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Although the neurotransmitter dopamine plays a prominent role in the pathogenesis and
treatment of schizophrenia, the dopamine hypothesis of schizophrenia fails to explain all
aspects of this disorder. It is increasingly evident that the pathology of schizophrenia also
involves other neurotransmitter systems. Data from many streams of research including pre-
clinical and clinical pharmacology, treatment studies, post-mortem studies and neuroimaging
suggest an important role for the muscarinic cholinergic system in the pathophysiology of
schizophrenia. This review will focus on evidence that supports the hypothesis that the
muscarinic system is involved in the pathogenesis of schizophrenia and that muscarinic
receptors may represent promising novel targets for the treatment of this disorder.
Molecular Psychiatry (2007) 12, 232–246. doi:10.1038/sj.mp.4001924; published online 5 December 2006

Keywords: schizophrenia; acetylcholine; receptors; muscarinic; muscarinic agonists; muscarinic
antagonists; etiology

Introduction

Schizophrenia is a severe psychiatric illness with a
lifetime prevalence of B1% that imposes a huge toll
on patients, their families and public health services
worldwide. The diagnosis of schizophrenia is still
based on the presence of a typical symptom-con-
stellation and time course. The peak onset of
symptoms occurs most frequently in early adulthood
and in a significant number of cases the disorder is
life-long.

Delusions, hallucinations, disorganized speech,
grossly disorganized or catatonic behavior and nega-
tive symptoms (such as apathy, anhedonia and social
withdrawal) constitute the core symptoms of schizo-
phrenia. These core clinical symptoms of schizo-
phrenia are frequently complicated by cognitive
deficits, mainly in the areas of attention, memory,
executive functioning and intelligence1,2 and the
presence of affective disturbances.3 Although nega-
tive and cognitive symptoms markedly impact on the
functional outcome in schizophrenia,4 they do not
respond well to existing treatments. Therefore, the
treatment of negative and cognitive symptoms in
schizophrenia is a pressing unmet need.

Neuropsychopharmacological studies have focused
on the role of different neurotransmitter systems in
schizophrenia and led to hypotheses as to the causes
of this disorder. The dopamine hypothesis of schizo-
phrenia (for a review see Carlsson5) is based on the
observation that stimulation of the endogenous
dopaminergic system with drugs such as ampheta-
mine frequently leads to transient psychotic symp-
toms. By contrast, blockade of the dopamine D2-
receptor with antipsychotic drugs leads to a reduction
of the positive symptoms of schizophrenia.6–8 From
this it has been concluded that overactive dopami-
nergic pathways in the central nervous system (CNS)
are a major contributor to the positive symptoms
associated with schizophrenia. This hypothesis has
been validated by recent neuroimaging data from
positron emission tomography (PET) and single
photon emission computed tomography (SPECT).
Studies have shown that unmedicated subjects
with schizophrenia release more dopamine after
stimulation with amphetamine than healthy con-
trols9–11 and that subjects with schizophrenia have a
higher fraction of dopamine D2 receptors occupied
by endogenous dopamine than normal controls.12

The consequences of a hyperdopaminergic state are
complex. In mice, a dopamine-excess in the striatum
results in working memory deficits as well as an
impact on dopamine levels, dopamine turnover
and activation of dopamine D1-receptors in the
prefrontal cortex.13,14 Thus, there is still a significant
amount of knowledge required to fully understand
the outcomes of an overactive dopaminergic system in
the human CNS.
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Despite these data, the dopamine hypothesis
cannot entirely explain the whole range of psycho-
pathology associated with schizophrenia. Therefore,
research has also focused on the role of other
neurotransmitter systems such as glutamate,15,16 g-
amino-n-butyric acid (GABA),17 serotonin18 and nico-
tinic acetylcholine19,20 in schizophrenia. A growing
body of evidence also suggests that changes in
muscarinic cholinergic neurotransmission contribute
to the pathology of schizophrenia. Muscarinic choli-
nergic neurotransmission is a part of cholinergic
neurotransmission, which constitutes a crucial factor
for different cognitive processes including sensory
perception, memory and learning. It is therefore
attractive to posit that these receptors are involved
in the deficits in cognition and reality-orientation
associated with psychiatric disorders such as schizo-
phrenia. This review focuses on the hypothesis that
the muscarinic receptor system plays a role in the
pathophysiology of schizophrenia.

Acetylcholine

Since the beginning of the last century, acetylcholine
has been recognized as a neurotransmitter both in the
CNS as well as the peripheral nervous system.21

Acetylcholine is synthesized in neurons from acetyl-
CoA and choline in a reaction catalyzed by the
enzyme choline acetyltransferase, an enzyme that is
almost exclusively located in high concentrations in
cholinergic neurons. Glucose and citrate serve as a
source for acetyl-CoA, whereas choline is transported
into the brain from the blood stream. Choline is also
recycled after acetylcholine hydrolysis in the synaptic
cleft by choline transporters on neurons and neuro-
glia.22 Despite these two mechanisms, the availability
of choline appears to be the rate-limiting step of
acetylcholine synthesis. After synthesis, acetylcho-
line is stored in synaptic vesicles, from where it is
released into the synaptic cleft following the activa-
tion of the neuron. In the synaptic cleft, acetylcholine
either binds to pre- and post-synaptic receptors (see
below) or is inactivated through hydrolysis by the
enzyme cholinesterase. Once acetylcholine is hydro-
lyzed, choline is transported through a specific
choline transporter back into the pre-synaptic neuron,
where it is again synthesized into acetylcholine.
Different substances (e.g. organophosphates, physos-
tigmine, acetylcholinesterase inhibitors) inhibit the
enzymatic inactivation of acetylcholine in the synap-
tic cleft and thus increase the concentration of
acetylcholine.

In the peripheral nervous system, acetylcholine is
the neurotransmitter of the autonomic ganglia and the
neuromuscular junction. In the CNS, there are both
cholinergic interneurons and cholinergic projection
neurons. Cholinergic interneurons are mainly located
in the striatum and nucleus accumbens, whereas most
cholinergic projection neurons are located in the
basal forebrain and the brainstem. Based on their
anatomical location and pattern of innervation, the

following two principal cholinergic cell groups can be
differentiated:23–25

� Basal forebrain cholinergic neurons: these cell
groups are located in the medial septum, diagonal
band of Broca and the nucleus basalis of Meynert,
and innervate primarily the cerebral cortex and
hippocampus. The innervation of the cortex fol-
lows a topographic distribution. The highest den-
sities of cholinergic innervation are found in the
limbic system.

� Brainstem cholinergic neurons: these neurons can
be found in the laterodorsal and pedunculopontine
tegmental nuclei and project primarily to the
midbrain and brainstem.

Cholinergic neurotransmission
Cholinergic neurotransmission plays a crucial role in
a variety of CNS functions including sensory percep-
tion, motor function, cognitive processing, memory,
arousal, attention, sleep, nociception, motivation,
reward, mood and psychosis. Besides its activity in
the CNS, acetylcholine is also involved in different
peripheral functions such as heart rate, blood flow,
gastrointestinal tract motility, sweat production and
smooth muscle activity. Thus, targeting pharmaco-
logical treatments to the CNS without affecting the
peripheral functions of acetylcholine has been a
difficult challenge. In understanding the function of
acetylcholine in the brain, a special emphasis has
been placed on the importance of acetylcholine for
memory and learning26,27 with a focus on a specific
role of the cholinergic forebrain system in atten-
tion.21,28 A deficit in the function of the cholinergic
system is thus likely to result in cognitive impair-
ment. As neurocognitive impairment is frequently
associated with schizophrenia,1,2 and has been shown
to be worsened by exposure to muscarinic antago-
nists,29,30 an involvement of the cholinergic system in
the pathophysiology of this illness seems possible.

An increasing clarification of the effects of different
agonists and antagonists on the cholinergic system is
helping to better understand the mechanism of
cholinergic neurotransmission. This led to the initial
discovery of two families of acetylcholine receptors,
one of which binds muscarine (muscarinic receptors),
whereas the other binds nicotine (nicotinic recep-
tors).31 Muscarinic and nicotinic cholinergic recep-
tors differ with regards to their function as well as
their receptor structure. Nicotinic receptors are
composed of five subunits, made up from 17 different
subunits that can combine in various sequences, to
form a ligand-gated ion channel.32 The binding of
acetylcholine to the nicotinic receptor leads to an
activation of the ion channel, resulting in an inflow of
sodium ions,33,34 causing a rapid neural response. By
contrast, muscarinic receptors are G-protein coupled
receptors (see below).35 Activation of the muscarinic
receptors results in a slower but potentially more
sustained response than activation of nicotinic ion
channels.
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The understanding of the cholinergic system is
complicated by the fact that both nicotinic and
muscarinic cholinergic neurotransmission contribute
to its function.36 In addition, both systems do not
function in isolation but closely interact with
each other and with other neurotransmitter systems
including dopamine, glutamate and GABA.37–41 The
interactions between the muscarinic cholinergic
system and the nicotinic cholinergic system as well
as other neurotransmitter systems are complex and
bi-directional. Given the central role of dopamine in
schizophrenia, the interactions between the muscari-
nic cholinergic system and the dopaminergic system
will be reviewed in more detail.

Muscarinic receptors
Muscarinic cholinergic receptors belong to the super-
family of G-protein coupled receptors42–44 that either
activate or inhibit message transduction systems, thus
having an effect on the intracellular second messen-
gers such as cyclic AMP (cAMP) or inositol tripho-
sphate (IP3). Muscarinic receptors consist of seven
transmembrane-spanning domains and are composed
of 460–590 amino acids.45 The link between muscari-
nic receptors and the G-protein is thought to involve
the third intracellular domain of the receptor.
Muscarinic receptors can be found on cholinergic
and noncholinergic cells, both as auto- and hetero-
receptors.46–49

Molecular cloning strategies revealed five different
muscarinic receptors (M1–M5) that can be distin-
guished pharmacologically50 and that are encoded by
five different genes (m1–m5).51–54 All five subtypes of
the muscarinic receptors are found in the human
CNS, albeit in regionally varying concentrations.55,56

For example, the basal ganglia and cortex predomi-
nantly express M1 and M4 receptors, whereas M2

receptors predominate in the thalamus and brain-
stem.57–61 Overall, the M1, M3 and M4 subtype are
found abundantly in the brain,62 whereas the M5-
subtype is the least abundant.63,64 However, the M5-
subtype may be relevant to schizophrenia as it is
located in the brainstem and midbrain, where it has
an effect on dopamine release.65

Based on their functional activity, muscarinic re-
ceptors can be subdivided into two groups (M1, M3 and
M5 vs M2 and M4) with differing effects on the G
protein system. M1, M3 and M5 receptors are expressed
post-synaptically. Activation of M1, M3 and M5

muscarinic receptors results in an activation of
phospholipase C and mitogen-activated protein kinase
and increases intracellular concentrations of Ca2þ and
inositol triphosphate. By contrast, M2 and M4 receptors
are localized pre- and post–synaptically, where they
function as autoreceptors and heteroreceptors. M2

and M4 muscarinic receptors are negatively coupled
to adenylyl cyclase. Activation of the M2 and M4

muscarinic receptors decreases the formation of cAMP
and also reduces neurotransmitter release.66–69

A better understanding of the physiological role of
the different subtypes of the muscarinic receptors has

been gained from the study of knockout animals that
lack one or more of these receptors;70–75 for a review
see Bymaster et al.76). Depending on the muscarinic
receptor subtype involved, cholinergic activation can
have different effects on the peripheral and central
nervous function.

Role of muscarinic receptors in schizophrenia

The availability of specific tools to study the family
of muscarinic receptors has produced data to suggest
that these receptors may play a crucial role in
the pathology and treatment of schizophrenia. An
involvement of muscarinic cholinergic receptors in
schizophrenia is supported by data from post-mor-
tem, neuropsychopharmacological and neuroimaging
studies.

Post-mortem CNS studies
Evidence for an involvement of the muscarinic
cholinergic receptors in schizophrenia has been
gained from the study of CNS tissue obtained
postmortem. Few studies have so far assessed the
distribution of cholinergic neurons in schizophrenia.
A reduced number of cholinergic interneurons was
described in the ventral striatum in schizophre-
nia,77,78 but the distribution of mesopontine choliner-
gic neurons has yielded conflicting results.79–81

Analyzing the density of muscarinic receptors, an
early study using 3H-QNB reported a significant
reduction in the level of muscarinic receptor binding
in the frontal cortex of subjects with schizophrenia
compared to healthy controls.82 This result was not
replicated in a later study also using 3H-QNB, which
reported a reduced affinity and increased muscarinic
receptor number in orbitofrontal and medial frontal
cortex in medicated subjects with schizophrenia,
whereas unmedicated subjects with schizophrenia
did not differ from controls.83 These results were
interpreted to represent the result of long-term
treatment with antipsychotic drugs. The finding of
increased muscarinic receptor density was replicated
in the frontal cortex from subjects who had received
antipsychotic medication until death.84

More recent studies, using more selective radio-
ligands such as [3H]pirenzepine, suggested that levels
of muscarinic M1 and M4 receptors are decreased in
the caudate and putamen from subjects with schizo-
phrenia85,86 (see Table 1). Similar findings of de-
creased levels of muscarinic M1 and M4 receptors in
schizophrenia have been reported in the hippocam-
pus87 and the prefrontal cortex,88,89 but not in the
parietal cortex.89 Using the same cohort of subjects, no
changes were seen in the levels of muscarinic M2 and
M3 receptor protein and muscarinic M2 and M3 mRNA
in the prefrontal cortex.90 More recent data have
shown that decreased levels of [3H]pirenzepine bind-
ing in the hippocampus of subjects with schizophre-
nia are associated with decreased levels of M4-, but
not M1-receptor mRNA.91 Thus, at least in some areas
of the cortex, the decrease in muscarinic receptor
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levels in schizophrenia appears to be subtype-
specific.

Using AF-DX 384 as a marker of M2 and M4

muscarinic receptors, a study failed to find differ-
ences in the anterior cingulate cortex between
patients with schizophrenia, bipolar disorder or major
depression.92 However, this group did report a
significant reduction in the levels of M1 and M4

muscarinic receptors in the anterior cingulate cortex
in schizophrenia.93 These changes were shown to
have some disease-specificity as the density of M1 and
M4 muscarinic receptors was not altered in the same
CNS region from subjects with bipolar disorder or
major depression.93 In the superior temporal gyrus,
another relevant brain region for schizophrenia, the
density of M1 and M4 muscarinic receptors (using
pirenzepine) was significantly decreased in schizo-
phrenia. M2 and M4 muscarinic receptor levels in the
same brain region (using AF-DX 384) showed a
decrease that failed to reach significance.94 These
results lend further support to the concept of subtype-
specific decreases in muscarinic receptor density in
schizophrenia.

Levels of mRNA for muscarinic M1 receptors are
significantly decreased in the superior prefrontal
gyrus95 and dorsolateral prefrontal cortex96 in subjects
with schizophrenia. However, whereas pirenzepine
binding was significantly decreased in the caudate
and putamen in subjects with schizophrenia, levels of
mRNA for muscarinic M1 receptors did not differ
between subjects with schizophrenia and healthy
controls.96 Further evidence for subtype-specific
changes in muscarinic receptor density comes from
the observation that both M1 receptor protein and M1

receptor mRNA are significantly decreased in the

dorsolateral prefrontal cortex in schizophrenia,
whereas both M4 receptor protein levels and M4

receptor mRNA levels are unchanged.89

In summary, the results from different post-mortem
studies suggest that decreased muscarinic receptor
density in schizophrenia may be disease-specific with
evidence showing that the decrease is not apparent in
bipolar disorder and major depression. The decreased
muscarinic receptor density in schizophrenia is not
found throughout the human cortex but is region-
specific and appears to be subtype-specific, involving
in particular the muscarinic M1-receptor subtype.

The interpretation of these data showing a decrease
of muscarinic receptors in schizophrenia is hampered
by several limitations. Some of the ligands used in the
neuropathological studies are not specific for one
single subtype of the muscarinic receptor but interact
with different muscarinic receptor subtypes. Pirenze-
pine, for example, binds to M1 and M4 receptors
whereas AF-DX 384 labels M2 and M4 receptors.
Ongoing neuropathological studies using other tech-
niques such as in situ hybridization or Western blot
are warranted to further clarify the specificity of
changes in muscarinic receptor subtypes.

Neuroimaging studies
To date, there is only one imaging study that has
evaluated the muscarinic receptor availability in vivo
in unmedicated subjects with schizophrenia. This
study used [I-123]IQNB (quinuclidinyl benzilate) as a
SPECT-ligand that binds with very high affinity to all
five subtypes of the muscarinic receptor, making it
possible to study muscarinic receptors in the CNS
in vivo. Twelve subjects with schizophrenia (mean
duration of illness 12 years) were studied with

Table 1 Neuropathological studies of the muscarinic system in schizophrenia

Authors Muscarinic receptor
subtype

Brain area Result

Scarr et al.90 M2, M3 Dorsolateral prefrontal cortex No change in schizophrenia
Zavitsanou et al.92 M2, M4 Anterior cingulate cortex No changes in schizophrenia, depression

and bipolar disorder
Katerina et al.93 M1, M4 Anterior cingulate cortex Significant decrease of M1 and M4

receptors in schizophrenia but not in
bipolar disorder or depression

Deng and Huang94 M1, M2, M4 Superior temporal gyrus Significant decrease of M1 and M4

receptors; trend reduction in M2 and M4
receptors

Mancama et al.95 M1 Frontal cortex mRNA decreased
Dean et al.89 M1, M4 Dorsolateral prefrontal cortex Significant decrease of M1 receptors in

schizophrenia
Crook et al.88 M1, M4 Prefrontal cortex Significant decrease of M1 and M4

receptors in schizophrenia with and
without pre-treatment with
anticholinergics

Crook et al.87 M1, M4 Hippocampus Significant decrease in schizophrenia
Dean et al.96 M1 and M2 mRNA Caudate, putamen No differences in mRNA
Crook et al.86 M2, M4 Caudate, putamen Significant decrease in schizophrenia
Dean et al.85 M1 Caudate, putamen Significant decrease in schizophrenia
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IQNB-SPECT after being off antipsychotic and antic-
holinergic medication for a mean of 18 days. This
cohort was compared to an age- and sex-matched
group of healthy controls. This study reported a
significant decrease of muscarinic receptor availabil-
ity in the cortex and basal ganglia in the unmedicated
subjects with schizophrenia. Compared to the healthy
controls, the muscarinic receptor occupancy in
the subjects with schizophrenia was decreased by
20–35%.97

IQNB was also used to assess the effects of
antipsychotic medications on muscarinic receptors
in vivo. The second-generation antipsychotic olanza-
pine reduced the availability of muscarinic choliner-
gic receptors in vivo, reflecting binding of olanzapine
to the muscarinic receptor. At a daily dose of 20 mg of
olanzapine, the muscarinic receptor occupancy was
estimated to be 28% in the basal ganglia and 38% in
the cortex.98 In another study using [I-123]-iododex-
etimide, a different SPECT-ligand for the muscarinic
receptors, a substantial occupancy of the muscarinic
receptors was confirmed in the striatum and cortex
after treatment with olanzapine.99 Both studies found
no relationship between muscarinic receptor avail-
ability and side effects.

A reduction of muscarinic receptor availability in
vivo was also shown with IQNB after treatment with
clozapine, another second-generation antipsychotic.
After treatment with a daily dose of at least 200 mg of
clozapine (mean 275.0 mg/day), the muscarinic re-
ceptor occupancy was 45% for the basal ganglia and
58% for the cortex.100 In direct comparison of these
data, clozapine results in a significantly lower
availability of the muscarinic receptor than olanza-
pine.101 These results of decreased muscarinic recep-
tor availability in vivo after treatment with clozapine
and olanzapine are consistent with in vitro studies, in
which both antipsychotic drugs showed high affinity
to all subtypes of the muscarinic receptor.102

Several limitations should be included in the
interpretation of these neuroimaging studies. The
SPECT-ligand IQNB binds very selectively and with
high affinity to all subtypes of the muscarinic
receptors and thus does not allow a discrimination
between the different subtypes of the muscarinic
receptors. At the same time, IQNB allows an assess-
ment of the availability of muscarinic receptors, but
not of the function or the affinity states of these
receptors. With regards to pharmacological studies,
IQNB does not allow to distinguish between agonist
and antagonist properties of medications binding to
the muscarinic receptor. Some of these shortcomings
of IQNB may be overcome with newly developed
SPECT- and PET-ligands that bind selectively to
specific subtypes of the muscarinic receptor.103,104

Neuropsychopharmacological studies
Muscarinic receptor antagonists (anticholinergics)
such as atropine and scopolamine cause cognitive
dysfunction in healthy controls29 and, at higher
doses, can induce delirium as well as vivid hallucina-

tions in healthy controls.105 Despite these potential
effects, treatment of subjects with schizophrenia with
anticholinergics has been a common practice for
many years to alleviate motor side effects caused by
first-generation antipsychotics. However, it was also
noted that treatment with anticholinergic drugs
resulted in a worsening of psychosis but a modest
improvement of negative symptoms of schizophre-
nia.106–110 These effects could be secondary to an
increased dopamine release associated with the
application of anticholinergic agents.111 Consistent
with these findings, subjects with schizophrenia
frequently report an activating effect of higher doses
of anticholinergics, which occasionally results in an
abuse of these medications.112 Another important
observation from the clinical use of muscarinic
cholinergic receptor antagonists is that these drugs
worsen cognitive impairment associated with schizo-
phrenia.30

Other effects associated with the cholinergic system
in schizophrenia include a significant shortening of
rapid eye movement (REM) latency during acute
exacerbations,113,114 greater shortening of REM latency
following a muscarinic agonist115 and a lesser pro-
longation of REM latency following a muscarinic
antagonist.116 In addition, a cholinergic challenge-
test, using the cholinesterase inhibitor pyridostig-
mine, showed that the growth hormone response was
increased in unmedicated subjects with schizophre-
nia.117 These data from sleep and endocrine studies
were interpreted as being indicative of an increased
cholinergic tone in schizophrenia.

Based on these clinical findings, different hypo-
theses have proposed a role of the cholinergic system
in schizophrenia and include the general concept of
an alteration of the muscarinic cholinergic system in
schizophrenia.118 Yeomans suggested that schizophre-
nia involves an overactivation of cholinergic neurons
in the pedunculopontine nucleus (Ch5) and the
laterodorsal tegmental nucleus (Ch6). These choliner-
gic neurons provide cholinergic input to the dopami-
nergic neurons in the ventral tegmental area (VTA)
and substantia nigra. An overactivation of the Ch5
and Ch6 cholinergic neurons thus leads to an over-
activation of the dopaminergic neurons with the
subsequent development of the symptoms of schizo-
phrenia.119

The newer antipsychotic agents are found to be
moderately more effective than the older antipsycho-
tics in improving cognitive function,120 which may in
part be explained by their lower propensity to cause
extrapyramidal side effects and associated lower use
of anticholinergic agents.121,122 However, the overall
effects of antipsychotic medications on cognitive
functioning are modest.

Use of cholinesterase inhibitors in schizophrenia.
Cholinesterase inhibitors (e.g. tacrine, donepezil,
rivastigmine and galantamine) increase the synaptic
levels of acetylcholine through an inhibition of the
enzyme cholinesterase. Enhancing the synaptic levels
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of acetylcholine is viewed as a key step in restoring
cognitive function. Cholinesterase inhibitors are a
standard treatment for Alzheimer’s disease and have
moderate effects on the cognitive functioning.123

In a similar approach, cholinesterase inhibitors
have been assessed as a potential treatment to
improve cognitive deficits in schizophrenia.124 Most
studies have so far used donepezil as an add-on
medication in the treatment of schizophrenia
(Table 2). The addition of donepezil (5 mg) to the
standard antipsychotic treatment in a small cohort of
elderly subjects with schizophrenia was shown to
cause a modest improvement in cognitive measure-
ments.125 In a subsequent study, the addition of
donepezil to clozapine in a double-blind crossover
design showed no overall effect. Still, three out of
eight subjects improved in the total Positive and
Negative Syndrome Scale-score during the donepezil-
phase.126 In another open-label trial, the addition of
donepezil to a stable dose of olanzapine resulted in
moderate improvement in memory and processing
speed.127 In an open-label 8-week study of 12
schizophrenia patients refractory to treatment with
risperidone or olanzapine, the addition of 10 mg
donepezil resulted in a 20% reduction in positive
symptoms in four patients.116 In another randomized,
double-blind, crossover study, the addition of done-
pezil to standard antipsychotics led to a modest
improvement in positive and negative symptoms and
verbal learning.128 Despite these moderate effects in
clinical studies, the addition of donepezil resulted in
an increase in left frontal lobe and cingulate activity
in a functional magnetic resonance imaging study.129

Moreover, the addition of donepezil to a stable
antipsychotic regimen has been found to ameliorate
signs of tardive dyskinesia.130

In contrast to these studies, several other studies
failed to find a beneficial effect of the adjunctive use
of donepezil in schizophrenia. In a double-blind
placebo-controlled study in 36 subjects treated with
risperidone, the addition of 5 or 10 mg of donepezil
produced no significant improvement in cognitive
measures when compared to placebo.131 This latter
finding was supported by a study in which the
addition of donepezil in 12 subjects with schizo-
phrenia, who were treated with high-potency typical
antipsychotics, failed to show a significant improve-
ment in cognitive measures.132 Likewise, the addition
of up to 10 mg of donepezil to ongoing antipsychotic
treatment did not improve cognitive or psychopatho-
logical measures in 36 subjects with schizophrenia.133

Fewer studies have yet been conducted with the
other cholinesterase inhibitors. A 12-month study
using low-dose rivastigmine, another cholinesterase
inhibitor, showed a significant improvement in
quality of life and neuropsychological measures in
subjects with schizophrenia with predominant resi-
dual symptoms.134 Similarly, Aasen et al.135 observed
an improvement in sustained attention following the
addition of rivastigmine. However, a recent double-
blind study of adjunctive rivastigmine failed to show

any improvement.136 In a small case-series, the
addition of galantamine to clozapine resulted in an
improvement in sustained attention, selective atten-
tion and psychomotor speed.137

Although the current body of data about the utility
of adding a cholinesterase inhibitor to an antipsycho-
tic in the treatment of schizophrenia is not entirely
conclusive, it suggests that cholinesterase augmenta-
tion may at best lead to a modest improvement in
cognitive function, positive symptoms and tardive
dyskinesia in some patients. The benefits of such an
augmentation may depend on the antipsychotics
being used as well as the phase of illness.

Muscarinic agonists in schizophrenia. Different
muscarinic agonists have been studied in
schizophrenia. Betel nut chewing is a common
practice in some Asian and Pacific cultures.
Arecoline, an active ingredient of betel nut, is a
potent muscarinic agonist. The recreational use of
betel nut has been associated with fewer positive and
negative symptoms in schizophrenia.138 Xanomeline,
an arecoline derivative, is an M1/M4 muscarinic
receptor agonist and has been evaluated in
schizophrenia.139 In animals, xanomeline results in
behavioral responses similar to those seen after
treatment with traditional antipsychotics.140–142

Similar to traditional antipsychotic compounds,
treatment with xanomeline inhibited the behavioral
and motor effects of amphetamine and apomorphine
in monkeys.143 Recent data suggest that xanomeline is
also an antagonist at the M5 receptor.144 As muscarinic
neurons carrying M5 receptors have synaptic contact
with dopaminergic neurons in the brainstem, the
functional antagonism of xanomeline at M5 receptors
may offer an additional modulatory pathway on
dopaminergic cell-firing.

In humans, the efficacy and tolerability of xanome-
line has been demonstrated in clinical studies in
dementia. A surprising result of these studies was that
xanomeline showed a dose-dependent efficacy against
psychotic symptoms (agitation, delusions and halluci-
nations) in Alzheimer’s disease.145 More recently,
monotherapy with xanomeline resulted in an improve-
ment in positive symptoms as well as in cognitive
function in 20 subjects with schizophrenia.146

Muscarinic effects of antipsychotics. Clozapine
remains the gold standard of antipsychotic treat-
ment147 and was traditionally considered to be a
potent muscarinic receptor antagonist. In seeming
contrast to this assumption, treatment with clozapine
results in some improvement in cognitive
function.148,149 The clinical observation that higher
doses of clozapine frequently result in hyper-
salivation that can be effectively treated with
anticholinergics such as pirenzepine150,151 and that
clozapine is also the only antipsychotic agent that
increases REM sleep activity152 raised further
questions about the functional effects of clozapine at
muscarinic receptors in vivo. These observations
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Table 2 Pharmacological studies of cholinesterase-inhibitors in schizophrenia

Author Subjects Design Duration Cholinesterase-
inhibitor

Antipsychotic
medication

Result

Erickson et al.128 15 Double blind 18 weeks Donepezil Standard
antipsychotics

Modest improvement in psychiatric
symptoms and verbal learning

Freudenreich et al.133 36 Double blind
placebo-
controlled

8 weeks Donepezil
5–10 mg

Standard
antipsychotics

No improvement in cognitive or
psychopathological measures

Stryjer et al.126 8 Double blind
cross-over

18 weeks Donepezil
5–10 mg

Clozapine No overall change in PANSS, three
patients improved during donepezil

Tugal et al.132 12 Double blind
placebo-
controlled

12 weeks Donezepil 5 mg High potency
typical AP

No changes in PANSS or cognitive
measures

Stryjer et al.125 6 Single blind 4 weeks Donepezil 5 mg Standard
antipsychotic
medication

Improvement in MMSE, CGI and
PANSS

Buchanan et al.127 15 Open label 6 weeks Donepezil Olanzapine Improvement in memory and
processing speed

Friedman et al.131 36 Double blind
placebo-
controlled

12 weeks Donepezil
5–10 mg

Risperidone No significant improvement

Tandon116 12 Open label 8 weeks Donepezil 10 mg Risperidone/
olanzapine

Improvement in positive symptoms

Aasen et al.135 20 Double blind 12 weeks Rivastigmine Standard
antipsychotics

Nonsignificant improvement in
sustained attention

Lenzi et al.134 16 Open 12 months Rivastigmine
6 mg b.i.d.

Not specified Improvement in quality of life and
cognition

Sharma et al.136 21 Double blind
placebo-
controlled

24 weeks Rivastigmine Not specified No significant improvement

Bora et al.137 5 Case-series 8 weeks Galantamine
16 mg

Clozapine Improvement in sustained attention,
selective attention, psychomotor
speed

Abbreviations: CGI, Clinical Global Impression severity scale; MMSE, Mini-Mental State Examination; PANSS, Positive and Negative Syndrome Scale.
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favor the concept that clozapine could act as a
muscarinic agonist. This presumed muscarinic
agonist activity of clozapine has been implicated in
its unique benefits in treatment-refractory
schizophrenia.153 This position gained support from
in vitro studies using functional assays in human
muscarinic receptors expressed in cell cultures that
suggested that clozapine is a full agonist at the
muscarinic M4-receptor.154–156 These findings were
questioned by another study that failed to show an
agonist effect of both clozapine and olanzapine on the
M4 receptor157 and the failure to show agonist activity
of clozapine at muscarinic M4-receptors in animal
brain tissue.155,158 The picture is further complicated
by other data that suggest that clozapine is also a
partial agonist at the M1, M2, and M3 receptor.156,159,160

Although these in vitro studies of the cholinergic
properties of clozapine did not yield a clear outcome,
N-desmethylclozapine (NDMC), the major metabolite
of clozapine, has been shown to be a potent partial
agonist at cloned human M1 receptors.161 NDMC is the
only currently available antipsychotic with M1 ago-
nist activity.162 At the same time, NDMC is also a
partial agonist at the dopamine D2 and D3 receptors.163

In addition, NDMC, but not clozapine, leads to an
increased release of dopamine and acetylcholine in
the prefrontal cortex and the hippocampus.164 NDMC
also potentiates NMDA-receptor activity in the
hippocampus,165 which constitutes an alternative
mechanism that could contribute to cognitive en-
hancement. Thus, the cognitive enhancement ob-
served with clozapine could be due to its metabolite
NDMC rather than due to the parent compound.

Looking at the effects of different antipsychotics on
the release of acetylcholine, atypical antipsychotics,
but not typical antipsychotics, selectively increase
the release of acetylcholine in the medial prefrontal
cortex. This effect is not observed in other brain
regions such as the striatum and nucleus accum-
bens.166 Clozapine and NDMC also increase the
release of acetylcholine in the ventral hippocampus,
another brain region with a crucial importance for
memory.164,167

The interpretation of the effects of pharmacological
interventions on dopamine release is complicated by
the fact that the regulation of the basal dopamine
release is poorly understood. This makes it difficult to
unequivocally identify medication effects on dopa-
mine release. At the same time, little is known about
the regulation of basal acetylcholine release and even
less about the effects of medications on activated
neuronal symptoms. Still, clozapine and other atypi-
cal antipsychotics may facilitate cognition through an
increase in cholinergic and dopaminergic neurotrans-
mission. This result is of potential relevance, as a
deficit in dopaminergic neurotransmission in the
frontal cortex is thought to play a role in negative
symptoms and cognitive deficits associated with
schizophrenia.168 Like atypical antipsychotics, xano-
meline has also been shown to increase extracel-
lular concentrations of dopamine in the prefrontal

cortex.169 The data on xanomeline, along with the
findings on NDMC, support the proposition that
muscarinic receptor agonists may offer a new thera-
peutic approach in schizophrenia.

Interactions between the muscarinic cholinergic
system and dopamine: a potential mechanism
of action for muscarinic receptor agonists

The importance of maintaining the exquisite balance
between the muscarinic and the dopaminergic system
is well established in the striatum for movement
control170,171 (for a review see Zhou et al.172).
Consistent with this concept, antimuscarinic agents
have been used to pharmacologically re-establish the
balance between these two neurotransmitter systems
in movement disorders173 and schizophrenia.118

The interactions between the muscarinic and the
dopaminergic systems have been studied and occur
directly and indirectly (via other neurotransmitter
systems such as the GABAergic neurotransmitter
system174) as well as at different levels in the brain.
In the substantia nigra, cholinergic fibers have
synaptic contact with dopaminergic neurons.175

Functionally active muscarinic receptors are located
on midbrain dopaminergic neurons.176,177 Muscarinic
receptors on dopaminergic neurons in the substantia
nigra and the VTA are predominantly of the M5

receptor subtype.64,178 The activation of muscarinic
receptors on VTA dopamine neurons receptors sti-
mulates the release of dopamine.179 At the same time,
dopaminergic projections also have a modulating
effect on the muscarinic system as the release of
acetylcholine in the striatum is stimulated through
the release of dopamine.170

Studies of the functional interaction between the
muscarinic and the dopaminergic neurotransmitter
systems have yielded varying results. The effects
of a muscarinic stimulation of the dopaminergic
system depend on the muscarinic receptors involved
as well as the brain regions involved. Activation
of muscarinic receptors in the striatum can result
in both an increase in dopamine release46,176,180 as
well as a decrease in dopamine release.176 The firing
rate of the mesostriatal dopamine system increases
when muscarinic agonists are applied to midbrain
dopaminergic neurons.177,179 This muscarinic activa-
tion of midbrain dopaminergic cells involves M1

receptors.181 At the same time, the functional effect
of the application of muscarinic agonists on dopami-
nergic neurons is influenced by the temporal pattern
of activation. Although a brief activation of muscari-
nic receptors results in hyperpolarization of the
dopaminergic neurons, prolonged activation of the
muscarinic receptors leads to their desensitization.182

The effects of muscarinic stimulation on dopamine
release are also region-specific. The stimulation
of M1/M4 muscarinic receptors leads to a strong
dopamine release in the cortex, whereas the dopa-
mine release is less pronounced in the nucleus
accumbens.169,183
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So far only little is known about the effects of the
different muscarinic receptor subtypes on the regula-
tion of dopamine. Knockout mice are helpful to
clarify the physiological role of muscarinic receptor
subtypes on the release of dopamine. In M1 and M2

knockout mice, cholinergic stimulation has no effect
on dopamine release in the striatum.41 In a seeming
contrast to these results, another study showed that
M1 knockout mice have significantly elevated extra-
cellular dopamine levels in the striatum as measured
by microdialysis. These results were interpreted to
reflect a lack of inhibition of striatal dopamine release
through extrastriatal M1 receptors.184 In M3 knockout
mice, the release of dopamine in the striatum is
increased after cholinergic stimulation, whereas the
release of dopamine is completely eliminated in M4

knockout mice and significantly reduced in M5

knockout mice.41

In M4 knockout animals, basal levels of dopamine
are elevated by a factor of two in the nucleus
accumbens. At the same time, these M4 knockout
animals also show a significant increase in dopamine
release in the nucleus accumbens after the adminis-
tration of D-amphetamine, a substance known to
release dopamine. M2 knockout animals do not differ
from wild-type animals in any of these experi-
ments.185 These results suggest that M4 but not M2

muscarinic receptors exert a crucial control over
dopamine levels and dopamine release in the nucleus
accumbens. As M4 muscarinic receptors serve as
autoreceptors and thus regulate cholinergic activity
in the midbrain, changes in the muscarinic feedback
loop can result in increased dopamine release.

Further evidence to highlight the functional inter-
action between muscarinic receptors and dopamine
comes from new muscarinic ligands. PTAC ((5R,6R)
6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]
octane) and BuTAC ((5R,6R)-6-(3-butylthio-1,2,5-thia-
diazol-4-yl)-1-azabicyclo[3.2.1]octane) are partial ago-
nists at muscarinic M2 and M4 receptors and
antagonists at M1, M3 and M5 receptors. Behavioral
studies suggest that these drugs behave functionally
as antipsychotic agents whereas they have no affinity
for dopamine D2-receptors.186,187

Prepulse inhibition (PPI) of the acoustic startle
reflex is a sensorimotor gating process that is
frequently impaired in schizophrenia. It is well
established that the muscarinic system plays a major
role in PPI.188 PPI can be used as an animal model for
schizophrenia.189 Both BuTAC and xanomeline re-
verse a pharmacological disruption of the PPI in a
way similar to dopamine D2-antagonists.190

Sarter et al.191 recently suggested that an abnormal
increase in the reactivity of the cholinergic neuro-
transmission results in an impaired regulation of the
mesolimbic dopaminergic neurotransmission and
thus in the symptoms of schizophrenia. It should be
kept in mind that these effects are not unidirectional,
as the release of dopamine also has an effect on the
regulation of the muscarinic cholinergic system. An
abnormally regulated dopaminergic system in schizo-

phrenia could result in a dysregulation of the
cholinergic system, including the forebrain choliner-
gic system crucial with its crucial role in attention. In
view of the exquisite balance between the muscarinic
and the dopaminergic system, muscarinic ligands
may offer a novel approach to pharmacologically
modify an abnormal release of dopamine.

Concluding remarks

This review focuses on the role of the muscarinic
cholinergic system in the pathophysiology and treat-
ment of schizophrenia. Although clinical, pharmaco-
logical, post-mortem and brain-imaging studies
support an involvement of the muscarinic cholinergic
system in the pathophysiology and treatment of
schizophrenia, many questions remain unanswered.
It also remains unclear, if these changes in the
muscarinic cholinergic system in schizophrenia are
of a primary or of a secondary nature.78,192 However,
the ‘muscarinic hypothesis of schizophrenia’ should
not be seen in isolation but as an addition to existing
theories on schizophrenia.

Strong support for a role of the muscarinic
cholinergic system in schizophrenia comes from
post-mortem and brain-imaging studies. Several
post-mortem studies have consistently shown a
significant decrease of muscarinic receptor density
in different brain regions that are considered to be of
crucial importance in the pathophysiology of schizo-
phrenia (e.g. frontal cortex, basal ganglia and hippo-
campus) (see Table 1). These results include
significant decreases in specific subtypes of the
muscarinic receptor (in particular M1). This decrease
in muscarinic receptor density as seen in post-
mortem studies in schizophrenia is not uniform
across all brain regions but is region-specific. These
post-mortem results were confirmed by the only
currently available in vivo brain-imaging study in
which the muscarinic cholinergic receptor avail-
ability was measured with SPECT.97

At the same time, these neuropathological and
brain-imaging studies cannot solve the question of the
pathomechanism underlying the decrease in muscari-
nic receptor density in schizophrenia. The interpreta-
tion of receptor studies is further complicated by
potential residual effects of antipsychotic or anti-
cholinergic treatments. Reduced muscarinic receptor
density can be due to a primary reduction in the
number of muscarinic receptors, an increased occu-
pancy of the muscarinic receptor through the endo-
genous neurotransmitter acetylcholine or through
exogenous substances (e.g. pharmaceutical agents),
or a muscarinic receptor downregulation secondary to
a hypercholinergic state.

The finding of reduced M1-receptor protein and
M1-receptor mRNA in the dorsolateral prefrontal
cortex in the presence of unchanged M4 receptor-
protein and M4-receptor mRNA levels89 does not
support a general increase of acetylcholine levels in
schizophrenia. The finding of decreased muscarinic
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receptor availability in unmedicated subjects with
schizophrenia speaks against a mere residual effect of
pharmacological treatment. The pharmacological data
as presented above do not endorse a generalized
hypercholinergic state. Therefore, a primary reduc-
tion of the number of muscarinic receptors in
schizophrenia seems a likely factor. However, these
different mechanisms are not necessarily mutually
exclusive, but can combine to an overall effect.

Recent studies have reported circulating antibodies
against different neurotransmitter receptors, includ-
ing M1 and M2 muscarinic receptors, in the serum
from patients with schizophrenia.193,194 These anti-
bodies are functionally active as they activate mus-
carinic receptors on astrocytes195 and induce an
increase in M1 muscarinic receptor mRNA.196 These
findings, while still preliminary, suggest an interest-
ing possible link between the immune system and
muscarinic receptors in schizophrenia.

Genetic studies have not proven helpful in eluci-
dating the role of the muscarinic cholinergic system
in the treatment of schizophrenia.197 Genetic studies
of the cholinergic system in schizophrenia have
focused on the nicotinic cholinergic system with
a special interest in the a7 nicotinic receptor gene (e.g.
Leonard and Freedman198). Looking at the genetics of
the muscarinic cholinergic system in schizophrenia, a
combined effect was found for the muscarinic M5

receptor gene and the a7 nicotinic receptor gene on
the risk of schizophrenia.199 A polymorphism of the
M1 muscarinic receptor gene was associated with a
better score on the Wisconsin Card Sorting Test in
schizophrenia.200 No other genetic studies have been
reported on the muscarinic cholinergic system in
schizophrenia so far.

Pharmacological studies of the muscarinic system
in schizophrenia have yielded varying results. The
stimulation of cholinergic neurotransmission through
the use of cholinesterase inhibitors has shown very
little effect on cognitive function in schizophrenia.
Beyond their antagonistic effects on dopamine D2-
receptors, clozapine and olanzapine are the two
antipsychotics with the strongest antagonistic effect
on the muscarinic cholinergic system in vitro and in
vivo. Comparing the in vivo binding, clozapine has a
stronger effect on the muscarinic receptor avail-
ability.101 In addition to antagonistic effects, clozapine
and in particular its active metabolite NDMC also
have a dose-dependent agonist effect on subtypes of
the muscarinic receptor.

When considering the potential consequences of a
pharmacological manipulation of the muscarinic
cholinergic system in schizophrenia, improvement
in cognitive function should be differentiated from
antipsychotic effects. M1 agonists have proven mod-
erately effective in improving cognitive function in
neuropsychiatric disorders associated with a loss
in cognitive function. M1 agonists may also help to
reverse some of the cognitive deficits seen in schizo-
phrenia. Only very few of the currently available
antipsychotic drugs have potent M1 agonistic effects.

NDMC, the active metabolite of clozapine, is a potent
M1 agonist. The M1 agonist properties of clozapine
have been associated with its unique clinical pro-
file161 and N-desmethylclozapine is currently being
evaluated as a potential new pharmacological agent
for the treatment of schizophrenia. Other M1 receptor
agonists (e.g. sabcomeline) are currently undergoing
phase II and phase III studies as potential treatments
of cognitive dysfunction in schizophrenia.

Besides an improvement in cognitive function
through M1 agonistic properties, muscarinic agents
also carry the potential of having antipsychotic
effects. Muscarinic agonists were tested positive in
animal models predictive of antipsychotic activity
and have functional dopamine antagonist activity.
So far, animal and human studies have focused
on agonistic properties at the M1 and M4 receptor.
However, the relevance of agonistic vs antagonistic
effects on the different muscarinic subtypes for these
putative antipsychotic effects remains unclear. The
strongest data currently available support antipsycho-
tic effects for M1 and M4 agonists.

Finally, it remains unclear if the potential anti-
psychotic effects of muscarinic agents are due to
direct muscarinic effects (independent of dopamine)
or if these antipsychotic effects are mediated through
a modulatory effect on the dopaminergic system.
Animal studies support both dopamine-dependent
and dopamine-independent effects of muscarinic
agents.40,190 The muscarinic and dopaminergic system
interact bidirectionally at different levels in the brain
and the nature of these interactions is not fully
understood. Depending on the brain region and
muscarinic receptor subtype involved, stimulation
and inhibition of the muscarinic system can result in
different effects on the dopaminergic system. These
assumptions of a dopamine-dependent and a dopa-
mine-independent mechanism of action for the anti-
psychotic effects of muscarinic agents are also not
necessarily mutually exclusive and could combine to
additional efficacy. It seem possible that novel
muscarinic agents will exert their effects on positive
symptoms of schizophrenia primarily via an interac-
tion with the dopaminergic system, whereas the
effects on neurocognitive functioning may be pri-
marily through direct (non-dopaminergic) effects.

The lack of sufficient information about the func-
tion of the subtypes of the muscarinic receptor
renders a rational development of novel pharma-
ceutical agents for the treatment of schizophrenia
difficult. Yet, as a substantial proportion of subjects
with schizophrenia do not respond adequately to
treatment with currently available medications or
suffers from severe side effects,201 muscarinic agents
may at some point represent a new therapeutic
approach for the treatment of schizophrenia and
other psychotic disorders. More basic and clinical
studies seem warranted to evaluate the muscarinic
hypothesis of schizophrenia, which will hopefully
translate into better diagnostic and therapeutic tools
for this illness.
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