 (s, 2H) 3.09 – 3.00 (m, 2H), 2.99 – 2.92 (m, 2H)  

B4 25I-NBOH 9.22 (vb s, 3H) 7.32 (s, 1H), 6.89 (s, 1H) 3.77 (s, 3H), 3.74 (s, 3H) 3.09 – 3.02 (m, 2H), 3.00 – 2.91 (m, 2H)  

B5 25I-NBMD  7.25 (s, 1H), 6.84 (s, 1H) 3.73 (s, 3H), 3.71 (d, J = 0.3 Hz, 3H) 2.69 – 2.65 (m, 4H) 1.98 (br s, 1H) 

B6 25D-NBOMe 9.18 (br s, 2H) 6.88 – 6.79 (m, 1H), 6.77 (s, 1H) 3.83 (s, 3H), 3.73 (s, 3H), 3.71 (s, 3H)  3.10 – 2.96 (m, 2H), 3.00 – 2.88 (m, 2H)  

B7 25E-NBOMe 9.20 (br s, 2H) 6.80 (s, 1H), 6.78 (s, 1H) 3.83 (s, 3H), 3.73 (s, 3H), 3.72 (s, 3H) 3.07 – 2.99 (m, 2H), 2.98 – 2.91 (m, 2H)  

B8 25IP-NBOMe 9.22 (br s, 2H) 6.80 (s, 1H), 6.79 (s, 1H) 3.83 (s, 3H), 3.73 (s, 3H), 3.73 (s, 3H) 3.07 – 2.99 (m, 2H), 2.98 – 2.91 (m, 2H)  

B9 25G-NBOMe 9.29 (br s, 2H) 6.66 (s, 1H) 3.84 (s, 3H), 3.73 (s, 3H), 3.58 (s, 3H) 3.11 – 3.02 (m, 2H), 3.05 – 2.95 (m, 2H)  

B10 M-NBOMe 9.33 (br s, 2H) 6.55 (s, 2H) 3.83 (s, 3H), 3.76 (s, 6H) 3.16 – 3.08 (m, 2H), 3.00 – 2.93 (m, 2H)  

IM1 25H-NBOMe 
imine 

 6.87 (d, J = 8.8 Hz, 1H), 6.78 (d, J = 3.1 Hz, 1H) 
6.72 (dd, J = 8.8, 3.1 Hz, 1H) 

3.82 (s, 3H), 3.74 (s, 3H), 3.65 (s, 3H) 3.75 – 3.68 (m, 2H), 2.84 (t, J = 7.5 Hz, 2H)  

IM2 25I- NBOMe 
imine 

 7.28 (s, 1H), 6.87 (s, 1H) 3.82 (s, 3H), 3.75 (s, 3H), 3.69 (s, 3H) 3.76 – 3.69 (m, 2H), 2.85 (t, J = 7.3 Hz, 2H)  



PeakAL: Protons I Have Known and Loved — Fifty shades of grey-market spectra S.J. Chapman and A.A. Avanes 8 

 

Table 4: Multiplets for N-benzyl phenylethanamine and N-benzylidene phenylethanamine scaffold moieties 

Analyte 3′-H | 4′-H | 5′-H | 6′-H 2′-O-CH2-O-3′ α′-H2 

B1 25B-NBOMe 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 7.00 (td, J = 7.4, 1.1 Hz, 1H)  4.11 (s, 2H) 

B2 25C-NBOMe 7.50 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.14 – 7.05 (m, 1H), 7.00 (td, J = 7.5, 1.1 Hz, 1H)  4.11 (s, 2H) 

B3 25I-NBOMe 7.48 (dd, J = 7.5, 1.8 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.08 (dd, J = 8.3, 1.0 Hz, 1H), 6.99 (td, J = 7.4, 1.1 Hz, 1H)  4.11 (s, 2H) 

B4 25I-NBOH 7.39 (dd, J = 7.6, 1.7 Hz, 1H), 7.23 (ddd, J = 8.1, 7.3, 1.7 Hz, 1H), 6.97 (dd, J = 8.2, 1.1 Hz, 1H), 6.84 (td, J = 7.4, 1.1 Hz, 1H)  4.09 (s, 2H) 

B5 25I-NBMD   6.86 – 6.78 (m, 1H), 6.81 – 6.72 (m, 2H) 5.96 (s, 2H) 3.66 (d, J = 0.6 Hz, 2H) 

B6 25D-NBOMe 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.08 (dd, J = 8.3, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.1 Hz, 1H)  4.11 (s, 2H) 

B7 25E-NBOMe 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.09 (dd, J = 8.3, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H)  4.12 (s, 2H) 

B8 25IP-NBOMe 7.50 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 6.99 (td, J = 7.4, 1.0 Hz, 1H)  4.12 (s, 2H) 

B9 25G-NBOMe 7.52 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H), 7.09 (dd, J = 8.4, 1.0 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H)  4.14 (s, 2H) 

B10 M-NBOMe 7.53 (dd, J = 7.5, 1.7 Hz, 1H), 7.41 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 6.99 (td, J = 7.5, 1.0 Hz, 1H)  4.11 (s, 2H) 

IM1 25H-NBOMe 
imine 

7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.42 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.08 (dd, J = 8.4, 1.0 Hz, 1H), 6.98 (tt, J = 7.5, 0.8 Hz, 1H)   

IM2 25I-NBOMe 
imine 

7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.42 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.08 (dd, J = 8.3, 1.0 Hz, 1H), 6.97 (tt, J = 7.5, 0.8 Hz, 1H)   
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Table 5: Multiplets for phenyl 4-substituents, β-substituents, and other atypical moieties. Preferred IUPAC names precede · deprecated names. 

4-methyl CH3 - Ph  CH3 - Ph 

 

P2: 2C-D 2.13 (d, J = 0.7 Hz, 3H) B6: 25D-NBOMe 2.13 (d, J = 0.7 Hz, 3H) 

P16: BOD 2.16 (d, J = 0.9 Hz, 3H) B9: 25G-NBOMe 2.04 (s, 3H), 2.12 (s, 3H) 

4-ethyl CH3 - CH2 - Ph CH3 - CH2 - Ph  

 

P3: 2C-E 1.11 (t, J = 7.5 Hz, 3H) 2.54 (q, J = 7.5 Hz, 2H)  

B7: 25E-NBOMe 1.11 (t, J = 7.5 Hz, 3H) 2.53 (q, J = 7.4 Hz, 2H)  

4-propan-2-yl · isopropyl (CH3)2 - CH - Ph (CH3)2 - CH - Ph  

 

P5: 2C-IP 1.15 (d, J = 6.9 Hz, 6H) 3.21 (hept, J = 6.9 Hz, 1H)  

B8: 25IP-NBOMe 1.15 (d, J = 6.9 Hz, 6H) 3.21 (hept, J = 6.9 Hz, 1H)  

4-propyl CH3 - CH2 - CH2 - Ph CH3 - CH2 - CH2 - Ph CH3 - CH2 - CH2 - Ph 

 

P4: 2C-P 0.89 (t, J = 7.4 Hz, 3H) 1.60 – 1.45 (m, 2H) 2.51 – 2.45 (m, 2H) 

P4: 2C-P in DMF-d7 0.92 (t, J = 7.4 Hz, 3H) 1.63 – 1.52 (m, 2H) 2.59 – 2.52 (m, 2H)  

4-methoxy CH3 - O - Ph   

 

B10: M-NBOMe 3.62 (s, 3H)   

4-ethoxy CH3 - CH2 - O - Ph CH3 - CH2 - O - Ph  

 

P12: Escaline 1.20 (t, J = 7.0 Hz, 3H) 3.85 (q, J = 7.0 Hz, 2H)  

4-propoxy CH3 - CH2 - CH2 - O - Ph CH3 - CH2 - CH2 - O - Ph CH3 - CH2 - CH2 - O - Ph 

 

P13a: Proscaline 0.94 (t, J = 7.4 Hz, 3H) 1.61 (h, J = 7.1 Hz, 2H) 3.79 – 3.72 (m, 2H) obs. 

P13b: Proscaline 0.93 (t, J = 7.4 Hz, 3H) 1.66 – 1.55 (m, 2H) 3.80 – 3.71 (m, 2H) obs. 

4-(prop-2-en-1-yl)oxy · allyloxy CH2 = CH - CH2 - O - Ph CH2 = CH - CH2 - O - Ph CH2 = CH - CH2 - O - Ph 

 

P14: AL 5.28 (dq, J = 17.3, 1.8 Hz, 1H) 5.98 (ddt, J = 17.3, 10.4, 5.6 Hz, 1H) 4.35 (dt, J = 5.6, 1.6 Hz, 2H) 

 5.17 – 5.10 (m, 1H)   

4-(2-methylprop-2-en-1-yl)oxy · methallyloxy CH2 = C (CH3) - CH2 - O - Ph CH2 = C (CH3) - CH2 - O - Ph CH2 = C (CH3) - CH2 - O - Ph 

 

P15: MAL 5.02 – 4.97 (m, 1H) 1.81 – 1.76 (m, 3H) 4.27 – 4.22 (m, 2H) 

 4.89 – 4.83 (m, 1H)   

4-methylsulfanyl · methylthio CH3 - S - Ph   

 

P8: 2C-T 2.41 (s, 3H)   

4-ethylsulfanyl · ethylthio CH3 - CH2 - S - Ph CH3 - CH2 - S - Ph  

 

P9: 2C-T-2 1.23 (t, J = 7.3 Hz, 3H) 2.92 (q, J = 7.3 Hz, 2H)  

4-(propan-2-yl)sulfanyl · isopropylthio (CH3)2 - CH - S - Ph (CH3)2 - CH - S - Ph  

 

P10: 2C-T-4 1.21 (d, J = 6.6 Hz, 6H) 3.54 (hept, J = 6.6 Hz, 1H)  

4-propylsulfanyl · propylthio CH3 - CH2 - CH2 - S - Ph CH3 - CH2 - CH2 - S - Ph CH3 - CH2 - CH2 - S - Ph 

 

P11: 2C-T-7 0.98 (t, J = 7.3 Hz, 3H) 1.58 (h, J = 7.3 Hz, 2H) 2.88 (t, J = 7.1 Hz, 2H) 

β-methoxy β - H β - O - CH3 α - H2 

 

P16: BOD 4.78 (dd, J = 8.9, 3.9 Hz, 1H) 3.21 (s, 3H) 2.96 – 2.82 (m, 2H) 

β-oxo · keto α - H2
   

 

P17: bk-2C-B 4.31 (q, J = 5.2 Hz, 2H)   
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Analysis 

Almost all of the analytes appear to be formulated as simple 

aminium salts e.g. a hydrochloride, facilitating comparison. The 

protonated aminium resonance typically appears as a broad 

singlet, near or downfield of 8 ppm in primary amines; 

9.15 ppm in secondary amines. The unprotonated amine group 

found in the two free base analytes resonates as a very broad 

singlet upfield of 2 ppm (cf. P1: 2C-H · HCl vs. 2C-H in Figure 4). 

The quintet at 2.50 ppm is characteristic of trace amounts of 

the partially deuterated solvent DMSO-d5. 

The phenyl ring substitution patterns most often encountered 

are the 2,5- and 3,5-dimethoxy with para-substitution. Though 

purported TMA-6 1  has occasionally been seen, the 2,6-

dimethoxy pattern appears largely absent from the grey 

market. 

                                                                 
1 TMA-6: 1-(2,4,6-trimethoxyphenyl)propan-2-amine. 

A 4-substituted 2,5-dimethoxy spectrum typically exhibits a 

discrete 3H singlet for each methoxy substituent and a discrete 

1H singlet for each unsubstituted aryl hydrogen. The methoxy 

groups are not magnetically equivalent, nor are the aryl 

hydrogens, and each may resonate at a discrete shift. In some 

cases, these singlet resonances may overlap or appear 

isochronous, which has particularly been reported in the earlier 

literature. 

In a 4-substituted 3,5- or 2,6-dimethoxy spectrum, both 

methoxy substituents are magnetically equivalent by 

symmetry, as are both aryl hydrogens. The methoxy groups 

appear as a single 6H singlet, the aryl hydrogen as a 2H singlet. 

Figure 4 shows predicted spectra for 2-(4-deuterophenyl)ethan-

1-amine with 2,5-, 3,5-, and 2,6-dimethoxy substitution. The 4-

deutero substituent functions as a placeholder keeping the 

simulation free of spurious peaks arising from ortho- and meta- 

coupling of the aryl hydrogen. 

 

Figure 4: 1H NMR spectra of P0: PEA; P1: 2C-H, P1: 2C-H · HCl; predicted spectra of 4-D-2,5-DMPEA, 4-D-2,6-DMPEA, and 4-D-3,5-DMPEA. 
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1H NMR spectra have been reported for 2C-H in DMSO-d6,
[29] in 

CDCl3,
[15,30] and in D2O;[31–33] and for the NBOMe analogue 25H-

NBOMe1 in DMSO-d6
[29] Shaler and Padden have compared 

1H NMR spectra of the base and the hydrobromide salt of the 

α-methylated homologue2 in CDCl3.[34] 1H NMR spectra have 

been reported for the N,α-dimethyl homologues (i.e. the 

methamphetamine analogues) of 13 mono-, di-, and tri- 

methoxyphenylethanamines in CDCl3.[35] 

The 4-X family: 4-halo-2,5-dimethoxyphenyl pattern 

Members of the 4-X family share a 4-halo-2,5-dimethoxyphenyl 

substitution pattern, with a bromo, chloro or iodo para-

substituent. Shulgin reported the 4-fluoro analogue3 largely 

inactive even at 250 mg, an order of magnitude less potent 

than of the other three.[3] Alleged 2C-F has been advertised on 

the grey market lately. None has been obtained and its actual 

composition is unknown. 

Regulatory hurdles precluded obtaining the controlled 4-bromo 

analogue, 2C-B.[36] However, the 2C-B ring substitution pattern 

is present in other, more recent arrivals to the grey market. 

Samples alleged to be 25B-NBOMe and bk-2C-B, uncontrolled 

analogues of 2C-B, were purchased instead. 

                                                                 
1 25H-NBOMe: 2-(2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-

amine. 
2 2,5-DMA: 1-(2,5-dimethoxyphenyl)propan-2-amine. The ambiguous code 

DMA may refer to 2,5-DMA or 3,4-DMA. 
3 2C-F: 2-(4-fluoro-2,5-dimethoxyphenyl)ethan-1-amine. 

The 4-X spectra in Figures 5 and 6 show a clear correlation 

between the 4-halo substituent and the shift of the two phenyl 

hydrogen. Table 6 compares our findings (shaded rows) with 

reported data acquired in DMSO-d6. The consistency of the 

shift separation (Δδ) suggests a facile method for 

differentiating the 4-halo substituent of 4-X family compounds. 

 Table 6: Phenyl peak shift separation in ppm for 4-X family compounds 

 Compound Source ← δ δ → Δ δ 

C
h

lo
ro

 2C-C P6b 7.07 7.05 0.02 

25C-NBOMe B2 7.08 7.04 0.04 

25C-NBOMe Hansen et al.[37: 3a] 7.08 7.04 0.04 

B
ro

m
o

 

2C-B Martins [29: 8] 7.21 7.00 0.21 

bk-2C-B P17 7.59 7.43 0.16 

bk-2C-B Power et al.[38: 3] 7.60  7.44 0.16 

DOB Heim [15: 35] 7.21 7.04 0.17 

DOB Martins [29: 9] 7.20 7.01 0.19 

25B-NBOMe B1 7.19 7.02 0.17 

25B-NBOMe Hansen et al.[37: 2a] 7.17 7.01 0.16 

Io
d

o
 

2C-I P7 7.33 6.90 0.43 

25I-NBOMe B3 7.32 6.90 0.42 

25I-NBOMe Hansen et al.[37: 1a] 7.32 6.91 0.41 

25I-NBOH B4 7.32 6.89 0.43 

25I-NBOH Hansen et al.[37: 1b] 7.30 6.88 0.42 

25I-NBOH Heim [15: 235] 7.32 6.90 0.42 

25I-NBMD B5 7.25 6.84 0.41 

25I-NBMD Hansen et al.[37: 1d] 7.30 6.88 0.42 

DOI Heim [15: 36] 7.34 6.91 0.43 

25I-NBOMe imine IM2 7.28 6.87 0.41 

 

Figure 5: 1H NMR spectra of 4-X family analytes P6b: 2C-C; B1: 25B-NBOMe; P17: bk-2C-B; P7: 2C-I. 
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P17: bk-2C-B is the only β-oxo1 phenylethanamine we have 

seen and our only analyte of this kind. In contrast, a plethora of 

grey-market β-oxo-phenylpropamines and higher homologues 

(“cathinones”) are on offer, typically as secondary or cyclic 

amines. 

The effects of the β-oxo group is readily seen in Figure 5. The 

highly conserved pair of 2H α- and β-multiplets seen in the 

other three spectra are replaced by a 2H pseudo-quartet from 

the α methylene protons, while the 3H aminium peak shows a 

trace of triplet symmetry. This suggests possible coupling, as 

reported in an unattributed analysis of 1H, 13C, and 2-D 

spectra.[39] A similar pseudo-quartet appears in the 

supplementary data of the analysis by Power et al.[38] The aryl 

methoxy peaks are shifted noticeably downfield and the aryl 

hydrogen peaks even more so though their separation is not 

appreciably effected (see Table 6). 

1H NMR spectra of two additional analogues of 25I-NBOMe are 

shown in Figure 6. The NBOMe moiety is replaced by a 2-

hydroxybenzyl group (NBOH) in analyte B4: 25I-NBOH, and by 

                                                                 
1 Though the prefix bk- for beta- or β-keto is widely used, oxo is now the 

preferred IUPAC prefix and keto is deprecated. 

2H-(1,3-benzodioxol-4-yl)methyl group (NBMD) in analyte 

B5: 25I-NBMD.2 

Comparing the B3: 25I-NBOMe and B4: 25I-NBOH spectra, in 

the latter only two 3H singlet methoxy peaks are present, 

reflecting the loss of the benzyl methoxy group; the 

characteristic multiplet pattern of the four benzyl protons is 

shifted upfield about 0.13 ppm on average; and in place of a 

broad 2H aminium peak at 9.15 ppm we found a very broad 3H 

peak spanning ca. 2 ppm at 9.22 ppm (not discernable in Figure 

6; see Table 3). This signal may result from intramolecular 

hydrogen bonding and proton exchange between the phenolic 

ortho-hydroxyl group of the NBOH moiety and the protonated 

amine, perhaps facilitated by the hydrogen-bond accepting 

solvent. However, both Heim[15] and Hansen[16,37] report a 

discrete and sharp phenolic peak in DMSO-d6. 

The spectrum of analyte B5: 25I-NBMD is markedly different 

from its NBOMe and NBOH analogues. It appears to be the only 

N-benzyl analyte formulated as the free amine rather than an 

aminium salt, consistent with the presence of a 1H upfield peak 

                                                                 
2 NBMD stems from N-BenzylMethyleneDioxy. IUPAC has ruled methylenedioxy 

unacceptably ambiguous (is it –OCH2O– or –CH2OO– ?) and deprecated. 

 

Figure 6: 1H NMR spectra of 4-X family analytes B2: 25C-NBOMe; B1: 25B-NBOMe; B3: 25I-NBOMe; B4: 25I-NBOH; B5: 25I-NBMD. 
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at 1.98 ppm, the absence of any 2H downfield peak, and the 

substantial upfield shift of the entire spectrum (cf. P1 as the 

free base vs. the hydrochloride salt in Figure 4). Also, the α- and 

β-methylene groups have coalesced into a 4H multiplet, the 

familiar splitting pattern of the NBOMe/NBOH benzyl protons is 

absent, and a 2H singlet from the benzodioxole methylene 

group is seen at 5.96 ppm. 

1H NMR spectra have been reported for 2C-B in DMSO-d6,[29] in 

CDCl3,[15,40] in CD3OD,[41–43] and in D2O[31,32,42,44]; for 2C-C in 

CDCl3 
[45,46] and in D2O[31,46]; for 2C-I in CDCl3[43] and in 

D2O[31,32,47,48]; for bk-2C-B in DMSO-d6
[38,39] and in CDCl3.[49] 

1H NMR spectra have been reported for 25B-NBOMe in 

DMSO-d6
[16,37] and in CDCl3[15,50]; for 25C-NBOMe in DMSO-d6,[37] 

in CDCl3,[51] and in CD3OD[16,52]; for 25I-NBOMe in 

DMSO-d6,[16,37,53] in CDCl3,
[15,54–56] and in CD3OD[57]; for 25I-NBOH 

in DMSO-d6
[15,16,37]; for 25I-NBMD in DMSO-d6.[16,37] 

The 4-R family: 4-alkyl-2,5-dimethoxyphenyl pattern 

Five primary amine analytes (Figure 7) and four secondary 

amine analytes (Figure 8) share the 4-alkyl-2,5-

dimethoxyphenyl pattern where the 4-alkyl substituent is 

methyl (P2: 2C-D, P16: BOD, B6: 25D-NBOMe), ethyl (P3: 2C-E, 

B7: 25E-NBOMe), propyl (P4: 2C-P), or isopropyl (P5: 2C-IP, 

B8: 25IP-NBOMe). Analyte B9: 25G-NBOMe is the 3,4-dimethyl 

homologue of B6. Fortunately, the 4-alkyl substitution 

introduces additional peaks while leaving the core (P1: 2C-H) 

spectrum essentially undisturbed, simplifying analysis. 

In analyte P2: 2C-D the line broadening of the 4-methyl peak 

(apparent 3H singlet at 2.13 ppm arises from long range 

coupling to the ortho-hydrogen at ring position 3, which shows 

similar line broadening. Analogous coupling is seen in the β-

methoxy analogue P16: BOD, and the NBOMe analogue 

B6: NBOMe. The coupling constants are consistent with the 

published value of 0.7 Hz.[58] 

 

Figure 7: 1H NMR spectra of 4-R family analytes P2: 2C-D; P16: BOD; P3: 2C-E; P4: 2C-P; P4: 2C-P in DMF-d7; P5: 2C-IP. 
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In the P3: 2C-E spectrum, the classical ethyl group splitting 

pattern is seen: a 2H quartet and 3H triplet. Similarly, the 

isopropyl group of P5: 2C-IP is readily identified by the 

characteristic methine proton 1H heptet signal and the 6H 

doublet signal from the adjacent, isochronous methyl groups. 

The DMSO-d6 solvent signal at 2.50 ppm hinders interpretation 

of the P4: 2C-P spectrum by obscuring the expected 2H triplet 

of the propyl group while the corresponding 2H multiplet and 

3H triplet are clearly present. A second spectrum, acquired in 

deuterated N,N-dimethylformamide (DMF-d7), allows for an 

unobstructed view of the propyl multiplet. 

Interestingly, though the 3H triplet of the terminal methyl 

moiety appears typical, much like the corresponding peak seen 

in P3: 2C-E, the splitting pattern of the methylene protons is 

more complex. The methylene group alpha to the ring does not 

split as a simple first-order triplet, nor does the methylene 

group beta to the ring split as a first-order hextet. The same 

divergence from simple first-order splitting is seen in the other 

propyl-substituted analytes. 

1H NMR spectra have been reported for 2C-D in CDCl3; for the 

regioisomer iso-2C-D1 in CDCl3 and in CD3OD[59]; for 2C-E in 

DMSO-d6
[60] and in D2O[61]; for 2C-P in D2O[48]; for BOD in 

CDCl3[62] and in D2O.[63] We have not found 1H NMR spectra 

reported for 2C-IP or 25IP-NBOMe. 

                                                                 
1 iso-2C-D: 2-(2,4-dimethoxy-3-methylphenyl)ethan-1-amine. 

1H NMR spectra have been reported for 25D-NBOMe in 

DMSO-d6
[16,37,64]; for 25E-NBOMe in DMSO-d6

[16,37,64] and in 

CDCl3[65]; for 25G-NBOMe in DMSO-d6.[64] 

  

 

Figure 8: 1H NMR spectra of B6: 25D-NBOMe; B7: 25E-NBOMe; B8: 25IP-NBOMe; B9: 25G-NBOMe. 
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The 4-RS family: 4-alkylsulfanyl-2,5-dimethoxyphenyl pattern 

The 4-RS family analytes (Figure 9) are sulfide1 analogues of 4-R 

family compounds, the result of interposing a sulfur atom 

between the phenyl ring and 4-alkyl substituent. Four of the 

analytes are members of this family, each a primary amine, 

where the alkyl substituent is methylsulfanyl (P8: 2C-T), 

ethylsulfanyl (P9: 2C-T-2) isopropylsulfanyl (P10: 2C-T-4), or 

propylsulfanyl (P11: 2C-T-7). 

The splitting pattern arising from a particular alkyl substituent 

is the same in either family, e.g. 4-ethyl and 4-ethylsulfanyl. 

However, the alkyl-peak shifts of the 4-RS compounds are 

further downfield. 

We have not seen the corresponding ether analogous on the 

grey market, the 4-alkoxy-2,5-dimethoxyphenylethanamine 

series. They have received scant mention in the literature — 

Shulgin includes only one in PiHKAL,[3] an unenthusiastic 

account of 2C-O-4.2 

Cheng and Castagnoli report shifts between 3.97 and 3.78 ppm 

for the three methoxy substituents of 2C-O,3  the 4-oxy 

analogue of 2C-T, a substantial and indicative downfield 

shift.[66] 

                                                                 
1 Formerly thioether. 
2 2C-O-4: 2-[2,5-dimethoxy-4-(propan-2-yloxy)phenyl]ethan-1-amine. 
3 2C-O or 2,4,5-TMPEA: 2-(2,4,5-trimethoxyphenyl)ethan-1-amine. 

1H NMR spectra have been reported for 2C-T-2 in CDCl3,[67] in 

CD3OD,[43] and in D2O[48,68]; for 2C-T-4 in CDCl3,[69] and in D2O[48]; 

for 2C-T-7 in CDCl3,[69] in CD3OD,[43] and in D2O.[48,70] 

We have not found 1H NMR spectra reported for 2C-T. The 
1H NMR spectrum has been reported for the α-methyl 

homologue4 of 2C-T in D2O,[48] and for the α-methyl, α-ethyl, 

and N-methyl homologues of the 2C-T series (and the Ψ-2C-T 

series5) in D2O.[71] Trachsel has synthesized additional members 

of the 2C-T series and has reported their spectra in D2O.[72] 

 

                                                                 
4 ALEPH or DOT: 1-[2,5-dimethoxy-4-(methylsulfanyl)phenyl]propan-2-amine. 
5 Alexander T. Shulgin introduced the prefix Ψ (Psi) as a notation for the 2,4,6-

regioisomer of the corresponding 2,4,5-substituted compound. 

 

Figure 9: 1H NMR spectra of 4-RS family analytes P8: 2C-T; P9: 2C-T-2; P10: 2C-T-4; P11: 2C-T-7. 
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The 4-RO family: 4-alk[en]yloxy-3,5-dimethoxyphenyl pattern 

Turning from the 2,5- to the 3,5-dimethoxy substitution 

pattern, the 4-RO family compounds are analogues of the 

natural product mescaline, 1  sometimes called “scalines.”[73] 

Being a controlled substance in Canada, we were unable to 

include mescaline among our analytes. However, the NBOMe 

analogue of mescaline is not controlled and was obtained 

instead. 

Six of the analytes belong to the 4-RO family, having a para-

substituent of methoxy (B10: M-NBOMe), ethoxy (P12: 

Escaline), propoxy (P13a, P13b: Proscaline), allyloxy (P14: AL), 

and methallyloxy (P15: MAL). 2 

                                                                 
1 Mescaline or M: 2-(3,4,5-trimethoxyphenyl)ethan-1-amine. 
2 While allyloxy remains acceptable in general, prop-2-en-1-yloxy is the PIN. 

However, methallyloxy and methylallyloxy are deprecated; (2-methylprop-2-
en-1-yl)oxy is the PIN. We’ve opted for brevity over dogma in this case. 

As noted previously, the symmetrical ring substitution of the 4-

RO compounds is evident from the 6H methoxy and 2H aryl 

proton peaks ca. 3.75 and 6.56 ppm, respectively. Here, as with 

the 4-R family, para-substitution leaves the spectrum 

otherwise undisturbed. 

1H NMR spectra have been reported for mescaline in 

DMSO-d6
[29,74]

 and in CDCl3[75–77]; for proscaline in DMSO-d6.[53] 

We have not found 1H NMR spectra reported for M-NBOMe, 

escaline, AL, or MAL. 1H NMR spectra have been reported for 

the α-methyl homologues of proscaline, 3  AL,4  and MAL5  in 

D2O.[78] 1H NMR spectra have been reported for TMA,6 the α-

                                                                 
3 3C-P: 1-(3,5-dimethoxy-4-propoxyphenyl)propan-2-amine. 
4 3C-AL: 1-[3,5-dimethoxy-4-(prop-2-en-1-yloxy)phenyl]propan-2-amine. 
5 3C-MAL: 1-{3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl}propan-2-

amine. 
6 TMA: 1-(3,4,5-trimethoxyphenyl)propan-2-amine. 

 

Figure 10: 1H NMR spectra of 4-RO family analytes B10: M-NBOMe; P12: Escaline; P13a, P13b: Proscaline; P14: AL; P15: MAL. 
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methyl homologue of mescaline, and for TMA-21 and TMA-6,2 

two regioisomers of interest, in CD3OD.[79] 

Recently, a regioisomer of mescaline, isomescaline, 3  was 

prepared and the 1H NMR spectrum in DMSO-d6 reported by 

Martins.[30] Reportedly without activity, it seems an unlikely 

candidate for the grey market.[3] 

The NBOMe and NBOH splitting pattern 

The N-benzyl protons of the NBOMe and NBOH analytes 

resonate with a distinctive splitting pattern and at highly 

consistent shifts of 7.5–7.0 ppm (see Table 4). The NBOMe 

splitting pattern is consistent with a largely first-order ABCD 

spin system having six coupling constants: three ortho (3J3′4′, 
3J4′5′, 3J5′6′ ≈ 8.0 Hz), two meta (4J3′5′, 4J4′6′ ≈ 2.5 Hz), and one para 

(5J3′6′ ≈ 0). The aryl region of the B1: 25B-NBOMe spectrum and 

the first-order J-tree analysis is shown in Figure 11. 

Each of the outer two protons (3’ and 6′) is ortho- and meta-

coupled to the inner protons (4′ and 5’) and appears as a 

doublet of doublets (dd). The two inner protons are also ortho-

coupled to each other, producing a further split into a doublet 

                                                                 
1 TMA-2: 1-(2,4,5-trimethoxyphenyl)propan-2-amine. 
2 TMA-6: 1-(2,4,6-trimethoxyphenyl)propan-2-amine. 
3 Isomescaline or IM: 2-(2,3,4-trimethoxyphenyl)ethan-1-amine. 

of doublet of doublets (ddd). Because the ortho-coupling 

constants are quite close — less than 1 Hz apart — a ddd 

coupling may appear as a triplet of doublets (td). There is no 

apparent para-coupling between the outer protons. 

Interestingly, both the shifts and the ordering of the benzyl 

peaks may depend on the solvent. Published NBOMe spectra 

acquired in DMSO-d6 align quite closely with our own and 

retain the 6′, 4′, 3′, 5′ multiplet sequence.[37 supp. data] In contrast, 

for a spectrum of 25C-NBOMe acquired in CDCl3 the overall 

splitting pattern is preserved but the ordering is not, becoming 

6′, 4′, 5′, 3′.[51] Multiplets 3′ and 5′ have traded places. 

  

 

Figure 11: The aryl-proton region of B1: 25B-NBOMe displays the characteristic splitting pattern (with J-tree) seen in NBOMe and NBOH spectra. 
Phenyl proton singlets are in grey, benzyl proton multiplets are in black, and deconvoluted component peaks are in blue. 
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A ubiquitous, unanticipated peak at 8.15 ppm 

A characteristic peak was noted in the spectrum for 9 of the 10 

N-benzyl analytes (Figure 12). We initially suspected the sharp 

singlet at 8.15 ppm was the signal from residual amounts of the 

benzaldehyde precursors. However, literature shifts were 

notable more downfield than anticipated, appearing around 

10.2-10.3 ppm.[80,81] 

Following the synthetic route outlined by Casale and Hays 

(Scheme 1), we wondered if the peak could be coming from 

traces of the unreduced imine intermediate of the reductive 

amination of the parent phenethylamine with the respective 

benzaldehyde.[82] Kappe et al. reported a singlet at 8.15 ppm in 

the spectrum of the unsubstituted imine (E)-1-phenyl-N-(2-

phenylethyl)methanimine (1), which seemed promising.[83] 

To test this hypothesis we acquired the 1H NMR spectra of two 

commercially available N-benzylidene phenylethanamines: 

IM1: 25H-NBOMe imine (2) and IM2: 25I-NBOMe imine (3). 

The spectra of the reference did not conclusively match the 

observed impurities for the respective compounds. The imine 

analog of 25H-NBOMe, IM1, gave a singlet at 8.56 ppm; IM2, 

the imine analog of 25I-NBOMe, a singlet at 8.54 ppm. The 

distinct shifts from the observed 8.13–8.15 ppm shift made the 

imine an unlikely candidate. Potentials precursors 2-

methoxybenzaldehyde, 1,3-benzodioxole-4-carbaldehyde, the 

unsubstituted primary phenylethanamines, and residual 

solvents were each investigated but proved unsupported by 

  

Figure 12: A ubiquitous, unanticipated peak at 8.15 ppm observed in the 1H NMR spectra of NBOMe and NBOH analytes. 

  

Scheme 1: Synthetic route to N-benzyl phenylethanamines via the N-benzylidene, following Casale and Hays.[82] 
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experimental, predicted, or literature 1H NMR shift values. 

Though this peak might indeed be an artifact of Scheme 1 we 

did not pursue this line any further. 

The spectrum of B5: 25I-NBMD is unique among the N-benzyl 

analytes in having no peak at 8.15 ppm. We believe B5 is also 

the only free base N-benzyl analyte, having a broad upfield 

amine peak and no downfield aminium peak. Our analytes 

include primary, secondary, and tertiary amines; the peak at 

8.15 ppm is present only in the spectra of protonated 

secondary amines. 

In each case the peak’s shift is precisely 8.15 ppm, while the 

shift the aminium peaks differ by as much as 0.18 ppm. This 

seems to rule out the peaks being somehow coupled. No 

correlation was found between the area of the two peaks, 

further evidence against coupling. 

Approaching the problem from another angle we searched the 

literature for peaks of shift 8.15 ppm. Robertson et al.[84] report 

conditions where the formyl proton of dimethylformamide 

(DMF) resonates as a sharp singlet at 8.15 ppm in DMSO-d6. 

Though reporting a shift of ca. 7.95 ppm in free DMF, they 

found the formyl proton signal moves downfield to 8.15 ppm 

when the amine lone pair forms a hydrogen bond and the 

quaternary amine orbitals undergo sp3 hybridization. With the 

loss of the nitrogen π-orbital, the delocalized bonding found in 

free DMF is lost (see Figure 15), rotation about the C–N bond is 

no longer inhibited, and the amine methyl groups become 

equivalent, resonating as a 6H singlet at 2.54 ppm. 

Though the majority of the spectra stacked in Figure 12 indeed 

include a peak at 2.54 ppm, the protonated DMF theory would 

seem to demand the area of the upfield dimethyl peak be six 

times the area of the downfield formyl peak. Tantalizing but far 

from conclusive. A more satisfactory explanation must await 

further investigation. 

We have not found 1H NMR spectra reported for 25H-NBOMe 

 

Figure 13: 1H NMR spectra of P1: 2C-H as the free base and the hydrochloride salt; IM1: 25H-NBOMe imine; IM2: 25I-NBOMe imine. 

 
  

1 2 3 

Figure 14: Structure of N-benzylidene phenylethanamines 

 

Figure 15: Dimethylformamide resonance structures. 
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imine or 25I-NBOMe imine. Spectra in CDCl3 are available from 

the vendor, Cayman Chemical. 

Conclusion 

We found only one clear case of significant misrepresentation 

among our analytes. Analyte P6a was sold and labelled as 2C-C, 

a claim unsupported by the 1H NMR spectrum which suggests 

2C-E. In addition, the spectrum of P6a aligns closely with that 

of P3: 2C-E, purchased from the same vendor around the same 

time. It seems likely analyte P6a was mislabelled by the vendor. 

Fortunately, because 2C-C and 2C-E are active at comparable 

levels[3] this did not constitute a public health emergency as 

happened in 2009, for example, when the extremely potent 

and long-acting compound bromo-dragonFLY1 was sold as 2C-

B-FLY,2 an order of magnitude less active.[21,85] Furthermore, 

the vendor of the mislabelled 2C-E closed several years ago. 

On reflection — and the future of open, “legitimate” research 

“Experience is essential and to become really 

proficient in this area, you need to critically 

examine literally thousands of spectra.” [86] 

When we began this investigation our knowledge of NMR was 

limited, as was our experience interpreting spectra. The 

sophisticated and highly regarded Mestrelab software may, in 

retrospect, have inspired unrealistic expectations that 

interpreting spectra would be simple, even intuitive. 

Remarkably, as our investigation progressed so too did our 

intuition. As a non-traditional, self-directed approach to the 

study of NMR we found it highly effective. As a potential 

technique for harm reduction we concede “walk-in” 1H NMR 

analysis is unlikely to supplant spot-colour testing any time 

soon. 

The legal status of phenylethanamines in Canada has long been 

clear.[36] A terse notice released 1 August 2015 may muddy the 

water. Health Canada proposes to add “2C-phenethylamines 

and their salts, derivatives, and isomers, and the salts of their 

derivatives and isomers” to Schedule III of the Controlled Drugs 

and Substances Act (CDSA).[87,88] 

What that means is far from clear — no elaboration is provided 

and the CDSA is equally unhelpful, absent any definition for 2C-

phenethylamine, salt, derivative, or isomer. The legal status of a 

substance may be contested when made woolly, even if by 

design — what fresh grey area is this? Unfortunately, the 

                                                                 
1 Bromo-dragonFLY: 1-(8-bromobenzo[1,2-b:4,5-b′]difuran-4-yl)propan-2-

amine. 
2 2C-B-FLY: 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]difuran-4-yl)

ethan-1-amine. 

inevitable consequences of further barriers to open, legitimate 

research are well documented.[89–95] 
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