RUHR-UNIVERSITAT BOCHUM

RUHR-UNIVERSITAT BOCHUM

Anonymous Bitcoin Transactions

Felix Maduakor

Bachelor’'s Thesis — December 4, 2017.
Chair for Network and Data Security.

Supervisor: Prof. Dr. Jérg Schwenk
Advisor: M. Sc. Martin Grothe

hg 1 Lehrstuhl for
: Netz- und Datensicherheit

Abstract

Bitcoin was created to be the electronic version of cash.|37] However, it lacks of
privacy, since every transaction which ever has been processed by the bitcoin network
is publicly accessible through the blockchain. While much scientific effort has been
made to create P2P algorithms, which could enhance the privacy of the bitcoin
network, none of those approaches has been widely adopted yet. To enhance privacy
it is often recommended to use commercially driven mizing services. By swapping
customers bitcoin, these centralized mixing services allow customer to anonymize
transactions.

In this thesis, we are going to discuss (dis-)advantages of these services and provide
an overview of attacking possibilities.

Furthermore, we are going to implement an attack on coinmixer.se, a frequently used
centralized mixing service. Our implementation is going to deanonymize transactions
which priorly have been anonymized by coinmixer.se. We are going to analyze
different attacking scenarios and create an attack which could be able to attack
most of the known centralized mixing services.

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any
other examination at the Ruhr-Universitdt Bochum or any other Institution of High
School.

I officially ensure, that this paper has been written solely on my own. I here-
with officially ensure, that I have not used any other sources but those stated by
me. Any and every parts of the text which constitute quotes in original word-
ing or in its essence have been explicitly referred by me by using official marking
and proper quotation. This is also valid for used drafts, pictures and similar for-
mats.

I also officially ensure, that the printed version as submitted by me fully confirms
with my digital version. I agree that the digital version will be used to subject the
paper to plagiarism examination.

Not this English translation, but only the official version in German is legally bind-
ing.

Eidesstattliche Erkldrung

Ich erklédre, dass ich keine Arbeit in gleicher oder dhnlicher Fassung bereits fiir eine
andere Priifung an der Ruhr-Universitdt Bochum oder einer anderen Hochschule
eingereicht habe.

Ich versichere, dass ich diese Arbeit selbststindig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut
oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich
gemacht. Dies gilt sinngemaf auch fiir verwendete Zeichnungen, Skizzen, bildliche
Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digita-
len Version {ibereinstimmt. Ich erklire mich damit einverstanden, dass die digitale
Version dieser Arbeit zwecks Plagiatspriifung verwendet wird.

DATE AUTHOR

Contents

Glossary
Acronyms
1 Introduction
1.1 Motivation e
1.2 Contribution
1.3 Organization of this Thesis
2 Background
2.1 Bitcoin. e
2.1.1 Blockchain o
2.1.2 Transactionso e
2.1.2.1 P2PKH and P2SH transactions.
2.1.2.2 Multisignature transactions
2.1.2.3 Replace-By-Fee.o
2.1.2.4 Locktime, sequence numbers and version
2.1.2.5 Transaction fee
2.1.2.6 Transaction time and IP addresses
2.1.2.7 Example transaction
2.2 Fungibilityo
2.3 Privacy in Bitcoin oL o oL
2.4 Mixing techniques oL
2.4.1 Decentralized mixing (P2P mixing)
2.4.2 Centralized Mixing Services (CMS)
24.3 Off chain mixing L0 .
3 Centralized Mixing Services
3.1 Advantages
3.2 Disadvantages L
3.3 Attackermodelso
3.4 Possible attackso oL o oo
3.4.1 Blockchain analysis 0L
3.4.1.1 Taint Analysis
3.4.2 Sybilattack
3.4.3 Web security bugso

344 DDoS

X

o 0 W

o 0o~ oot

10
11
12
13
18
18
19
19

vi Contents
3.4.5 Attacks on the Bitcoin protocol 26

3.4.5.1 Doublespending L. 26

3.4.5.2 Staleblocks. oL 26

3.4.5.3 Replay attack on forks 27

3.4.5.4 Transaction malleability 28

34.6 Conclusion o 28

4 Attack on coinmixer.se 29
4.1 Functionality of coinmixer.se 29
4.1.1 Optional setting: Multiple addresses 29

4.1.2 Optional setting: Time delay 30

413 Mixingfee 30

4.2 Attacker Model 31
4.3 Attacking Method L oo 31
4.3.1 Steps to break coinmixer.se 0L 31

4.4 Tdentifying coinmixer.se’s network 32
4.4.1 Characteristics of customer’s input transactions 33

4.4.2 Characteristics of coinmixer’s output transactions 33

4.4.3 Identifying customer’s and coinmixer’s transactions 37

4.5 Crawlero 40
4.5.1 Gathering blockchain data, 42

4.5.2 Datastructureo 42

4.5.3 Forward crawlingo Lo 43

454 Backward crawlingo 47

4.5.5 Incorrect transaction distinguishing 49

4.6 Deanonymization L o o 50
47 Results. o o e 51

5 Conclusion 59
5.1 Related Work 59
5.2 Future Work 60
List of Figures 63
List of Tables 65
List of Listings 66
Bibliography 67
A Database structure 71

B Python Cod

e 77

Contents

vil

Glossary

Block Generation Time Average time required till a new block is found.

Blockchain Difficulty The required time to mine a Bitcoin block is based on a dy-
namically calculated blockchain difficulty.

Chain-Split A split of the current Bitcoin blockchain.

Change/Refund Address An address which receives the refund of a sent transac-
tions.

Fee Bitcoin miners receive a fee for confirming transactions..

Fork An intentional chain-split.

Untainted Bitcoins Anonymized Bitcoins.
input Address An Address which spends unspent outputs in transaction.

Input Transaction A customer’s transaction which starts a mixing process. Cus-
tomer sends tainted Bitcoins.

Letter Of Guarantee A letter signed by the coinmixer, which provides the input
and output addresses of the mixing process.

Mapping A mapping of possible input and output transactions, which deanonymizes
a transaction.

Mixing The process of anonymizing Bitcoins.

Off-Chain Transaction A Bitcoin transaction, which is processed by the Bitcoin
network but not stored into the blockchain.

On-Chain Transaction A transaction which is processed and stored in the Bitcoin
blockchain.

Online Wallet A website through which Bitcoin wallets can be created.

Output Address An Address which receives transaction’s outputs.

X Glossary

Output Transaction A transaction sent by Coinmixer’s transaction to customers.
Coinmixer sends untainted Bitcoins.

Replay-Protection A protection to separate two blockchains.
Unspent Transaction Output Bitcoins which still can be spent in a transaction.

Wallet/Client Software A software which can be used to create, receive and send
Bitcoin transactions.

Acronyms

BIP Bitcoin Improvement Proposals.

BTC Bitcoin.

CMS Centralized Bitcoin Mixing Service.
Coins Bitcoins.

CPFP Child Pays For Parent.
fss RBF First-Seen-Save Replace-By-Fee.

P2PKH Pay To PubKey Hash.
P2SH Pay to script hash.

RBF Replace-By-Fee.
RPC Remote Procedure Call.

Sat Satoshi.

Seq Sequence Number.
TX Transaction.

UTXO Unconfirmed Transaction Output.

1 Introduction

At the time of writing, Bitcoin is the leading P2P cryptocurrency [4]. It’s based
on a decentralized P2P structure and was introduced through Satoshi Nakamoto in
2008. Tt was build to be the digital form of cash. Through Bitcoin it is possible to
transfer assets without an intermediary. [37]

However, through the implementation of the Bitcoin blockchain it is possible to trace
every transaction. Bitcoin does not offer strong privacy guarantees [42|. If Bitcoin
gets widely adopted as a payment method, there may be the need to enhance the
privacy of the network.

Recently multiple P2P algorithms have been published, which aim to enhance pri-
vacy in the Bitcoin network [44, 40, 42, 30]. Tim Ruffing, Pedro Moreno-Sanchez
and Aniket Kate introduced coinshuffle ++ as a decentralized Bitcoin mizing pro-
tocol which is fully compatible with the current Bitcoin system [40]. However, none
of the mentioned privacy enhancing algorithmns seems to be widely adopted.
Bitcoin Core, as the reference client of Bitcoin, does not implement any mixing pro-
tocol [3].

Another way to enhance privacy of Bitcoin transactions is based on commercially
driven centralized mixing services. In this theses we are going to focus on central-
ized mixing services. We are going to discuss their (dis-)adventages and present
possible attacking approaches. Furthermore, we are going to implement an attack
on coinmixer.se, a frequently used centralized mixing service. Our aim is to imple-
ment an attack which is able to deanonymize transactions, which priorly have been
anonymized by coinmixer.se. We are going to discuss a general attacking approach
which could be able to successfully attack most of the commonly used centralized
Bitcoin mixing services.

1.1 Motivation

Privacy is an important aspect of cryptocurrencies. There have been created several
cryptocurrencies which aim to enhance the privacy of transactions like Monero or
Zerocash. Based on a zero-knowledge proof, the cryptocurrency Zerocash is able to
offer strong privacy guarantees [42].

While implementations of P2P mixing algorithmns in Bitcoin clients could enhance
privacy in Bitcoin, they have not been adopted widely yet. Centralized Bitcoin mix-
ing service are often recommended to be used to enhance privacy [9].

4 1 Introduction

However, we want to show that there may be a general attacking approach which
could lead to the deanonymization of most transactions, which were processed by
centralized mixing services.

We are going to show, that even though the internals of a mixing service could
be based on a secure mixing algorithm, the implementation of this algorithm as a
centralized service could easily lead to vulnerabilities. Even a small information
leak could lead to the deanonymization of every transaction which the service ever
processed. Since all Bitcoin transactions are based on the blockchain, an identi-
fied information leak could deanonymize transaction which were processed years
ago.

1.2 Contribution

While we attack coinmixer.se as a centralized mixing service, we were able to show
the general problems of centralized mixing services. We implemented a tool which
is able to deanonymize transactions which priorly have been anonymized by coin-
mixer.se. While our implementation is based on coimixer.se, it easily easily can be
adopted to work with other centralized mixing services. We were able to create
and implement an attacking approach which is able to break nearly all known cen-
tralized mixing services. Furthermore, it may be even applied to cryptocurrency
networks.

1.3 Organization of this Thesis

In chapter two we are going to address the basic concepts of the Bitcoin protocol and
transactions. We are going to discuss how Bitcoin transactions are built and which
features have been recently introduced. Furthermore, we are going to discuss why
privacy is important in the Bitcoin ecosystem and how the standard implementation
of the Bitcoin protocol tries to enhance privacy. We also address different techniques
to enhance privacy in the Bitcoin network.

In chapter three we are going to discuss centralized mixing services. We are going to
address possible advantages and disadvantages of centralized mixing services. Fur-
thermore, we discuss the most common attacking possibilities on mixing services.
In chapter four we are going to attack a centralized mixing service. Coinmixer.se
anonymizes Bitcoin transactions. Based on a simple blockchain analysis we will
deanonymize transactions which priorly have been anonymized by the service. Our
attack is going to be implemented as a python script.

Chapter five gives an overview on our results and address show future work.

2 Background

In this chapter we will give some technical background information about the basic
concepts behind Bitcoin. We will discuss the importance of privacy in Bitcoin and
different approaches which have been developed to enhance privacy in the Bitcoin
ecosystem.

2.1 Bitcoin

Bitcoin is peer-to-peer electronic cash through which digital transactions can be sent
without the need to use an intermediary. While cash payments are typically made
directly between individuals, there haven’t been a digital way to make this kind of
transactions until Bitcoin solved this problem. [37]

The basic design idea of the Bitcoin network has been created by a developer with the
pseudonym Satoshi Nakamoto. He published the basic concepts through his whitepa-
per Bitcoin: A Peer-to-Peer Electronic Cash System in 2008. citenakamoto2008bitcoin
No specific thrid party of the Bitcoin network needs to be trusted. However, big
parts of the Bitcoin network and the client software should be trusted, otherwise
some specific attacking approaches may be possible [11]. This property has been
achieved through the sophisticated use of cryptographic models.

The Bitcoin protocol is entirely open source. There are several groups of developers
around Bitcoin. Unlike government issued currencies, changes in the Bitcoin pro-
tocol require consensus of broad parts of the Bitcoin ecosystem. The realization of
these changes is time consuming, since multiple parties have to be actively involved
in a successful protocol update. A dynamic monetary policy, which is performed on
government issued currencies, cannot be applied to Bitcoin [13]. As the first cryp-
tocurrency, Bitcoin created a new type of digital assets. In recent years, hundreds of
cryptocurrencies, which differ in specific properties to Bitcoin, have been developed

[4].

2.1.1 Blockchain

The Bitcoin blockchain is an implementation of a public ledger. Every transac-
tion that ever have been confirmed by the network is stored in this blockchain.
Through cryptographic primitives the blockchain is protected against modifications.
All transactions are publicly availbile, because they are permanantly stored in the

6 2 Background

blockchain. Every transaction stored in the blockchain is publicly accessible and
cannot be changed after insertion. [9]

Block 1 Block 2 Block 3
Header Header Header
] l-_-_‘—--_

Hash Of Previous
Block Header

i Hash Of Previous

Block Header

) -
Hash Of Previous

Block Header

Merkle Root Merkle Root Merkle Root
F 1 A F 1
1 T T
Block 1 Block 2 Block 3
Transactions Transactions Transactions

Figure 2.1: Simplified Bitcoin blockchain [9]

The Bitcoin blockchain consists of several blocks that have been cryptographically
connected to each other. The header of a previous block has to be hashed and
stored into the next block header. A block consists of multiple transactions which
are hashed into a merkle tree. [9]

Bitcoin uses the SHA-256 hash function to cryptographically connect blocks in the
blockchain. Changes in the blockchain should not be able to be done without chang-
ing at least one hash value that results in corrupting this version of the blockchain.
A corrupted version of the blockchain will be rejected by the network. It should be
cryptographically hard to create two versions of the same block with different data
but the same hash. While this strict assumption holds in practice, it brings some
security issues.

Especially the transaction malleability bug made it possible to generate multiple
valid transactions with different transaction hashes, since even changing a single bit
of the hash functions’ input results in a new SHA-256 hash. It is likely that this bug
led to the loss of more than 302.000 Bitcoins. [19]

The transaction malleability bug has recently been fixed through the implementa-
tion of segwit. However, this bug can still be used in some specific circumstances.
[16]

The smallest unit of Bitcoin is named satoshi. One satoshi equals 0.00000001 BTC
(8 decimals).

2.1.2 Transactions

There are two different types of Bitcoin transactions. A Transaction, which is sent
to a miner who produced a new Bitcoin block, so called coinbase transaction, and

2.1 Bitcoin 7

typical Bitcoin transactions that are sent through a Bitcoin address. In the following
sections we are not going to discuss coinbase transactions, since they only can be
generated by miners. Some of the specific properties we are going to describe may
not apply to coinbase transactions.

As we have already seen in the previous section, transactions are a part of a Bitcoin
block. Every transaction consists of inputs and outputs. For every input of a
transaction, there has to be a previous output. An output can only be spent once.
Outputs that haven’t yet been used as an input are called unspent transaction output
(UTXO). In a general view, the transaction of Bitcoins equals the transfer of UTXO.
The amount of UTXO, which a Bitcoin address is able to spend, is the amount of
Bitcoins which is often called as the balance of a Bitcoin address. It is important
to know, that every transaction has to spend the full UTXO. So if a user is able to
spend 0.5 BTC though an UTXO, he has to spend the full 0.5 BTC. If he only wants
to send 0.30 BTC, he has to add another address which is controlled by himself to
be able to receive the change of 0.20 BTC.

2.1.2.1 P2PKH and P2SH transactions

Bitcoin transactions are evaluated through a forth-like, stack-based script language
[9]-

There are two different types of non-coinbase transactions which are commonly used.
Pay-To-Public-Key-Hash (P2PKH) transactions and Pay-To-Script-Hash (P2SH)
transactions. P2PKH is the most commonly used type of transaction [9]. In P2PKH
transactions the receivers’ hashed public-key is added to the transaction. If the re-
ceiver wants to spend received Bitcoins, he has to prove that he is the owner of the
public-key. He does this by signing the transaction he wants to send with his private
key.

Bob's Computer Alice's Computer TX 1
Private Full Public Key Copy Of Copy Of
-) - # Public Key Public Key

Key Public Key Hash Hash Hash

Figure 2.2: P2PKH transaction [9]

In this figure 2.2, Alice sends Bitcoins to Bob. She adds his hashed public-key to
the transaction. If Bob wants to make use of the received Bitcoins, he has to prove
that he is the owner of the public-key.

In P2SH transactions the sender sends his coins to a script called redeem script. This
redeem script is provided through the receiver. Whenever the receiver tries to spend
UTXO which were sent to the P2SH address generated by him, the redeem script

8 2 Background

will get evaluated. Only if the redeem script evaluates to True the transactions’
UTXO can be spent by the receiver. While P2SH could be seen as general smart
contracts, most of the Bitcoin nodes will only accept standardized redeem scripts
[9]-

Today P2SH transactions are mainly used to provide multisignature transactions.
In figure 2.3 the evaluation of the redeem script is based on multiple signatures.

Bob's Computer Alice's Computer TX 1

: : Copy Of Copy Of
Private | f = Full Ll pedeem Script ja] SCTPt » Script Script
Key Public Key Hash Hash Hash

Figure 2.3: P2SH transaction [9]

In figure 2.3, Bob created a redeem script. Bob can choose on which conditions the
redeem script evaluates to True. Bob sends Alice the hash of the redeem script.
Alice sends the coins to the received hash. If Bob wants to spend the received coins,
the redeem script has to evaluate to True.

Based on the first letter of an address it can be distinguished if it’s a P2PKH address
or a P2SH address.

Table 2.4: Example of P2PKH and P2SH transaction hashes

First letter | Type of address | Example
1 P2PKH 1E9bQsqFtf7SwTpZaiNvjq2d3BLNWo82ko
3 P2SH 3H8tiRY6GfcTgjn2bDRjs9IAwAgaTTKVE2P

It’s worth mentioning that there are two more types of Bitcoin transactions which
were introduced through the segwit soft-fork (P2WPKH and P2WSH) [29]. How-
ever, they are very similar to P2PKH and P2SH, since they are mainly focused on
moving the signature script to another location [9].

2.1.2.2 Multisignature transactions

Multisignature transactions are m-of-n transactions, which require at least m
signatures of n public-key hashes that were provided in the transaction. The
redeem script evaluates to True if at least m correct signatures are provided.

[9]

2.1.2.3 Replace-By-Fee

Opt-in Replace-By-Fee (RBF) is an optional feature which was introduced through
BIP0125 and had been implemented in Bitcoin Core nodes since version 0.12
[18]. Through the opt-in RBF feature a transaction can be resent with a higher fee as

2.1 Bitcoin 9

long as it stays unconfirmed. The previously sent transaction will be ignored. This
feature can be useful if a transaction has been sent with a too low transaction fee
and might not get confirmed in the near future.

Opt-in RBF is activated whenever the sequence numbers of a transactions’ inputs
are set to a value lower than Oxfffffffe (4294967294) [18].

It’s worth mentioning that there are also further methods to replace unconfirmed
transactions like first-seen-safe Replace-By-Fee (fss RBF) and full Replace-By-Fee
(full RBF). Since all RBF methods are enforced through Bitcoin nodes, it does not
necessarily mean that miners have to realize them.

2.1.2.4 Locktime, sequence numbers and version

The relative locktime is a new feature in the Bitcoin protocol, which has been in-
troduced with BIP0068 [23]. Through the locktime a sender of a transaction is able
to define the earliest time at which a transaction can be added to the blockchain.
The locktime can be specified through a unix timestamp or a specific block height.
Before the locktime is reached, the sender is able to cancel and renew the transac-
tion. To achieve this, he has to create a transaction which spends the same UTXO
but has no locktime or a lower locktime than the original transaction specified. If
one of these transactions has been added to the blockchain, the other transaction
will be ignored by the network. Typically the transaction with the lowest locktime
will be inserted first in the blockchain. However, changing the transaction fee could
influence the order of transaction processing done by the miner. Sequence numbers
were introduced as a feature which should make it possible to update unconfirmed
transactions. Whenever the sequence number of a UTXO would be set with a higher
sequence number, transactions which use the same UTXO but a lower sequence num-
ber should be ignored. However, this feature has not been implemented properly
and is not enforced by the network [23].

Yet still features like (opt-in) RBF and locktime make use of sequence numbers.
Whenever the sequence numbers of UTXO are set to the maximum-value (Oxffffffff),
the transactions is processed as a finalized transaction and will be added to the
blockchain. In this case a specified locktime is going to be ignored. No further
changes can be applied to this transaction. So whenever a sender wants to make
use of the locktime feature, he has to set the sequence numbers to values lower than
Ox T (4294967294).

Bitcoin Core, the refence client of Bitcoin, sets per default the sequence numbers of
transactions to the maximum-value Oxffffftf.

Table 2.5: Transaction’s settings based on sequence number

sequence number | features

0 - OxfFfrfd (opt-in) RBF activated | locktime can be specified
Oxfffffffe (opt-in) RBF deactivated | locktime can be specified
Ox {FEFFT (opt-in) RBF deactivated | locktime deactivated

10 2 Background

It’s important to state, that if the locktime features should be activated, the trans-
action’s version has to be set to at least 2 [23].

2.1.2.5 Transaction fee

Every transaction can specify a fee, which the miner receives who adds the transac-
tion to the blockchain. Miners can choose transactions which they want to confirm
and add to the blockchain. Typically miners try to make the most profit from
confirming transactions and automatically choose transactions which generate most
fees. [5]

Since a block has a specific block size the number of transactions which can be
added to a block is restricted [15]. While miners typically choose transactions with
the highest fee, transactions sent with a low fee have to wait till the high feed
transactions have been processed. If the sender chose a too low fee, there are several
methods of still getting the transaction confirmed like opt-in Replace-By-Fee (opt-in
RBF), first-seen-safe Replace-By-Fee (fss RBF), full Replace-By-Fee (full RBF) or
Child Pays For Parent (CPFP). However, miners do not have to accept transactions
which made use of these options.

Since we focus on privacy aspects, we are not going into further details of the men-
tioned methods.

It is important to know, that there is no field in the Bitcoin protocol which specifies
the miner fee. The fee of a transaction is calculated by the result of the inputs
subtracted from the outputs:

Fee = value of inputs — value of outputs

2.1.2.6 Transaction time and IP addresses

While many blockchain explorers show transaction times and IP addresses, this in-
formation is not stored in a transaction [9]. This information is gathered through
the logs of a node and only describes the timing and origin of incoming connections
of this specific node. However, the transaction time will be in most cases very ac-
curate since the Bitcoin network is well connected. Still, it should be known that if
a transaction is not spread through the whole network, it still can be inserted in a
block. By most of the nodes, the transaction time of this transaction would be set
equal to the block time.

While this circumstance normally should not be an issue, it shows clearly the
problem of correct time measurements in decentralized networks, which can even
be used for attacking attempts. The same origin problem applies to shown IP
addresses. Blockchain explorer typically show logged IP addresses of relaying
nodes. In most cases this won’t be the IP address of the signer of the transac-
tion.

2.1 Bitcoin 11

2.1.2.7 Example transaction

All blockchain data are saved binary. However, there is a remote procedure call
(RPC) interface implemented in Bitcoin Core which allows to submit customized
JSON formatted transactions. This kind of transaction is called simple raw trans-
action. [20] We are going to use the blockchain.info API and Bitcoin-cli RPC to
gather necessary blockchain and transaction data JSON formatted.

As an example we will analyze the following transaction:
81046084e181eea9d84602400e91a545178e61cala7730e9c0e3cl5f1322a778

We are using Bitcoin-cli to receive the transaction data JSON formatted, online
tools tools to achieve this can be used likewise. We are only going to focus on the
most interesting parts of the transaction.

{ "result": {
"txid": "81b46084e181eea9d846b2400e91a545178e61cada7730e9c0e3c15f7322a778",
"hash": "81b46084e181eea9d846b2400e91a545178e61ca4a7730e9c0e3¢c15f7322a778",
"size'": 517,
"vsize": 517,
"version'": 2,
"locktime": 489733,
"vin": [

"txid": "b5a4d2d97d5b8dcfbecedb366dad557¢507bdf6219bbd83eb7f9cedf719995b20",
"vout": 0,

"scriptSig": {"hex": "4730..."},

"sequence': 4294967294

5

{
"txid": "44b88be87299336ec02f9467Tebaac6f63e37dbf21e38ba0829196937dc84a33",

"vout": 0,
"seriptSig": {"hex": "473044022...},
"sequence': 4294967294

"txid": "e0c68b0b557700f26f65e27aea5ab4003e6a2a28af140db7c4508429d6b23873",
"vout'": 1,

"scriptSig": {"hex": "4730440..."},

"'sequence': 4294967294

,
"vout": [
{
"value": 0.20000000,
"n": 0,
"scriptPubKey": {
"reqSigs": 1,
"type": "scripthash",
"addresses": [
"3H8tiRY6GfcTgjn2bDRjsOAwAgaT7TKVE2P"
1
}
s
{

"value": 0.01359680,

"n'": 1,

"scriptPubKey": {
"type": "pubkeyhash",
"addresses": [

"1E9bQsqFtf7SwTpZaiNvjq2d3BLNWo82ko"

I

}

}

I,

"blockhash": "000000000000000000ec8d98e4ccdf87b35b21a980098d316f166442fe47c81c",
"confirmations": 3973,

"time": 1508008653,

"blocktime": 1508008653

b}

Listing 2.6: JSON-formatted Bitcoin transaction

12 2 Background

Some parameters have been truncated or removed. As we can see in listing 2.7,
the transaction has three inputs and two outputs specified. One of the outputs is a
P2PKH address and the other is a P2SH address.

Furthermore a locktime has been set. As already discussed, BIP0068 re-
quires the version to be set to 2 or greater whenever the locktime feature
is being used. As we can see, this requirement is met in this transac-
tion. Since the locktime is set to 48973%, the first block which this trans-
action could be added to is 489734. In fact, this transaction was included
in block 000000000000000000ec8d98e4ccdf87b35b21a980098d516f166442fef7c81c at
the block height 489821, which is nearly 100 blocks later than the specified lock-
time. Furthermore the sequence numbers are set to 429496729/ (Oxfffffffe), which
indicates that (opt-in) RBF is deactivated and a locktime could be set.
Interestingly, the transaction time and the block time are the same. However, if we
check the block time and timestamp in a blockchain explorer like blockchain.info we
see that they actually differ.

This is the case, because the timestamp of a transaction is not saved in the blockchain
data. The timestamps are logged by the node. However, our node was not connected
to the network when the transaction has been published, so the first time our node
notices this transaction is when parsing this block.

We are mainly focused on privacy aspects in Bitcoin, so we are not going to discuss
this simple raw transaction in further detail. However, it is important to see, that
there are many different features which can be used in Bitcoin transactions. Some
of them are used very rarely. Moreover, there are several ways to correctly sign a
Bitcoin transaction on a low-level view.

In the following chapters we will show, that the analysis of Bitcoin transactions can
lead us to identify implementations of generic transaction generation. Through this
we will be able to identify and break networks that are used to enhance privacy in
Bitcoin.

2.2 Fungibility

In an economical sense, a good is fungible if it’s interchangeable with other individual
goods of the same asset. Typically, government issued currencies and assets like gold
are fungible. [28]

For example the same amount of gold with the same weight and purity has normally
the same value. However, this does not necessarily apply to Bitcoin.

Through the usage of Bitcoin in criminal activity a blacklist of Bitcoin addresses is
heavily discussed and has already been implemented by multiple service providers
[36]. Since every Bitcoin transaction is publicly accessible, a blacklist can be easily
enforced. There are multiple suggestions and services that believe to enhance privacy
in Bitcoin and transform it into a fungible asset. We are going to discuss them in
the following sections.

2.3 Privacy in Bitcoin 13

2.3 Privacy in Bitcoin

While Bitcoin is today broadly seen as an asset like gold [22], it was created to be
the digital version of cash. It should allow people to create digital payments without
an intermediary. [37]

Bitcoin is a untrusted system, with a public ledger. Every transaction that has been
processed by the network is permanently stored in the publicly accessible blockchain.
If Bitcoin evolves to a widely adopted digital currency it should also provide privacy
to the users. While there is no privacy in Bitcoin transactions, yet still Bitcoin is
often described as an anonymous currency:

"Bitcoin anonymous digital currency that is not tied to any government [...[" |24]
Contrariwise to this definition, Bitcoin is not anonymous. However, it it also not
fully transparent. Bitcoin is a pseudonymous network [5]. Since public-keys are
unique, they are the pseudonyms of their users. But since thousands of public-keys
can be generated by a smartphone in seconds, it’s typically not possible to identify
the owner of a public-key without further information. However, if a public-key can
be linked to a specific individual, it is possible to track every transaction this indi-
vidual received and spent through this public-key. If Bitcoin gets widely adopted as
a currency, this obviously would lead to serious privacy issues.

For example in the business environment. Without any enhancement of privacy, it
e. g. could be possible to determine the salary of the company’s employee. Further-
more, it could also lead to identify when and in which size investments are made by
a company. Specific suppliers could be identified as partners and the revenue of a
specific product could be publicly tracked.

Generally speaking, companies and individuals could get harmed if all of their finan-
cial data are publicly accessible. Since this was already known at the time Bitcoin
was created, the Bitcoin whitepaper recommends to use a new address for every
transaction [37]. The wallet client should automatically generate a new addresses
for every transaction that is going to be received or sent. The amount of a Bitcoin
wallet would be the sum of all amounts of every address the wallet manages. This
is the standard implementation of Bitcoin wallet software. [9]

In figure 2.7 we can see the simplified transaction flow. For every ouput transaction
an unique Bitcoin address is used.

Transaction 0 Transaction 1 Transaction 2

(TX0) (T 1) (TX2)
i g

Figure 2.7: Simplified Bitcoin transaction flow

This method was implemented to provide better privacy. In contrast to the model
describe above, where all transactions are sent and received by a single address, it
definitely enhances the privacy of the Bitcoin ecosystem. However, it’s still easy

14 2 Background

to spot which public-keys belong to a unique user which we will show through the
next examples. In figure 2.8 we are going to show a simplified Bitcoin transac-

tion. None of the addresses used as input will never be used again to receive any
UTXO.

Transaction 0
(TX0)

---0.2 Ech-—— Transaction 1

M)
-10.3 BTC unspent---»

Figure 2.8: Bitcoin transaction without fee

Figure 2.8 is simplified, since the sum of both inputs exactly match the output
amount (0.140.2 = 0.3) and no fee has been applied. Tt is important to know, that al-
ways the whole amount of an input is spent. The sender would always have to pay the
full 0.30 BTC, even if he only wants to send 0.25 BTC.

Transaction 0
(TX0)

---0.2 Ech-—— Transaction 1

M)
Fe=: 0.05 --0.25 BTC unspent---»
L ——— 1

BTC

Figure 2.9: Bitcoin tranction with fee

Since we already know that the transaction fee equals the sum of the inputs sub-
tracted from the sum of outputs, the sender would have paid 0.05 BTC fee in
this transaction. We can cleary see this in figure 2.09. A more dramatic exam-
ple would be if the sender has received 1 BTC at his address in a single trans-
action and wants to send 0.001 BTC. We are going to show this through figure
2.10.

Transaction 0
(T

n Transaction 1
~--1BTC-> input | % 1)

outero
-0.001 BTC unspent--»
. [t}

Figure 2.10: Bitcoin tranction with fee

As we can see in figure 2.10, the sender would have paid a fee of 0.999 BTC for

2.3 Privacy in Bitcoin 15

transferring 0.001 BTC. This all happens because in it in Bitcoin always the full
UTXO has to be spent.

Typically the fee should not be determined by the value of UTXO, it
rather should be dynamically adjusted in consideration of the network traf-
fic.

To solve this problem the Bitcoin protocol uses change addresses, often also men-
tioned as refund addresses. Change or refund addresses are Bitcoin addresses which
are automatically generated by a wallet software [31|. They receive the change of a
sent transaction. Whenever the sent outputs would not exactly match the amount
the sender wants to send, the change will be returned to the change address.

For privacy reasons the change address is typically after every transaction newly
generated. Since fees of transactions are usually calculated dynamically, most of the
transactions make use of change addresses.

The whole process of generating and managing change addresses is handled by the
wallet software.

Transaction 1
(TX1)

> input

Transaction 0
(TX.0) output -0.001 BTC unspent--»
L ————— |

Transaction 3
output (Tx3)

Transaction 2

input
o 2 —
0.996 BTC

i

I_ 0.25 BTC output [-4-0.25 BTC unspent-»
| ||
Fes:0.002 Transaction 4
— o)

0.745BTC
| — input
Fee: 0.005
BTC output -1-0.745 BTC unspent-»

Figure 2.11: Bitcoin transaction with change address

As we can see in figure 2.11, the sender sent 0.001 BTC through Transaction 0.
He paid a miner fee of 0.003 BTC and received a change of 0.996 BTC at a newly
generated change address. Through this address he sent another payment (TX 2)
of 0.25 BTC, for which he paid a fee of 0.005 BTC. The change of this transac-
tion (0.745 BTC) has been saved in another newly generated address as UTXO
and can be spent in further transactions. However, this example is still not quite
realistic, since the fees are typically dynamically generated and specified up to 8
decimals.

We saw through figure 2.10 that the use of change addresses is essential to adjust
the miner fee in a precise way. However, we will show through our next example
how this system corrupts the idea of enhancing the privacy of using newly generated

16 2 Background

addresses for every transaction.

Transaction 3

output - 0.3BTC unspent------
Transaction 0 0.3BTC P >
-0 BTC-»[input] Transaction 4
output ----0.049314?9 BTC unspent--»
output 0.04931479 BTC Transaction &
Fee: 000088521 BTC -
Transaction 1
0.305BTC -{----0.305 BTC unspent----»
--0.01 Ech-- Transaction 6
| outout J--10.00447406 BTC unspent - »
0.00447406 BTC ,
Transaction 7
———————— Fee: 0.00052594 BTC _
Transaction 2
0.5 EITC—— EE EEEEE 0.15 BTC unspent------ »
0.15BTC
Transaction 8
|-0.00960457 BTC__ |

output -4-0.09960487 BTC unspent---»
Fee: 0.00039513 BTC

Figure 2.12: Bitcoin transaction with dynamic fee

In figure 2.12, we analyze three transactions send by the same person with a real-
istic choice of dynamically generated fees. All of the three transactions use unique
addresses which were never combined in any transaction before. An attacker could
not distinguish whether these addresses are controlled by one person or by multiple
people. However, the attacker tries to identify the change addresses of these trans-
actions. At least in cases of Transaction 0 and Transaction I he could argue that
0.04921479 and 0.00447406 are the outputs send to the change addresses, since the
change is often lower than the sent amount whenever multiple inputs of similar size
are combined in a transaction. Even in Transaction 2, where only one input is given,
he could argue that 0.09960487 is sent to the change address, since 0.15 BTC seems
to be a more reasonable amount to be sent as a manual payment. It is important
to state, that these arguments can only be indicators to distinguish between change
and receiver addresses. Yet there is way more information that can be taken in
consideration. In most cases transactions are automatically generated. A further
analysis of transaction flows, the way of signing a transaction, the way of adding a
change address in an implementation and many more factors can be used to distin-
guish between change and receiver addresses. For simplification we will stick to our
basic indicators mentioned above and assume that we are able to distinguish between

2.3 Privacy in Bitcoin 17

change and receiver address. In our practical verification, we are going to show, that
our basic indicators are met in most real world cases.

Transaction 2
output f-{----- 0.3 BTC unspent-----1
Transaction 0 0.3BTC P s
---01BTC»_ input | Transaction 3 Transaction &
output PO K pn -{--0.08 BTC unspent»
Fee: 0.000688521 BTC -4-0.0035176 BTC unspent----»
Transaction 1
Fee: 0.00027125 BTC
--0.01 EITC-— 0.00447406 BTC | Transaction 4
0.305 BTC | output]--|.__0305 BTC unspent----»

Fee: 0.00052594 BTC|

Figure 2.13: Bitcoin transaction with connected change addresses

We can clearly see in figure 2.13, that Transaction 8 uses two inputs which seem to
be changes of previous transactions. Since the sender of this transaction has to have
access to the private keys of both change addresses, he is the sender of Transaction
0, Transaction 1 and Transaction 3. While this case looks simplified, it is the ac-
tual implementation of the standard Bitcoin protocol which is implemented in most
Bitcoin wallets [9]. The change addresses are typically automatically combined in
the next transaction in a way that the following transaction is cheapest.

While the attacker now knows that each output address of Transaction 0, Transac-
tion 1 and Transaction 3 is owned by the same person, he does not know if there
may be more addresses connected to the owner. However, since the next transac-
tion, which uses UTXO (.0035176 as input, will probably be connected again with a
change addresses, the attacker will gather more possible addresses which are owned
by the victim. With the elapse of time the attacker is able to gather more informa-
tion, which he can use to identify all addresses that are managed through the wallet
used by the individual.

The privacy could be enhanced by either not using change addresses or not combin-
ing any UTXO. We already discussed that both approaches would be very expensive.
A possible solution could be to use different Bitcoin wallets. Each wallet would con-
trol multiple addresses. In this case the amount of each wallet could be determined
by an attacker, but, as long as the wallets won’t get combined, the full amount of
all wallets cannot be determined. While this approach could enhance the privacy in
some situations, it still got huge drawbacks in practical use, which we are not going
to discuss in detail.

We can finally say that the approach Satoshi Nakamoto described in his whitepa-

18 2 Background

per enhances the privacy of the Bitcoin network in a coarse way, but still an
attacker is able to identify and track a specific user by simple blockchain analy-
sis.

2.4 Mixing techniques

It is broadly known, that the standard implementation, we described in the last
sections, only marginally enhances privacy [41]. New methods have been created
which should lead to better privacy in Bitcoin. Typically, these methods are
summarized as mizing. These methods should evolve Bitcoin to a fungible cur-
rency.

Mixing network

—

iainted Coms untainted Coms

Figure 2.14: Bitcoin mixing

In figure 2.14 we can see a typicall mixing process, which is normally initiated by the
sender. He sends Bitcoins which can be traced back to him (tainted coins) into the
mixing network and receives anonymized (untainted) Bitcoins by the network. An
attacker neither should be able to trace the origin of untainted Bitcoins nor should
he be able to follow the tainted coins to identify the untainted coins. The tainted
and untainted coins should not rely in any connection which could be analyzed by
an attacker. In recent years there have been developed multiple mixing methods.
We will divide them into three categories.

2.4.1 Decentralized mixing (P2P mixing)

P2P Mixing

L3

*
-

*
»
.l
2]
I‘ .
.y -.
e
¥
tainted Cons g R untainted Coins

Figure 2.15: P2P mixing

Figure 2.15 shows the structure of a P2P mixing service. Multiple scientific papers
like [33] [44] or |26] about algorithms, which could make it possible to anonymously

2.4 Mixing techniques 19

transfer Bitcoins, have been published. Some of those algorithms have been imple-
mented in different cryptocurrencies by default (e. g. Zerocash [42]), but at the time
of writing, none of those approaches have been widely adopted in the Bitcoin net-
work. Unlike Centralized Mixing Services (CMS), P2P mixing has to be implemented
in Bitcoin wallet software to be accessible by users.

2.4.2 Centralized Mixing Services (CMS)

Coinmixing Service

—p
tainted Comns

P —
untainted Coins

Figure 2.16: Centralized Mixing Service

In figure 2.16 we can see the structure of a centralized mixing service. Centralized
Mixing services (CMS) are typically provided through a website.

While P2P mixing is based on no central instance, centralized mixers are typically
run by a commercial website provider who advertises that his service is able to
anonymize Bitcoin transactions.

The customer specifies addresses where he wants to receive the anonymized Bitcoins.
After that, the customer sends Bitcoins to an address which the CMS individually
generated for him. When the transaction has been confirmed by the network and
an optional specified delay has been waited, the anonymized coins are sent to the
customers’ addresses. For providing this service, CMS typically charging a fee up
to 3% of the initial amount of untainted coins. Often P2P mixing algorithms are
internally used by CMS.

2.4.3 Off chain mixing

Every transaction sent over the Bitcoin network is publicly accessible through the
Bitcoin blockchain. However, recently there have been made much scientific and
economic effort to find solutions of sending and receiving Bitcoin transaction in an
untrusted manner without the need to publish them in the blockchain. [38§]

The implementation of a layered solution to this problem is called Lightning Network.
The Lightning Network should lead to nearly instantaneous transactions and could
possibly eliminate transaction fees. While the main goal of this approach is to
provide a better scalability of Bitcoin, it could also enhance the users’ privacy.
Since the transaction data are not saved in a publicly accessible blockchain, attackers

20 2 Background

cannot perform blockchain analysis. However, since the Lightning Network is still
under development and even it’s layered structure is not finalized yet we won’t
discuss it in great detail. [3§]

Besides the Lightning Network there are more approaches which should enhance
privacy and do not fully rely on the original Bitcoin blockchain. Especially
Tumblebit |26] and the use of sidechains (Drivechains) [17] should be mentioned
here.

3 Centralized Mixing Services

In this chapter, we are going to provide general information and attacking possibil-
ities against CMS. Most of CMS advertise, that they are able to anonymize their
customer’s Bitcoin payments.

3.1 Advantages

While no decentralized mixing technique is widely adopted yet, there exist several
CMS which are frequently used. The user does not have to install any software
or execute any script to use CMS. Typically no registration is required and the
mixing process can be easily started through a publicly accessible website. Further-
more, the customer is often able to change optional settings (e. g. time delay),
which should enhance the privacy. Since no specific software is required to use
CMS, the services can also be used by customers which use online Bitcoin wal-
lets.

3.2 Disadvantages

The main disadvantage of CMS are, that they are centralized commercially driven
services.

Typically, these mixing services can be accessed through a publicly accessible web-
site. None of the service providers is personally known. Since the customer has to
send assets in form of Bitcoins to the service, he can easily be defrauded. Further-
more, logs of the mixing process could be stored, which could lead to an exposure
of personal data which are not even stored in the blockchain (e. g. IP address, user
agent). Some CMS publicly state which internal mixing method they are using,
while others don’t mention how they are mixing the customer’s coins. A fully open
source script of a Bitcoin mixing service could not be found.

Unlike P2P mixing protocols, which are typically published through scientific pa-
pers, CMS can only be attacked as a black-box. Since all transactions are perma-
nently stored in the Bitcoin blockchain, an implementation bug could easily lead
to the deanonymization of every transaction ever processed by the service. Even
if a transaction is anonymized through a mixing service, this transaction may be
deanonymized in future.

While some of these drawbacks also apply for on-chain P2P mixing algorithms,
they are more harmful to CMS, since their implementation cannot be publicly
reviewed. Some CMS make use of P2P mixing techniques, however, the imple-

22 3 Centralized Mixing Services

mentation may lead to multiple side-channel vulnerabilities or other bugs, since
P2P mixing algorithms are typically not developed to be used as a centralized ser-
vice.

3.3 Attacker models

We are going to define several attackers, which require different types of re-
sources.

A - An attacker who has access to the Bitcoin network.

B - An attacker who has access to the Bitcoin network and is able to start
mixing procedures through the centralized mixing service. He is able to
send tainted Bitcoin to the mixing service and receive untainted coins by the
mixing service.

C - An Attacker who has access to the Bitcoin network and is able to forge
multiple nodes. Based on the P2P network, this usually requires multiple TP
addresses (IPv4 and IPv6) and a powerful server.

D - Attacker C, with enough computational power to mine new blocks in
reasonable time.

In all mentioned attacking scenarios, we assume that the attacker is able to retrieve
publicly accessible statistics which may be published through the centralized mixing
service.

3.4 Possible attacks

There are multiple attacks that can be carried out against CMS. Since CMS are
typically based on publicly accessible websites and rely on internal P2P mix-
ing algorithms, there are multiple possible layers to attack. The attacker could
use web security bugs, internal bugs of the P2P mixing algorithm or general at-
tacks on the Bitcoin network to successfully break the centralized mixing ser-
vice.

3.4.1 Blockchain analysis
Requires attacker: A - B

A blockchain analysis is based on information which can be gathered through the
publicly available blockchain [27].

3.4 Possible attacks 23

There are different approaches to analyze these data. While blockchain analysis is a
powerful attack which can be used for various purposes, it is often mistaken with a
taint analysis. Through a blockchain analysis every accessible blockchain data can
be used to gather the wanted information, while a taint analysis is only focused on
the transaction flow.

In case of identifying specific implementations (e. g. mixing services) in the Bitcoin
network, side-channels are important to mention. Through side-channels specific
information of transactions (e. g. time, size, way of signing) can be used to identify
a specific implementation. When attacking CMS it’s often crucial to identify the
centralized mixer as a subnetwork in the Bitcoin network.

As we already have mentioned, there are several ways to construct correct Bitcoin
transactions. Through the blockchain analysis an attacker is able to analyze the
specifics of black-boxed mixing services. His aim is to distinguish whether a trans-
action is part of the service’s subnetwork.

After he achieves this, he tries to deanonymize the transaction. Through a single
side-channel, which is able to identify the service’s subnetwork, the whole centralized
mixing service could be broken. This side-channel could lead to the deanonymization
of all transactions the service ever processed.

3.4.1.1 Taint Analysis

Till early 2017 blockchain.info provided a service which visualized the taint of an
address. The so called Taint Analysis evaluates the associations between multiple
addresses and shows how strong the links between them are [35]. The analysis
was introduced to evaluate how much anonymity a specific mixing service pro-
vides. The mixing service should provide untainted coins. Which in fact means,
that the customer’s input addresses should not be connected to his output ad-
dresses.

This analysis has often been used to determine how good a mixing service anonymizes
transactions |34].

While a taint analysis only takes direct connections between addresses into account,
other approaches like sophisticated blockchain analysis or statistical tests are able
to use side-channels to find associated addresses which are not directly connected.
In this way a blockchain analysis could lead to a deanymization of transaction’s
addresses which are not tainted.

It is controversial discussed if taint analysis is a suitable tool to determine a trans-
action’s origin since exchanges and other services in the Bitcoin ecosystem create
new links between addresses.

The Taint Analysis function, introduced by blockchain.info, has recently been re-
moved. At the moment there is no known publicly available tool which is able to
perform a taint analysis.

24 3 Centralized Mixing Services

3.4.2 Sybil attack

Requires attacker: C - D

Sybil attacks can be used in decentralized networks by forging identities. In case of
Bitcoin a sybil attack can be carried out by forging multiple nodes through a single
server |35].

On 1st August 2017 Bitcoin cash (BCH) came alive as a fork of the Bitcoin
blockchain. On that day the nodes of the Bitcoin network increased from 11.000
to 16.000 in only 12 hours and later dropped back to 11.500. It is believed that
attackers tried to execute a sybil attack on the Bitcoin network. However, the mo-
tivations of this possible attack are still unclear. [43]

Small sized sybil attacks, where the attacker cannot provide any mining power, do
not harm the stability of a stabilized network [21]. An attacker who successfully car-
ried out a sybil attack can be seen as a man-in-the-middle between the network and
a client. He could hold back incoming or outgoing transactions. However, whether
a sybil attack may have an effect on the network or specific network members is
primarily based on the network structure and the implementation of the client soft-
ware.

Since the attacker is able to control the data which are sent from the client to the
network, he is able to log data which could interfere user’s privacy. If an attacker
is able to spot and control the incoming and outgoing connections of a centralized
mixing service, this could compromise the privacy of every customer. Since CMS
automatically send and receive transactions, the attacker is able to carry out so-
phisticated timing attacks. If an attacker is able to mine valid blocks, he could
steal the mixer’s Bitcoins by creating stale blocks. However, this attack may not
be a suitable attack carried out against Bitcoin, since the Bitcoin network provides
a comparatively high difficulty and long block generation time. It would be a very
costly attacking attempt.

There are two well known countermeasures against sybil attacks. The client could
connect to as many nodes as possible or he could add a static connection to at least
one well connected node he trusts [21].

A sybil attack needs resources, much time in planning and a precise knowledge of
the victim’s system and subsystems. While this attack is difficult to carry out and
can be very expansive, it is very difficult to be spotted, if it only attempts to attack
specific services or network members.

3.4.3 Web security bugs

Requires attacker: A - B

CMS are typically accessible though a website. Web security bugs and vulnerabil-
ities could compromise the service. We are going to discuss some vulnerabilities
which could lead to deanonymization of customers.

3.4 Possible attacks 25

Session hijacking/fixation - Through session hijacking an attacker might
be able to gain access to the customer’s Letter of Guarantee. The letter
of guarantee typically provides all necessary information to deanonymize a
mixing process.

XSS - Cross-site scripting attacks could be used in various ways to
deanonymize customer’s transactions. Through website overlays or logging
of user information (IP addresses, user agents) and a sybil attack customers
could be deanonymized. Furthermore, it may even be possible to steal
customer’s Bitcoins through changing the coinmixer’s Bitcoin address.

SQL and other code injections - May lead to information disclosure e. g.
through stored letter of guarantees or could lead to actively storing customer’s
information. Furthermore, customer’s Bitcoins could be stolen by changing
the coinmixer’s Bitcoin address.

Broken authentication - May lead to information disclosure.

It should be mentioned, that this list is not complete. It is important to know, that
based on the attacker model, even bugs which does not seem to be vulnerabilities
could be used in combination with other attacking approaches like blockchain anal-
ysis or sybil attacks to deanonymize customers.

While in common attacking scenarios it might not be the main goal to gain access
to access logs, in case of attacking a centralized mixing service, this could easily lead
to the deanonymization of every customer.

3.4.4 DDoS

Requires attacker: A and resources to successfully execute a DDoS attack.

DDoS attacks can harm CMS and even be used to compromise the customer’s pri-
vacy. The simplest case is, when DDoS is being used to block customers of using
CMS.

More interesting are cases where through a DDoS attack an attacker is able to gather
information about the black-boxed system. Since the security of CMS is often based
on time delays, a DDoS attack could influence the mixing process which leaks infor-
mation to identify customers.

If a node did not specify static connections, a DDoS attack could also be used to
successfully carry out a sybil attack. The victim could reconnect to the forged
attacker’s nodes.

26 3 Centralized Mixing Services

3.4.5 Attacks on the Bitcoin protocol

We described already attacks which primary are based on the Bitcoin network (e. g.
sybil attack), however, there are also vulnerabilities and known Bitcoin protocol bugs
which can be exploited to attack a mixing service. If the developer of a mixing service
is not aware of these bugs, they could lead to deanonymization of the customer’s
transactions or financial loss.

3.4.5.1 Double spending

Requires attacker: B

We discussed already the RBF and other features which allow a sender to update
and replace a Bitcoin transaction. These features may lead to vulnerabilities, if
CMS sent their untainted coins to the customer without waiting till the customer’s
transaction have been included in the blockchain. Since the user is able to change the
transaction, the mixing service could be sending untainted coins without receiving
the user’s taint coins.

In general, it should be waited at least for three confirmations, before an incoming
transaction is evaluated as confirmed [5].

3.4.5.2 Stale blocks

Requires attacker: D

Stale blocks are Bitcoin blocks which fulfill all requirements to be evaluated as
a valid Bitcoin block, but they are not part of the main Bitcoin blockchain

19]-

Orphan blocks have no known parent, so they can't be validated

1 2 N 3 5 (Orphan)
«Parent: 0 «Parent: 1 «Parent: 2 «Parent: 4
N
2 (Stale)
«Parent: 1

Stale blocks are valid but not part of the best block chain

Figure 3.1: Stale and orphan block [9]

In figure 3.1. we can see a stale and an orphan block. Normally stale blocks are
created whenever at least two miners were able to mine a block at the same time
[25]. While both blocks are valid, only one of them can be added to the blockchain,
since the main blockchain does not allow to have multiple blocks at the same block

3.4 Possible attacks 27

height. Whenever multiple blocks were mined at the same block height, miners can
choose on which block they want to mine their next block. Typically miners choose
the block they received first [5]. The block which is not mined on, is the stale block
which won’t be part of the main blockchain.

Since the stale block is not part of the main blockchain, none of the transactions
included in this block are confirmed. However, the transactions can still be a part
of other blocks in the main blockchain.

A miner could exploit this behavior by willingly creating blocks which are going to
be stale blocks later on. The miner would be able to include several transactions
in his stale block which will be confirmed through his block, knowing they will be
reversed later on. In case of the main blockchain, the transactions have never been
made. If a mixing service does not wait for multiple confirmations, it may send
the untainted coins to the attacker. While the attacker’s input transaction will be
ignored, since it is only available in a stale block, the output transaction will be
included in the main blockchain.

However, it is hard to willingly create a stale block, which will be accepted by the
network but later on ignored. Furthermore, the mining reward will be lost. For
successfully carrying out this attack there may be a sybil attack prior to the mining
necessary. In this case the attacker controls which blocks the centralized mixing
service is able to receive and would be able to disconnect the service from the main
Bitcoin network till he mined his own stale block. The same drawbacks we described
in the sybil attack apply for this attacking approach.

3.4.5.3 Replay attack on forks
Requires attacker: B

When a stale block was created there is typically a wipe out of the short blockchain.
However, this is not always true. In case of a planned fork, miners could still be
working on the shorter chain. This happened on 01.08.2017 through the Bitcoin
cash (BCH) fork. Since both chains are valid, the UTXO which were sent before
the chain-split are valid on both chains. If the forked chain does not have any
replay protection, it is possible to spent UTXO on the old chain and replay this
transaction to the forked chain. And vice versa.

However, CMS are typically only connected to one of these chains. If no replay
protection is applied, an attacker is able to replay the transaction, which the CMS
sent on one chain, to the other chain. The attacker will receive coins on both
chains, since he owns the private key on both chains, but in fact he only sends his
coins on one chain to the centralized mixer.

Typically the forked chain should implement a replay-
protection.

28 3 Centralized Mixing Services

3.4.5.4 Transaction malleability

Requires attacker: B

Through transaction malleability an attacker is able to change a transaction’s hash
as long as it stays unconfirmed [19]. In implementations where transactions are
tracked by their hashes, this could lead to financial loss, since the transaction with
the changed hash cannot be found anymore by the implementation. Most probably
the transaction will still be confirmed by the Bitcoin network. In the case of CMS,
the attacker could change the outgoing transaction and the mixer might not find it
anymore and automatically resend it. The mixer would spend two output transac-
tions, while only receiving a single input transaction.

While this attack requires a rare setting, it may have led to a loss of more than
302.000 Bitcoins [19].

Recently this bug has been fixed through the Segregated Witness (SegWit) soft fork
[16]. Since the fix has been activated as a soft fork, the sender of a transaction has
to specify if he wants to enable this feature in his transactions. At the moment only
every 10th transaction uses SegWit [10]. Every transaction, which does not make
use of the SegWit feature is still malleable.

3.4.6 Conclusion

As we can see, there are multiple attacking possibilities against CMS. The imple-
mentation has to be secured against Bitcoin network weaknesses and web security
vulnerabilities. Furthermore, a secure mixing algorithm has to be implemented.
Even if all of these layers are implemented in a secure fashion, they could lead to
side-channels when they are combined. A centralized mixing service should be se-
cured against all of these vulnerabilities. It should be able to automatically process
transactions, without leaking information about the mixing process. An attacker
should not be able to differentiate between transactions, which are connected to the
mixing service and other transactions found in the blockchain.

A general drawback of CMS is, that their service is commercially driven and not open
source. The customer has to trust the service provider.

4 Attack on coinmixer.se

With a mixing volume of around 120 Bitcoins per week, coinmixer.se is probably
one of the most frequently used centralized Bitcoin mixing services available [6].

In this chapter we are going to implement an attack on this service. Our aim is
to create a tool, which allows us to deanonymize transactions which priorly were
anonymized by coinmixer.se.

Coinmixer.se publishes every week the amount of mixed Bitcoins and the number
of performed anonymizations on their website.

4.1 Functionality of coinmixer.se

You Tainted bitcoins CoinMixer Anonymized bitcoins -

2 - 0-a&a—-0-4

Figure 4.1: Funcionality of coinmixer.se [6]

Coinmixer.se works in a similar way as typical CMS we described in Centralized
Mixing Services (CMS). The customer visits coinmixer.se and specifies the amount
of untainted coins he wants to receive. He also specifies the forward address where
the untainted Bitcoins should be sent to. He is able to specify multiple addresses
(see Optional setting: Multiple addresses) and a time delay (see Optional setting:
Time delay) as optional settings. After that, coinmixer.se generates an unique input
address and calculates the amount of tainted coins the customer has to pay. When
the customer has sent the required amount to the coinmixer’s input address, three
confirmations are awaited.

After three confirmations are received through the Bitcoin network, and a possible
optional delay was waited, the untainted coins are sent to the customer’s forward
address(es) which previously has/have been specified.

4.1.1 Optional setting: Multiple addresses

Coinmixer.se allows the customer to specify up to five forward addresses.

The amount of untainted Bitcoins which should be received through a specified ad-
dress can be chosen independently, but has to be at least 0.001 BT'C and cannot be
greater than 5 BTC.

Every forward address has to be unique.

30 4 Attack on coinmixer.se

Even though the customer is able to specify multiple forward addresses, he will
always have to pay the untainted Bitcoins to a single address controlled by coin-
mixer.se.

4.1.2 Optional setting: Time delay

The customer is able to specify a time delay (one hour intervals), which coinmixer.se
will wait before it sends the untainted Bitcoins to the specified forward address(es).
The time delay can be set to a maximum of 120 hours.

For every forward address a time delay can be specified separately. Per default the
time delay is set to one hour. However, the customer is also able to set the delay
to zero hours. In this case the output transaction will be sent as soon as the input
transaction received three confirmations.

) > - output tx Receiving output
Customer input tx @de|:}r: 1h

output tx

[delay:0h Receiving output

address 1
Receiving output

output tx address 2

delay: 1h

) ,;//._'_.‘\ output tx Receiving output

@ input tx WB delay: 10h address 3
outputtx Receiving output

delay: 120h address 4
Receiving output

—— output tx
delav:84h agdress 5

Figure 4.2: The default case of a mixing process and a case which makes use of the
optional settings

4.1.3 Mixing fee

Coinmixer.se charges a fee from 1% to 3% of the initial Bitcoin amount the customer
wants to anonymize. For every forward address additional 0.0007 BTC are charged.
[6]

Based on the fee, the amount a customer has to send should be calculated as fol-
lows:

BT Ctyinted = (BT Cyntainted * fee) + forwards x0.0007 BTC,

where BT Ciginteq 18 the amount the customer has to pay, BT Cyntainted 18 the amount
the customer receives, fee is between 1.001 and 1.003, forwards is the number of
specified output addresses.

However, the last three to four decimals of this amount are changed to not pre-
dictable numbers. They may have been randomized. The actual amount a customer
has to pay can be illustrated through the following example:

The customer wants to anonymize 1 BTC and did not change any optional settings

4.2 Attacker Model 31

(1h delay, 1 forward address).
If coinmixer.se automatically chooses a fee of 1.62 % he would need to
pay

(1 BTC %1.0162) + 1 % 0.0007 BT'C = 1.01690000 BTC.

However, since the last four decimals are not based on the calculation shown above,
the customer has to pay a value between 1.01690001 BTC and 1.01699999 BTC.
The exact amount which the customer has to pay is most likely randomly chosen in
this range.

It is important to state, that the mentioned fees could change. In the last few months,
the address fee has changed multiple times in a range from 0.0005 to up to 0.0007.
It changed in 0.0001 steps. Most likely a manual fee adjustment is applied whenever
the average Bitcoin network fees heavily change.

4.2 Attacker Model

Our attacker is able to access the Bitcoin blockchain. He knows the input trans-
action which the customer has sent to coinmixer.se and he knows, which of the
transaction’s output addresses is controlled by the coinmixer. The attacker’s aim is
to identify coinmixer.se’s output transactions.

Furthermore, we are going to describe different attacking scenarios. In some scenar-
ios the attacker knows information about the set optional settings (maximum time
delay, maximum number of forwards) while in others these information are unknown
to him. We are going to compare the results of these different scenarios.

Mixing statistics, published on coinmixer.se, can be wused by the at-
tacker.

4.3 Attacking Method

As we already described in Possible attacks there are many different attacking pos-
sibilities which could lead to breaking a centralized mixing service. In our attack we
are going to focus on simple blockchain analysis. While our aim is to break a single
instance of a centralized Bitcoin mixer, we want to show that there are general prob-
lems in using centralized mixing services. Our aim is to successfully implement an
attack, which could also be modified to break other CMS. We are going to focus on
implementing a Proof of Concept, which may not break the whole implementation
in all of it’s optional settings, but we are going to show how it could be done in
further steps.

4.3.1 Steps to break coinmixer.se

We are not interested in the internal mixing algorithm of coinmixer. While we are
going to address it in the crawling process, we try not to make any use of it in the
process of transaction deanonymization. Coinmixer.se weekly publishes the amount

32 4 Attack on coinmixer.se

of mixing processes it has performed in the last week. As the time of writing the
service processed only around 1300 mixings in the last week (2017-10-20 00:00:00
UTC - 2017-10-26 23:59:59 UTC) [6].

Since the number of processed mixings is small, our main attack will focus on map-
ping customer’s input transactions to coinmixer’s output transactions based on the
amount of sent untainted Bitcoins.

To achieve this, we need to accomplish three steps:

1. We need to identify the coinmixer.se network in the blockchain. We need to be
able to distinguish whether a transaction is part of the coinmixer.se network.
Furthermore, we have to be able to identify which of these transactions were
sent by customers as pay-in transactions and which are pay-out transactions
sent by the coinmixer.

2. We need to be able to implement a crawler which stores the coinmixer’s
network in a database.

3. We need to identify which input transaction can be mapped to which output
address. Vice versa.

It is important to state, that the deanonymization step is not based on a taint
analysis (see Taint Analysis). Since we do not analyze the internal mixing structure
in our deanonymization step, the results are highly correlated to to the mixing
behavior of other customers.

4.4 Identifying coinmixer.se’s network

The first important step is to identify the mixing network within the blockchain
data. As we are not interested in the internal mixing process, we only need to
identify the customer’s input transactions and the coinmixer’s output transactions.
However, it might be hard to filter these transactions. For the following calculations
we are going to ignore possible internal mixing transactions.

Based on the published data, we assume that coinmixer.se processes around 1300
mixing processes per week [6]. There should be around 1300 input transactions sent
by customers. Since every customer is able to specify up to five forward addresses,
there will be a maximum of 1300 x 5 = 6500 weekly output transactions sent by
the coinmixer. If we want to identify the coinmixer network, we need to identify a
maximum of 6500 + 1300 = 7800 transactions in the weekly produced blockchain
data. To get a feeling how hard it is to identify these 7800 transactions without
any further information, it is necessary to know how many transactions the Bitcoin
network is able to process per week.

In general the Bitcoin network is able to process 7 TPS (transactions per second)

4.4 Identifying coinmixer.se’s network 33

[38]. When the SegWit feature is widely adopted the maximum number of TPS
should increase [38].

With a theoretically maximum of 7 TPS we achieve a weekly maximum of 4.233.600
transactions. This number of transaction would be sent in 1008 blocks with a block
generation time of 10 minutes.

However, 4.233.600 transactions per week is the theoretically maximum. In last
week (2017-10-20 00:00:00 UTC - 2017-10-26 23:59:59 UTC) only around 2.182.236
transactions have been processed through the Bitcoin network, while the average
blocksize was even bigger than 1 MB [1]. Through the SegWit feature miners are
able to create blocks which are bigger than 1 MB. [38]

Either way, our implementation would need to identify a maximum of 7800 trans-
actions in more than 2 million transactions.

4.4.1 Characteristics of customer’s input transactions

We need to identify the customer’s input transaction and the coinmixer’s output
transaction(s). The identification of the customer’s input transaction seem to be
not trivial, since input transactions are manually sent by customers. The customer
is able to choose the timing, the fee and the client through which he sends his trans-
action. He is also able to make use of various features like SegWit or RBF in his
transaction.

However, the amount, which the costumer has to send to coinmixer.se, is predefined
by coinmixer.se. As we already described in Mixing fee, the last three to four dec-
imals of this amount were not predictable. We noticed this abnormality, since the
predefined amount the customer has to send to coinmixer.se does not add up with
our manual calculation. In more than 30 test cases which we created, the input
transaction’s amount specified by the coinmixer never ended with a zero.

In all cases the customer would have to send a transaction which is specified to
exactly eight decimals. We assume that coinmixer.se behaves like this for every
customer. While the precision of a transaction’s amount may be an indicator for
customer’s input transactions, this indicator may not be good enough to filter 7800
transactions out of more than 2 million Bitcoin transactions. However, this indi-
cator and the knowledge that customer’s transactions are typically sent through
standard Bitcoin clients might help us later on. While services, which perform Bit-
coin transactions, often send generic Bitcoin transactions, manual transactions sent
by individuals are typically more varying.

4.4.2 Characteristics of coinmixer’s output transactions

While input transactions are manually sent through the customer, the coinmixer’s
output transactions are automatically sent [6].

Since the coinmixer’s output transactions are automatically generated, their inter-
nal structure most probably will be similar. To be able to differentiate coinmixer’s
output transactions from other Bitcoin transactions, we need to identify these char-

34 4 Attack on coinmixer.se

acteristics. To receive transactions sent by coinmixer.se, we used the service several
times with different settings set.

In total we received and analyzed more than 20 coinmixer.se transactions. All of the
received transactions had in common, that a locktime was specified and transaction
version 2 was used. When analyzing we also noticed that the sequence number of
every transactions sent by the coinmixer was set to 4294967294. We also realized
that every transaction sent by the coinmixer used a static transaction’s fee per byte
with a variance of +1.

It could be argued that the provider is able to set a specific transaction’s fee per
byte, which will be used until it is manually changed. Based on this assumption, all
coinmixer transactions sent at the same time should have the same fee set. The fee
can be divided into fee partitions. Since the decimals did not seem to be predictable,
we will only focus on the predecimals.

Fee perByte: 128 | Fee per Byte: 68 Fee per Byte: 128

transaction time »

Figure 4.3: Fee partition

For easier understanding we are using the term "fee" when we refer to "fee per
byte”, knowing that o transaction’s fee is in fact a different value.

While there are probably way more characteristics of coinmixer’s transactions, we
will focus on the indicators we mentioned above.

Table 4.4: Strong and good indicators to spot coinmixer’s transactions

Indicator Credibility
version = 2 strong indicator
sequence number = 4294967294 | strong indicator
locktime > 0 strong indicator
transaction in fee partition good indicator

We now need to determine if these indicators can be used to filter coinmixer’s
transactions from random Bitcoin transactions. To analyze how good these
indicators are, we analyzed 1036 Bitcoin blocks (around 1 week), starting from
block height 494120 (2017-11-13 00:03:34 UTC) and ending at block height 495154
(2017-11-19 23:47:43 UTC). Based on the published mixing static of coinmixer.se
[8], the service anonymized 1365 transactions in that same week, which would result
to be at least 1365 and at most 1365 x 5 = 6825 coinmixer’s output transactions.
We ignored possible internal mixing transactions.

Through an implemented script (see Python Code), we were able to identify
2.150.927 confirmed transactions between block heights 494120 and 495154. Er-
roneous transactions (e. g. double spends) and coinbase transactions have been

4.4 Identifying coinmixer.se’s network 35

removed.

Based on our test set we obtained the following results:

463.090 of 2.150.927 transactions used version 2 (21,53 %).

376.567 of 2.150.927 transactions used version 2 and specified a locktime (17,51 %).

450.810 of 2.150.927 transactions set the sequence numbers of every inputs to
4294967294(20,96 %).

362.709 of 2.150.927 transactions used version 2, specified a locktime and set the
sequence numbers of every input to 4294967294 (16,86 %)

As we can see, we were able to filter 362.709 (16,86 %) out of 2.150.927 transactions,
which fulfill the mentioned indicators to be coinmixer.se transactions.

Still, the indicators do not seem to filter enough transactions, since, based on
our assumption, a maximum of 6825 transactions could be sent by the service.
Since every transaction we received from coinmixer.se met the indicators (version,
locktime, sequence number), we will refer to them as strong indicators.

However, the fee indicator might be an even better way to determine coinmixer’s
output transactions, since Bitcoin clients typically use a dynamically fee adjustment.
[5]

Through dynamical fee adjustment, the client calculates the fee based on the
Bitcoin network traffic, while coinmixer’s fees seem to be fixed and only adjusted in
a big scale. While the analysis of version, sequence and locktime is pretty easy to
accomplish, for analyzing the fee it must be taken into account that the fee might
change in future.

We have to reduce the block range to be able to obtain reliable results, since we
have to be sure that the fee does not change within our testing time frame.

We received 14 transactions in the time range between 2017-09-26 00:58:49 UTC
and 2017-09-28 01:37:46.

Table 4.5: Transactions received from coinmixer.se between 2017-09-26 00:58:49
UTC and 2017-09-28 01:37:46

36 4 Attack on coinmixer.se
Transaction hash Time (UTC) Fee (sat/Byte)
8b6211ac88f1e149189¢5c4ddddd019018...| 2017-09-26 00:58:49 | 123.119
378ecaclcal91dbbd22d577b61feea2f15...| 2017-09-26 02:21:44 | 123.78
al4ede087bc7284d4258a60221141d871a...| 2017-09-26 03:19:00 | 123.445
534b293cae650114e8ab9e0aabab385d17..| 2017-09-26 08:17:34 | 123.649
85320bcd73368a0cfallealc7c05fad624...| 2017-09-26 10:18:19 | 123.088
0e43ab54b6bed2bcel9c0dd4a90eeTbbfc..| 2017-09-26 18:20:28 | 123.649
2e429009d9d1b44¢26568f066c85378997...| 2017-09-26 18:43:41 | 123.08
1933540211634502e843ef5645eee5f190... | 2017-09-26 18:55:18 | 123.08
¢807cbY%ecbbd757d13d84a0e7c8f33a9b3..| 2017-09-26 20:12:31 | 123.075
0411d53d67a76defefac7{7f44eca3d365e2... | 2017-09-26 20:13:19 | 123.075
69b194882d74a1091e23ad0cbi253c6e39..] 2017-09-26 20:59:10 | 123.618
59810e31b7¢73a69b385¢1533be3166336.. 2017-09-26 21:12:42 | 123.071
92602394119532c¢01019b092913fa83bad...| 2017-09-27 01:34:13 | 123.044
dfb90181135a363897126893b34cb8d736..] 2017-09-27 03:32:39 | 123.587
0616d01£2f84d43cee37a986d3dabed3f4... | 2017-09-28 01:37:46 | 123.449

As we can see in table 4.5, all transactions we received in that time frame have been
sent with the same fee. The first transaction we received at 2017-09-26 00:58:49 UTC
was included in the Bitcoin block with height 486977. The last one we received
at 2017-09-28 01:37:46 UTC was included in the block with block height 487265.
We assume that in this period of time every transaction sent by coinmixer.se to
customers has a fixed set fee of 123 sat/Byte (+1).

531.558 transactions have been sent between block height 486977 and 487265. Sim-
ilar to our previous analysis, 17,19 % (91.382) of 531.558 transactions fulfilled the
version, sequence and locktime indicators. However, when we applied the fee in-
dicator and filtered the transactions to show every transaction which has a fee set
between 122 sat/Byte and 124 sat/Byte, we received a result set of 2.839 (0,53 %)
from 531.558 transactions. When we tightened up the fee indicator to only show
results where the fee is set to 123 sat/Byte, it results in a set of 1057 (0,19 %)
transactions.

Even though all of the transactions we received by coinmixer.se had the fee set to
123 sat/Byte, we realized in further analysis that in some settings the fee was off
by one sat/Byte. So we decided to stick with a variance of £1 for our implementa-
tion.

When we apply all four indicators (version, locktime, sequence number, fee) to
the gathered transactions between block heights 486977 and 487265, we received a
filtered output of 2.839 transactions. Only 0.53 % of all transactions send at the
time fulfilled the mentioned indicators.

While the fee indicator seems to be good for filtering purpose, it should not be used
as a strong indicator, since the specified fee is able to change.

It should be stated, that we only used simple characteristics as indicators, which can
easily be spotted through a high-level comparison of standard Bitcoin transactions
sent through a Bitcoin client and coinmixer’s output transactions. On a low-level

4.4 Identifying coinmixer.se’s network 37

view of Bitcoin transactions probably more characteristics could be spotted. This
could lead to even more accurate results.

4.4.3 ldentifying customer’s and coinmixer’s transactions

In the last two subsections we analyzed additional features of transactions which
could lead us to identify transactions which are connected to the coinmixer’s net-
work. Based on these indicators full Bitcoin blocks could easily be analyzed, which
we will refer to as blockwise crawling. However, these results could be improved,
since we did not take into account any transaction’s characteristics regarding the
number of input/output addresses, the sent Bitcoin amount or general transaction
flow. Many of these features have to be analyzed dynamically, since they need to
be analyzed in context with other transactions and addresses. Through our static
filtering process even transactions which cannot be coinmixer’s output transactions
would not be filtered as long as the described indicators are met.

An example would be a transaction with all outputs under 0.001 BTC or over 5
BTC. Since it is not possible to specify an output amount less than 0.001 BTC or
greater than 5 BTC at coinmixer.se, this transaction could not be a possible coin-
mixer’s output transaction. An improved way of filtering would be to check whether
the transaction’s output, which is sent to the customer, is located within this range.
But to analyze how many Bitcoins are sent to the customer, we first have to distin-
guish which of the output’s addresses is the change and which the customer address.
This typically requires the analysis of multiple addresses and transaction flows.
For a further analysis, we are now going to take the transaction flow into account.
The indicators mentioned above have still to be met.

As we notice, every transaction, which we received by the coinmixer, has exactly
two outputs.

When we follow the output address which is not controlled by us, we see that it is
always used in exactly two transactions. Firstly in the transaction, where also our
address is used as an output address, and afterwards in a transaction which uses the
change received through the first transaction. No further transaction is sent before
or after these two transactions.

When we analyzed the second transaction, we recognized that all indicators men-
tioned above (version, sequence number, locktime, fee) are met. The second trans-
action also uses exactly two outputs. Since all indicators are met for the sec-
ond transaction, we assume, that this is also a coinmixer transaction. It follows
that the second address in the first transaction is a coinmixer’s change address.
The analyzed transaction flow of coinmixer’s transactions can be seen in figure
4.6

38 4 Attack on coinmixer.se

Qnmintx 1—

v

Our output address

Unkown address 1

¥

probably coinmixer's
change address

L 4

—tyo—

Y

Unkown address 2

Figure 4.6: Analyzed coinmixer’s output flow

When we analyzed the sent coinmixer transactions, we were able to distinguish cus-
tomer’s and coinmixer’s transactions based on the characteristics we described in the
last subsections. Furthermore, the customer often only specified up to four decimals
and uses common values. We define a value to be uncommon, if it is specified to
more than four decimals (e. g. 0.9286472 BTC).

It seems like the coinmixer’s network sends output transactions to a customer, and
receives the change on a change address. After that, the change, sometimes com-
bined with other changes, is sent to a next costumer. The change is again saved on
a new change address and reused for a next customer. And so on.

Also we noticed that the costumer’s outputs are sometime unspent, while the change
addresses in all of our analyzed transactions were spent. Customer’s addresses could
also be differentiated from coinmixer’s by the previous and the following transac-
tion’s flow.

Some customers addresses received and sent multiple transactions, while coinmixer
addresses only received a single transaction and sent a single transaction.

Till now we spotted several indicators to differentiate between customer and change
addresses. They can be found in table 4.7.

Table 4.7: Indicators to distinguish between customer’s and coinmixer’s address

Indicator Indicates Credibility
Sent multiple transactions customer address | strong indicator

Following transaction does not fulfill all | customer address | strong indicator
strong indicators

Following transaction fulfills fee indica- | coinmixer address | good indicator
tor

Received input less than 0.001 BTC or | customer address | strong indicator
greater than 5 BTC
Transaction output is unspent customer address | medium indicator

Received a common value customer address | low indicator

Based on these indicators we were able to follow the chain of change addresses, which
can be seen in figure 4.8.

4.4 Identifying coinmixer.se’s network 39

probably coinmixer's
change address

i

Cur output address
coinmixer e 1——] probably coinmixer's 3
change address
probably coinmixer's o—
change address unknown customer

Figure 4.8: Analyzed chain of change addresses

Through the analysis of the transaction flow we were able to identify the internal
mixing process. While we were able to identify possible customer’s and internal
addresses in a forward manner, it may be also interesting to take a look back. As
we already know, sometimes change addresses are combined. This could provide us
with more information about the network, since till now we only analyzed a single
chain of change addresses.

When we analyzed the input addresses, we recognized some addresses which are
probably used as cash-in addresses for customers and others that are used for
output transactions. The cash-in addresses could be identified, since they are
sent through the customer and typically did not fulfill the mentioned indica-
tors, while the input transactions which are used for output transactions do meet
them.

h 4

unknown customer 2
probably coinmixer's 1] probably coinmixer's
change address 1 change address 3

h 4

probably coinmixers
change address 2 3

h 4

h 4

Qur output address

probably coinmixers

—
unknown customer1 ——tx 2 cash-in address

Figure 4.9: Analyzed full coinmixer network

As we can see in figure 4.9, we supposedly identified a method to spot the coin-
mixer.se network. However, we didn’t confirm it yet. A way to verify our assump-
tions would be to create the network based on a given input transaction and check
if another unique input transaction we made after that can be found in the created
network.

40 4 Attack on coinmixer.se

Our address 2 24’{ CDH’]:‘I;;[ESS:ZSH-IH

coinmixer's cash-in v B probably coinmixer's
Our address 1 14’{ address 1 multiple nelworkit(5 change address X
|
ittt Our output address 2

Our output address 1

Figure 4.10: Confirm coinmixer network

In figure 4.10 we perform two unique mixing processes to confirm the constructed
coinmixer network. We receive through Our output address 1 the untainted coins
for the tainted coins of Qur address 1. To confirm the network, we did start a second
mixing process. Based on the second output address and the known indicators, we
reconstructed the coinmixer network.

If our first transaction can be found in this network, we assume that we were able
to reconstruct the correct coinmixer network.

While we were able to describe the method to reconstruct the coinmixer.se’s network
based on the spotted indicators, we want this automatically to be done. To achieve
this, we are going to implement a crawler which is able to reconstruct the network
based on a given coinmixer’s output transaction.

Based on the described method above, we are going to verify in chap-
ter Results that our crawler is able to create the correct coinmixer.se net-
work.

4.5 Crawler

As we already described in the previous section, the crawler should be able to create
the coinmixer network based on a given coinmixer’s output transaction. To imple-
ment this we are going to implement two different ways of crawling. The forward
crawling, which takes a coinmixer’s output transaction and follows the change ad-
dresses till it reaches the end of the coinmixer network and the backward crawling,
which also takes a coinmixer’s output transaction but analyzes the input addresses
to find previous transactions and addresses which are part of the coinmixer’s net-
work.

The process of creating the whole network should be done as we can see in figure
4.11.

4.5 Crawler 41

revious tx probably coinmixer's
P change address
unknown customer
. bably coinmixer's robably coinmixer's
e probably P Y
previous change address change address
unknown customer unknown customer
previous b probably coinmixer's | _ [probably coinmixer's o—> probably coinmixer's || probably coinmixers
change address 1 change address change address w3 change address
unknown customer L our output address unknown customer LD unknown customer

Figure 4.11: Forward (red) and backward (green) crawling process

Through the forward crawling only a single chain (red) of transactions will be
found. When the endpoint of this chain is reached the crawler is going to stop.
The user should specify the last transaction (tx 3) as the starting point for the
backward crawling process.

The green colored transactions can be found through this approach.

Through this approach nearly all transactions which belong to the mixer should be
found.

But transactions, which were entirely spent before and don’t have any connection
with an address, which can be found in the crawled network, cannot be found.
However, this should be a rare situation, since the output has to exactly match the
customers specified output amount.

Also transactions which have not been connected to a change address chain yet,
cannot be found through this approach. But the chains are most probably getting
connected through further mixing processes.

~---previous;tx _prig::gec;\jry;;irs unknown customer
- unknown customer
probably coinmixers | _ | probably coinmixer's probably coinmixer's probably coinmixer's
previous te chan bt te2—> —»
ge address change address

change address 3 change address

unknown customer L our output address L unknown customer L’ unknown customer

Figure 4.12: Transaction chain which can’t be found by forward /backward crawling
(blue)

As we can see in figure 4.12, some transactions (blue) might not be found through
a forward/backward crawling process. However, they can be found through a
blockwise crawling process.

42 4 Attack on coinmixer.se

It should be noted, that we did not specify any assumptions yet, how the service
is receiving the mixing fee. Based on the described network it could either be that
some of the output addresses are controlled by the coinmixer or a change address
chain leads to an address which is manually controlled by the coinmixing service.
We did not further examined these assumptions.

4.5.1 Gathering blockchain data

To analyze Bitcoin transactions it is necessary to parse the blockchain data. There
are different approaches to retrieve blockchain data. A complex way would be to
connect to the Bitcoin network and download the whole binary blockchain data (143
GB [2]). After that the whole blockchain data can be parsed. A running node would
be necessary to receive new Bitcoin blocks. While this is a complex method and
may take some time to be implemented, it is entirely based on the Bitcoin network
and no external API is required. If an ongoing network analysis should be achieved,
this might be the most efficient and reliable approach.

However, if only a specific time frame of blockchain data should be analyzed, external
APIs are an easier way to go. It should also be known, that there are also solutions
of receiving specific blockchain data through the Bitcoin network, but since we won’t
use them, we are not going to discuss them in further detail.

We are going to focus on the blockchain.info API. Through the blockchain.info API
it is possible to receive blockchain data JSON-formatted. Through this API it is
even possible to gather specific transaction and address data without parsing a whole
block. However, there is a request limit and there might be a trust issue, since the
received data could be flawed. To simplify our implementation, we will use the
blockchain.info APT to receive the necessary blockchain data. We trust, that the
received parsed blockchain data are correct. We are not going to confirm signatures
or other cryptographic details of the received data.

4.5.2 Data structure

To decide which data structure should be used by our implementation to store the
blockchain data, several options should be discussed. The Bitcoin network is able
to process around 2 million transactions per week and might even process way more
transactions in future. [38]

We should implement a database which is able to store and access the data in an
easy and fast way.

Since our purpose is not to provide a schema-free database we will stick to a MySQL
database.

Our database structure can be found in Database structure.

For performance reasons we used in most cases fixed column lengths. We moved
most columns which are varying in size (e. g. list of input/output addresses)
to separated tables. We can clearly see this at the address and_ wvalue mapping

4.5 Crawler 43

table. While most of the transaction data are stored in the transaction data
table, we stored transaction data that belong to addresses in separate tables
(transaction_ addresses, transaction_values). We chose this way to store address
data, since transactions vary in the number of input and output addresses and for
most of our queries, the specific address data are not important.

This way of storing the transaction data should enhance the accessing performance.
Besides the mapping, we created two different tables to store transaction data.
Every transaction that’s processed through our script will either be stored
in {ransactions size _normal or in transaction_size big. Transactions which
exceed a length of 40.000 characters (JSON-formatted) will be stored in transac-
tions size_big. Based on the average Bitcoin transaction size and the overhead
produced through the blockchain.info API we have chosen this size. Most transac-
tions should be stored to transactions size normal, since transactions size big
uses the mediumtext-type to store data.

We chose to store every processed transaction, otherwise the crawling processes
would need to request transactions which were already processed before. Since the
blockchain.info API blocks IP addresses after too many requests, our aim is to send
as less API requests as possible.

For performance reasons we divided received Bitcoin transactions in two size
categories Database structure.

The column indexing has been chosen based on the implemented MySQL statements.

4.5.3 Forward crawling

As we already described, the starting point of the crawling processes has to be
a coinmixer’s output transaction provided by the user. Based on the known
indicators, the forward crawling process should be able to distinguish which of the
transaction’s outputs is the change address and which belongs to the customer.
The change address will be used as an input for further coinmixer transactions.
The crawling process should be executed till the endpoint of the change address
chain is reached or the user interrupts the script.

previous tx

probably coinmixer's
change address

probably coinmixer's
change address

tx2

5| probably coinmixer's

change address

5| probably coinmixers

change address

unknown customer

our output address

»

unknown customer

unknown customer

Figure 4.13: Forward crawling

We created a network class which manages the crawling process. If a forward
crawling process is started, the transaction’s hash of the coinmixer’s transaction
has to be specified. The crawling process will start by recursively searching whether
the transaction has already been analyzed before. If so, the endpoint of the last
crawling process is loaded through the c¢m_log check function and replaces the

44 4 Attack on coinmixer.se

input transaction specified by the user. The crawler won’t analyze a transaction
twice.

After the starting point has been identified, the crawler checks whether all strong
indicators are met. Since the forward crawling process follows the change address,
all strong indicators have to be met. If this check fails, most probably the user’s
specified transaction has not been sent by the coinmixer. The erroneous transaction
will be saved. The crawling process is aborted.

If the input transaction/last endpoint is a valid coinmixer transaction, it is stored
in the database and the main forward crawling process is able to begin.

Now the output addresses of the transaction are going to be checked. Based on the
indicators, it should be checked which of the addresses is the customer address and
which is the coinmixer’s change address.

The first indicator, which the crawler checks, is the number of sent transactions.
As we already described, a coinmixer’s change address should only send one
transaction.

While it is a strong indicator for being a customer’s address, if through an address
multiple transactions have been sent, it can also be an indicator for being a
customer’s address if the transaction’s output, which is being checked, is still
unspent. This is the case, because most of the coinmixer’s addresses will be used
in further mixing processes. However, this is only a low indicator, since the last
address of the coinmixer network will definitely be able to spend UTXO.

While strong indicators have to be fulfilled for being a coinmixer transaction, the
indicators we mainly introduced through the Identifying customer’s and coinmixer’s
transactions subsection should not only be relied on.

We implemented a counting system which helps us to distinguish between a
customer’s address and a coinmixer’s change address. We specified a value for each
indicator which will be added to a counter if it’s met. After both addresses have
been checked, the crawler will evaluate which address has the highest counter. The
address with the highest counter fulfills more indicators and is most probably the
change address.

Table 4.14: Forward crawling counter

4.5 Crawler 45
Indicator Add to counter | Description
More than one tx sent -1 No further check applied
Version of next tx =! 2 -1 No further check applied
Sequence of next tx !=|-1 No further check applied
4294967294
Locktime < 1 -1 No further check applied
UTXO available 0 Probably a customer address
No UTXO available 1 Probably a coinmixer address
Received an uncommon | 2 Probably a coinmixer address
value
Tx fee based on partitions | 3 Probably a coinmixer address
correct
Tx fee is located within a | 1 Probably a coinmixer address

partition

As we can see in table 4.14, there might be a situation where both addresses result
in the same counter. However, this situation should occur very rarely and we did
not experienced it in any testing scenario. More about this situation we described
in Future Work. An uncommon value is a Bitcoin amount which is specified to at
least five decimals (e.g. 0.98263890 BTC).
We are going to describe the fee indicator in a little more detail. As we mentioned,
the fee of the coinmixer’s transactions are most probably static. But, they are able
to change manually. Since they are able to change, it forms the fee indicator only
in some cases to a good indicator for identify a coinmixer’s transaction.

As we can see in figure 4.15, the set fee of coinmixer transactions can most probably
be divided into static partitions.

Fee per Byte: 128

Fee per Byte: 68

Fee per Byte: 128

transaction time

Figure 4.15: Fee partition

Since we are able to start the crawling process with any coinmixer trans-
action, the transaction is able to lay in different spots of these fee parti-

tions.

Fee per Byte: 128

Fee per Byte: 68

Fee per Byte: 128

transaction time

Figure 4.16: Transaction newer than every fee partition

46 4 Attack on coinmixer.se

In figure 4.16 we can see a transaction which is located after the newest fee partition.
This is the case if the processed transaction is the newest coinmixer transaction the
crawler has ever seen. While the fee indicator is still a reliable indicator, it might
be wrong, since a new fee partition could be created. The counter is increased by 3
as long as the fee of the transaction is set correct.

Fee perByte: 128 | Fee per Byte: 68 Fee per Byte: 128

transaction time >

Figure 4.17: Transaction older than every fee partition

As we can see in figure 4,17, it is also possible that the processed transac-
tion is older than every transaction the crawler ever has seen. This situation
is handled similar as the situation described above. The counter is increased by
3.

Fee perByte: 128 | Fee per Byte: 68 Fee perByte: 128

transaction time >

Figure 4.18: Transaction located within a fee partition

In figure 4.18 we are seeing a transaction which is located inside of a partition. This
case is a good indicator for being a coinmixer’s transaction, since the fee should not
be able to change within a partition. The counter is increased by 4 (3-+1), if the
transaction’s fee meets the partition’s fee.

Fee perByte: 128 | Fee per Byte: 68 Fee per Byte: 128

Y

transaction time

Figure 4.19: Transaction located in a gap

As we can see in figure 4.19, the transaction may be located within a gap of
partitions. When the transaction’s fee is located between partitions it is also a good
indicator, since we assume that there are no huge gaps between the partitions. The
counter is increased by 4 (3+1), if the transaction’s fee meets one of the surrounding
partition’s fees.

While analyzing existing partitions seems to be easy, it is also important to update
them. In the forward crawling process the partitions are going to get updated,
whenever the transaction is not located within a partition.

4.5 Crawler 47

In figure 4.20 we can see a partition which got extended, after a processed transaction
was located within a gap of partitions.

Fee perByte: 128 | Fee per Byte: 68 Fee per Byte: 128

transaction time -

Figure 4.20: Updating a fee partition

We won’t get into more details of other indicators, since we already discussed them
before.

The results of the counting process will be stored in the database in coin-
mazer analysis log and coinmizer analysis. While in coinmizer analysis log the
results of each address analysis are stored, coinmizer analysis log primary logs
which transaction’s hash already has been processed and should not be processed in
further crawling processes.

After the crawler determined which of the output addresses is the change address,
he follows the change address’s sent transaction and starts the analysis of it. In this
way the crawler is able to follow the change addresses and create the coinmixer’s
network based on them.

4.5.4 Backward crawling

The backward crawling process also starts with a user specified coinmixer trans-
action. However, now the inputs of these transaction are processed. It is checked
whether an input address is a cash-in address.

revious b probably coinmixer's
P change address
unknown customer
previous tx probably coinmixer's 3 probably coinmixer's
change address change address
unknown customer unknown customer
probably coinmixer's 2 probably coinmixer's probably coinmixer's
previous tx change address change address 1 change address
unknown customer unknown customer our output address

Figure 4.21: Backward crawling process

In figure 4.21 the user provides tx1 as the coinmixer’s output transaction. Starting

48 4 Attack on coinmixer.se

from there, the crawler should be able to identify tx2, tx3 and other connected
previous transactions.

The backward crawling process is primary based on the forward crawling process.
However, some specific adjustments were needed to be implemented. While the
forward crawling process checks whether an output address is controlled by the
coinmixer, all input addresses of the transaction have to be controlled by coinmixer.
If the inputs of the transaction would not be controlled by the coinmixer, it would
not be a coinmixer transaction. The main task in the backward crawling process
is not to identify who controls the inputs, but rather to identify who controls the
inputs of the inputs.

probably coinmixer's

revious tx
P change address

unknown customer

. coinmixer's cash-in probably coinmixer's
customer's address b address b2 change address

customer's change

unknown customer
address

Figure 4.22: Identifying cash-in and change addresses

In figure 4.22 the crawler checks whether an input address is a cash-in address or a
change address from a previous mixing process. If it’s a change address, this path
will be followed.

The user is able to specify a maximum crawling depth. This is the depth a single
chain of change addresses will be followed. It is recommended to choose a moderate
maximum depth (< 50), since one of the change address chains most probably will
lead to the first coinmixer transaction the crawler is able to find. After a backward
crawling process is interrupted or the maximum depth is reached, the crawler will
find the last transactions processed in each chain and continues the crawling process
from there.

While the backward crawling works similar to the forward crawling, there is one
essential difference between both processes. At the forward crawling process only
two outputs have to be checked. Based on our assumptions, one of the outputs has
to be a coinmixer’s change address, while the other address is a customer’s address.
However, there is no restriction how many input addresses are cash-in addresses and
how many are change addresses. We are not able to distinguish between these types
of transactions based on a counter.

The crawler categorizes transaction’s input addresses as coinmixer address only if

4.5 Crawler 49

each of the following requirements are met:

e Only one transaction have been sent through this address

e Only one transaction have been received through this address

e Following requirements are met for the received transaction
— The sequence number of all inputs is set to 4294967294
— The transaction’s version is set to 2

— The transaction’s locktime is set to at least 1

One of the following requirements have to be met
— The received value has to be specified to at least five decimals

— The fee of the transactions is located within a fee partition or a gap

If an input address is not categorized as a coinmixer address, it is automatically
categorized as a cash-in address.

All of the requirements are based on the known forward crawling indicators. Most
of the requirements are strong indicators for being a change address. We discussed
them already. If any of these strong indicators is not met, we identify this transaction
not as a coinmixer transaction.

The first of the last two requirements is based on the assumption that a change
address typically does not receive a common value and is typically specified to eight
decimals.

The last assumption checks whether the fee of the transaction matches existing fee
partitions. In case of backward crawling, the fee indicator is not reliable, since the
transactions, which are going to be analyzed, are sent prior to the provided output
transaction and are typically before any existing fee partition.

As we can see, the backward crawling process is way more error-sensitive than the
forward crawling process.

Updating fee partitions based on the results of the backward crawling process is
critical, since it could influence further crawling processes.

In our implementation of the backward crawling process, the fee partitions will be
updated in the same manner as it is done at the forward crawling. If no fee update
would be provided, it could lead to a situation where the crawler might not be able
to find transactions which are sent prior to the input coinmixer transaction. No new
fee partitions would be created.

However, the partition updating rules can be manually changed through the force
parameter in function e¢m_ check transaction_fee correct partition_and_update.
If the force parameter is not set to True, no new partitions are going to be created.
Nevertheless, old partitions will still be extended.

4.5.5 Incorrect transaction distinguishing

The crawling processes are based on indicators. However, it is still possible that the
crawler did choose a wrong differentiation between customer/cash-in and change

50 4 Attack on coinmixer.se

addresses. As we already described, the backward crawling process is way more
error-sensitive. Some specific errors might occur, when a customer’s input transac-
tion is located in the same fee partition as the coinmixer’s transactions and further
transaction characteristics (version, sequence number, locktime) are met. Further-
more, errors could occur, if a customer uses a coinmixer’s output transaction to
spend it to a coinmixer input address or multiple input transactions are sent. How-
ever, these should be rare situations.

We implemented an error class which is able to catch these exceptions. Since the
mentioned strong indicators are only met for around 17 % of Bitcoin transactions
(see Characteristics of coinmixer’s output transactions), an error should be raised
very soon after an erroneous differentiation. These exceptions are primarily cap-
tured whenever the crawler is stuck in a situation which contradicts with the known
indicators. For example, the crawler will log an error, if an identified coinmixer’s
change address sent multiple transactions.

An analysis of erroneous behavior might lead to the identification of other network
specifics. It even could lead to the identification of addresses which are manually
coordinated through the service provider.

Erroneous transactions are logged and will be skipped on the next crawling process.
It’s important to know that the crawler is only going to stop crawling the identified
erroneous change address chain.

The crawling process is not going to be interrupted, every other change address chain
will still be crawled. However, erroneous identified coinmixer transactions should be
analyzed manually, since it is possible that they flawed fee partitions.

For the sake of completeness, it should be noted, that in rare situations, where the
crawler did a wrong classification and a wrongly identified coinmixer transaction is
part of another generic Bitcoin subnetwork, which behaves similar to coinmixer.se
and is based on the same strong indicators and is not in conflict with the already
known fee partitions, the crawler might not be able to identify the erroneous classi-
fication.

4.6 Deanonymization

As we described in Attacking Method, the deanonymization process is not go-
ing to take the internal structure of the coinmixer into account. Our imple-
mentation will deanonymize transactions based on the sent and received Bitcoin
amount.

In subsection Mixing fee we described how the input of the coinmixing service is cal-
culated. Since we identified the coinmixer.se network through the crawling process,
we are now able to map every possible coinmixer output to a given input transac-
tion. Vice versa.

A mapping provides the deanonymization of a given anonymized transaction. The
mapping is based on the equation mentioned in Mixing fee.

We implemented a deanonymization process as a Proof of Concept. Based on a given

4.7 Results o1

customer’s input transaction, a maximum number of possible forward addresses and
an optional maximum time delay, our implementation calculates and prints out ev-
ery possible deanonymization.

It should be noted that our implementation might print out duplicate mappings (see
Future Work).

The implementation of this Proof of Concept is able to calculate possible mappings
for up to three forward addresses.

4.7 Results

In the last subsections we described how we implemented the -crawling
and deanonymization processes. Now we examine how good our im-
plementation works in practice. Our practical verification is based on
the same transactions mentioned in Characteristics of coinmixer’s output
transactions. The first transaction which we are going to analyze is
1e11f70d0db8c177al19ebdbc782e0b7bfddaef3e314f76339f702bd76d76676f. We have
sent this transaction to coinmixer.se on 2017-09-26 18:36:02 UTC as an input trans-
action for a mixing process. This transaction has been counfirmed by the Bitcoin
network through the main chain block at height 487072. We will later describe more
specifics of the settings, which we have chosen for this mixing process.

We chose the mentioned transaction as the starting point for the forward crawling
process.

It should be stated, that typically the forward crawling process starts with a given
output transaction, however, since our input transactions has been used without any
big time delay in an output transaction sent by the coinmixer, we are also able to
use our input transaction as starting point.

While we have sent the tainted coins through our input transaction at 2017-09-26
18:36:02 UTC, the next transaction, which uses our tainted coins, was sent on 2017-
09-26 19:40:38 UTC. Since the transaction at 2017-09-26 19:40:38 UTC is the first
coinmixer transaction which uses our tainted coin, this transaction should be seen
as the initial starting point of the crawled network.

To be able to crawl as much transactions as possible, we start with the forward
crawling process and after that apply the backward crawling process.

The last transaction, which we received on an address controlled by us from coin-
mixer.se, has been sent on 2017-09-28 01:37:46 UTC. An analyzes of the crawled
network until that point of time would be enough to deanonymize all of our input
transactions, however, we let the crawling process proceed to identify more of the
whole coinmixer.se network. We stopped the crawling process at a transaction which
was sent on 2017-10-11 18:08:41 UTC.

The forward crawling process was able to identify 486 transactions which were
sent in the time frame from 2017-09-26 19:40:38 UTC to 2017-10-11 18:08:41 UTC.
Based on our assumptions, all of these transactions belong to the coinmixer.se net-
work.

52 4 Attack on coinmixer.se

.2 LR 6 L 3:] ® 10 .12 *14 ® 16 ®18 * 20

.1 *3 ®5 *7 *-0—> *11 33— *15 *17 +15 *21

Figure 4.23: Part of coinmixer.se network based on forward crawling. Customer
transactions: Red (dummy), coinmixer transactions: Blue

Figure 4.23 shows 20 of 486 crawled transactions. Since the rest of the graph looks
the same, we only provide this excerpt. Every node should correspond to a valid
Bitcoin transaction. The blue nodes should show change address transactions sent
by coinmixer.se and the red nodes should show transactions sent by customers.

In case of coinmixer transactions this is true, however, in case of customer’s
transactions there also could be cases where a customer received untainted Bitcoins
but did not spent them yet. Yet still, we created also for these cases (red) nodes,
since otherwise the network infrastructure might not be easily understandable.
Generally speaking, blue nodes show transactions which have been made by the
coinmixer, while the red nodes show transactions which were spent by customers or
can be spent by them in future.

We were able to identify 486 transactions, however, based on the published mixing
statistics of coinmixer.se more than 1000 coinmixer transactions have been sent in
this time frame. To identify more transactions sent by the coinmixer, we need
to run a backward crawling process. As starting point of the backward crawl-
ing process we choose the endpoint of the forward crawling process and a crawl-
ing depth of 20. The endpoint transaction of the forward crawling process was
2430b04b47520764d82422¢696¢1f39¢85ca568f381729¢427eealb9c12¢6190 (2017-10-
11 18:08:41 UTC).

The earliest transaction which our backward crawling process was able to find was

4.7 Results 93

sent on 2017-08-28 19:23:22 UTC, which is way before the time frame we want to
analyze. However, since the timestamp of every transaction is stored by the crawling
process, filtering can easily be accomplished through a MySQL query.

Our backward crawling process was able to identify 3609 transactions. We cannot
specify any specific time frame for these transactions, since they depend on the depth
of recursion.

I I ‘i I I

Figure 4.24: Crawled coinmixer.se network without customer transactions

To simplify our graph we removed all customer transactions. Figure 4.20 only shows
coinmixer’s change address transactions.

Based on forward and backward crawling we were able to create coinmixer.se’s net-
work. However, we still need to verify that the found network is the actual coin-
mixer.se network. We do this through the approach we described in Identifying
customer’s and coinmixer’s transactions.

We received 14 transaction’s from coinmixer.se. We were able to identify all of them
in the crawled network.

54 4 Attack on coinmixer.se

Figure 4.25: Part of crawled network. Received coinmixer transactions highlighted.

In figure 4.25 we highlighted every transaction node which coinmixer.se sent to an
address controlled by us.

Our crawling process covers a whole week (2017-10-02 00:00:00 UTC - 2017-10-08
23:59:59 UTC). Coinmixer.se’s published statistic data stated, that their service
anonymized 1040 input transactions in the specified week [7].

As we know, based on 1040 coinmixer.se participations at least 1040 transactions
and at most 1040 x 5 = 5200 transactions should have been sent through the coin-
mixer in the particular week. Our crawler was able to identify 1069 transactions sent
by coinmixer.se in the mentioned week. If our crawler did not miss any coinmixer
transaction, this result would imply that hardly any customer uses the optional set-
ting of specifying multiple forward addresses. This makes for most use cases sense,
since customer’s typically do not want to spend coins through different addresses.
However, we are not going in further analysis of the reliability of the crawled net-
work, since all of our transactions have been found in it.

In Future Work, we will describe possibly ways to identify how accurate our
crawled network is. Furthermore it should be noted, that the statistics pro-
vided by coinmixer.se may not be reliable. While coinmixer.se publishes every
week the statistic of last week’s participations, it is not known how they choose
this time frame. Furthermore the published statistics my not be trustworthy at
all.

Since we were able to create the crawled network, we now need to deanonymize
transactions. For a given customer’s input transaction (tainted coins), our
deanonymization process tries to find any coinmixer’s output transactions which
might receive the untainted coins. Our deanonymization tool is fully based on the
crawled network. There is no further blockchain analysis done in the deanonymiza-
tion process.

4.7 Results 95

We are going to analyze how reliable the results of our implementation are by trying
to deanonymize transactions which we priorly anonymized with the coinmixer. At
first we will focus on an anonymization process where we chose one forward address
and a time delay of 0 hours.

We mixed 0.001 BTC on 2017-09-27 23:23:32 UTC
and sent 0.00162812 BTC through the input transaction
74f684d805fe35f00141fdcasf07a5a36e64b67fclcab895035b6338¢c78d1d26" to
coinmixer.se. We did not set any time delay. The forwarding fee at
the time of sending was 0.0006 BTC per forward address. At 2017-
09-28 01:37:46 UTC we received the anonymized Bitcoins at address
13989ys79TGEIQtP1kj8Nv1gDfYFUlnps4.

Our aim was to deanonymize this transaction. Through the given input transac-
tion, the output address should be found by our implementation. A maximum
time of delay might be specified through the attacker. Based on the information
the attacker might know about the mixing process we specified multiple attacking
scenarios.

Table 4.26: Results for first testing case (Oh delay, 1 forward)

Max. Max. time delay | Possible output addresses | False positives
for-

wards

1 <=12h 1 0

1 <=24h 3 2

1 <=48 h 4 3

1 <=72h 5 4

1 <=120 h 11 10

Since we sent the minimum possible amount of 0.001 BTC, this input could not be
divided in multiple output transactions.

Our tool was able to identify 13989ys797GE9QtP1kj8NvigDfYFUlInps4 as our out-
put address. If the attacker knows, that the mixing process took place within 12
hours after sending the input transaction, he would be able to deanonymize the
transaction without any false positives. The deanonymization of the transaction
would be successfully accomplished.

If the attacker does not have any information about the chosen time delay, our tool
would return 11 results with 10 false positives.

It should be noted, that even if we would have specified a time delay to up to
12 hours at the mixing process, the deanonymization results would still be the
same.

As we can see, the deanonymization results are varying with the amount of infor-
mation known by the attacker. Even for the worst case of 120h delay, 10 false
positives seem to be a good result for beeing filtered out of 2 million Bitcoin trans-
actions.

56 4 Attack on coinmixer.se

For most use cases the use of multiple forward addresses does not seem to be useful,
since typically the customer only wants to anonymize the coins and do not want to
split them across different addresses. Furthermore, the use of multiple addresses,
which are managed through the same Bitcoin wallet, do not enhance the privacy
(see Privacy in Bitcoin). The forward addresses should never be combined again.
Nevertheless, we are trying to deanonymize a coinmixer.se participation where we
specified three forward addresses. Our implementation has to check every possible
combination of transactions which might be the possible deanonymization for the
specified input transaction.

We tried to deanonymize a transaction with three forwards. We specified 0.001
BTC, 0.001 BTC and 0.00100001 BTC as the amounts of untainted coins we want
to receive. As time delays we chose values between 0 and 7 hours.

First we wanted to check if there may be a single transaction which could be identi-
fied as a false positive for our input transaction. None false positive has been found.
In the next step we tried to identify possible false positives for two forwards. Every
combination of two forwards would be a false positive, since we chose three forwards
in the mixing process. Our implementation was able to identify 33 different Bitcoin
addresses as false positives for two forwards and a possible delay of 120 hours. If the
attacker would know that the mixing is done within 8 hours after the initial input
transaction, no false positives would be found.

When our implementation checked all possible combinations of three forwards
with no knowledge about the time delay, it could identify 24 different Bitcoin ad-
dresses. This test was done with a maximum delay of 120 hours. If the attacker
would know that the mixing has been done within 8 hours after the input trans-
action, our implementation would be able to identify 9 possible output transac-
tions.

It is important to state, that in the last testing scenario, six addresses which were
identified as false positives, were addresses under our control. These addresses were
output addresses of other testing cases we have done. These addresses have been
identified as false positives, since we used the same output amount of 0.001 BTC
for multiple testing cases. Since these six addresses are artificially produced by our
testing procedures, we need to ignore them in our results.

When we ignore them, we receive the results shown in table 4.27
for the deanonymization process of a mxing process using three for-
wards:

Table 4.27: Results for second testing case (up to 7h delay, 3 forwards)

4.7 Results 57

Max. Max. time delay | Possible output addresses | False positives
for-

wards

1 120 h 0 0

2 8 h 0 0

2 120 h 27 27

3 8 h 3 0

3 120 h 18 15

If the attacker knows that the mixing process has taken place within 8 hours, he
would be able to deanonymize the transaction by finding all three output addresses
without any false positive.

If he does not have any information about the set mixing options, the result set of
two forwards would contain 24 false positives and the result set of thee forwards 15
false positives.

It should be mentioned, that our results only show found wunique ad-
dresses, however, there are multiple combinations of these addresses possi-
ble.

Generally speaking, our implementation is able to identify coinmixer outputs which
are based on a similar input. If and how many false positives are going to be found
through our implementation is primarily based on the mixing behavior of other
customers. If we are the only customer who tries to anonymize a specific amount of
Bitcoins, our tool will be able to identify the exact output transaction even with no
knowledge about the specified time delay. However, if multiple customers are mixing
the same amount of Bitcoins at the same time, the results are going to contain
multiple false positives. In our testing scenario we were able to deanonymize our
input transaction without any false positives when the time frame of the mixing
procedure could be limited.

5 Conclusion

Through our implemented crawling methods we were able to filter 3609 out of more
than 2 million Bitcoin transactions. Most probably all of these 3609 transactions
define the coinmixer.se network in a specific time frame. Our crawler accomplished
this through a simple blockchain analysis. The identified network could be verified
through multiple transactions we received by coinmixer.se. Based on our crawled
network it can be assumed, that in our testing time frame most of the coinmixer.se’s
customers did not use the optional setting of specifying multiple forward addresses.
Our implementation was able to deanonymize two transactions which we priorly
anonymized through coinmixer.se. When we set the maximum time delay to the
time delay specified in the mixing process, the deanonymization results were correct
and did not contain any false positives.

Based on our analyzes we can conclude, that the anonymization process of coin-
mixer.se is heavily based on the mixing behavior of other customers. While our
implementation was able to deanonymize our testing cases, it does not necessarily
mean that every transaction of coinmixer.se could be deanonymized through our
implementation. However, a customer cannot be sure if the coins he received could
easily be deanonymized. Practical use cases where time delay to up to 120h and
multiple forward addresses should be used are limited. Based on our analyzes the
mixing process of coinmixer.se is not able to provide reasonable privacy for practical
use.

5.1 Related Work

Satoshi Nakamoto introduced Bitcoin through Bitcoin: A Peer-to-Peer Electronic
Cash System in 2008 |37|. Privacy in cryptocurrencies have been addresses in multi-
ple scientific publications. Dorit Ron and Adi Shamir analyzed the the transaction
flow of the Bitcoin network based on a transaction graph [39]. Multiple algorithms
have been published which are able to enhance privacy in the Bitcoin network.
Tan Miers, Christina Garman, Matthew Green and Aviel D. Rubin published Ze-
rocoin, an extension which could be introduced to the Bitcoin network to enhance
it’s privacy [33]. While this protocol extension was not implemented in the Bit-
coin protocol, the cryptocurrency Zerocash is based on it’s main protocol idea [42].
However, Zerocash is able to provide strong privacy guarantees and is based on a
zero-knowledge proof.

Tim Ruffing, Pedro Moreno-Sanchez and Aniket Kate introduced CoinShuffle and
the improved CoinShuffle++ protocol. CoinShuffle++ is based on the current Bit-
coin system. Through this mixing protocol transaction could be made unlinkable

60 5 Conclusion

[41].

Furthermore, CoinJoin [30|, Mizcoin [14]|, Coinparty |44], Xim [12] and Tumblebit
[26] have been introduced as mixing protocols.

The implementation of the Lightning Network may enhance privacy of the Bitcoin
network. [38] Analyzes of centralized Bitcoin mixing services and privacy enhanc-
ing overlays also have been published. Malte Md&ser, Rainer Bohme and Dominic
Breuker analyzed Bitcoin Fog, BitLaundry, and the departed mixing function of
Blockchain.info as centralized mixing services through a taint analysis [35]. Sarah
Meiklejohn and Claudio Orlandi analyzed multiple mixing algorithms and services
like coinjoin |32].

5.2 Future Work

While our implementation seems to be able to deanonymize transactions which pri-
orly have been anonymized by coinmixer.se, improvements could lead to less false
positives. The deanonymization process of our implementation calculates dupli-
cates. Some of the found mappings are provided multiple times in a different order.
Through further development, this bug could be fixed.

In case of the forward crawling process, the counter of both addresses may result in
the same amount. This is the case, if one of the output addresses received an un-
common value, which it spent, and is newer than every fee partition, while the other
transaction is located in a fee partition but no other low /medium indicators are met.
All other strong indicators have to be met for both addresses. This is a very special
case and should occur rarely, since only 0.52% of blockchain transactions fulfill the
strong indicators and meet the fee indicator. In none forward crawling processes
we experienced this situation, however, this bug should be fixed through further
development.

Furthermore, the deanonymization process should be implemented recursively and
should be able to deanonymize transaction which have been anonymized with up to
five forward addresses.

A blockward crawling process might be able to identify coinmixer transactions which
can’t be found through the other crawling processes. While our implementation is
able to deanonymize specified input transactions, it should also be implemented to
deanonymize the input transaction based on given output transactions.

We only applied simple blockchain analysis, a byte-level analyzes of transactions
sent by coinmixer.se might lead to better transaction indicators.

Furthermore, a dynamically mapping of input transactions and possible output
transactions would be able to create multiple network possibilities based on the found
network. Our deanonymization process is static, however, a dynamic deanonymiza-
tion, which analyzes the behavior of output addresses could lead to less false posi-
tives.

In Identifying customer’s and coinmixer’s transactions we described a way to verify
the identified coinmixer network. Through a mapping of every input transaction to

possible output transactions the verification process may be improved. Furthermore,
coinmixer.se published how many Bitcoins it anonymized within the last week. This
information could also be used to verify the coinmixer.se network.

While these are aspects of the current implementation, which can be improved, we
were also able to identify multiple attacking possibilities on other mixing services.
We were able to identify that bitmixer.io, a discontinued mixing service, set the
transaction fee of every output transaction in a range of 0.0002 BTC to 0.0008 BTC.
It also sent the output transaction automatically seconds after the input transaction
reached the necessary number of confirmations. While this coinmixing service is not
available anymore, the anonymized transactions are still able to be deanonymized. A
deanonymization of this service could be implemented in our existing deanonymiza-
tion tool.

Furthermore, we found a web security bug in cryptomixer.io, another centralized
mixing service. Cryptomixer.io provides every customer with a Letter of Guarantee
prior to a mixing process. Through this PDF document, the transaction flow of
the tainted and untainted coins can easily be traced. While this document should
only be accessible for the individual customer, no session data are checked by cryp-
tomixer.io when accessing it. An attacker is able to gain access to the letter of
guarantee of other customers by changing a POST-Parameter. Through a simple
script every mixing process can be observed by the attacker.

This attack should also be implemented in further development. In general, we were
not able to identify a secure implementation of a mixing service. Through further
development of our implementation, our implementation could be able to attack
most of the common mixing services.

List

2.1
2.2
2.3
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1

4.1
4.2

4.3
4.6
4.8
4.9
4.10
4.11
4.12

4.13
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

of Figures

Simplified Bitcoin blockchain [9]o 6
P2PKH transaction [9] L 7
P2SH transaction [9]o Lo 8
Simplified Bitcoin transaction flow 13
Bitcoin transaction without feeo 14
Bitcoin tranction withfee00 0oL 14
Bitcoin tranction withfee00 14
Bitcoin transaction with change address 15
Bitcoin transaction with dynamic fee oL 16
Bitcoin transaction with connected change addresses 17
Bitcoin mixing L L oo 18
P2P mixing 18
Centralized Mixing Service 19
Stale and orphan block [9] oL 26
Funcionality of coinmixer.se [6] 29
The default case of a mixing process and a case which makes use of

the optional settings o000 30
Fee partitiono oo 34
Analyzed coinmixer’s output flowo o000 L 38
Analyzed chain of change addresses 39
Analyzed full coinmixer network 39
Confirm coinmixer network oL, 40
Forward (red) and backward (green) crawling process 41
Transaction chain which can’t be found by forward /backward crawl-

ing (blue) 41
Forward crawling L oL 43
Fee partition Lo o o 45
Transaction newer than every fee partition 45
Transaction older than every fee partition 46
Transaction located within a fee partition 46
Transaction located inagap. 46
Updating a fee partition 0L 47
Backward crawling process. L. o oL 47

Identifying cash-in and change addresses 48

4.23 Part of coinmixer.se network based on forward crawling. Customer
transactions: Red (dummy), coinmixer transactions: Blue 52

4.24 Crawled coinmixer.se network without customer transactions 53

4.25 Part of crawled network. Received coinmixer transactions highlighted. 54

List of Tables

2.4 Example of P2PKH and P2SH transaction hashes. 8
2.5 Transaction’s settings based on sequence number 9
4.4 Strong and good indicators to spot coinmixer’s transactions 34
4.5 Transactions received from coinmixer.se between 2017-09-26 00:58:49

UTC and 2017-09-28 01:37:46 35
4.7 Indicators to distinguish between customer’s and coinmixer’s address 38
4.14 Forward crawling counter oL 44
4.26 Results for first testing case (Oh delay, 1 forward) 55

4.27 Results for second testing case (up to 7h delay, 3 forwards) 56

List of Listings

2.6 JSON-formatted Bitcoin transaction

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

Blockchain.info charts. https://blockchain.info/charts, . Accessed: 2017-
12-02.

Blockchain.info blockchain size. https://blockchain.info/charts/
blocks-size, . Accessed: 2017-12-02.

Bitcoin core privacy features. https://Bitcoin.org/en/Bitcoin-core/
features/privacy. Accessed: 2017-12-02.

Market cap of cryptocurrencies. https://coinmarketcap.com/. Accessed:
2017-12-02.

Andreas M Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurren-
cies. "O’Reilly Media, Inc.", 2014.

Unknown Author. Coinmixer.se website. https://coinmixer.se, 2017. Ac-
cessed: 2017-12-02.

Unknown Author. Coinmixer.se anonymization statistics. https://
coinmixer.se, 2017. Accessed: 2017-10-11.

Unknown Author. Coinmixer.se anonymization statistics. https://
coinmixer.se, 2017. Accessed: 2017-11-21.

Unknown Author. Bitcoin developer guide. https://Bitcoin.org/en/
developer-guide, 2017. Accessed: 2017-12-02.

Unknown Author. Segwit charts. http://segwit.party/charts/, 2017. Ac-
cessed: 2017-12-02.

Lear Bahack. Theoretical bitcoin attacks with less than half of the computa-
tional power (draft). arXiv preprint arXiv:1312.7013, 2013.

George Bissias, A Pinar Ogzisik, Brian N Levine, and Marc Liberatore. Sybil-
resistant mixing for bitcoin. In Proceedings of the 13th Workshop on Privacy
in the Electronic Society, pages 149-158. ACM, 2014.

Rainer B6hme, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bitcoin:
Economics, technology, and governance. The Journal of Economic Perspectives,
29(2):213-238, 2015.

https://blockchain.info/charts
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
https://Bitcoin.org/en/Bitcoin-core/features/privacy
https://Bitcoin.org/en/Bitcoin-core/features/privacy
https://coinmarketcap.com/
https://coinmixer.se
https://coinmixer.se
https://coinmixer.se
https://coinmixer.se
https://coinmixer.se
https://Bitcoin.org/en/developer-guide
https://Bitcoin.org/en/developer-guide
http://segwit.party/charts/

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]
[25]
[26]

[27]

Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A
Kroll, and Edward W Felten. Mixcoin: Anonymity for bitcoin with account-
able mixes. In International Conference on Financial Cryptography and Data
Security, pages 486-504. Springer, 2014.

Grace Caffyn. What is the bitcoin block size debate and why does it mat-
ter. URL: http://www. coindesk. com/what-is-the-Bitcoin-block-size-debate-
and-why-does-it-matter/(visited on 27/11/2015), 2015.

Bitcoin Core. Segregated witness benefits. URL hitps://Bitcoincore.
org/en/2016,/01/26/sequit-benefits/.[Online, 2016.

Who Has Custody. Optimizations, confirmation, contest and postlocking peri-
ods sidechain implementation using smartcontract in the secondary chain side
sidechain implementation using specific opcodes in the bitcoin side sidechain
implementation using turingcomplete scripting in the bitcoin side drivechain.

Peter Todd David A. Harding. Bip 0125: Opt-in full replace-by-fee signaling,
2015.

Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and
mtgox. In Furopean Symposium on Research in Computer Security, pages 313—
326. Springer, 2014.

Bitcoin Core Developers. Bitcoin core. ht tps://Bitcoin. ory.

Jochen Dinger and Hannes Hartenstein. Defending the sybil attack in p2p
networks: Taxonomy, challenges, and a proposal for self-registration. In Awvail-
ability, Reliability and Security, 2006. ARES 2006. The First International
Conference on, pages 8—pp. IEEE, 2006.

Anne Haubo Dyhrberg. Hedging capabilities of bitcoin. is it the virtual gold?
Finance Research Letters, 16:139-144, 2016.

Mark Friedenbach. Bip 0068: Consensus-enforced transaction replacement sig-
naled via sequence numbers (relative locktime), 2015.

Steven H Gifis. Dictionary of legal terms. Barron’s Educational Series, 2016.
DA Harding. Bitcoin developer guide, 2015.

Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub. Cryptology ePrint Archive, Report 2016/575, Tech. Rep., 2016.

Jordi Herrera-Joancomarti. Research and challenges on bitcoin anonymity. In
Data Privacy Management, Autonomous Spontaneous Security, and Security
Assurance, pages 3—16. Springer, 2015.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Stankovi¢ B Ivica, Mihajlovi¢c R Aleksandar, and Mihajlovi¢c A Radomir.
Crypto-currency and e-financials. OF ECONOMICS AND LAW, page 132,
2014.

Johnson Lau. Bip 0142: Address format for segregated witness, 2015.

Greg Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin
Forum, 2013.

Patrick McCorry, Siamak F Shahandashti, and Feng Hao. Refund attacks on
bitcoin’s payment protocol. In International Conference on Financial Cryptog-
raphy and Data Security, pages 581-599. Springer, 2016.

Sarah Meiklejohn and Claudio Orlandi. Privacy-enhancing overlays in bit-
coin. In International Conference on Financial Cryptography and Data Security,
pages 127-141. Springer, 2015.

Tan Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 397-411. IEEE, 2013.

Malte Moser. Anonymity of bitcoin transactions. In Miinster Bitcoin conference,
pages 17-18, 2013.

Malte Moser, Rainer Bohme, and Dominic Breuker. An inquiry into money
laundering tools in the bitcoin ecosystem. In eCrime Researchers Summit
(eCRS), 2013, pages 1-14. IEEE, 2013.

Malte Moser, Rainer Béhme, and Dominic Breuker. Towards risk scoring of
bitcoin transactions. In International Conference on Financial Cryptography
and Data Security, pages 16-32. Springer, 2014.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network. c¢it. on,
page 89, 2015.

Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transac-
tion graph. In International Conference on Financial Cryptography and Data
Security, pages 6-24. Springer, 2013.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical
decentralized coin mixing for bitcoin. In European Symposium on Research in
Computer Security, pages 345-364. Springer, 2014.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. P2p mixing and un-
linkable bitcoin transactions. TACR Cryptology ePrint Archive, 2016:824, 2016.

[42]

[43]

[44]

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 459-474. IEEE, 2014.

Neudecker Till. Bitcoin cash (bch) sybil nodes on the bitcoin peer-to-peer
network, 2017.

Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and
Klaus Wehrle. Coinparty: Secure multi-party mixing of bitcoins. In Proceedings
of the 5th ACM Conference on Data and Application Security and Privacy,
pages 75-86. ACM, 2015.

A Database structure

SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERQ";
SET time_zone = "+00:00";

/*140101 SET @OLD_CHARACTER_SET_CLIENT=QQCHARACTER_SET_CLIENT */;
/*140101 SET @OLD_CHARACTER_SET_RESULTS=Q@CHARACTER_SET_RESULTS */;
/*140101 SET @OLD_COLLATION_CONNECTION=QQCOLLATION_CONNECTION */;
/*140101 SET NAMES utf8mb4 */;

-- Database: ‘Bachelorarbeitf

-- Table structure for table ‘address_and_value_mapping‘

CREATE TABLE ‘address_and_value_mapping‘ (
‘ID¢ int(11) UNSIGNED NOT NULL,
‘address_list‘ mediumtext COLLATE latinl_germanl_ci NOT NULL,
‘value_list‘ mediumtext COLLATE latinl_germanl_ci NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘coinmixer_analysis®

CREATE TABLE ‘coinmixer_analysis‘ (
‘analysis_id¢ int(11) NOT NULL,
‘address_hash‘ char(35) COLLATE latinl_germanl_ci NOT NULL,
‘forward‘ tinyint(1) NOT NULL,
‘fee‘ tinyint(1) DEFAULT NULL,
‘common‘ tinyint(1) DEFAULT NULL,
‘version_sequence_locktime‘ tinyint(1) DEFAULT NULL,
‘connected® tinyint(1) NOT NULL,
‘spent‘ tinyint(1) DEFAULT NULL,
‘transaction_hash‘ char(64) COLLATE latinl_germanl_ci NOT NULL,
‘next_transaction_hash® char(64) COLLATE latinl_germanl_ci DEFAULT NULL,
fis_cm‘ tinyint(1) NOT NULL,
‘is_cashin® int(11) DEFAULT NULL,
‘transaction_history‘ tinyint(1) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germani_ci;

-- Table structure for table ‘coinmixer_analysis_log®

CREATE TABLE ‘coinmixer_analysis_log‘ (
‘ID‘ int(10) UNSIGNED NOT NULL,
‘transaction_hash‘ char(64) COLLATE latinl_germanl_ci NOT NULL,
‘previous_hash‘ char(64) COLLATE latinl_germanl_ci DEFAULT NULL,
‘next_hash® char(64) COLLATE latinl_germanl_ci DEFAULT NULL,
‘is_first® tinyint(1) DEFAULT NULL,
‘depth® int(11) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘coinmixer_graph®

CREATE TABLE ‘coinmixer_graph‘ (
‘AnalysisID‘ mediumint(9) NOT NULL,
‘isCM‘ tinyint(1) NOT NULL,
‘connectedTo‘ mediumint(9) UNSIGNED NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘errorlog‘

CREATE TABLE ‘errorlog‘ (
fID‘ int(10) UNSIGNED NOT NULL,
‘error_data‘ varchar(2000) COLLATE latinl_germanl_ci NOT NULL,
‘transaction_hash‘ varchar(64) COLLATE latinl_germanl_ci DEFAULT NULL,
‘address_hash® char(35) COLLATE latinl_germanl_ci DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘fee_partition®

CREATE TABLE ‘fee_partition® (
‘partition_id® tinyint(3) UNSIGNED NOT NULL,
‘fee‘ mediumint(8) UNSIGNED NOT NULL,
‘timestamp_start® int(10) UNSIGNED NOT NULL,
‘timestamp_end‘ int(11) UNSIGNED NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanil_ci;

-- Table structure for table ‘list_of_all_transaction_hashes®

CREATE TABLE ‘list_of_all_transaction_hashes‘ (
‘transaction_hash‘ char(64) COLLATE latinl_germanl_ci NOT NULL,
‘ID‘ mediumint(8) UNSIGNED DEFAULT NULL,

‘in_size_big_table® tinyint(4) DEFAULT NULL,
‘in_transaction_data‘ tinyint(1) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘multiple_sequences®

CREATE TABLE ‘multiple_sequences‘ (
‘transaction_id‘ int(11) NOT NULL,
‘sequences‘ text COLLATE latinl_germanl_ci NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanil_ci;

-- Table structure for table ‘transactions_size_big*

CREATE TABLE ‘transactions_size_big‘ (
‘hash® char(64) COLLATE latinl_germanl_ci NOT NULL,
‘blockheight‘ mediumint(8) UNSIGNED NOT NULL,
‘transaction‘ mediumtext COLLATE latinl_germani_ci NOT NULL,
‘fullblock® tinyint(1) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘transactions_size_normal®

CREATE TABLE ‘transactions_size_normal‘ (
‘hash‘ char(64) COLLATE latinl_germanl_ci NOT NULL,
‘blockheight‘ mediumint(8) UNSIGNED NOT NULL,
‘transaction‘ text COLLATE latinl_germanl_ci NOT NULL COMMENT ’Up to 12 byte transactionms’,
‘fullblock® tinyint(1) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanil_ci;

-- Table structure for table ‘transaction_addresses‘

CREATE TABLE ‘transaction_addresses‘ (

fID¢ int(10) UNSIGNED NOT NULL,

‘transaction_address‘ char(35) COLLATE latinl_germanl_ci NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germani_ci;

-- Table structure for table ‘transaction_data‘

CREATE TABLE ‘transaction_data‘ (
‘transaction_id‘ int(10) UNSIGNED NOT NULL,
‘transaction_hash‘ char(64) COLLATE latinl_germanl_ci NOT NULL,
‘blockheight‘ int(10) UNSIGNED NOT NULL,
‘fee® int(10) UNSIGNED NOT NULL,
‘size‘ int(10) UNSIGNED NOT NULL,
‘time® int(10) UNSIGNED NOT NULL,
‘version‘ tinyint(3) UNSIGNED NOT NULL,

‘sequence‘ int(10) UNSIGNED DEFAULT NULL COMMENT ’wenn null, dann daten in
multipleSequences’,
‘locktime¢ int(10) UNSIGNED NOT NULL,
‘inputaddress_value_mapping_id¢ int(10) UNSIGNED NOT NULL,
‘outputaddress_value_mapping_id¢ int(10) UNSIGNED NOT NULL,
‘is_cm® tinyint(1) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Table structure for table ‘transaction_values®

CREATE TABLE ‘transaction_values‘ (
‘ID¢ int(10) UNSIGNED NOT NULL,
‘transaction_value® int(10) UNSIGNED NOT NULL,
‘spent‘ tinyint(4) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl COLLATE=latinl_germanl_ci;

-- Indexes for dumped tables

-- Indexes for table ‘address_and_value_mapping®
ALTER TABLE ‘address_and_value_mapping®
ADD PRIMARY KEY (°ID¢);

-- Indexes for table ‘coinmixer_analysis®
ALTER TABLE ‘coinmixer_analysis®

ADD PRIMARY KEY (‘analysis_id‘),

ADD KEY ¢isBM¢ (‘is_cm‘);

-- Indexes for table ‘coinmixer_analysis_log*®
ALTER TABLE ‘coinmixer_analysis_log*
ADD PRIMARY KEY (‘ID¢),
ADD KEY ‘transactionHash‘ (‘transaction_hash®),
ADD KEY ‘previousHash‘ (‘previous_hash®);

-- Indexes for table ‘coinmixer_graph®

ALTER TABLE ‘coinmixer_graph®
ADD PRIMARY KEY (‘AnalysisID‘);

-- Indexes for table ‘errorlog®

ALTER TABLE ‘errorlog®
ADD PRIMARY KEY (‘ID¢);

-- Indexes for table ‘fee_partition®

ALTER TABLE ‘fee_partition®
ADD PRIMARY KEY (‘partition_id¢);

-- Indexes for table ‘list_of_all_transaction_hashes®
ALTER TABLE ‘list_of_all_transaction_hashes®
ADD PRIMARY KEY (‘transaction_hash®);

-- Indexes for table ‘multiple_sequences®
ALTER TABLE ‘multiple_sequences®
ADD PRIMARY KEY (‘transaction_id®);

-- Indexes for table ‘transactions_size_big®
ALTER TABLE ‘transactions_size_big*
ADD PRIMARY KEY (‘hash®),
ADD KEY ‘fullblock® (‘fullblock®),
ADD KEY ‘blockheight® (‘blockheight®, ‘fullblock®);

-- Indexes for table ‘transactions_size_normal®
ALTER TABLE ‘transactions_size_normal®

ADD PRIMARY KEY (‘hash®),

ADD KEY ‘fullblock® (‘fullblock®),

ADD KEY ‘blockheight¢ (‘blockheight®,‘fullblock®);

-- Indexes for table ‘transaction_addresses®
ALTER TABLE ‘transaction_addresses®
ADD PRIMARY KEY (‘ID),
ADD UNIQUE KEY ‘inputAdress‘ (‘transaction_address®);

-- Indexes for table ‘transaction_data‘
ALTER TABLE ‘transaction_data®
ADD PRIMARY KEY (‘transaction_id*¢),
ADD UNIQUE KEY ‘transactionHash® (‘transaction_hash®),
ADD KEY ‘isCM¢ (‘is_cm‘),
ADD KEY ‘blockheight‘ (‘blockheight‘) USING BTREE;

-- Indexes for table ‘transaction_values®

ALTER TABLE ‘transaction_values®
ADD PRIMARY KEY (¢ID),
ADD KEY ‘values® (‘transaction_value‘);

-- AUTO_INCREMENT for dumped tables

-- AUTO_INCREMENT for table ‘address_and_value_mapping®

ALTER TABLE ‘address_and_value_mapping®
MODIFY ‘ID¢ int(11) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=8429;

-- AUTO_INCREMENT for table ‘coinmixer_analysis®
ALTER TABLE ‘coinmixer_analysis®
MODIFY ‘analysis_id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=12501;

-- AUTO_INCREMENT for table ‘coinmixer_analysis_log®
ALTER TABLE ‘coinmixer_analysis_log*
MODIFY ¢ID¢ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4196;

-- AUTO_INCREMENT for table ‘errorlog*
ALTER TABLE ‘errorlog*
MODIFY “ID¢ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=43;

-- AUTO_INCREMENT for table ‘fee_partition®
ALTER TABLE ‘fee_partition®
MODIFY ‘partition_id¢ tinyint(3) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=97;
-- AUTO_INCREMENT for table ‘transaction_addresses®
ALTER TABLE ‘transaction_addresses®
MODIFY ¢ID¢ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=7539;

-- AUTO_INCREMENT for table ‘transaction_data®
ALTER TABLE ‘transaction_data‘
MODIFY ‘transaction_id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4065;

-- AUTO_INCREMENT for table ‘transaction_values®
ALTER TABLE ‘transaction_values®
MODIFY ‘ID® int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=6339;
/*140101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*140101 SET CHARACTER_SET_RESULTS=QOLD_CHARACTER_SET_RESULTS */;
/*140101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

B Python Code

import urllib
import json
import MySQLdb

DEBUG = False

#
Database
#

class Database:
unn

Creates Database-connections and forwards SQL-statements.

db = MySQLdb.connect(host="127.0.0.1", user="xxxx", passwd="xxxxx", db="xxzxx")

def __init__(self):
raise Exception("Should not be initialized")

@staticmethod
def sql_execute(sqgl):

Executes SQL-Statement

:param sql: The sql-statement to execute
:return: Returns result provided by mysql-Database
nun
if DEBUG:
print ("Class: Database; Method: sql_execute; SQL-statement: " + sql)

cur = Database.db.cursor()
cur.execute(sql)
Database.db.commit ()

row = cur.fetchall()
cur.close()

return row

#
ErrorLog
#
class ErrorLog:

""" Through this class tansactions and addresses which created
errors that could negatively interfere the crawling proccess
are logged. Mainly errors which would lead to infinite loop-crawling are logged.

def __init__(self):
raise Exception("Should not be initialized")

@staticmethod
def 1og(data, transaction_hash=None, address_hash=None):

Logs an occured error in database.

:param data: Individual Error-Message.
:param transaction_hash: Specifies the Bitcoin-transaction which lead to the error.
:param address_hash: Specifies the Bitcoin-address which lead to the error.
:return:
nnn
if DEBUG:
print ("Class: ErrorLog; Method: log; error: " + str(data) + str(transaction_hash)
+ str(address_hash))

if transaction_hash is None and address_hash is None:
return False

if transaction_hash is None:
transaction_hash = ""

if address_hash is None:
address_hash = ""

sql = "INSERT IGNORE INTQ errorlog (error_data, transaction_hash, address_hash) Values
n \
"(?"+MySQLdb.escape_string(data)+"’,’" + transaction_hash + "’, ’" + address_hash
+ u:)u
Database.sql_execute(sql)

class ParticipationPossibility:

#

nnn
A possible Participation. Its created whenever a search-process found a possible
participation-outcome.
unnn
def __init__(self, outputtransaction, outputaddress, output_range, forwards):
self._outputtransaction = outputtransaction
self._outputaddress = outputaddress
self._output_range = output_range
self._forwards_number = forwards

def get_outputaddress(self):
return self._outputaddress

def get_forwards_number(self):
return self._forwards_number

ParticipationPossibilityContainer

#

class ParticipationPossibilityContainer:

This class holds a container with each possible participation-possibility.
Furthermore it executes the searching-process

def __init__(self, inputtransaction, output_range):
self.container = []
self.inputtransaction_time = inputtransaction.get_time()
self.output_range = output_range

def

def

self.blockheight_minimum = inputtransaction.get_blockheight() + 2
self.transaction_time_minimum = self.get_block_timestamp()
self.transaction_time_maximum = 0

if self.transaction_time_minimum is False:
raise Exception("Block could not be found.")

get_participations(self):
return self.container

find_possibilities(self, forwards_maximum=3, max_delay=120):
nun

Coordinates and executes the searching-process for possible mixing-participations
:param forwards_maximum: The maximum number of forwards that should be checked
:param max_delay: The maxiumum delay that should be checked

ireturn:
nun

if DEBUG:
print("trying to find all possible mixings. forward_maxiumum: " + str(
forwards_maximum) +
" maximum delay: " + str(max_delay))

self.transaction_time_maximum = self.transaction_time_minimum + max_delay*3600

if DEBUG:
print("transaction-time minumum: " + str(self.transaction_time_minimum) + "
maximum: "

+ str(self.transaction_time_minimum))

sql = "SELECT transaction_hash, outputaddress_value_mapping_id " \
"FROM transaction_data WHERE is_cm=1 and time between " + \
str(self.transaction_time_minimum) + " AND " + str(self.transaction_time_maximum)
result = Database.sql_execute(sql)
transaction_list = []

for transaction_data in result:
transaction_list.append(Transaction(transaction_datal0]))

if DEBUG:
print ("found " + str(len(transaction_list)) + " transaction in timeframe")

for forwards_counter in range(forwards_maximum):
if forwards_counter ==
if DEBUG:
print("checking possibilities for 1 forward:")
self.container += self.find_possibilities_1_forward(transaction_list, self.
output_range[0])
if DEBUG:
print (self.container)
elif forwards_counter ==
if DEBUG:
print("checking possibilities for 2 forwards:")
self.container += self.find_possibilities_2_forwards(transaction_list, self.
output_range[1])
if DEBUG:
print (self.container)
elif forwards_counter ==
if DEBUG:
print("checking possibilities for 3 forwards:")
self.container += self.find_possibilities_3_forwards(transaction_list, self.
output_range[2])

if DEBUG:
print (self.container)

return self.container

def get_block_timestamp(self):
nnn
This function returns the "first-seen"-timestamp on a block, which
is specified by its blockheight. The Blockchain.info-API
does not provide the block-headers for a given blockheight.
To find the specific block, this function uses a timestamp of
a transaction which should be inserted in a block on the same day.

:return: Returns the timestamp of the block at the given blockheight.

"False" returned if block coulndt be found.
nnn

transaction_timestamp = (self.inputtransaction_time+14400)*1000
second-based timestamp to millisecond-based timestamp
url = "https://blockchain.info/de/blocks/" + str(transaction_timestamp) + "?format=
json"
response = urllib.urlopen(url)
if DEBUG:
print("loading list of blocks")
try: # todo: implement a way which also loads the next day (if transaction is send
right before 0:00)
data = json.loads(response.read())
data_json = data
block_time = 0 # default-value
if DEBUG:
print("trying to find block with blockheight " + str(self.blockheight_minimum))
for block in data_json["blocks"]:
if block["main_chain"] is False: # we only search on blocks on the main-chain

continue
if block["height"] == self.blockheight_minimum:
if DEBUG:
print("block " + str(self.blockheight_minimum) + " found. blocktime: " +

str(block["time"]))
block_time = block["time"]

if block_time == 0: # specified block coulndt be found.
return False
return block_time
except ValueError:
print("JSON-object could not be decoded. Probably your IP got blocked. Try again
later.")
exit (0)

@staticmethod

def find_possibilities_1_forward(inputtransaction_list, output_range):
nnn

:param inputtransaction_list:
iparam output_range:

ireturn:
nnn
if DEBUG:
print ("transaction-value-range: " + str(output_range))
if output_range[0] == 0 or output_range[l] ==

return False

value_minimum = output_range[0]

value_maximum = output_range[1]
if DEBUG:

print(“checking if any transaction-value is in range: ")
participation_list = [] # list with possible participation
for transaction in inputtransaction_list: # iterate through every transaction in list

outputaddresses = transaction.get_outputaddress_list() # get transaction-list
for outputaddress in outputaddresses:

outputaddress.mixer_results_load(transaction.get_hash()) # load data for every
outputaddress

if not outputaddress.get_is_cm(): # only check addreses that are controlled by
customer

if value_minimum <= outputaddress.get_value() <= value_maximum: # check if
value in range

participation_list.append(ParticipationPossibility(
[transaction], [outputaddress], output_range, 1)
)

return participation_list

@staticmethod

def find_possibilities_2_forwards(inputtransaction_list, output_range):
value_minimum = output_range[0]
value_maximum = output_range[1]

participation_list = [] # list with possible participation

for transaction in inputtransaction_list:

outputaddresses = transaction.get_outputaddress_list()
for outputaddress in outputaddresses:

outputaddress.mixer_results_load(transaction.get_hash())
if not outputaddress.get_is_cm():

value_first = outputaddress.get_value()

if value_first < value_maximum: # since there are two forwards,
the second forward has to have a value > 0

second iteration:
for transaction_2 in inputtransaction_list:

outputaddresses_2 = transaction_2.get_outputaddress_list()

for outputaddress_2 in outputaddresses_2:

outputaddress_2.mixer_results_load(transaction_2.get_hash())
if not outputaddress_2.get_is_cm():

value_second = outputaddress_2.get_value()

value_full = value_first + value_second
if value_minimum <= value_full <= value_maximum\
and outputaddress_2.get_addresshash() != outputaddress
.get_addresshash():
participation_list.append(
ParticipationPossibility([transaction, transaction_2],

[outputaddress, outputaddress_2
1,

output_range,

2)

return participation_list

@staticmethod

def find_possibilities_3_forwards(inputtransaction_list, output_range):

value_minimum = output_range[0]
value_maximum = output_range[1]

participation_list = [] # list with possible participation

for transaction in inputtransaction_list:
outputaddresses = transaction.get_outputaddress_list()
for outputaddress in outputaddresses:
outputaddress.mixer_results_load(transaction.get_hash())
if not outputaddress.get_is_cm():
value_first = outputaddress.get_value()
if value_first < value_maximum:

second iteration:
for transaction_2 in inputtransaction_list:
outputaddresses_2 = transaction_2.get_outputaddress_list()
for outputaddress_2 in outputaddresses_2:
outputaddress_2.mixer_results_load(transaction_2.get_hash())
if not outputaddress_2.get_is_cm():
value_second = outputaddress_2.get_value()
if (value_first+value_second) < value_maximum:

third iteration
for transaction_3 in inputtransaction_list:
output_addresses_3 = transaction_3.
get_outputaddress_list()
for outputaddress_3 in output_addresses_3:
outputaddress_3.mixer_results_load(transaction_3.
get_hash())
if not outputaddress_3.get_is_cm():
value_third = outputaddress_3.get_value()
value_full = value_first + value_second +
value_third

addressset = { # an efficently way to check if
addresses different
outputaddress.get_addresshash(),
outputaddress_2.get_addresshash(),
outputaddress_3.get_addresshash()
¥

if value_minimum <= value_full <=
value_maximum\
and len(list(addressset)) ==
participation_list.append(
ParticipationPossibility(
[transaction, transaction_2,
transaction_3],
[outputaddress, outputaddress_2,
outputaddress_3],
output_range, 3)

return participation_list

#
Deanonymizer
#
class Deanonymizer:

This class tries to deanonymize Coinmixer.SE-transactions by providing
possible input/out-transactions that belong to the (un)tainted coins

def __init__(self):
raise Exception("Should not be initialized")

addressFee = 60000 # address-fee specified in Coinmixer.SE-FAQ
feeRange = [1, 3] # minimum and maximum service-Fee taken by Coinmixer.SE (specified in CM
.SE-FAQ)

@staticmethod
def input_deanonymize(inputtransaction_hash, cm_address=None, forwards=3, max_delay=120):
nun
This function takes the customers input-transaction to Coinmixer.SE (tainted coins
) and maps it
to output-transactions from Coinmixer.SE (untainted coins).
It tries to find the untainted coins of a given customer-transaction.
:param inputtransaction_hash: The transaction_hash of the transaction from the
customer to Coinmixer.SE
:param cm_address: The Bitcoin-Address of Coinmixer.SE which can be found in the
specified transaction.
:param forwards: The maximum amount of forwards that should be checked
:param max_delay: The maximum delay that should be checked

:return:
nun

if cm_address is None or inputtransaction_hash is None: # todo: cm-address could be
identified by program
return False

inputtransaction = Transaction(inputtransaction_hash)
if DEBUG:
print("input transaction loaded.")
address_list = inputtransaction.get_outputaddress_list() # load address_list of
outputs
if DEBUG:
print("address_list loaded.")

found = False
output_range = []
for address in address_list:
if address.get_addresshash() == cm_address:
found = True # cm_address provided by user has been found in transaction
sent_value = address.get_value()
output_range = Deanonymizer.cm_out_ranges_calculate(sent_value)

if found is False:
return False # provided address could not be found in transaction

container = ParticipationPossibilityContainer(inputtransaction, output_range)
return container.find_possibilities(forwards, max_delay)

@staticmethod
def cm_out_ranges_calculate(input_value):
nun
Calculates the possible minimum and maximum value
which could be sent by Coinmixer.SE to the customer
The last four digits of the customers input-transactions are probably random.
The smallest fee taken by Coinmixer.Se is 1%
The highest fee taken by Coinmixer.Se is 3%
Calculations:

highest Value: (valueSent - addressFeexnumber of forwards) * 0.99 with last four
digits of valueSent as 9

smallest Value: (valueSent - addressFee*number of forwards) * 0.97 with last four
digits of valueSent as 0

:param input_value: Value sent by customer to Coinmixer.se
:return: list of possible minimum/maximum (non-negative) values for one to five

forwards
nnn

output_range = []

for forwards_number in range(1l, 6): # number of forwards (1-5)
tmp_value_smallest = (input_value - Deanonymizer.addressFee * forwards_number)

value_smallest = int((tmp_value_smallest - tmp_value_smallest % 10000) x 0.97)
value_highest = int(((tmp_value_smallest - tmp_value_smallest % 10000) + 9999) =
0.99)

if value_smallest < 0 or value_highest < O:
value_smallest = 0
value_highest = 0

if 0 < value_smallest < 100000: # coinmixer-minimum/maximum per forward-address
value_smallest = 100000

if 0 < value_highest < 100000:
value_highest = 100000

if value_highest > 500000000:
value_highest = 500000000

output_range.append([value_smallest, value_highest]) # index 0 -> 1 forward, index
1 -> 2 forwards,
return output_range

@staticmethod

def output_deanonymize():
nnn

This functions should be able to map the untaint coins to the customers input-
transaction

:return:
nnn

return False

#
Partition
#

class Partition:
unn

The fees of Coinmixer.SE-transactions are static for a individual timeframe.

We call this timeframe "partition". This class checks, updates and handles these
timeframes.

Furthermore it shows if transactions are within a partition and shows if the
transaction likely belongs

to the Coinmixer.SE-network.

All timestamps are unix-second-based.
nnn

def __init__(self, partition_id, time_start, time_end, fee):
self._id = partition_id
self._timeStart = time_start
self._timeEnd = time_end

self._fee = fee

def is_in_partition(self, timestamp):
nun
This function checks if a specified timestamp (unix-second-based) is withtin this
partition.
:param timestamp: The timestamp to check.
:return: True if timestamp is within the partion. False is not.
nun
if DEBUG:
print ("Check if timestamp in partition. partition_id: " + str(self._id) + "
timestamp: " +
str(timestamp))

if self._timeStart <= timestamp <= self._timeEnd:
return True

else:
return False

def is_timestamp_newer(self, timestamp):
nun
Checks if timestamp is newer than partition
:param timestamp: timestmap to check.
:return: True if timestamp is newer than partition. False if not.
nun
if DEBUG:
print ("Check if timestamp is newer then partition. partition_id: " + str(self._id
) + " timestamp: " +
str(timestamp))

if timestamp > self._timeEnd:
return True
return False

def is_timestamp_older(self, timestamp):
nun
Checks if timestamp is older than partition
:param timestamp: timestamp to check
:return: True if timestamp is older than partition. False if not.
nun
if DEBUG:
print ("Check if timestamp is older then partition. partition_id: " + str(self._id
) + " timestamp: " +
str(timestamp))

if timestamp < self._timeStart:
return True
return False

def get_fee(self):
return self._fee

def get_time_start(self):
return self._timeStart

def get_time_end(self):
return self._timeEnd

def get_id(self):
return self._id

#

PartitionContainer

#

class PartitionContainer:

The PartitionContainer holds all partitions-objects.

The Container is able to insert new partitions into the Mysql-Database, update
existing partitions and

provides the fee and its reliability (trustlevel) for a given timestamp (unix-seconds-
based)

partitions = [] # holds all partitions

def __init__(self):
raise Exception("Should not be initialized")

@staticmethod
def partition_insert(fee, timestamp_start, timestamp_end=None):
nnn
Creates new partitions and inserts it into Mysql-DB
:param fee: The fee of the partition.
:param timestamp_start: Startingpoint of the partition
:param timestamp_end: Endingpoint of the partition

ireturn:
nno

if timestamp_end is None:
timestamp_end = timestamp_start

if DEBUG:
print ("New partition inserted. fee: " + str(fee) + " timestamp_start: " +
str(timestamp_start) + " timestamp_end:" + str(timestamp_end))

sql = "INSERT INTO fee_partition (fee,timestamp_start, timestamp_end) " \
"VALUES("+str(fee)+","+str(timestamp_start) + "," + str(timestamp_end) + ")"
Database.sql_execute(sql)

@staticmethod
def partition_timerange_update(partition_id, timestamp_start=None, timestamp_end=None):
nnn
Updates an existing partition. Extends/Shortens the span of a partiton
:param partition_id: The ID of the partition which should get updated.
:param timestamp_start: The new startingpoint. Startingpoint wont get updated if not
provided.
:param timestamp_end: The new endingpoint. Endingpoint wont get updated if not
provided.
ireturn:
nnn
if timestamp_start is None and timestamp_end is None:
return False
Sql = hn

if timestamp_start is None:
sql = "UPDATE fee_partition SET " \
"timestamp_end = "+str(timestamp_end) + " WHERE partition_id = " + str(
partition_id)

if timestamp_end is None:
sql = "UPDATE fee_partition SET " \
"timestamp_start = "+str(timestamp_start) + " WHERE partition_id=" + str(
partition_id)

if DEBUG:
print ("Partition updated. partition_id: " + str(partition_id) + " timestamp_start
n +
str(timestamp_start) + " timestamp_end:" + str(timestamp_end))

Database.sql_execute(sql)
return True

@staticmethod
def partition_load():

nun
Loads partitions from database.

ireturn:
nan

sql = "SELECT partition_id, fee, timestamp_start, timestamp_end FROM fee_partition"
result = Database.sql_execute(sql)
PartitionContainer.partitions = [] # empty current partitions

for partition in result: # update Partitions
PartitionContainer.partitions.append(Partition(partition[0], partition[2],
partition[3], partition[1]))
if DEBUG:
print ("Partitions loaded.")

@staticmethod

def get_fee_and_trustlevel(timestamp, return_partition=False):
nuan

This function returns the fee to a given timestamp, based on the fee-partitions.

Furthermore it shows how reliable the results are (trustlevel). A higher
trustlevel shows a better

trustworthiness of the provided fee-result.

Trustlevels:

0 > Timestamp is not in any partition. The timestamp is ahead or behind

existing partitons.
This is the normal case for forward-crawling. The fees can and will change

while crawling.
The result-fee can be an indicator for a transaction which is within the

Coinmixer-network, but
shouldnt be fully relied on.

1 -> Timestamp is between two partitions (gap). Usually the fee of a transaction

, which is between
two partitions, equals the fee of one of these partitions. However this

indicator is only usable if
gaps are not to big. Whenever fees abruptly change, this indicator will

fail.

2 -> Timestamp is in a partition. In most cases this means that the fee of a

transaction has to be the
same (+/-variance) as the partition-fee if the transaction is in the
Coinmixer.SE-network.
However this indicator could be wrong whenever the fees of cm.se-
transactions change rapidly

:param timestamp: The input timestamp. Typically the timestamp of a transaction which

should be checked.
:param return_partition: If True, the whole partition(s) and trustlevel are returned.
If False, only Fee and trustlevel are returned.

ireturn:

if DEBUG:
print ("Getting fees and trustlevels. timestamp: " + str(timestamp) + "
return_partition: " +
str(return_partition))
list_of_earlier_partitions = []
list_of_newer_partitions = []

for partition in PartitionContainer.partitions:
if partition.is_in_partition(timestamp) is True:
if return_partition is True:
return [partition, 2] # timestamp is in partition
return [partition.get_fee(), 2]

divide partition in two groups: earlier (before timestamp) and later (after
timestamp) partitions

if partition.is_timestamp_newer (timestamp) :
list_of_earlier_partitions.append(partition)

if partition.is_timestamp_older(timestamp) :
list_of_newer_partitions.append(partition)

partitions are diveded in two groups:

[earlier Partitions] timestamp [later partitions]

however each group is not orderd

if not list_of_earlier_partitions and not list_of_newer_partitions: # no partition in
database
return None

find partition right before timestamp
latest_possible_partition = Partition(None, None, O, None) # default-partition

for partition in list_of_earlier_partitions:
if partition.is_timestamp_newer(latest_possible_partition.get_time_end()) is False

latest_possible_partition = partition # updates whenever a newer partition is
found

if not list_of_newer_partitions: # if no partition after timestamp found, the
timestamp is newest:
if return_partition is True: # [earlier partition] timestamp
return [latest_possible_partition, 0]
return [latest_possible_partition.get_fee(), 0]

find first partition of "later partitions"-group

earlist_possible_partition = list_of_newer_partitions[0]

for partition in list_of_newer_partitions:

if partition.is_timestamp_older(earlist_possible_partition.get_time_start()) is
False:
earlist_possible_partition = partition # updates whenever the start-timestamp
of an partition is older

then the starttimestamp of the partition which is currently earliest

if latest_possible_partition.get_time_end() == 0: # if its still the default-partition
there is no earlier
if return_partition is True: # partition then the timestamp -> timestamp

newer then every
return [earlist_possible_partition, O] # partition: timestamp [later partition]
return [earlist_possible_partition.get_fee(), 0]

timestamp is in the gap between two partitions: [earlier partition] timestamp [later
partition]

if return_partition is True:
return [[latest_possible_partition, earlist_possible_partition], 1]

return [[latest_possible_partition.get_fee(), earlist_possible_partition.get_fee()],
1]

#
Analyzer
#

class Analyzer:
nnn

def __init__(self):
raise Exception("Should not be initialized")

ret = []
bla = 0
@staticmethod

def cm_check_transaction_fee_correct_partition_and_update(transaction, force=False):
non

Check if fee is in correct partition and update partition if necessary (e. g.
update last timestamp).

Automatically updates if CMcheckTransaction_feelInCorrectParition returns 1 or 2

Updates are always applied if transaction lies within a gap:

[earlier partitions] transaction [later partition]

If force=True updates are also applied if the transaction is after or before
partitions:

[earlier partition] transaction

transaction [later partition]

:param transaction: The transaction which should be checked.

:param force: If transaction is newer/older then every partition, updates are only
applied if force == True

:return:
nan

result = Analyzer.cm_check_transaction_fee_correct_partition(transaction)

if result is None:

PartitionContainer.partition_insert(transaction.get_fee_per_byte(), transaction.
get_time())
return True

PartitionContainer.partition_load()

result = PartitionContainer.get_fee_and_trustlevel(transaction.get_time(), True) #
return:

[parition(s), trustlvl]

if DEBUG:
print ("updating Partition is necessary. force=" + str(force))

if type(result[0]) is list: # transaction in in gap: [earlier partitions] transaction
[newer partitions]

for partition in result[0]:
if abs(transaction.get_fee_per_byte() - partition.get_fee()) <= 1: # coinmixer.
SE-fee-Variance
= 1 Sat/Byte
if transaction.get_time() > partition.get_time_end(): # update last
timestamp of earlier partition

if timestamp is newer then last timestamp of returned partition
(earlier partition gets updated)

PartitionContainer.partition_timerange_update(partition.get_id(), Nome,
transaction.get_time())
return True
elif transaction.get_time() < partition.get_time_start(): # update first
timestamp of newer partition

if timestamp is older then first timestamp of returned partition

(newer partition gets updated)

PartitionContainer.partition_timerange_update(partition.get_id(),
transaction.get_time(), None)

return True

else: # transaction is newer/older then every partition or lays within a partition
partition = result[0]
if abs(transaction.get_fee_per_byte() - partition.get_fee()) <= 1:

if result[1] == 2: # transaction is in partition - no update required
return True

elif result[1] == 0 and force is True: # partition newer/older then every
partition

updates only applied if force == True
if transaction.get_time() < partition.get_time_start():
PartitionContainer.partition_timerange_update(partition.get_id(),
transaction.get_time(), None)
return True
elif transaction.get_time() > partition.get_time_end():
PartitionContainer.partition_timerange_update(partition.get_id(), Nonme,
transaction.get_time())
return True

return False

@staticmethod
def cm_check_transaction_all_inputs_cm():
nnn
Should check if all input-addreses are owned by Coinmixer.SE
(not implemented yet)
ireturn:

return False

@staticmethod
def cm_results_insert(outputadresses, transaction):
nnn
Saves checking-results (output-addresses) to database.
:param outputadresses: outputaddresses which should be inserted in database
:param transaction: transaction-obejct which belongs to outputaddresses
:return:
nnn
if isinstance(outputadresses, list) is False: # outputAddresses-variable could be a
single output-address
tmp = list()
tmp.append(outputadresses)
outputadresses = tmp

for output in outputadresses:

sql_fee = output.get_is_cm_fee()

sql_common = output.get_is_cm_common_value()

sql_version_sequence_locktime = output.get_is_cm_version_sequence_locktime()
sql_is_cm = output.get_is_cm()

sql_is_spent = output.get_is_cm_spent()

sql_is_cashin = output.get_is_cm_cashin_address()

sql_next_transaction = output.get_next_transaction()
sql_history = output.get_is_cm_transaction_history()

if sql_fee is None:
sql_fee = "NULL"

if sql_common is Nome:
sql_common = "NULL"

if sql_version_sequence_locktime is None:
sql_version_sequence_locktime = "NULL"

if sql_is_cm is None:
sql_is_cm = "NULL"

if sql_is_spent is None:
sql_is_spent = "NULL"

if sql_is_cashin is None:
sql_is_cashin = "Null"

if sql_next_transaction is None:
sql_next_transaction_hash = ""
else:
sql_next_transaction_hash = sql_next_transaction.get_hash()

if sql_history is None:
sql_history = "NULL"

insert results to database
sql = "INSERT INTO coinmixer_analysis" \
Il(ll \
"address_hash, next_transaction_hash," \
"transaction_hash, forward, fee, common, version_sequence_locktime, " \
"connected, spent, is_cm, is_cashin, transaction_history) VALUES " \
"(>" + output.get_addresshash() + "’,’" + sql_next_transaction_hash + "’,’" +

transaction.get_hash() + "?," + str(transaction.get_forward()) + "," + \

str(sql_fee) + "," + str(sql_common) + "," + \
str(sql_version_sequence_locktime) + ", True," + str(sql_is_spent) + "," + \
str(sql_is_cm) + ","+str(sql_is_cashin)+", "+str(sql_history)+")"

Database.sql_execute(sql)

@staticmethod
def cm_log_check_is_cashin(transaction_hash):
non
Checks whether a transaction_hash is already saved in analysis-results and if its
a transaction done by customers
:param transaction_hash: Hash of the transaction which should be checked

ireturn:
nan

sql = "SELECT count(analysis_id) FROM coinmixer_analysis WHERE " \
"transaction_hash=’"+str(transaction_hash) + "’ and is_cm=0"
res = Database.sql_execute(sql) [0][0]
if res == 0:
return False
else:
return True

@staticmethod
def cm_log_check_is_errorhash(transaction_hash):

nnn
Checks whether an error occured while proccessing this transactio in the past.
If an error occured, this may have an effect on the further proccessing (
endless-loop)
:param transaction_hash:

ireturn:
nnn

sql = "SELECT count(ID) FROM errorlog WHERE transaction_hash =’" + transaction_hash +

non

res = Database.sql_execute(sql)[0][0]

if res == 0:
return False
else:

return True

@staticmethod
def cm_log_check_is_first(previous_hash):
nnn
Checks if prevoius_hash is the first cm-network transaction
(prior transactions are customer-intputtransactions)
:param previous_hash:
:return: True -> previous_transaction is the first cm-network transaction
False-> there are cm-network transaction prior to this transaction
nnn
sql = "SELECT count(is_first) FROM coinmixer_analysis_log WHERE previous_hash=’"+
previous_hash+"’"
result = Database.sql_execute(sql)
if result[0][0] == 0:
return False
else:
return True

@staticmethod
def cm_log_check(transaction_hash, forward=False):
nnn
Recursive function. Follows all next-transaction-hashes (forward=True) till no
next-transaction-hash could
be found. (Returns last state of previous forward-crawling-process)
Follows all previous-transaction-hashes (forward=False) till no more previous-
transaction-hash could be
found. (Returns last state of previous backwards-crawling-process)
:param transaction_hash: The transaction-Hash from which the crawling should start
:param forward: True -> forward-crawling. False -> backwards-crawling

:return:
nnn

ret = []
Sql = nhu

if forward is True:
sql = "SELECT next_hash FROM coinmixer_analysis_log WHERE " \
"transaction_hash = ’" + transaction_hash + "’ and previous_hash = ?’"

if forward is False:
sql = "SELECT previous_hash, is_first FROM coinmixer_analysis_log WHERE " \
"transaction_hash = ’" + transaction_hash + "’ and next_hash=’’"

result = Database.sql_execute(sql)

check: transaction has not been processed before and no error occured and its not a

customers transaction
if not result and not Analyzer.cm_log_check_is_first(transaction_hash) and\
not Analyzer.cm_log_check_is_errorhash(transaction_hash):

return [transaction_hash]

else:
for res in list(set(result)): # multitple list-elements are removed

ret += Analyzer.cm_log_check(res[0], forward) # recursion
return ret

@staticmethod
def cm_log_update_first(transaction_hash):
""" This function should only be used with backward-crawling.
If an transaction is the the first transaction in the cm-network
(prior transaction is inputtransaction by customer) this function updates the
coinmixer_analysis_log
table for better performance (not neccessary checks of first-transactions will be
done)
:param transaction_hash:
ireturn:
nun
sql = "UPDATE coinmixer_analysis_log SET is_first=1 WHERE previous_hash = "+
transaction_hash+"?"
Database.sql_execute(sql)

@staticmethod
def cm_log_insert(transaction_hash, next_hash=None, previous_hash=None, depth=0,):
nun
Inserts new Transaction in Coinmixer-Log. Logs transactions that have been
analyzed so they dont have to
be checked again.
:param transaction_hash: Transaction hash that have been analyzed
:param next_hash: Hash of transaction that follows analyzed transaction (typically
forward-crawling)
:param previous_hash: Hash of transaction that is ahead of analyzed transaction (
typically backwards-crawling)
:param depth: The depth of recusion (only applied on backwards-crawling)
ireturn:
nun
if next_hash is None and previous_hash is None:
return False

if next_hash is None:
next_hash = ""

if previous_hash is None:
previous_hash = ""

sql = "INSERT INTO coinmixer_analysis_log (transaction_hash, previous_hash, next_hash,
depth) " \
"VALUES (" + transaction_hash + "’,°" + previous_hash + "?,’" + next_hash + "’,"
+ str(depth) + ")"

Database.sql_execute(sql)

@staticmethod
def cm_check_transaction_fee_correct_partition(transaction):

Checks if fee is correct (based on partitions).

:param transaction: Transaction which is checked
ireturn: None -> No partition found
0 -> transaction-fee probably wrong,
1 -> transaction-fee probably correct but can and will likely change in
future
(transaction is older or newer then partitions)

2 -> transaction-fee should be correct (transaction between gap or in
partition)
nnn
if DEBUG:
print ("checking fee of transaction: " + transaction.get_hash())
fee = transaction.get_fee()
size = transaction.get_size()
fee_per_byte = int(fee/size)

PartitionContainer.partition_load()

result = PartitionContainer.get_fee_and_trustlevel(transaction.get_time()) # return: [
fee, trustlvl]
if DEBUG:
print ("fee-check result: " + str(result))

if result is None:
return None

if type(result[0]) is list: # transaction in gap
for correct_fee in result[0]:
if abs(fee_per_byte - correct_fee) <= 1:
return 2
else:
correct_fee = result[0]
sec_level = result[1]
if abs(fee_per_byte - correct_fee) <= 1:
if sec_level == 0: # transaction ahead or before partitions
return 1
else:
return 2 # transaction in partition

return 0 # transaction-fee not correct

@staticmethod

def cm_check_address_version_sequence_locktime(address):
nnn

Checks whether version, sequence, locktime of the next transaction send by the
address are correct.
If version, sequence or locktime is wrong or more then one transaction is sent
through the address
its likely not an address controlled by Coinmixer.SE.
:param address: Address to check
:return: True -> Version, Sequence, Locktime correct (could be a Coinmixer.SE-

transaction)
False -> Version, Sequence, locktime wrong (cant be a Coinmixer.SE-transaction

)

sent_counts = address.sent_counts() # check how many transactions have been sent
through this address

if sent_counts != 1: # Coinmixer.SE-addresses typically dont send more then one
transaction
return False

return Analyzer.cm_check_transaction_version_sequence_locktime(address.
get_transactions()[0]) # check next
transaction

@staticmethod
def cm_check_transaction_transaction_outputs(transaction, expected_outputs_int):

Check if the number of Outputs of the address is expected.
Typically two outputs are expected (customer, and coinmixer.se-Network)

:param transaction: transaction to check.
:param expected_outputs_int: expected outputs (typically two).

ireturn:
nun

transactions = transaction.get_outputaddress_list()
if len(transactions) > expected_outputs_int:

return False
return True

@staticmethod
def cm_check_transaction_common_value_backward(transaction, cm_address):
nun
Checks whether an address has been RECEIVING an commonValue (typically this
addresses are owned by costumer)
or non-common values (typically this addresses are owned by coinmixer.se) in the
provided transaction.
A common value is a value thats specified up to five decimal places (e.g.
0.57312000) .
A1l values are based in satoshis.
This function is used for backwards-crawling. Its checks if its likely that
cmAddress is an
cashin-Address (used by customers to cashin to coinmixer.SE) or its an address
which is used for outputs
(paying customers)
:param transaction: Transaction which should be a Coinmixer.SE-transaction.
:param cm_address: An output-address of the transaction that is probably owned by
Coinmixer.SE

:return:
nun

outputaddresses = transaction.get_outputaddress_list()
for outputAddress in outputaddresses:
if outputAddress.get_addresshash() != cm_address.get_addresshash(): # typicalle
the second output-address
if outputAddress.get_value() % 1000 == 0: # last three decimal places equals
zero
return True
else:
return False
return True # default (e.g. only 1 output-address)

@staticmethod

def cm_check_transaction_version_sequence_locktime(transaction):
nun

Checks whether version, sequence and locktime are correct for coinmixer.SE-

transactions
:param transaction: Transaction that should be checked.
ireturn:
nun
if transaction.get_version() == 2 and transaction.get_locktime() > 0 \

and transaction.get_sequence() == 4294967294:
return True
return False

@staticmethod

def cm_check_address_common_value(address):
nan

Checks whether an address has SENT an commonValue (typically this addresses are
owned by costumer)

or non-common values (typically this addresses are owned by coinmixer.se)

A common value is a value thats specified up to five decimal places (e.g.
0.57312000) .

All values are based in satoshis.

This function is used for forward-crawling. Its checks if its likely that the
address is a customer-address.

:param address:

ireturn:

nnn

if address.get_value() % 1000 == O:
return True

else:
return False

@staticmethod
def cm_check_address_transaction_count(address, inputtransaction):
nnn
Checks whether the address has been sending transaction before the input-
transaction.
Coinmixer-Addresses typically do only send a single transaction.
:param address: The address to check.
:param inputtransaction: the known input-transaction.
:return: O -> input-Transaction is not the first transaction of address or there
have been
more then one send-transaction
-> address MOST PROBABLY NOT controlled by Coinmixer.SE

1 -> address has unspent outputs
-> address PROBABLY NOT controlled by Coinmixer.SE

2 -> address has no unspent outputs and inputtransaction is the first and
only spent output
-> address IS PROBABLY controlles by Coinmixer.SE

if address.first_transaction_timestamp() < inputtransaction.get_time(): # checks
whether inputtransaction
return 0
sent_counter = address.sent_counts()

if sent_counter > 1: # checks whether there have been multiple send-transactions
return 0

if address.get_spent() is False: # checks whether addess-value is unspent
return 1 # unspent output

else:
return 2 # spent output

#
Mapping
#
class Mapping:
unnn
The database-structure saves address-hashes and values (spent-outputs) in seperated
tables.
This class provides a mapping between address-hashes and values.
Values and addresses are mapped through their indices (e.g. addrl and vall belong

together)

def __init__(self):
self._addressList = [] # list of addresses [addrl, addr2, ...]
self._value_list = [] # list of values [vall, val2, ...]
self._id = None

def entry_add(self, address, value):
self._addressList.append(address)
self._value_list.append(value)

def mapping_insert(self):
nun
Inserts mapping into database
:return:
nun
sql = "INSERT INTO address_and_value_mapping (address_list, value_list) VALUES " \
"(?"+json.dumps(self._addressList)+"’, ’"+json.dumps(self._value_list) + "’)"
Database.sql_execute(sql)
sql = "SELECT LAST_INSERT_ID()"
self._id = Database.sql_execute(sql) [0][0]

def get_id(self):
return self._id

#
Address
#

class Address:
unn

Represents a Bitcoin-address with its general Bitcoin-address-information

and specific Coinmixer-information.
unn

API_URL = "https://blockchain.info/rawaddr/"

def __init__(self, addresshash, value=None, spent=None, is_inputaddress=None, sequence=
None) :
self._addresshash = addresshash
self._value = value
self._is_inputaddress = is_inputaddress # is input-address -> True, is output-address

-> false

self._sequence = sequence
self._spent = spent
self._transactions = []
self._nextTransaction = None
self._SentTransactionsInt = 0
self._received_transactions_int
self._is_cm = None
self._is_cm_transaction_history = None
self._is_cm_fee = None
self._is_cm_version_sequence_locktime = None
self._is_cm_common_value = None
self._is_cm_spent = None
self._is_cm_counter = 0
self._is_cm_cashin_address = None
self._is_cm_forward = None
self._previous_transaction = None
self._is_cm_connected = None
self._address_id = None
self._value_id = None

]
[}

def inputtransaction_find(self):

def

def

If its an address controlled by Coinmixer.SE there should
only exist one input-transaction to an address. This function returns this
transaction.
ireturn:
nnn
if DEBUG:
print("find inputtransaction")
counter = 0
inputtransaction = None
Find the transaction where this address (self) is an output-address.
It has to output the whole value (get_value()), otherwise this address sent multiple
transactions.
for transaction in self._transactions:
outputaddress_list = transaction.get_outputaddress_list()
for outputaddress in outputaddress_list:
if outputaddress.get_addresshash() == self.get_addresshash()\
and outputaddress.get_value() == self.get_value():
inputtransaction = transaction
counter += 1

if counter > 1: # shouldnt be possible (double-spent)
ErrorLog.log("Error occured at input-address: " + self.get_addresshash() + " (
multiple spends of value!)",
None, self.get_addresshash())
return False

return inputtransaction

mixer_results_load(self, transaction_hash):
nnn
Loads analysis-results of a specified transaction-hash into local variables.
:param transaction_hash: Hash of which results will be loaded
:return:
nnn
sql = "SELECT forward, fee, common, version_sequence_locktime,connected, spent, " \
"is_cm, is_cashin, transaction_history FROM coinmixer_analysis WHERE " \
"address_hash = ’"+self._addresshash+"’ and transaction_hash=’" +
transaction_hash + "’ limit 0,1"
result = Database.sql_execute(sql)
if len(result) != 1: # there has to be exactly one analysis-result
return False

data = result[0]

self._is_cm_forward = bool(datal[0])
self._is_cm_fee = data[1]
self._is_cm_common_value = data[2]
self._is_cm_version_sequence_locktime = datal[3]
self._is_cm_connected = data[4]
self._is_cm_spent = datal[5]

self._is_cm = datal[6]
self._is_cm_cashin_address = datal[7]
self._is_cm_transaction_history = datal[8]

return True

is_cm_counter_add(self, add):
nnn
Whether an addrss is controlled by a customer (customer-address) or by coinmixer (
coinmixer-address)
is based on this CM-counter.

Based on this counter its chosen which address is controlled by coinmixer (higher
CM-counter) or
by customer (lower CMcounter).
:param add: Adds an int to counter.
rreturn:

self._is_cm_counter += add

def get_is_cm_counter(self):
nuan
Returns CM-Counter (see is_cm_counter_add(add)) for more information
:return:

return self._is_cm_counter

def set_is_cm_counter(self, is_cm_counter):
self._is_cm_counter = is_cm_counter

def set_is_cm(self, is_cm):
nun
Sets if the address is controlled by Coinmixer.SE
iparam is_cm:
ireturn:

self._is_cm = is_cm

def set_next_transaction(self, next_transaction):
nan
Sets next transaction that was sent by Coimnmixer.SE (forward-crawling)
:param next_transaction:
ireturn:

self._nextTransaction = next_transaction

def get_next_transaction(self):
nan
Returns next transactions that was sent by Coinmixer.SE (forward-crawling)
ireturn:

return self._nextTransaction

def get_is_cm(self):
nun
Getter. For more informatin check set_is_cm(is_cm).
ireturn:

return self._is_cm

def set_is_cm_fee(self, cm_fee):
nun
Sets if the fee of the transaction sent by this address is correct for an
transaction send by Coinmixer.SE
:param cm_fee:
ireturn:

self._is_cm_fee = cm_fee

def get_is_cm_fee(self):
nun
Getter. For more information check set_is_cm_fee(CMfee).

ireturn:
nan

return self._is_cm_fee

def set_is_cm_transaction_history(self, cm_history):
nnn
0 -> This address sent multiple transactions -> address MOST PROBABLY NOT
controlled by Coinmixer

1 -> Output is unspent -> address PROBABLY NOT controlled by Coinmixer

2 -> Qutput is spent -> address COULD BE controlled by Coinmixer
:param cm_history:
:return:

self._is_cm_transaction_history = cm_history

def get_is_cm_transaction_history(self):
nnn
Getter. For more information check set_is_cm_transaction_history(CMhistory)
ireturn:

return self._is_cm_transaction_history

def set_is_cm_version_sequence_locktime(self, version_sequence_locktime_bool):
nnu
True -> Version, Sequence, Locktime of next transaction indicates that this
address is owned by coinmixer.SE
False -> Version, Sequence, Locktime different from typical values set by
coinmixer.SE
:param version_sequence_locktime_bool:
ireturn:

self._is_cm_version_sequence_locktime = version_sequence_locktime_bool

def get_is_cm_version_sequence_locktime(self):
nnn
Getter. For more information check set_is_cm_version_sequence_locktime(verSegLock).
:return:

return self._is_cm_version_sequence_locktime

def set_is_cm_spent(self, cm_spent):
nnn
True: Address-values are spent
False: Address-values are unspent (unusual for addresses controlled by Coinmixer.
SE)
:param cm_spent:
:return:

self._is_cm_spent = cm_spent

def get_is_cm_spent(self):
nnn
Getter. For more information check setis_cm_spent(CMspent).

ireturn:
nnn

return self._is_cm_spent

def set_is_cm_common_value(self, cm_common_bool):
nnn

True -> a common value has been sent through this address -> indicates costumer-
address

False -> an uncommon value has been sent through this address -> indicates
coinmixer-address
:param cm_common_bool:
ireturn:

self._is_cm_common_value = cm_common_bool

def get_is_cm_common_value(self):
nan
Getter. For more information check set_is_cm_common_value(CMcommon) .
ireturn:

return self._is_cm_common_value

def get_transactions(self):
nun

Getter. For more information check transactions_load()
‘return:

return self._transactions

def transactions_load(self):
nan

Loads every transaction of the address from Blockahin.info-API
(todo: check if all transactions for an address are
already saved in database and load them from there)
ireturn:
nuan
if DEBUG:
print ("loading all transactiomns")
url = Address.API_URL + self._addresshash

response = urllib.urlopen(url)

try:
data = json.loads(response.read())
transaction_list = []
for transactionData in data["txs"]:

transaction_list.append(
Transaction(
transactionData["hash"], None, None, None, None, None,
None, None, None, None, None, None, transactionData))

self._transactions += transaction_list
if DEBUG:
print("all transactions have been loaded.")
except ValueError:
print("JSON-object could not be decoded. Probably your IP got blocked. Try again
later.")
exit (0)

def first_transaction_timestamp(self):
nun

Returns the timestamp of the first transaction that has been sent/received through
this address.

Transactions have to be loaded before calling this function! (transactions_load)
ireturn:
nun
timestamp = self._transactions[0].get_time()
for transaction in self._transactions:

if transaction.get_time() < timestamp:

timestamp = transaction.get_time()

def

def

def

def

def

def

def

return timestamp

sent_counts(self, return_transactions=False):
nnn
Returns the number of transactions that have been sent through this address
:param return_transactions: True -> a list with transactions is appended to return-
result
:return:
nnn
sent_counter = 0
transaction_list = []
for transaction in self._transactions:
for inputaddresses in transaction.get_inputaddress_list():
if inputaddresses.get_addresshash() == self._addresshash:
sent_counter += 1
if return_transactions is True:
transaction_list.append(transaction)
if return_transactions is True:
return [sent_counter, transaction_list]

return sent_counter

get_addresshash(self):
return self._addresshash

get_sequence(self):
nnn

List of all sequences used in transactions?7??
ireturn:

return self._sequence

get_address_id(self):
nnn

Getter. For more information check set_address_id(address_id)
ireturn:

return self._address_id

set_address_id(self, address_id):
nnn
Values and addreses are connected through an mapping (see Mapping-Class). This is
the id of the address
which is saved in the database.
:param address_id:
ireturn:

self._address_id = address_id

get_value_id(self):
nnn

Getter. For more information check set_value_id(value_id)
ireturn:

return self._value_id

set_value_id(self, value_id):
nnn
Values and addreses are connected through an mapping (see Mapping-Class). Value-ID
maps an value to
this address.
:param value_id:

#

def

def

def

def

def

def

def

:return:
nan

self._value_id = value_id

get_value(self):

nan

Getter. For more information check set_value_id(value_id).
:return:

return self._value

is_inputaddress(self):
nun
True -> address is loaded as an input-address to an transaction
False -> address is loaded as an output-address to an transaction
ireturn:

return self._is_inputaddress

get_spent(self):

nan

Getter. Returns the value (satoshis) spent by this address
ireturn:

return self._spent

get_previous_transaction(self):

nuan

Getter. For more information check set_previous_transaction(transaction)
ireturn:

return self._previous_transaction

set_previous_transaction(self, transaction):
nun
Sets previous input-transaction (backward-crawling)
Typically its the first and only input of an address controlled by Coinmixer.SE.
:param transaction: Transaction which will bet set a previous-transaction
ireturn:

self._previous_transaction = transaction

get_is_cm_cashin_address(self):
nun
True -> Address is an Coinmixer.SE-Address which is used by customers to use
Coinmixer.SE-Service
False -> Address used by Coinmixer to forwards transactions
ireturn:

return self._is_cm_cashin_address

set_is_cm_cashin_address(self, cashin_bool):
nun
Getter. For more information check getis_cmCashinAddress().
:param cashin_bool:
:return:

self._is_cm_cashin_address = cashin_bool

Transaction

#

class Transaction:

Represents a Bitcoin-transaction with its general
Bitcoin-transaction-information and specific Coinmixer-information.

API_URL = "https://blockchain.info/de/rawtx/"

def __init__(
self, tx_hash, tx_id=None, blockheight=None,
fee=None, size=None, time=None,
version=None, sequence=None,
locktime=None, inputaddress_list=None,
outputaddress_list=None, is_cm=None, data=None) :

self._hash = tx_hash
self._blockheight = blockheight
self._fee = fee
self._size = size
self._time = time
self._version = version
self._sequence = sequence
self._locktime = locktime
self._inputaddress_list = inputaddress_list
self._outputaddress_list = outputaddress_list
self._is_cm = is_cm
self._id = tx_id
self._forward = True
self._block_full = False # not used at the moment
if DEBUG:
print("new transaction-object has been created: " + self._hash)
todo: after loadFromDatabase() check if data could be loaded from normalsized/
bigsized-transaction-table
todo: (change data structure of normalsized/bigsized-transaction-table previously if
necessary)
todo: maybe the load_from_api(data) function can be used (data from normalsized/
bigsized-table)
if an object is created and only the transaction-hash is passed,
the transaction will be loaded from the database or blockchain.info-API
if all(parameter is None for parameter in [
blockheight, fee, size, time,
version, sequence, locktime,
inputaddress_list, outputaddress_list,
is_cm

1:

if self.load_from_database() is False: # try to load transaction-data from mysql-
database
if DEBUG:
print ("loading from database faild. Load data from API")
self.load_from_api(data) # load data from blockchain.info

def load_from_database(self):

Loads transaction-data from database (transaction_data-table).

:return:
nnn

if DEBUG:
print ("loading transaction-data from database")

Check if transaction is in transactionData

sql = "SELECT ID, in_size_big_table, in_transaction_data FROM
list_of_all_transaction_hashes" \
" WHERE transaction_hash =’" + self._hash + "?"

result = Database.sql_execute(sql)

if not result: # transaction-hash has never been seen before by this script
if DEBUG:
print ("couldnt load transaction-data. Not in database.")
return False
if result[01[2] == 1: # transaction has been processed already and is saved to
database

sql = "SELECT * FROM transaction_data WHERE transaction_hash = ’"+self._hash+"’"
result = Database.sql_execute(sql)

if len(result) == 1: # transaction_hash should be an unique-column
result = result[0]
self._id = result[0]
self._blockheight = result[2]
self._fee = result[3]
self._size result[4]
self._time = result[5]
self._version = result[6]
self._sequence = result[7]
self._locktime = result[8]
inputaddress_mapping_id = result[9]
outputaddress_mapping_id = result[10]
self._is_cm = result[11]

if self._sequence is None:
sql = "SELECT sequences FROM multiple_sequences where transaction_id = " +
str(self._id)
self._sequence = json.loads(Database.sql_execute(sql) [0][0])

self._inputaddress_list, self._outputaddress_list = [], []

Load input-address_list-ids and valuelist-ids

sql = "SELECT address_list, value_list from address_and_value_mapping" \
" WHERE ID=" + str(inputaddress_mapping_id)

result = Database.sql_execute(sql) [0]

address_id_list = json.loads(result[0])
value_id_list = json.loads(result[1])

Load inputaddresses for each address_id and value_id
intputaddress_list holds created address-objects of each input-address
for index, value in enumerate(address_id_list):
sql = "SELECT transaction_value,spent from transaction_values WHERE ID=" +
str(value_id_list[index])
value_and_spent = Database.sql_execute(sql) [0]

sql = "SELECT transaction_address from transaction_addresses" \
" WHERE ID=" + str(address_id_list[index])
addresshash = Database.sql_execute(sql) [0][0]
self._inputaddress_list.append(Address(addresshash, value_and_spent[0],
value_and_spent[1]))

Load output-address_list-ids and value_list-ids

sql = "SELECT address_list, value_list from address_and_value_mapping" \
" WHERE ID=" + str(outputaddress_mapping_id)

result = Database.sql_execute(sql) [0]

address_id_list = json.loads(result[0])

value_id_list = json.loads(result[1])

load outputaddresses for each address_id and value_id
outputaddress_list holds created address-object of each output-address
for index, value in enumerate(address_id_list):
sql = "SELECT transaction_value,spent from transaction_values WHERE ID=" +
str(value_id_list[index])
value_and_spent = Database.sql_execute(sql) [0]

sql = "SELECT transaction_address from transaction_addresses " \
"WHERE ID=" + str(address_id_list[index])
addresshash = Database.sql_execute(sql) [0] [0]
self._outputaddress_list.append(Address(addresshash, value_and_spent[0],
value_and_spent[1]))
if DEBUG:
print ("successfully loaded transaction-data")
return True
else:
if DEBUG:
print ("faild to load transaction-data."
"transaction has been found in database, but its in
transaction_size_normal"
" or transaction_size_big tables. Loading from these tables need to be
implemented.")
return False

if DEBUG:
print ("faild to load transaction-data.")

return False

def load_from_api(self, data=None):
nnn
Loads transaction-data from blockchain.info-APT.
:param data:
:return:
nnn
if DEBUG:
print("loading transaction-data from API")

if data is Nome:
url = Transaction.API_URL + self._ _hash
response = urllib.urlopen(url)
try:
data = json.loads(response.read())
except ValueError:
print("JSON-object could not be decoded. Probably your IP got blocked. Try
again later.")
exit(0)
try:

copy data which can be copied without further processing
self._locktime = data["lock_time"]

self._version = data["ver"]

self._time = data["time"]

if "block_height" in data: # if blockheight is not accessible
(normally this should be an "unconfirmed transaction") -> set blockheight=1 (
default-value)
self._blockheight = data["block_height"]
else:

self._blockheight 1

self._size = data["size"]
self._block_full = False

create input-address-list, output-address-list, sequence(-list), fee
self._inputaddress_list = []

self._outputaddress_list = []

sent_total = 0

received_total = 0

for inputaddress in data["inputs"]:
prev_out = inputaddress["prev_out"]
self._inputaddress_list.append(
Address(
prev_out["addr"], prev_out["value"], prev_out["spent"], True,
inputaddress["sequence"]

»
received_total += prev_out["value"] # total input-value of the transaction

for output in data["out"]:
self._outputaddress_list.append(
Address(
output["addr"], output["value"], output["spent"], False
»

sent_total += output["value"] # total spent-value of the transaction
self._fee = received_total - sent_total

if self._fee < 0: # should not be possible
raise ValueError("Error: negative Fee. TX: " + self._hash)

get a list of all sequences and remove duplicates
self._sequence = list(set([inputaddress.get_sequence() for inputaddress in self.
_inputaddress_list]))

if len(self._sequence) == 1: # if its only one element -> remove list
self._sequence = self._sequence[0]

except KeyError as e: # a key couldnt be found in json-object (e. g. transaction-size
missing)
print ("KeyError: reason " + str(e))
exit(0)

if DEBUG:

print ("successfully loaded transaction-data from API.")
self.save_to_database(data) # save data to data
base

def save_to_database(self, transaction_full_json):
nun
Transaction is saved to database (Table: transactions_size_normal or
bigSizedTransaction) .
Blockchain.info-api-calls should be reduced to a minimum (bottleneck), so every
transaction will be stored
in database.
Transaction with an json-encoded length up to 40.000 Chars will be saved in "
transactions_size_normal".
Bigger transactions are saved in "transactions_size_big"
:param transaction_full_json: The full transaction received by Blockchain.info-Api (
JSON)
:return:

if DEBUG:
print("Saving transaction-data to database.")
if self._blockheight is None or self._size is None:
self.load_from_api()

transaction_full_json_encoded = json.dumps(transaction_full_json)
tablename = "transactions_size_normal"
bigsized = False

if len(transaction_full_json_encoded) > 40000: # could be up to 65535
tablename = "transactions_size_big"
bigsized = True

sql = "INSERT IGNORE INTO " + tablename +\
" (hash, blockheight, transaction, fullBlock) VALUES" \
" (’"+self._hash+"’,"+str(self._blockheight)+",’" + transaction_full_json_encoded
+ ’l’,’l\
+ str(self._block_full) + ")"
Database.sql_execute(sql)

sql = "SELECT LAST_INSERT_ID()"
last_id = Database.sql_execute(sql) [0][0]

sql = "INSERT IGNORE INTO list_of_all_transaction_hashes" \
" (transaction_hash, ID, in_size_big_table, in_transaction_data)" \
" VALUES (’"+self._hash+"’,"+str(last_id)+","+str(bigsized) + ", 0)"
Database.sql_execute(sql)
if DEBUG:
print("Saving to database done.")

def check_previous_addresses(self):

nnn
Checks if previous-addresses (backward-crawling) are cash-In-Addresses
(Coinmixer-Addresses which are used by customers to cash-in) or
coinmixer-addresses which are used to cashout-customers.
This function should only be called when transaction is confirmed as an coinmixer-

transaction.
This function is the mainly used to determine which address should be checked next
(backwards-crawling)

ireturn:

nnn

if DEBUG:
print ("Addreses to check: " + str(self._inputaddress_list))

for inputAddress in self._inputaddress_list:
if DEBUG:

print("checking address: " + inputAddress.get_addresshash())

inputAddress.transactions_load()
inputAddress.set_is_cm(True) # since its an CM-transaction, each input has to be
controlled by coinmixer.SE
inputAddress.set_is_cm_spent(True) # since its an input, it has already been spent
(in this transaction)

inputtransaction = inputAddress.inputtransaction_find() # find input-transaction
if inputtransaction is False: # mulitple outputs for this transaction. Really

uncommon.
if DEBUG:
print("could not find input-transaction. Error gets logged.")
ErrorLog.log("Error occured on input-address: " + inputAddress.get_addresshash
0O

+ "(multiple inputs)", inputAddress.get_addresshash())

return False

if inputtransaction is None: # mutltiple signle input-transactions -> CM-Cashin-
Address

inputAddress.set_is_cm_cashin_address(True)

continue
if DEBUG:

print("inputtransaction found: " + inputtransaction.get_hash())

print("checking version, sequence, locktime of inputtransaction:")
inputAddress.set_previous_transaction(inputtransaction)
version_sequence_locktime_bool = Analyzer.

cm_check_transaction_version_sequence_locktime(inputtransaction)

if DEBUG:
print("result: " + str(version_sequence_locktime_bool))

inputAddress.set_is_cm_version_sequence_locktime(version_sequence_locktime_bool)
if DEBUG:
print("checking number of transactionsoutputs equals 2")

transaction_counter = Analyzer.cm_check_transaction_transaction_outputs(
inputtransaction, 2)
if DEBUG:
print("result: " + str(transaction_counter))

if transaction_counter is False: # to many sent-transactions
inputAddress.set_is_cm_cashin_address(True)
continue # no further testing needed

if version_sequence_locktime_bool is False: # version, sequence or locktime wrong
inputAddress.set_is_cm_cashin_address(True)
continue # no further testing needed

if DEBUG:
print("checking common-value:")
common_value_bool = Analyzer.cm_check_transaction_common_value_backward(
inputtransaction, inputAddress)
if DEBUG:
print("result:" + str(common_value_bool))

if common_value_bool is True:
CMcounter +=1
inputAddress.set_is_cm_common_value(True)
else:
inputAddress.set_is_cm_common_value(False)

if DEBUG:
print ("checking fee:")
fee_check = Analyzer.cm_check_transaction_fee_correct_partition(inputtransaction)

if DEBUG:
print("Fee-check: " + str(fee_check))

if fee_check == 1 or fee_check == 2: # fee ok (gap or in partition)
inputAddress.set_is_cm_fee(True)

if DEBUG:
print("full result: its a address used for customer-cashins")
if inputAddress.get_is_cm_common_value() is True or inputAddress.get_is_cm_fee()
is True:
if DEBUG:

print("full result: its probably NOT an address used for customer-cashins")
inputAddress.set_is_cm_cashin_address(False) # if common value or fee-check
True -> its probably not
an cashin-address
else:
if DEBUG:
print("full result: its probably an address used for customer-cashins")
inputAddress.set_is_cm_cashin_address(True)

def check_next_addresses(self):

re
nou

This function checks whether the next-address is an address which is probably
owned by the coinmixer.se

or its an address which is owned by customers.

Differentiation whether address is coinmixer-address or customer-address is based
on a counter.

Counter-Rules:
There should only be two addresses in output-list.
The address with the highest counting-result is most probably an address
controlled by Coinmixer.SE.
The address with the lower counting-result is most probably an address
controlled by the customer.

More then 1 transaction sent from address -> counter = -1 (no further counting
applied)

Version, locktime, sequence not correct -> counter = -1 (no further counting
applied)

Unspent outputs availible -> counter += 0

All outputs spent -> counter += 1

Received an uncommon-value -> counter += 2

Next transaction uses correct fee -> counter += 3

Next transaction uses correct fee and is in partition (trustlevel = 2) -> += 1

Problem: spent + common-value+correctfee == spent + correctfee (in partition)
solving: check backwards + check next transactions..

turn:

if DEBUG:

for

print ("Addreses to check: " + str(self._outputaddress_list))

output in self._outputaddress_list:
if DEBUG:
print("Address to check: " + output.get_addresshash())

output.transactions_load()

if DEBUG:
print("Analyzing address:\n Analyzing transaction-count")
transactionCount = 0 -> not a Coinmixer-Address (multiple spents) (strong
indicator)
transactioncount = 1 -> probably not a Coinmixer-Address (unspent) (low
indicator)
transactioncount = 2 -> could be a Coinmixer-address (spent) (low indicator)
transaction_count_result = Analyzer.cm_check_address_transaction_count(output,
self)
if DEBUG:
print("transaction-count result: " + str(transaction_count_result))
print ("checking common value:")
True -> common-value sent (low indicator)
False -> uncommon-value sent (low indicator)

common_value_bool = Analyzer.cm_check_address_common_value(output) # True ->
common value (LI)
if DEBUG:
print("common-value result: " + str(common_value_bool))
print("checking version, sequence, locktime")
True -> version, sequence, locktime ok (low indicator)
False -> version, sequence, locktime not ok (strong indicator)
version_sequence_locktime_bool = Analyzer.
cm_check_address_version_sequence_locktime (output)
if DEBUG:
print("version, sequence, locktime result: " + str(
version_sequence_locktime_bool))

fee_check = None
output.set_is_cm(None)
set next-transaction of address and apply fee-check if possible
if transaction_count_result ==
sent_count_result = output.sent_counts(True)
if sent_count_result[0] ==
nexttransaction = sent_count_result[1][0]
fee_check = Analyzer.cm_check_transaction_fee_correct_partition(
nexttransaction) # fee-check:
next tx
output.set_next_transaction(nexttransaction)

else: # Not coinmixer-address
output.set_next_transaction(None)
else: # unspent -> probably not coinmixer-address (there is no next-transaction
yet)

output.set_next_transaction(None)
output.set_is_cm(None) # default-value

if DEBUG:
print("results transaction-check:")

if transaction_count_result == 0: # to many transactions sent/received by address
(hard indicator)
output.set_is_cm(False)
output.set_is_cm_transaction_history(0)
output.is_cm_counter_add(-1)

if DEBUG:
print("Analysis of tramsaction-count faild ")
print ("Counter: " + str(output.get_is_cm_counter()))

continue

elif transaction_count_result == 2: # no unspent output available
output.set_is_cm_spent(True)
output.is_cm_counter_add(1)
output.set_is_cm_transaction_history(2)

if DEBUG:
print("spent: True ")
print ("Counter: " + str(output.get_is_cm_counter()))
elif transaction_count_result == 1: # unspent output available

output.set_is_cm_spent(False)
output.set_is_cm_transaction_history(1)

if DEBUG:

print("spent: False ")
print ("Counter: " + str(output.get_is_cm_counter()))

continue
if version_sequence_locktime_bool is False: # version, sequence, locktime wrong (

as coinmixer.SE-address)
output.set_is_cm(False)
output.set_is_cm_version_sequence_locktime(False)

output.set_is_cm_counter(-1)

if DEBUG:
print("Analysis of version, sequence, locktime faild. aborting. ")
print ("Counter: " + str(output.get_is_cm_counter()))

continue
elif version_sequence_locktime_bool is True: # vers., sequence, locktime correct (

as coinmixer.SE-address)

if DEBUG:
print("Analysis of version, sequence, locktime ok. ")
print ("Counter: " + str(output.get_is_cm_counter()))

output.set_is_cm_version_sequence_locktime(True)

if common_value_bool is False: # address an uncommon value (probably coinmixer.SE-

address)
output.is_cm_counter_add(2)
output.set_is_cm_common_value(False)

if DEBUG:
print("common-value: False ")
print ("Counter: " + str(output.get_is_cm_counter()))

elif common_value_bool is True: # address received a commen value (probably a

customer-address)
output.set_is_cm_common_value(True)

if DEBUG:
print("common-value: True")
print ("Counter: " + str(output.get_is_cm_counter()))
if fee_check == 1: # fee ok (next transaction has same fee as previous transaction
)

output.is_cm_counter_add(3)
output.set_is_cm_fee(1)

if DEBUG:
print("fee-check: 0K (prob. last transaction) ")
print ("Counter: " + str(output.get_is_cm_counter()))
elif fee_check == 2: # fee ok and transaction relies in existing partition or gap

output.is_cm_counter_add(4)
output.set_is_cm_fee(2)

if DEBUG:

print("fee-check: good (in partition or gap)")
print ("Counter: " + str(output.get_is_cm_counter()))
elif fee_check == 0: # fee wrong

output.set_is_cm_fee(0)

if DEBUG:

print("fee-check-bad ")

print ("Counter: " + str(output.get_is_cm_counter()))
if DEBUG:
print("checking done. ")
print ("Counter: " + str(output.get_is_cm_counter()))

def insert_into_cm_network(self, forward=True, depth=5):
nan

Trough this function the results of the crawling-processes (forward/backward-
crawling) are saved

into database. It handles the checking-procedure of addresses/transactions and is
responsible for

recursive calls.

:param forward:
:param depth:
ireturn:

nun

if DEBUG:
print (“"crawling. forward: " + str(forward) + " depth: " + str(depth))

if depth == 0 and forward is False: # recursion will only executed till depth ==
if DEBUG:

print("maximum depth reached. stop crawling this path")
return True

self._forward = forward # defines if forward or backwards crawling

if DEBUG:
print("loading and saving address-data(value/hash-mapping/sequences). Transaction:
" + self.get_hash())
create mapping for addresses and values
inputaddress_mapping = Mapping()
outputaddress_mapping = Mapping()

for address in (self._inputaddress_list + self._outputaddress_list):
check if address is already in database
sql = "SELECT id FROM transaction_addresses WHERE transaction_address = ?"+address
.get_addresshash() + "’"
result = Database.sql_execute(sql)
if not result: # address couldnt be found in database
sql = "INSERT INTO transaction_addresses (transaction_address)" \
" VALUES (’"+address.get_addresshash() + "?)"
Database.sql_execute(sql)
sql = "SELECT LAST_INSERT_ID()"
address.set_address_id(Database.sql_execute(sql) [0][0])
else:
address.set_address_id(result[0][0])

check if value is already in database
sql = "SELECT id FROM transaction_values WHERE transaction_value = "+str(address.
get_value())
result = Database.sql_execute(sql)
if not result: # value coulndt be found in database
sql = "INSERT INTO transaction_values (transaction_value,spent) " \
"VALUES ("+str(address.get_value()) + "," + str(address.get_spent()) + ")

n
Database.sql_execute(sql)
sql = "SELECT LAST_INSERT_ID()"

address.set_value_id(Database.sql_execute(sql) [0][0])
else:

address.set_value_id(result[0][0])
if address.is_inputaddress():
inputaddress_mapping.entry_add(address.get_address_id(), address.get_value_id()

)
else:
outputaddress_mapping.entry_add(address.get_address_id(), address.get_value_id
(0)]

inputaddress_mapping.mapping_insert()
outputaddress_mapping.mapping_insert()

tmp_sequence = self._sequence
if type(self._sequence) == list:
tmp_sequence = "NULL"

sql = "INSERT IGNORE INTO transaction_data(" \

“"transaction_hash, blockheight, fee, size, " \
"time, version, sequence, locktime, " \
"inputaddress_value_mapping_id, " \

"outputaddress_value_mapping_id, is_cm" \
") VALUES (" \
"’"+self._hash + "’, " + str(self._blockheight) + ", "+str(self._fee) + ", " +\

str(self._size) + ", " + str(self._time) + ", " + str(self._version) + ", " +\
str(tmp_sequence) + ", " + str(self._locktime) + ", " +\
str(inputaddress_mapping.get_id()) + ", " + str(outputaddress_mapping.get_id()) +

"." 4+ str(self._is_cm) \
+ ’l)"

Database.sql_execute(sql)
sql = "SELECT LAST_INSERT_ID()"
self._id = Database.sql_execute(sql) [0][0]

if type(self._sequence) == list: # only single-sequences are saved in transaction_data
-table
sql = "INSERT INTO multiple_sequences (transaction_id, sequences) " \
"VALUES ("+str(self._id)+",’"+json.dumps(self._sequence)+"’)"
Database.sql_execute(sql)

updates list which holds every transaction-data that has been seen by the crawler
sql = "UPDATE list_of_all_transaction_hashes SET in_transaction_data = 1 " \

"WHERE transaction_hash = ’"+self._hash+"’"
Database.sql_execute(sql)

if DEBUG:
print("data saved in database.")

Backwards-Crawling
if self._forward is False:
if DEBUG:
print("backward-crawling starts.")
checkresult = self.check_previous_addresses() # checks previous-addresses:
Every previous-address should be controlled by coinmixer.SE
however some of these addresses are cashin-addresses
which are used by customers to cash-in bitcoins
which are going to be "anonymized" and
others are addresses which are used by coinmixer to cashout "anonymized" coins
to customers
if checkresult is False: # at least one input_address-address seems not to be
controlled by coinmixer.SE

H H H K H

ErrorLog.log(

"Error occured on tramnsaction: " +

self.get_hash() +

" (transaction classified as Coinmixer.SE-transaction but at least one"

input_address-address seems not to be owned by Coinmixer.SE)", self.
get_hash()

return False

list_of_cm_addresses = [] # previous coinmixer-addresses
list_of_previous_transactions = [] # previous coinmixer-transactions
for input_address in self._inputaddress_list:
if input_address.get_is_cm_cashin_address() is False:
list_of_cm_addresses.append(input_address)

Analyzer.cm_check_transaction_fee_correct_partition_and_update(
input_address.get_previous_transaction(), True

)

prev_transaction = input_address.get_previous_transaction()
list_of_previous_transactions.append(prev_transaction)
if input_address.get_is_cm_fee() is None:
PartitionContainer.partition_insert(
prev_transaction.get_fee_per_byte(), prev_transaction.get_time()

)
Analyzer.cm_results_insert(self._inputaddress_list, self) # insert result to
database
if DEBUG:
print("list of previous transactions: " + str(list_of_previous_transactions))
Every address on which the customer receives the "anonymized" coins should get
logged too

if not list_of_previous_transactions:
Analyzer.cm_log_update_first(self.get_hash())

for previous_transaction in list_of_previous_transactions:
if DEBUG:
print("tx to check: " + previous_transaction.get_hash())
prev_output_list = previous_transaction.get_outputaddress_list()
for prev_out in prev_output_list:

found = False
for inputaddress in self._inputaddress_list:

if inputaddress.get_addresshash() == prev_out.get_addresshash():
found = True

if found is False:

prev_out.set_is_cm(False)
previous_transaction.set_forward(False)
Analyzer.cm_results_insert(prev_out, previous_transaction)

Analyzer.cm_log_insert(self.get_hash(), None, previous_transaction.get_hash(),
depth)
insert analysis-result

todo(?): insert new partition if transaction is first and not in an partition
?

recursion
for previous_transaction in list_of_previous_transactions:
if DEBUG:
print("recursion. depth: " + str((depth-1)))

previous_transaction.set_is_cm(True)
previous_transaction.insert_into_cm_network(False, depth - 1)

if DEBUG:
print ("maximum-depth reached or path has been fully analyzed. Try another path")
forward-crawling
if self._forward is True:
self.check_next_addresses() # checks whether next address is coinmixer-address or
customer-address
next_address = None
non_cm_addresses = []
for output in self._outputaddress_list:
if next_address is None:
next_address = output
continue
if output.get_is_cm_counter() > next_address.get_is_cm_counter():
non_cm_addresses.append (next_address) # address with highest counter is
probably next cm-address
next_address = output

if DEBUG:
print ("Next Coinmixer-address: " + str(next_address))
print ("Next non-Coinmixer-address: " + str(non_cm_addresses))

for output in self._outputaddress_list:

if output.get_addresshash() != next_address.get_addresshash():
output.set_is_cm(False) # unspent output
if DEBUG:

print("Finding next transaction:")
next_transaction = next_address.get_next_transaction()

if DEBUG:
print("Next transaction: " + next_transaction.get_hash())
next_transaction.set_is_cm(True)
next_address.set_is_cm(True)
Analyzer.cm_check_transaction_fee_correct_partition_and_update(next_transaction,
True)

if next_address.get_is_cm_fee() == 0: # insert new Fee partition (transaction

newver then all partitions)

if DEBUG:

print("Transaction newer then all partitions. Inserting new Partition")
PartitionContainer.partition_insert(next_transaction.get_fee_per_byte(),
next_transaction.get_time())

if DEBUG:

print("Saving results")
Analyzer.cm_results_insert(self._outputaddress_list, self)
Analyzer.cm_log_insert(self.get_hash(), next_transaction.get_hash())
if DEBUG:

print("Next iteration")
next_transaction.insert_into_cm_network()

def set_hash(self, tx_hash):
self._hash = tx_hash

def set_id(self, tx_id):
self._id = tx_id

def set_blockheight(self, blockheight):
self._blockheight = blockheight

def set_fee(self, fee):

self._fee = fee

def set_time(self, time):
self._time = time

def set_version(self, version):
self._version = version

def set_sequence(self, sequence):
self._sequence = sequence

def set_locktime(self, locktime):
self._locktime = locktime

def set_inputaddress_list(self, inputaddress_list):
self._inputaddress_list = inputaddress_list # [address-object, address-object,

def set_outputaddress_list(self, outputaddress_list):
self._outputaddress_list = outputaddress_list # [address-object, address-object,

def set_is_cm(self, is_cm):
self._is_cm = is_cm

def get_hash(self):
return self._hash

def get_id(self):
return self._id

def get_blockheight(self):
return self._blockheight

def get_fee(self):
return self._fee

def get_fee_per_byte(self):
return int(self._fee/self._size)

def get_time(self):
return self._time

def get_version(self):
return self._version

def get_sequence(self):
return self._sequence

def get_locktime(self):
return self._locktime

def get_inputaddress_list(self):
return self._inputaddress_list

def get_outputaddress_list(self):
return self._outputaddress_list

def get_is_cm(self):
return self._is_cm

def get_size(self):
return self._size

#

def get_forward(self):
return self._forward

def set_forward(self, forward):
self._forward = forward

Network

#

class Network:

Initiate the crawling-processes. Checks if first transaction provided is a Coinmixer-

transactions, restores

last crawling-processes, prints out network-graphs (matlab-commands)
nnn

def __init__(self):
raise Exception("Should not be initialized")

@staticmethod

def load():
nnn
Not implemented yet.
ireturn:

return False

@staticmethod
def transaction_crawling(inputtransaction_hash, forward=True, depth=5):
nnn
Starts crawling-process. Default: forward-crawling.
Depth-parameter will only be used for backwards-crawling.
Transaction provided by user has to be a
Coinmixer.SE-transaction (version, sequence, locktime, fee will be checked).
Warning: Fee-partition will be forcefully created!
Further crawling-processes may generate wrong results if non-conmixer.SE-
transaction
is used as input-transaction.
:param inputtransaction_hash:
:param forward:
:param depth:

ireturn:

nnn

print ("Start crwaling: hash: " + str(inputtransaction_hash) + " forward: " +
str(forward) + " depth: " + str(depth))

if DEBUG:

print ("loading old results:")
res = Analyzer.cm_log_check(inputtransaction_hash, forward) # checks if hash has
already been processed

and loads last unprocessed hashes, faulty transactions are ignored
if DEBUG:

print ("old results have been loaded. New transactions to begin crawling with:

str(res))

if not res:
print ("No transaction-hash found that could be used for crawling!
"(last hash produced error or is a cashin-transaction)")

else:
for inputtransaction_hash in res: # transactions provided by user have to be
Coinmixer.SE-transactions

+

H#+

H*

if DEBUG:
print("Analyzing transaction: " + inputtransaction_hash)

inputtransaction = Transaction(inputtransaction_hash)
if DEBUG:
print("Analyzing version, sequence, locktime of transaction: ")

if Analyzer.cm_check_transaction_version_sequence_locktime(inputtransaction) is
False:
if DEBUG:
print("Analyzing faild. Logging error.")

ErrorLog.log(
"Transaction provided by user most probably not a coinmixer.SE-
transaction. Hash:
+ inputtransaction_hash + "(Sequence, Locktime, Version wrong)",
inputtransaction_hash)
continue

if DEBUG:
print ("version, sequence, locktime ok.\nchecking if fee is ok:")

result = Analyzer.cm_check_transaction_fee_correct_partition_and_update(
inputtransaction, True) # force

if DEBUG:
print ("version, sequence, locktime result: " + str(result))

if result is True:
inputtransaction.set_is_cm(True)
inputtransaction.insert_into_cm_network(forward, depth) # start crawling
else:
ErrorLog.log("Wrong fee in transaction provided by user :
+ inputtransaction_hash +
" (fee inconsistent with fee-partitions)", inputtransaction_hash

)

@staticmethod

def blockwise_crawling():
nun
Not implemented yet.
:return:

return False

@staticmethod
def graph_show():
nun
Not implemented yet.

ireturn:
nan

return False

N Forvard crawling #HHBHEHERHEE
Network.transaction_crawling("104
b7250d97294249fafd08fc2f7d0778ae213a4£0390cd8c23a7bc8de12f4a8")

it Backvard crawling (depth= 4) ####i##itis
Network.transaction_crawling("5635

b3c91bfc198e942254b950a2e3a89528eeb75e7c9f1b7aab0701bd71d6d82", False, 20)

##HiH#### Deanonymization (presumption: 1 forward, up to 12h delay) ##dit#i###t#s

inputtx = "74fb84d805fe35f00141fdca4f07a5a36e64b67fc1cab895033bb338c78d1d26"
inputaddress = "l1l4avhevfq2wcfBHmHHIYtAuQW3UowqliXM"
participations = Deanonymizer.input_deanonymize(inputtx, inputaddress, 1, 12)

print ("Inputtransaction: " + inputtx)
print ("Results: ")
for participation in participations:
print ("Results for " + str(participation.get_forwards_number()) + " forwards:")
for addr in participation.get_outputaddress():
print (addr.get_addresshash())

	Glossary
	Acronyms
	Introduction
	Motivation
	Contribution
	Organization of this Thesis

	Background
	Bitcoin
	Blockchain
	Transactions
	P2PKH and P2SH transactions
	Multisignature transactions
	Replace-By-Fee
	Locktime, sequence numbers and version
	Transaction fee
	Transaction time and IP addresses
	Example transaction

	Fungibility
	Privacy in Bitcoin
	Mixing techniques
	Decentralized mixing (P2P mixing)
	Centralized Mixing Services (CMS)
	Off chain mixing

	Centralized Mixing Services
	Advantages
	Disadvantages
	Attacker models
	Possible attacks
	Blockchain analysis
	Taint Analysis

	Sybil attack
	Web security bugs
	DDoS
	Attacks on the Bitcoin protocol
	Double spending
	Stale blocks
	Replay attack on forks
	Transaction malleability

	Conclusion

	Attack on coinmixer.se
	Functionality of coinmixer.se
	Optional setting: Multiple addresses
	Optional setting: Time delay
	Mixing fee

	Attacker Model
	Attacking Method
	Steps to break coinmixer.se

	Identifying coinmixer.se's network
	Characteristics of customer's input transactions
	Characteristics of coinmixer's output transactions
	Identifying customer's and coinmixer's transactions

	Crawler
	Gathering blockchain data
	Data structure
	Forward crawling
	Backward crawling
	Incorrect transaction distinguishing

	Deanonymization
	Results

	Conclusion
	Related Work
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Database structure
	Python Code

