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Letter to the Editor

Lateral Gene Transfer of Foreign DNA:
The Missing Link Between Cannabis
Psychosis and Schizophrenia

To The Editor:

The latest intriguing news on Schizophrenia and
the Cannabinoid Receptor Type 1 (CB1) by Leroy et al.
[2001] corroborates Moreau de Tour’s long held hypoth-
esis [1845] that cannabis and its pathophysiological
effects [Fritzsche, 2002] lie at the root of this psychia-
tric disorder. But how can they account for the mutation
(G-A) on CB1 being less frequent in cannabis abusing
schizophrenic patients, compared to non-substance
abusing patients? Does the silent point mutation—
which has in fact no functional consequence for CB1 at
the protein level—play an unexpected, protective role
at the genetic level? Or does the polymorphism point to
a schizophrenic risk factor other than cannabis abuse in
terms of genetic instability? According to the authors
[Leroy et al., 2001] ‘‘this marker could be associated
with a nearby functional variation of the gene, which
remains to be found’’—an important conclusion that
deserves further comments (Fig. 1).

Cannabinoid transmission is closely related to dopa-
minergic transmission, but the function of CB1 is not
limited to the inhibitory mode of G protein coupled
action, as mentioned by Leroy et al. [2001]. Depending
on a mutual co-activation between CB1 and dopamine
D2, receptor transduction hinges, rather, on the phy-
siological balance between the inhibitory (G-i) and the
stimulatory (G-s) mode of CB1 metabotropic action
[Glass and Felder, 1997] (Fig. 2).

Cannabinoid receptors can be found all over the basal
ganglia, although some preference may exist for the
GABAergic direct pathway expressing dopamine D1,
substance P, and dynorphin A—an area to which struc-
tural schizophrenic changes typically localize. One
important neurophysiological constraint of the striatal
GABAergic neurons is their bistable membrane poten-
tial, allowing for either a constrictive down-state or a

potentiated up-state at the dynamic ensemble. A switch
to the up-state could thus be induced by coincident
CB1-D2 activity, known to augment the concentration
of cAMP through G-s [Glass and Felder, 1997]. This
dual mode of cannabinoid transmission is reflected
at the genetic and phenotypic level in the context of
schizophrenic pathophysiology (see Fig. 2).

It is well known that dopaminergic psychostimulants
produce paranoid delusions indistinguishable from
schizophrenia. As molecular chemistry became more
sophisticated, the interaction of drugs with multiple
receptor subtypes indeed pointed to similar dopami-
nergic binding pockets in different G-protein coupled
receptors. What was not appreciated until recently
[Fritzsche, 2001] was the different genetic relatedness
between CB1 and the dopamine D1 and D2 receptors,
respectively. While a short sequence of the seventh
transmembrane loop being essential for (Gi) transduc-
tion shares DNA and protein homology between CB1
and the dopamine D2 receptor (characterized as a
type II G-i protein coupled receptor), a much large
portion of the CB1 peptide is similar to D1 (being a type
I G-s protein coupled receptor).

Cannabis intoxication (through CB1 receptor acti-
vation), as well as schizophrenia, exhibits phenotypic
changes in the neurotransmitter profile that are
surprisingly similar to CB1 receptor knockout mice
[Fritzsche, 2001]. This paradoxical effect cannot be
derived directly from a putative CB1 receptor dysfunc-
tion. In analogy to prefrontal D1 activation [Goldman-
Rakic et al., 2000], it appears, rather, to be related to
a bell-shaped range of CB1-D2 co-activation, whose
dysbalance (or loss of presynaptic G-s transduction)
elevates dynorphin A in either case (see Fig. 2).

Dynorphin A is a potent hallucinogenic kappa-opiate
receptor agonist, known to induce symptoms of de-
personalization and loss of self-control, as well as dis-
turbances in the perception of time. When naloxone
(Narcan1), a kappa opiate antagonist, was tested in
schizophrenic patients, their hallucinations disap-
peared promptly. After five minutes, one patient
reported ‘‘complete silence within his head’’, and two
hours after the naloxone injection another patient with
paranoid visual hallucinations noted that the phantom
‘‘had left her for the first time in several weeks’’ [Gunne
et al., 1977] Rather than the slow therapeutic effects of
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D2 antagonists, such a rapid abolishment of hallucina-
tions indicates a more direct effect on the pathophysio-
logical mechanism in schizophrenia [Terenius, 2000].

To elucidate a putative schizophrenic dysfunction of
CB1 [Dean et al., 2001] at the 50 end, Leroy and collea-
gues are definitely on the right track, yet in the wrong
direction. For it is at the 30 end where a phylogenetic
trace of pre-inserted DNA originating from B. burg-
dorferi [Fraser et al., 1997] might shed new light on the
etiology of schizophrenia [Fritzsche, 2001] (Fig. 3).

In comparison to the adjacent control sequences
without microbial insertions, genetic exposure by
B. burgdorferihas furthermore given rise to a high
number of translocations across the human genome
whose chromosomal distribution is not entirely random
(data in preparation). Chromosome 6 harbors most
multiple translocations clustering across 6q14-q24
exactly within the candidate region for schizophrenia
on 6q13-q25 [Cao et al., 1997; Martinez et al., 1999;
Levinson et al., 2000], in close proximity to their
putative original spread from 6q14. One template
originating from B. burgdorferi nucleotides even coin-
cides with the highest lod score for schizophrenia at

6q21 [Cao et al., 1997]. CB1 is located on the candidate
region for schizophrenia on 6q14, which has been
correlated to a translocation breakpoint in familial
schizophrenia [Holland and Gosden, 1990] and a dele-
tion responsible for neurodevelopmental abnormali-
ties, with enlarged cerebral ventricles and abnormal
dermatoglyphics [Kumar et al., 1997].

Fig. 1. Cannabis intoxication versus genetic variation of CB1 induced
by Borrelia burgdorferi DNA. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Fig. 2. Top: Owing to the functional overlap between the dopamine and
the cannabionid systems at the molecular and genetic level, balanced
coactivation of both D2 and CB1 stimulates the adenylatecyclase through
the 3rd transmembrane G-s protein coupled loop, whereas overactivation of
D2 or CB1 through the 7th transmembrane G-i coupled loop exerts an
inhibitory effect on the release of GABA into the synaptic cleft. Bottom:
Dysbalanced D2-CB1 receptor coactivation or genetic expression is
supposed to diminish the Gs-protein coupled release of GABA from
presynaptic striatal neurons. Reduced activation of the postsynaptic GABA
receptor subsequently dysbalances the neuron in favor of the Gs-coupled
D1 input which will in turn increase the release of substance P (SP) and
dynorphin (Dyn) in CB1 knock-out mice and schizophrenic patients. Hence,
by blocking dynorphin activity at the kappa opiate receptor, naloxone can
immediately antagonize dynorphin A mediated psychotic effects in at least
a subgroup of schizophrenia. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Prenatal exposure to foreign DNA, which has led to
these multiple germ-line mutations during phylogeny,
is likely to reoccur during ontogeny, posing a risk to the
unborn of developing schizophrenia later in life. If re-
combination and mismatch-repair mutations reoccur
within the 30 ‘‘hotspot’’ for pathology [Conne et al.,
2000], they will disturb the genetic expression of CB1 in
exactly those areas [Glass et al., 1997] that mirror the
structural and functional [Silbersweig et al., 1995;
Schultz and Andreasen, 1999] brain abnormalities in
schizophrenia.

An early prenatal event interfering with neuronal
migration [Weinberger, 1995] development of derma-
toglyphics [Rosa et al., 2000] and ventricles [Reveley
et al., 1982] has been suggested to underlie the
consistently reported pattern of cellular disarray in
schizophrenic brains [Weinberger, 1995], a hypothesis
that contrasts with the frequent reports correlating
schizophrenia to third-trimester pregnancy and birth
complications due to hypoxic brain damage. The see-
mingly contradictory findings, however, can be accoun-
ted for, as CB1 induces both neuronal migration [Song
and Zhong, 2000] and hypoxic resistance to ischemic
challenge [Jin et al., 2000].

The spirochetal template P115 identified on CB1, on
the other hand, exhibits extensive phylogenetic homol-
ogy to the human chromosome associated protein
hCAP. Being involved in chromosomal replication,
accidental recombination between P115 and hCAP at
the blastular stage [Silver et al., 1995] might interfere

with the replication of a selected number of embryonic
cells. In addition to a dysfunctional genetic expression
of CB1, we would therefore expect minor chromatin
aberrations or non-lethal chromosomal disjunctions of a
mosaic distribution to be more likely associated with
schizophrenia. This is, in fact, the case. ‘‘Conforma-
tional changes’’ of leukocytic chromatin were reported
in nine out of ten schizophrenic patients by Issidorides
et al. [1975]. The association of the mosaic karyotype of
Turner syndrome to schizophrenia, recently reported
by Scutt et al. [2001] in this journal is highly significant
[Prior et al., 2000; Kawanishi et al., 1997]. Hence,
compared to the sequence without mutation, the vari-
ation referred to by Leroy et al. [2001] on CB1 (whose
underlying template shares a specific nucleotide
homology to the B. burgdorferi DNA ligase associated
virulence factor: AE001157; OMIM: 2002) represents a
genetic coincidence that might not be entirely casual.

Cumulative evidence appears to establish that
schizophrenic birth excesses are limited to those areas
that are endemic for B. burgdorferi transmitting ticks
and, contrary to current belief, schizophrenia does not
occur at a constant, global rate. South of the Wallace
Line which limits the spread of Ixodes ticks by
mammals into New Guinea and Australia [Sonenshine,
1989], seasonal schizophrenic trends are, compared to
the Northern Hemisphere, less significant [McGrath
and Welham, 1999]. Singapore, which is still a non-
endemic area for Ixodes ticks [Sonenshine, 1989] and
Borrelia burgdorferi [Goh et al., 1996], exhibits no
schizophrenic birth excess at all [Parker et al., 2000]. In
the remote interior of New Guinea, from where neither
the presence of Ixodes ticks nor Lyme disease [Burkot
et al., 1997] has been reported, schizophrenia appears
to be non-existent [Dohan et al., 1984, Fritzsche et al.,
1990].

The Pacific Coast, New England, and Great Lakes
States score an approximately three times higher rate
of schizophrenia compared to other states in the USA
[Torrey and Bowler, 1990]. Moreover, schizophrenic
birth excesses are more pronounced in New England
and the Midwest than in the South [Torrey et al., 1977].
This trend, which has been remarkably consistent over
a long period, correlates with the geographical dis-
tribution of Ixodes ticks and Lyme disease [Barbour
and Fish, 1993; Brown, 1994; Dennis et al., 1998;
Piesman et al., 1999].
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